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Abstract

Object identification has become one of the focussed areas in computer vision. It

is widely utilized in various computer vision applications, e.g., robotics, security,

mobile apps, transportation, and many more. A conventional definition of object

identification, is deciding whether two observations are the same object or not. This

thesis redefines this definition by giving a broader alternative context to the existing

computer vision applications that could be slotted in such a way to describe the

conventional definition more clearly.

Chapter 1 introduces a new definition of image matching for an identity as “object

identification” to systematically generalize two, or even more scenarios. To iden-

tify objects in a computer vision application, input images are generally matched to

another set of output images. These two image sets are generally identified by in-

ferring from both input and output sides as an image pair. Based on this idea, the

“pairing concept” is introduced here. To discuss this new concept, existing computer

vision, especially object identification tasks are carefully analyzed and redefined. To

start with, object identification is categorized into three categories; Instance-to-Class,

Instance-to-Value, and Instance-to-Instance. The first category, Instance-to-Class ob-

ject identification, is familiar and straightforward as in traditional image recognition

tasks, e.g., face classification. Next, the second category, Instance-to-Value object

identification, provides solutions for di�erent image recognition problem settings,

e.g., regression and key-point matching. For these two categories of object iden-

tification, since the instances are not paired, but rather straightforwardly identified

as one class or value, they are not the main interest of this thesis. Meanwhile, the

third category, Instance-to-Instance object identification, is discussed in this thesis

through the newly proposed pairing concept between input and output instances. In

order to explain the pairing concept, the thesis will focus on Research topic 1: Object

pose estimation with incremental viewpoints and Research topic 2: Set-to-set Person
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re-identification. The former is an example of pairing images from di�erent view-

points for optimal multi-view object pose estimation, while the latter is an example

of pairing images of people for wide area surveillance, respectively.

Chapter 2 reviews the current work in the discussed fields and comprehensively an-

alyzes the state-of-the-art in this field. Existing works related to object identification

for pose estimation and person re-identification, together with object identification

applications are introduced.

Chapter 3 introduces an example of the Instance-to-Instance object identification as

pairing images from di�erent viewpoints; Research topic 1: object pose estimation

with incremental viewpoint. Generally, the aim of the task is estimating an object’s

pose from a single observation. Traditionally, the estimated pose is a value that is

yielded as a result of Instance-to-Value object identification. However, most exist-

ing works on single-viewpoint pose estimation face the ambiguity problem, which

occurs when an object cannot be fully captured from one viewpoint or occluded.

To solve this ambiguity problem, it is essential to select an alternative viewpoint.

Averaging the original and current viewpoints with a careful arrangement and de-

cision could infer the best viewpoint among all viewpoints. For this, this thesis

introduces an entropy-based score of the object pose ambiguity; by selecting a view-

point that minimizes this score, the best next-viewpoint is recommended. Evaluation

is performed with synthetic object images of several indoor object categories. It

demonstrates that the proposed method can properly estimate a pose when facing an

ambiguous angular pose for a given object category, which is very important when

considering the pose estimation in a categorical level, e.g., comparing mug images

from many mug types.

Chapter 4 introduces an example of the Instance-to-Instance object identification as

pairing images of people; Research topic 2: simultaneous person re-identification.

In general, the aim of this task is identifying all persons in scenes captured from

di�erent cameras which could be considered as paring persons between query and
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gallery sets from the pairing perspective. Traditionally, the single query pairing set-

ting in Instance-to-Instance object identification is applied, whereas similarity of

persons that appear in two di�erent cameras is compared individually. However, in

such a naı̈ve approach, redundant matching or pairing occurs, where one of the per-

sons could be paired with multiple persons, leading to degraded performance. This

occurs when the pairing is performed without considering the successfully paired

persons. In addition, until recently, a small number of work focussed on non-similar

image numbers in the person re-identification task, where the number of images

in query and gallery sets are unbalanced. Therefore, this thesis proposes a person

re-identification method that challenges two issues; redundant pairing and multi-

ple query pairing for person identification based on object selection and arrangement

during the image pairing process. Concretely, the Stable Marriage Algorithm (SMA)

is introduce to solve the problem. Evaluation is performed with publicly existing

dataset images of pedestrians in a two-camera condition setting. It demonstrates that

the proposed method can successfully pair the persons between query and gallery

cameras individually or simultaneously, which is essential when facing similar and

non-similar numbers of images in query and gallery sets.

Chapter 5 summarizes the thesis and discusses object identification based on Re-

search topics 1 and 2, where their solutions can be considered under one framework.

To better understand the implications of pairing approaches in object identification,

as the thesis’s future outlook, the studies and exploration could address other appli-

cations in computer vision under the proposed framework.
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Chapter 1

Introduction

Today, the innovation and technology surrounding human life keep growing up-

wards, accelerating highly accurate and reliable systems for all life purposes. Human

interactions with technology appliances have changed over time [1]. This interaction

change is easy to realize, along with the Industrial Revolution, the transition to new

manufacturing processes in United Kingdom, continental Europe, and the United

States, from the �rst Industrial Revolution to the recent Fourth Industrial Revolu-

tion (IR 4.0) [2] The positive change in the way we live, is that technology helps us

gain quality and safe life. One of the technical �elds which deliver good quality in

life is computer vision. Computer vision endeavors to extract creative and practical

information of an object's visual appearances from signals received from a visual

sensor in the form of an an image or a video [3]. From robotic manufacturing to

security monitoring and alerting applications, computer vision delivers a vast bene�t

to people [4]. Recently, it has been considered as one of Arti�cial Intelligence (AI)

solutions to many types of problems [5].

The object identi�cation topics are discussed frequently as a computer vision task

such as object detection, object classi�cation, object estimation, object re-identi�ca-

tion, and many more. Most of the work in object identi�cation has focussed on ex-

tracting better image features until the prevalence of the recent deep learning [6, 7].

Nevertheless, the study on the basic matching or identi�cation between one object to

1



2 Chapter 1.Introduction

another object is yet necessary. This thesis is presented as the author's challenge of

looking into how an object is properly matched or identi�ed. The thesis introduces a

new de�nition of “object identi�cation” to identify objects in various aspects in vari-

ous existing computer vision tasks. Existing computer vision tasks will be rede�ned

under the “pairing” concept; considering an object paired with another object, which

will lead the thesis to a new way of observing conventional object identi�cation.

The following Section 1.1 will describe the idea of pairing. Then by utilizing three

new categories of object identi�cation tasks under the pairing concept; Instance-

to-Class, Instance-to-Value, and Instance-to-Instance, this pairing framework is ex-

plained. Since the former two categories have previously been studied well, they will

not be studied in detail in this thesis, but they will be explained how they could be a

part of the categories under the new concept. Next, Section 1.2 introduces existing

computer vision applications, which serves as an introduction to the newly de�ned

pairing concept for object identi�cation tasks. The main contribution, including the

overview of the proposed methods is introduced in Section 1.3. Furthermore, general

descriptions of the research covering problems and proposed solutions are introduced

in Section 1.4. Finally, Section 1.5 presents the structure of this thesis.

1.1 Pairing

To explain the importance of pairing in identi�cation, the matching in an identi�ca-

tion task with the pairing concept is introduced and discussed in this Section. Pairing,

the term we use in the thesis, �nds the best combination of two instances by compar-

ing the similarity of instances or images between compared images. Introducing the

pairing concept as the main core of identi�cation could improve the general identi�-

cation performance, since it carefully pairs the instances based on the needs of each

application.

The identi�cation problem could be observed in a newpairing framework with a

variety of problem settings, depending on the given input and output for various
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Figure 1.1: Instances in query and gallery sets for face recognition. The query
image and gallery image e.g., (query1,gallery4) is de�ned as paired images under

the pairing concept (Images taken from [10]).

computer vision tasks. Such computer vision tasks will be discussed in Section 1.2.

For each of those tasks, e.g., surveillance [8], face recognition [9], object identi-

�cation could be de�ned as pairing of an query instance ID with gallery instance

IDs by binary classi�cation as illustrated in Figure 1.1. As such, we could rede�ne

various object identi�cation tasks in a new manner. Concretely, the object identi�ca-

tion tasks are classi�ed into four categories, as illustrated in Table 1.1; classi�cation,

regression, single query pairing, and multiple query pairing.
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