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Preface

Data assimilation is a widely used technique in numerical weather prediction and in other
fields, as for example in earth science, in economics, and more recently in epidemiology. It is a
mathematical tool that optimally combines theories and observations to find the precise signal
and unknown parameters of a physical system, and to forecast its evolution. Ultimately, the
question arises whether this technique can be used for controlling the evolution of the system
in a prescribed direction?

In this thesis, we firstly apply data assimilation techniques to an infectious disease model
to study the effectiveness of parameter estimations and system predictions. Secondly, we
design the control simulation experiments (CSEs) of two chaotic dynamical systems and
investigate the most effective perturbation signals.

The thesis is arranged as follows: In Chapter 1, the general framework of data assimilation
is introduced. The theoretical developments of Kalman filter and ensemble Kalman filter
(EnKF) are reviewed. Some special versions of EnKF are also discussed, as for example the
ensemble transform Kalman filter (ETKF) and the ETKF with localization.

In Chapter 2, we introduce an extended SEIR infectious disease model together with
a data assimilation scheme for the study of the spread of COVID-19. In this framework,
undetected asymptomatic and pre-symptomatic cases are considered, and the impact of their
uncertain proportion is fully investigated. The standard SEIR model does not consider these
populations, while their role in the propagation of the disease is acknowledged. An ensemble
Kalman filter is implemented to assimilate reliable observations of three compartments in the
model. The system tracks the evolution of the effective reproduction number and estimates
the unobservable subpopulations. The analysis is carried out for three main prefectures of
Japan and for the entire population of Japan. We also perform sensitivity tests for different
values of some uncertain medical parameters, like the relative infectivity of symptomatic /
asymptomatic cases. The regional analysis results suggest the decreasing efficiency of the
states of emergency.

In Chapter 3, we study the control of chaotic dynamical systems with data assimilation
techniques. In numerical weather prediction (NWP), sensitivity to initial conditions often
leads to an intrinsic limit to predictability, but it also implies an effective control in which
a small control signal grows rapidly to make a substantial difference. In this chapter, we
extend the well-known Observing Systems Simulation Experiment (OSSE) and design the
CSE, in which the application of a small signal drags the systems in a prescribed direction.
An idealized experiment with the Lorenz-63 three-variable system shows that we can control

iii
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the system to stay in a chosen wing of the Lorenz’s butterfly attractor. Using longer lead
time forecasts, we achieve more effective controls with a perturbation size of about 3% of the
observation error. The idealized CSE is a starting point for CSEs applied to more realistic
dynamical systems. A long-term aim would be for example to reduce weather disaster risks
by adding small perturbations to the weather system.

The CSEs are further developed and applied to a more complicated scenario in Chapter 4.
This CSE is aimed for reducing the number of extreme events in the Lorenz-96 model. The
40 variables of this model represent idealized meteorological quantities evenly distributed on
a latitude circle. The reduction of occurrence of extreme events over a 100 years run of the
model is discussed as a function of the parameters of the CSE: the ensemble forecast length
for detecting extreme events in advance, the magnitude and localization of the perturbations,
the quality and the coverage of the observations.

In addition to these studies, we also provide in an Appendix the work that drove us to
the data assimilation framework, namely the bibliometric analysis of mathematical publica-
tions using tree-based methods. The framework for the bibliometric investigations (sketched
during the master program) is added since the large-scale research has been performed at
the beginning of the Ph.D. program. This Appendix contains several statistical results, and
a detailed study of the factors that affect the citations of mathematical articles by using a
tree-based classifier.

Let us finally mention that Chapter 3 and the Appendix correspond to published papers,
Chapter 2 has been submitted for publication already in October 2021, while Chapter 4 is
going to be submitted for publication in July 2022.
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Chapter 1

Overview: Background information of
data assimilation

In this section, we introduce the necessary background information about data assimilation,
and sketch the developments of the theory of the ensemble Kalman filter.

1.1 Dynamical systems

Let Ψ be a function from Rℓ to Rℓ and let x0 be a point in Rℓ. The function Ψ defines
an autonomous discrete-time dynamical system with initial condition x0 by considering the
sequence of points {xj}j∈N given by

xj+1 = Ψ(xj). (1.1)

For the continuous time scenario, let g be a C1 function from Rℓ to Rℓ, and consider x a
function from R to Rℓ. Suppose x satisfies the following differential equation

dx(t)

dt
= g

(
x(t)

)
,

with initial condition x(0) = x0. We assume that for any x0 ∈ Rℓ and t ∈ R+, there exists
such a solution. Then these assumptions guarantee the existence of the operator Ψ(·; t) with
parameter t that satisfies

x(t) = Ψ
(
x0; t

)
, t ∈ R+,

Ψ
(
x0; t+ s

)
= Ψ

(
Ψ(x0; s), t

)
, s, t ∈ R+, (1.2)

Ψ
(
x0; 0

)
= x0.

For t > 0, equation (1.2) has the same role as equation (1.1).

1



2 CHAPTER 1. OVERVIEW

1.2 Probability measures generated by dynamical sys-

tems

For a given measurable space (Ω,F), a probability measure P is a nonnegative countably
additive set function from F to [0, 1] with P(Ω) = 1, namely it satisfies:

(i) P(A) ≥ P(∅) = 0 for any A ∈ F ,

(ii) for {Ai}i∈N ⊂ F with Ai ∩ Aj = ∅ whenever i ̸= j, then P( ∪
i∈N

Ai) =
∑
i∈N

P(Ai).

Together with the measurable space, the triple (Ω,F ,P) is called a probability space [20,
pp. 1].

Let B(Rℓ) denote the σ-algebra of Borel sets on Rℓ generated by open sets [20, pp. 3]. We
now consider a function κ(·, ·) from Rℓ ×B(Rℓ) to [0, 1]. Following [47, pp. 19], the function
κ is a Markov kernel if it satisfies the following conditions:

(i) For any fixed x ∈ Rℓ, the map A → κ(x,A) is a probability measure on
(
Rℓ,B(Rℓ)

)
,

(ii) For any fixed A ∈ B(Rℓ), the map x 7→ κ(x,A) is B(Rℓ)-measurable.

Let us come back to the discrete time dynamical system of the previous section, and
consider a sequence of i.i.d. random variables {ξj}j∈N on Rℓ with common probability den-
sity function (pdf) fξ. In the sequel, we shall only consider absolutely continuous random
variables, and call them simply random variables. A stochastic dynamical system is formed
by

Xj+1 = Ψ(Xj) + ξj, (1.3)

where X0 is assumed to be a random variable on Rℓ, independent of ξj, j ∈ N [47, pp. 19].
Let us observe that {Xj}j∈N defines a Markov chain, namely a sequence of random variables
{Xj}j∈N satisfying for any j ∈ N, j ̸= 0, and any Aj ∈ B(Rℓ)

P
(
Xj ∈ Aj | Xj−1 ∈ Aj−1, . . . , X0 ∈ A0

)
= P

(
Xj ∈ Aj | Xj−1 ∈ Aj−1

)
. (1.4)

In our setting, this condition is about the expression

P
(
Xj ∈ Aj | Xj−1 ∈ Aj−1, . . . , X0 ∈ A0

)
for all j ∈ N, j ̸= 0, and Aj ∈ B(Rℓ). Then, it is enough to replace Xj by Ψ(Xj−1) + ξj−1

and to observe that

P
(
Ψ(Xj−1) + ξj−1 ∈ Aj | Xj−1 ∈ Aj−1, . . . , X0 ∈ A0

)
= P

(
Ψ(Xj−1) + ξj−1 ∈ Aj | Xj−1 ∈ Aj−1

)
because of the independence of ξj−1 with X0, . . . , Xj−1. Thus, one gets (1.4), as expected.
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Starting again from (1.3), one observes that if Xj takes the value xj, one has Xj+1 =
Ψ(xj) + ξj, from which one directly infers that

fXj+1|Xj
(xj+1 | xj) = fξ

(
xj+1 −Ψ(xj)

)
, (1.5)

where fXj+1|Xj
is the conditional pdf of Xj+1 knowing Xj, and xj+1 is an arbitrary point in

Rℓ. For any A ∈ B(Rℓ), it then follows that

P
(
Xj+1 ∈ A | xj

)
=

∫
A

fξ
(
xj+1 −Ψ(xj)

)
dxj+1.

Note that this expression defines a Markov kernel: With the notation introduced at the
beginning of this section, the function κ defined by κ(xj, A) :=

∫
A
fξ
(
xj+1 − Ψ(xj)

)
dxj+1 is

a Markov kernel.
Let us denote by fXj

the pdf of the random variable Xj, for any j ∈ N. It then follows
from the previous observation that

P(Xj+1 ∈ A) =

∫
A

fXj+1(xj+1)dxj+1

=

∫
A

∫
Rℓ

fXj+1|Xj
(xj+1 | xj)fXj

(xj)dxj dxj+1

=

∫
A

∫
Rℓ

fξ
(
xj+1 −Ψ(xj)

)
fXj

(xj)dxj dxj+1

At the level of densities, this equality reads:

fXj+1
(xj+1) =

∫
Rℓ

fξ
(
xj+1 −Ψ(xj)

)
fXj

(xj)dxj.

for any xj+1 ∈ Rℓ. Thus, following [47, pp. 20] we define the integral operator P by the
formula

(Pf)(x) =

∫
Rℓ

fξ
(
x−Ψ(x′)

)
f(x′)dx′,

and the relation between fXj+1
and fXj

is then provided by

fXj+1
= PfXj

. (1.6)

The pdf of the random variables {Xj}j∈N are then obtained by iteration of (1.6).

1.3 Discrete-time data assimilation

We consider again the stochastic dynamical system (1.3). The sequence of random variables
{Xj}j∈N generated by (1.3) corresponds to the evolution of the model. Observations are
usually obtained through the following process:

Yj = h(Xj) + ηj, (1.7)
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where h : Rℓ → Rm is a function (also called observation operator) and {ηj}j∈N is a sequence
of i.i.d. random variables independent of X0 and of {ξj}j∈N. We denote by η the random
variable common to all ηj, and stress that the random variable η takes values in Rm while
the random variable ξ takes values in Rℓ. The random variables {Yj}j∈N are called the
observations. The aim of data assimilation is to determine the unobservable signal {Xj}j∈N
by using the observations.

1.3.1 The smoothing problem

For a, b ∈ N with a < b we introduce the notation a : b for the set {j ∈ N | a ≤ j ≤ b}. For
example ya:b means {yj}a≤j≤b.

Let us fix J ∈ N with J > 0. In this section we shall consider the conditional pdf of X0:J

given y1:J . For that purpose, let fX0:J |y1:J represent this conditional pdf. This distribution
is also called the smoothing distribution. To solve the smoothing problem, namely to find
the smoothing distribution, we refer to Bayes’ Theorem. Let fX0:J

be the pdf of X0:J , also
called prior pdf. Then, by the disintegration formula and the Markov property of {Xj}j∈N,
one infers that [47, Sec. 2.3.2]

fX0:J
(x0:J) = fXJ |X0:J−1

(xJ | x0:J−1)fX0:J−1
(x0:J−1)

= fXJ |XJ−1
(xJ | xJ−1)fX0:J−1

(x0:J−1).

The last factor fX0:J−1
(x0:J−1) can be further expanded in a similar manner, and one gets the

equality [47, Sec. 2.3.2]

fX0:J
(x0:J) = fX0(x0)

J∏
j=1

fXj |Xj−1
(xj | xj−1).

Now, let us determine the likelihood function, namely the conditional pdf fY1:J |X0:J
(y1:J |

x0:J) of the observations Y1:J given X0:J [47, pp. 35]. By definition one has

fY1:J |X0:J
(y1:J | x0:J) =

fY1:J ,X0:J
(y1:J , x0:J)

fX0:J
(x0:J)

,

and by (1.7) one gets

fY1:J ,X0:J
(y1:J , x0:J) = fYJ |Y1:J−1,X0:J

(yJ | y1:J−1, x0:J)fY1:J−1,X0:J
(y1:J−1, x0:J)

= fYJ |XJ
(yJ | xJ)fY1:J−1,X0:J

(y1:J−1, x0:J).

By repeating this argument for fY1:J−1,X0:J
(y1:J−1, x0:J), one finally obtains

fY1:J ,X0:J
(y1:J , x0:J) = fX0:J

(x0:J)
J∏

j=1

fYj |Xj
(yj | xj),
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and thus

fY1:J |X0:J
(y1:J | x0:J) =

J∏
j=1

fYj |Xj
(yj | xj).

By considering the relation between the ηj and yj provided in (1.7), and by using the
argument already explained for (1.5), one finds the likelihood of the observation Yj given Xj

has the same pdf as ηj, namely fYj |Xj
(yj | xj) = fη

(
yj − h(xj)

)
, where fη denotes the pdf of

the random variable η. Collecting these results, one obtains

fY1:J |X0:J
(y1:J | x0:J) =

J∏
j=1

fη
(
yj − h(xj)

)
.

These different equalities together with Bayes’ theorem lead finally to the posterior dis-
tribution fX0:J |Y1:J

, the pdf of X0:J after the observations Y1:J [47, pp. 35, Theorem 2.8]:

fX0:J |Y1:J
(x0:J | y1:J) =

fY1:J |X0:J
(y1:J | x0:J)fX0:J

(x0:J)

fY1:J
(y1:J)

=
fX0:J

(x0:J)
∏J

j=1 fη
(
yj − h(xj)

)
fY1:J

(y1:J)
.

Let us emphasize that so far, we have not used any specific form for the probability density
functions of X0, of ξ, and of η. As shown in this section, the smoothing problem does not
perform the analysis sequentially when new observations are available. In the next section, we
introduce a sequential updating strategy described by the filtering problem. This approach
is more interesting for solving problems in real time.

1.3.2 The filtering problem

For a time point j in N with j > 0, the filtering distribution is defined as the conditional
distribution of Xj given Y1:j. Its pdf is denoted by fXj |Y1:j

. This function corresponds to the
pdf of the unknown signal at time j given all observations from time 1 up to time j. The
form of the filtering distribution inspires the potential of an update once a new observation
is available. The online update can be carried out in two steps: the forecast step and the
analysis step, see [47, pp. 38].

For some j ∈ N, suppose that the pdf fXj |Y1:j
is known. The forecast step consists in

using this information for providing the forecast pdf fXj+1|Y1:j
at time j + 1. The following
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computation shows how it can be derived:

fXj+1|Y1:j
(xj+1 | y1:j) =

∫
Rℓ

fXj ,Xj+1|Y1:j
(xj, xj+1 | y1:j)dxj

=

∫
Rℓ

fXj ,Xj+1,Y1:j
(xj, xj+1, y1:j)

fY1:j
(y1:j)

dxj

=

∫
Rℓ

fXj ,Xj+1,Y1:j
(xj, xj+1, y1:j)

fY1:j
(y1:j)

fXj ,Y1:j
(xj, y1:j)

fXj ,Y1:j
(xj, y1:j)

dxj

=

∫
Rℓ

fXj ,Xj+1,Y1:j
(xj, xj+1, y1:j)

fXj ,Y1:j
(xj, y1:j)

fXj ,Y1:j
(xj, y1:j)

fY1:j
(y1:j)

dxj

=

∫
Rℓ

fXj+1|Xj ,Y1:j
(xj+1 | xj, y1:j)fXj |Y1:j

(xj | y1:j)dxj

=

∫
Rℓ

fXj+1|Xj
(xj+1 | xj)fXj |Y1:j

(xj | y1:j)dxj. (1.8)

For the last step, we have used relation (1.3) which stipulates that Xj contains all necessary
information for generating Xj+1, and that Y1:j are not necessary. In (1.8), fXj+1|Xj

can be
computed by using (1.5) while fXj |Y1:j

is supposed to be known.
Once the new observation yj+1 is available, one must updated the forecast pdf fXj+1|Y1:j

to
take this new observation into account, and get the analysis pdf fXj+1|Y1:j+1

. The computation
takes the form:

fXj+1|Y1:j+1
(xj+1 | y1:j+1) = fXj+1|Y1:j ,Yj+1

(xj+1 | y1:j, yj+1)

=
fXj+1,Y1:j ,Yj+1

(xj+1, y1:j, yj+1)

fY1:j ,Yj+1
(y1:j, yj+1)

=
fYj+1|Xj+1,Y1:j

(yj+1 | xj+1, y1:j)fXj+1,Y1:j
(xj+1, y1:j)

fY1:j ,Yj+1
(y1:j, yj+1)

=
fYj+1|Xj+1,Y1:j

(yj+1 | xj+1, y1:j)fXj+1|Y1:j
(xj+1 | y1:j)fY1:j

(y1:j)

fY1:j ,Yj+1
(y1:j, yj+1)

=
fYj+1|Xj+1,Y1:j

(yj+1 | xj+1, y1:j)fXj+1|Y1:j
(xj+1 | y1:j)

fY1:j ,Yj+1
(y1:j ,yj+1)

fY1:j (y1:j)

=
fYj+1|Xj+1

(yj+1 | xj+1)fXj+1|Y1:j
(xj+1 | y1:j)

fYj+1|Y1:j
(yj+1 | y1:j)

. (1.9)

In (1.9), the denominator depends only on the observations, while the factor fYj+1|Xj+1
can

be found by relation (1.7). The formula provided in (1.9) gives the update of the forecast
pdf to the analysis pdf.

By repeating the forecast-analysis cycle, one can update the filtering distribution in real
time. So far, we have not taken any assumption of the form of distributions mentioned
above, and it may result that there might be no closed solutions for (1.8) and for (1.9). In
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this situation, numerical updates would be preferable. In the next section, we introduce a
very special situation for which all solutions for the filtering distribution are closed. Later
we will extend this to a more general situation with less assumptions and restrictions.

1.4 Kalman Filter

The material discussed in this section is based on reference [76]. We consider the system
provided by the equations (1.3) and (1.7), but impose the following special form:

Xj+1 = AjXj + ξj, (1.10)

Yj = HjXj + ηj. (1.11)

Here, Xj are random variables taking values in Rℓ, ξj are independent random variables with
values in Rℓ and following the normal distributions N(0,Σj) with Σj ∈ Rℓ×ℓ and Σj > 0,
and ηj are independent random variables with values in Rm and following the distributions
N(0,Γj) with Γj ∈ Rm×m and Γj > 0. The functions Ψ and h in (1.3) and (1.7) are replaced
by the matrices Aj ∈ Rℓ×ℓ and Hj ∈ Rm×ℓ respectively. Note that these matrices can be
different for different time j. Yj correspond to the resulting observations, namely to some
random variables with values in Rm. The equation (1.10) holds for any j ∈ N, with an initial
condition X0 following a distribution N

(
ma

0, P
a
0

)
, while (1.11) is valid for j ∈ N∗.

With these assumptions, the two equations (1.10) and (1.11) are linear, and this frame-
work leads to closed solutions for the filtering problem mentioned in previous section, as we
present now. First of all, relation (1.10) implies that Xj+1 − AjXj follows the distribution
N(0,Σj). Thus, if Xj takes the value xj, then one has

(Xj+1 | Xj = xj) ∼ N(Ajxj,Σj), (1.12)

where ∼ precisely means that the l.h.s. follows the distribution provided by the r.h.s. Sim-
ilarly, one infers from (1.11) that (Yj | Xj = xj) ∼ N(Hjxj,Γj). Based on these relations,
we derive the solutions of the forecast and of the analysis distributions, and show how the
filtering problem can be solved. The proof is based on two lemmas which we recall:

Lemma 1 (Joint distribution of Gaussian variables, Lemma A.1 of [76]) Let X be
a random variable with values in Rℓ and Y be a random variable with values in Rm which
satisfy the following properties

X ∼ N(v, P ),

(Y | X) ∼ N(HX + u,Q),

with v ∈ Rℓ, u ∈ Rm, H ∈ Rm×ℓ, P ∈ Rℓ×ℓ and P > 0, Q ∈ Rm×m and Q > 0. Then the
joint distribution of X and Y satisfies(

X
Y

)
∼ N

((
v
Hv + u

)
,

(
P PHT

HP HPHT +Q

))
,
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while the marginal distribution of Y is given by

Y ∼ N
(
Hv + u,HPHT +Q

)
.

In the statement of this lemma, the notation HT is used for the transpose of the matrix
H. The same notation is used in the sequel.

Lemma 2 (Conditional distribution of Gaussian variables, Lemma A.2 of [76]) If
the random variables X and Y follow a distribution of the form:(

X
Y

)
∼ N

((
a
b

)
,

(
A C
CT B

))
,

for suitable vectors a and b, and conformable matrices A, B, and C, then the marginal
distributions of X and Y , and conditional distribution (X | Y ) and (Y | X) satisfy

X ∼ N(a,A),

Y ∼ N(b, B),

(X | Y ) ∼ N
(
a+ CB−1(Y − b), A− CB−1CT

)
,

(Y | X) ∼ N
(
b+ CTA−1(X − a), B − CTA−1C

)
.

Let us provide the closed formula for the Kalman filter, following [76, p. 57–58]. We start
with the computation of the forecast distribution, namely the pdf fXj+1|Y1:j

. Suppose at the
time j, the analysis distribution is Gaussian and satisfies

Xa
j := (Xj | Y1:j) ∼ N

(
ma

j , P
a
j

)
. (1.13)

By the rule of conditional probabilities, the pdf fXj+1,Xj |Y1:j
can be rewritten as follows:

fXj+1,Xj |Y1:j
= fXj+1,Xa

j
= fXj+1|Xa

j
fXa

j
. (1.14)

The pdf represented by the first factor on the r.h.s. of (1.14) follows the distributionN(AjX
a
j ,Σj)

by (1.12). The pdf represented by the second factor on the r.h.s. of (1.14) follows also a nor-
mal distribution, by the assumption (1.13). Thus, by using Lemma 1, we infer that the joint
distribution of Xa

j and Xj+1 satisfies((
Xa

j

Xj+1

))
∼ N

((
ma

j

Ajm
a
j

)
,

(
P a
j P a

j A
T
j

AjP
a
j AjP

a
j A

T
j + Σj

))
. (1.15)

By using Lemma 2 and (1.15), we then obtain the forecast distribution, namely

Xf
j+1 := (Xj+1 | Y1:j) ∼ N(Ajm

a
j , AjP

a
j A

T
j + Σj) =: N(mf

j+1, P
f
j+1). (1.16)

Now let us compute the analysis distribution (Xj+1 | Y1:j+1), once the observation Yj+1 is
available. Consider the conditional joint distribution of Xj+1 and Yj+1 given Y1:j :

fXj+1,Yj+1|Y1:j
= fYj+1|Xj+1

fXj+1|Y1:j
= fYj+1|Xj+1

fXf
j+1

. (1.17)
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The first factor on the r.h.s of (1.17) follows a distribution N(Hj+1Xj+1,Γj+1), the second
factor has the distribution given by (1.16). By Lemma 1, it follows that((

Xf
j+1

Yj+1

))
∼ N

((
mf

j+1

Hj+1m
f
j+1

)
,

(
P f
j+1 P f

j+1H
T
j+1

Hj+1P
f
j+1 Hj+1P

f
j+1H

T
j+1 + Γj+1

))
. (1.18)

By an application of Lemma 2, one gets

Yj+1 ∼ N
(
Hj+1m

f
j+1, Hj+1P

f
j+1H

T
j+1 + Γj+1

)
.

Finally, by using Lemma 2 and (1.18), one obtains

(Xj+1 | Y1:j+1) ∼ N
(
ma

j+1, P
a
j+1

)
, (1.19)

where

ma
j+1 = mf

j+1 + P f
j+1H

T
j+1

(
Hj+1P

f
j+1H

T
j+1 + Γj+1

)−1(
Yj+1 −Hj+1m

f
j+1

)
(1.20)

P a
j+1 = P f

j+1 − P f
j+1H

T
j+1

(
Hj+1P

f
j+1H

T
j+1 + Γj+1

)−1
Hj+1P

f
j+1 (1.21)

In (1.20), we observe that the mean of the analysis distribution is a sum of the mean of the
forecast distribution and a weighted difference between the latest observation and a projection
of the forecast mean to the observation space. The weight P f

j+1H
T
j+1(Hj+1P

f
j+1H

T
j+1+Γj+1)

−1

is called Kalman gain matrix and is usually denoted by Kj+1. By recursively computing the
forecast distribution (1.16) and analysis distribution (1.19), one explicitly solves the data
assimilation problem of the system given by (1.10) and (1.11).

1.5 Ensemble Kalman filter (EnKF)

As mentioned in the previous section, the Kalman filter provides a closed solution of the
forecast distribution and the analysis distribution. In this framework, since both distributions
are Gaussian, the mean can be used as an optimal estimator of the unknown signal, while the
covariance matrix provides the uncertainty information on the estimates. However, Kalman
filter requires strong restrictions on the dynamical model, on the observation model, and on
the initial condition. Such requirements are difficult to meet in a general scenario. We shall
thus relax the assumptions on Aj and on Hj, and re-write equations (1.10) and (1.11) in the
more general form

Xj+1 = Aj(Xj) + ξj, (1.22)

Yj = Hj(Xj) + ηj. (1.23)

where Aj : Rℓ → Rℓ and Hj : Rℓ → Rm are functions. As a rule, all linear expressions
available for the Kalman filter can no more be used in this context.

In order to develop a new machinery, let us consider again the solutions (1.20) and
(1.21) of the Kalman filter. In these expressions, the forecast mean mf

j+1 and its covariance



10 CHAPTER 1. OVERVIEW

P f
j+1 are transformed into the analysis mean ma

j+1 and its covariance P a
j+1. In the ensem-

ble Kalman filter, the analysis mean is computed from a set of analysis ensemble members
{xa

j+1,1, x
a
j+1,2, . . . , x

a
j+1,N}. These realizations of the analysis ensemble members are gener-

ated by a set of the forecast or background ensemble members {xf
j+1,1, x

f
j+1,2, . . . , x

f
j+1,N}

through a suitable adaptation of (1.20), as described below.

Suppose at certain time point j+1, a set of background ensemble members is given. Then
the analysis ensemble members can be updated by [41, eq. (4)]:

xa
j+1,i = xf

j+1,i +Kj+1

(
yj+1 −Hj+1(x

f
j+1,i)

)
(1.24)

where Kj+1 is still called the Kalman gain matrix. However, the formula

Kj+1 = P f
j+1HT

j+1

(
Hj+1P

f
j+1HT

j+1 + Γj+1

)−1
(1.25)

has now to be suitably interpreted, since it does not correspond to a product of matrices.

For that purpose, let us firstly recall the original idea of the ensemble Kalman filter, as
introduced in [21]. By definition, the error covariance matrices P f

j+1 and P a
j+1 for the forecast

and for the analysis are given by

P f
j+1 = E

(
(Xf

j+1 − xt
j+1)(X

f
j+1 − xt

j+1)
T
)
, (1.26)

P a
j+1 = E

(
(Xa

j+1 − xt
j+1)(X

a
j+1 − xt

j+1)
T
)
, (1.27)

where E represents the expectation and xt
j+1 is the true state [23, eq. (11), (12)]. Since the

true state is unknown, these two matrices can be estimated by replacing the true state by
the forecast ensemble mean and the analysis ensemble mean respectively, namely

P f
j+1 = E

((
Xf

j+1 − xf
j+1

)(
Xf

j+1 − xf
j+1

)T)
=

1

N − 1

N∑
i=1

(
xf
j+1,i − xf

j+1

)(
xf
j+1,i − xf

j+1

)T

,

(1.28)

P a
j+1 = E

((
Xa

j+1 − xa
j+1

)(
Xa

j+1 − xa
j+1)

T
)
=

1

N − 1

N∑
i=1

(
xa
j+1,i − xa

j+1

)(
xa
j+1,i − xa

j+1

)T

,

(1.29)

where the overline expressions represent the forecast ensemble mean and the analysis ensem-
ble mean, respectively. Note that the last two expressions consist in the adjusted sample
covariance, which is an unbiased estimator.

When Hj+1 is linear, namely when Hj+1 is represented by a matrix Hj+1 ∈ Rm×ℓ, the
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expression P f
j+1H

T
j+1 appearing in (1.25), with P f

j+1 provided by (1.28), can be rewritten as

P f
j+1H

T
j+1 =

1

N − 1

N∑
i=1

(
xf
j+1,i − xf

j+1

)(
xf
j+1,i − xf

j+1

)T

HT
j+1

=
1

N − 1

N∑
i=1

(
xf
j+1,i − xf

j+1

)(
Hj+1

(
xf
j+1,i − xf

j+1

))T

=
1

N − 1

N∑
i=1

(
xf
j+1,i − xf

j+1

)(
Hj+1x

f
j+1,i −Hj+1x

f
j+1

)T

.

Similarly, for another expression appearing in (1.25) the following equality hold:

Hj+1P
f
j+1H

T
j+1 = Hj+1

1

N − 1

N∑
i=1

(
xf
j+1,i − xf

j+1

)(
xf
j+1,i − xf

j+1

)T

HT
j+1

=
1

N − 1

N∑
i=1

(
Hj+1

(
xf
j+1,i − xf

j+1

))(
Hj+1

(
xf
j+1,i − xf

j+1

))T

=
1

N − 1

N∑
i=1

(
Hj+1x

f
j+1,i −Hj+1x

f
j+1

)(
Hj+1x

f
j+1,i −Hj+1x

f
j+1

)T

.

Inspired by the previous expressions, and following [40, eq. (2), (3)], we can now provide the
meaning of the expressions appearing in (1.25):

P f
j+1HT

j+1 :=
1

N − 1

N∑
i=1

(
xf
j+1,i − xf

j+1

)(
Hj+1(x

f
j+1,i)−Hj+1(x

f
j+1)

)T

Hj+1P
f
j+1HT

j+1 :=
1

N − 1

N∑
i=1

(
Hj+1

(
xf
j+1,i

)
−Hj+1

(
xf
j+1,k

))(
Hj+1

(
xf
j+1,i

)
−Hj+1

(
xf
j+1,k

))T

.

As emphasized in [40], the first expression can be understood as the cross-covariance matrix
betweenXf

j+1 andH(Xf
j+1), while the second expression corresponds to the covariance matrix

of H(Xf
j+1).

The expression for the Kalman gain matrix provided in (1.25) is now fully explained. As
a result, each analysis ensemble member can be computed through (1.24). The mean value
of the analysis ensemble members becomes the optimal estimate of the signal, and the spread
of this ensemble becomes a natural definition of the error to the mean [23, Sec. 3.4.1]. To
generate the next forecast ensemble, one uses the equation (1.22) to evolve each analysis
ensemble member. As a result, the filtering problem with the nonlinear equations (1.22) and
(1.23) can be solved in real time.
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1.6 Several variants to EnKF

The EnKF introduced in the previous section has been further developed in many directions,
and this have led to several advanced algorithms. In this section, we sketch some of them,
and in particular mention the ones that will be used in the following chapters. Additional
information can be found in [41, Sec. 2], from which this section is inspired.

The computation of the analysis error covariance, as described in (1.21), has the trouble-
some feature of underestimating the error covariance of the analysis mean. This outcome is
partially due to the fact that every ensemble members are updated by using the same obser-
vations [14, Sec. 3]. Based on this finding, a refined version of EnKF consists in treating the
observations as random variables. For that purpose, i.i.d. random errors are added to the
observation at each time point, and this creates a set of ensemble members [14, Sec. 3, (12)].
Each forecast ensemble member is updated by using the corresponding perturbed observa-
tion. The errors which are added to the observations are usually assumed to be Gaussian
distributed with zero mean, especially when no additional information is available. This kind
of algorithms are called stochastic filters [41, Sec. 2, b(1)].

Let us also mention other types of deterministic filters (in which the observations are not
perturbed randomly) as for example the ensemble square root filter (EnSRF), the ensemble
adjustment Kalman filter (EAKF), and the ensemble transform Kalman filter (ETKF) [41,
Sec. 2, b(2)]. For these filters, the main idea is to assume the existence and the knowledge of
the optimal Kalman gain, and to deduce the analysis error covariance from (1.21). From this
formula, it follows that the analysis covariance matrix is smaller than the forecast covariance
matrix, but unfortunately sampling errors might lead to analysis error bigger than the forecast
error. To solve this problem, covariance inflation can be adopted, and this approach leads to
results similar to the stochastic filters but with a smaller ensemble size. Detailed information
can be found in [41, Sec. 4,a(1,2,3)] about different methods for increasing the ensemble
spread. In our work, we have employed ETKF for the study related to COVID-19, and the
theory for this filter is provided in Section 2.3.

In order to reduce the cost of numerical computations when the inverse of a matrix is
involved, sequential and local filters have been developed [41, Sec. 2, c]. One of the famous
local filters is called the local ensemble transform Kalman filter (LETKF). An outline of this
filter is presented in Section 4.2.2, since this filter has been used for the control simulation
experiment involving the Lorenz-96 model.

In summary, there exist numerous variants of data assimilation techniques, and we have
presented only the main ones, and the ones explicitly used in our investigations. We refer to
[41] for a recent review paper presenting many outcomes and challenges for these filters and
for their applications to atmospheric problems. This reference contains also a very long list
of additional references on the subject.



Chapter 2

Analysis of COVID-19 in Japan with
Extended SEIR model and ensemble
Kalman filter

2.1 Introduction

The outbreak of coronavirus 2019 (COVID-19) had a huge impact on human society, and its
devastating effects are still present more than 18 months after its official acknowledgment.
One of the specific characteristics of this disease increases the difficulties for any scientific re-
search based on infectious disease models, namely the existence of asymptomatic cases. Their
existence, but also their potential infectiousness, blur the full picture of the disease spreading
inside the society [95]. The simultaneous existence of mild symptomatic cases, which often
remain undocumented, also generates an additional challenge for any epidemiological inves-
tigations. For example, one study discussing the potential fraction of undocumented cases
at the beginning of the outbreak ends up with a ratio of 86% undocumented infections [49].

There exists now a huge literature related to COVID-19, but only a small number of
papers are using techniques of data assimilation, as we shall do. For that reason, we present
only a few references closely related to our investigations. To get a better understanding of
the spread of COVID-19, some studies start with a specially designed infectious disease model
with appropriate structures. Those elaborated models may accurately describe the process
in reality but they also bring more uncertainties and unknown parameters. For example in
[3], a 22 variables model is adopted with each variable representing a subpopulation. The
structure related to asymptomatic, pre-symptomatic, detected, and undetected cases are all
properly described by the structure. However, the inference is done with only observations
of 4 compartments among all variables. Another example is [25], where an extended SEIR
model with 11 age-classes is used to estimate the posterior distribution of parameters and
make short period predictions. The distribution of mild, severe and fatal cases for each age
class is introduced as pre-defined parameters. Also, a matrix which describes the relative
transmissions between each pair of age groups is predefined.

Despite these elaborated models, most of the investigations are still performed on the

13
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common infectious disease models, namely the SIR and SEIR models. Such models are easier
to implement and contain less parameters, but they also sacrifice some details of the process.
For example the SEIR model is used to study the dynamical behavior of COVID-19 outbreaks
at the regional level in [26], and the SIR model was used to track the effective reproduction
number for 124 countries in [4]. A slightly more elaborated model is also introduced in [64],
namely the SITR model with T standing for under treatment, for inferring infection numbers
and parameters values.

For dealing with real data, one of the recent tools employed for the study of infectious
diseases is data assimilation. The techniques developed for data assimilation have the abil-
ity to optimally meld dynamical systems with noisy and imperfect observations. They also
provide forecasts and estimations of parameters and variables [74]. As examples of investi-
gations studying the details of the implementation of these techniques to epidemic models,
let us mention [61] and [73]. The previously cited work [3] also uses statistical data assimi-
lation for identifying the measurements required for getting accurate states and parameters
estimations. Finally, in [31] an ensemble Kalman filter is adopted to forecast the COVID-19
pandemic in Saudi Arabia with an extended SEIR model including vaccination.

Let us now present our research. First, we construct an extended SEIR model which
takes into account one of the main specificities of COVID-19: the simultaneous existence
of an asymptomatic/pre-symptomatic population and of a symptomatic population. These
two infected populations have different characteristics which are encoded with different pa-
rameters. The model is also constructed such that it can be fed with the data of only three
compartments, namely the Hospitalized (or treated) population, the Recovered population,
and the Deceased population, naturally identified by the letters H, R, and D, respectively.
Note that the population R or D are coming from the population H, and these three popula-
tions are considered as fully recorded by health services. Except for the first couple of weeks
at the beginning of the epidemic, these data are also considered as the most reliable ones.
With this model and these data, our main aim is to provide information about the effective
reproduction number and about the population of asymptomatic/pre-symptomatic or unde-
tected symptomatic, with uncertainty ranges. For these investigations, we shall also mainly
concentrate on the population of Tokyo, but provide additional analysis with two additional
prefectures (Osaka and Kanagawa) and with the entire population of Japan. Let us mention
that targeting a specific population gives the opportunity to rely on local parameters and
to use information provided by local medical research or health services. We also emphasize
that for data assimilation, we use the ensemble transform Kalman filter [42] which is efficient
compared with the standard extended Kalman filter.

As a result of our investigations we get an effective reproduction number for the four
populations mentioned before, as well as a time dependent estimate for the number of asymp-
tomatic/pre-symptomatic in these four populations. A comparison between our estimated
effective reproduction number and the same statistic provided by Toyokeizai [87] shows the
reliability of our strategy. As an asset of our approach, we test the sensitivity of our model
and its outcomes to the values of uncertain parameters borrowed from the literature. These
experiment’s results show a robust performance of the strategy used in our investigations.
Another clear result from our computation of the effective reproduction number is the decay
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of the effectiveness of the states of emergency as their number increases. This effect is clearly
visible independently for the three prefectures and for the entire country. Note that a similar
effect is also visible in the use of public transportation, see for example [57]. Other outcomes
of our investigation are gathered in Sections 2.4 and 2.5.

Let us finally describe the structure of this paper. In Section 2.2, we recall the standard
SIR and SEIR models, and introduce the extended SEIR model. We also provide information
for the computation of the effective reproduction number, and discuss the constant parameter
values and the observations. In Section 2.3, we explain the technical details of ensemble
transform Kalman filter. Readers familiar with data assimilation and Kalman filters can
skip this section without any loss for the application to infectious diseases. In Section 2.4,
background information about the experiments, and subsequently technical information, are
provided. The main results of our investigations are also presented in this section. The
discussion and the comparisons between the different populations are provided in Section
2.5. We finally prepare the ground for future projects.

2.2 Extended SEIR model

In this section, we recall a few information on the SIR and SEIR models, and introduce the
extended SEIR model. We also discuss medical parameters, and provide some explanations
about the observations.

2.2.1 The SIR and SEIR models

The SIR model is a deterministic epidemic model expressed by a system of differential equa-
tions. Its construction is based on Kermack–McKendrick theory, and it describes the trans-
mission process of an infectious disease. A given population of size N is divided into three
mutually exclusive sub-populations call compartments: the susceptible hosts S, the infectious
hosts I, and the recovered hosts R. For any given time t, S(t), I(t), and R(t) describe the
number of individuals in each respective compartment, and they satisfy S(t)+I(t)+R(t) = N .
Individuals in compartment S can be infected by individuals in compartment I through di-
rect contact. Once a successful contact happens, the infected individual leaves compartment
S and becomes a member of compartment I. The number of newly infected individuals
per unit time is given by βI(t)S(t)/N , where the parameter β is called the transmission
coefficient. Similarly, once a patient recovers, this person leaves compartment I and goes to
compartment R immediately. The transfer between I and R is controlled by the recovery
rate γ. The transfer rate, namely the number of transfer individuals per unit time, is given
by γI(t).

S I R
βIS/N γI

Figure 2.1: Transfer diagram for the SIR model
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Figure 2.1 shows the process of the SIR model, and the following differential system
describes its dynamic:

dS

dt
= −βIS/N,

dI

dt
= βIS/N − γI, (2.1)

dR

dt
= γI.

Note that the system (2.1) assumes a permanent immunity once recovered. In other words, no
individual can be infected a second time. The model also assumes a constant total population:
there is no inflow to the system, or outflow from the system.

The SEIR model is very similar to the previous model, but with an additional compart-
ment E between the compartments S and I. The individuals in E are exposed, namely they
have been contaminated, but they are not infectious yet. The time spent in E corresponds
to the incubation period, before becoming infectious. The transfer rate from E to I is given
by εE(t).

S E I R
βIS/N εE γI

Figure 2.2: Transfer diagram for the SEIR model

Figure 2.2 shows the process of the SEIR model, and the following differential system
describes its dynamic:

dS

dt
= −βIS/N,

dE

dt
= βIS/N − εE,

dI

dt
= εE − γI,

dR

dt
= γI.

2.2.2 The extended SEIR model

The extended SEIR model has been developed based on some specific features of the COVID-
19 epidemic, as described now. In early 2020, health services already noticed that some
infected individuals, who did not show any symptom, could spread the disease. These persons
correspond either to asymptomatic hosts or to pre-symptomatic hosts. In the first cohort,
people will never show any symptom, while the second cohort corresponds to individuals who
will show some symptoms subsequently. Clearly, asymptomatic hosts and pre-symptomatic
hosts are difficult to be identified by health services, even though they play an important
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role in the spread of the disease. Symptomatic individuals are also infectious, but they
can be more easily identified precisely because of their symptoms. Thus, if symptomatic
individuals correspond to the compartment I of the above SIR or SEIR models, then there
is no compartment left for the asymptomatic or the pre-symptomatic individuals.

The existence of COVID-19 infectious spreaders who do not show (yet or at all) any
symptom already brings a lot of uncertainties to health services. In addition, whenever the
symptoms are relatively mild, some symptomatic individuals do hesitate to report the health
service [66, p. 11]. As a consequence, daily new cases are under-reported. Combining this
effect with some delayed information, some inaccurate tests (especially in the first phase of
the epidemic), and other reasons that we are not aware of, it turns out that that the reported
data are not very accurate. In such a situation one needs to use proper strategies to analyse
the observation data.

S E Ia Is H

R

D

Ra

Rs

βaIaS/N

βsIsS/N

εE δIa τHIs
γHH

γDH

γaIa

γsIs

Figure 2.3: Transfer diagram for the extended SEIR model. Compartment I of the SEIR
model is divided into two compartments Ia (asymptomatic/pre-symptomatic) and Is (symp-
tomatic)

In order to meet the special features of COVID-19, we separate the compartment I of
the SEIR model into two compartments Ia and Is. These compartments correspond to
asymptomatic/pre-symptomatic and to symptomatic states, respectively. Both Ia and Is
can infect S. As shown in Figure 2.3, the transmission processes related to Ia and to Is have
transmission coefficients βa and βs respectively. Once an individual in S gets infected, this
person becomes a member of E, and then moves to Ia when it becomes infectious. In Ia,
part of these individuals (the asymptomatic) will never generate any symptoms. They will
thus spend some time in Ia, and then recover. The corresponding compartment is denoted
by Ra. In contrast, the other part of individuals in Ia will develop symptoms, and then move
to Is. In Is, a majority of individuals will be identified by health services, but as mentioned
above a minority will recover without being identified by any health services. Compartment
Rs corresponds to those recovered individuals who have not been registered. The identified
persons in Is will then move to the compartment H, which corresponds to hospitalized or
treated patients. The ones staying at home but under medical control, or the ones isolated
in a hotel, are all included in the compartment H. Finally, the patients in H will recover,
and thus move to the compartment R, or will decease and end up in the compartment D. As
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for the SIR or SEIR models, we assume a permanent immunity, which means that there is
no flow from Ra, Rs, or R to S. Also, the total number N of individual is constant, namely
at all time one has

N = S + E + Ia + Is +H +R +D +Ra +Rs. (2.2)

Based on the Figure 2.3 and on the explanations provided above, the differential system
of the extended SEIR model reads:

dS

dt
= −βaIaS/N − βsIsS/N

dR

dt
= γHH

dE

dt
= βaIaS/N + βsIsS/N − εE

dD

dt
= γDH

dIa
dt

= εE − δIa − γaIa
dRa

dt
= γaIa (2.3)

dIs
dt

= δIa − τHIs − γsIs
dRs

dt
= γsIs

dH

dt
= τHIs − γHH − γDH

where βa, βs, ε, δ, γa, γs, γD and γH are some medical parameters. Note that some of them are
time dependent.

2.2.3 The reproduction number

The basic reproduction number, denoted by R0, can be interpreted as the average number of
secondary cases generated by on primary case in a susceptible population. It is commonly
admitted that R0 = 1 is a threshold value, as explained below. We also refer to [18, 35] for
more explanations and more precise statements.

To study R0 for different models, a general definition of the basic reproduction number is
introduced based on the notion of disease free equilibrium (DFE). In a DFE the population
remains in the absence of disease. For example, in the SIR or SEIR models, it means that
I = 0 while in the extended SEIR model it means that Ia = Is = 0. In this context, the basic
reproduction number can be defined as the number of new infections produced by a typical
infectious individual in a population at a DFE. The main feature of R0 is that it corresponds
to a threshold parameter, namely if R0 < 1, the DFE is locally asymptotically stable, while
if R0 > 1, the DFE is unstable and an outbreak is possible.

The precise expression for R0 is clearly model dependent, but numerous examples are
available in the literature. For example, let us consider a general compartmental disease
transmission model. Such models are represented by a system of ordinary differential equa-
tions, and under natural assumptions it can be shown that these models have a DFE, see [18].
In this reference, the precise expression for R0 is then provided for some classes of models,
and the extended SEIR model meets the assumptions of the staged progression model, as
presented in [18, Sec. 4.3]. For the extended SEIR model, the expression for R0 then reads:

R0 =
βa

δ + γa
+

βsδ

(δ + γa)(γs + τH)
, (2.4)
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where βa and βs are the initial transmission coefficients at time 0.
To understand the above expression, observe that δ/(δ + γa) corresponds to the fraction

of individuals of Ia going to the compartment Is, while 1/(δ+ γa) and 1/(γs + τH) define the
average times an infected individual spends in compartments Ia and Is respectively. Thus,
each term on the R.H.S. of (2.4) represents the number of new infections generated by an
infectious individual during the time spent in the compartments Ia and Is.

In contrast, the definition of the effective reproduction number Rt at time t is much more
delicate. The various challenges and possible errors have recently been discussed in [30], to
which we refer for a thorough discussion. In our setting, we shall keep the interpretation of
Rt as the average number of secondary cases generated by one primary case. This approach
is possible because the transmission coefficients at time t are available in our approach,
and therefore one can compute Rt with (2.4) and the corresponding βa and βs at time t.
Additional information on Rt will be provided in Section 2.5.

2.2.4 The medical parameters

It clearly appears in Figure 2.3 and in the corresponding system (2.3) that several parameters
control the flows between the compartments. The values of these parameters may result in
very different behaviors of the model. We refer for example to [48, Sec. 1.4] and to [10,
Chap. 2] for general discussions of model behaviors and the role of parameters. In our
setting, some parameters are easy to evaluate, as for example the recovery rate γH or the
death rate γD, but others are difficult to estimate, as for example the transmission coefficients
βa and βs. Let us also stress that some parameters depend on location. Since our experiment
is based on data from Japan, see Section 2.4, the medical parameters are chosen accordingly.
For that reason, we use research or survey results specific to Japan, or even more precisely
to specific prefectures in Japan.

In Table 2.1 we list the estimated values of some parameters for the extended SEIR
model, and provide the sources of information. Several parameters in the table have the
form of the product of a percentage and the inverse of a time length. A similar setting for
the construction of the parameters can be found for example in [25, 46]. For δ and γa, the
percentage parts should sum up to 1. For the parameters τH and γs, some information can
be found in the surveys [66, 13] and the health services website [85]. For parameter γH and
γD, instead of using constant value estimated by health services, we shall use the observation
data to estimate their values on a daily basis. The details will be discussed in Section 2.4.

Let us stress that the value assigned to some of these parameters has evolved during the
last 12 months. For example, the ratio of asymptomatic individuals was thought to be very
high at the beginning of the epidemic (up to 80%), but some recent research [15, 12, 72]
have revised this ratio to 17% to 20%. Our knowledge about the length of infectious periods
has also evolved, and the possible values are spread over a rather long interval. In Table 2.1
we list some mean values, but in the simulations additional uncertainties are implemented.
Since pre-symptomatic patients become infected before the appearance of symptoms, the
incubation period (encoded in ε) has been shorten a little bit, and the last 2 days of this
incubation period have been moved to Ia.
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One very delicate question is the relation between βa and βs, namely between the trans-
mission coefficient for asymptomatic/pre-symptomatic and the transmission coefficient for
symptomatic. For our investigations, we shall rely on the result of the systematic review [15]
which asserts that the relative risk of asymptomatic transmission is 42% lower than that for
symptomatic transmission. As a consequence, we shall fix

βa = 0.58βs or equivalently βs = 1.72βa. (2.5)

This factor 0.58 is slightly smaller but of a comparable scale compared to earlier investiga-
tions, see for example [12].

parameter estimation source remark

ε (3 days)−1 [59] incubation period, not contagious

δ
83%× (2 days)−1

(95% CI 80% to 86%)
[15, 59]

proportion of pre-symptomatic
× (duration of pre-symptomatic)−1

τH
78%×(8.3 days)−1 (∼ 2020/5/31)
78%× (5.2 days)−1 (2020/6/1 ∼)

[66, 56]
proportion of detected symptomatic
× (days of symptoms onset)−1

γa
17%× (9 days)−1

(95% CI 14% to 20%)
[15, 72]

proportion of asymptomatic
× (duration of asymptomatic)−1

γs 22%× (7 days)−1 [66, 13]
proportion of undetected symptomatic
× (duration of symptomatic)−1

γH
computed by
observations

[87] discussed in Section 2.4

γD
computed by
observations

[87] discussed in Section 2.4

Table 2.1: Medical parameters

2.2.5 The observations

As introduced in Section 4.1, one of the aims of this study is to estimate the unknown
parameters βa and βs, and the unobservable compartments Ia and Is. Because of relation
(2.5), it is clear that for the parameters only βs has to be evaluated. The method that we are
going to introduce in Section 2.3 requires observations of some compartments in the extended
SEIR model. In Figure 2.3, we highlight the three compartments with observations in yellow,
namely H, R and D. The data corresponding to these compartments may not be perfect,
and for the analysis based on these data we shall take some uncertainties into consideration.
More precisely, some random noise will be added to the observations.
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For our experiment, we shall firstly and mainly use the data about Tokyo, with a to-
tal population N = 13′955′000 (approximate mean of the population of 2020 and 2021).
Subsequently, other prefectures in Japan are also considered. As already mentioned, the
compartment H corresponds to the identified individuals either hospitalized or treated at
home or in a hotel. On the other hand, R and D describe the accumulated number of
recovered and deceased individuals. The information about these three compartments are
very easy to find for Tokyo, but also for any region in Japan. One can check for example
the website of Ministry of Health, Labour and Welfare, prefecture’s websites or some mass
communication companies’ websites to get more details. The information is provided on a
daily basis. Note however, that these records were not very accurate at the beginning of
the outbreak. This was caused by the delay of reports, but also by some changes in the
policy for the collect of information. Our analysis will take this source of uncertainties into
consideration.

2.3 Ensemble Transform Kalman filter

In this section, we introduce the main tool employed in the study, namely the ensemble
Kalman filter. The analysis of parameter values and unobservable compartments is performed
based on it.

The method Ensemble Transform Kalman Filter (ETKF) used in this paper has been
introduced and developed in [8, 42]. It is based on the Ensemble Kalman Filter [21, 23, 24],
but it provides analyses in a more efficient way.

Let us consider a discrete time state space model given for any time t ∈ N := {1, 2, . . .}
by

xt = Mt(xt−1) (2.6)

yt = Ht(xt) + ϵt, (2.7)

where xt is an l-dimensional state vector and yt an m-dimensional observational vector, Mt

is the operator which defines the dynamics of the state, Ht is an operator corresponding to
the observation model, and ϵt provides the observation error. All these vectors or operators
are explicitly t dependent. The vector xt represents the state of the dynamical system, while
yt is called the noisy observation, both at time t. The observation error ϵt follows a normal
distribution N(0,Rt), where Rt is an m × m observation error covariance matrix. In this
framework, the general question is: given a list of noisy, unbiased observations (yt)t, how can
one find the best estimates for (xt)t ?

Under the assumption of unbiased Gaussian observation error and of Gaussian initial
distributions, one can consider the maximum likelihood approach. For time t = 1, . . . , N ,
the likelihood of (xt)t is proportional to

N∏
t=1

exp
(
− 1

2
[yt −Ht(xt)]

TR−1
t [yt −Ht(xt)]

)
, (2.8)
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where the superscript T denotes the transpose of a vector or of a matrix. Clearly, maximizing
(2.8) can be transformed into a minimization problem. More precisely, by using equation
(2.6), one first defines the cost function

N∑
t=1

[
yt −Ht(Mt(xt−1))]

TR−1
t [yt −Ht(Mt(xt−1))

]
. (2.9)

Then, one ends up in looking for a list of estimates (xa
t )t of (xt)t which minimize (2.9).

When the operators Mt and Ht are linear, they can be represented by matrices, denoted
also by Mt and Ht. In such a situation, and with our assumption of Gaussian observation
error, the linear model leads to the propagation of Gaussian distributions for the states.
More precisely, assume that at some time t, there is a prior estimate xb

t of the state xt with
its covariance estimate Pb

t (also called the background error covariance). Then the Kalman
filter [43, 44] provides an optimal solution to minimize the variance of its uncertainty. For
this reason, it is known as the minimum variance estimator. Formally, the prior estimate is
updated by using the information of the observation yt at time t as follows [41, Eq. (1), (2),
(8) & (10)] :

xa
t = xb

t +Kt[yt −Htx
b
t ], (2.10)

Kt = Pb
tH

T
t (HtP

b
tH

T
t +Rt)

−1, (2.11)

Pa
t = (I −KtHt)P

b
t , (2.12)

Pb
t+1 = Mt+1P

a
tM

T
t+1, (2.13)

where Kt is called the Kalman gain, xa
t the analysis, and Pa

t its estimated covariance. With
the analysis, one can use the forecast model (2.6) to evolve the analysis and get the prior
estimate and the covariance at the next time step.

When the operators Mt and Ht are nonlinear, the Kalman filter is not applicable in its
original form, but a simple extension with linear approximation is known to be effective. The
straightforward nonlinear extension of the Kalman filter is known as the extended Kalman
filter (EKF). In this case, Mt+1 and Ht in equation (2.10) to (2.13) are replaced by their
linear approximations respectively. For low dimensional models, the cost of EKF is low.
However, when the model complexity and the state dimension increases, one may consider
the ensemble Kalman filter. In this case, an ensemble of model states is used to estimate
the covariance matrices. Namely, let {xa(i)

t−1, i = 1, . . . , k} be an ensemble of estimates of the
model states at time t− 1. By letting this ensemble evolve according to the model (2.6), one

gets the forecast or background ensemble {xb(i)
t , i = 1, . . . , k} at time t, where

x
b(i)
t = Mt(x

a(i)
t−1).

The mean of the ensemble can be used as the most probable estimate of the state, with its
covariance estimated by the sample covariance of the ensemble:

x̄b
t =

1

k

k∑
i=1

x
b(i)
t and Pb

t =
1

k − 1
(Xb

t)(X
b
t)

T ,
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where Xb
t is an l × k matrix with the ith column x

b(i)
t − x̄b

t .

The next step is to update the forecast ensemble mean and its covariance by using the
information of the observation yt. The updated ensemble mean is denoted by x̄a

t and its

covariance by Pa
t . To get them, one first needs to determine an analysis ensemble {xa(i)

t , i =
1, . . . , k}. Similar to the background ensemble, the mean and covariance of the analysis
ensemble are given by

x̄a
t =

1

k

k∑
i=1

x
a(i)
t , (2.14)

Pa
t =

1

k − 1
(Xa

t )(X
a
t )

T . (2.15)

In our application the operator Ht is linear, so that Ht is given by a matrix. In this case and
for ETKF, the computations can be written as follows [41, Eq. (15)∼(17)] :

x̄a
t = x̄b

t +Xb
tP̃

a

t (HtX
b
t)

TR−1
t

(
yt −Htxb

t

)
, (2.16)

P̃
a

t =
[
(k − 1)I +

(
HtX

b
t

)T
R−1

t HtX
b
t

]−1
, (2.17)

Xa
t = Xb

t

[
(k − 1)P̃

a

t

] 1
2 , (2.18)

where the k × k matrix P̃
a

t is called the analysis error covariance in ensemble space. For
(2.18), the background perturbation Xb

t is transformed into the analysis perturbation Xa
t

with the weight [(k − 1)P̃
a

t ]
1
2 . By adding x̄a

t to each column of Xa
t , one gets the analysis

ensemble {xa(i)
t , i = 1, . . . , k} that satisfies (2.14). Note that the ETKF is a deterministic

filter since no randomly perturbed observations are used in the computation [94], and it is
also a square-root filter because its takes the power 1

2
of the matrix P̃

a

t [84].

To avoid a variance underestimation, caused for example by the limited ensemble size,
an artificial inflation of the ensemble spread is usually applied. In [41], several ways to
perform the variance inflation are discussed. In our study, we apply multiplicative inflation
and additive inflation. For multiplicative inflation, the background error covariance Pb

t is
multiplied by a tunable factor ρ > 1 before the analysis. The multiplicative inflation can be
thought as a procedure to increase the influence of the current observations on the analysis.
For additive inflation, since the extended SEIR model is a conserved closed system, it is then
applied by adding a random vector to the background ensemble. The random vector can
be sampled from the normal distribution with mean 0 and some covariance matrix. This
covariance matrix is assumed to be proportional to the background error covariance Pb

t by a
tunable parameter α ∈ (0, 1) [41].

For the current study with a low dimensional model, we could use EKF or EnKF. However,
by considering the possibility of increasing the model complexity in future, we opted for
ETKF with 50 ensemble members.
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2.4 Experiments

In this section, we explain the design of the experiments and illustrate the outcomes by
using observations from Tokyo Metropolis. These observations (H, R, and D) are obtained
from the website [87]. Discussions and comparisons with other prefectures are provided in
the subsequent section. As mentioned in Section 2.2.5, health officials started providing
data from February 2020 but they included some uncertainties caused by delay or by policy
changes. Our experiments start with the observations from March 6th, 2020, when the record
of data became more systematic.

2.4.1 The experiments, using data from Tokyo

For the state space model mentioned in Section 2.3, the dynamical system (2.6) is described
by the differential system (2.3). To estimate the parameter βs, we use the augmented state by
adding one more equation dβs

dt
= 0 to the system (2.3), assuming persistence for βs. Namely,

βs will stay at the same value during the time integration process, and will be updated during
the analysis step of the data assimilation. In other words, if βs has a correlation with the
observations, βs will be updated together with the other states. In system (2.3), the unit
of time t = 1 represents one day. Thus, the one day forecast from day n is obtained by
integrating the system (2.3) on [n, n+ 1] with the initial values equal to the analysis on day
n. To avoid negative values in the analysis step, all the compartments are transformed to
log scale with base e. The lower case will be used for these new variables, as for example
s(t) := logS(t), and the corresponding equation becomes ds(t)

dt
= 1

S(t)
dS(t)
dt

. The DA analysis
update directly applies to the log-transformed values.

Now the forecast value of xt is a 9-dimensional vector(
e(t), ia(t), is(t), h(t), r(t), d(t), ra(t), rs(t), log βs

)T
. (2.19)

Note that the compartment s(t) is not explicitly included since it can be deduced from the
conservation relation (2.2). Before performing the DA analysis update, the above vector has
to be projected to the observation space by the observation system (2.7). In our setting, the
operator Ht introduced in (2.7) is defined by the projection which sends the forecast vector

(2.19) on
(
h(t), r(t), d(t)

)T
, namely on the three compartments with observations.

To initiate the experiments, initial values for all compartments and parameters have to
be provided. When these initial values are far away from the observations, the system goes
through an unreasonable transition period. To avoid or reduce the unreasonable transition,
preliminary experiments were performed for determining suitable initial values. Namely, we
run the system for a few days, starting with a few individuals in some compartments and a
presumed value for βs. Different values of βs were tested, until values comparable to the data
of the compartments H,D,R on day zero (March 6th, 2020) were obtained. The correspond-
ing values for the different compartments were then chosen as initial conditions. However,
independent normal distributed random errors are also added to create 50 ensemble members
{xa(i)

0 , i = 1, . . . , 50}. Note that each member x
a(i)
0 is a 9-dimensional vector containing the

initial conditions for the compartments and for the parameter βs.
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The ensemble on day zero are then integrated by the model (2.3) for one day and the
ETKF will update the one day forecast by using the observations. The procedure of the
experiments is shown in Figure 2.4.

{
x
a(i)
t

} extended

SEIR model

{
x
b(i)
t+1

} analysis

update

observations

yt+1

{
x
a(i)
t+1

}

1-day forecast

Figure 2.4: Data assimilation flow-chart

As mentioned in Section 2.2.4, parameters γH and γD are estimated by assimilating the
observations. Consider equation dR

dt
= γHH in model (2.3). Since the time is discrete, we

can rewrite this relation as R(t+ 1)−R(t) = γH(t)H(t) which leads to

γH(t) =
R(t+ 1)−R(t)

H(t)
. (2.20)

Similar computation can be generated for γD also, namely,

γD(t) =
D(t+ 1)−D(t)

H(t)
. (2.21)

The daily values of both parameters are shown in Figure 2.5. For the implementation of
these parameters for the computation of the 1-day forecast, we have used a slightly smoothed
version obtained by a 7-day convolution with the symmetric weights 1

64

(
1, 6, 15, 20, 15, 6, 1).

The effect is to decrease the amplitude of the weekly oscillations.
For the integration process, we have also included some uncertainties to all parameters:

to the ones presented in Table 2.1, but also to the values of the parameters γH , γD. Thus, the
1-day forecast is obtained with the parameters of the previous day, each of them perturbed by
a normal distribution N

(
0, (M/10)2

)
, where M corresponds to the value of this parameter.

These perturbations are independent and randomly generated for each 1-day forecast.
The last initial setting for data assimilation is the observation error covariance matrix Rt.

We assume that the covariance of the errors between different observations is zero, namely,
the matrix Rt is diagonal. Since we observe three states, Rt is a 3 × 3 diagonal matrix.
Clearly, the bigger the variance, the weaker contribution the corresponding observation will
make to the update.

For simplicity, we assume that the observation error covariance is independent of time.

The diagonal elements are chosen as
(
log(1.3)

)2
for any time t, representing the observation

error variance: Namely, for x ∈ {h, r, d} one has
[
x − log(1.3), x + log(1.3)

]
as 68% CI

and
[
x − 2 log(1.3), x + 2 log(1.3)

]
as 95% CI. Considering that all the observations have

been transformed into log scale, that is, the observations in original scale are distributed in[
X/(1.3), (1.3)X

]
as 68% CI and

[
X/(1.69), (1.69)X

]
as 95% CI.
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Figure 2.5: Daily estimation of the parameters γH and γD
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Before showing the analysis result, a scatter plot of the values of h and of log(βs) for
the different ensemble members on a certain day is provided in Figure 2.6. Indeed, for
the parameter estimation, one assumption is the linear relation between the ensemble of
parameters and the ensemble of compartments with observations. As shown in Figure 2.6, a
positive correlation is observed between h and log(βs). Thus we can use the observation of
H for the estimation of βs.

Figure 2.6: Scatter plot of h and log(βs) on November 17, 2020

In Figure 2.7 we finally provide the analysis value for Rt from March 6th 2020 to the
middle of October 2021. The black curve represents the mean value of the ensemble. The
two shaded regions represent the 68% CI (dark orange) and 95% CI (light orange). The
analysis value of Rt is computed by using βs together with the information contained in (2.4)
and in (2.5). The red curve shows the Rt provided by Toyokeizai.net for reference. The grey
shaded regions represent the periods of state of emergency in Tokyo. Note that the jump at
the end of May 2020 is due to an abrupt change in the value of τH as indicated in Table 2.1.
Additional discussions about this graph will be provided in the subsequent section.

Figure 2.7: Analysis value for Rt, and comparison with the value of Toyokeizai.net

The analysis results for the compartments E, Ia, Is, H, R, D with confidence intervals
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are also presented in Figure 2.8. For compartments H, R, D, the red dots represent the
observations of Tokyo. For all pictures, the y-axis is in log10 scale.

Figure 2.8: The 6 compartments for Tokyo

2.4.2 Technical discussion, using data from Tokyo

In Figure 2.7, one first notices that the similarity between the analysis Rt and the reference
Rt provided by Toyokeizai.net. The Toyokeizai Rt on day t is computed by the following
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formula:

( ∑t
i=t−6 new confirmed cases on day i∑t−7
i=t−13 new confirmed cases on day i

)average generation time
reporting interval

,

where the average generation time is assumed to be 5 days and the reporting interval is
assumed to be 7 days. The formula is a simplified version of a maximum likelihood estimation
for the effective reproduction number provided by H. Nishiura [65]. Note that this formula
is based on the daily confirmed cases, which experiences quick changes everyday. On the
other hand, the analysis Rt and its confidence interval is computed by formula (2.4) which
involve the analysis ensemble of βs and βa. The average over the ensemble member provides
a smoother evolution of Rt, which is certainly closer to a true statistic’s evolution. Note that
a third approach for the computation of Rt is available in [83]: it involves an agent-based
model together with a particle filter.

In Figure 2.8, we show the analysis mean of compartments E, Ia, Is with the 68% CI
(dark orange) and 95% CI (light orange), and the same results for compartments H, R and
D with the daily observations represented by red dots. One notes that the analyses of H, R,
D fit the observations appropriately except at the beginning of the observation period. This
may be related to the initial guess and the model imperfections.

Figure 2.9: Comparison of analysis results with different ratio k between βa and βs

As mentioned in Section 2.2.4, the ratio between βa and βs is fixed at 0.58 based on the
information provided by the literature. Since this ratio is quite uncertain, we performed
similar investigations with different ratios varying from 0.1 to 1.0. For k = βa

βs
with k =

0.1, 0.3, 0.58, 0.8 and 1.0, we run the experiments independently (always with the data from
Tokyo) and the analysis mean of Rt are shown in Figure 2.9. The patterns of each Rt are
similar, especially after May 31st, 2020. However, at the beginning of the outbreak and
during the first state of emergency, all the analysis value of Rt experience quick changes
but with different speed. In Figure 2.10 we also provide the analysis mean of the different
compartments, since they also depend on the ratio between βa and βs. The same conclusion is
obtained: except for the first three months, the possible ratio do not generate any noticeable
difference.
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Figure 2.10: Analysis mean of compartments with different ratio k

(a) (b)

Figure 2.11: Analysis mean and spread of Rt with different observation covariance
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In Section 2.4.1, the error covariance matrixRt is defined as a diagonal matrix
(
(log(1.3)

)2
I

where I is the identity 3 × 3 matrix. We also run a sensitivity test for different choices of
the covariance matrix, and checked if it has an effect on the analysis results. We choose
Rt equals to sd2I with sd = log(1.1), log(1.3), log(1.5), log(2.0), and log(2.5). For these
investigations the ratio between βa and βs is fixed as 0.58. In Figure 2.11(a), the analysis
means are provided, and they are clearly close to each other except at the beginning stage
of the outbreak. The different spreads are shown in Figure 2.11(b), and one notices that the
spread increases with the sd, but for sd larger than log(1.5), the increase is less clear. We also
show the analysis mean of compartments E, Ia, Is, H, R and D in Figure 2.12(a). Again, the
analysis results of these compartments with different observation error covariance are quite
close to each other. In Figure 2.12(b), the spread is computed by the standard deviation of
ensemble members of the log−transformed compartments. The relations of spread are quite
clear for the three compartments with observations, and there are some overlaps for spread
of e, ia and is, but in general the spread increases with sd.

As shown in Table 2.1, the proportion of symptomatic and asymptomatic used in our
investigation is 83% and 17%, respectively. These values were determined based on sources
mentioned in Section 2.2.4. However, since asymptomatic cases are very difficult to detect,
and since we can not be fully confident in the above ratio, a sensitivity test is necessary. To
do this, we choose two different combinations which are 70% and 30%, and 50% and 50%,

and keep the observation error covariance matrix at
(
(log(1.3)

)2
I and k = 0.58. Compared to

the previous settings, in these two scenarios more people become asymptomatic and recover
without showing any symptoms, as illustrated in Figure 2.13(a). On the other hand, the
three curves for Rt are close to each others, but the one corresponding to only 50% of
symptomatic is slightly higher than the other two, see Figure 2.13(b). In order to understand
this, let us recall that the relation between the transmission coefficients βa and βs is set to
be 0.58, it means that the asymptomatic cases are less infectious than the symptomatic and
symptomatic cases. Thus, when more people do not show any symptoms, the transmission
coefficient has to be bigger to create enough cases to fit the observations. As a consequence,
Rt will also be bigger.

2.5 Discussion, comparisons, and future projects

Let us start by a few easy observations about the results obtained in the previous section.

The analysis values of Rt quickly decrease during the first state of emergency, and this
parameter is lower than 1 around the middle of May 2020. This indicates that the disease has
started to die out. During the second state of emergency, analysis values of Rt had a much
slower decay, but nevertheless in early February 2021, Rt successfully drops below 1. However
it starts to increase from March while the state of emergency had not been released. In the
third state of emergency, the analysis Rt had the slowest decay, compared to the previous
two states of emergency. During the first several weeks of the fourth state of emergency, the
effective reproduction number continued increasing, even at a faster speed. It is only after
the end of the first week of August that a decay finally took place.
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(a)

(b)

Figure 2.12: Analysis mean (a) and spread (b) of the compartments with different observation
covariance
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(a) (b)

Figure 2.13: Analysis mean of state Ia (a) and Rt (b) with different ratios between symp-
tomatic and asymptomatic

For E, Ia and Is, one finds that the three values increase at the beginning of the first state
of emergency, then they slow down and change the direction to decrease. Similar behaviors
can be observed in the second state of emergency, and the values start to increase around
the middle of March 2021 while the Rt starts yo increase at the beginning of March. There
is clearly a delay between the changes of Rt and their effect on the three compartments E,
Ia and Is.

Let us now provide a comparison with two different regions from Japan, namely Osaka
and Kanagawa, and also provide the analysis for Japan as a whole. The experiments for
Osaka, Kanagawa, and Japan start from March 26th 2020, March 18th 2020, March 1st 2020
respectively. The observed compartments of these regions are the same as those for Tokyo,
namely H, D and R. The way to determine the initial setting is the same as that for Tokyo
and we use the same setting for the parameters which have been presented in Table 2.1. The
daily values for the parameter γH and γD for each region are also computed by using (2.20)
and (2.21). The ratio between βa and βs is 0.58, and the observation error covariance matrix

is assumed to be
(
log(1.3)

)2
I.

In Figure 2.14 we provide the analysis values of Rt with 68% CI and 95% CI for each
region. The additional red curves are again Rt given by Toyokeizai.net. The grey shaded
regions mark the respective periods of state of emergency. Though each region declared some
states of emergency at different periods of time, they all have the common feature that the
recent declarations are less efficient than the first ones. In Figure 2.15, 2.16, and 2.17, we
provide the analysis results for compartments E, Is, Is, H, R and D for each region.

In Figure 2.18, the three analysis Rt curves for Tokyo, Osaka and Kanagawa are drawn
simultaneously. The analysis Rt for Japan is represented by red dots. One observes that the
general trends for each region are similar, but some delays are also visible. For example in
early April 2020, Rt in Tokyo reached the first peak then started to decline, while Rt in Kana-
gawa reached the first peak in the middle of April, and then start to decline. Subsequently,
these two regions are quite correlated, but Osaka has a slightly independent behavior, both
in the summer 2020 and in April 2021.

Based on these observations, one can suspect that the movement of populations might be
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(a) Osaka (b) Kanagawa

(c) Japan

Figure 2.14: Analysis value of Rt for Osaka, Kanagawa and Japan
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related to the evolution of Rt for regions which are close to each other. The study of the ef-
fect of movements can be carried out by constructing a proper model with multi-populations
connected to each others. Some parameters may be tuned, for example for simulating move-
ment restriction’s policies. Such simulations could be useful for public health officials or for
local governments to understand and estimate different disease-control strategies. We plan
to work in this direction in the future.

Figure 2.15: Analysis results of Osaka
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Figure 2.16: Analysis results of Kanagawa

Figure 2.17: Analysis results of Japan
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Figure 2.18: Rt for each region
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Chapter 3

Control simulation experiment with
Lorenz’s butterfly attractor

3.1 Introduction

The “butterfly effect”, discovered by Lorenz in the 1960s [51, 52], is a phenomenon that
an infinitesimal perturbation like “a butterfly flapping its wings in Brazil” causes a big
consequence like “a tornado in Texas”. This extreme sensitivity brings chaotic behaviors
and an intrinsic limit to predictability, but it also allows us to design an effective control
which was explored as “the control of chaos” in the 1990s (e.g., a review by [9]). That is, we
could take advantage of the “butterfly effect” and design an effective control with a series
of infinitesimal interventions leading to a desired future. The control of weather is humans’
long-time desire, and if we know when and where to put a “butterfly”, we could lead a better
life by, for example, reducing the risks of tornadoes.

Predictability has been studied extensively, and we enjoy current high-quality weather
prediction that is consistently being improved. However, studies on controllability are limited
because we had to first improve the prediction accuracy and because our engineering power
may be insufficient to enforce large enough perturbations to the atmosphere. Based on
recent high-quality numerical weather prediction (NWP), this study attempts to explore a
computational simulation approach to weather controllability. The simulation studies reveal
what perturbations are needed to modify and control the weather. Mutual interactions
between the simulation studies and the intervention techniques would be essential for future
developments toward real-world applications.

Previous efforts in weather modification include rain enhancement studies (e.g., a review
by [28]) by cloud seeding with ground-based facilities and aircraft injecting smokes and dry
ices into moist air, so that the aerosols act as cloud condensation nuclei and enhance cloud
formation. These studies greatly helped advance our knowledge about physical processes of
clouds and precipitation, but in terms of controlling the weather, we had only limited suc-
cess with unclear implications for high-impact weather events, mainly because this method
works only with supersaturated air. On the climate scale, geoengineering is a widely dis-
cussed concept, such as launching mirror satellites to reflect the sunlight and injecting dusts
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into the stratosphere to block the sunlight to cool the air. [50] performed computational
simulations and explored potential rain enhancements in the Sahel region by implementing
large-scale wind and solar farms over the Sahara and modulating the global atmospheric
circulation. However, actual geoengineering operations are controversial because they may
cause irreversible unexpected side-effects due to our limited knowledge of the Earth system.
The accepted and currently ongoing operations to counteract the current climate change may
be limited in reducing the greenhouse gas emissions and enhancing renewables and recycles.

Our focus here is different. We aim to apply “the control of chaos” to the weather. We do
not aim to cause a permanent irreversible change to nature, but we would like to control the
weather within its natural variability and to aid human activities, for example, by shifting the
location of an extreme rain region to avoid disasters without causing a side-effect on the global
climate. For extreme weather that occurs in a chaotic manner under natural variations, the
control of chaos suggests that proper infinitesimal perturbations to the natural atmosphere
alter the orbit of the atmospheric dynamics to a desired direction. If the proper infinitesimal
perturbations are within our engineering capability, we could apply the control in the real
world. However, we cannot be too cautious about potential side-effects and must consider
and address every possible consequence. We will come back to this issue later in conclusion.

Here we develop a method of the control simulation experiment (CSE). It would be
straightforward to extend the method to broader fields with chaotic dynamics beyond NWP.
Weather prediction has been improved consistently by studying predictability and better
initial conditions for NWP. Data assimilation (DA) combines the NWPmodel and observation
data for optimal prediction. The method of DA shares that of optimal control, such as the
Kalman filter [43], where prediction and control are the two sides of a coin. DA has been
studied extensively to improve the prediction, and this study illuminates the control.

The Observing Systems Simulation Experiment (OSSE) is a powerful method to simulate
an NWP system (e.g., [5], [38]). The OSSE can be designed to assess the impact of certain
observing systems and is useful, for example, for evaluating the potential value of a new
satellite sensor before launch. The OSSE can also be designed to evaluate DA methods. In
the OSSE, an independent model run acts as a synthetic “nature run” (NR), and we simulate
observations by sampling the NR. The NWP system is blind to the NR, takes the simulated
observations, and estimates the NR. We compare the estimation accuracy among different
OSSEs with different observations and different DA methods.

Here we extend the OSSE and apply small perturbations to the NR to alter the orbit to a
desired direction. Investigating effective perturbations would address the controllability. As
a proof of concept, we focus on the essence of the problem and use Lorenz’s three-variable
model (L63, [51]) instead of using a complex large-scale NWP model. In predictability
studies, OSSEs are often performed with such simple idealized models like L63 to explore
new DA methods before application to real NWP models (e.g., [45], [97]). L63 is often
used to focus on the essence of the problem since L63 shows typical chaotic behaviors, with
the solution manifold being a well-known “butterfly attractor” (Fig. 3.1(a)), which has two
regimes or wings corresponding to the positive and negative values for variable x. The regime
shifts randomly, and the predictability is limited due to chaos. [27] revealed predictability
of the regime shift from rapidly growing uncertainties given by the growth rate of specific
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Figure 3.1: Phase space of the three-variable Lorenz model. (a) Lorenz’s butterfly attractor
from the NR without control; (b) the NR under control (D = 0.05, T = ⌈4T0⌉). Each dot
shows every time step for 8000 steps. See also a movie at https://doi.org/10.5446/54893
[62].

growing perturbations known as the bred vectors [86].

3.2 Experiments

We first perform a regular OSSE following the previous studies ([45], [97]). The L63 system
with the standard choice of the parameters ([51]) is discretized in time by the Runge–Kutta
fourth-order scheme with a time step of 0.01 units. We define one step as 0.01 units through-
out the paper. We assimilate observations every Ta = 8 steps. A round of the orbit, i.e., from
a maximum to the next maximum for variable x, corresponds to T0 = 75.1 steps on average.
We use the ensemble Kalman filter (EnKF, e.g., [21], [41]) with three ensemble members,
which represent equally probable state estimates. For simplicity, we observe all three vari-
ables in this study but any subset of observations except for observing only z variable results
in the same conclusion, as suggested by the previous study on chaos synchronization [96].
The observation noise is generated from the normal distribution for each variable indepen-
dently with the variance of 2.0. The EnKF results in an accurate state estimation of the root
mean square error (RMSE) of 0.32, consistent with the previous studies.

Next, we extend the OSSE and design a CSE. The goal of the control is to stay in a wing
of the butterfly attractor without shifting to the other. It is essential that our prediction and
control system is blind to the NR and takes only the imperfect observations. The control
system finds when and what perturbations to add to the NR as follows (cf. Fig. 3.2).

1. Perform a DA update using the observations at time t (t = 0 in Fig. 3.2).

2. Run an ensemble forecast for T steps from time t to t + T (T = ⌈4T0⌉ in Fig. 3.2,
where ⌈ ⌉ indicates rounding up to the closest integer since the model integration is
discretized).

https://doi.org/10.5446/54893
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Figure 3.2: Control cases with T = ⌈4T0⌉ and D = 0.05 for (a) NR changed (C), (b) false
alarm (FA), and (c) NR unchanged (NC). Red ticks at the beginning (t = 1,. . . ,7) show
addition of perturbations to the NR.

3. If at least one ensemble member shows the regime shift, activate the control (step 4);
otherwise, go to step 1 for the next DA at time t+ Ta.

4. Add perturbations with Euclidean norm D to the NR at every step from t + 1 to
t+Ta− 1. More precisely, at time t+ i (i = 1,. . . ,Ta− 1), the NR state is evolved from
the previous NR state at time t+ i− 1 and is perturbed by adding (dx, dy, dz), where√

dx2 + dy2 + dz2 = D (Fig. 3.2 red ticks, indicating perturbations added to the NR
with D = 0.05).

5. At time t + Ta, the new NR is used to simulate the observations; go to step 1 for the
next DA at time t+ Ta.

Step 4 requires perturbations added to the NR. Investigating different strategies to generate
the perturbations addresses controllability. Randomly chosen perturbations are found to
be ineffective, but instead we find the following strategy effective. We choose an ensemble
member “S” showing the regime shift and another ensemble member “N” not showing the
regime shift. If all three ensemble members show the regime shift, we use the ensemble
members from the former initial times for an extended forecasting period and identify an
ensemble member “N” not showing the regime shift during the period from t to t+ T . Take
the differences of the two ensemble members S−N for every step from t + 1 to t + Ta − 1
(1 to 7 in Fig. 3.2) before the next observations are available at t + Ta (8 in Fig. 3.2). The
differences are used as perturbations added to the NR at appropriate time steps. Here, we
consider the limitation of our intervention and include only a subset of the three variables
(x, y, z) with a limited perturbation size. The choice of the variables and norm D are the
parameters for intervention.

Figure 3.2 illustrates three different cases with perturbations added to all three variables
(x, y, z) with D = 0.05 and T = ⌈4T0⌉. With these settings the control is successful, as shown
in Fig. 3.1(b) for 8000 steps. Figure 3.2(a) shows the case in which the NR is changed by the
control and stays in the positive-x regime successfully. Figure 3.2(b) shows the case of a false
alarm (FA), in which the NR does not show the regime shift but the ensemble prediction
does. Therefore, the perturbations are added unnecessarily but do not hurt. Figure 3.2(c)
shows the case in which the NR is not changed by control and still shows the regime shift
(simply “NC” for no change).
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Figure 3.3: Rates of successful control out of 40 CSEs for perturbations added to variables
(a) x, y, z, (b) x, y, (c) x, z, (d) y, z, (e) x, (f) y, and (g) z.

To investigate the sensitivity to the parameters T and D and the choice of the perturbed
variables, we perform 40 independent experiments for each setting for 8000 steps (1000 DA
cycles; cf. Appendix 3.A for the exact choices of the initial conditions) and count the number
of successful experiments in which the NR stays in a single regime under control. Higher
success rates correspond to better controllability. With longer forecasts (larger T ), control
is generally more effective (Fig. 3.3). With small T<⌈2.5T0⌉, the success rates are very low.
The mean transition time for the regime shift is approximately 2.3T0, which may be the
minimum forecast length for effective control. With very small perturbations (D = 0.02),
the control is difficult, but a larger D does not necessarily improve the success rate. The
perturbations are added every step, and the state evolves by approximately 0.5 (Euclidean
norm) in one step on average (Table 3.1). This is about half of the evolution without control,
suggesting that the perturbations effectively drag the NR states toward more stable regions
of the attractor (cf. Fig. 3.1 and a movie at https://doi.org/10.5446/54893 [62]). Adding
larger perturbations with a similar size to the one-step model evolution tends to reduce the
effect of control. Although observing only z is not sufficient for DA, it is good for control.
Perturbing only one variable y or z is effective with T = ⌈4T0⌉ and D>0.04, only an eighth
of the analysis error of 0.32 or only 3% of the observation error standard deviation of

√
2.

In short, the L63 regime change is considerably controllable.

We further investigate the rates of FAs and NR changed (C) and unchanged (NC) by
perturbations (Fig. 3.4(a)). With larger D, we find generally fewer interventions. With
smaller D, we have more interventions mostly by FA. With smaller D, higher rates of NC
suggest that longer-term small interventions are needed. Additional experiments by not
applying FA and/or NC perturbations reveal the relative importance of these perturbations
(Fig. 3.4(b)). These experiments require knowing the NR T steps in advance and therefore are
not practical but are useful for understanding the roles of these perturbations. For D = 0.2
and smaller, not applying FA perturbations does not significantly contribute to the control
(Fig. 3.4(b), yellow), whereas not applying NC has a significant impact on reducing the effect

https://doi.org/10.5446/54893


44 CHAPTER 3. CONTROL SIMULATION EXPERIMENT L63

D 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5 No control
OME 0.694 0.608 0.594 0.577 0.536 0.488 0.461 0.422 0.403 0.956
D/OME 0.029 0.049 0.067 0.087 0.186 0.410 0.651 0.947 1.239 NA

Table 3.1: Averaged one-step model evolution in the Euclidean norm (OME) and the relative
size of perturbations (D/OME). Only successful control cases are considered for CSEs with
T = ⌈4T0⌉ and perturbations added to variables x, y, and z. “NA” indicates not available.

Figure 3.4: (a) Rates of the cases of C (red), FA (yellow), and NC (blue) for the successful
control experiments with T = ⌈4T0⌉ and perturbations added to variables x, y, and z. The
rates indicate the number of cases out of a total of 1000 DA cycles. (b) Rates of successful
control experiments with T = ⌈4T0⌉ and perturbations added to variables x, y, and z for the
original CSE (grey; cf. Fig. 3.3), the CSE without applying FA perturbations (yellow), the
CSE without applying NC perturbations (blue), and the CSE without applying FA and NC
perturbations (green).

of control (Fig. 3.4(b), blue, green). That is, the accumulation of NC perturbations would
be essential for effective control. With large D>0.2, not applying FA and NC perturbations
significantly enhances the effect of control (Fig. 3.4(b), green). With the perturbation size
similar to or even larger than the one-step model evolution (Table 3.1), a single instance of
C perturbations is quite significant. In these cases, FA and NC perturbations are found to
be harmful.

Finally, we perform additional sensitivity experiments with a longer DA interval of Ta = 25
steps and with partial observations; i.e., only one or two variables are observed. The results
generally agree with what has been shown so far (cf. Appendix 3.B).

3.3 Conclusions

In this study, we proposed the CSE with numerical demonstration using the L63 three-
variable model. The OSSE is a well-known, powerful approach to study predictability and
to evaluate DA methods and observing systems without having real-world observation data.
The CSE is an extension to the OSSE to study controllability and can be applied to various
dynamical systems including full-scale NWP models. Our future studies apply the CSE
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to more complex models and investigate different control scenarios such as controlling the
occurrences of extreme events. Such studies will address critical issues like how manageable
interventions in terms of cost and energy can make differences to extreme events. This study
is only a small step toward broad investigations that may lead to effective control of weather
events.

As we described in the introduction, any real-world application requires extensive caution.
For the case of the L63 model, one side of the attractor may not be desirable for all aspects.
We must consider and assess every potential impact caused by the control and have proper
protocols for social, ethical, and legal agreement about real-world operations.

3.A Appendix: The initial conditions of 40 CSEs

The OSSE with the L63 model follows that of the previous studies [45, 97, 60, 22]. Here
we describe the additional details that were not provided in the previous papers but that
are necessary to repeat the experiment in this study. The initial condition for the NR was
chosen to be (x, y, z)= (8.20747939, 10.0860429, 23.86324441) after running the L63 model
for 1000 steps initialized by the three state variables taken from independent random draws
from a normal distribution with mean 0 and variance 2.0. The NR was 8 million steps long,
and the OSSE was performed for the same period as the NR.

The CSEs were performed for a total of 378 combinations of T , D, and the choice of
intervention. There were nine, five, and seven choices of T , D, and intervention, as shown
in Fig. 3.3. For each combination, 40 independent CSEs were performed for 8000 steps.
The initial conditions for the 40 CSEs were chosen from the analyzed states of the OSSE at
different time points as shown in Table 3.2. Figure 3.1(b) shows CSE no. 1 and Fig. 3.1(a)
the corresponding period of the NR.

3.B Appendix: Additional sensitivity experiments

CSEs are performed with a longer DA interval of Ta = 25 steps, which results in a RMSE
of 0.76, consistent with the previous studies. The results are generally consistent (Fig. 3.5
compared with Fig. 3.3).

CSEs are performed with different observing coverages, and the results are summarized
in Table 3.3. Multiplicative inflation is manually tuned for each observing coverage.
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CSE index Time point of the NR CSE index Time point of the NR

1 106 069 21 150 056
2 107 043 22 150 796
3 109 371 23 152 308
4 111 261 24 155 048
5 112 987 25 155 666
6 114 146 26 162 753
7 122 065 27 164 411
8 124 720 28 168 461
9 125 339 29 172 109
10 125 854 30 173 399
11 126 902 31 173 894
12 128 058 32 175 011
13 130 718 33 179 671
14 132 342 34 184 480
15 133 311 35 197 270
16 138 699 36 199 278
17 140 562 37 200 712
18 144 953 38 201 304
19 147 614 39 208 511
20 149 418 40 209 397

Initial time point = time point of the NR−T − [(time point of the NR−T ) mod Ta].

Table 3.2: Time points of the NR providing the initial conditions of the 40 independent
CSEs. The initial time point coincides with the time when observations are available, i.e.,
only every Ta = 8 steps, and the formula underneath the table provides the exact initial time
point from the value in the table for a given parameter of T .

Figure 3.5: Similar to Fig. 3.3 but for the case with a longer DA interval of Ta = 25.
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D Obs x Obs y Obs x, y Obs x, z Obs y, z Obs x, y, z

0.02 0 0.025 0.05 0.125 0 0.05
0.03 1 0.95 0.95 0.975 0.975 0.975
0.04 1 0.975 0.95 1 1 0.925
0.05 1 1 0.975 1 1 0.975
0.1 1 1 1 1 1 0.825
0.2 0.975 0.925 0.85 0.975 0.975 0.825
0.3 0.95 0.925 0.675 0.975 0.95 0.725
0.4 0.95 0.8 0.78 0.975 0.875 0.5
0.5 0.9 0.75 0.65 0.95 0.85 0.525
Ensemble spread 0.807 0.469 0.376 0.477 0.323 0.27
RMSE 0.908 0.507 0.412 0.564 0.356 0.32
Multiplicative inflation 1.065 1.05 1.045 1.09 1.06 1.04

Table 3.3: Rates of successful control out of 40 CSEs with different observing coverage.
T = ⌈4T0⌉ and perturbations are added to variables x, y, and z.
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Chapter 4

Control simulation experiments of
extreme events with the Lorenz-96
model

4.1 Introduction

In the recent study [63] of the first two authors, it has been demonstrated that a Control
Simulation Experiment (CSE) leads to a successful control of the chaotic behavior of the
famous Lorenz-63 model [51]. Namely, by applying small perturbations to its nature run,
the evolution of the system can be confined to one of the two wings of the attractor. The
method is based on an extension of the Observing Systems Simulation Experiment (OSSE)
from predictability to controllability. This work can also be seen as an application of the
control of chaos [9] to the framework of Numerical Weather Prediction (NWP).

The control of weather is certainly one of the oldest dreams of human being, and several
earlier works have already investigated different approaches of weather control based on nu-
merical simulations. As for some of the pioneering works, let us mention [36] and [37] in which
R. Hoffman discusses a general scheme and some applications for the control of hurricanes.
A case study is then presented in [34], where the temperature increments needed to limit
the wind damage caused by Hurricane Andrew in 1992 is studied with a four-dimensional
variational data assimilation technique (4D-Var). Such investigations have recently been
further extended in [91] for the control of cyclones, with some numerical simulation exper-
iments based on the Typhoon Mitag of 2019. Similarly, in [58] the effect of small control
inputs are evaluated by using the Cane-Zebiak 33 000-state model of the El-Niño/Southern
Oscillation (ENSO), and the outcome is a (theoretical) significant reduction of the ENSO
amplitude with small control inputs. As a final example, let us mention that weather and
climate modifications can also be explored as a problem of optimal control, see for example
[79].

In the present paper, the CSE proposed in [63] is further developed and applied to the
Lorenz-96 model with 40 variables [53]. In this setting, a notion of extreme events is defined
first, based on the observation of 100 years of the nature run. Next, the aim of the CSE is to
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drive any new nature run away from the extreme events, by a suitable application of small
perturbations to the nature run whenever such an event is forecasted. By defining a success
rate for such actions, it is possible to assess the performance of the CSE as a function of the
different parameters involved in the process.

The underlying motivation for such investigations is quite clear and can be summarized in
a single question: Can one control to avoid weather extremes within its intrinsic variability?
Indeed, the sensitivity to initial conditions of the weather system advocates the implemen-
tation of suitable small perturbations for dragging the system away from any catastrophic
event. With such an approach, heavy geoengineering actions become automatically obsolete.
However, ahead of any such implementations, numerical demonstrations have to demonstrate
the applicability and the effectiveness of such actions, and ethical, legal, and social issues
have to be thoroughly discussed. With this ambitious program in mind, this paper provides
a precise description of the CSE applied to the Lorenz-96 model, and some sensitivity tests
with the CSE parameter settings. Clearly, this corresponds to a modest but necessary step
before dealing with more realistic NWP models.

Let us now describe more concretely the CSE and the content of this paper. In Section
4.2 we briefly introduce the Lorenz-96 model (L96) with 40 variables, recall the main ideas of
the Local Ensemble Transform Kalman Filter (LETKF), and describe the implementation of
the LETKF with 10 ensemble members for our investigations on L96. By creating synthetic
observations with the addition of uncorrelated random Gaussian noise to the nature run,
we then test the performances of our system, and get the analysis and forecast RMSEs for
different forecast lengths. Multiplicative inflation and observation localization are also briefly
introduced in this section as essential techniques to stabilize the LETKF.

In Section 4.3, we firstly introduce the definition of extreme events for L96, and then
provide the precise description of the CSE. It essentially consists in simulating the evolution
of the system for a certain forecast length, by integrating its evolution with a forth-order
Runge-Kutta scheme, and by applying a suitable perturbation if an extreme event is forecast.
The LETKF is then used for assimilating the noisy observation to the forecast value in order
to get the analysis value for the next integration step. Definitions for a success rate and for
a perturbation energy (energy delivered to the system through the perturbations) are also
introduced in this section, and a discussion of these quantities as functions of the forecast
length and of the magnitude of the perturbation vectors is provided. Based on a time scale
commonly accepted for this model, our CSEs are taking place for a period of 100 years, the
noisy observations are available every 6 hours, and the forecast length is chosen between 2
and 14 days.

Sensitivity tests are finally performed in Section 4.4. Namely, the performance of the
method is evaluated when perturbation vectors are applied at fewer places, or when the
observations are collected less frequently. In these settings, the success rate and the pertur-
bation energy are again discussed as a function of the parameters. The reason for performing
these tests is quite clear: In the framework of a more realistic numerical weather prediction
model, this would correspond to the restricted ability of applying a global perturbation (even
of a small magnitude), or to lack of regular measurements of the weather system.

These investigations are only the second step towards the development of a applicable
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CSE, but the outcomes are already promising: For various settings a success rate close to
1 is obtained. Such a score depends on the forecast length, on the perturbation energy,
on the number of sites on which the perturbations are applied, and on the regularity of
the observations. The next step will be to consider an improved model, and to get a more
quantitative information about the exact amount of energy introduced in the system, and
a precise evaluation of the false alarms. Indeed, the ultimate goal of such investigations is
to keep a high success rate, but to minimize the perturbation actions, in magnitude and in
frequency. We plan to work on these issues in the future.

4.2 Background information

4.2.1 The Lorenz-96 model

Lorenz-96 model was first introduced in [53], and is expressed by a system of K differential
equations of the form:

dXk

dt
= (Xk+1 −Xk−2)Xk−1 −Xk + F (4.1)

for k ∈ {1, 2, . . . , K} andK ≥ 4. Note that F > 0 is independent of k. It is also assumed that
X0 = XK , X−1 = XK−1, and XK+1 = X1, which ensure that the system (4.1) is well-defined
for each k. These conditions endow the system with a cyclic structure of the real variables Xk.
Originally, these variables represented some meteorological quantities evenly-distributed on
a latitude circle. In this framework, the constant term F simulates an external forcing, while
the linear terms and quadratic terms simulate internal dissipation and advection respectively.
A simple computation performed in [54, Sec. 2] shows that the average value over all variables
and over a long enough time lies in [0, F ], and that the standard deviation lies in [0, F/2].

As already observed in [53, Sec. 2], when F is small enough, all solutions decay to the
steady solution defined by Xk = F for k = 1, 2, . . . , K. Then, as F increases, the solutions
show a periodic behavior, and end up with a chaotic behavior for larger F . For the following
discussion, we choose K = 40 and F = 8, which is identical to the setting used in [54]. This
setting ensures the chaotic behavior of the model. By studying the error growth, namely
the difference between two solutions with slightly different initial values, it has been found
that the leading Lyapunov exponent corresponds to a doubling time of 0.42 unit of time
[54, Sec. 3]. By comparing this model with other up-to-date global circulation models, it
is commonly accepted that 1 unit of time in this model is equal to 5 days in reality. As a
consequence, the doubling time is about 2.1 days. Note that the doubling time may decrease
when F increases further.

In [54, Sec. 3], some numerical investigations are performed on this model. In particular,
the evolution of one variable is reported in Figure 4 of this reference over a long period
of time, and this evolution is compared with the evolution of the same variable when a
small perturbation is added at the initial time. For one month, the two trajectories are not
distinguishable, while 2 months after the perturbation the two trajectories look completely
independent. In the sequel, we shall consider similar perturbations of the system, but applied
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to more than one variable. More precisely, since the evolution is taking place in R40, we
shall consider perturbation vectors in this space, of different directions and of different sizes
(magnitudes). By applying suitable perturbation vectors, our aim is to drive the evolution
of the system in a prescribed direction within a limited time interval.

4.2.2 Local Ensemble Transform Kalman Filter

The Local Ensemble Transform Kalman Filter (LETKF) is a type of ensemble Kalman filter
which was first introduced in [42]. It corresponds to a data assimilation method suitable for
large, spatiotemporally chaotic systems. For i ∈ {1, . . . , N}, let xb(i) denote a m-dimensional
state vector, at a given fixed time. The exponent b stands for background, or forecast. One
aim of LETKF is to transform the ensemble {xb(i)}Ni=1 into an analysis ensemble {xa(i)}Ni=1

such that its analysis mean xa minimizes the cost function:

J(x) =
(
x− xb

)T
(Pb)−1

(
x− xb

)
+
[
y−H(x)

]T
R−1

[
y−H(x)

]
. (4.2)

In this expression, Pb denotes the background covariance matrix defined by (N−1)−1Xb(Xb)T ,
where Xb is the m×N background ensemble perturbation matrix whose ith column is given
by xb(i) − xb. R stands for the observation error covariance matrix and H corresponds to
the observation operator. For LETKF, it is assumed that the number of ensemble members
N is smaller than the dimension m of the state vector, and also smaller than the number of
observations (which corresponds to the dimension of y). In [42], it is shown that the mini-
mization can be performed in the subspace S spanned by the vectors xb(i), which is efficient
in terms of reduced dimensionality.

To perform the analysis, the matrix Xb is used as a linear transformation from some
N−dimensional space S ′ onto S. Thus, assume thatw ∈ S ′, thenXbw ∈ S and xb+Xbw ∈ S
are vectors in the model variables. Similar to (4.2), a cost function J ′ for w is defined by

J ′(w) = (k − 1)wTw+
[
y−H

(
xb +Xbw

)]T
R−1

[
y−H

(
xb +Xbw

)]
. (4.3)

In [42, Sec. 2.3], it is shown that if wa ∈ S ′ minimizes J ′, then the vector xa := xb +Xbwa

minimizes J .
Let us now define the vectors yb(i) := H(xb(i)) and the corresponding matrix Yb whose

ith column is given by yb(i) −yb. The linear approximation of H
(
xb +Xbw

)
is then provided

by the expression yb + Ybw. By inserting this approximation into (4.3), one obtains an
expression having the form of the Kalman filter cost function, and by standard computations,
the solution wa and its analysis covariance matrix P̃

a
can be inferred. By transforming this

solution back to the model space, one gets

xa = xb +Xbwa, (4.4)

Pa = XbP̃
a
(Xb)T . (4.5)

Finally, a suitable analysis ensemble perturbation matrix Xa can be defined by Xa := XbWa,
where Wa := [(N − 1)P̃

a
]
1
2 . Here, the power 1

2
represents the symmetric square root of the
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matrix. One then easily checks that the sum of columns of Xa is zero, and that the analysis
ensemble xa(i) (obtained by the sum of the ith column of Xa and xa) agrees with the mean
and covariance matrix given by (4.4) and (4.5).

4.2.3 Application of LETKF to the Lorenz-96 model

From now on, we consider the Lorenz-96 model with 40 variables and F = 8. The vector
generated by the 40 variables will be used as the state vector x for the LETKF, and will
be referred to as the state variables. To study the predictability and analysis accuracy of
LETKF, we run the model by using a forth-order Runge-Kutta scheme. The initial value is
provided in the Appendix, and the integration time step is 0.01 unit of time. As mentioned
in Section 4.2.1, 1 unit of time is assumed to equal to 5 days in reality. We let the model
evolve for 110 years (8030 units of time) and disregard the first 10 years’ results to avoid
any transient effect. Note that for all subsequent experiments, the time 0 is set after these
disregarded 10 years. For 100 years of nature run, we generate a synthetic observation every
6 hours (0.05 unit of time) by adding independently a Normal(0, 1) distributed random
number to the value of each variable. For the choice of the amplitude of these perturbations,
we recall that for the Lorenz-96 model with F = 8, the average value over all variables and
over a long enough time lies in [0, 8], and the standard deviation lies in [0, 4].

To proceed with data assimilation, we consider 10 ensemble members. For the initial data,
we add to the nature run at time 0 a Normal(0, 1) distributed random number independently
to each variable. We then run the forecast-observe-analyze cycle every 6 hours over 100
years with LETKF and with the synthetic observations. To avoid underestimating the error
variance, we implement a multiplicative inflation with ρ = 1.06, namely we consider an
inflated background error covariance matrix ρPb instead of Pb, see [41, Sec. 4]. Also, with the
current parameter’s setting of the Lorenz-96 model, the attractor has 13 positive Lyapunov
exponents [54, Sec. 3] which is greater than the number of ensemble members. In this case,
the forecast errors will not be corrected by the analysis, because the errors will grow in
directions which are not accounted for by the ensemble [42, Sec. 2.2.3]. This problem can be
solved by implementing a localization, namely by performing the analysis independently for
each state variable and by taking the distance between variables into account.

In this study, we implement the R localization described in [42, Sec. 2.3]. More precisely,
every 6 hours we update each state variable independently, which means that we perform
the analysis 40 times, and each time we update one state by using its forecast ensemble and
some truncated observations. For the space dependence, recall that the states are located
on a latitude circle, and therefore the analysis result of a given state should be affected
more by its neighboring states rather than by states which are located farther from it. To
implement this idea, let us consider how we perform of the analysis of the variable i. We first
fix a suitable diagonal observation error covariance matrix R which takes into account the
distance between the site i and any site j: the entry (j, j) of this matrix is given by ed(i,j)

2/2L2
,

where d(i, j) = min
{
|i− j mod 40|, |j − i mod 40|

}
if d(i, j) ≤ 19, and L := 5.45. Then the

analysis of state i is performed with the formulas of Section 4.2.2 on a space of dimension
39, which means that the state and the observations associated with j = i + 20 mod 40
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are disregarded. Note that the value of the tuning parameter L (and the related choice of
a truncation at the maximum distance of 19) have been fixed by a minimization process of
the analysis RMSE (obtained by the difference between the analysis values and the nature
run). In this setting, which will be kept throughout the investigations, the analysis RMSE
is 0.1989.

We also test the forecast RMSE for different forecast lengths. To do this, we run the
forecast with the analysis value as initial value, and compute the RMSE by comparing the
forecast with the nature run at different time points. Note that the previous experiment
supplies a new initial analysis value every 6 hours. Figure 4.1 summarizes the forecast ability
by providing the values of the forecast RMSE for different forecast lengths.

Figure 4.1: The forecast RMSE averaged over every 6 hours in 100 years run

4.3 The Control Simulation Experiment

In this section, we explain the design and the settings of the Control Simulation Experiment
(CSE). Several results are already presented in this section, while additional discussion are
gathered in the following section. The aim of this CSE is to avoid extreme events, and this
will be achieved by adding small perturbations to the dynamical system. These perturbations
should drive the system into a preferable direction. Let us mention that some preliminary
experiments consisting in replacing the perturbation vectors by randomly generated vectors
have shown the same distribution of state values as the nature run without control. Namely,
by applying random perturbations one can not reduce the number of extreme events.

4.3.1 Extreme events

Let us first provide a definition of the extreme events for the Lorenz-96 model. For that
purpose, we use the nature run mentioned in Section 4.2.3, namely the trajectories of the
40 state variables recorded every 0.01 unit of time and over 7300 units (100 years). In each
period of 0.05 unit of time (6 hours), we look at the maximum value over all states, and keep
this value as the local maximum for this period. The first 200 greatest local maxima over
the 100 years are treated as extreme values. Note that the interest of considering intervals
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of 6 hours is to minimize the representation of events involving several variables taking large
values simultaneously or within a very short period of time. As a result of this definition,
extreme values appear 2 times a year on average. This construction leads also to a lower
threshold value for an extreme event at 14.217. Figure 4.2(a) shows the histogram of the
state values (nature run) recorded every 0.01 unit of time for 7300 units, and Figure 4.2(b)
shows the value of all states over one randomly chosen year. Values that exceed the threshold
are colored in black.

(a)

(b)

Figure 4.2: (a) The distribution of the state values of Lorenz-96 recorded every 0.01 unit of
time for 7300 units, (b) The values of all states over a randomly chosen year. The extreme
values are colored in black and indicated by arrows.
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4.3.2 The Control Simulation Experiments

Recall that synthetic observations are produced every 0.05 unit of time (6 hours). For the
forecasts described below, a forecast length T equal to 2, 4, 6, 10, or 14 days is chosen.

1. At a certain time point tm, we run a T days forecast by integrating the Lorenz-96 model
with initial values provided by the analysis ensemble value at time tm. The integration
is performed by using a forth-order Runge-Kutta scheme with integration step of 0.01
unit of time.

2. If no extreme event is forecast during these T days, then we just move to Step 3. If
the maximum among all states exceeds the threshold at any time point during these T
days, then we apply some perturbations to the nature run from time tm + 0.01 to time
tm + 0.04. After each perturbation, we use the perturbed system as initial value for
the next integration over 0.01 unit of time. After the fourth perturbation, the system
evolves to tm + 0.05.

3. At time tm+0.05, we have the forecast ensemble and the observation generated by the
independent addition of a Normal(0, 1) distributed random number to each variable of
the nature run obtained from Step 2. The LETKF is used to assimilate the observation,
and an analysis ensemble at time tm + 0.05 is produced. We then move back to Step 1
with tm replaced by tm + 0.05.

Figure 4.3 shows the steps which are described above. In the upper part of the figure,
the green curves represent the T days forecast of one ensemble member. When a green curve
crosses or touches the gray line representing the threshold value, it means that one (or more)
state has a forecast value which is greater than or equal to the threshold. In the lower part of
the figure, the black curves represent the nature run: the original nature run for the dashed
curve, and the perturbed nature run for the solid curve. We shall call the controlled nature
run the nature run obtained by the above process, and emphasize that it corresponds to a
nature run including the perturbations, when these ones are applied.

Let us now describe how the perturbation vectors are chosen. For their definition we
use two ensemble members A and B among the 10. The ensemble A corresponds to the
ensemble showing the maximal extreme value during the forecast T days. The exact place
(one variable k) where this maximum is reached, and its precise time t are recorded . For the
ensemble member B, we first eliminate the candidates which show an extreme value at any
location and at any time within the T days. With the remaining members, we choose the
member who has the minimal value for the variable k and at the time t, see Figure 4.4. Then,
a rescaled difference of the ensemble members B and A at times tm + 0.01 to tm + 0.04 is
applied to the nature run at times tm+0.01 to tm+0.04, as indicated in the above Step 2. Let
us emphasize that the perturbation vectors are 40 dimensional vectors, since the difference is
computed on all variables. For the (Euclidean) norm of the perturbation vectors we choose
them proportional to the value of the analysis RMSE D0 := 0.1989. Thus, we fix the norm of
this vector as D := αD0 with the magnitude coefficient α = 0.1, 0.2, . . . , 1.0. Since the norm
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Figure 4.3: CSE description: When a T days forecast from tm shows extreme values, pertur-
bations are applied to the nature run between tm and tm +0.05. At time tm +0.05, previous
forecast and observation based on the controlled nature run are available, and a new analysis
ensemble is created.

of the average displacement in each 0.01 unit of time is 1.1720, the norm of the perturbations
correspond to less than 2% of the average displacement when α = 0.1 and to 17% of the
average displacement when α = 1.0.

If ever the above process does not allow us to choose an ensemble member B, then we
come back 6 hours before, use the analysis ensemble at time tm − 0.05, and run a T days
plus 6 hours forecast to find a suitable candidate.

In Figure 4.5, we superpose the distribution of the state values recorded every 0.01 unit
of time for 7300 units already obtained in Figure 4.2(a) with the similar distribution for the
controlled nature run. The parameters chosen are T = 10 days and α = 0.2. It is clear
that the number of values that exceed the threshold decreases significantly. The successive
perturbations that were applied to the nature run effectively control the system and reduce
the number of extreme events.

When the norm of the perturbation vector is too small, namely when α is too small, the
control is less effective for avoiding extreme events. Similarly, when the forecast length is too
short, it is often too late for applying successfully the perturbations. In order to understand
the effectiveness of the choice of α and T , we perform the same experiment for different
combinations of these parameters. For each combination, we run 10 independent experiments.
To be consistent with the definition of extreme events, we define the effectiveness as the
success rate given by the formula

success rate := 1− #{6 hours intervals in 100 years with extreme events}
200

.
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Figure 4.4: The forecast of a state with three ensemble members. Ensemble B is chosen with
the farthest distance to ensemble A when A exhibits an extreme event. The four perturbation
vectors (before rescaling) are indicated on the lower left part of the figure.

Figure 4.5: Distribution of state values for the nature run and for the controlled nature run.
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The outcomes of these investigations are gathered in Figure 4.6.

Figure 4.6: Success rates, as a function of the forecast length T and of the magnitude
coefficient α.

In addition to the success rate, we also would like to know how many times a control
of the system has been implemented, or equivalently how many times perturbation vectors
have been applied. For that purpose, we call a perturbation action each group of four pertur-
bations, as described in the above Step 2. We provide in Figure 4.7(a) the averaged values
of perturbation actions over a period of 100 years and obtained with 10 independent simu-
lations. The intervals corresponding to one standard deviation are also indicated. However,
since the magnitude of the perturbations vectors are proportional to α, another quantity of
interest is the the perturbation energy delivered to the system and defined by

perturbation energy := 4αD0 ×#(perturbation actions).

Figure 4.7(b) provides the information about the perturbation energy over a period of 100
years. In other words, this value describes the total energy put into the dynamical system
for controlling it during the 100 years run.

By looking at Figure 4.6, we observe that the success rate is quite low for the combination
of short forecast length T and small coefficient α. Nevertheless, the lowest success rate is
between 0.4 and 0.5, which means that more than 40% of the extreme events are successfully
removed. With T longer than or equal to 4 days and α greater than 0.5, all performances
are quite similar: a success rate close to 1. On the other hand, it is clearly visible on
Figure 4.7(b) that the perturbation energy quickly increases with longer forecasts and larger
coefficients α. In fact, the relation between the perturbation energy and the parameters T
and α is quite subtle. On the one hand, one observes that for constant T , the number of
perturbation actions is decreasing as a function of α, see Figure 4.7(a). Nevertheless, this
decay is counterbalanced by the multiplication by the factor α itself, when computing the
perturbation energy for any fixed T , as it appears in Figure 4.7(b). On the other hand, the
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(a) (b)

Figure 4.7: Number of perturbation action and perturbation energy over a period of 100
years, as functions of the forecast length T and of the magnitude coefficient α.

increase of T , for any fixed α, has a simple impact in both Figures 4.7(a) and 4.7(b): the
corresponding values increase.

The increases with respect to T are quite clear: A longer forecast increases the proba-
bility of having one particle exhibiting an extreme value, and thus increases the number of
perturbation actions triggered. This also result in an increase of the perturbation energy.
For the dependence on α: a small value of this parameter will not be sufficient for dragging
the system far away from an extreme event, and therefore a particle has a bigger chance
to forecast an extreme event even after a perturbation action. On the other hand, a large
value of α corresponds to larger perturbation vectors moving the system momentarily away
from an extreme event. In summary and according to these observations, for a pretty good
success rate with a small energy cost, the choice T = 4 days and α = 0.5 looks like an efficient
compromise.

4.4 Local perturbations and partial observations

In the previous section, information was available for the 40 variables, and the perturbation
vectors were applied at the 40 locations. We shall now discuss the situation when only partial
information is available, and when the perturbation vectors are applied only at a reduced
number of sites.

4.4.1 Local perturbations

The reason of considering local perturbations is quite straightforward: Since the 40 variables
of the Lorenz-96 model represent meteorological quantities evenly distributed on a latitude
circle, it could be that perturbations can only be generated at a limited number of locations.
Also, one may be interested in using only a smaller number of sites, in order to reduce the
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Figure 4.8: Success rates for the two experiments and for different localization scales. The
forecast time T is set to 4 days and the magnitude coefficient α to 0.7.

perturbation energy delivered to the system. The purpose of this section is to test if such an
approach is possible and efficient.

To study the interest and feasibility of local perturbations, we design two experiments: In
the first one, we assume that a randomly selected set of locations can generate perturbations.
During one realization (a 100-year run), these locations are fixed. In the second one, we
assume that each location can generate perturbations, but only sites which are close to the
targeted site, namely the site corresponding to the state variable at which an extreme event
is forecast, will be turned on and generate perturbations. Quite naturally, we shall refer to
the first experiment as the random sites experiment, while the second one will be referred to
as the neighbor sites experiment.

Recall now that the perturbation vector was previously obtained by the rescaled difference
of two ensemble members. For local perturbations, we shall additionally set some entries of
the perturbation vector to 0. In other words, some locations among the 40 states will not
be perturbed, even if a perturbation is applied to other states. These latter sites will be
called the perturbation sites, but observe that the perturbation can accidentally be also equal
to 0 at some of these sites. For the random sites experiments, we choose successively the
numbers of perturbation sites as 1, 3, 7, 11, 21, and 31. These numbers are referred to
as the localization scales. For the neighbor sites experiments, we shall successively consider
perturbation sites which are located at a distance at most 0, 1, 3, 5, 10, and 15 from the
targeted site. According to this maximal distance, the localization scale will also coincide
with 1, 3, 7, 11, 21, and 31. For both experiments and when an action is suggested by the
forecast, we first compute the difference of two the ensemble members are mentioned above,
we rescale the resulting vector with the coefficient α = 0.7, and set to 0 its entries which are
not at a perturbation site. This final vector is used for the perturbation, and its Euclidean



62 CHAPTER 4. CONTROL SIMULATION EXPERIMENTS L96

norm provides the energy of this perturbation. For the perturbation energy, we consider the
sum of these norms.

(a) (b)

Figure 4.9: Number of perturbation action and perturbation energy for the two experiments
and for different localization scales. The forecast time T is set to 4 days and the magnitude
coefficient α to 0.7.

In Figure 4.8, we provide the success rate for the different localization scales: 1, 3, 7, 11,
21, 31, and 40. The coefficient α is fixed to 0.7, and the forecast length T to 4 days. The error
bars mark the range within one standard deviation of 10 independent realizations. Clearly,
using random sites is less effective than using neighbor sites. For localization scale equal to
1, which means only one site is perturbed, localizing the perturbation on the targeted site
eliminates already more than 60% of the extreme events, while choosing a random position
for the perturbation only eliminates about 20% of the extreme events. When the localization
scale increases, the success rates of both experiments increases. However, when the local-
ization scale is greater than 7, the success rates of the neighbor sites experiment does not
increase anymore, while there is a constant increase for the random sites experiment, with a
maximum at the localization scale equal to 40. For the uncertainty range, the neighbor sites
experiment also shows a more stable performance compared to the random sites experiment.

At the level of the number of perturbation action, see Figure 4.9(a), the neighbor sites
experiments require less perturbation actions than the random sites experiments. In addition,
when the localization scale is greater than 21, the number of perturbation action for the
neighbor sites experiments does not decrease anymore. This suggests the existence of an
optimal setting for the localization scale around 21. One the other hand, in Figure 4.9(b), the
relation between the two experiments is a little bit more confused, but for a localization scale
bigger than or equal to 7, it also clearly appears that the neighbor sites experiment is more
effective than the random sites experiment. For these localization scales, the perturbation
energy is higher for the random sites experiment, even though the corresponding success
rates are always smaller. In fact, more perturbation actions are taking place in the random
setting, since the system is not carefully driven away from a forecast extreme event. For
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the localization scale smaller than 7, the small perturbation energy for the random site
experiment is due to the random choice of the components of the difference between the
two ensemble members: in general these components are not related to the variable of the
extreme event, and therefore to the biggest difference between the components.

By looking simultaneously at Figures 4.8, 4.9(a), and 4.9(b), let us still mention an
interesting outcome: For a localization scale equal to 11, the success rate is equal to the
success rate obtained for the localization scale equal to 40, but the corresponding perturbation
energy in the former case is about 6

7
of the perturbation energy used for controlling the 40

sites. This ratio can even decrease to about 5
7
for a localization scale of 7, if we accept a

small decay of the success rate. Thus, with a fine tuning of the localization scale, a reduction
of the total perturbation energy can be obtained, without any decay of the success rate.

4.4.2 Partial observations

Our next aim is to study the performance of the CSE when only partial observations are
available. The lack of information can either be spatial (with the observation of only 20 state
variables) or temporal (with observations available only every 24 hours, which means every
0.2 unit of time). We provide the description of both experiments simultaneously.

When observations are sparse in space or in time, the available information from observa-
tions decreases, and the analysis becomes less accurate, accordingly. As a consequence, the
parameter ρ of the multiplicative inflation and the R localization parameter L, introduced in
Section 4.2.3, need to be adapted. In particular, suitable values for these parameters can lead
to a smaller analysis RMSE. Note that the average spread of ensemble members should be
close to the RMSE, namely, the value of average should spread basically explain the potential
accuracy of the analysis results. Recall that the spread is computed as the RMSE but by
replacing the truth by the mean value of the ensemble members.

For the observations sparse in space, the 20 observed state variables are still chosen evenly
distributed on a latitude circle. The average spread and RMSE are computed on a 100 years
data assimilation experiment with different combinations of parameters ρ and L, and the
results are provided in Figures 4.10(a) and 4.10(b). The smallest RMSE together with a
spread of a similar value are found for the combination (ρ, L) = (1.08, 4.85), and this common
value is about 0.31 (to be compared with the value 0.1989 of the original experiment).

For the observations sparse in time, we have only tuned the parameter ρ and kept the R
localization parameter L at its initial value, since the space structure has not changed. Table
4.1 provides the RMSE and the spread for different value of ρ computed also on a 100 years
data assimilation experiment, and the smallest RMSE is reached for ρ = 1.50, with a value
almost two times bigger than the original RMSE.

With the parameters mentioned above, we run 10 independent CSE for T = 4 days and
α = 0.1, 0.5 and 1.0. For the observations sparse in time, namely when an observation is
taken place every 24 hours only, the system is still perturbed between two observation time
and every every 0.01 unit of time. More precisely, if the forecast computed from a time tm
anticipate an extreme event, then the perturbation vectors are applied from time tm + 0.01
to time tm + 0.19, every 0.01 unit of time.
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(a) RMSE (b) average spread

Figure 4.10: The RMSE (a) and the average spread (b) over 100 years run for different
combination of multiplicative inflation parameter ρ and R localization parameter L.

ρ 1.40 1.45 1.50 1.60 1.70

RMSE 0.443 0.429 0.422 0.427 0.434

spread 0.372 0.380 0.389 0.403 0.417

Table 4.1: The RMSE and spread over 100 years run with different values of ρ.

The various results obtained for partial observations are gathered in Figure 4.11. For
a comparison, we also recall the results of the original experiment which assumes that all
states are observed every 6 hours. Quite surprisingly, when half of the states are masked,
and despite an increase of the analysis error by about 50%, the decay of the success rate
is pretty small for α = 0.1 and 0.5, and negligible when α = 1.0. On the other hand, the
corresponding perturbation energy is higher than for the original setting, meaning that a
more frequent application of the perturbation vectors is taking place. This might be caused
by less accurate forecasts and by less efficient perturbations.

In contrast, when the observations are taking place every 24 hours only, the decay of the
success rate is more clear, and the increase of the perturbation energy is obvious. For the
success rate, the bigger RMSE can certainly explain why the analysis ensemble members can
not make accurate enough forecasts even on a very short range (2 days). On the other hand,
the increase of the perturbation energy is linked to the repeated application of the pertur-
bation vectors, which took place 19 times instead of 4 times at every alerts. In summary,
the partial forecasts, both in space and in time, lead to a CSE which is less efficient and
necessitates more perturbation energy.
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(a) (b)

Figure 4.11: Success rate (a) and perturbation energy (b) for sparse observations experiments.
The forecast time T is set to 4 days.

4.5 Conclusion

In this study, we developed a CSE for reducing the occurrences of extreme events in the
Lorenz-96 model with 40 variables. As background information, the main properties of the
model are recalled, and an introduction to LETKF is provided. The use of these tools for
investigating the Lorenz-96 model has then been explained, and some parameters have been
evaluated with preliminary experiments. Subsequently, we defined the notion of extreme
events, and designed the experiment for reducing their occurrence during periods of 100
years. The notions of success rate and of perturbation energy are introduced for discussing
the outcomes of the experiments. Sensitivity tests on localized perturbations (vs global
perturbations) show the potential of refining the experiments for a decay of the perturbation
energy without a concomitant decay of the success rate. Additional sensitivity tests with
partial observations show the robustness of the strategy. This study is an extension of
previous investigations of controllability of chaotic dynamical systems based on the Lorenz-
63 model [63]. Further investigations on more complicated real world models or on numerical
weather prediction models are planned. In this context, the potential side effects of the
method should be carefully studied, and an global assessment of the CSE would be challenging
but very interesting.
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Epilogue

In summer 2019, I was accepted to work with the researchers of the Data Assimilation
Research Team of RIKEN, for an internship of three weeks. During this stay, I was involved
in the project “Analysis of 2-dimensional cellular automaton model using particle filters”.
The project was mainly developed by Dr. Sakamoto, who was also my advisor during the
internship. Trough the research work on this project, I was impressed by the power of
particle filters which is one important tool of data assimilation. I was also introduced to the
methodology of data assimilation and to some elegant theories and tools in this field.

After the internship, I decided to further extend my knowledge on data assimilation. I
deepened my understanding by studying the theories and by presenting them at the seminar
arranged by my supervisor, Prof. Richard. During the first semester of the doctoral program,
I also submitted my application and a research proposal to the Junior Research Associate
Program at RIKEN. This program supports Ph.D. students for achieving their research at
RIKEN during the period of their Ph.D. This successful application allowed me to be jointly
supervised by Prof. Miyoshi, who is the team leader of Data Assimilation Research Team (DA
team), and to continue my research with the members of this team. As a positive outcome,
this program also triggered a collaboration between Prof. Richard of the Graduate School of
Mathematics of Nagoya University and the DA team.

At the beginning of 2020, the COVID-19 pandemic started affecting people’s live world-
wide. The special pattern of the spread of this disease inspires me to construct a model
which fits this propagation pattern. Also, the daily reported statistics of the disease by
health officials provided very good observation resources. With these regularly reported ob-
servations and with our newly designed infectious disease model, it quickly became possible
to study the spread of the disease by using data assimilation techniques. One major outcome
of our investigations has been the evaluation of the effective reproduction number Rt, one
key factor for the evolution of an epidemic. With this new knowledge available, and with our
growing understanding of data assimilation techniques, we started conceiving that large-scale
observations and simulations could help for preventing further spread of the disease in the
future.

Simultaneously, this idea resonated with the newly developed research projects of Con-
trol Simulation Experiments (CSE) for Lorenz-63 and for Lorenz-96 models, as presented
respectively in Chapter 3 and in Chapter 4. For these models, the main idea was precisely to
control the evolution of the underlying dynamical systems by exploiting the forecast power
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of DA techniques and the sensitivity to initial conditions. However, in our investigations on
COVID-19, as presented in Chapter 2, the amount of information and medical parameters
involved in the extended SEIR model is much bigger than the corresponding ones involved in
the two toy models. In other words, dealing with the realistic COVID-19 situation was much
more difficult than with the two models from Lorenz. In addition, the performance of data
assimilation tools on L63 or L96 had already been well studied by many researchers, which
means that it was more straightforward to start the control simulation experiments for these
toy models, rather than with the model involving several medical constants and human fac-
tors. As a result, it was quickly decided to carry out simultaneously both investigations: the
CSE research on the Lorenz models, and the more basic but essential research of COVID-19.

In the Analysis of COVID-19, our aim was to understand how data assimilation techniques
work on a model with real-world observations. Our main contributions have been the design
of the extended SEIR model, the estimation of the unobservable states and of unknown
parameters with data from Japan, and the study of the sensitivity of the method with respect
to the parameters. To make the extended SEIR model informative but nevertheless simple,
we firstly studied the medical research results and the policies related to the identification,
the treatment, and the discharge of patients. We adopted the ETKF as the tool for the
analysis and we tried different setting of parameters, for example the multiplicative inflation,
the observation error covariance matrix, and the number of ensemble members to stabilize
the performance of ETKF and to increase the analysis accuracy. Moreover, for the recovery
rate and the death rate, we did not use the values suggested by health officials. Instead,
we approximated these values by using the daily observations and this led to a more stable
performance for the computations.

The analysis results for several cities in Japan and for the whole country confirmed our
ability to estimate the effective reproduction number and to evaluate the unobservable states
with ETKF. The effective reproduction number Rt computed with ETKF essentially agreed
with the values provided by other sources (as for example from ToyoKeizai), but our analysis
values for Rt had a smoother evolution. This fact looks rather natural if we consider the
propagation property of an infectious disease. On the other hand, we also noticed that
the reaction of Rt to some rapid external modifications (like the change of the variant,
or rapid non pharmaceutical interventions) was not quick enough. This slow reaction has
been corrected and improved by using extra correction procedures. Namely, we have tested
several tools for improving our model, as for example the use of ARIMA model, an additional
smoother process, and other stochastic procedures, and some of them have been implemented
for the scenario simulations.

As a preliminary step for studying the control of a dynamical system through data as-
similation, it is important to study the sensitivity to model parameters. As presented in the
technical discussion of Chapter 2, we tested our model with different values of the external
parameters. For example, since the ratio between symptomatic and asymptomatic patients
has been subjected to many controversies (especially at the beginning of the epidemic), we
have tested several values for this ratio. The results show that most of these parameters do
not affect the analysis value of Rt, which means a great stability of our main outcome.

Once our model has been sufficiently understood and tested, it has been decided to
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provide our analysis and some future scenarios on a dedicated COVID-19 website of the
DA team, with a daily update. To make the procedure works efficiently, we refined the
algorithms and implemented an automatic download of the observations, and an automatic
upload of the results. My colleagues Sakamoto-san and Ishimuzu-san from the DA team
helped me designing and constructing the website, and Tsuzu-san (a graduate student of
Nagoya University) helped me to refine and test part of the code. The final product was
available here

http://www.data-assimilation.riken.jp/covid-19/realtime/index en.html

but this project has been completed on March 31, 2022, because of the end of the RIKEN
presidential grant. It also turns out that with the change of variants, the observations
became less reliable, and future predictions became less essential. However, our approach
and the knowledge obtained have been summarized in a paper, and remain available for
future epidemics.

Let us come back to the two Lorenz models. There already existed several applications
of DA techniques to the partially observed Lorenz-63 and Lorenz-96 models, as for example
the OSSE (Observing System Simulation Experiment). These research results allowed us to
directly start the control simulation experiments with these two toy models, without having
to deal with preliminary stability tests or the estimation of some parameters’ settings. The
predictability and the evaluation of data assimilation methods provided useful information for
the design of the CSEs. Indeed, it allowed us to design the experiments with the given optimal
setting of the data assimilation methods, for example the number of ensemble members or the
size of the multiplicative inflation. The data assimilation methods adopted in the research
of L63 and L96 are ETKF and LETKF respectively.

Our main contribution in the CSE for Lorenz-63 has been to implement the control
simulation experiment and to study the performances of the CSEs by tuning the experimental
parameters. It is commonly understood that long-term forecasts of chaotic dynamical systems
are difficult because of the sensitivity to the initial conditions. The tricky part of in the design
of the CSE is precisely to use this sensitivity to generate appropriate perturbation signals of
small amplitudes. Our aim for this model has been to avoid a change of regime, or in other
words to keep the evolution of the dynamical system on one wing of the butterfly attractor.
If a change of regime is forecast, then a suitable perturbation has to be implemented. The
ensemble members and their different trajectories provide natural candidates for the definition
of the perturbation. Among these candidates, it is possible to find a good one which does not
perform a change of regime during a prescribed time window. Then the signals are computed
by using the selected candidate, and it is expected that the addition of those signals to the
system at proper time points can keep its evolution in one regime.

The results have shown that the implementation of these well-designed perturbation sig-
nals can effectively control the Lorenz-63 model and avoid a regime change. Note that the
effective perturbation signals are rather small compared to the analysis RMSE and to the
one-step model evolution in the Euclidean norm (OME).

The successful application of the CSE to the Lorenz-63 model inspired the follow-up
research related to the control of extreme events in more complex models. The Lorenz-96
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model was chosen and the design of the CSE was also updated to deal with the spatial
structure of this model. In this experiment, the definition of extreme events was not as
trivial as the notion of regime change for the butterfly attractor. Consequently, we carefully
defined the notion of extreme events to ensure that these events take place only two times a
year on average, and are evenly distributed in the 100-year trajectories. Also, we introduced
the idea of perturbation energy for a better understanding of the efficiency of the CSE.

Considering the spatial structure and the advection of the Lorenz-96 model, we also
tested the efficiency of local perturbation, and the results have shown that the CSE is ef-
ficient enough when the perturbation is applied at a few pre-designed locations only. This
observation indicates that further refinements of the CSE are possible, and this partial ap-
plication might be favoured when the CSE would be applied to a more realistic dynamical
model. In the long run, we keep in mind possible applications of the CSE for the control
heavy rainfalls or of typhoons, or for the control the spread of a pandemic!

As a conclusion, to control a partially observed dynamical system by using data assimi-
lation techniques, one needs a good knowledge of the predictability (forecast) of the model,
and a good understanding of how data assimilation tools can be applied to the system. In
the research on COVID-19, we carried out the preliminary research for the forecast of the
model. For the research on Lorenz-63 and Lorenz-96, we were able to implement the CSE
and to study its effects. The code for these investigations will be opened for public use. We
expect that these results can be further extended to other models and it may benefit both
academic researchers and any disasters prevention center.



Appendix A

Bibliometric analysis on mathematics:
3 snapshots: 2005, 2010, 2015

A.1 Introduction

This research has been triggered by a simple question: Do international collaborations in-
crease the number of citations in mathematics? By looking at the existing studies about this
question in various fields of research [55, 78, 90, 92, 93], the easy and naive answer would be
positive. However, some investigations show that a more precise answer depends on the field
of research, and that additional information should be taken into account, see for example
[29, 80, 81]. Thus, from the original narrow question, our interest has shifted to the more
general question: What are the important predictors for the publications in mathematics, if
the response is the number of citations?

Similar bibliometric investigations have already been performed, as for example in [17],
but mathematics was not considered in this reference, and the analysis is partially model
dependent. Specific to mathematics, let us mention the early studies [32, 33] based on
MathSciNet, followed by [7] which discusses the different citation indices for mathematics
journals, [6] which performs a bibliometric analysis on the period 1868–2008, and [69] which
focuses on mathematics education. For very recent investigations, let us also mention [82]
which also studies citations but from an individual perspective, [89] which provides a detailed
bibliometric analysis over 40 years but on publications of a single journal, and [70] which
studies US mathematics faculties with some bibliometric tools.

In order to provide a broad picture about recent publications in mathematics, and there-
fore complement some of the publications introduced above, our initial hope was to use
MathSciNet, which is familiar to all mathematicians and which really focus on mathematics
publications. Unfortunately, MathSciNet does not allow any automated searching or down-
loading, and collecting enough information for any serious analysis turns out to be impossible
(despite several requests). On the other hand, Web of Science, which is not specific to math-
ematics but contains information about mathematics among other fields, allows the collect
of large amount of data, and its supporting team answered all our inquiries. For these rea-
sons, after a comparison of the two databases provided in Section A.2, we concentrate in the
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subsequent sections on data provided by Web of Science only.
Let us now be more specific about the content of this paper. Our investigations are

focusing on publications in mathematics for three years: 2005, 2010, and 2015. This choice
allows us to see an evolution in the publication records over a period of ten years, without
overwhelming us with too much data. For each of these three years, we collected between
45’000 and nearly 80’000 items related to mathematics, and for each item we kept the record
of 10 features as predictors together with the response, namely the number of citations up
to November 2020. These predictors are introduced and discussed in Section A.3.

The preliminary analysis consists in looking at the response as a function of a single
predictor. Let us immediately stress that since the response depends on time (the number
of citations increases as years pass), all investigations are performed on the three years
independently. Section A.4 contains these results, presented either with graphs or with
tables. More precisely, the citations are provided successively as a function of

(i) the number of authors,

(ii) the number of countries associated with the authors,

(iii) the number of institutes associated with the authors,

(iv) the number of references provided by the authors,

(v) the number of pages of the publication,

(vi) the number of keywords provided by the authors

(vii) the open access (or not) of the publication,

(viii) the journal impact factor JIF (if the publication has appeared in a journal with a JIF),

(ix) the research area of the publication,

(x) the categories associated with the publication.

More explanations and comments are provided in Section A.4.
It clearly appears in these individual investigations that the response is related to some

predictors, but how much information can be extracted from them, and what is their relative
importance? These questions, and others, are discussed in Section A.5. Because of the diver-
sity of the predictors we opted for an approach based on tree-based methods, as introduced
in [11]. Indeed, unlike the approach provided in [78] we do not want to consider some linear
relations between the predictors and the response, but prefer an approach which divides the
predictor space into several regions and associates to each region a local response. Alterna-
tively, we could have borrowed some bibliometrix tools developed in [2] if our investigations
were performed on R, but we opted for the tools available on the platform [77].

Several experiments are performed with trees, with some parameters chosen according to
the year of publications and to the existence (or non-existence) of a JIF associated with the
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publications. Based on these experiments, the predictors can be ranked according to their
importance. Another outcome of tree classifiers is the ability of predicting the citations (at
least within some predefined classes) based on the predictors. Clearly, the result is not very
good, but the converse would have been even more surprising. However, the predictions are
better than a random guess, as explained in Section A.5.

In Section A.6 we turn our attention to countries: What information can be deduced
from the individual publications about the research in the countries of the authors? Can one
measure a kind of performance for each country? And what about collaboration between
countries, which is related to our very initial question, can one measure these collaborations,
and say something about them? Data for answering these questions are presented in Section
A.6 for the main countries, which means for the country producing the majority of publica-
tions in mathematics. In fact, data covering about 130 countries were available, but for some
of them, the annual number of publications is too limited to support any analysis.

With this paper we provide three snapshots (2005, 2010, 2015) about the publications
in mathematics, and extract as much bibliometric information as possible. As already men-
tioned, we would have preferred working on a database MathSciNet because some information
would have been more accurate. It is quite unfortunate that the policy and the tools provided
by this website do not allow such investigations, as implicitly acknowledged in [19]. On the
other hand, by using Web of Science database, our investigations about mathematics have
covered a slightly broader range of publications.

A.2 General pictures

In this section we provide general information about publications in mathematics for the last
20 years. A few comparisons between the two databases MathSciNet (MSN) and Web of
Science (WoS) are also presented. Finally, the data we shall use in the following sections are
introduced, and some statistics are exhibited.

Figure A.1: Yearly new indexed math publica-
tions

Since this research is based on data about
mathematics, let us first have a look at two
important sources of information. Math-
SciNet is an electronic database operated by
the American Mathematical Society focus-
ing exclusively on publications in mathemat-
ics. In November 2020 it contains about
3.9 millions items. Web of Science is a
much more general database operated by
the private company Clarivate. It is pos-
sible to select publications in mathematics
by choosing the research area mathematics
(SU=mathematics). In November 2020, the
outcome for this general request is about 2.0 millions items. Note that WoS contains also
categories, and one of them corresponds to mathematics. However, by choosing this request
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(WC=mathematics) the number of items is 1.7 millions, and these items are strictly contained
in the previous request about research area.

Figure A.2: Publications with at least one author from a given country: absolute and relative
numbers from MSN

A comparison about the number of works published in the last 20 years is provided in
Figure A.1. For MSN, all works are reported, while for WoS it is again the works correspond-
ing to the research area mathematics. Let us provide one more comparison between the two
databases, based on one information that will be used in the analysis. The information is
related to the country in which research institutions (universities, research institutes, etc)
are located. For simplicity, we shall call this the country of the research institution, and by
extension the country of the author working in this research institution. Figures A.2 and
A.3 show the yearly publications and their relative numbers with at least one author from
a research institution in one of the following countries: USA, China, France, Japan, Chile.
The relative numbers are with respect to the total number of publications in mathematics
index by MSN and WoS (shown in Figure A.1). Thus, even if the difference between the
total numbers of items in the two databases is not negligible, we expect that their shapes
and trends are similar.

Figure A.3: Publications with at least one author from a given country: absolute and relative
numbers from WoS

On the other hand, a unique feature of MSN is the Mathematics Subject Classification
(MSC). This classification contains more than 60 subjects, and each one can be divided into
numerous sub-subjects. Each publication is indexed by one primary subject or one primary
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subject with several secondary subjects. The subjects are usually chosen by the author(s) of
a publication, or carefully assigned by the editors of MSN. The MSC provides a rather precise
information about the content of each publication. With this information, a refined plot of
Figure A.1 for MSN is shown in Figure A.4. The eight combined subjects are elaborated in
[75]. Unfortunately, WoS does not contain the MSC, and therefore we shall not be able to
use this information in our investigations.

Figure A.4: Yearly new indexed math publications (8 fields) based on the MSC

As mentioned in the Introduction, our analysis is based on the data in three years. With
the request research area = mathematics, and once the items with no clear author or with
no clear affiliation for the author(s) have been removed, the number of items collected are:

research area = mathematics, clear author(s) and affiliation(s)

2005 : 45′035 items 2010 : 62′945 items 2015 : 76′788 items.
(A.1)

The following statistics are computed on these numerous items. It has been observed in
earlier publications that the average number of authors for each paper has been increasing
over time, see for example [6, Figure 10]. Since our investigations are based on three distinct
years, let us observe this effect on a period of 10 years, see Figure A.5.

Figure A.5: Distribution of the number of authors per publication

It clearly appears that the proportions of publications with 1 and 2 authors are decreasing,
while the ones with 3, 4, or 5 and more authors are increasing. The average number of authors
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for these three years and based on the data mentioned in (A.1) are respectively:

2005 : 2.10 authors 2010 : 2.23 authors 2015 : 2.39 authors. (A.2)

Note that other numbers confirm this increase in the collaborations for each publication.
Indeed, if one looks at the average number of research institutes involved for each publication
one gets

2005 : 1.57 institutes 2010 : 1.74 institutes 2015 : 1.90 institutes. (A.3)

These numbers have been computed by counting the number of different addresses provided
by the publications.

Since one of our interests is to study international collaborations, let us provide similar
results for the average number of countries involved for each publication:

2005 : 1.23 countries 2010 : 1.28 countries 2015 : 1.32 countries. (A.4)

Again, these numbers have been computed by counting the number of different countries
mentioned in the list of addresses of the authors. If we look at the details, one obtains the
distributions provided in Figure A.6.

Figure A.6: Distribution of the number of countries per publication

A.3 The predictors and the response

In this section we introduce the predictors and the response that we have employed for our
investigations, and make a few comments about them.

The predictors can be roughly divided into three categories, namely those related to the
author(s) of a publication, those related to the publication itself, and those related to the
journal or the physical support in which the publication has appeared. All of them have
been extracted from the WoS database for the items mentioned in (A.1). Let us immediately
stress that the author’s names have been completely disregarded in our investigations.

� Author(s)

authors : the number of authors
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countries : the number of countries

institutes : the number of research institutes

Note that in addition to the number of countries involved for each publication, the exact
list of countries will also be investigated in Section A.6.

� Publication

references : the number of references

pages : the number of pages

keywords : the number of keywords provided by the authors

open access : open access

WoS provides some information about various types of open access. More precisely,
publications which are partially or fully open access are identifiable in the database. This
information is obtained in collaboration with EndNote Click, formerly called Kopernio. Since
there exist various levels of open access, this predictor will be used cautiously.

� Journal

jif : journal impact factor

research areas : research areas

categories : categories

The journal impact factor is computed by WoS and assigned to several journals for each
year. More information about its computation and its weaknesses can be found here1. As
already mentioned, research areas and categories are classification indices provided by WoS.
Several research areas and several categories have been assigned to each journal in the WoS
database, based on several criteria. Compared with the rather precise definitions of the
categories, the research areas are less precisely defined (this has been confirmed by the
technical support from Clarivate who answered our inquiries). Moreover, compared with
Mathematics Subject Classification (MSC) from MathSciNet, these two predictors are hugely
less precise. Not only these indices are not chosen by the authors, but they are common to all
publications in one journal, and their assignment is not so clear. Nevertheless, they provide
a vague information which deserves to be collected, and which will be further discussed later
on.

For the response, the number of citations for each publication has been recorded. These
numbers were collected in October/November 2020. It should be emphasized that these
numbers range between 0 and some very large numbers. For example, one work published

1https://en.wikipedia.org/wiki/Impact factor
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in 2005 has been cited up to 11’106 times (12’015 and 18’439 times for the most cited works
published in 2010 and 2015).

A few other publications are also cited numerous times, which is quite unlikely in the field
of mathematics. Since such publications have an enormous impact in the computations of
means, we have decided not to consider them. More precisely, we have decided to keep only
the publications with a number of citations strictly below 64. This number corresponds to
the lower 95th percentile of the collected publications from 2005. For simplicity, we kept this
upper limit of 64 also for the data from 2010 and 2015 (which corresponds respectively to
the lower 97th and 99th percentiles). As a consequence, the data with less than 64 citations
are

research area = mathematics, clear author(s) and affiliation(s), citation < 64

2005 : 42′792 items 2010 : 61′084 items 2015 : 76′168 items.
(A.5)

In the subsequent computations, and in particular for computations of means, it is these
items which are considered.

Let us finally mention that we could have considered the 95th percentiles for the three
years, which means that the upper limit for 2010 and 2015 would have been lower than 64.
As a result, the means related to these years would have been slightly smaller. However,
since we can not compare directly the citations between publications produced respectively
in 2005, 2010 and 2015, the simpler choice of keeping the upper bound 64 instead of keeping
95th percentiles does not affect our investigations.

A.4 Individual predictors

In this section we study the relations of the individual predictors with the number of citations.
A comparison between the predictors, based on a tree classifier, will be presented in the next
section.

A.4.1 Number of authors

The items mentioned in (A.5) have been divided according to the number of authors (1, 2, 3
and more) and the respective distributions of citations have been reported in the first column
of Figure A.7.

For each group, the mean has been indicated with a vertical line, and the median has
been reported with a vertical dashed line. These precise values are indicated in Table A.1,
as well as the proportions of publications with 1, 2, or 3 and more authors.

On Table A.1, it clearly appears that the fractions of publications with 1 or 2 authors
decrease over time, while the one with 3 and more authors increases over time. This obser-
vation goes in line with the content of Figure A.5, when no upper limit for the number of
citations was imposed. On the other hand, it clearly appears that means and medians of the
three years’ record increase along with the number of authors.
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Figure A.7: Distributions depending on the number of authors or on the number of countries
involved

2005 2010 2015
% mean median % mean median % mean median

1 author 35.3 7.8 3 30.4 5.9 2 25.6 3.4 1
2 authors 36.6 10.8 6 36.5 9.0 5 35.9 5.1 2
≥ 3 authors 28.1 11.8 6 33.1 10.3 6 38.5 6.7 3

Table A.1: Citations depending on the number of authors

A.4.2 Number of countries

Let us now divide the items according to the number of countries appearing in the list of
addresses of the authors. A division into 1, 2, 3 and more countries has also been performed,
and the distribution of citations is reported in the second column of Figure A.7. The values
of the means, the medians, and the proportions are provided in Table A.2.

2005 2010 2015
% mean median % mean median % mean median

1 country 80.0 9.2 4 76.5 7.7 3 73.7 4.7 2
2 countries 17.4 13.5 8 19.8 10.8 6 21.4 6.6 3
≥ 3 countries 2.6 14.5 10 3.7 12.3 7 4.9 8.3 5

Table A.2: Citations depending on the number of countries involoved

Similar to the content of Table A.1, the number of countries involved for each publication
increases over time, and the means and medians grow along with the number of countries.
The fist observation confirms the trend observed in Figure A.6. These observations reflect the
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internationalization of research and publication processes. However, let me mention a small
effect inside this global picture. For most items, the appearance of n countries correspond
to at least n authors, one (or more) in each country. However, there also exist tens of items
with one author having two main addresses in two different countries. Since these situations
confirm an additional face of internationalization, we haven’t tried to separate these two
effects.

A.4.3 Number of institutes

Another division according to the number of different research institutes appearing in the
list of addresses is performed. We divided the items into 1, 2, 3, 4 and more institutes, and
computed the proportion, the mean and the median for each of these groups. These numbers
are reported in Table A.3.

2005 2010 2015
% mean median % mean median % mean median

1 institute 60.7 8.0 3 51.7 6.8 3 44.7 4.2 2
2 institutes 27.6 12.5 8 31.0 9.6 5 33.1 5.5 3
3 institutes 8.8 14.5 9 12.4 10.8 6 14.6 6.6 3
≥ 4 institutes 2.9 16.5 12 4.9 12.8 8 7.6 8.1 4

Table A.3: Citations depending on the number of institutes

As for the previous two predictors, the number of publications involving only one insti-
tute decrease over time, while the number of publications involving two and more institutes
increase over time. By looking at these three predictors, it appears quite clearly that an
increase in the number of authors, countries, or institutes, corresponds to an increase in
the number of citations. In fact, both the mean and the median are increasing with these
predictors.

A.4.4 Number of references

For most items provided by WoS, the number of references mentioned by the authors of a
publication is provided. A classification depending on the number of references has been
realized, and Figure A.8 provides the information about the number of publications (y−axis)
with a given number of references (x−axis), together with the citation mean (color). Note
that in the three graphs, the grey color correspond to the mean citation over all data of
the respective year. These means appear in Table A.6 (first row), but for the record let us
already mention them:

2005 : 10.0 citations 2010 : 8.5 citations 2015 : 5.3 citations. (A.6)

By computing the average number of references for the 3 years, the expected number of
references are:

2005 : 18.3 references 2010 : 20.7 references 2015 : 23.8 references. (A.7)
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Figure A.8: Citations depending on the number of references

A similar computation can be realized by eliminating the items with 0 references. Indeed,
it is rather doubtful that a publication does not mention any reference, but it seems more
likely that WoS has not recorded the information for these publications. In order to eliminate
this bias, we compute the expected number of references, once the items with 0 references
are disregarded, and one gets:

2005 : 19.0 references 2010 : 21.7 references 2015 : 24.5 references. (A.8)

The numbers in (A.7) and in (A.8) show a rather steep increase of the average number of
references over a period of 10 years. Also, publications with the mean number of references
received about the mean number of citations for each year. It would certainly be valuable to
look at this predictor with data from additional years and over a longer period of time.

A.4.5 Number of pages

Similar investigations can be performed with the number of pages. Figure A.9 contains the
outcomes of this investigation, with the number of items for a given number of pages together
with an information about the citation mean.
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Figure A.9: Citations depending on the number of pages

The conclusion is similar to the one obtained for Figure A.8, namely a positive correlation
between the number of pages and the citations. Once again, the average number of pages
can be computed. The expected numbers of pages are

2005 : 15.5 pages 2010 : 15.5 pages 2015 : 16.9 pages. (A.9)

Compared to the previous result with the number of references, the increasing trend of
number of pages is less clear. Also, one observes that the contrast of colors is more important
in Figure A.8 than in Figure A.9. This difference can be understood as the predominance of
the number of references over the number of pages as a predictor for the number for citations.
This fact will be confirmed in the next section.

A.4.6 Number of keywords

Let us now have a look at keywords. WoS lists the keywords provided by the authors, and a
second list of keywords introduced by WoS. Let us immediately say that we were interested
only in the first list. In Table A.4, we report the proportions of publications as a function
of the number of keywords, and provide also the means and the medians. Note that there is
no information about keywords for about 1/3 of the data for each year. This absence can be
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due either to the lack of keywords provided in the original support of the publication, or in
a failure in the collect of this information by WoS.

2005 2010 2015
nb keywords % mean median % mean median % mean median
0 36.6 8.3 3 28.7 6.7 2 23.7 4.4 1
1 0.3 7.7 3 0.3 4.4 2 0.2 3.1 1
2 4.3 8.1 4 3.9 6.8 3 3.0 3.4 2
3 15.9 9.8 5 16.7 7.6 4 16.2 4.3 2
4 17.6 10.9 6 20.1 8.7 4 21.9 5.4 3
5 13.1 11.5 7 15.8 10.3 6 18.6 6.2 3
6 6.4 13.3 8 7.9 11.2 6 9.5 7.0 4
7 2.7 12.9 7 3.2 10.7 6 3.3 6.3 3
8 1.3 14.8 10 1.7 11.3 7 1.7 6.2 3
9 0.7 15.3 11 0.8 11.5 7 0.9 6.9 4
10 0.4 14.3 9 0.4 12.0 6 0.5 6.0 3
≥ 11 0.5 15.3 11 0.5 11.2 7 0.6 6.6 4

Table A.4: Citations depending on the number of keywords

What appears in this table is a positive relation between the number of keywords and
the citation mean as long as the number of keywords is between 1 and 5. For the items with
more than 5 keywords, any relation between the number of keywords and the citation mean
is not really visible.

Let us still provide the average number of keywords. Based on WoS, the expected number
of keywords are:

2005 : 2.78 keywords 2010 : 3.19 keywords 2015 : 3.49 keywords. (A.10)

In order to eliminate the bias related to 0 keywords, the statistics with 0 keywords removed
have also been computed, and one gets

2005 : 4.38 keywords 2010 : 4.48 keywords 2015 : 4.58 keywords. (A.11)

As for the number of references and the number of pages, it is visible in (A.10) and in (A.11)
that the number of keywords provided by the authors is also following an increasing trend.

A.4.7 Open access

As already mentioned, WoS lists the items which have a partial or a full open access. Since
this information is available, let us just provide the proportion of items having any kind of
open access, together with the respective mean and median. The outcomes are summarized
in Table A.5.

The table contains one information which is not surprising: the proportion of items with
an open access increases over the years. Also, both the means and the medians are larger for
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2005 2010 2015
% mean median % mean median % mean median

OA 16.4 12.2 7 21.2 9.7 5 32.3 5.7 3
no OA 83.6 9.6 5 78.8 8.1 4 67.7 5.1 2

Table A.5: Citations with or without open access

the items with an open access compared to the items without this access. However, even if
these results look quite natural, we think that further and more precise information would
be necessary to get a better picture about the impact of open access.

A.4.8 Journal impact factor

By definition, the journal impact factor (JIF) is available only for journals, and not for all
items. Note that WoS does not link automatically the publications appearing in journals
with the corresponding JIF. However, we were able to track this information for about 2/3
of our items. More precisely, a JIF has been associated to the following numbers of items
from the list described in (A.5):

research area = mathematics, clear author(s) and affiliation(s), citation < 64,

JIF available

2005 : 31′556 items 2010 : 44′639 items 2015 : 57′756 items.

(A.12)

It is not surprising that this list of items is biased. Indeed, if we look at the citation
means over these items, the numbers are not exactly the ones appearing in (A.6) but

2005 : 12.0 citations 2010 : 10.2 citations 2015 : 6.3 citations. (A.13)

There are certainly many reasons why these subgroups are not fully representative of their
original groups. For example, all publications appearing in proceedings or in books are
not linked to a JIF. Thus, for the next graph only the items of the list (A.12) have been
considered, but elsewhere let us stress that the more general list (A.5) was preferred.

In Figure A.10 we report the citation means and the citation medians as a function of
the JIF. For the graphs, we have divided the possible values of the JIF into subintervals of
length 0.1, collected all papers linked to a JIF in each subinterval and computed their mean
and median. The information about the number of items corresponding to each subinterval
is also mentioned. For a JIF below 2, a nearly linear relation between JIF and citation mean
or median is quite visible. On the other hand, for values of the JIF above 2, the relation is
less clear. But this part of the statistics is performed on much fewer items, and makes it less
reliable.

A.4.9 Research areas

To each item, WoS associates one or several research area(s). As mentioned in the previ-
ous section, our selection was based on research area = mathematics, which means that all
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Figure A.10: Citations depending on the Journal Impact Factor

data have at least mathematics in the list of their research areas. However, most of them
possess more than just one research area. For the data from 2005, it turns out that only
12 additional research areas were contained in at least 1% of the considered items. The list
of these research areas is: Mathematics, Computer Science, Engineering, Physics, Mechan-
ics, Operations Research & Management Science, Mathematical & Computational Biology,
Mathematical Methods in Social Sciences, Business & Economics, Biochemistry & Molecular
Biology, Automation & Control Systems, Science & Technology, Biotechnology & Applied
Microbiology.

Based on this list, we have computed the fraction, the mean and the median of all the
items introduced in (A.5) which possess one of these entries as a research area. The result is
provided in Table A.6.

In this table, we have also reported the relative citation which corresponds to the citation
mean of a particular research area divided by the citation mean of the same year for all the
data. It turns out that these computations give some interesting results: the range of this
relative citation is between 0.7 and 2.8, with the lowest value shared in 2005 and 2010 by
Engineering and by Operations Research & Management Science. On the other hand, most of
the highest values are reached by research areas related to biology or to biotechnology. Note
that the median follows a similar pattern, but since the computation of a relative median does
not look so natural, we have refrained from providing such a relative information. Thus, this
table confirm that the citation mean or median really depend on the research areas, and that
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2005 2010 2015
% mean rel. c. med. % mean rel. c. med. % mean rel. c. med.

Mathematics 100 10.0 1.0 5 100 8.5 1.0 4 100 5.3 1.0 2
Comp. Science 15.2 9.9 1.0 4 15.0 8.4 1.0 3 9.9 6.7 1.3 3
Engineering 8.7 7.1 0.7 1 11.3 6.1 0.7 1 8.7 6.8 1.3 3
Physics 8.7 11.3 1.1 6 7.9 7.7 0.9 3 7.3 5.1 1.0 2
Mechanics 4.5 9.4 0.9 4 5.3 10.6 1.2 5 3.7 10.9 2.1 7
Op. Research 4.3 6.7 0.7 2 4.4 6.0 0.7 2 2.7 5.6 1.1 3
Math. & C. Bio. 3.2 19.9 2.0 15 3.5 13.1 1.5 8 2.4 10.4 2.0 6
Math. M. Soc. S. 2.5 14.0 1.4 9 2.8 11.3 1.3 6 2.5 8.4 1.6 5
Bus. & Eco. 2.8 8.7 0.9 1 2.3 9.1 1.1 4 2.2 6.4 1.2 3
Bio. & M. Bio. 1.8 23.1 2.3 19 1.3 16.9 2.0 12 1.3 13.4 2.5 9
Auto. & C. Syst. 1.7 11.5 1.1 6 1.8 11.9 1.4 6 1.8 12.0 2.3 8
Science & Tech. 1.7 9.8 1.0 6 1.9 6.5 0.8 3 2.2 4.1 0.8 2
Bio. & A. Mic. 1.6 23.9 2.4 20 1.1 17.4 2.1 13 1.0 14.8 2.8 11

Table A.6: Citations for the main research areas

some striking differences exist. This fact is well documented, and has led to the developments
of several relative indices, see for example [1, 16].

A.4.10 Categories

Categories correspond to another indexation of the items chosen by WoS. They correspond
to rather broad research fields, but some of them coincide also with research areas. The
main list of categories (different from any research area) appearing in our items are the
following: Applied Mathematics, Mathematics, Statistics & Probability, Mathematics (Inter-
disciplinary Applications), Computer Science (Interdisciplinary Applications), Mathematical
Physics, Computer Science (Theory & Methods), Engineering (Multidisciplinary), Mechan-
ics.

For each of these categories, the proportion, the citation mean, relative citation, and the
median have been reported in Table A.7. The variations already observed in Table A.6 are
also visible here. Note that even in the three main categories, namely Mathematics, Applied
mathematics, and Statistics and Probability, the means and the medians are clearly not
equal, even if the variations are less pronounced than with categories further apart.

A.5 Investigations with decision trees

In the previous section, we studied the relationships between the number of citations and
some individual predictors extracted from the WoS database. In several figures and tables,
it clearly appears that the citations are related to these predictors. The problems left are
how much information on the citations can be explained by the predictors and what is the
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2005 2010 2015
% mean rel. c. med. % mean rel. c. med. % mean rel. c. med.

Math. app. 45.1 9.5 0.9 4 50.5 8.2 1.0 4 41.8 5.6 1.1 3
Mathematics 41.5 8.6 0.9 5 40.7 7.2 0.8 4 46.3 3.9 0.7 2
Sta. & Prob. 16.2 12.8 1.3 7 15.4 10.5 1.2 6 15.8 6.5 1.2 3
Math., Int. App. 14.9 11.8 1.2 6 12.3 11.5 1.4 6 16.4 7.2 1.4 3
C. S., Int. App. 7.1 10.6 1.1 4 6.9 8.4 1.0 3 3.7 7.9 1.5 4
Math. Phys. 6.3 10.9 1.1 5 5.2 8.5 1.0 3 3.7 7.7 1.4 4
C. S., T. & M. 5.0 9.6 1.0 4 5.0 6.8 0.8 3 3.8 4.7 0.9 2
Eng., Mult. 5.1 9.2 0.9 3 6.3 7.6 0.9 2 6.8 7.0 1.3 3
Mechanics 4.5 9.4 0.9 4 5.3 10.6 1.2 5 3.7 10.9 2.1 7

Table A.7: Citations for the main categories

relative importance among the predictors. To answer these questions, we use decision trees,
as thoroughly introduced in [11].

A.5.1 Tree classifier

A tree classifier is a procedure that divides a data set into two or more subsets based on some
predetermined criteria. Let us explain this on a simple example. Suppose that the response
contains two classes: Yes and No, which are represented by red and blue dots in Figure
A.11. Suppose also that there are two predictors X1 and X2 attached to each item. The
tree classifier can identify the best split value of one of the predictors such that the purity
in each subset is enhanced. After the splitting into two subsets, further splits will be carried
out independently for each subset. The classifier goes through all the possible values of the
predictors at each split. It stops splitting when a stopping rule is met. During the process,
each subset is called a node, the nodes without further subsets are called leaves. When a
node contains more than one class (which means that the node is not pure), the class with
the majority of items is selected as the label class of the node. The misclassification rate of
the node corresponds to the ratio of items in the node belonging to a class which is not the
label class.

Figure A.11: Tree-structured classifier

There exist several criteria for the choice of the split value, but all of them are based
on an impurity function which has to be minimized. More precisely, let H denote such an
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impurity function, and let us consider a split of the content of one node t into two subsets,
called tleft and tright. Then one sets

Qt =
Ntleft

Nt

H(tleft) +
Ntright

Nt

H(tright), (A.14)

where Nt, Ntleft , and Ntright denote the number of items in the note t and in the two subsets.
The function H is also evaluated on the items of tleft and tright. By considering all possible
splits, we choose the one which generates the minimal value for Qt.

For the impurity function, a few canonical choices are possible. In order to define them,
consider now that the response contains J classes, and assume that in a node t the items are
distributed following a distribution {pj}Jj=1, with pj the proportion of items in the class j.
Then, some canonical impurity functions are

Gini index : H(t) =
∑
j

pj(1− pj)

Entropy : H(t) = −
∑
j

pj ln(pj)

Misclassification : H(t) = 1−max
j

(pj)

In the subsequent investigations, we shall use the impurity function provided by the Gini
index only.

By building a tree with the above process, we often end up with a very big tree: many
leaves and a big height, which corresponds to the maximal distance between the first node
(root) and the farthest leaf. Such a big tree leads often to an overfitting phenomenon. Thus,
a pruning procedure need to be done to reserve the effective tree structure and to remove
the risk of overfitting. One can perform the pruning procedure by removing successively
the leaves with the least contribution of decreasing the impurity, namely the weakest leaves.
There exists several ways for implementing such a process, let us therefore only sketch the
main ideas of the cost complexity pruning. To each node t, one associates a real coefficient
αeff (t) which takes into account the misclassification of the node, the misclassification of
the subtree having t as a root, and the number of leaves of the subtree, see for example
[77]. Then, starting from 0 and by slowly increasing a parameter α, one prunes successively
the nodes with αeff smaller than α. Obviously, an additional stopping rule has to be fixed,
otherwise the process would end up in keeping only the root, which means the original set of
items without any subdivision. Again, several options exist. Before presenting one of these
stopping rules, let us mention some outcomes of the pruning operation.

Consider that α is slowly increasing from 0, and that the pruning is taking place. It is
clear that the number of leaves and the height of the successive trees are decreasing. On the
other hand, the total misclassification of the tree tends to increase. Equivalently, the train
accuracy (ratio of correctly classified items in the leaves) tends to decrease as α increases. It
is thus natural to look for a suitable value of α, leading neither to a too small tree which is
not able to do effective classification, nor to a too large tree with high risk of overfitting.
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Such a suitable α can be obtained by testing the tree on new items. Indeed, consider a
new item having all necessary predictors and labeled by one class. According to the value
of its predictors, the item can be placed in a unique leaf with a labeled class. It may be
correctly or incorrectly classified. By repeating this operation on several new items, one
get a test accuracy, the ratio of correctly classified new items. Again, if one considers the
family of trees obtained by pruning according to the parameter α, one observes that the test
accuracy starts by increasing with α, before decreasing again. Since we are interested in the
highest test accuracy, we then select the optimal value αopt of the parameter α corresponding
to the maximum test accuracy. A typical example of the train accuracy and the test accuracy
as a function of α is provided in Figure A.12. It is then this αopt which is used for stopping
the pruning process.

Figure A.12: Train accuracy and test accuracy, as a function of α

A.5.2 The experiment

In this section, we implement these processes and describe the precise experiment we have
performed. The analyze tool package is provided by Scikit-learn (Supervised Learning /
Decision Trees), see [71]. The experiments will be done independently on the three datasets
of 2005, 2010, and 2015. For the predictors, we shall use those introduced and discussed in
Section A.3. However, for the predictor jif , some items miss this information because they do
not have an associated JIF. We have then decided to perform the experiment independently
on two lists of items. The first list contains all items, as shown in (A.5), and the predictor
jif will not be used. The second list contains items with a JIF, as shown in (A.12), and the
predictor jif is included in the list of all possible predictors.

For the six lists of items mentioned above, we define a family of classes, namely a partition
of the set {0, 1, 2, . . . , 63}, corresponding to the J classes mentioned in the previous section.
The partitions should be relevant and understandable and they should also be chosen ac-
cordingly to the specificity of the different lists of items. For example, the following partition
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will be used for the first list of items of 2005:

weak: [0, 5], normal: [6, 12], good: [13, 20], very good: [21, 40], excellent: [41, 63].
(A.15)

Let us now describe the precise construction of the tree classifier, and the pruning process.

(i) Fix one dataset among the six presented in (A.5) and in (A.12),

(ii) Fix one relevant partition for the dataset, as for example the one presented in (A.15).
The number of classes defined by this partition is denoted by J and corresponds to the
number of intervals,

(iii) Label the items in the dataset with one of the J classes, according to their citations,
and select randomly X items for each class. For our experiment we have chosen X equal
to 80% of the items of the smallest class (which has always been the one corresponding
to the highest citations class). One ends up with JX items equally distributed among
the J classes,

(iv) Divide randomly these JX items into K folds {Λk}Kk=1 of equal size, for K ∈ N, and
fix k = 1,

(v) The fold Λk is called the test set, and the others K− 1 folds are combined in a training
set. A classification tree is build with the training set,

(vi) On the classification tree, the pruning process introduced in the previous section is
performed: the computation of αeff (t) for each node t, the increase of α, the pruning
of the weakest node (i.e. the ones with the smallest αeff ), the computation of the train
accuracy and of the test accuracy. These accuracies, denoted respectively by ak(α) and
bk(α), are computed for each α (but are piecewise constant) and are stored. The value
k is updated by setting k := k + 1,

(vii) The steps (v) and (vi) are repeated as long as k ≤ K,

(viii) For each α, the average a(α) and average b(α) are computed by averaging the K values
and αopt is deduced by generating a graph like Figure A.12 with the average values
(K-fold cross-validation),

(ix) The optimal tree is built based on the JX items and pruned with the αopt found at the
previous step.

Note that in our experiments we have used the parameter K = 5. Once this optimal
tree is built, the relative importance of the predictors can be obtained. Indeed, the relative
importance of the predictors can be computed by looking at the weighted impurity decrease
at each node. By using the notation already introduced in (A.14), this quantity is provided
for each node t by the formula

Nt

N

(
H(t)−

Ntleft

Nt

H(tleft)−
Ntright

Nt

H(tright)
)
,
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where N is the total number of items in the tree. Clearly, if a node is a leaf, there is no
contribution to be subtracted. The above quantity provides an information about the decay
in the impurity provided by a subdivision. Then, since each subdivision is associated with
a single predictor, this decay in the impurity is gained by the corresponding predictor. By
summing up the decay in impurity due to all subdivisions associated with one predictor, one
obtains the total decay in impurity due to this predictor. The predictors are finally ordered
by the decreasing order of their total decay in impurity.

In Table A.8, we provide various information obtained with the tree classifier, namely the
relative importance of the predictors, as mentioned above, but also the number of leaves and
the height of each tree. The average train accuracy and the test accuracy are also reported.
These two values correspond to the two accuracies obtained at αopt after cross-validation.

2005 2010 2015
JIF No Yes No Yes No Yes

classes

[0,5]
[6,12]
[13,20]
[21,40]
[41,63]

[0,6]
[7,14]
[15,23]
[24,45]
[46,63]

[0,4]
[5,10]
[11,20]
[21,63]

[0,5]
[6,12]
[13,24]
[25,63]

[0,3]
[4,9]
[10,63]

[0,4]
[5,11]
[12,63]

# leaves 24 15 27 29 49 25
height 7 6 8 6 10 6
av. train acc. (%) 32.9 34.5 39.3 40 51.3 51.5
av. test acc. (%) 31.3 30 38.4 37.8 50.4 50.7
references 1 2 1 2 1 2
authors 4 3 3 3 4
countries 3
institutes 2
pages 4 3 4 4 2
jif 1 1 1
research area 3 (ENG.) 2 (ENG.) 4 (Bio. & A. M.)

Experiment (%) 39 40 44 43 53 53

Table A.8: Experiments with tree classifier

Let us now make several comments about Table A.8.
(i) First of all, the number of classes and their precise values is partially arbitrary, and was
determined after several preliminary tests. Note that we considered less classes for the recent
data since the citations accumulate with time.
(ii) The size of the resulting tree is determined by the computation of αopt as explained above.
We were surprised that these trees are relatively small, with a number of leaves between 15
and 49, and a height of maximum 10. On the other hand, the 6 trees contained between
4’800 and 20’000 items.
(iii) About the accuracies: since the J classes are of equal size, a random guess for an item
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of the test set would give a correct prediction with a probability of 20% for the data of 2005,
25% for the data of 2010, and 33.3% for the data of 2015. Thus, the difference between these
values, and the test accuracy can be understood as the gain in prediction due to the tree.
However, since the train set and the test set do not follow the initial distributions of items, a
different computation has to be performed for an arbitrary set of items in the initial dataset
(see below).
(iv) The ranking of the predictors for each of the 6 trees is reported in the table, but only
for the first 4. In turns out that only 7 predictors among 10 appear in the ranking. For
publications which appear in a jif ted journal, this predictor is always chosen first, and the
number of references used by the authors is chosen as the second predictor. On the other
hand, for the larger set of publications, with no use of the predictor jif, it appears that the
number of references is always chosen as the first predictor, while the second one is different
in the three experiments. Note that the importance of the predictor references was already
anticipated in Section A.4 just by looking at the sharp contrasts of Figure A.8.
(v) An additional experiment has been performed with the items not used for the construction
of the trees. Indeed, the 20% of the smallest class was still available, and 20% of the untouched
items in the other classes could be selected randomly. We apply the classification tree on
the new test set which is made up of these items. The last row of Table A.8 provides the
percentage of the correctly assigned classes. Clearly, these accuracies do not coincided with
the train accuracy or the test accuracy, since the corresponding items do not share the same
distributions. The interpretation is the following: given an arbitrary item from one of the
three years, and based on the constructed trees, our ability to predict correctly the citation
class corresponds to the last row of the table. Not surprisingly, this accuracy increases as the
number of classes decreases, but the knowledge of the JIF for the item does not improve our
prediction. Even if these numbers show the limitations of our approach, it also provides a
heart-warming message: the content of a publication still matters for the citations, and any
bibliometric analysis won’t be able to predict this.

A.6 About countries

In this last section we provide some statistics related to countries. Indeed, by selecting the
items according to the location of the corresponding research institutes, some additional
information can be extracted.

In Table A.9 we provide a comparison between the main 25 countries (according to their
number of publications). These statistics can be thought as a kind of relative performance.
More precisely, Table A.9 contains the following entries:

% : Percentage of the publications having at least one author from the given country,

h.c.: (highly cited) Percentage of publications having more than 63 citations with at least
one author from the given country,

mn: (mean) Citation mean for the publications having less than 64 citations and at least
one authors from the given country,
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md: (median) Median for the publications having less than 64 citations and at least one
authors from the given country,

r.c.: (relative citation) Ratio of mn by the citation mean over all publications with less than
64 citations.

The following abbreviations for the countries is used: US = USA, CN = People’s R. China,
FR = France, DE = Germany, IT = Italy, UK = England, CA = Canada, JP = Japan, ES
= Spain, RU = Russia, AU = Australia, KR = South Korea, PL = Poland, IL = Israel, NL
= Netherlands, IN = India, BR = Brazil, TW = Taiwan, BE = Belgium, CH = Switzerland,
SE = Sweden, GR = Greece, CZ = Czech Republic, AT = Austria, TR = Turkey.

2005 2010 2015
% h.c. mn md r.c. % h.c. mn md r.c. % h.c. mn md r.c.

US 27.7 40.6 12.0 7 1.2 24.0 37.3 10.1 5 1.2 20.7 32.9 6.5 3 1.2
CN 10.8 12.8 11.0 6 1.1 17.1 17.2 8.6 4 1.0 19.1 29.5 6.5 3 1.2
FR 8.0 9.3 12.0 7 1.2 7.7 7.1 10.2 6 1.2 7.0 7.4 6.0 3 1.1
DE 7.3 8.7 11.2 6 1.1 7.3 7.7 8.9 5 1.0 6.9 10.6 6.1 3 1.2
IT 5.5 4.8 9.9 5 1.0 5.1 4.2 9.4 5 1.1 5.1 7.4 6.6 4 1.3
UK 5.3 7.8 12.2 7 1.2 5.0 8.1 10.7 6 1.3 4.7 11.1 6.6 4 1.2
CA 4.6 5.0 11.2 6 1.1 4.2 5.2 9.8 5 1.2 3.5 3.7 5.7 3 1.1
JP 4.4 2.5 8.5 4 0.8 4.3 2.1 6.4 3 0.8 3.7 2.7 4.2 2 0.8
ES 4.1 3.4 11.0 6 1.1 4.3 4.2 8.9 5 1.1 3.7 3.2 5.8 3 1.1
RU 4.1 1.1 6.2 2 0.6 3.8 0.9 5.6 2 0.7 4.8 1.4 3.8 2 0.7
AU 2.9 3.3 9.7 4 1.0 2.1 3.1 9.7 5 1.1 2.5 4.0 6.1 3 1.2
KR 2.2 1.5 9.1 4 0.9 2.0 1.9 8.3 4 1.0 2.5 2.6 4.9 2 0.9
PL 2.1 0.7 8.7 4 0.9 2.2 0.8 6.9 3 0.8 2.6 1.8 4.7 2 0.9
IL 1.9 1.9 11.2 6 1.1 1.7 1.6 8.7 5 1.0 1.4 1.4 5.5 3 1.0
NL 1.8 2.1 11.6 6 1.2 1.7 2.3 9.8 6 1.2 1.3 1.6 6.6 3 1.3
IN 1.7 1.3 10.4 6 1.0 2.3 2.3 9.1 4 1.1 4.1 2.7 4.5 2 0.8
BR 1.6 1.3 10.3 6 1.0 1.8 1.6 8.7 5 1.0 2.1 0.8 5.0 3 1.0
TW 1.6 1.6 12.4 7 1.2 1.8 1.5 9.3 5 1.1 1.4 0.6 4.8 2 0.9
BE 1.4 1.9 11.5 6 1.1 1.3 1.3 9.8 5 1.2 1.1 1.9 6.9 4 1.3
CH 1.3 2.1 12.9 7 1.3 1.2 2.4 10.8 6 1.3 1.4 2.7 7.9 5 1.5
SE 1.2 1.2 10.8 6 1.1 1.1 0.8 7.9 4 0.9 1.1 1.6 5.4 2 1.0
GR 1.2 1.0 9.1 4 0.9 0.9 0.6 8.5 5 1.0 0.7 1.3 5.6 2 1.1
CZ 1.2 0.6 7.5 2 0.7 1.3 0.6 6.9 3 0.8 1.5 0.0 3.8 1 0.7
AT 1.1 1.5 10.4 5 1.0 1.2 1.8 9.7 5 1.1 1.2 2.3 6.1 3 1.1
TR 1.1 0.9 10.5 6 1.0 1.7 2.0 9.9 5 1.2 2.0 1.4 5.0 2 0.9

Table A.9: Statistics for the main countries

Let us make some comments about this table. First of all, columns % and h.c. sum up
to more than 100 (when all countries are considered) because publications involving authors
from different countries are counted more than once. Note also that it is the first (and last)
time that outliers (namely publications with more than 63 citations) are used: Columns
h.c. provides the information on how much the countries are involved in the highly cited
publications. The columns with r.c. can be thought as a comparison between the performance
of these countries: it is rather striking that the relative citations take values between 0.6 and
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1.5. Some countries are clearly performing better than others. On the other hand, these
data do not present a clear pattern over the 3 years considered, and the relative citations are
quite stable. Only a few countries have a small variation of their relative citations over the 3
years, but the evolution is not so noticeable. Most probably, a period of 10 years is not long
enough to really assert a real change of performance for a given country.

The next table, Table A.10, is more related to the importance of international collabora-
tions for each country. By international collaboration we mean a publication with one author
from the given country, and at least one author from another country. More precisely, Table
A.10 contains the following entries, again for the main 25 countries:

% : Percentage of publications of a given country which are international collaborations,

mn: (mean) Citation mean for the publications of a given country which are international
collaborations and which have less than 64 citations,

md: (median) Median for the publications of a given country which are international col-
laborations and which have less than 64 citations

rcc: (relative citation for international collaborations) Ratio of mn by the citation mean
over all publications of this country with less than 64 citations,

rc2: (relative citations for international collaborations / 2 authors) Ratio of mn by the
citation mean over all publications of this country with less than 64 citations and at
least 2 authors.

Note that we have added the column rc2 in order to eliminate a bias. Indeed, an interna-
tional collaboration involves at least 2 authors (with a few exceptions already mentioned in
Section A.4.2) while arbitrary publications from any country also include many single author
productions. Since these publications are usually less cited (see Table A.1), we eliminate this
bias by considering only publications with at least 2 authors.

By looking at this table, the interest of international collaborations is quite clear. All
the relative citations appearing in rcc or rc2 are bigger or equal to 1. In fact, some coun-
tries benefit a lot from international collaborations, having a factor rc2 taking a maximum
value of 1.5. On the other hand, for some countries, publications which are international
collaborations do not receive substantially more citations than publications involving only
researchers in this country. As a rule and not surprisingly, authors in a country with a low
relative citation in Table A.9 benefit more from international collaborations than authors
from a country with a high relative citation. Fortunately, no researcher from any country is
penalized by establishing international collaboration: such an unfortunate situation would
end up with a rcc or rc2 smaller than 1 in Table A.10.

In Table A.11, we provide more specific information about bi-national collaboration. More
precisely, since our dataset is large enough, collaboration between two countries can be
extracted. It corresponds to publications involving at least one author in a country X,
and one author in a country Y . Additional authors and/or countries can also be involved.
This number can then be divided either by the total number of international collaborations
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2005 2010 2015
% mn md rcc rc2 % mn md rcc rc2 % mn md rcc rc2

US 30.1 14.4 9 1.2 1.0 34.9 12.3 7 1.2 1.0 42.4 7.5 4 1.2 1.0
CN 23.7 14.1 9 1.3 1.2 21.2 12.4 7 1.4 1.4 25.5 8.6 5 1.3 1.3
FR 38.7 14.4 9 1.2 1.1 48.1 11.5 7 1.1 1.0 54.7 6.6 4 1.1 1.0
DE 40.1 13.6 9 1.2 1.1 47.6 10.8 7 1.2 1.1 51.8 7.1 4 1.2 1.0
IT 33.7 13.6 8 1.4 1.2 42.4 11.5 7 1.2 1.1 49.5 7.8 5 1.2 1.1
UK 46.8 14.3 9 1.2 1.0 54.0 12.3 7 1.1 1.0 61.5 7.3 4 1.1 1.0
CA 51.2 13.6 8 1.2 1.1 53.7 11.4 7 1.2 1.1 60.8 6.4 3 1.1 1.0
JP 23.3 12.3 8 1.4 1.2 30.3 8.7 5 1.4 1.2 33.3 6.3 3 1.5 1.3
ES 36.0 14.2 10 1.3 1.2 46.2 10.5 6 1.2 1.1 54.4 6.4 4 1.1 1.1
RU 29.3 11.5 7 1.8 1.5 30.3 9.0 5 1.6 1.2 25.0 5.9 3 1.5 1.3
AU 40.9 14.2 9 1.5 1.4 56.8 11.2 6 1.2 1.1 57.7 8.2 4 1.3 1.2
KR 31.5 13.0 7 1.4 1.3 41.9 10.7 6 1.3 1.2 40.7 6.8 3 1.4 1.2
PL 32.0 11.9 8 1.4 1.2 34.1 9.3 5 1.3 1.2 38.1 6.1 3 1.3 1.1
IL 46.9 13.2 8 1.2 1.0 54.0 10.4 6.5 1.2 1.1 58.1 6.7 4 1.2 1.1
NL 42.6 13.9 9 1.2 1.1 54.9 11.5 7 1.2 1.1 63.7 6.8 3 1.0 1.0
IN 31.0 12.6 7 1.2 1.2 31.3 10.7 6 1.2 1.1 26.4 6.3 3 1.4 1.3
BR 39.8 13.4 9 1.3 1.2 44.1 10.2 6 1.2 1.1 43.8 6.6 4 1.3 1.3
TW 29.5 13.6 9 1.1 1.1 35.4 10.8 7 1.2 1.1 40.8 6.4 4 1.3 1.3
BE 45.1 14.5 10 1.3 1.1 57.4 11.1 6 1.1 1.1 66.9 7.1 4 1.0 1.0
CH 49.2 17.4 13 1.3 1.2 61.7 11.8 8 1.1 1.0 68.6 8.6 5 1.1 1.0
SE 44.6 12.8 7 1.2 1.1 50.9 9.8 5 1.2 1.0 62.2 6.3 3 1.2 1.1
GR 27.5 14.7 10 1.6 1.5 45.3 9.9 5 1.2 1.1 54.9 7.4 3 1.3 1.2
CZ 37.1 12.5 7 1.7 1.4 44.8 9.8 6 1.4 1.2 39.4 6.2 3 1.6 1.5
AT 40.9 14.4 10 1.4 1.2 59.5 10.7 6 1.1 1.0 62.2 6.7 4 1.1 1.0
TR 21.9 11.8 8 1.1 1.1 25.6 11.7 6 1.2 1.1 33.5 6.9 4 1.4 1.3

Table A.10: Statistics about international collaborations for the main countries

of the country X, or by the total number of international collaborations of the country Y .
In the first case, it gives for the country X the relative importance of collaborations with
the country Y , while in the second case it gives for the country Y the relative importance
of collaborations with the country X. Table A.11 contains this information for 16 countries
and for the three years. These three information are provided in each cell, with 2005 on the
top, 2010 in the middle, and 2015 on the bottom.

A general trend is visible in this table: For all countries except for China, the ratios of
collaborations with the USA slightly decrease. On the other hand, for all countries, USA
included, the ratios of collaborations with China increase, even if for most of them, col-
laborations with the USA are still in much higher numbers compared to the collaborations
with China. In that respect, Australia is quite an exception, with a higher percentage of
collaborations with China than with the USA. Note that for the USA, the ratio of collab-
orations with China has doubled during a period of 10 years (from 11.3% to 22.2 %). For
other bi-national collaborations, involving a few % of all international collaborations for both
countries, a general trend is not clearly visible, and fluctuations are more important (also
because the numbers of publications involved are smaller).
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US CN FR DE IT UK CA JP ES RU AU KR PL IL NL IN

US
36.7
37.5
40.1

23.9
21.5
18.8

24.2
22.8
22.7

21.6
22.2
19.9

27.9
22.3
25

37
34.6
32.7

27.2
18.5
22.3

25.1
16.6
15.6

20.7
19.3
18.8

26.9
19.7
19.5

46.9
38.6
33.6

29
20.5
15

54.5
46.3
49.2

28.3
23.6
24.2

36.1
23
22.2

CN
11.3
16.1
22.2

3.7
5.6
6.7

5.3
5.3
6.8

3.3
3.5
3.1

6.4
7.7
10.3

13.5
13
18.7

13.1
18
16.7

2.2
2.9
4.2

0.4
3.1
4.1

15.2
22
26.8

15.3
21.6
19.6

2.3
2.3
5.4

2.4
2.1
6

1.7
3.6
5.6

4.1
6.5
8.3

FR
8.8
9.5
8.2

4.5
5.7
5.3

8.2
10
9.9

16.8
17.9
15.2

7.2
8.8
9.6

8
9.3
10

6.1
6.7
9.5

12.5
12.4
11.7

13.8
13.8
11.4

3.2
7.7
4.8

3.6
5.1
4.2

12.7
10.2
10.8

8
10.1
8.7

7.9
7.1
9.9

7
5.1
4.9

DE
8.4
9.4
9.3

6.1
5.1
5

7.8
9.3
9.2

11.5
11.7
12.1

10.1
11.7
11.6

5.4
5.5
6.2

13.1
8.5
8.8

5.8
8.2
7.5

14.6
12.6
12.2

6.1
8.8
6.1

3.9
4
5.9

13.7
14.7
12.9

7.3
10.1
10

13.6
19.7
19

11.9
12.5
5.3

IT
4.8
5.7
5.7

2.4
2.1
1.6

10.2
10.4
10

7.3
7.3
8.5

5.4
5.8
8.8

2.6
3.7
6.7

4.8
4.4
5

6.4
10.1
8.9

10.1
6.7
8.5

2.7
4.8
3.5

1.6
1.5
2.8

6
5.4
6.9

3.2
4
3.9

5.7
5.7
7.2

4.1
2.9
3

UK
8.2
7.1
8.2

6.1
5.7
6.1

5.8
6.4
7.3

8.5
9.1
9.3

7.2
7.3
10.1

5.5
6.6
7.6

3.7
7.3
6.1

5.5
6.2
6.7

10.7
8.4
8.3

15
11.8
12.8

5.5
4.5
3.7

4.7
6
6.8

4.4
6.4
7.4

5.7
11.2
10.2

7.8
4.5
4.1

CA
10.4
9.3
8

12.4
8.1
8.3

6.1
5.7
5.6

4.3
3.6
3.7

3.2
3.8
5.7

5.2
5.5
5.6

6.1
5.5
4.4

4.6
4.3
3.2

5.7
3.8
2.6

7.8
8.2
5.8

6.2
4.5
3.6

3.3
3.9
5

7.3
9.9
6

7.1
3.3
4.8

7.8
5.6
5.3

JP
3.3
2.9
3.2

5.2
6.5
4.3

2
2.4
3.1

4.6
3.2
3.1

2.6
2.7
2.5

1.5
3.5
2.6

2.6
3.2
2.5

1.6
1.9
1.9

2
4.1
2.6

2.5
2
2.7

11.1
9.8
8.8

5
4.4
4.2

2.2
0.5
1

3.1
3.3
1.4

4.1
4.3
2.1

ES
4.5
3.9
3.6

1.3
1.6
1.8

6.1
6.6
6.2

3
4.7
4.3

5.1
9.2
7.2

3.3
4.5
4.7

2.9
3.7
3

2.4
2.8
3

4.4
3.2
4

3.4
3.5
3.4

2
2.1
3.5

7
7.1
6

2.4
3.5
1.9

3.7
5.5
6.1

2.9
4.7
3.8

RU
3
2.6
2.6

0.2
1
1

5.4
4.2
3.6

6
4.1
4.1

6.6
3.5
4.1

5.2
3.5
3.5

2.9
1.9
1.5

2.4
3.5
2.5

3.6
1.9
2.4

2.8
2
2.4

1.3
0.6
2.6

3.3
5
3

5.1
3.3
4.8

4.2
2.6
2.2

1.2
0.4
1

AU
3.8
2.7
3.1

6.9
7.1
7.8

1.2
2.4
1.8

2.4
3
2.4

1.7
2.6
2

7.1
5.1
6.3

3.9
4.2
3.8

2.8
1.8
3

2.7
2.1
2.4

2.8
2.1
2.8

2
1.5
2.1

1.7
1.7
2

2.2
1.9
1

2.3
1.4
3.7

1.6
1.6
2.7

KR
3.8
3.9
3.9

4.1
5
4.1

0.8
1.2
1.1

0.9
1
1.7

0.6
0.6
1.1

1.5
1.4
1.3

1.8
1.7
1.7

7.4
6.3
7.1

0.9
0.9
1.7

0.7
0.4
2.2

1.1
1.1
1.5

0
1
0.9

0.5
0.3
2.1

0.8
0.5
0.5

5.3
5.4
6.2

PL
2.3
1.9
1.7

0.6
0.5
1.1

2.7
2.1
2.8

3.1
3.2
3.6

2.1
1.9
2.7

1.3
1.7
2.3

0.9
1.3
2.3

3.3
2.6
3.3

3.1
2.7
2.9

1.8
3.4
2.5

0.9
1.1
1.4

0
0.9
0.9

1
1.7
2.7

1.1
1.9
1.8

0
0.9
2.9

IL
6
5
4.5

0.9
0.5
1

2.4
2.5
1.8

2.3
2.7
2.3

1.6
1.7
1.2

1.6
2.2
2.1

2.8
4
2.2

2
0.4
0.6

1.5
1.6
0.8

3.9
2.7
3.2

1.7
1.5
0.6

0.7
0.4
1.7

1.3
2.1
2.2

4.2
3.6
1.6

1.6
0.7
1.7

NL
2.7
2.6
2.3

0.5
0.9
0.9

2
1.8
2.1

3.7
5.2
4.3

2.4
2.4
2.3

1.8
3.8
2.9

2.4
1.3
1.8

2.4
2.3
0.9

1.9
2.6
2.4

2.8
2.1
1.5

1.5
1.1
2.1

1
0.6
0.4

1.3
2.3
1.4

3.6
3.7
1.6

1.2
1.6
0.7

IN
2.3
1.9
2.7

0.9
1.3
1.8

1.2
1
1.4

2.2
2.6
1.6

1.2
1
1.3

1.7
1.2
1.5

1.8
1.8
2.7

2.2
2.3
1.8

1
1.7
2

0.6
0.3
0.9

0.8
1
2

4.2
4.5
6.6

0
0.8
3.1

1
0.5
2.3

0.8
1.2
1

Table A.11: Bilateral collaborations: For a country in x-coordinate, the numbers correspond
to the % of its international collaborations with a country of the y-coordinate, for 2005, 2010,
and 2015
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A.7 Conclusion

One of the unexpected outcomes of these investigations is the rapid increase of the number
of publications, but also of the significant change of many predictors over a period of 10
years only. Indeed, if we gather some results obtained in (A.1), (A.2), (A.3), (A.4), (A.8),
(A.9), (A.11), and in Table A.5, we obtain Table A.12. If we summarize in one sentence the
content of this table, it would be that the publications in mathematics are becoming more
collaborative, more international, longer, with more references and keywords, more freely
accessible, and especially more numerous.

2005 2010 2015
# publications 45’035 62’945 76’788
# authors 2.10 2.23 2.39
# institutes 1.57 1.74 1.90
# countries 1.23 1.28 1.32
# references 19 21.7 24.5
# pages 15.5 15.5 16.9
# keywords 4.38 4.48 4.58
open access (%) 16.4 21.2 32.3

Table A.12: The increase of many predictors

For the citations, it is quite natural that the Journal Impact Factor plays an important
role. In that sense, its appearance as the most important predictor (whenever available) is
not surprising. For more general publications, the importance of the number of references
is also not so surprising: quite often, a paper with numerous references corresponds to a
paper which is well nested in the research landscape, and as a consequence it can be cited by
several authors. The importance of other predictors is less clear, and no conclusion can be
established for them. At this level, the real content of a paper certainly matters more than
any bibliometric predictor.

The content of Section A.6 seems new. From the point of view of the authors, these
statistics are maybe not so relevant, since it is difficult to move to another country, just
to get more citations. On the other hand, at the level of the scientific policy of countries,
knowing the relative ranking of countries with respect to several macro statistics is certainly
important. In this direction, our results are only partial and preliminary, but we hope that
it can trigger additional investigations in the future.
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[89] Verma, R., Lobos-Ossandón, V., Merigó, J.M., Cancino, C., and Sienz, J., Forty years
of applied mathematical modelling: A bibliometric study, Applied Mathematical Mod-
elling, 89, 1177–1197, 2021.

[90] Wagner, C., Whetsell, T., and Leydesdorff, L., Growth of international collaboration
in science: revisiting six specialties, Scientometrics, 110, 1633–1652, 2017.

[91] Wang, T., Peng, Y., Zhang, B., et al., Move a Tropical Cyclone with 4D-Var and Vortex
Dynamical Initialization in WRF Model, Journal of Tropical Meteorology 27(3), 191–
200, 2021.

https://stopcovid19.metro.tokyo.lg.jp
https://stopcovid19.metro.tokyo.lg.jp
https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
https://toyokeizai.net/sp/visual/tko/covid19/en.html
https://toyokeizai.net/sp/visual/tko/covid19/en.html


106 BIBLIOGRAPHY

[92] Wang, L., Thijs, B., and Glänzel, W., Characteristics of international collaboration in
sport sciences publications and its influence on citation impact, Scientometrics, 105,
843–862, 2015

[93] Wang, M., Zhang, J., Jiao, S., and Zhang, T., Evaluating the impact of citations of
articles based on knowledge flow patterns hidden in the citations, PLoS ONE, 14(11),
e0225276, 2019.

[94] Whitaker, J. S. and Hamill, T. M., Ensemble data assimilation without perturbed ob-
servations, Mon. Wea. Rev. 130, 1913–1924, 2002.

[95] World Health Organization: https://www.who.int/.

[96] Yang, S.-C., Baker, D., Li, H., Cordes, K., Huff, M., Nagpal, G., Okereke, E., Villafañe,
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