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2.1 Equivalence of the classical Hörmander condition and the L1 mean variant 17
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Abstract

It is well-known that if a singular integral operator is bounded on L2 and its kernel

satisfies the so-called Hörmander condition, then the operator is also bounded from L1

to L1,∞ and on Lp for any 1 < p < 2, due to L. Hörmander (1960). In this thesis, we

discuss the Lp boundedness under two weaker variants of the Hörmander condition. The

first one is an Lq mean version introduced by L. Grafakos and C. B. Stockdale (2019). We

show that the same boundedness as Hörmander (1960) holds under the L1 mean version,

which improves the result of Grafakos and Stockdale (2019) significantly. Moreover, the

Lq mean version is actually equivalent to the original one. The other variant is a BMO

version introduced by the author (2022). In this case, the Lp boundedness (1 < p < 2)

still holds, though the L1 → L1,∞ boundedness is no longer true in general. Also, we give

a sufficient condition and an equivalent characterization of the boundness of maximal

singular integral operators under the BMO Hörmander condition, which are analogous

to the results under the classical Hörmander condition by L. Grafakos (2003) and G.

Hu, Da. Yang and Do. Yang (2007), respectively.



1 Introduction

The study of singular integral operators is one of the central topics in harmonic anal-

ysis. Roughly speaking, it is an integral operator with a kernel which has a singularity

along the diagonal, such as the Hilbert transform H (for one-dimension) and the Riesz

transform Rj (for d (≥ 2)-dimension, j = 1, 2, . . . , d):

Hf(x) := lim
ε→+0

1

π

∫
|x−y|>ε

f(y)

x− y
dy, (1.1)

Rjf(x) := lim
ε→+0

cd

∫
|x−y|>ε

(xj − yj)f(y)

|x− y|d+1
dy, cd :=

Γ((d+ 1)/2)

π(d+1)/2
.

The Hilbert transform was introduced to study harmonic functions in the early 1900s.

Let f ∈ S(R) be real-valued and u be its harmonic extension in the upper half-plane

H := { (x, y) ∈ R2 : y > 0 }, that is, u be a solution of the Laplace equation∆u(x, y) = 0, (x, y) ∈ H

u(x, 0) = f(x), x ∈ R.

Then, the harmonic extension u can be written by the convolution of f and the Poisson

kernel Py;

Py(x) :=
1

π

y

x2 + y2
,

u(x, y) = Py ∗ f(x) =
∫
z∈R

Py(x− z)f(z) dz.

One can see that {Py}y>0 is an approximation to the identity as y → +0, that is,

lim
y→+0

Py(x) = δ(x)

in the sense of tempered distributions (where δ is the Dirac delta), it follows that

lim
y→+0

u(x, y) = f(x).

Since u is a real-valued harmonic function on H, there exists v : H → R such that u+ iv

is holomorphic on H (which is unique up to a constant). The function v is called the

harmonic conjugate of u. The harmonic conjugate v is given by the convolution of f

and the conjugate Poisson kernel Qy;

Qy(x) :=
1

π

x

x2 + y2
,

v(x, y) = Qy ∗ f(x) =
∫
z∈R

Qy(x− z)f(z) dz,

and the Hilbert transform of f ∈ S(R) can be defined by

Hf(x) := lim
y→+0

Qy ∗ f(x). (1.2)
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We can show that

lim
y→+0

Qy(x) =
1

π
p.v.

1

x

in the sense of tempered distributions, where p.v. 1
x is defined by

〈p.v. 1
x
, φ〉 := lim

ε→+0

∫
|x|>ε

φ(x)

x
dx,

hence (1.2) coincides with (1.1).

Let us consider the Lp(R) boundedness of the Hilbert transform H. When p = 2, we

can establish the L2(R) boundedness ofH by using the Plancherel theorem, since we have

Ĥf(ξ) = −i sgn(ξ)f̂(ξ) (where f̂ denotes the Fourier transform of f). On the other hand,

if p = 1 or p = ∞, then H is not bounded on Lp(R). This can be proved by computing

HχI , where χI is the indicator function of I := [0, 1]. Since χI ∈ L1(R) ∩ L∞(R) and

HχI(x) =
1

π
log

∣∣∣∣ x

x− 1

∣∣∣∣ 6∈ L1(R) ∪ L∞(R),

H is not bounded on L1(R) nor L∞(R). Therefore, the problem is in the case p 6= 1, 2,∞.

[Riesz, 1928] proved that H is actually bounded on Lp(R) for any 1 < p < ∞. As a

consequence, we obtain the Lp summability of the Fourier series:

f(x) = lim
N→∞

N∑
j=−N

f̂(j)e2πijx

holds for any f ∈ Lp([0, 1]) in the sense of Lp([0, 1]), 1 < p <∞. This is not true in the

case p = 1,∞. Also, for the Hilbert transform, the explicit value of the operator norm

is known:

‖H‖Lp→Lp =

 tan(π/2p), 1 < p ≤ 2,

cot(π/2p), 2 ≤ p <∞.
(1.3)

(1.3) is originally observed by [Gokhberg and Krupnik, 1968] for the special case p = 2j

(j ∈ Z≥0) and [Pichorides, 1972] proved for all 1 < p <∞.

As we saw above, the Hilbert transform of L1(R) function does not have to be in

L1(R). A natural question is:

Find a proper space V ⊃ L1(R) such that H is bounded from L1(R) to V . (1.4)

Find a proper space W ⊂ L1(R) such that H is bounded from W to L1(R). (1.5)

At first we consider (1.4). Let f ∈ S(R) be non-negative and satisfy supp f ⊂ I = [0, 1].
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Then, for any x > 2 , we have

Hf(x) = lim
ε→+0

1

π

∫
|x−y|>ε

f(y)

x− y
dy

=
1

π

∫
y∈I

f(y)

x− y
dy

≥ 1

π

∫
y∈I

f(y)

x
dy

=
1

πx
‖f‖L1 .

This observation leads us to take V = L1,∞(R); the weak L1 space, since 1/x ∈ L1,∞(R)\
L1(R). Next we consider (1.5). Assume that f ∈ S(R) satisfies Hf ∈ L1(R). Then, since
the Fourier transform maps L1(R) to C0(R), Ĥf(ξ) = −i sgn(ξ)f̂(ξ) must be continuous,

that is,

f̂(0) =

∫
x∈R

f(x) dx = 0.

This observation leads us to take W = H1(R); the Hardy space, since H1(R) ⊂ { f ∈
L1(R) :

∫
R f = 0 }. The L1(R) → L1,∞(R) and H1(R) → L1(R) boundednesses of

the Hilbert transform are essentially proved by [Kolmogorov, 1925] and [Riesz, 1923],

respectively (they worked on the torus T := R/2πZ instead of the line R).
Now we discuss the boundedness of general singular integral operators. The following

results are the earliest and most basic ones established by Calderón and Zygmund in the

1950s.

Theorem 1.A ([Calderón and Zygmund, 1952, Lemma 2, Theorem 1]). Let T be a

singular integral operator with a kernel K. Suppose that T is bounded on L2(Rd) and K

satisfies the gradient condition

|∇yK(x, y)| ≤ C

|x− y|d+1
(1.6)

for some constant C > 0. Then T is bounded from L1(Rd) to L1,∞(Rd) and on Lp(Rd)

for any 1 < p < 2 with bounds

‖T‖L1→L1,∞ ≲d ‖T‖L2→L2 + C,

‖T‖Lp→Lp ≲d (p− 1)−1(‖T‖L2→L2 + C).

Theorem 1.B ([Calderon and Zygmund, 1956, Theorem 1]). Let Ω ∈ L1(Sd−1) satisfy∫
Sd−1 Ω = 0 and T be a singular integral operator defined by

Tf(x) = lim
ε→+0

∫
|x−y|>ε

Ω((x− y)/|x− y|)
|x− y|d

f(y) dy,

where Sd−1 := {x ∈ Rd : |x| = 1 }. Then we have following.

3



• If Ω is odd, then T is bounded on Lp(Rd) for any 1 < p <∞ with a bound

‖T‖Lp→Lp ≲d max {(p− 1)−1, p}‖Ω‖L1(Sd−1).

• If Ω is even and Ω ∈ Lq(Sd−1) for some q > 1, then T is bounded on Lp(Rd) for

any 1 < p <∞ with a bound

‖T‖Lp→Lp ≲d max {(p− 1)−2, p2}‖Ω‖Lq(Sd−1).

Results such as Theorem 1.A are called ‘smooth kernel theory’ because they require

some smoothness conditions. On the other hand, results such as Theorem 1.B are

called ‘rough kernel theory’ since they require some integrability conditions instead of

smoothness. Our aim of this paper is to extend smooth kernel theory.

After [Calderón and Zygmund, 1952], [Hörmander, 1960] proved that the conclusion

of Theorem 1.A still holds when the gradient condition (1.6) is replaced by weaker

assumption

[K]H∞ := sup
Q⊂Rd

sup
y∈Q

∫
x∈Rd\2Q

|K(x, y)−K(x, c(Q))| dx <∞, (1.7)

where the supremum supQ⊂Rd is taken over all cubes Q ⊂ Rd, c(Q) is the center of Q,

2Q denotes the cube with the same center as Q and whose side-length is twice as long.

Nowadays (1.7) is called the Hörmander condition. To prove the L1(Rd) → L1,∞(Rd)

and Lp(Rd) → Lp(Rd) boundedness, [Hörmander, 1960] used two important lemmas: the

Marcinkiewicz interpolation ([Marcinkiewicz, 1939]) and the Calderón–Zygmund decom-

position ([Hörmander, 1960, Lemma 2.2]). The Marcinkiwicz interpolation states that

if a (sub)linear operator is bounded from L1(Rd) to L1,∞(Rd) and on L2(Rd), then it

is also bounded on Lp(Rd) for any 1 < p < 2. Since we have assumed the L2(Rd)

boundedness, it is enough to show the L1(Rd) → L1,∞(Rd) boundedness. Here we use

the Calderón–Zygmund decomposition, that is, roughly speaking, any f ∈ L1(Rd) can

be written as the sum of a ‘good part’ g and ‘bad parts’ {bj}j : f = g + b = g +
∑

j bj .

Furthermore, [Fefferman and Stein, 1972] proved the H1(Rd) → L1(Rd) boundedness

under the same assumption as that of [Hörmander, 1960]. The essence of their proof

is to establish the duality (H1(Rd))∗ = BMO(Rd) and reducing the H1(Rd) → L1(Rd)

boundedness to the L∞(Rd) → BMO(Rd) boundedness (which was already proved by

[Spanne, 1966]). After that, [Coifman and Weiss, 1977] gave another proof using the

atomic decomposition of f ∈ H1(Rd).

Theorem 1.C ([Hörmander, 1960, Theorem 2.1, Theorem 2.2], [Fefferman and Stein,

1972, Corollary 1], [Coifman and Weiss, 1977, (1.24)]). Let T be a singular integral

operator with a kernel K. Suppose that T is bounded on L2(Rd) and K satisfies the

Hörmander condition

[K]H∞ = sup
Q⊂Rd

sup
y∈Q

∫
x∈Rd\2Q

|K(x, y)−K(x, c(Q))| dx <∞.
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Then T is bounded from L1(Rd) to L1,∞(Rd), from H1(Rd) to L1(Rd), and on Lp(Rd)

for any 1 < p < 2 with bounds

‖T‖L1→L1,∞ ≲d ‖T‖L2→L2 + [K]H∞ ,

‖T‖H1→L1 ≲d ‖T‖L2→L2 + [K]H∞ ,

‖T‖Lp→Lp ≲d (p− 1)−1(‖T‖L2→L2 + [K]H∞).

Recently, [Grafakos and Stockdale, 2019] introduced an Lq mean variant of the Hörmander

condition in order to establish a “limited-range” version of Theorem 1.C.

Theorem 1.D ([Grafakos and Stockdale, 2019]). Let T be a singular integral operator

with a kernel K. Suppose that T is bounded on L2(Rd) and K satisfies the Lq mean

Hörmander condition

[K]Hq
:= sup

Q⊂Rd

(
1

|Q|

∫
y∈Q

(∫
x∈Rd\2Q

|K(x, y)−K(x, c(Q))| dx

)q

dy

)1/q

<∞ (1.9)

for some 2 < q < ∞. Then T is bounded from Lq′(Rd) to Lq′,∞(Rd) and on Lp(Rd) for

any q′ < p < 2 with bounds

‖T‖Lq′→Lq′,∞ ≲d ‖T‖L2→L2 + [K]Hq ,

‖T‖Lp→Lp ≲d (p− q′)−1/q′(‖T‖L2→L2 + [K]Hq),

where q′ denotes the Hölder conjugate of q, that is, q′ = q
q−1 .

By the Hölder inequality, if 1 < q1 < q2 <∞, then [K]H1 ≤ [K]Hq1
≤ [K]Hq2

≤ [K]H∞ .

Hence, in comparison with Theorem 1.C, Theorem 1.D requires a weaker smoothness

condition and implies the Lp(Rd) boundedness for p in ‘limited-range’; q′ < p < 2.

However, two important problems remain open.

Problem 1. Existence of K such that [K]Hq <∞ and [K]H∞ = ∞.

Problem 2. Existence of T such that satisfying the assumption of Theorem 1.D and

not bounded on Lq′(Rd) (or, at least, not bounded from L1(Rd) to L1,∞(Rd)).

[Suzuki, 2021] established the following Theorem I and disproved Problem 2.

Theorem I ([Suzuki, 2021, Theorem 1, Theorem 3]). Let T be a singular integral op-

erator with a kernel K. Suppose that T is bounded on L2(Rd) and K satisfies the L1

mean Hörmander condition

[K]H1 = sup
Q⊂Rd

1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

|K(x, y)−K(x, c(Q))| dx dy <∞. (1.10)

Then T is bounded from L1(Rd) to L1,∞(Rd), from H1(Rd) to L1(Rd), and on Lp(Rd)

for any 1 < p < 2 with bounds

‖T‖L1→L1,∞ ≲d ‖T‖L2→L2 + [K]H1 ,

‖T‖H1→L1 ≲d ‖T‖L2→L2 + [K]H1 ,

‖T‖Lp→Lp ≲d (p− 1)−1(‖T‖L2→L2 + [K]H1).
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The proof of Theorem I in [Suzuki, 2021] uses an idea inspired by the proof of [Feffer-

man, 1970, THEOREM 2’], that is, construct certain functions {b̃j}j approximating bad

parts {bj}j and decompose f ∈ L1(Rd) as f = g+
∑

j(bj − b̃j)+
∑

j b̃j (see Section 7 for

details). An analogous method gives an sufficient condition of the L2(Rd) boundedness

of convolution type singular integral operators satisfying the L1 mean Hörmander con-

dition (Theorem 7.1). Very recently, [Wang, 2022] extended Theorem I to multilinear

singular integral operators.

On the other hand, in fact, Theorem I is a consequence of the following Theorem II

proved in [Suzuki, 2022].

Theorem II ([Suzuki, 2022, Theorem 1]). The inequality

[K]H1 ≤ [K]H∞ ≤ 2d+3[K]H1

holds for any K ∈ L1
loc((Rd × Rd) \∆), where ∆ denotes the diagonal set { (x, x) : x ∈

Rd }.

Theorem II disproves Problem 1, that is, the Lq mean variant (1.9) coincides with

the classical one (1.7). Therefore, it is natural to ask an actual generalization of the

Hörmander condition. We introduce a new variant of the Hörmander condition:

[K]H∗ := sup
Q⊂Rd

1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(x, z) dz

∣∣∣∣ dx dy <∞, (1.11)

which is a natural generalization of the L1 mean Hörmander condition (1.10) in terms of

BMO (Bounded Mean Oscillation). Recall that a function f ∈ L1
loc(Rd) is in BMO(Rd)

if

‖f‖BMO := sup
Q⊂Rd

1

|Q|

∫
y∈Q

∣∣∣∣f(y)− 1

|Q|

∫
z∈Q

f(z) dz

∣∣∣∣ dy <∞.

We call (1.11) a BMO Hörmander condition. Note that we can easily see [K]H∗ ≤
2[K]H∞ (see Section 2.2), which is analogous to ‖f‖BMO ≤ 2‖f‖L∞ . We will show the

following:

Theorem III. Let T be a singular integral operator with a kernel K. Suppose that T

is bounded on L2(Rd) and K satisfies the BMO Hörmander condition (1.11). Then T

is bounded from H1(Rd) to L1(Rd), from Lp(Rd) to Lp,∞(Rd) and on Lp(Rd) for any

1 < p < 2 with bounds

‖T‖Lp→Lp,∞ ≲d (p− 1)−1(‖T‖L2→L2 + [K]H∗),

‖T‖H1→L1 ≲d ‖T‖L2→L2 + [K]H∗ ,

‖T‖Lp→Lp ≲d (p− 1)−1(‖T‖L2→L2 + [K]H∗).

On the other hand, T is not bounded from L1(Rd) to L1,∞(Rd) in general. In particular,

the BMO Hörmander condition is strictly weaker than the classical one.
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Moreover, Theorem III still holds in the non-doubling setting with an appropriate

modification. Let µ be a Radon measure on Rd which satisfies the polynomial growth

condition: there exists a constant Cµ > 0 and 0 < n ≤ d such that

µ(Q(c, ℓ)) ≤ Cµℓ
n

for any cubes Q(c, ℓ). These measures are usually called ‘non-doubling measures’. In

this case, the following generalization of Theorem 1.C is known.

Theorem 1.E ([Nazarov et al., 1998, Theorem 6.1], [Tolsa, 2001a, Theorem 4.2]). Let T

be a singular integral operator with a kernel K. Suppose that T is bounded on L2(Rd, µ)

and K satisfies the Hörmander condition with respect to µ:

[K]H∞ := sup
Q⊂Rd

sup
y∈Q

∫
x∈Rd\2Q

|K(x, y)−K(x, c(Q))| dµ(x) <∞,

and |K(x, y)| ≤ A|x − y|−n for some positive constant A > 0. Then T is bounded

from L1(Rd, µ) to L1,∞(Rd, µ), from H1
atb(Rd, µ) to L1(Rd, µ) and on Lp(Rd, µ) for any

1 < p < 2 with bounds

‖T‖L1(µ)→L1,∞(µ) ≲µ ‖T‖L2(µ)→L2(µ) + [K]H∗ +A,

‖T‖H1
atb(µ)→L1(µ) ≲µ ‖T‖L2→L2 + [K]H∗ +A,

‖T‖Lp(µ)→Lp(µ) ≲µ (p− 1)−1(‖T‖L2→L2 + [K]H∗ +A),

where H1
atb(Rd, µ) is the atomic block Hardy space introduced by [Tolsa, 2001a].

The L1(Rd, µ) → L1,∞(Rd, µ) and H1
atb(Rd, µ) → L1(Rd, µ) boundednesses were

proved by [Nazarov et al., 1998] and [Tolsa, 2001a], respectively. Also [Tolsa, 2001b]

gave another proof of the L1(Rd, µ) → L1,∞(Rd, µ) boundedness. We will give a natural

generalization of Theorem 1.E in the sense of Theorem III (see Theorem 3.4 in Section

3.2 for details). To establish the theorem, we modify the BMO Hörmander condition

into an RBMO version, where RBMO is the Regularized Bounded Mean Oscillation

space, which is also introduced by [Tolsa, 2001a].

Next, we discuss maximal singular integral operators. For a singular integral operator

T , its truncated operator Tε (ε > 0) and maximal operator T∗ are defined by

Tεf(x) := T (fχRd\Q(x,ε))(x) =

∫
y∈Rd\Q(x,ε)

K(x, y)f(y) dy,

T∗f(x) := sup
ε>0

|Tεf(x)| = sup
ε>0

∣∣∣∣∣
∫
y∈Rd\Q(x,ε)

K(x, y)f(y) dy

∣∣∣∣∣.
As [Cotlar, 1955, Proposition 1] pointed out, the boundedness of T∗ can be used to obtain

almost everywhere convergence of limε→+0 Tεf(x). For example, the L2(R) → L2(R)
boundedness of the maximal Hilbert transform H∗ implies that

Hf(x) = lim
ε→+0

1

π

∫
|x−y|>ε

f(y)

x− y
dy

7



holds for almost every x ∈ R and any f ∈ L2(R). Note that this is not trivial for

f ∈ L2(R) \ S(R).
On the Lp(Rd) boundedness of maximal singular operators, the following Cotlar in-

equality is well-known.

Theorem 1.F ([Cotlar, 1955, Theorem V]). Let T be a singular integral operator with

a kernel K and T∗ be its maximal operator. Suppose that T is bounded on L2(Rd) and

K satisfies

max {|∇xK(x, y)|, |∇yK(x, y)|} ≤ C

|x− y|d+1
(1.12)

for some constant C > 0. Then the pointwise inequality

T∗f(x) ≲d (‖T‖L2→L2 + C)(MTf(x) +Mf(x)) (1.13)

holds, where M denotes the Hardy–Littlewood maximal operator.

Note that operators satisfying the assumption of Theorem 1.F are bounded on Lp(Rd)

for any 1 < p < ∞, which follows from Theorem 1.A (use the duality argument for

2 < p < ∞). Therefore, combining with the Lp(Rd) boundedness of M , (1.13) implies

the Lp(Rd) boundedness of T∗ for any 1 < p <∞. In fact, we can obtain the L1(Rd) →
L1,∞(Rd) boundedness of T∗ under the assumption of Theorem 1.F (see [Duoandikoetxea,

2000, Theorem 5.14, Lemma 5.15] for details).

Now we replace the gradient condition (1.12) by the Hörmander condition. In this

case, the pointwise inequality (1.13) is no longer true in general. On the other hand, we

can still obtain the boundedness of T∗.

Theorem 1.G ([Rivière, 1971, Theorem (5.1)], [Grafakos, 2003, THEOREM 1], [Hu

et al., 2007, Theorem 1.3]). Let T be a singular integral operator with a kernel K and

T∗ be its maximal operator. Suppose that T is bounded on L2(Rd) and K satisfies

[K]H∞ = sup
Q⊂Rd

sup
y∈Q

∫
x∈Rd\2Q

|K(x, y)−K(x, c(Q))| dx <∞,

[⊤K]H∞ = sup
Q⊂Rd

sup
x∈Q

∫
y∈Rd\2Q

|K(x, y)−K(c(Q), y)| dy <∞,

A := sup
Q⊂Rd

∫
y∈2Q\Q

|K(c(Q), y)| dy <∞.

Then T∗ is bounded from L1(Rd) to L1,∞(Rd), from L∞
c (Rd) to BMO(Rd) and on Lp(Rd)

for any 1 < p <∞ with bounds

‖T∗‖L1→L1,∞ ≲d ‖T‖L2→L2 + [K]H∞ + [⊤K]H∞ +A,

‖T∗‖Lp→Lp ≲d max {(p− 1)−1, p}(‖T‖L2→L2 + [K]H∞ + [⊤K]H∞ +A),

‖T∗‖L∞
c →BMO ≲d ‖T‖L2→L2 + [K]H∞ + [⊤K]H∞ +A.
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The L1(Rd) → L1,∞(Rd) and Lp(Rd) → Lp(Rd) boundednesses of Theorem 1.G were

firstly proved for convolution type operators by [Rivière, 1971], and [Grafakos, 2003]

extended to non-convolution type. The L∞
c (Rd) → BMO(Rd) boundedness is due to [Hu

et al., 2007]. Also, [Hu et al., 2007] gave equivalent characterizations of the boundedness

of T∗ under the Hörmander condition.

Theorem 1.H ([Hu et al., 2007, Theorem 1.1]). Let T be a singular integral operator

with a kernel K and T∗ be its maximal operator. Suppose that K satisfies

[K]H∞ = sup
Q⊂Rd

sup
y∈Q

∫
x∈Rd\2Q

|K(x, y)−K(x, c(Q))| dx <∞,

[⊤K]H∞ = sup
Q⊂Rd

sup
x∈Q

∫
y∈Rd\2Q

|K(x, y)−K(c(Q), y)| dy <∞,

A = sup
Q⊂Rd

∫
y∈2Q\Q

|K(c(Q), y)| dy <∞.

Then the following are equivalent:

(1.14) T∗ is bounded from L2(Rd) to L2,∞(Rd).

(1.15) T∗ is bounded on Lp(Rd) for any 1 < p <∞.

(1.16) T∗ is bounded from L1(Rd) to L1,∞(Rd).

(1.17) There exist 0 < p <∞ and B > 0 such that ‖T∗f‖Lp,∞(Q) ≤ B|Q|1/p‖f‖L∞ holds

for any cubes Q ⊂ Rd and f ∈ L∞(Q).

(1.18) T∗ is bounded from L∞
c (Rd) to BMO(Rd).

In fact, [Hu et al., 2007] proved their results on so-called homogeneous metric measure

spaces, not only on the Euclidean space with the Lebesgue measure. Furthermore, [Liu

et al., 2012] and [Liu et al., 2014] established an analogy of [Hu et al., 2007] and [Grafakos,

2003] on non-homogeneous metric measure spaces, respectively.

It is obvious that one of the key of Theorem 1.G is the L1(Rd) → L1,∞(Rd) bounded-

ness. On the other hand, unlike Theorem 1.C, we cannot hope the H1(Rd) → L1(Rd)

boundedness of T∗, since the truncation ruins the cancellation of f ∈ H1(R). In fact,

the maximal Hilbert transform of f ∈ H1(R); H∗f , does not have to be in L1(R). This
can be shown by an analogous argument to that of (1.4).

Now a question arises: what happens if we assume the BMO Hörmander condition

instead of the classical one in Theorem 1.G? The main problem here is that we do not

have either of the L1(Rd) → L1,∞(Rd) boundedness or the H1(Rd) → L1(Rd) bound-

edness. We will show that analogies of Theorem 1.G and 1.H hold despite the lack of

endpoint estimates.
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Theorem IV. Let T be a singular integral operator with a kernel K and T∗ be its

maximal operator. Suppose that T is bounded on L2(Rd) and K satisfies

[K]H∗ = sup
Q⊂Rd

1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(x, z) dz

∣∣∣∣ dx dy <∞,

[⊤K]H∞ = sup
Q⊂Rd

sup
x∈Q

∫
y∈Rd\2Q

|K(x, y)−K(c(Q), y)| dy <∞,

A = sup
Q⊂Rd

∫
y∈2Q\Q

|K(c(Q), y)| dy <∞.

Then T∗ is bounded from L∞
c (Rd) to BMO(Rd) and on Lp(Rd) for any 1 < p <∞ with

bounds

‖T∗‖Lp→Lp ≲d max {(p− 1)−2, p}(‖T‖L2→L2 + [K]H∗ + [⊤K]H∞ +A),

‖T∗‖L∞
c →BMO ≲d ‖T‖L2→L2 + [K]H∗ + [⊤K]H∞ +A.

Remark 1. Note that we have ‖T∗‖Lp→Lp ≲d,T max {(p− 1)−2, p} instead of ‖T∗‖Lp→Lp ≲d,T

max {(p− 1)−1, p}. This difference affects, for example, the conclusion obtained using

the Yano extrapolation theorem (see [Yano, 1951]). Also, we assume [⊤K]H∞ < ∞ in-

stead of [⊤K]H∗ <∞ in order to establish a certain pointwise estimate (see Lemma 4.2).

As of this writing, it remains open that these issues can be removed or not.

Theorem V. Let T be a singular integral operator with a kernel K and T∗ be its maximal

operator. Suppose that K satisfies

[K]H∗ = sup
Q⊂Rd

1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(x, z) dz

∣∣∣∣ dx dy <∞,

[⊤K]H∗ = sup
Q⊂Rd

1

|Q|

∫
x∈Q

∫
y∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(z, y) dz

∣∣∣∣ dy dx <∞,

A = sup
Q⊂Rd

∫
y∈2Q\Q

|K(c(Q), y)| dy <∞.

Then the following are equivalent:

(1.14) T∗ is bounded from L2(Rd) to L2,∞(Rd).

(1.15) T∗ is bounded on Lp(Rd) for any 1 < p <∞.

(1.17) There exist 0 < p <∞ and B > 0 such that ‖T∗f‖Lp,∞(Q) ≤ B|Q|1/p‖f‖L∞ holds

for any cubes Q ⊂ Rd and f ∈ L∞(Q).

(1.18) T∗ is bounded from L∞
c (Rd) to BMO(Rd).

Finally, we remark that there exist numerous other variants of the Hörmander condi-

tion. Here are some of them:
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[Fefferman, 1970] Let 0 ≤ θ < 1 and Fθ : R>0 → R>0 be

Fθ(r) :=

 2r1−θ, 0 < r < 1,

2r, r ≥ 1.

[Fefferman, 1970, THEOREM 2’] states that if

K̂(ξ) ≲ (1 + |ξ|2)−θd/4, (1.19)

[K]H(θ) := sup
r>0

∫
|x|≥Fθ(r)

|K(x− y)−K(x)| dx <∞, (1.20)

then T : f 7→ K ∗ f is bounded from L1(Rd) to L1,∞(Rd) and on Lp(Rd) for any

1 < p < ∞. Also [Fefferman and Stein, 1972] proved the H1(Rd) → L1(Rd)

boundedness of T under the same assumption. Note that setting θ = 0 gives

Theorem 1.C (at least for convolution type operators). In the case 0 < θ < 1,

(1.19) is stronger than the L2(Rd) boundedness of T and (1.20) is weaker than

the classical Hörmander condition (1.7), hence these operators are called weakly-

strongly singular integral operators. A typical example is

K(x) :=
exp (i|x|−θ/(1−θ))

x
.

After that, [Miyachi, 1978] extended the result as follows: let m : Rd → R>0 be a

bounded function satisfying a certain property and Fm : R>0 → R>0 be

Fm(r) :=

(∫
Rd

(m(ξ))2(1 + r|ξ|)−2d dξ

)−1/d

.

[Miyachi, 1978, Theorem 3] states that if

K̂(ξ) ≲ m(ξ),

[K]H(m) := sup
r>0

∫
|x|≥Fm(r)

|K(x− y)−K(x)| dx <∞,

then T : f 7→ K ∗ f is bounded from L1(Rd) to L1,∞(Rd) and on Lp(Rd) for any

1 < p < ∞. In particular, setting m(ξ) = (1 + |ξ|2)−θd/4 (0 ≤ θ < 1) gives

[Fefferman, 1970, THEOREM 2’].

[Watson, 1990] Let 1 ≤ q <∞. [Watson, 1990, THEOREM 2] states that if

K̂(ξ) ≲ 1,

[K]Hq := sup
r>0

sup
|y|≤r

∞∑
j=1

(2jr)d/q
′

(∫
2jR<|x|≤2j+1R

|K(x− y)−K(x)|q dx

)1/q

<∞,

then T : f 7→ K ∗ f is bounded from L1(Rd, w dx) to L1,∞(Rd, w dx) and on

Lp(Rd, w dx) for any 1 < p < ∞, where w denotes a weight satisfying a certain
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condition (depending on p and q). By the Hölder inequality, if 1 < q1 < q2 < ∞,

then [K]H∞ = [K]H1 ≤ [K]Hq1 ≤ [K]Hq2 . Unlike the Lq mean Hörmander condi-

tion of [Grafakos and Stockdale, 2019], it is known that the reverse inequality does

not hold. Also see [Martell et al., 2005] for related results.

[Grubb and Moore, 1997] Let N ∈ Z≥1, {Aj}Nj=1 ⊂ L1
loc(Rd), {φj}Nj=1 ⊂ L∞(Rd)

and Φ: (Rd)N → R be

Φ(y1, y2, · · · , yN ) := (det (φi(yj))1≤i,j≤N )2.

Assume that Φ satisfies the reverse L∞ inequality, that is, there exists a constant

C > 0 such that

0 < ‖Φ‖L∞(Q) ≤
C

|Q|

∫
Q
Φ

for any cubes Q ⊂ (Rd)N centered at origin. [Grubb and Moore, 1997, THEOREM]

states that if

K̂(ξ) ≲ 1,

sup
r>0

sup
|y|≤r

∫
|x|≥2r

∣∣∣∣∣∣K(x− y)−
N∑
j=1

Aj(x)φj(y)

∣∣∣∣∣∣ dx <∞,

then T : f 7→ K ∗f is bounded from L1(Rd) to L1,∞(Rd) and on Lp(Rd) for any 1 <

p <∞, but not fromH1(Rd) to L1(Rd) in general (recall that our BMO Hörmander

condition implies the H1(Rd) → L1(Rd) boundedness but not L1(Rd) → L1,∞(Rd),

in contrast). Note that setting N = 1, A(x) = K(x), φ(x) = 1 gives Theorem 1.C.

A typical example is

K(x) :=
sinx

x

with N = 2 and

A1(x) =
sinx

x
, φ1(y) := cos y,

A2(x) =
cosx

x
, φ2(y) := − sin y.

This example shows that the H1(Rd) → L1(Rd) boundedness does not hold in

general under the assumption of [Grubb and Moore, 1997, THEOREM]. Also see

[Trujillo-González, 2003], [Zhang and Zhang, 2013], [Zhou, 2015] for related results.

See [Duong and McIntosh, 1999], [Gallo et al., 2019], [Lorente et al., 2005], [Lorente

et al., 2008] for further variants.

This doctoral thesis is organized as follows.

In Section 2.1, we prove Theorem II. Note that our argument works for any doubling

measures (see Remark 2). On the other hand, it remains open that the equivalence holds

with non-doubling measures or not.
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In Section 2.2, we prove two basic properties of BMO Hörmander condition, Proposi-

tion 2.2 and 2.3, which are analogous to that of the BMO norm. Proposition 2.3 plays

a crucial role in Section 4.

In Section 3.1, we prove Theorem III. Our argument is based on [Coifman and Weiss,

1977] (for H1(Rd) → L1(Rd) boundedness; Proposition 3.2) and [Grafakos and Stock-

dale, 2019] (for Lp(Rd) → Lp,∞(Rd) boundedness; Proposition 3.3). Note that Proposi-

tion 3.3 follows from Proposition 3.2 and the interpolation, but we give a direct proof of

Proposition 3.3 in order to show the usage of Proposition 2.3. The case of non-doubling

measures is discussed in Section 3.2.

In Section 4, we prove Theorem IV and a part of Theorem V. Since we cannot have

the H1(Rd) → L1(Rd) boundedness of T∗, we have to establish the Lp(Rd) → Lp,∞(Rd)

boundedness directly by using Proposition 2.3.

In Section 5, we prove the so-called sharp maximal inequality for median maximal

operators (Theorem 5.7), which is important in Section 6. Theorem 5.7 is a little refined

version of [Hu et al., 2007, Theorem 2.2] (see Remark 5). This improvement simplifies

our argument in Section 6.

In Section 6, we prove the rest part of Theorem V.

In Section 7, we give a direct proof of Theorem I. Also, we give a sufficient codition

for the L2(Rd) boundedness of convolution type singular integral operators under the L1

mean Hörmander condition, which is inspired by [Benedek et al., 1962, Theorem 3]. Note

that results in this section themselves are nothing new, since the L1 mean Hörmander

condition is equivalent to classical one.

Section 2, 3 are based on [Suzuki, 2022] and Section 7 is on [Suzuki, 2021].

Preliminaries

We will work on the d-dimensional Euclidean space Rd with the Lebesgue measure

(except Section 3.2). For x = (xj)1≤j≤d ∈ Rd, |x| is its Euclidean norm, that is,

|x| :=

 ∑
1≤j≤d

x2j

1/2

.

For E ⊂ Rd, |E| is the Lebesgue measure of E (if E is measurable). The indicator

function of E is denoted as χE ;

χE(x) :=

 1 if x ∈ E,

0 if x ∈ Rd \ E.

Throughout this paper, “a cube” always means a cube with sides parallel to the

coordinate axes. Also we write

|||x||| := max
1≤j≤d

|xj |.
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The cube with center c ∈ Rd and side-length 2ℓ > 0 is denoted by Q(c, ℓ). Conversely,

for a cube Q ⊂ Rd, c(Q) and 2ℓ(Q) denote the center of Q and the side-length of Q,

respectively. For Q = Q(c, ℓ) and α > 0, we define αQ := Q(c, αℓ).

For j ∈ Z,

Qj :=

{
d∏

k=1

[2−jak, 2
−j(ak + 1)) : (ak) ∈ Zd

}
is called dyadic cubes of the j-th generation. We write

Q :=
⋃
j

Qj .

For each j ∈ Z and x ∈ Rd, there exists an unique dyadic cube Qj(x) ∈ Qj such that

Qj(x) 3 x. Also, for each j ∈ Z and Q ∈ Qj , there exists an unique dyadic cube

Q̃ ∈ Qj−1 such that Q ⊂ Q̃. The dyadic cube Q̃ ∈ Qj−1 is called the parent of Q ∈ Qj .

For non-negative numbers A and B, A ≲X B means that there exists a positive

constant CX > 0 depending only on X such that A ≤ CXB. For example, |2Q| ≲d |Q|
for any cubes Q, since |2Q| = 2d|Q|.
Let E ⊂ Rd be measurable. The function spaces appearing in this paper are defined

as follows.

Lp(E): the space of measurable functions f : E → C such that

‖f‖Lp(E) :=


(∫

x∈E |f(x)|
p dx

)1/p
if 0 < p <∞,

ess supx∈E |f(x)| if p = ∞,

is finite.

L∞
c (Rd): the space of f ∈ L∞(Rd) which is compactly supported.

L∞
c,0(Rd): L∞

c (Rd) is the space of f ∈ L∞
c (Rd) whose integral is zero.

Lp,∞(E): the space of measurable functions f : E → C such that

‖f‖Lp,∞(E) :=

 supλ>0 (λ
p|{x ∈ E : |f(x)| > λ }|)1/p if 0 < p <∞,

‖f‖L∞(E) if p = ∞.,

is finite.

H1(Rd): a measurable function a : Rd → C is called an atom if there exists a cube Q

such that

supp a ⊂ Q, ‖a‖L∞ ≤ |Q|−1,

∫
Q
a = 0.
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H1(Rd) is the space of f ∈ L1(Rd) such that

f =
∑
j

λjaj in L1(Rd),
∑
j

|λj | <∞, λj ∈ C

and its norm is defined by

‖f‖H1 = inf {
∑
j

|λj | : f =
∑
j

λjaj in L1(Rd) }.

Note that there are several characterizations of H1(Rd). See [Grafakos, 2014b, Chapter

2]. On the H1(Rd) → L1(Rd) boundedness, the following fact is well-known:

Proposition 1.A. Let T be a bounded linear operator on L2(Rd). If there exists C > 0

such that

‖Ta‖L1 ≤ C

for any atoms a, then T is bounded from H1(Rd) to L1(Rd) with ‖T‖H1→L1 ≤ C.

Here we need to be careful. Let H1
fin(Rd) be the space of finite linear combinations

of atoms (which is a dense subspace of H1(Rd)). Then there exists a linear operator

T : H1
fin(Rd) → L1(Rd) such that

• There exists C > 0 such that ‖Ta‖L1 ≤ C for any atoms a.

• The operator T cannot be extended to a bounded operator T̃ : H1(Rd) → L1(Rd).

In this sense, the L2(Rd) boundedness in Proposition 1.A is essential. See [Meyer et al.,

1985, (5.6)], [Bownik, 2005], [Meda et al., 2008] for details.

BMO(Rd): the space of f ∈ L1
loc(Rd) such that

‖f‖BMO := sup
Q⊂Rd

1

|Q|

∫
y∈Q

∣∣∣∣f(y)− 1

|Q|

∫
Q
f(z) dz

∣∣∣∣ dy
is finite, where supremum supQ⊂Rd is taken over all cubes Q ⊂ Rd. Also, the sharp

maximal operator M# is defined by

M#f(x) := sup
Q∋x

1

|Q|

∫
y∈Q

∣∣∣∣f(y)− 1

|Q|

∫
Q
f(z) dz

∣∣∣∣ dy,
where supremum supQ∋x is taken over all cubes Q ⊂ Rd such that Q 3 x. It is obvious

that ‖M#f‖L∞ = ‖f‖BMO.

The Hardy–Littlewood maximal operatorM and its dyadic variantMdyadic are defined

by

Mf(x) := sup
Q∋x

1

|Q|

∫
y∈Q

|f(y)| dy,

Mdyadicf(x) := sup
j∈Z

1

|Qj(x)|

∫
y∈Qj(x)

|f(y)| dy
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for f ∈ L1
loc(Rd). It is well-known that M and Mdyadic are bounded from L1(Rd) to

L1,∞(Rd) and on Lp(Rd) for any 1 < p ≤ ∞. In particular, we have

‖M‖Lp→Lp,∞ ≤ 2 · 3d/p,
‖Mdyadic‖L1→L1,∞ ≤ 1.

See [Grafakos, 2014a, Exercise 2.1.4.(a), Exercise 2.1.12.(a)] for example.

Let T be a linear operator from L∞
c (Rd) to the space of all measurable functions. We

say T is a singular integral operator with a kernel K ∈ L1
loc((Rd × Rd) \∆) if

Tf(x) =

∫
y∈Rd

K(x, y)f(y) dy

for any f ∈ L∞
c (Rd) and x ∈ Rd \ supp f .
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2 Variants of the Hörmander condition: classical, Lq mean,

BMO

2.1 Equivalence of the classical Hörmander condition and the L1 mean

variant

In this section, we prove Theorem II. We begin with the following Lemma 2.1.

Lemma 2.1. The inequality

[K]H∞ ≤ 2 sup
Q⊂Rd

sup
y∈Q

∫
x∈Rd\3Q

|K(x, y)−K(x, c(Q))| dx

holds for any K ∈ L1
loc((Rd × Rd) \∆).

Proof of Lemma 2.1. Fix a cube Q0 = Q(c, 2ℓ) ⊂ Rd, y ∈ Q0 and write z := (y + c)/2.

Since Q(z, 3ℓ) ⊂ 2Q0 and c, y ∈ Q(z, ℓ), we have∫
x∈Rd\2Q0

|K(x, y)−K(x, c)| dx

≤
∫
x∈Rd\2Q0

|K(x, y)−K(x, z)| dx+

∫
x∈Rd\2Q0

|K(x, z)−K(x, c)| dx

≤
∫
x∈Rd\Q(z,3ℓ)

|K(x, y)−K(x, z)|dx+

∫
x∈Rd\Q(z,3ℓ)

|K(x, c)−K(x, z)| dx

≤ 2 sup
Q⊂Rd

sup
y∈Q

∫
x∈Rd\3Q

|K(x, y)−K(x, c(Q))| dx.

Proof of Theorem II. Let ℓ > 0 and c, y ∈ Rd satisfy |||y − c||| ≤ ℓ. We write

I(c, y) :=

∫
x∈Rd\Q(c,2ℓ)

|K(x, y)−K(x, c)| dx,

J(c, y) :=

∫
x∈Rd\Q(c,3ℓ)

|K(x, y)−K(x, c)| dx,

A := Q(c, ℓ) ∩Q(y, ℓ).

Since Q(y, 2ℓ) ∪Q(c, 2ℓ) ⊂ Q(c, 3ℓ), we obtain

J(c, y) =

∫
x∈Rd\Q(c,3ℓ)

|K(x, y)−K(x, c)| dx

≤
∫
x∈Rd\Q(c,3ℓ)

|K(x, y)−K(x, z)| dx+

∫
x∈Rd\Q(c,3ℓ)

|K(x, z)−K(x, c)| dx

≤
∫
x∈Rd\Q(y,2ℓ)

|K(x, z)−K(x, y)| dx+

∫
x∈Rd\Q(c,2ℓ)

|K(x, z)−K(x, c)| dx

= I(y, z) + I(c, z)

for any z ∈ A. Therefore, letting J = J(c, y), we have

A ⊂ { z ∈ A : I(c, z) ≥ J/2 } ∪ { z ∈ A : I(y, z) ≥ J/2 },
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which implies at least one of the following:

|A|/2 ≤ |{ z ∈ A : I(c, z) ≥ J/2 }|, (2.2)

|A|/2 ≤ |{ z ∈ A : I(y, z) ≥ J/2 }|. (2.3)

By the symmetry between c and y, we assume that (2.2) holds without loss of generality.

Now we have

|A|J/4 ≤
∫
z∈A : I(c,z)≥J/2

J/2 dz ≤
∫
z∈A

I(c, z) dz ≤
∫
z∈Q(c,ℓ)

I(c, z) dz ≤ |Q(c, ℓ)|[K]H1 .

Since

|Q(c, ℓ)| = 2d|Q((c+ y)/2, ℓ/2)| ≤ 2d|A|, (2.4)

we get J ≤ 2d+2[K]H1 . By Lemma 2.1, we conclude that the inequality

[K]H∞ ≤ 2d+3[K]H1

holds.

Remark 2. Let µ be a Radon measure on Rd which satisfies the doubling property:

there exists a constant Cµ > 0 such that

µ(Q(c, 3ℓ)) ≤ Cµµ(Q(c, ℓ))

for any cubes Q(c, ℓ), and consider [K]H∞ and [K]H1 with respect to µ:

[K]H∞ := sup
Q⊂Rd

sup
y∈Q

∫
x∈Rd\2Q

|K(x, y)−K(x, c(Q))| dµ(x),

[K]H1
:= sup

Q⊂Rd

1

µ(Q)

∫
y∈Q

∫
x∈Rd\2Q

|K(x, y)−K(x, c(Q))| dµ(x) dµ(y).

In this case, we can show that the inequality [K]H∞ ≤ 8Cµ[K]H1 holds by the same

argument. To see this, note that µ satisfies

µ(Q(c, ℓ)) ≤ µ(Q((c+ y)/2, 3ℓ/2)) ≤ Cµµ(B((c+ y)/2, ℓ/2)) ≤ Cµµ(A),

which can be a replacement of (2.4).

2.2 Basic properties of the BMO Hörmander condition

In this section, We will give two elemental properties of the BMO Hörmander condition

[K]H∗ = sup
Q⊂Rd

1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(x, z) dz

∣∣∣∣ dx dy <∞, (1.11)

which are analogous to the following well-known facts of the BMO norm.
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Proposition 2.A. If there exists a collection of numbers {mQ}Q such that

sup
Q⊂Rd

1

|Q|

∫
y∈Q

|f(y)−mQ| dy <∞,

then we have

‖f‖BMO ≤ 2 sup
Q⊂Rd

1

|Q|

∫
y∈Q

|f(y)−mQ| dy.

Proposition 2.B. Let E ⊂ Rd be a cube or E = Rd. We write

‖f‖BMOq(E) := sup
Q⊂E

(
1

|Q|

∫
y∈Q

∣∣∣∣f(y)− 1

|Q|

∫
z∈Q

f(z) dz

∣∣∣∣q dy)1/q

for 1 ≤ q < ∞. Then there exists a constant Cd > 0 depending only on dimension d

such that

‖f‖BMOq(E) ≤ qCd‖f‖BMO(E).

Proposition 2.A is quite elementary. On the other hand, Proposition 2.B is a much

deeper result proved by [John and Nirenberg, 1961]. We begin with an analogy to

Proposition 2.A.

Proposition 2.2. If there exists a collection of functions {mQ}Q such that

sup
Q⊂Rd

1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

|K(x, y)−mQ(x)| dx <∞,

then we have

[K]H∗ ≤ 2 sup
Q⊂Rd

1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

|K(x, y)−mQ(x)| dx dy.

Proof of Proposition 2.2.

1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(x, z) dz

∣∣∣∣ dx dy
≤ 1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

|K(x, y)−mQ(x)| dx dy

+
1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

∣∣∣∣mQ(x)−
1

|Q|

∫
z∈Q

K(x, z) dz

∣∣∣∣ dx dy
≤ 1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

|K(x, y)−mQ(x)| dx dy

+
1

|Q|

∫
y∈Q

(
1

|Q|

∫
z∈Q

∫
x∈Rd\2Q

|K(x, z)−mQ(x)| dx dz

)
dy

=
2

|Q|

∫
y∈Q

∫
x∈Rd\2Q

|K(x, y)−mQ(x)| dx dy.
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We write

[K]H∗∗ := inf
{mQ}Q

sup
Q⊂Rd

1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

|K(x, y)−mQ(x)| dx dy,

where the infimum inf{mQ}Q is taken over all collections of functions {mQ}Q. Then

Proposition 2.2 gives us [K]H∗ ≤ 2[K]H∗∗ . Also note that [K]H∗∗ ≤ [K]H1 and [K]H∗∗ ≤
[K]H∗ : consider mQ(x) = K(x, c(Q)) and mQ(x) = 1

|Q|
∫
z∈QK(x, z) dz, respectively.

Therefore, we have

[K]H∗∗ ≤ [K]H∗ ≤ 2[K]H∗∗ ≤ 2[K]H1 ≤ 2[K]H∞ ≤ 2d+4[K]H1 .

In particular, the classical Hörmander condition implies the BMO version. We will show

later that the converse is not true (see Proposition 3.1).

Next we show an analogy to Proposition 2.B.

Proposition 2.3. Let define

[K]H∗,q := sup
Q⊂Rd

(
1

|Q|

∫
y∈Q

(∫
x∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(x, z) dz

∣∣∣∣ dx
)q

dy

)1/q

for 1 < q < ∞. Then there exists a constant Cd > 0 depending only on dimension d

such that

[K]H∗,q ≤ qCd[K]H∗ .

Proof of Proposition 2.3. Since it is trivial when [K]H∗ = ∞, we assume [K]H∗ < ∞.

Then, for a cube P ∈ Rd,

KP (y) :=

(
K( · , y)− 1

|P |

∫
z∈P

K( · , z) dz
)
χRd\2P ( · )

defines a vector-valued function KP : P → L1(Rd). We rewrite [K]H∗,q using KP :

[K]H∗,q = sup
Q⊂Rd

(
1

|Q|

∫
y∈Q

(∫
x∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(x, z) dz

∣∣∣∣ dx
)q

dy

)1/q

= sup
Q⊂Rd

sup
P⊃Q

(
1

|Q|

∫
y∈Q

(∫
x∈Rd\2P

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(x, z) dz

∣∣∣∣ dx
)q

dy

)1/q

= sup
P⊂Rd

sup
Q⊂P

(
1

|Q|

∫
y∈Q

∥∥∥∥KP (y)−
1

|Q|

∫
z∈Q

KP (z) dz

∥∥∥∥q
L1

dy

)1/q

= sup
P⊂Rd

‖KP ‖BMOq(P,L1).

Now we use Proposition 2.B (extended to vector-valued), which implies

[K]H∗,q = sup
P⊂Rd

‖KP ‖BMOq(P,L1) ≤ sup
P⊂Rd

qCd‖KP ‖BMO(P,L1) = qCd[K]H∗ .
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3 Boundednesses of singular integral operators

3.1 Case I: the Lebesgue measure

In this section, we prove Theorem III. At first, we show that T does not have to be

bounded from L1(Rd) to L1,∞(Rd).

Proposition 3.1. Let φ ∈ (L1(Rd)∩L2(Rd)) \ {0}, ψ ∈ (L2(Rd)∩BMO(Rd)) \L∞(Rd)

and K(x, y) := φ(x)ψ(y). Then

T : f 7→
∫
Rd

K(·, y)f(y) dy is bounded on L2(Rd), (3.1)

[K]H∗ <∞, (3.2)

T is not bounded from L1(Rd) to L1,∞(Rd). (3.3)

Proof of Proposition 3.1.

(3.1) It is obvious that ‖T‖L2→L2 ≤ ‖φ‖L2‖ψ‖L2 .

(3.2) We have

1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(x, z) dz

∣∣∣∣ dx dy
=

(∫
x∈Rd\2Q

|φ(x)| dx
)
·
(

1

|Q|

∫
y∈Q

∣∣∣∣ψ(y)− 1

|Q|

∫
z∈Q

ψ(z) dz

∣∣∣∣ dy)
≤ ‖φ‖L1‖ψ‖BMO

for any cubes Q ⊂ Rd, thus [K]H∗ ≤ ‖φ‖L1‖ψ‖BMO.

(3.3) For each f ∈ L1(Rd) ∩ L2(Rd), Tf is given by

Tf(x) =

∫
y∈Rd

φ(x)ψ(y)f(y) dy = φ(x)

∫
y∈Rd

ψ(y)f(y) dy,

hence

‖Tf‖L1,∞ = ‖φ‖L1,∞

∣∣∣∣∫
y∈Rd

ψ(y)f(y) dy

∣∣∣∣.
Since ψ 6∈ L∞(Rd), there exists a sequence of measurable sets {Ej}j∈N such that

0 < |Ej | <∞, Ej ⊂ { y ∈ Rd : |ψ(y)| > j }.

Define fj ∈ L1(Rd) ∩ L2(Rd) by

fj :=
χEj

|Ej |
· ψ
|ψ|

,

then fj satisfies ‖fj‖L1 = 1 and∣∣∣∣∫
y∈Rd

ψ(y)fj(y) dy

∣∣∣∣ = 1

|Ej |

∫
y∈Ej

|ψ(y)| dy ≥ j

for each j, thus T is not bounded from L1(Rd) to L1,∞(Rd).
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For the Lp boundedness, we give two different proofs. The first one is via the inter-

polation result between H1(Rd) → L1(Rd) and L2(Rd) → L2(Rd) boundednesses.

Theorem 3.A ([Bui and Langesen, 2013, Corollary 3]). Let T be a linear operator which

is bounded from H1(Rd) to L1(Rd) and on L2(Rd). Then T is bounded on Lp(Rd) for

any 1 < p < 2 with a bound

‖T‖Lp→Lp ≲d (p− 1)−1‖T‖1−θ
H1→L1‖T‖θL2→L2 ,

where 1/p = 1− θ/2, 0 < θ < 1.

Remark 3. The Lp boundedness under the assumption of Theorem 3.A is originally

observed by [Fefferman and Stein, 1972, (5.1)], but with a much worse bound. The best

estimate known before [Bui and Langesen, 2013] is

‖T‖Lp→Lp ≲d 2(p−1)−1‖T‖1−θ
H1→L1‖T‖θL2→L2 ,

see [Grafakos, 2014b, Theorem 3.4.7]. Note that O((p − 1)−1) is sharp (consider the

Hilbert transform).

Proposition 3.2. Let T be a singular integral operator with a kernel K. Suppose that

T is bounded on L2(Rd) and K satisfies [K]H∗∗ < ∞. Then T is bounded from H1(Rd)

to L1(Rd) with a bound

‖T‖H1→L1 ≲d ‖T‖L2→L2 + [K]H∗∗ .

Proof of Proposition 3.2. The proof is almost the same as the proof under the classical

Hörmander condition by [Coifman and Weiss, 1977]. Let a ∈ H1(Rd) be an atom, that

is, there exists a cube such that

supp a ⊂ Q, ‖a‖L∞ ≤ |Q|−1,

∫
Q
a = 0.

Since T is bounded on L2(Rd), it is enough to show that

‖Ta‖L1 ≲d ‖T‖L2→L2 + [K]H∗∗ .

We decompose ‖Ta‖L1 as

‖Ta‖L1 = ‖Ta‖L1(2Q) + ‖Ta‖L1(Rd\2Q)

and prove

‖Ta‖L1(2Q) ≤ 2d/2‖T‖L2→L2 , (3.4)

‖Ta‖L1(Rd\2Q) ≤ [K]H∗∗ . (3.5)
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(3.4) By the Hölder inequality and the L2(Rd) boundedness of T , we have

‖Ta‖L1(2Q) ≤ |2Q|1/2‖Ta‖L2

≤ 2d/2|Q|1/2‖T‖L2→L2‖a‖L2(Q)

≤ 2d/2|Q|1/2‖T‖L2→L2 |Q|1/2‖a‖L∞

≤ 2d/2‖T‖L2→L2 .

(3.5) Since

‖Ta‖L1(Rd\2Q) =

∫
x∈Rd\2Q

∣∣∣∣∫
y∈Q

K(x, y)a(y) dy

∣∣∣∣ dx
=

∫
x∈Rd\2Q

∣∣∣∣∫
y∈Q

K(x, y)a(y) dy −mQ(x)

∫
y∈Q

a(y) dy

∣∣∣∣ dx
≤ ‖a‖L∞

∫
y∈Q

∫
x∈Rd\2Q

|K(x, y)−mQ(x)| dx dy

≤ 1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

|K(x, y)−mQ(x)| dx dy

for any collections {mQ}Q, we have ‖Ta‖L1(Rd\2Q) ≤ [K]H∗∗ .

Now we are going to give the second proof. We will show that T is bounded from

Lp(Rd) to Lp,∞(Rd) for any 1 < p < 2 and use the Marcinkiewicz interpolation theorem

([Marcinkiewicz, 1939]).

Proposition 3.3. Let T be a singular integral operator with a kernel K. Suppose that

T is bounded on L2(Rd) and K satisfies [K]H∗ < ∞. Then T is bounded from Lp(Rd)

to Lp,∞(Rd) for any 1 < p < 2 with a bound

‖T‖Lp→Lp,∞ ≲d (p− 1)−1(‖T‖L2→L2 + [K]H∗).

We use Proposition 2.3 and the following Lp variant of the Calderón–Zygmund de-

composition.

Proposition 3.A. Let 1 ≤ p <∞, f ∈ Lp(Rd) and λ > 0. Then there exists a pairwise

disjoint family of dyadic cubes {Qj}j satisfying

Ω :=
⋃
j

Qj = {x ∈ Rd :Mdyadic(|f |p)(x) > λp },

λp|Ω| ≤ ‖f‖pLp , (3.6)

|f(x)| ≤ λ a.e.x ∈ Rd \ Ω,

λp <
1

|Qj |

∫
Qj

|f |p ≤ 2dλp.
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Moreover, functions g, bj and b defined by

g := fχRd\Ω +
∑
j

χQj

|Q|

∫
Q
f,

bj :=

(
f − 1

|Q|

∫
Q
f

)
χQj ,

b :=
∑
j

bj ,

satisfy

‖g‖Lp ≤ ‖f‖Lp , ‖g‖L∞ ≤ 2d/pλ, (3.7)

supp bj ⊂ Qj ,

∫
Qj

bj = 0, |Qj |−1/p‖bj‖Lp ≤ 2d/p+1λ,
∑
j

‖bj‖pLp = ‖b‖pLp ≤ 2p‖f‖pLp .

(3.8)

Proof of Proposition 3.3. Fix 1 < p < 2, f ∈ L∞
c (Rd), λ, α > 0 and form the Lp-

Calderón–Zygmund decomposition of f at height α−1λ (we choose α later). Since

|{x ∈ Rd : |Tf(x)| > 2λ }| ≤ |{x ∈ Rd : |Tg(x)| > λ }|+ |{x ∈ Rd : |Tb(x)| > λ }|,

it suffices to estimate the following:

λp|{x ∈ Rd : |Tg(x)| > λ }|, (3.9)

λp|{x ∈ Rd : |Tb(x)| > λ }|. (3.10)

(3.9) Since 1 < p < 2, (3.7) implies ‖g‖2L2 ≤ 2(2−p)d/p(α−1λ)2−p‖f‖pLp . Therefore,

using the L2(Rd) boundedness of T , it follows that

λp|{x ∈ Rd : |Tg(x)| > λ }| = λ−(2−p)λ2|{x ∈ Rd : |Tg(x)| > λ }|
≤ λ−(2−p)‖Tg‖2L2

≤ λ−(2−p)‖T‖2L2→L2‖g‖2L2

= α−(2−p)2(2−p)d/p‖T‖2L2→L2‖f‖pLp .

(3.10) We write 2Ω :=
⋃

j 2Qj . Since

{x ∈ Rd : |Tb(x)| > λ } ⊂ 2Ω ∪ {x ∈ Rd \ 2Ω : |Tb(x)| > λ },

it follows that

λp|{x ∈ Rd : |Tb(x)| > λ }|
≤ λp|2Ω|+ λp|{x ∈ Rd \ 2Ω : |Tb(x)| > λ }|
≤

(3.6)
αp2d‖f‖pLp + λp−1‖Tb‖L1(Rd\2Ω).
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We estimate the second term by [K]H∗,p′ . For each j, we have

‖Tbj‖L1(Rd\2Qj)

=

∫
x∈Rd\2Qj

∣∣∣∣∣
∫
y∈Qj

K(x, y)bj(y) dy

∣∣∣∣∣ dx
=

∫
x∈Rd\2Qj

∣∣∣∣∣
∫
y∈Qj

K(x, y)bj(y) dy −
∫
y∈Qj

(
1

|Qj |

∫
z∈Qj

K(x, z) dz

)
bj(y) dy

∣∣∣∣∣ dx
≤
∫
y∈Qj

∫
x∈Rd\2Qj

∣∣∣∣∣K(x, y)− 1

|Qj |

∫
z∈Qj

K(x, z) dz

∣∣∣∣∣ dx |bj(y)| dy
≤

∫
y∈Qj

(∫
x∈Rd\2Qj

∣∣∣∣∣K(x, y)− 1

|Qj |

∫
z∈Qj

K(x, z) dz

∣∣∣∣∣ dx
)p′

dy

1/p′

‖bj‖Lp

≤ [K]H∗,p′ |Qj |1/p
′‖bj‖Lp .

Therefore, we obtain

‖Tb‖L1(Rd\2Ω) ≤
∑
j

‖Tbj‖L1(Rd\2Qj)

≤ [K]H∗,p′

∑
j

|Qj |1/p
′‖bj‖Lp

≤ [K]H∗,p′

(∑
j

|Qj |
)1/p′(∑

j

‖bj‖pLp

)1/p

≤
(3.6),(3.8)

[K]H∗,p′

(
‖f‖pLp

(α−1λ)p

)1/p′(
2p‖f‖pLp

)1/p
= 2[K]H∗,p′α

p−1λ−(p−1)‖f‖pLp .

Summing up the estimates of (3.9) and (3.10) above, we have

‖Tf‖pLp,∞ ≤ 2pαp−1(2(2−p)d/p‖T‖2L2→L2α
−1 + 2[K]H∗,p′ + 2dα)‖f‖pLp .

Now we choose

α = 2−(p−1)d/p‖T‖L2→L2

and conclude that

‖T‖pLp→Lp,∞ ≤ 2p+1(2−(p−1)d/p‖T‖L2→L2)p−1(2d/p‖T‖L2→L2 + [K]H∗,p′ )

≤ 2p+1(2d/p‖T‖L2→L2 + p′[K]H∗)
p.

3.2 Case II: non-doubling measures

In this section, we consider a Radon measure µ on Rd which satisfies the polynomial

growth condition: there exists a constant Cµ > 0 and 0 < n ≤ d such that

µ(Q(c, ℓ)) ≤ Cµℓ
n

25



for any cubes Q(c, ℓ). In this case, unlike in the case of the Lebesgue measure, the Hardy

space H1(Rd, µ) (see [Mateu et al., 2000]) is not suitable for the Calderón–Zygmund

theory since [Verdera, 2000] pointed out that the Cauchy integral is not bounded from

H1(Rd, µ) to L1(Rd, µ) in general. After that, [Tolsa, 2001a] developed the atomic block

Hardy space H1
atb(Rd, µ) and established the H1

atb(Rd, µ) → L1(Rd, µ) boundedness of

singular integral operators (Theorem 1.E). We will show that our BMO Hörmander

condition still works in this setting with a little modification.

Recall that H1
atb(Rd, µ) and RBMO(Rd, µ) is defined as follows.

The coefficient. Let (Q0, Q) be a pair of cubes such that Q0 ⊂ Q. The coefficient

δ(Q0, Q) is defined by

δ(Q0, Q) :=

∫
y∈2Q\Q0

1

|y − c(Q0)|n
dµ(y).

The atomic block. A function b ∈ L1
loc(Rd, µ) is called an atomic block if there exist

a cube Q, a pair of cubes {Qj}2j=1, functions {aj}2j=1 and numbers {λj}2j=1 such

that
supp b ⊂ Q, supp aj ⊂ Qj , Qj ⊂ Q,∫

Q
b dµ = 0,

‖aj‖L∞(µ) ≤ ((1 + δ(Qj , Q))µ(2Qj))
−1,

b = λ1a1 + λ2a2

and write

|b|H1
atb(µ)

:= |λ1|+ |λ2|.

The atomic block Hardy space. The atomic block Hardy space H1
atb(Rd, µ) is de-

fined by

H1
atb(Rd, µ) :=


∞∑
j=1

bj : bj are atomic blocks such that
∞∑
j=1

|bj |H1
atb(µ)

<∞


and its norm is

‖f‖H1
atb(µ)

:= inf


∞∑
j=1

|bj |H1
atb(µ)

: bj are atomic blocks such that f =
∞∑
j=1

bj

.
The regularized bounded mean oscillation space. A function f ∈ L1

loc(Rd, µ) is

in RBMO(Rd, µ) if there exists a collection of numbers {mQ}Q such that

sup
Q⊂Rd

1

µ(2Q)

∫
y∈Q

|f(y)−mQ| dµ(y) + sup
Q0⊂Q⊂Rd

1

1 + δ(Q0, Q)
|mQ0 −mQ| (3.13)

is finite, and its norm is defined by ‖f‖RBMO(µ) := inf{mQ}Q (3.13), where supre-

mum supQ⊂Rd , supQ0⊂Q⊂Rd and infimum inf{mQ}Q are taken over all cubes Q with
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µ(Q) > 0, all pairs of cubes (Q0, Q) such that Q0 ⊂ Q, and all collections {mQ}Q,
respectively.

It is known that these spaces H1
atb(Rd, µ) and RBMO(Rd, µ) satisfy properties analogous

to those of usual H1(Rd) and BMO(Rd) with the Lebesgue measure, such as the John–

Nirenberg inequality, the H1
atb(Rd, µ)-RBMO(Rd, µ) duality, interpolation inequalities,

T1 and Tb theorems (see [Bui and Duong, 2011], [Hu et al., 2013], [Hytönen, 2010],

[Nazarov et al., 2003], [Tolsa, 2001a], [Tolsa, 2014]). Now we introduce an RBMO

Hörmander condition: there exists a collection of functions {mQ}Q such that

sup
Q⊂Rd

1

µ(2Q)

∫
y∈Q

∫
x∈Rd\2Q

|K(x, y)−mQ(x)| dµ(x) dµ(y)

+ sup
Q0⊂Q⊂Rd

1

1 + δ(Q0, Q)

∫
x∈Rd\2Q

|mQ0(x)−mQ(x)| dµ(x)
(3.14)

is finite. We write [K]H∗∗ := inf{mQ}Q (3.14). Note that we can easily see [K]H∗∗ ≤
2[K]H∞ . We are going to prove the non-doubling version of Proposition 3.2.

Theorem 3.4. Let T be a singular integral operator with a kernel K. Suppose that T is

bounded on L2(Rd, µ) and K satisfies the RBMO Hörmander condition [K]H∗∗ <∞ and

|K(x, y)| ≤ A|x − y|−n for some constant A > 0. Then T is bounded from H1
atb(Rd, µ)

to L1(Rd, µ) with a bound

‖T‖H1
atb(µ)→L1(µ) ≲µ ‖T‖L2(µ)→L2(µ) + [K]H∗∗ +A.

Proof of Theorem 3.4. Let b =
∑2

j=1 λjaj ∈ H1
atb(Rd, µ) be an atomic block. Since T is

bounded on L2(Rd, µ), it is enough to show that

‖Tb‖L1(µ) ≲µ (‖T‖L2(µ)→L2(µ) + [K]H∗∗ +A)|b|H1
atb(µ)

.

We decompose ‖Tb‖L1(µ) as

‖Tb‖L1(µ) ≤
2∑

j=1

|λj |(‖Taj‖L1(2Qj ,µ) + ‖Taj‖L1(2Q\2Qj ,µ)) + ‖Tb‖L1(Rd\2Q,µ)

and prove

‖Taj‖L1(2Qj ,µ) ≤ ‖T‖L2(µ)→L2(µ), (3.15)

‖Taj‖L1(2Q\2Qj ,µ) ≤ 2nA, (3.16)

‖Tb‖L1(Rd\2Q,µ) ≤ [K]H∗∗ |b|H1
atb(µ)

. (3.17)

(3.15) By the Hölder inequality and the L2(Rd, µ) boundedness of T , we have

‖Taj‖L1(2Qj ,µ) ≤ µ(2Q)1/2‖Taj‖L2(µ)

≤ µ(2Qj)
1/2‖T‖L2(µ)→L2(µ)‖aj‖L2(Q,µ)

≤ µ(2Qj)
1/2‖T‖L2(µ)→L2(µ)µ(Qj)

1/2‖aj‖L∞(µ)

≤ ‖T‖L2(µ)→L2(µ).
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(3.16) For each x ∈ 2Q \ 2Qj , we have a pointwise estimate

|Taj(x)| =

∣∣∣∣∣
∫
y∈Qj

K(x, y)aj(y) dµ(y)

∣∣∣∣∣
≤
∫
y∈Qj

|K(x, y)aj(y)| dµ(y)

≤ ‖aj‖L∞(µ)

∫
y∈Qj

A

|x− y|n
dµ(y)

≤ 1

(1 + δ(Qj , Q))µ(2Qj)

∫
y∈Qj

2nA

|x− c(Qj)|n
dµ(y)

≤ 2nA

1 + δ(Qj , Q)

1

|x− c(Qj)|n
.

Therefore, we obtain

‖Taj‖L1(2Q\2Qj ,µ) ≤
2nA

1 + δ(Qj , Q)
δ(Qj , Q) ≤ 2nA.

(3.17) Since

‖Tb‖L1(Rd\2Q,µ)

=

∫
x∈Rd\2Q

∣∣∣∣∫
y∈Q

K(x, y)b(y) dµ(y)

∣∣∣∣ dµ(x)
=

∫
x∈Rd\2Q

∣∣∣∣∫
y∈Q

K(x, y)b(y) dµ(y)−mQ(x)

∫
y∈Q

b(y) dµ(y)

∣∣∣∣ dµ(x)
≤
∫
y∈Q

∫
x∈Rd\2Q

|K(x, y)−mQ(x)| dµ(x) |b(y)| dµ(y)

≤
2∑

j=1

|λj |‖aj‖L∞(µ)

∫
y∈Qj

∫
x∈Rd\2Q

|K(x, y)−mQ(x)| dµ(x) dµ(y)

≤
2∑

j=1

|λj |
(

1

(1 + δ(Qj , Q))µ(2Qj)

∫
y∈Qj

∫
x∈Rd\2Qj

|K(x, y)−mQj (x)| dµ(x) dµ(y)

+
1

(1 + δ(Qj , Q))µ(2Qj)

∫
y∈Qj

∫
x∈Rd\2Q

|mQj (x)−mQ(x)| dµ(x) dµ(y)
)

≤
2∑

j=1

|λj |
(

1

µ(2Qj)

∫
y∈Qj

∫
x∈Rd\2Qj

|K(x, y)−mQj (x)| dµ(x) dµ(y)

+
1

1 + δ(Qj , Q)

∫
x∈Rd\2Q

|mQj (x)−mQ(x)| dµ(x)
)

for any collections {mQ}Q, we have ‖Tb‖L1(Rd\2Q) ≤ [K]H∗∗ |b|H1
atb(µ)

.
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4 Boundednesses of maximal singular integral operators

Part I: sufficient condition

In this section, we prove Theorem IV. At first we prove the Lp(Rd) → Lp,∞(Rd)

boundedness.

Theorem 4.1. Let T be a singular integral operator with a kernel K. Suppose that T

is bounded on L2(Rd) and K satisfies

[K]H∗ = sup
Q⊂Rd

1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(x, z) dz

∣∣∣∣ dx dy <∞,

[⊤K]H∞ = sup
Q⊂Rd

sup
x∈Q

∫
y∈Rd\2Q

|K(x, y)−K(c(Q), y) | dy <∞,

A = sup
Q⊂Rd

∫
y∈2Q\Q

|K(c(Q), y)| dy <∞.

Then the maximal operator T∗ is bounded from Lp(Rd) to Lp,∞(Rd) for any 1 < p < ∞
with a bound

‖T∗‖Lp→Lp,∞ ≲d max {(p− 1)−1, p}(‖T‖L2→L2 + [K]H∗ + [⊤K]H∞ +A).

We begin with two pointwise estimates.

Lemma 4.2. Let T be a singular integral operator with a kernel K. Suppose that T is

bounded on L2(Rd) and K satisfies

[⊤K]H∞ = sup
Q⊂Rd

∫
y∈Rd\2Q

|K(x, y)−K(c(Q), y) | dy <∞.

Then, for any f ∈ L∞
c (Rd), the inequality

T∗f(x) ≤ (2d/2‖T‖L2→L2 + [⊤K]H∞)‖f‖L∞ +MTf(x)

holds.

Proof of Lemma 4.2. Fix f ∈ L∞
c (Rd), x0 ∈ Rd and a cube Q = Q(x0, ℓ). Then we have

T (fχRd\2Q)f(x0) = (T (fχRd\2Q)f(x0)− T (fχRd\2Q)f(x)) + T (fχRd\2Q)f(x)

=

∫
y∈Rd\2Q

(K(x0, y)−K(x, y))f(y) dy + Tf(x)− T (fχ2Q)(x)

for any x ∈ Q, which implies

|T (fχRd\2Q)f(x0)| ≤ [⊤K]H∞‖f‖L∞ + |Tf(x)|+ |T (fχ2Q)(x)|.

Since
1

|Q|

∫
x∈Q

|Tf(x)| dx ≤MTf(x0)
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and

1

|Q|

∫
x∈Q

|T (fχ2Q)(x)| dx ≤
(

1

|Q|

∫
x∈Q

|T (fχ2Q)(x)|2 dx
)1/2

≤ ‖T‖L2→L2

(
1

|Q|

∫
x∈2Q

|f(x)|2 dx
)1/2

≤ 2d/2‖T‖L2→L2M(|f |2)(x0)1/2

≤ 2d/2‖T‖L2→L2‖f‖L∞ ,

we conclude that

T∗f(x0) ≤ ([⊤K]H∞ + 2d/2‖T‖L2→L2)‖f‖L∞ +MTf(x0)

holds.

Lemma 4.3. Let T be a singular integral operator with a kernel K, f ∈ L∞
c,0(Rd) and

P be a cube such that supp f ⊂ P . Then, for any x ∈ Rd \ 5P and cubes Q centered at

x, the inequality

|T (fχRd\2Q)(x)| ≤
∫
y∈P

∣∣∣∣K(x, y)− 1

|P |

∫
z∈P

K(x, z) dz

∣∣∣∣|f(y)| dy
+

(
1

|P |

∫
P
|f |
)∫

y∈P

∣∣∣∣K(x, y)− 1

|P |

∫
z∈P

K(x, z) dz

∣∣∣∣|f(y)| dy
+

(
1

|P |

∫
P
|f |
)∫

y∈P∩(3Q\Q)
|K(x, y)| dy.

holds.

Proof of Lemma 4.3. Fix x ∈ Rd \5P and a cube Q centered at x. To prove the inequal-

ity, we will consider three cases:

(4.1) P ⊂ 2Q,

(4.2) P ∩ ∂(2Q) 6= ∅,

(4.3) P ⊂ Rd \ 2Q,

where ∂(2Q) denotes the boundary of 2Q.

Case (4.1) and (4.3) are easy. In the case (4.1), (Rd \ 2Q) ∩ P = ∅ implies that

T (fχRd\2Q)(x) = 0.

In the case (4.3), since (Rd \ 2Q) ∩ P = P , we have

T (fχRd\2Q)(x) = Tf(x)

=

∫
y∈P

K(x, y)f(y) dy

=

∫
y∈P

(
K(x, y)− 1

|P |

∫
z∈P

K(x, z) dz

)
f(y) dy.
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Therefore, in both cases of (4.1) and (4.3), the desired inequality holds.

Now consider the case (4.2). Let define m ∈ C and f̃ ∈ L∞(Rd) by

m :=
1

|P |

∫
y∈P

f(y)χRd\2Q(y) dy,

f̃(y) := f(y)χRd\2Q(y)−mχP (y).

Then we have supp f̃ ⊂ P and
∫
P f = 0, thus

T (fχRd\2Q)(x) = T (f̃)(x) +mTχP (x)

=

∫
y∈P

(
K(x, y)− 1

|P |

∫
z∈P

K(x, z) dz

)
f̃(y) dy +m

∫
y∈P

K(x, y) dy.

Since

|f̃(y)| ≤ |f(y)|+ |m| ≤ |f(y)|+ 1

|P |

∫
y∈P

|f |,

we obtain

|T (fχRd\2Q)(x)| ≤
∫
y∈P

∣∣∣∣K(x, y)− 1

|P |

∫
z∈P

K(x, z) dz

∣∣∣∣|f(y)| dy
+

(
1

|P |

∫
P
|f |
)∫

y∈P

∣∣∣∣K(x, y)− 1

|P |

∫
z∈P

K(x, z) dz

∣∣∣∣ dy
+

(
1

|P |

∫
P
|f |
)∫

y∈P
|K(x, y)| dy.

We need to show P ⊂ 3Q \Q to complete the proof. Let a ∈ P ∩ ∂(2Q) (it exists by the

assumption (4.2)). Then we have

|||a− c(P )||| ≤
a∈P

ℓ(P ), |||a− x||| =
a∈∂(2Q)

2ℓ(Q), |||x− c(P )||| ≥
x∈Rd\5P

5ℓ(P ),

which implies that

2l(Q) = |||a− x||| ≥ |||x− c(P )||| − |||a− c(P )||| ≥ 5ℓ(P )− ℓ(P ) = 4ℓ(P ).

Therefore, for any y ∈ P , we obtain

|||y − x||| ≤ |||y − c(P )|||+ |||c(P )− a|||+ |||a− x||| ≤ ℓ(P ) + ℓ(P ) + ℓ(Q) ≤ 3ℓ(Q),

|||y − x||| ≥ |||x− a||| − |||a− c(P )||| − |||c(P )− y||| ≥ 2ℓ(Q)− ℓ(P )− ℓ(P ) ≥ l(Q),

which means P ⊂ 3Q \Q.

Proof of Theorem 4.1. Fix 1 < p <∞, f ∈ L∞
c (Rd), α, λ > 0 and form the Lp-Calderón–

Zygmund decomposition of f at height α−1λ (we choose α later). We write

BT := 2d/2‖T‖L2→L2 + [K]H∗,p′ + [⊤K]H∞ +A

for simplicity and assume α > 2d/p+1BT . It suffices to estimate the following:

λp|{x ∈ Rd : |T∗g(x)| > λ }|, (4.4)

λp|{x ∈ Rd : |T∗b(x)| > λ }|. (4.5)
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(4.4) Since we have

‖T‖Lp→Lp ≲d BT

for any 1 < p < 2 thanks to Theorem III and it is known that the Hardy–Littlewood

maximal operator M satisfies ‖M‖Lp→Lp,∞ ≤ 2 · 3d/p, we get

‖MT‖Lp→Lp,∞ ≤ CdBT

for some dimensional constant Cd > 0. Therefore, using Lemma 4.2, we obtain

λp|{x ∈ Rd : T∗g(x) > λ }|
≤

Lemma 4.2
λp|{x ∈ Rd : BT ‖g‖L∞ +MTg(x) > λ }|

≤
(3.7)

λp|{x ∈ Rd : 2d/p+1BTα
−1λ+MTg(x) > λ }|

= λp|{x ∈ Rd :MTg(x) > (1− 2d/p+1BTα
−1)λ }|

≤ (1− 2d/p+1BTα
−1)−p‖MT‖pLp→Lp,∞‖g‖pLp

≤
(3.7)

(
CdBT

1− 2d/p+1BTα−1

)p

‖f‖pLp .

(4.5) We write 5Ω :=
⋃

j 5Qj and begin with pointwise estimate of T∗b on Rd \ 5Ω. Fix
x ∈ Rd \ 5Ω and a cube Q centered at x. Using Lemma 4.3, we have

|T (bχRd\2Q)(x)| ≤
∑
j

|T (bjχRd\2Q)(x)|

≤
Lemma 4.3

∑
j

∫
y∈Qj

∣∣∣∣∣K(x, y)− 1

|Qj |

∫
z∈Qj

K(x, z) dz

∣∣∣∣∣|bj(y)| dy
+
∑
j

(
1

|Qj |

∫
Qj

|bj |

)∫
y∈Qj

∣∣∣∣∣K(x, y)− 1

|Qj |

∫
z∈Qj

K(x, z) dz

∣∣∣∣∣ dy
+
∑
j

(
1

|Qj |

∫
Qj

|bj |

)∫
y∈Qj∩(3Q\Q)

|K(x, y)| dy

≤
(3.8)

∑
j

∫
y∈Qj

∣∣∣∣∣K(x, y)− 1

|Qj |

∫
z∈Qj

K(x, z) dz

∣∣∣∣∣|bj(y)| dy
+ 2d/p+1α−1λ

∑
j

∫
y∈Qj

∣∣∣∣∣K(x, y)− 1

|Qj |

∫
z∈Qj

K(x, z) dz

∣∣∣∣∣ dy
+ 2d/p+1Aα−1λ.

Now letting

F1(x) :=
∑
j

∫
y∈Qj

∣∣∣∣∣K(x, y)− 1

|Qj |

∫
z∈Qj

K(x, z) dz

∣∣∣∣∣|bj(y)| dy,
F2(x) :=

∑
j

∫
y∈Qj

∣∣∣∣∣K(x, y)− 1

|Qj |

∫
z∈Qj

K(x, z) dz

∣∣∣∣∣ dy.
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Since

T∗b(x) ≤ F1(x) + 2d/p+1α−1λF2(x) + 2d/p+1BTα
−1λ

holds for x ∈ Rd \ 5Ω, it implies

λp|{x ∈ Rd \ 5Ω : T∗b(x) > λ }|
≤ λp|{x ∈ Rd \ 5Ω : F1(x) + 2d/p+1α−1λF2(x) + 2d/p+1BTα

−1λ > λ }|
= λp|{x ∈ Rd \ 5Ω : F1(x) + 2d/p+1α−1λF2(x) > (1− 2d/p+1BTα

−1)λ }|

≤ λp−1

1− 2d/p+1BTα−1

∫
x∈Rd\5Ω

F1(x) dx+
2d/p+1α−1λp

1− 2d/p+1BTα−1

∫
x∈Rd\5Ω

F2(x) dx.

We compute integrals of F1 and F2 as follows:∫
x∈Rd\5Ω

F1(x) dx

=

∫
x∈Rd\5Ω

∑
j

∫
y∈Qj

∣∣∣∣∣K(x, y)− 1

|Qj |

∫
z∈Qj

K(x, z) dz

∣∣∣∣∣|bj(y)| dy dx
≤
∑
j

∫
y∈Qj

(∫
x∈Rd\5Qj

∣∣∣∣∣K(x, y)− 1

|Qj |

∫
z∈Qj

K(x, z) dz

∣∣∣∣∣ dx
)
|bj(y)| dy

≤
∑
j

∫
y∈Qj

(∫
x∈Rd\2Qj

∣∣∣∣∣K(x, y)− 1

|Qj |

∫
z∈Qj

K(x, z) dz

∣∣∣∣∣ dx
)p′

dy

1/p′

‖bj‖Lp

∑
j

|Qj |1/p
′
[K]H∗,p′‖bj‖Lp

≤ [K]H∗,p′

(∑
j

|Qj |
)1/p′(∑

j

‖bj‖pLp

)1/p

≤
(3.6),(3.8)

[K]H∗,p′

(
‖f‖pLp

(α−1λ)p

)1/p′(
2p‖f‖pLp

)1/p
≤ 2BTα

p−1λ−(p−1)‖f‖pLp .∫
x∈Rd\5Ω

F2(x) dx

=

∫
x∈Rd\5Ω

∑
j

∫
y∈Qj

∣∣∣∣∣K(x, y)− 1

|Qj |

∫
z∈Qj

K(x, z) dz

∣∣∣∣∣ dy dx
≤
∑
j

∫
y∈Qj

∫
x∈Rd\5Qj

∣∣∣∣∣K(x, y)− 1

|Qj |

∫
z∈Qj

K(x, z) dz

∣∣∣∣∣ dx dy
≤
∑
j

|Qj |[K]H∗

= |Ω|[K]H∗

≤
(3.6)

(α−1λ)−pBT ‖f‖pLp .
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Therefore, we have

λp|{x ∈ Rd : |T∗b(x)| > λ }| ≤ λp|5Ω|+ λp|{x ∈ Rd \ 5Ω : |T∗b(x)| > λ }|

≤

(
5dαp +

αp−12d/p+2BT

1− 2d/p+1BTα−1

)
‖f‖pLp

Summing up the estimates of (4.4) and (4.5) above, we have

‖T∗f‖pLp,∞ ≤ 2p

((
CdBT

1− 2d/p+1BTα−1

)p

+
αp−12d/p+2BT

1− 2d/p+1BTα−1
+ 5dαp

)
‖f‖pLp .

Now we choose α = 2d/p+2BT , which implies

‖T‖Lp→Lp,∞ ≤ 2
(
(2CdBT )

p + 2(2d/p+2BT )
p + 5d(2d/p+2BT )

p
)1/p

≲d BT .

Next we prove the L∞
c (Rd) → BMO(Rd) boundedness.

Theorem 4.4. Let T be a singular integral operator with a kernel K and T∗ be its

maximal operator. Suppose that T∗ is bounded from L2(Rd) to L2,∞(Rd) and K satisfies

[⊤K]H∗ = sup
Q⊂Rd

1

|Q|

∫
x∈Q

∫
y∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(z, y) dz

∣∣∣∣ dy dx <∞,

A = sup
Q⊂Rd

∫
y∈2Q\Q

|K(c(Q), y)| dy <∞.

Then T∗ is bounded from L∞
c (Rd) to BMO(Rd) with a bound

‖T∗‖L∞
c →BMO ≲d ‖T∗‖L2→L2,∞ + [⊤K]H∗ +A.

Proof of Theorem 4.4. Let f ∈ L∞
c (Rd) and P ⊂ Rd be a cube. We decompose f as

f = fχ5P + fχRd\5P =: f1 + f2. Using |T∗f(x)− T∗f2(x)| ≤ |T∗f1(x)|, we have

1

|P |

∫
x∈P

∣∣∣∣T∗f(x)− sup
ε>0

∣∣∣∣ 1

|P |

∫
z∈P

Tεf2(z) dz

∣∣∣∣ ∣∣∣∣ dx
≤ 1

|P |

∫
x∈P

|T∗f1(x)| dx (4.6)

+
1

|P |

∫
x∈P

∣∣∣∣T∗f2(x)− sup
ε>0

∣∣∣∣ 1

|P |

∫
z∈P

Tεf2(z) dz

∣∣∣∣ ∣∣∣∣ dx, (4.7)

Therefore, it is enough to estimate (4.6) and (4.7).

(4.6) Since T∗ is bounded from L2(Rd) to L2,∞(Rd), using the Kolmogorov inequality

(see [Grafakos, 2014a, Exercise 1.1.11.(a)]), we have

1

|P |

∫
x∈P

|T∗f1(x)| dx ≤ 2 · 5d|5P |−1/2‖T∗f1‖L2,∞

≤ 2 · 5d|5P |−1/2‖T∗‖L2→L2,∞‖f1‖L2

≤ 2 · 5d‖T∗‖L2→L2,∞‖f‖L∞ .
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(4.7) Since T is linear, using

χRd\Q(z,ε) = χRd\Q(x,ε) − (χRd\Q(x,ε) − χRd\Q(z,ε))

= χRd\Q(x,ε) + (χQ(x,ε) − χQ(z,ε))

= χRd\Q(x,ε) + χQ(x,ε)\Q(z,ε) − χQ(z,ε)\Q(x,ε),

we have∣∣∣∣T∗f2(x)− sup
ε>0

∣∣∣∣ 1

|P |

∫
z∈P

Tεf2(z) dz

∣∣∣∣ ∣∣∣∣
≤ sup

ε>0

∣∣∣∣T (f2χRd\Q(x,ε))(x)−
1

|P |

∫
z∈P

T (f2χRd\Q(z,ε))(z) dz

∣∣∣∣
≤ sup

ε>0

∣∣∣∣T (f2χRd\Q(x,ε))(x)−
1

|P |

∫
z∈P

T (f2χRd\Q(x,ε))(z) dz

∣∣∣∣
+ sup

ε>0

1

|P |

∫
z∈P

|T (f2χQ(x,ε)\Q(z,ε))(z)| dz + sup
ε>0

1

|P |

∫
z∈P

|T (f2χQ(z,ε)\Q(x,ε)(z)| dz.

Now we use the integral representation of T and obtain∣∣∣∣T (f2χRd\Q(x,ε))f(x)−
1

|P |

∫
z∈P

T (f2χRd\Q(x,ε))(z) dz

∣∣∣∣
=

∣∣∣∣∣
∫
y∈Rd\Q(x,ε)

(
K(x, y)− 1

|P |

∫
z∈P

K(z, y) dz

)
f2(y) dy

∣∣∣∣∣
≤ ‖f‖L∞

∫
y∈Rd\5P

∣∣∣∣K(x, y)− 1

|P |

∫
z∈P

K(z, y) dz

∣∣∣∣ dy,
|T (f2χQ(x,ε)\Q(z,ε))(z)| ≤ ‖f‖L∞

∫
y∈(Q(x,ε)\5P )\Q(z,ε)

|K(z, y)| dy,

|T (f2χQ(z,ε)\Q(x,ε)(z)| ≤ ‖f‖L∞

∫
y∈(Q(z,ε)\5P )\Q(x,ε)

|K(z, y)| dy.

Since it is obvious that

1

|P |

∫
x∈P

(
‖f‖L∞

∫
y∈Rd\5P

∣∣∣∣K(x, y)− 1

|P |

∫
z∈P

K(z, y) dz

∣∣∣∣ dy
)
dx ≤ [⊤K]H∗‖f‖L∞ ,

we consider the second and third one. We show that

(Q(x, ε) \ 5P ) \Q(z, ε) ⊂ Q(z, 3ε/2) \Q(z, ε), (4.8)

(Q(z, ε) \ 5P ) \Q(x, ε) ⊂ Q(z, ε) \Q(z, ε/2) (4.9)

hold for any x, z ∈ P . Note that (4.8) and (4.9) imply∫
y∈(Q(x,ε)\5P )\Q(z,ε)

|K(z, y)| dy +
∫
y∈(Q(z,ε)\5P )\Q(x,ε)

|K(z, y)| dy ≤ 2A.
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(4.8) Since it is trivial when Q(x, ε) \ 5P = ∅, we assume Q(x, ε) \ 5P 6= ∅. Then there

exists a ∈ Rd such that

|||a− x||| ≤ ε, |||a− c(P )||| ≥ 5ℓ(P ).

Since x, z ∈ P ;

|||x− c(P )|||, |||z − c(P )||| ≤ l(P ),

we obtain

4ℓ(P ) ≤ |||a− c(P )||| − |||x− c(P )||| ≤ |||a− x||| ≤ ε.

Therefore, for any y ∈ Q(x, ε), we get

|||y − z||| ≤ |||y − x|||+ |||x− c(P )|||+ |||c(P )− z||| ≤ ε+ ℓ(P ) + ℓ(P ) ≤ 3ε/2,

which means Q(x, ε) ⊂ Q(z, 3ε/2) and thus (4.8) holds.

(4.9) By the same argument, it is enough to consider the case Q(z, ε) \ 5P 6= ∅ and

which implies 4ℓ(P ) ≤ ε. Then, for any y ∈ Q(z, ε/2), we get

|||y − x||| ≤ |||y − z|||+ |||z − c(P )|||+ |||c(P )− x||| ≤ ε/2 + ℓ(P ) + ℓ(P ) ≤ ε,

which means Q(z, ε/2) ⊂ Q(x, ε) and thus (4.9) holds.

Summing up estimates above, we have

1

|P |

∫
x∈P

∣∣∣∣T∗f(x)− sup
ε>0

∣∣∣∣ 1

|P |

∫
z∈P

Tεf2(z) dz

∣∣∣∣ ∣∣∣∣ dx ≤ (2 · 5d‖T∗‖L2→L2,∞ + [⊤K]H∗ + 2A)‖f‖L∞ .

Using Proposition 2.A gives us the desired result.

Before finishing this section, we prove a part of Theorem V.

Theorem 4.5. Let T be a singular integral operator with a kernel K and T∗ be its

maximal operator. Suppose that T∗ is bounded from L2(Rd) to L2,∞(Rd) and K satisfies

[K]H∗ = sup
Q⊂Rd

1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(x, z) dz

∣∣∣∣ dx dy <∞,

A = sup
Q⊂Rd

∫
y∈2Q\Q

|K(c(Q), y)| dy <∞.

Then T∗ is bounded from Lp(Rd) to Lp,∞(Rd) for any 1 < p ≤ 2 with a bound

‖T‖Lp→Lp,∞ ≲d (p− 1)−1(‖T∗‖L2→L2,∞ + [K]H∗ +A).

Proof of Theorem 4.5. Fix 1 < p < 2, f ∈ L∞
c (Rd), α, λ > 0 and form the Lp-Calderón–

Zygmund decomposition of f at height α−1λ (we choose α later). We write

BT := ‖T∗‖L2→L2,∞ + [K]H∗,p′ +A
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for simplicity and assume α > 2d/p+1BT . By the proof of Theorem 4.1, we already know

that

λp|{x ∈ Rd : |T∗b(x)| > λ }| ≤

(
αp−12d/p+2BT

1− 2d/p+1BTα−1
+ 5dαp

)
‖f‖pLp .

Also, by the same argument as in the proof of Theorem 3.3, we obtain

λp|{x ∈ Rd : |T∗g(x)| > λ }| ≤ α−(2−p)2(2−p)d/pB2
T ‖f‖

p
Lp .

Summing up the estimates above, we have

‖T∗f‖pLp,∞ ≤ 2p

(
α−(2−p)2(2−p)d/pB2

T +
αp−12d/p+2BT

1− 2d/p+1BTα−1
+ 5dαp

)
‖f‖pLp .

Now we choose α = 2d/p+2BT and conclude that

‖T‖Lp→Lp,∞ ≤ 2
(
2−2(2−p)Bp

T + 2(2d/p+2BT )
p + 5d(2d/p+2BT )

p
)1/p

≲d BT .

Theorem 4.6. Let T∗ be a sublinear operator and consider following statements:

(1.14) T∗ is bounded from L2(Rd) to L2,∞(Rd).

(1.17) There exist 0 < p <∞ and B > 0 such that ‖T∗f‖Lp,∞(Q) ≤ B|Q|1/p‖f‖L∞ holds

for any cubes Q ⊂ Rd and f ∈ L∞(Q).

(4.10) There exist 0 < p < ∞ and B > 0 such that ‖T∗f‖Lp(Q) ≤ B|Q|1/p‖f‖L∞ holds

for any cubes Q ⊂ Rd and f ∈ L∞(Q).

Then we have (1.14) ⇒ (1.17) ⇔ (4.10).

Proof of Theorem 4.6. (1.14) ⇒ (1.17) and (4.10) ⇒ (1.17) are immediate: consider

p = 2 and use ‖T∗f‖Lp,∞(Q) ≤ ‖T∗f‖Lp(Q), respectively. (1.17) ⇒ (4.10) follows from

the Kolmogorov inequality (which we used in the Proof of Theorem 4.4):

‖T∗f‖qLq(Q) ≤
p

p− q
|Q|1−q/p‖T∗f‖qLp,∞(Q) ≤

p

p− q
Bq|Q|‖f‖qL∞

holds for any 0 < q < p.

Theorem 4.7. Let T be a singular integral operator with a kernel K and T∗ be its

maximal operator. Suppose that there exist 0 < p <∞ and B > 0 such that ‖T∗f‖Lp(Q) ≤
B|Q|1/p‖f‖L∞ holds for any cubes Q ⊂ Rd and f ∈ L∞(Q), and K satisfies

[⊤K]H∗ = sup
Q⊂Rd

1

|Q|

∫
x∈Q

∫
y∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(z, y) dz

∣∣∣∣ dy dx <∞,

A = sup
Q⊂Rd

∫
y∈2Q\Q

|K(c(Q), y)| dy <∞.

Then T∗ is bounded from L∞
c (Rd) to BMO(Rd) with a bound

‖T∗‖L∞
c →BMO ≲d,p B + [⊤K]H∗ +A.
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Proof of Theorem 4.7. At first we consider the case 1 ≤ p < ∞. In this case, the proof

is almost identical to that of Theorem 4.4. The only difference is we use ‖T∗f‖Lp(5P ) ≤
B|5P |1/p‖f‖L∞ for (4.6). Now we consider the case 0 < p < 1. In this case, we have

1

|P |

∫
x∈P

∣∣∣∣T∗f(x)− sup
ε>0

∣∣∣∣ 1

|P |

∫
z∈P

Tεf2(z) dz

∣∣∣∣ ∣∣∣∣p dx
≤ 1

|P |

∫
x∈P

|T∗f1(x)|p dx+
1

|P |

∫
x∈P

∣∣∣∣T∗f2(x)− sup
ε>0

∣∣∣∣ 1

|P |

∫
z∈P

Tεf2(z) dz

∣∣∣∣ ∣∣∣∣p dx
≤ 5d

|5P |

∫
x∈5P

|T∗f1(x)|p dx+

(
1

|P |

∫
x∈P

∣∣∣∣T∗f2(x)− sup
ε>0

∣∣∣∣ 1

|P |

∫
z∈P

Tεf2(z) dz

∣∣∣∣ ∣∣∣∣ dx)p

≤ 5dBp‖f‖pL∞ + ([⊤K]H∗ + 2A)p‖f‖pL∞

≲p (5
d/pB + [⊤K]H∗ + 2A)p‖f‖pL∞ .

Now we use the John–Strömberg inequality (see [Strömberg, 1979]), which implies

‖T∗f‖BMO ≲p sup
P⊂Rd

(
1

|P |

∫
x∈P

∣∣∣∣T∗f(x)− sup
ε>0

∣∣∣∣ 1

|P |

∫
z∈P

Tεf2(z) dz

∣∣∣∣ ∣∣∣∣p dx)1/p

≲p (5
d/pB + [⊤K]H∗ + 2A)‖f‖L∞ .
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5 The median and related maximal operators

In this section, we discuss maximal operatorsMdyadic
0,s andM#

0,s defined by the median.

Our aim is the sharp maximal inequality ‖Mdyadic
0,s f‖Lp,∞ ≲p,d,s ‖M#

0,sf‖Lp,∞ , which was

proved by [Hu et al., 2007] (they did on the so-called homogeneous spaces, which include

the Euclidean space with the Lebesgue measure). Our proof is mainly based on [Hu et al.,

2007, Section 2] and [Duoandikoetxea, 2000, Section 6.3], but it is slightly refined by

using ideas from [Bui and Langesen, 2013] and gives a better result than [Hu et al.,

2007].

At first, we define maximal operators Mdyadic
0,s and M#

0,s.

Definition 5.1. Let f : Rd → C be measurable, Q ⊂ Rd be a cube and 0 ≤ s ≤ 1. We

write

m0,s,Qf := inf {λ ≥ 0 : |{ y ∈ Q : |f(y)| > λ }| ≤ s|Q| } (5.1)

and define maximal operators Mdyadic
0,s and M#

0,s by

Mdyadic
0,s f(x) := sup

j∈Z
m0,s,Qj(x)f = sup

j∈Z
inf {λ ≥ 0 : |{ y ∈ Qj(x) : |f(y)| > λ }| ≤ s|Qj(x)| },

M#
0,sf(x) := sup

Q∋x
inf
c∈C

m0,s,Q(f − c) = sup
Q∋x

inf
c∈C

inf {λ ≥ 0 : |{ y ∈ Q : |f(y)− c| > λ }| ≤ s|Q| }.

Remark 4. Some authors (including [Hu et al., 2007]) use a little different definition

from (5.1), that is,

m̃0,s,Qf := inf {λ ≥ 0 : |{ y ∈ Q : |f(y)| > λ }| < s|Q| }.

Note that

m0,s,Qf ≤ m̃0,s,Qf

and there exist s,Q, f such that

0 = m0,s,Qf < m̃0,s,Qf.

Some basic properties of the median m0,s,Qf are easily follows from the definition.

Proposition 5.2. The median satisfies the following:

0 ≤ s2 ≤ s1 ≤ 1 ⇒ 0 = m0,1,Qf ≤ m0,s1,Qf ≤ m0,s2,Qf ≤ m0,0,Qf = ‖f‖L∞(Q),

|F (x)| ≤ |f1(x)|+ |f2(x)| ⇒ m0,s1+s2,QF ≤ m0,s1,Qf1 +m0,s2,Qf2, (5.2)

0 < s ≤ 1 ⇒ m0,s,Qf ≤ s−1 1

|Q|

∫
Q
|f |, (5.3)

0 ≤ λ < m0,s,Qf ⇔ |{ y ∈ Q : |f(y)| > λ }| > s|Q|. (5.4)
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Proposition 5.2 is easy and well-known. See [Grafakos, 2014a, Proposition 1.4.5], for

example. Notice that (5.3) implies that Mdyadic
0,s f ≤ s−1Mdyadicf and M#

0,sf ≤ s−1M#f

for 0 < s ≤ 1 and f ∈ L1
loc(Rd).

Now we are going to discuss maximal operators Mdyadic
0,s and M#

0,sf . Proposition 5.2

give us the following.

Proposition 5.3. Let F, f1, f2 : Rd → C be measurable and 0 ≤ s1, s2 ≤ 1 satisfy

0 ≤ s1 + s2 ≤ 1.

(5.5) If |F (x)| ≤ |f1(x)|+ |f2(x)|, then

Mdyadic
0,s1+s2

F (x) ≤Mdyadic
0,s1

f1(x) +Mdyadic
0,s2

f2(x).

(5.6) If F (x) = f1(x) + f2(x), then

M#
0,s1+s2

F (x) ≤M#
0,s1

f1(x) +M#
0,s2

f2(x).

(5.7) If |F (x)− f1(x)| ≤ |f2(x)|, then

M#
0,s1+s2

F (x) ≤M#
0,s1

f1(x) +Mdyadic
0,s2

f2(x).

Proof of Proposition 5.3. (5.5) is a direct consequence of (5.2). To see (5.6), note that

the pointwise inequality

|F (x)− (c1 + c2)| ≤ |f1(x)− c1|+ |f2(x)− c2|

holds for any c1, c2 ∈ C, which implies the desired result. (5.7) follows from

|F (x)− c| ≤ |f1(x)− c|+ |F (x)− f1(x)|
≤ |f1(x)− c|+ |f2(x)|.

Note that maximal singular integral operators satisfy |T∗F (x)− T∗f1(x)| ≤ |T∗f2(x)|
if F = f1 + f2, since

|T∗F (x)− T∗f1(x)| = |sup
ε>0

TεF (x)− sup
ε>0

Tεf1(x)|

≤ sup
ε>0

|TεF (x)− Tεf1(x)|

= sup
ε>0

|Tεf2(x)|

= |T∗f2(x)|.

SinceMdyadic
0,s f ≤ s−1Mdyadicf , it is obvious thatMdyadic

0,s f is also bounded from L1(Rd) →
L1,∞(Rd) and on Lp(Rd) for 1 < p ≤ ∞. On the other hand, in fact, the following

stronger estimates hold if s < 1.
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Lemma 5.4. Let 0 < s < 1. Then the inequalities

|{x ∈ Rd : |f(x)| > λ }| ≤ |{x ∈ Rd :Mdyadic
0,s f(x) > λ }|, (5.8)

|{x ∈ Rd :Mdyadic
0,s f(x) > λ }| ≤ s−1|{x ∈ Rd : |f(x)| > λ }| (5.9)

hold.

Proof of Lemma 5.4. Let

Eλ := {x ∈ Rd : |f(x)| > λ }.

At first we show that

{x ∈ Rd :Mdyadic
0,s f(x) > λ } = {x ∈ Rd :Mdyadic(χEλ

)(x) > s }. (5.10)

It follows from

Mdyadic
0,s f(x) > λ

⇔ There exists j ∈ Z such that m0,s,Qj(x)f > λ

⇔
(5.4)

There exists j ∈ Z such that |{ y ∈ Qj(x) : |f(y)| > λ }| > s|Qj(x)|

⇔ There exists j ∈ Z such that
1

|Qj(x)|

∫
y∈Qj(x)

χEλ
(y) dy > s

⇔Mdyadic(χEλ
)(x) > s.

To see (5.8), notice that Eλ can be written as

Eλ = {x ∈ Rd : χEλ
(x) > s },

since 0 < s < 1. Therefore, since χEλ
(x) ≤ Mdyadic(χEλ

)(x) for almost every x ∈ Rd,

we obtain

|Eλ| = |{x ∈ Rd : χEλ
(x) > s }|

≤ |{x ∈ Rd :Mdyadic(χEλ
)(x) > s }|

=
(5.10)

|{x ∈ Rd :Mdyadic
0,s f(x) > λ }|.

(5.9) is immediate from ‖Mdyadic‖L1→L1,∞ = 1:

|{x ∈ Rd :Mdyadic
0,s f(x) > λ }| =

(5.10)
|{x ∈ Rd :Mdyadic(χEλ

)(x) > s }|

≤ s−1|Eλ|.

The following Lemma 5.5 is analogous to Proposition 2.A.

Lemma 5.5. Let 0 < s2 ≤ s1 < 1, s1 + s2 < 1 and f : Rd → R≥0, then the inequality

m0,s2,Q(f −m0,s1,Qf) ≤ 2 inf
c∈C

m0,s2,Q(f − c)

holds and it implies that

1

2
sup
Q∋x

m0,s2,Q(f −m0,s1,Qf) ≤M#
0,s2

f(x) ≤ sup
Q∋x

m0,s2,Q(f −m0,s1,Qf).
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Proof of Lemma 5.5. Since f is non-negative, we have

|f(x)− c| ≥ |f(x)− |c||

for any c ∈ C and thus

inf
c∈C

m0,s2,Q(f − c) ≥ inf
c∈C

m0,s2,Q(f − |c|) = inf
c≥0

m0,s2,Q(f − c).

Let fix c ≥ 0 and show that

m0,s2,Q(f −m0,s1,Qf) ≤ 2m0,s2,Q(f − c).

The triangle inequality

|f(x)−m0,s1,Qf | ≤ |f(x)− c|+ |m0,s1,Qf − c|

implies

m0,s2,Q(f −m0,s1,Qf) ≤ m0,s2,Q(f − c) + |m0,s1,Qf − c|,

hence it suffices to prove that

|m0,s1,Qf − c| ≤ m0,s2,Q(f − c).

It follows from

m0,s1,Qf ≤
s1−s2≥0

m0,s2,Q(f − c) +m0,s1−s2,Qc = m0,s2,Q(f − c) + c

and

c =
s1+s2<1

m0,s1+s2,Qc ≤ m0,s2,Q(f − c) +m0,s1,Qf.

Note that m0,s,Qc = c for 0 ≤ s < 1.

Lemma 5.6. Let 0 < s2 ≤ s1 < 1, s1 + s2 < 1, α > 0. Then the inequality

|{x ∈ Rd :Mdyadic
0,s1

f(x) > (α+ 1)λ,M#
0,s2

(|f |)(x) ≤ αλ/2 }|

≤ 2ds−1
1 s2|{x ∈ Rd :Mdyadic

0,s1
f(x) > λ }|

holds.

Proof of Lemma 5.6. Since it is trivial when

|{x ∈ Rd :Mdyadic
0,s1

f(x) > λ }| = ∞,

we assume

|{x ∈ Rd :Mdyadic
0,s1

f(x) > λ }| <∞.

Then there exists a family of pairwise disjoint dyadic cubes {Qj}j such that

{x ∈ Rd :Mdyadic
0,s1

f(x) > λ } =
⋃
j

Qj ,

m0,s1,Qjf > λ,

∀P ∈ Q, (Qj ( P ⇒ m0,s1,P f ≤ λ) (5.11)
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and it reduces to show that

|{x ∈ Qj :M
dyadic
0,s1

f(x) > (α+ 1)λ,M#
0,s2

(|f |)(x) ≤ αλ/2 }| ≤ s−1
1 s2|Q̃j | (5.12)

holds for each j, where Q̃j denotes the parent of Qj . In order to establish (5.12), we

prove the following statements:

{x ∈ Qj :M
dyadic
0,s1

f(x) > (α+ 1)λ }

⊂ {x ∈ Rd :Mdyadic
0,s1

((|f | −m
0,s1,Q̃j

f)χQj )(x) > αλ },
(5.13)

{x ∈ Qj :M
#
0,s2

(|f |)(x) ≤ αλ/2 } 6= ∅

⇒ |{x ∈ Rd :Mdyadic
0,s1

((|f | −m
0,s1,Q̃j

f)χQj )(x) > αλ }| ≤ s−1
1 s2|Q̃j |.

(5.14)

(5.13) Fix x ∈ Qj such that Mdyadic
0,s1

f(x) > (α+ 1)λ. Using (5.11), we have

(α+ 1)λ < Mdyadic
0,s1

f(x)

= sup
i∈Z

m0,s1,Qi(x)f

= max {sup
i≥j

m0,s1,Qi(x)f, sup
i<j

m0,s1,Qi(x)f}

=
(5.11)

max {Mdyadic
0,s1

(fχQj )(x), λ}.

Since α > 0, we obtain Mdyadic
0,s1

(fχQj )(x) > (α+1)λ. Also (5.11) implies m
0,s1,Q̃j

f ≤ λ.

Therefore, we conclude that

Mdyadic
0,s1

((|f | −m
0,s1,Q̃j

f)χQj )(x) ≥Mdyadic
0,s1

(fχQj )(x)−m
0,s1,Q̃j

f > αλ

holds.

(5.14) By the assumption, there exists x0 ∈ Qj such that M#
0,s2

(|f |)(x0) ≤ αλ/2. Then

we have

m
0,s2,Q̃j

(|f | −m
0,s1,Q̃j

f) ≤ 2M#
0,s2

(|f |)(x0) ≤ αλ

by Lemma 5.5, and thus

|{x ∈ Rd :Mdyadic
0,s1

((|f | −m
0,s1,Q̃j

f)χQj )(x) > αλ }|

≤
(5.9)

s−1
1 |{x ∈ Qj : ||f(x)| −m

0,s1,Q̃j
f)| > αλ }|

≤ s−1
1 α|{x ∈ Q̃j : ||f(x)| −m

0,s1,Q̃j
f | > m

0,s2,Q̃j
(|f | −m

0,s1,Q̃j
f) }|

≤
(5.4)

s−1
1 s2|Q̃j |.

Finally, we show that (5.13) and (5.14) imply the desired inequality (5.12). Since it is

trivial when the left-hand side of (5.12) equals to zero, we assume that it is not zero.
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Then we have {x ∈ Qj :M
#
0,s2

(|f |)(x) ≤ αλ/2 } 6= ∅; the assumption of (5.14), thus

|{x ∈ Qj :M
dyadic
0,s1

f(x) > (α+ 1)λ,M#
0,s2

(|f |)(x) ≤ αλ/2 }|

≤
(5.13)

|{x ∈ Rd :Mdyadic
0,s1

((|f | −m
0,s1,Q̃j

f)χQj )(x) > αλ }|

≤
(5.14)

s−1
1 s2|Q̃j |.

Theorem 5.7. Let s1, s2, p0, p > 0 and f : Rd → C satisfy 0 < 2ds2 < s1 < 1, s1+s2 < 1,

0 < p0 ≤ p <∞ and

sup
0<λ<R

λp0 |{x ∈ Rd : |f(x)| > λ }| <∞

for any R > 0. Then there exists a constant Cd,s1,s2,p, depending only on d, s1, s2, p,

such that the inequality

‖Mdyadic
0,s1

f‖Lp,∞ ≤ Cd,s1,s2,p‖M
#
0,s2

(|f |)‖Lp,∞

holds and satisfies Cd,s1,s2,p ≲d,s1,s2 p where p ≥ 1.

Proof of Theorem 5.7. Let α,R > 0 and write

β := α+ 1,

IR := sup
0<λ<R

λp|{x ∈ Rd :Mdyadic
0,s1

f(x) > λ }|,

JR := sup
0<λ<R

λp|{x ∈ Rd :M#
0,s2

(|f |)(x) > λ }|.

Using Lemma 5.6, we have

(βλ)p|{x ∈ Rd :Mdyadic
0,s1

f(x) > βλ }|

≤ (βλ)p|{x ∈ Rd :Mdyadic
0,s1

f(x) > βλ,M#
0,s2

(|f |)(x) ≤ αλ/2 }|

+ (βλ)p|{x ∈ Rd :M#
0,s2

(|f |)(x) > αλ/2 }|

≤ 2d(βλ)ps−1
1 s2|{x ∈ Rd :Mdyadic

0,s1
f(x) > λ }|

+ (2α−1β)p(αλ/2)p|{x ∈ Rd :M#
0,s2

(|f |)(x) > αλ/2 }|

for each λ > 0. Taking supremum in 0 < λ < 2R implies that

I2βR ≤ 2dβps−1
1 s2I2R + (2α−1β)pJαR ≤ 2dβps−1

1 s2I2βR + (2α−1β)pJαR

holds. Since

IR = sup
0<λ<R

λp|{x ∈ Rd :Mdyadic
0,s1

f(x) > λ }|

≤ sup
0<λ<R

λp−p0λp0s−1
1 |{x ∈ Rd : |f(x)| > λ }|

≤ Rp−p0s−1
1 sup

0<λ<R
λp0 |{x ∈ Rd : |f(x)| > λ }| <∞,
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we obtain

(1− 2dβps−1
1 s2)I2βR ≤ (2α−1β)pJαR.

Now we take α > 0 small enough, then we have 1 − 2dβps−1
1 s2 > 0 since 2ds2 < s1.

Therefore, letting R→ ∞, we obtain

‖Mdyadic
0,s1

f‖pLp,∞ ≤ Cp
d,s1,s2,α

‖M#
0,s2

(|f |)‖pLp,∞ ,

Cp
d,s1,s2,α

:=
(2α−1(α+ 1))p

1− 2ds−1
1 s2(α+ 1)p

.

In particular, if we choose α > 0 satisfying

1− 2ds−1
1 s2(α+ 1)p = (1− 2ds−1

1 s2)/2,

that is

α =

(
2ds2 + s1
2d+1s2

)1/p

− 1,

then we have

Cp
d,s1,s2,α

= (2α−1)p
(α+ 1)p

1− 2ds−1
1 s2(α+ 1)p

= (2α−1)p
2−ds1s

−1
2 (1 + 2ds−1

1 s2)

1− 2ds−1
1 s2

,

and thus

Cd,s1,s2,α ≤ 2

(
2−ds1s

−1
2 (1 + 2ds−1

1 s2)

1− 2ds−1
1 s2

)1/p

α−1

= 2

(
2−ds1s

−1
2 (1 + 2ds−1

1 s2)

1− 2ds−1
1 s2

)1/p
((

2ds2 + s1
2d+1s2

)1/p

− 1

)−1

,

which satisfies Cd,s1,s2,α ≲d,s1,s2 p where p ≥ 1.

Remark 5. Compare our Theorem 5.7 with [Hu et al., 2007, Theorem 2.1]:

Theorem 5.A ([Hu et al., 2007, Theorem 2.1]). Let s, p0, p > 0 and f : Rd → C satisfy

0 < 3pCds < 1, s < 1/2, 0 < p0 ≤ p <∞ and

‖f‖Lp0,∞ = sup
0<λ<∞

λp0 |{x ∈ Rd : |f(x)| > λ }| <∞,

where Cd > 0 denotes some constant depending only on dimension d. Then the inequality

‖f‖pLp,∞ ≤ Cd

1− 3pCds
‖M#

0,s(|f |)‖
p
Lp,∞

holds.
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In Theorem 5.7, the assumption for s1 and s2; 0 < 2ds2 < s1 < 1, s1 + s2 < 1 is

independent of p. On the other hand, in Theorem 5.A, it requires 0 < 3pCds < 1. Also,

the assumption

‖f‖Lp0,∞ = sup
0<λ<∞

λp0 |{x ∈ Rd : |f(x)| > λ }| <∞

in Theorem 5.A is relaxed to

sup
0<λ<R

λp0 |{x ∈ Rd : |f(x)| > λ }| <∞ for any R > 0

in Theorem 5.7.
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6 Boundednesses of maximal singular integral operators

Part II: equivalent characterization

In this section, we prove the following Theorem 6.1.

Theorem 6.1. Let T be a singular integral operator with a kernel K and T∗ be its

maximal operator. Suppose that T∗ is bounded from L∞
c (Rd) → BMO(Rd) and K satisfies

[K]H∗ = sup
Q⊂Rd

1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(x, z) dz

∣∣∣∣ dx dy <∞,

A = sup
Q⊂Rd

∫
y∈2Q\Q

|K(c(Q), y)| dy <∞.

Then T∗ is bounded from Lp(Rd) to Lp,∞(Rd) for any 2 ≤ p <∞ with a bound

‖T∗‖Lp→Lp,∞ ≲d p(‖T‖L∞
c →BMO + [K]H∗ +A).

Notice that Theorem 6.1 and results in Section 4 give Theorem V, since

(1.14) T∗ is bounded from L2(Rd) to L2,∞(Rd).

=⇒
Theorem 4.5

(6.1) T∗ is bounded from Lp(Rd) to Lp,∞(Rd) for any 1 < p ≤ 2.

=⇒
Theorem 4.6

(1.17) There exist 0 < p <∞ andB > 0 such that ‖T∗f‖Lp,∞(Q) ≤ B|Q|1/p‖f‖L∞

holds for any cubes Q ⊂ Rd and f ∈ L∞(Q).

=⇒
Theorem 4.6

(4.10) There exist 0 < p <∞ andB > 0 such that ‖T∗f‖Lp(Q) ≤ B|Q|1/p‖f‖L∞

holds for any cubes Q ⊂ Rd and f ∈ L∞(Q).

=⇒
Theorem 4.7

(1.18) T∗ is bounded from L∞
c (Rd) to BMO(Rd).

=⇒
Theorem 6.1

(6.2) T∗ is bounded from Lp(Rd) to Lp,∞(Rd) for any 2 ≤ p <∞.

=⇒ (1.14) T∗ is bounded from L2(Rd) to L2,∞(Rd).

and

(6.1) ∧ (6.2) T∗ is bounded from Lp(Rd) to Lp,∞(Rd) for any 1 < p <∞.

=⇒
interpolation

(1.15) T∗ is bounded on Lp(Rd) for any 1 < p <∞.

We begin with the following Lemma 6.2.

Lemma 6.2. Let T be a singular integral operator with a kernel K and T∗ be its maximal

operator. Suppose that K satisfies

[K]H∗ = sup
Q⊂Rd

1

|Q|

∫
y∈Q

∫
x∈Rd\2Q

∣∣∣∣K(x, y)− 1

|Q|

∫
z∈Q

K(x, z) dz

∣∣∣∣ dx dy <∞,

A = sup
Q⊂Rd

∫
y∈2Q\Q

|K(c(Q), y)| dy <∞.
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Then

sup
0<λ<R

λ2|{x ∈ Rd : T∗f(x) > λ }| <∞

holds for any f ∈ L∞
c,0(Rd) and R > 0.

Proof of Lemma 6.2. Let f ∈ L∞
c,0(Rd), Q be a cube such that supp f ⊂ Q and 0 < λ <

R. We define α ≥ 1 by

αd =
A‖f‖L∞

2λ
+ 1,

which implies

supp f ⊂ αQ,

1

|αQ|

∫
y∈αQ

|f | ≤ |Q|
|αQ|

‖f‖L∞ = α−d‖f‖L∞ ≤ λ/2A.

Using Lemma 4.3, we have

T∗f(x) ≤ 2‖f‖L∞

∫
y∈αQ

∣∣∣∣K(x, y)− 1

|αQ|

∫
z∈αQ

K(x, z) dz

∣∣∣∣ dy + λ/2

for x ∈ Rd \ 5αQ and therefore

λ2|{x ∈ Rd \ 5αQ : T∗f(x) > λ }|

≤ λ2
∣∣∣∣{x ∈ Rd \ 5αQ : 2‖f‖L∞

∫
y∈αQ

∣∣∣∣K(x, y)− 1

|αQ|

∫
z∈αQ

K(x, z) dz

∣∣∣∣ dy > λ/2

}∣∣∣∣
≤ 4λ‖f‖L∞

∫
y∈αQ

∫
x∈Rd\5αQ

∣∣∣∣K(x, y)− 1

|αQ|

∫
z∈αQ

K(x, z) dz

∣∣∣∣ dy
≤ 4λ‖f‖L∞ |αQ|[K]H∗

= 4λ‖f‖L∞(A‖f‖L∞/(2λ) + 1)|Q|[K]H∗

≤ 2(A‖f‖L∞ + 2λ)|Q|[K]H∗

≤ 2(A‖f‖L∞ + 2R)|Q|[K]H∗ .

Also it is easy to see that

λ2|{x ∈ 5αQ : T∗f(x) > λ }| ≤ λ2|5αQ|
= λ2(A‖f‖L∞/(2λ) + 1)|5Q|
≤ R(A‖f‖L∞/2 +R)|5Q|.

Proof of Theorem 6.1. Note that we have L∞
c,0(Rd) ⊂

dense
Lp(Rd) for 2 ≤ p <∞, hence it

is enough to consider f ∈ L∞
c,0(Rd). Using Theorem 5.7 and Lemma 6.2, we have

‖T∗f‖Lp,∞ ≤ ‖Mdyadic
0,s1

T∗f‖Lp,∞ ≲d p‖M#
0,2s2

T∗f‖Lp,∞

for any f ∈ L∞
c,0(Rd), where s1 = 1/2, s2 = 2−d−3. We write

BT := s−1
2 ‖T∗‖L∞

c →BMO + [K]H∗,p′ +A
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for simplicity and assume α > 2d/p+1BT . Fix f ∈ L∞
c,0(Rd), λ, α > 0 and form the

Lp-Calderón–Zygmund decomposition of f at height α−1λ (we choose α later). Then we

have

|{x ∈ Rd :M#
0,2s2

T∗f(x) > 2λ }|

≤
(5.7)

|{x ∈ Rd :M#
0,s2

T∗g(x) +Mdyadic
0,s2

T∗b(x) > 2λ }|

≤ |{x ∈ Rd :M#
0,s2

T∗g(x) > λ }|+ |{x ∈ Rd :Mdyadic
0,s2

T∗b(x) > λ }|

≤
(5.3),(5.9)

|{x ∈ Rd :M#T∗g(x) > s2λ }|+ s−1
2 |{x ∈ Rd : T∗b(x) > λ }|.

Now we use the L∞
c (Rd) → BMO(Rd) boundedness of T∗, which implies

‖M#T∗g‖L∞ = ‖T∗g‖BMO ≤ s2BT ‖g‖L∞ ≤
(3.7)

2d/pBTα
−1s2λ < s2λ

and thus

|{x ∈ Rd :M#T∗g(x) > s2λ }| = 0.

On the other hand, by the proof of Theorem 4.1, we know that

λp|{x ∈ Rd : T∗b(x) > λ }| ≤

(
5dαp +

αp−12d/p+2BT

1− 2d/p+1BTα−1

)
‖f‖pLp .

Therefore, we have

‖T∗f‖Lp,∞ ≲d p

(
5dαp +

αp−12d/p+2BT

1− 2d/p+1BTα−1

)1/p

‖f‖Lp .

The desired inequality follows from taking α = 2d/p+2BT .
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7 Appendix: Direct proofs of results under the L1 mean

Hörmander condition

In this section, we give a direct proof of Theorem I and a sufficient condition of the

L2(Rd) boundedness for convolution type singular integral operators under the L1 mean

Hörmander condition (Theorem 7.1), though they immediately follow from Theorem II

and known results under the classical Hörmander condition. Our argument is inspired

by the proof of [Fefferman, 1970, Theorem 2’]. We use a ‘bounded overlap’ variant of

the L1-Calderón–Zygmund decomposition.

Proposition 7.A ([Fefferman, 1970, DECOMPOSITION LEMMA]). Let f ∈ L1(Rd)

and λ > 0. Then there exists a pairwise disjoint family of dyadic cubes {Qj}j satisfying

Ω :=
⋃
j

Qj = {x ∈ Rd :Mf(x) > λ },

λ|2Ω| ≤ Cd‖f‖L1 where 2Ω :=
⋃
j

2Qj , (7.1)

|f(x)| ≤ λ a.e.x ∈ Rd \ Ω,

λ <
1

|Qj |

∫
Qj

|f | ≤ Cdλ,∑
j

χ2Qj ≤ Cd, (7.2)

where Cd denotes some positive constant depending only on dimension d. Moreover,

functions g, bj and b;

g := fχRd\Ω, bj := fχQj , b :=
∑
j

bj ,

satisfy

‖g‖L1 ≤ ‖f‖L1 , ‖g‖L∞ ≤ λ, ‖g‖2L2 ≤ λ‖f‖L1 , (7.3)

supp bj ⊂ Qj , |Qj |−1‖bj‖L1 ≤ Cdλ,
∑
j

‖b1‖L1 = ‖b‖L1 ≤ ‖f‖L1 . (7.4)

Remark 6. Our definition of functions g, bj , b is different from that of [Fefferman, 1970,

DECOMPOSITION LEMMA];

g := fχRd\Ω +
∑
j

χQj

|Q|

∫
Q
f, bj :=

(
f − 1

|Q|

∫
Q
f

)
χQj , b :=

∑
j

bj ,

since our argument does not need
∫
bj = 0.

Remark 7. Note that Proposition 7.A holds for any doubling measures (though the

constant Cd may change) and our proof of Theorem I below also works in this setting.
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Proof of Theorem I. Fix f ∈ L∞
c (Rd), λ, α > 0 and form the L1-Calderón–Zygmund

decomposition of f at height α−1λ (we choose α later). Moreover, We write ℓj := ℓ(Qj)

and

b̃j(x) :=

∫
y∈Q(x,ℓj)

bj(y)

|Q(y, ℓj)|
dy,

b̃(x) :=
∑
j

bj(x).

It suffices to estimate the following:

λ|{x ∈ Rd : |Tg(x)| > λ }|, (7.5)

λ|{x ∈ Rd : |T (b̃− b)(x)| > λ }|, (7.6)

λ|{x ∈ Rd : |T b̃(x)| > λ }|. (7.7)

(7.5) Since T is bounded on L2(Rd), it follows that

λ|{x ∈ Rd : |Tg(x)| > λ }| ≤ λ−1‖Tg‖2L2

≤ λ−1‖T‖2L2→L2‖g‖2L2

≤
(7.3)

α−1‖T‖2L2→L2‖f‖L1 .

(7.6) Since

{x ∈ Rd : |T (b̃− b)(x)| > λ } ⊂ 2Ω ∪ {x ∈ Rd \ 2Ω : |T (b̃− b)(x)| > λ },

it follows that

λp|{x ∈ Rd : |T (b̃− b)(x)| > λ }|
≤ λ|2Ω|+ λ|{x ∈ Rd \ 2Ω : |T (b̃− b)(x)| > λ }|
≤

(7.1)
Cdα‖f‖L1 + ‖T (b̃− b)‖L1(Rd\2Ω).

We estimate the second term by the L1 mean Hörmander condition. Note that b̃j satisfies

supp b̃j ⊂ 2Qj , which implies that

T b̃j(x) =

∫
z∈Rd

K(x, z)

(∫
y∈Q(z,ℓj)

bj(y)

|Q(y, ℓj)|
dy

)
dz

=

∫
y∈Qj

(
1

|Q(y, ℓj)|

∫
z∈Q(y,ℓj)

K(x, z) dz

)
bj(y) dy
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for x ∈ Rd \ 2Qj . Also notice that Q(y, 2ℓj) ⊂ 2Qj for y ∈ Qj . Thus, we have

‖T (b̃j − bj)‖L1(Rd\2Qj)

=

∫
x∈Rd\2Qj

∣∣∣∣∣
∫
y∈Qj

(
1

|Q(y, ℓj)|

∫
z∈Q(y,ℓj)

K(x, z) dz −K(x, y)

)
bj(y) dy

∣∣∣∣∣ dx
≤
∫
y∈Qj

1

|Q(y, ℓj)|

∫
z∈Q(y,ℓj)

∫
x∈Rd\Q(y,2ℓj)

|K(x, z)−K(x, y)| dz dx |bj(y)| dy

≤ [K]H1‖bj‖L1 .

Therefore, we obtain

‖Tb‖L1(Rd\2Ω) ≤
∑
j

‖Tbj‖L1(Rd\2Qj)

≤ [K]H1

∑
j

‖bj‖L1

≤
(7.4)

[K]H1‖f‖L1 .

(7.7) At first, we estimate ‖b̃‖L1 and ‖b̃‖L∞ . For each j, we obtain

‖b̃j‖L1 =

∫
x∈Rd

∣∣∣∣∣
∫
y∈Q(x,ℓj)

bj(y)

|Q(y, ℓj)|
dy

∣∣∣∣∣ dx
≤
∫
y∈Rd

∫
x∈Q(y,ℓj)

|bj(y)|
|Q(y, ℓj)|

dx dy

= ‖bj‖L1 ,

‖b̃j‖L∞ = ess sup
x∈Rd

∣∣∣∣∣
∫
y∈Q(x,ℓj)

bj(y)

|Q(y, ℓj)|
dy

∣∣∣∣∣
≤
∫
y∈Qj

|bj(y)|
|Q(y, ℓj)|

dy

= |Qj |−1‖bj‖L1

≤
(7.4)

Cdα
−1λ.

Note that here we used |Q(y, ℓj)| = |Qj |. In the case of doubling measures, we use

following estimate:

µ(Qj) ≤ µ(Q(y, 2ℓj)) ≲µ µ(Q(y, ℓj)) for any y ∈ Qj .

Anyway, now we have

‖b̃‖L1 ≤
∑
j

‖b̃j‖L1 ≤
∑
j

‖bj‖L1 ≤
(7.4)

‖f‖L1 ,

‖b̃‖L∞ ≤
∥∥∥∥∑

j

|b̃j |
∥∥∥∥
L∞

≤
∥∥∥∥∑

j

‖b̃j‖L∞χ2Qj

∥∥∥∥
L∞

≤
(7.2)

C2
dα

−1λ,
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and therefore

‖b̃‖2L2 ≤ ‖b̃‖L1‖b̃‖L∞ ≤ C2
dα

−1λ‖f‖L1 .

We use the L2(Rd) boundedness of T again and obtain

λ|{x ∈ Rd : |T b̃(x)| > λ }| ≤ λ−1‖T b̃‖2L2

≤ λ−1‖T‖2L2→L2‖b̃‖2L2

≤ α−1C2
d‖T‖2L2→L2‖f‖L1 .

Summing up the estimates of (7.5), (7.6) and (7.7) above, we have

‖Tf‖L1,∞ ≤ 3((1 + C2
d)‖T‖2L2→L2α

−1 + [K]H1 + Cdα)‖f‖L1 .

Now we choose

α = C
−1/2
d (1 + C2

d)
1/2‖T‖L2→L2

and conclude that

‖T‖L1→L1,∞ ≤ 3(C
1/2
d (1 + C2

d)
1/2‖T‖L2→L2 + [K]H1).

Finally, we prove the following sufficient condition of the L2(Rd) boundedness for

convolution type singular integral operators.

Theorem 7.1 ([Suzuki, 2021, Theorem 2]). Let K ∈ L1
loc(Rd \ {0}) satisfy

A := sup
0<a<b<∞

∣∣∣∣∣
∫
a<|x|<b

K(x) dx

∣∣∣∣∣ <∞, (7.8)

B := sup
a>0

1

a

∫
|x|<a

|x||K(x)| dx <∞, (7.9)

[K]H1
:= sup

r>0

1

Vdrd

∫
|y|≤r

∫
|x|≥2r

|K(x− y)−K(x)| dx dy <∞, (7.10)

where Vd denotes the volume of the d dimensional unit ball, and define Kε,R := Kχ{ε<|x|<R}
for 0 < ε < R <∞. Then Kε,R satisfies

sup
0<ε<R<∞

sup
ξ∈Rd

|K̂ε,R(ξ)| ≲d A+B + [K]H1 .

Theorem 7.1 is basically [Benedek et al., 1962, Theorem 3], but the Hörmander con-

dition is replaced by the L1 mean variant (though they are equivalent, it was not known

at the time of [Suzuki, 2021]). Anyway, we give a direct proof of Theorem 7.1 without

the equivalence. We use the following Lemma 7.2:

Lemma 7.2. If K ∈ L1
loc(Rd \ {0}) satisfies (7.9) and (7.10), then

sup
0<ε<R<∞

[Kε,R]H1 ≤ [K]H1 + 7B. (7.11)
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Proof of Lemma 7.2. It is obvious that

1

Vdrd

∫
|y|≤r

∫
|x|≥2r

|Kε,R(x− y)−Kε,R(x)| dx dy

=
1

Vdrd

∫
|y|≤r

∫
|x|≥2r,ε<|x−y|<R,ε<|x|<R

|K(x− y)−K(x)| dx dy

+
1

Vdrd

∫
|y|≤r

∫
|x|≥2r,ε<|x−y|<R,|x|≤ε

|K(x− y)| dx dy

+
1

Vdrd

∫
|y|≤r

∫
|x|≥2r,ε<|x−y|<R,|x|≥R

|K(x− y)| dx dy

+
1

Vdrd

∫
|y|≤r

∫
|x|≥2r,|x−y|≤ε,ε<|x|<R

|K(x)| dx dy

+
1

Vdrd

∫
|y|≤r

∫
|x|≥2r,|x−y|≥R,ε<|x|<R

|K(x)| dx dy

and the first term is bounded by [K]H1 . To estimate other terms, note that (7.9) implies

sup
a>0

∫
a<|x|<ca

|K(x)| dx ≤ sup
a>0

∫
a<|x|<ca

|x|
a
|K(x)| dx ≤ cB

for any c > 1. Since we have

ε < |x− y| < R, |x| ≤ ε ⇒ |x− y| ≤ |x|+ |y| ≤ 3|x|/2 ≤ 3ε/2,

ε < |x− y| < R, |x| ≥ R ⇒ |x− y| ≥ |x| − |y| ≥ |x|/2 ≥ R/2,

|x− y| ≤ ε, ε < |x| < R ⇒ |x| ≤ 2(|x− y|+ |y|)− |x| ≤ 2|x− y| < 2ε,

|x− y| ≥ R, ε < |x| < R ⇒ |x| ≥ 2(|x− y| − |y|)/3 + |x|/3 ≥ 2|x− y|/3 ≥ 2R/3

under the condition 2|y| ≤ 2r ≤ |x|, the second and fifth terms are bounded by 3B/2,

the third and fourth terms are bounded by 2B.

Proof of Theorem 7.1. Fix 0 < ε < R <∞ and ξ ∈ Rd. Since it is obvious that

|K̂ε,R(0)| =

∣∣∣∣∣
∫
ε<|x|<R

K(x) dx

∣∣∣∣∣ ≤
(7.8)

A,

we assume ξ 6= 0 and write s := |ξ|−1. If we decompose K̂ε,R(ξ) as

K̂ε,R(ξ)

=

∫
x∈Rd

Kε,R(x)e
−2πix·ξ dx

=

∫
|x|<2s

Kε,R(x)(e
−2πix·ξ − 1) dx+

∫
|x|<2s

Kε,R(x) dx+

∫
2s≤|x|

Kε,R(x)e
−2πix·ξ dx

=: I1 + I2 + I3,
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then we easily get

|I1| ≤
∫
|x|<2s

|Kε,R(x)||e−2πix·ξ − 1| dx ≤ 4π
1

2s

∫
|x|<2s

|x||Kε,R(x)| dx ≤
(7.9)

4πB,

|I2| =

∣∣∣∣∣
∫
ε<|x|<2s

Kε,R(x) dx

∣∣∣∣∣ ≤
(7.8)

A.

To estimate I3, fix a radial function φ ∈ C∞
c (Rd) such that

suppφ ⊂ B(0, 1),

∫
φ = 1, φ ≥ 0, |φ̂(1)| < 1,

where B(0, 1) means the unit ball and φ̂(1) denotes the value of φ̂ on the unit sphere,

and define φs(x) := s−dφ(s−1x). Moreover, rewrite I3 as

I3 =

∫
|x|≥2s

∫
|y|≤s

Kε,R(x)φs(y) dy e
−2πix·ξ dx (7.12)

and introduce

I4 :=

∫
|x|≥2s

∫
|y|≤s

Kε,R(x− y)φs(y) dy e
−2πix·ξ dx, (7.13)

I5 :=

∫
|x|<2s

∫
|y|≤s

Kε,R(x− y)φs(y) dy e
−2πix·ξ dx (7.14)

=

∫
|x|<2s

∫
|x−y|≤s

Kε,R(y)φs(x− y) dy e−2πix·ξ dx

=

∫
|x|<2s

∫
|y|≤3s

Kε,R(y)φs(x− y) dy e−2πix·ξ dx, (7.15)

I6 :=

∫
|x|<2s

∫
|y|≤3s

Kε,R(y)φs(x) dy e
−2πix·ξ dx (7.16)

= φ̂s(ξ)

∫
|y|≤3s

Kε,R(y) dy. (7.17)

We decompose I3 into (I3 − I4) + (I4 + I5) − (I5 − I6) − I6. By (7.12), (7.13) and

Lemma 7.2, we get

|I4 − I3|

=
(7.12),(7.13)

∣∣∣∣∣
∫
|x|≥2s

∫
|y|≤s

(Kε,R(x− y)−Kε,R(x))φs(y) e
−2πix·ξ dy dx

∣∣∣∣∣
≤
∫
|y|≤s

∫
|x|≥2s

|Kε,R(x− y)−Kε,R(x)|φs(y) dx dy

≤ Vd‖φ‖∞
1

Vdsd

∫
|y|≤s

∫
|x|<2s

|Kε,R(x− y)−Kε,R(x)| dx dy

≤ Vd‖φ‖∞[Kε,R]H1

≤
(7.11)

Vd‖φ‖∞([K]H1 + 7B).
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For I5 − I6, use (7.15), (7.16) and the mean value theorem to obtain

|I5 − I6|

=
(7.15),(7.16)

∣∣∣∣∣
∫
|x|<2s

∫
|y|≤3s

Kε,R(y)(φs(x− y)− φs(x))e
−2πix·ξ dy dx

∣∣∣∣∣
≤
∫
|x|<2s

∫
|y|≤3s

|Kε,R(y)||φs(x− y)− φs(x)| dy dx

≤
∫
|x|<2s

∫
|y|≤3s

|Kε,R(y)|s−d−1|y|‖∇φ‖L∞ dy dx

= 3s−d‖∇φ‖L∞

∫
|x|<2s

(
1

3s

∫
|y|≤3s

|y||Kε,R(y)| dy

)
dx

≤
(7.9)

3s−d‖∇φ‖L∞

∫
|x|≤2s

B dx

= 3 · 2dVd‖∇φ‖L∞B.

For I4 + I5 and I6, remark that φ̂s(ξ) = φ̂(sξ) = φ̂(1) because φ is radial and s = |ξ|−1.

Then it follows immediately that

I4 + I5 =
(7.13),(7.14)

̂Kε,R ∗ φs(ξ) = φ̂(1)K̂ε,R(ξ),

|I6| =
(7.17)

∣∣∣∣∣φ̂s(ξ)

∫
|x|≤3s

Kε,R(y) dy

∣∣∣∣∣ ≤
(7.8)

|φ̂(1)|A.

Now we have

|K̂ε,R(ξ)|
≤ |I1|+ |I2|+ |I3 − I4|+ |I4 + I5|+ |I5 − I6|+ |I6|

≤ 4πB +A+ Vd‖φ‖L∞([K]H1 + 7B) + |φ̂(1)||K̂ε,R(ξ)|+ 3 · 2dVd‖∇φ‖L∞B + |φ̂(1)|A

for any ξ ∈ Rd (it is still valid in the case ξ = 0). Finally, remember |φ̂(1)| < 1 to

conclude that

|K̂ε,R(ξ)| ≤
(1 + |φ̂(1)|)A+ (4π + Vd(7‖φ‖L∞ + 3 · 2d‖∇φ‖L∞))B + Vd‖φ‖L∞ [K]H1

1− |φ̂(1)|
.
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American Mathematical Society Series B, 9:286–296, 2022. doi: 10.1090/bproc/125.

[Tolsa, 2001a] X. Tolsa. BMO, H1, and Calderón-Zygmund operators for non doubling mea-

sures. Mathematische Annalen, 319(1):89–149, 2001a. doi: 10.1007/PL00004432.

[Tolsa, 2001b] X. Tolsa. A proof of the weak (1,1) inequality for singular integrals with

non doubling measures based on a Calderón-Zygmund decomposition. Publicacions

Matematiques, 45:163–174, 2001b. doi: 10.5565/PUBLMAT 45101 07.

[Tolsa, 2014] X. Tolsa. Analytic Capacity, the Cauchy Transform, and Non-homogeneous

Calderón–Zygmund Theory. Springer International Publishing, 2014. doi: 10.1007/

978-3-319-00596-6.
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