1	Intrauterine exposure to hypertensive disorders of pregnancy and postnatal growth in extremely
2	and very preterm infants
3	
4	Takafumi Ushida ^{1,2} , Tomomi Kotani ^{1,2} , Masahiro Nakatochi ³ , Yumiko Kobayashi ⁴ , Noriyuki
5	Nakamura ¹ , Kenji Imai ¹ , Yukako Iitani ¹ , Tomoko Nakano-Kobayashi ¹ , Masahiro Hayakawa ⁵ ,
6	Hiroaki Kajiyama ¹ , for the Neonatal Research Network of Japan.
7	
8	¹ Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine,
9	Nagoya, Japan
10	² Division of Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital,
11	Nagoya, Japan
12	³ Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University
13	Graduate School of Medicine, Nagoya, Japan
14	⁴ Data Science Division, Data Coordinating Center, Department of Advanced Medicine,
15	Nagoya University Hospital, Nagoya, Japan
16	⁵ Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital,
17	Nagoya, Japan
18	

19 *Corresponding author:

- 20 Takafumi Ushida, M.D., Ph.D.
- 21 Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine,
- 22 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan,
- 23 Tel: +81-52-744-2261
- 24 Fax: +81-52-744-2268
- 25 E-mail: u-taka23@med.nagoya-u.ac.jp
- 26

```
27 Abstract
```

Objectives: There is growing evidence regarding the association between rapid growth during infancy and metabolic and cardiovascular diseases later in life. We aimed to evaluate postnatal growth trajectories in extremely and very preterm infants exposed to hypertensive disorders of pregnancy (HDP) in utero.

Study design: This multicenter retrospective study used a nationwide database of preterm infants weighing $\leq 1,500$ g born between 22 and 31 weeks of gestation between 2003 and 2015. Main outcome measures: The Z-scores for height and weight were evaluated at three time points (at birth, corrected age of 1.5 years, and chronological age of 3 years) in 5,144 infants (HDP, n=1,188; non-HDP, n=3,956). Univariate and multivariate regression analyses were performed to investigate the associations between HDP exposure and accelerated postnatal growth.

39	Results : Male and female infants in the HDP group showed increased mean Z-scores for height
40	and weight, whereas those in the non-HDP group showed decreased mean Z-scores.
41	Multivariate analyses showed that HDP were associated with accelerated postnatal growth (Δ
42	Z-scores) in weight in both male and female infants (β coefficient [95% CI]; male 0.17 [0.05
43	to 0.30], female 0.27 [0.14 to 0.39]), but not in height (male 0.02 [-0.09 to 0.13], female 0.04
44	[-0.06 to 0.15]). An interaction analysis revealed no significant differences in the effects of
45	HDP on postnatal growth between male and female infants.
46	Conclusions: Intrauterine exposure to HDP contributes to accelerated postnatal weight growth
47	in extremely and very preterm infants during early childhood. In addition, no sex differences
48	were observed in postnatal growth.
49	
50	Keywords: catch-up growth, DOHaD, fetal programming, hypertensive disorders of pregnancy,
51	small for gestational age
52	
53	Abbreviation
54	CAM, chorioamnionitis; DM, diabetes mellitus; DOHaD, Developmental Origins of Health
55	and Disease; GDM, gestational diabetes mellitus; HDP, hypertensive disorders of pregnancy;
56	IVH, intraventricular hemorrhage; LCC, late-onset circulatory collapse; NICU, neonatal
57	intensive care unit; NRNJ, Neonatal Research Network of Japan; PDA, patent ductus

Introduction

61	Hypertensive disorders of pregnancy (HDP), including preeclampsia and gestational
62	hypertension, are common complications that affect 5%-10% of all pregnancies worldwide
63	(1). Recently, increasing evidence has demonstrated elevated lifetime risks for metabolic and
64	cardiovascular diseases in infants born to mothers with HDP (2-6). Long-term
65	epidemiological studies have demonstrated that infants exposed to preeclampsia in utero are
66	at a higher risk of developing endocrine or metabolic diseases (7) and have a two-to three-
67	fold increased risk of hypertension and obesity at a young adult age (4). The underlying
68	mechanism linking HDP and infants' subsequent metabolic and cardiovascular disease risks
69	has yet to be fully elucidated; however, these alterations in cardiometabolism may be
70	attributed to various factors, such as fetal programming by exposure to HDP in utero, shared
71	genetic susceptibility to such diseases, and postnatal lifestyle factors (e.g., dietary patterns,
72	smoking, alcohol, stress, and physical activity) (2).
73	
74	In cases of pregnancies complicated by HDP, particularly preeclampsia, fetuses are
75	exposed to various insults in utero, such as hypoxia, undernutrition, oxidative stress, and
76	inflammatory cytokines (e.g., interleukin-6 and tumor necrosis factor- α) attributed to

77	abnormal placentation in the early stages of pregnancy (8). Thus, fetal growth restrictions,
78	which are often accompanied by abnormal umbilical arterial blood flow and a non-reassuring
79	fetal status pattern in cardiotocography, occur in approximately 30%-50% cases of early
80	onset HDP (9). According to the Developmental Origins of Health and Disease (DOHaD)
81	hypothesis advocated by David Baker, fetuses exposed to various insults in utero undergo
82	adaptive responses to hostile environments, resulting in the development of a "thrifty
83	phenotype" to conserve energy for postnatal life (10). In cases of a greater mismatch between
84	intra- and extra-uterine environments, these adaptive responses may cause negative
85	consequences, such as life-long susceptibility to non-communicable diseases such as diabetes
86	mellitus and hypertension (11). As evidence of the DOHaD hypothesis, some epidemiological
87	studies have demonstrated that growth-restricted infants are more likely to show catch-up and
88	accelerated growth in early childhood and that these infants have increased risks for obesity
89	and diabetes and show cardiovascular alterations during adolescence or young adulthood (12,
90	13).
91	

92 Several studies have demonstrated that intrauterine exposure to HDP accelerates 93 postnatal growth in late preterm and term infants (14-18); however, little is known regarding 94 the effect of maternal HDP on postnatal growth in extremely or very preterm infants. To date, 95 only a few case-control studies with small sample sizes (n=80–135) have been conducted on

96	this issue (19, 20); however, no large cohort study focusing on very preterm infants has been
97	conducted. In addition, most reports did not properly consider covariates that could affect
98	postnatal growth in statistical analysis (16, 17, 20). Thus, in this study, we sought to investigate
99	the postnatal growth trajectories in extremely and very preterm infants exposed to maternal
100	HDP using a nationwide neonatal database in Japan and to evaluate the accelerated growth
101	attributed to HDP using multivariate analyses.

- 102
- 103

Methods

104 This multicenter retrospective study used a nationwide database of extremely and very preterm infants weighing $\leq 1,500$ g born at 22–31 weeks of gestational age between 2003 and 1051062015. Approximately 200 facilities in Japan, mainly neonatal intensive care units (NICUs) of 107levels II and III, participate in the Neonatal Research Network of Japan (NRNJ), and more 108 than 4,000 infants are registered in this database each year, covering approximately 70% of very low birth weight neonates born in Japan (21). This database provides maternal and 109 neonatal information, including prenatal obstetric factors and short-term (at NICU) and long-110111 term (3 years of age) infant outcomes, along with physical assessment at birth, corrected age 112of 1.5 years, and chronological age of 3 years. The maternal and neonatal clinical information obtained from the medical records at the participating institutions was anonymized and sent 113114 to the NRNJ database center on a yearly basis. Informed consent was obtained from the

caregivers of the infants at each facility. This study was approved by the Institutional Ethics
Committee of Nagoya University Hospital (approval number: 2018–0026), and the data use
was approved by the Japan Neonatal Network Executive Committee.

118

A total of 44,657 infants weighing $\leq 1,500$ g, born at a gestational age of 22–31 weeks, 119120were included in the NRNJ database during the study period. The following cases were excluded from this study: those involving multiple pregnancies, major congenital and 121chromosomal abnormalities, out-of-hospital births, in-hospital mortality, and incomplete 122medical records on maternal characteristics and neonatal outcomes. The Z-scores of body 123weight and height at birth, corrected age of 1.5 years, and chronological age of 3 years were 124125calculated using the software provided by the Japanese Society for Pediatric Endocrinology 126based on the Japanese neonatal anthropometric chart in 2000 (22). This software was developed based on the LMS method (23). The formula for the Z-scores is as follows: Z-scores = [(X/M) 127^L -1]/(L × S), where X: measured values (weight or height); M: median; L (Lambda): 128asymmetry value; and S (Sigma): variation coefficient. Z-scores permit a more precise 129130assessment of infant growth compared with percentiles (24).

131

132 Small for gestational age (SGA) infant was defined if both body weight and height
133 were below the 10th percentile for the gestational age, based on the sex-specific Japanese

neonatal anthropometric chart in 2000 (22). HDP were defined as a systolic blood pressure
≥140 mmHg and/or diastolic blood pressure ≥90 mmHg during pregnancy (25). Neonatal
complications were defined as previously described (26).

137

138All statistical analyses were performed using the SPSS 27 software (SPSS Inc., 139Chicago, IL, USA) and SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). Differences between the two groups were assessed using the Mann–Whitney U test for continuous variables 140and chi-squared test for categorical variables. Statistical significance for all analyses was set at 141p < 0.05. Multivariate regression analyses were performed to evaluate the association between 142exposure to HDP and accelerated postnatal growth during the first 3 years from birth after 143adjustment of the potential variables recognized as clinically important based on the literature 144(27-29). In this study, two types of covariates (#1 [prenatal and early postnatal factors] and #2 145[prenatal, early postnatal, and late postnatal factors at NICU discharge]) were used for 146adjustment in multivariate analyses: prenatal and early postnatal factors, including maternal 147age, parity, gestational age at delivery, mode of delivery, gestational diabetes mellitus 148(GDM)/diabetes mellitus (DM), histological chorioamnionitis (CAM), antenatal corticosteroid 149treatment, infant sex, and birth weight (or height) Z-scores; and postnatal factors at NICU 150discharge, including chronic lung disease, intraventricular hemorrhage (IVH) (grade III/IV), 151periventricular leukomalacia, sepsis, necrotizing enterocolitis, patent ductus arteriosus (PDA) 152

153	banding, late-onset circulatory collapse (LCC), and total parenteral nutrition. The magnitude
154	of the difference in the Δ Z-scores of height (or weight) from the reference (non-HDP group)
155	was expressed as a $\boldsymbol{\beta}$ coefficient. To investigate whether the effect of HDP on postpartum
156	accelerated growth varies across infant sex, we assessed the interaction between infant sex and
157	HDP in the multivariate models. A p -value <0.05 for the interaction indicated a significant
158	difference in the effect of HDP on accelerated growth between male and female infants.
159	
160	Results
161	Among 44,657 infants weighing \leq 1,500 g born at 22–31 weeks of gestational age, 19,331
162	(HDP, n=4,258 [22.0%]; non-HDP, n=15,073 [78.0%]) were eligible for this study after
163	excluding 25,326 infants (Figure 1). Among 19,331 infants discharged from NICUs, 5,144
164	infants (HDP, n=1,188; non-HDP, n=3,956) underwent physical assessment at corrected age
165	of 1.5 years and chronological age of 3 years. These accounted for 26.6% of the infants
166	discharged from the NICUs. A total of 14,187 infants were not followed up because they
167	were transferred to other hospitals or were lost to follow-up.
168	
169	Table 1 shows the maternal and neonatal characteristics, including short-term
170	neonatal morbidities, of the two groups. The mothers in the HDP group were older and more

171likely to be primiparous, delivered at a slightly later gestational age, and had a higher rate of

172	cesarean sections than those in the non-HDP group. The mothers in the non-HDP group had
173	higher rates of antenatal corticosteroid treatment and histological CAM. The infants in the
174	HDP group had a lower birth weight and were more likely to be female and SGA than those
175	in the non-HDP group. Infants born to mothers with HDP showed a significantly lower
176	incidence of respiratory distress, persistent pulmonary hypertension of the newborn, IVH
177	(grade III/IV), sepsis, PDA banding, and LCC.
178	

Figure 2 shows the trajectories of the mean Z-scores for height and weight with 95% 179confidence intervals (CIs) at three different time points (at birth, corrected age of 1.5 years, and 180 chronological age of 3 years) in the HDP and non-HDP groups stratified according to infant 181 182sex. Overall, male and female infants in the HDP group showed increased mean Z-scores for 183height and weight, mainly between birth and corrected age of 1.5 years (Figure 2A–D). On the other hand, both male and female infants in the non-HDP group showed decreased mean Z-184scores for height and weight during the first 3 years. Supplementary Table 1 shows the physical 185assessments and Z-scores at birth, corrected age of 1.5 years, and chronological age of 3 years. 186

187

Figure 3 presents a graph showing Z-scores at birth plotted against Δ Z-scores between birth and 3 years of age to depict the distribution. We found a negative correlation between Zscores at birth and the Δ Z-scores for height and weight during the first 3 years in both groups. Both male and female infants in the HDP group showed significantly lower Z-scores at birth and increased Δ Z-scores than those in the non-HDP group.

193

194	To eliminate the possibility that the increased mean Z-scores of height and weight in
195	the HDP group (Figure 2A–D) were simply a result of the increased rate of infants with SGA
196	in the HDP group, we performed univariate and multivariate regression analyses to evaluate
197	the effect of intrauterine exposure to HDP on the Δ Z-scores for height and weight during the
198	first 3 years after birth, after adjusting for eight covariates including Z-scores at birth (Table 2).
199	In the univariate analysis, the HDP group showed accelerated postnatal growth (increased ΔZ -
200	scores) in height and weight in both male and female infants. However, the multivariate
201	analysis, which incorporated eight prenatal and early postnatal covariates (#1), demonstrated
202	that HDP were associated with accelerated postnatal growth (Δ Z-scores) in weight in both
203	male and female infants (β coefficient [95% CI]: male, 0.17 [0.05 to 0.30], female, 0.27 [0.14
204	to 0.39]), but not with height (male, 0.02 [-0.09 to 0.13]; female 0.04 [-0.06 to 0.15]). These
205	results were consistent with another multivariate analysis that was adjusted for 16 covariates
206	(#2), including prenatal, early postnatal, and late postnatal factors (β coefficient [95% CI]: male,
207	0.17 [0.05 to 0.30]; female, 0.27 [0.15 to 0.39]), but not in height (male, 0.03 [-0.08 to 0.13];
208	female, 0.05 [-0.05 to 0.15]).

210	It was observed that the β coefficient of female body weight was larger than that of
211	male body weight by both types of multivariate analyses; thus, we performed an additional
212	analysis to investigate whether the effect of HDP on postpartum accelerated growth varies
213	according to infant sex. In this interaction analysis, we observed no significant difference in
214	the effect of HDP on accelerated postnatal growth (Δ Z-scores of body weight) between male
215	and female infants after adjusting for the two types of covariates (#1 and #2) (Table 3).
216	
217	Discussion
218	In this multicenter retrospective study, we demonstrated the postnatal growth trajectories of
219	extremely and very preterm infants born to mothers with HDP and evaluated the effect of HDP
220	on postnatal growth using a nationwide Japanese neonatal database. The main finding of this
221	study was that HDP contributed to accelerated postnatal growth of weight, but not height,
222	during the first 3 years after birth in both male and female infants. In addition, in this study, we
223	found no significant association between infant sex and accelerated postnatal growth in infants
224	born to mothers with HDP.
225	
226	Our findings are consistent with those of previous studies showing accelerated
227	postnatal growth in term infants exposed to preeclampsia (16, 18, 19). Vatten et al.

228 demonstrated that maternal preeclampsia was associated with increased weight and body mass

229	index (BMI) in female infants (preeclampsia, n=243; control, n=3,853) (18). A Swedish cohort
230	study demonstrated accelerated height gain in early childhood due to prenatal exposure to
231	preeclampsia (preeclampsia, n=865; control, n=22,898) (16). Beukers et al. demonstrated that
232	the majority of growth-restricted children born to mothers with HDP underwent caught-up
233	growth within the normal range at 4.5 years of age (HDP: n=135) (19). However, a consensus
234	regarding whether accelerated growth occurs in terms of both height and weight, or either
235	height or weight, in infants born to mothers with HDP has not been reached. At first glance,
236	infants exposed to HDP showed accelerated growth in both weight and height (Figure 2);
237	however, multivariate analyses revealed that HDP were associated with accelerated growth of
238	weight alone, considering the effect of Z-scores at birth and the maternal and neonatal
239	characteristics that can affect postnatal growth (Table 2). These conflicting results between the
240	univariate and multivariate analyses could be explained by the difference in the distribution of
241	Z-scores at birth between the HDP and non-HDP groups (Figure 3). The negative correlations
242	between Z-scores at birth and postnatal growth were similar between the two groups. Clinically,
243	the results of this study suggest that infants born to mothers with HDP may have an increased
244	risk of obesity, diabetes, and cardiovascular disease later in life based on the association
245	between rapid weight gain in infancy and metabolic disturbances and cardiovascular alterations
246	(30, 31).

248The issue of sex differences in postnatal growth patterns following in utero exposure to HDP remains controversial. A previous cohort study by Seidman et al. demonstrated that 249male term infants exposed to preeclampsia showed higher body weight and BMI at 17 years of 250age (preeclampsia, n=145; control, n=12,701), whereas there was no significant difference in 251female infants between the two groups (15). Mitsui et al. reported a higher incidence of catch-252253up growth during the first 3 years after birth in female term infants (male: n=13, female: n=16) (32). Furthermore, Byberg et al. showed a positive association between exposure to 254preeclampsia and higher weight and BMI after preschool age in female infants (male, n=230; 255female, n=238) (33). This discrepancy in sex differences may result from a complex 256combination of factors, such as the intrauterine environment (e.g., severity and type of HDP), 257degree of prematurity (term of preterm), neonatal adverse morbidities, postnatal treatments and 258nutrients (e.g., type and period of lactation), and various postnatal environments. In this study, 259we found no significant differences between the sexes in terms of postnatal growth in the HDP 260group. This could be explained by the fact that the factors that can affect postnatal growth in 261very preterm infants are more likely to be severe and complex than those affecting postnatal 262263growth in term infants, suggesting that the sex differences may be underestimated due to various other factors. Furthermore, several studies have not performed an interaction analysis 264to demonstrate sex differences in postnatal growth (15, 32). 265

267	The underlying mechanism linking maternal HDP to accelerated postnatal growth
268	remains to be completely elucidated; however, the DOHaD hypothesis is widely accepted (34).
269	Many studies have focused on the association between low birth weight and increased insulin
270	levels, insulin resistance, and abdominal obesity (33, 35). Furthermore, in the last decade, the
271	mechanisms for increased risk of subsequent metabolic syndrome and cardiovascular disease
272	have been found to be associated with epigenetic alterations (e.g., DNA methylation and
273	histone modifications) or cardiovascular remodeling caused by exposure to adverse intrauterine
274	environments (12, 34, 36).

275

The strength of this study lies in its examination of postnatal growth trajectories, 276277specifically in extremely and very preterm infants born to mothers with HDP. Few studies have 278been conducted on this topic thus far. In addition, the number of participants was larger than 279that those in previous reports (14, 19, 32). Second, we focused on extremely and very preterm infants to eliminate the influence of differences in gestational age on the results. Several studies 280did not match the gestational age or percentage of preterm neonates between the HDP and 281control groups (16). Third, we performed multivariate analyses to evaluate the effect of HDP 282on postnatal growth across the infant sex; most previous studies did not consider the effect of 283covariates (e.g., Z-scores at birth, maternal characteristics, and neonatal complications) on 284postnatal growth (20, 37, 38). In addition, we performed an interaction analysis to investigate 285

the sex differences in postnatal growth.

288	Our study has several limitations. First, the NRNJ database does not include certain
289	perinatal information, including the type and severity of HDP, causes of preterm birth, and
290	potentially confounding variables such as early aggressive nutrition management, period of
291	breastfeeding, and maternal and paternal physical data. Byberg et al. showed that postnatal
292	growth differed according to preeclampsia severity only in male infants (14). Beukers et al.
293	evaluated the catch-up growth rate of height by adjusting for maternal and paternal height to
294	consider parental contribution to child growth (19). Finally, among 19,331 neonates
295	discharged from NICUs in the NRNJ database, only one-fourth of the infants were followed
296	up at 3 years of age. Thus, we cannot exclude the possibility of a selection bias in
297	participation.
298	
299	Conclusion
300	Intrauterine exposure to early onset HDP contributes to accelerated postnatal growth of weight
301	but not height in extremely and very preterm infants during early childhood. In addition, no
302	significant association was found between infant sex and accelerated postnatal growth in
303	infants born to mothers with HDP. Our results indicate that extremely and very preterm infants
304	born to mothers with HDP may be at high risk of developing metabolic and cardiovascular

305	diseases later in life. Therefore, these infants require particular attention to postnatal growth,
306	and regular physical assessment throughout adolescence and young adulthood may be
307	important to prevent such diseases.
308	
309	Acknowledgements
310	We would like to thank Editage for English language editing.
311	
312	Funding
313	This study was supported by a grant from the Japan Society for the Promotion of Science (JSPS
314	KAKENHI 19K18637) awarded to TU.
315	
316	Disclosures
317	The authors have no potential conflicts of interest to disclose.
318	
319	References
320	1. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al.
321	Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management
322	Recommendations for International Practice. Hypertension. 2018;72(1):24-43.
323	2. Goffin SM, Derraik JGB, Groom KM, Cutfield WS. Maternal pre-eclampsia and long-term
324	offspring health: Is there a shadow cast? Pregnancy Hypertens. 2018;12:11-5.
325	3. Tripathi RR, Rifas-Shiman SL, Hawley N, Hivert MF, Oken E. Hypertensive Disorders of
326	Pregnancy and Offspring Cardiometabolic Health at Midchildhood: Project Viva Findings. J Am
327	Heart Assoc. 2018;7(3).

- Davis EF, Lewandowski AJ, Aye C, Williamson W, Boardman H, Huang RC, et al. Clinical
 cardiovascular risk during young adulthood in offspring of hypertensive pregnancies: insights from
 a 20-year prospective follow-up birth cohort. BMJ Open. 2015;5(6):e008136.
- 5. Davis EF, Lazdam M, Lewandowski AJ, Worton SA, Kelly B, Kenworthy Y, et al.
 Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a
 systematic review. Pediatrics. 2012;129(6):e1552-61.
- 6. Pinheiro TV, Brunetto S, Ramos JG, Bernardi JR, Goldani MZ. Hypertensive disorders
 during pregnancy and health outcomes in the offspring: a systematic review. Journal of
 developmental origins of health and disease. 2016;7(4):391-407.
- 337 7. Wu CS, Nohr EA, Bech BH, Vestergaard M, Catov JM, Olsen J. Health of children born
 338 to mothers who had preeclampsia: a population-based cohort study. Am J Obstet Gynecol.
 339 2009;201(3):269 e1- e10.
- 8. Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, Hofmeyr GJ. Preeclampsia. Lancet (London, England). 2016;387(10022):999-1011.
- 342 9. Ferrazzani S, Luciano R, Garofalo S, D'Andrea V, De Carolis S, De Carolis MP, et al.
 343 Neonatal outcome in hypertensive disorders of pregnancy. Early human development.
 344 2011;87(6):445-9.
- 345 10. Hales CN, Barker DJ. The thrifty phenotype hypothesis. British medical bulletin.
 346 2001;60:5-20.
- 347 11. Gluckman PD, Hanson MA. The developmental origins of the metabolic syndrome. Trends
 348 Endocrinol Metab. 2004;15(4):183-7.
- Crispi F, Miranda J, Gratacos E. Long-term cardiovascular consequences of fetal growth
 restriction: biology, clinical implications, and opportunities for prevention of adult disease. Am J
 Obstet Gynecol. 2018;218(2s):S869-s79.
- 13. Huang YT, Lin HY, Wang CH, Su BH, Lin CC. Association of preterm birth and small for
 gestational age with metabolic outcomes in children and adolescents: A population-based cohort
 study from Taiwan. Pediatrics and neonatology. 2018;59(2):147-53.
- Byberg KK, Oymar K, Eide GE, Forman MR, Juliusson PB. Exposure to preeclampsia in
 utero affects growth from birth to late childhood dependent on child's sex and severity of exposure:
 Follow-up of a nested case-control study. PLoS One. 2017;12(5):e0176627.
- Seidman DS, Laor A, Gale R, Stevenson DK, Mashiach S, Danon YL. Pre-eclampsia and
 offspring's blood pressure, cognitive ability and physical development at 17-years-of-age. British
 journal of obstetrics and gynaecology. 1991;98(10):1009-14.
- 361 16. Gunnarsdottir J, Cnattingius S, Lundgren M, Selling K, Hogberg U, Wikstrom AK.
 362 Prenatal exposure to preeclampsia is associated with accelerated height gain in early childhood.
 363 PLoS One. 2018;13(2):e0192514.
- 364 17. Ogland B, Vatten LJ, Romundstad PR, Nilsen ST, Forman MR. Pubertal anthropometry365 in sons and daughters of women with preeclamptic or normotensive pregnancies. Arch Dis Child.

 $366 \quad 2009;94(11):855-9.$

- 367 18. Vatten LJ, Romundstad PR, Holmen TL, Hsieh CC, Trichopoulos D, Stuver SO.
 368 Intrauterine exposure to preeclampsia and adolescent blood pressure, body size, and age at
 369 menarche in female offspring. Obstetrics and gynecology. 2003;101(3):529-33.
- Beukers F, Cranendonk A, de Vries JI, Wolf H, Lafeber HN, Vriesendorp HC, et al. Catchup growth in children born growth restricted to mothers with hypertensive disorders of pregnancy.
 Arch Dis Child. 2013;98(1):30-5.
- 373 20. Kiy AM, Rugolo LM, Luca AK, Corrente JE. Growth of preterm low birth weight infants
 374 until 24 months corrected age: effect of maternal hypertension. Jornal de pediatria. 2015;91(3):256375 62.
- 376 21. Wada K. Our challenges for the Intact Survival of Newborn Babies. Perinatology.
 377 2017;28(1):1-3.
- 378 22. Itabashi K, Miura F, Uehara R, Nakamura Y. New Japanese neonatal anthropometric
 379 charts for gestational age at birth. Pediatrics international : official journal of the Japan Pediatric
 380 Society. 2014;56(5):702-8.
- 381 23. Cole TJ. The LMS method for constructing normalized growth standards. European
 382 journal of clinical nutrition. 1990;44(1):45-60.
- 383 24. Fenton TR, Sauve RS. Using the LMS method to calculate z-scores for the Fenton preterm
 384 infant growth chart. European journal of clinical nutrition. 2007;61(12):1380-5.
- 385 25. Watanabe K, Naruse K, Tanaka K, Metoki H, Suzuki Y. Outline of Definition and
 386 Classification of "Pregnancy induced Hypertension (PIH)". Hypertension Research in Pregnancy.
 387 2013;1(1):3-4.
- 388 26. Ushida T, Kotani T, Sadachi R, Hirakawa A, Hayakawa M, Moriyama Y, et al. Antenatal
 389 Corticosteroids and Outcomes in Preterm Twins. Obstetrics and gynecology. 2020;135(6):1387-97.
- 27. Lee SM, Kim N, Namgung R, Park M, Park K, Jeon J. Prediction of Postnatal Growth
 391 Failure among Very Low Birth Weight Infants. Scientific Reports. 2018;8(1):3729.
- 28. Lima PA, Carvalho M, Costa AC, Moreira ME. Variables associated with extra uterine
 growth restriction in very low birth weight infants. Jornal de pediatria. 2014;90(1):22-7.
- Makhoul IR, Awad E, Tamir A, Weintraub Z, Rotschild A, Bader D, et al. Parental and
 perinatal factors affecting childhood anthropometry of very-low-birth-weight premature infants: a
 population-based survey. Acta paediatrica (Oslo, Norway : 1992). 2009;98(6):963-9.
- 30. Fabricius-Bjerre S, Jensen RB, Færch K, Larsen T, Mølgaard C, Michaelsen KF, et al.
 Impact of Birth Weight and Early Infant Weight Gain on Insulin Resistance and Associated
 Cardiovascular Risk Factors in Adolescence. PLOS ONE. 2011;6(6):e20595.
- Antonisamy B, Vasan SK, Geethanjali FS, Gowri M, Hepsy YS, Richard J, et al. Weight
 Gain and Height Growth during Infancy, Childhood, and Adolescence as Predictors of Adult
 Cardiovascular Risk. The Journal of pediatrics. 2017;180:53-61.e3.
- 403 32. Mitsui T, Masuyama H, Eguchi T, Tamada S, Eto E, Hayata K, et al. Sex differences in

406	33. Byberg L, McKeigue PM, Zethelius B, Lithell HO. Birth weight and the insulin resistance			
407	syndrome: association of low birth weight with truncal obesity and raised plasminogen activator			
408	inhibitor-1 but not with abdominal obesity or plasma lipid disturbances. Diabetologia.			
409	2000;43(1):54-60.			
410	34. Heindel JJ, Vandenberg LN. Developmental origins of health and disease: a paradigm for			
411	understanding disease cause and prevention. Current opinion in pediatrics. 2015;27(2):248-53.			
412	35. Crume TL, Scherzinger A, Stamm E, McDuffie R, Bischoff KJ, Hamman RF, et al. The			
413	long-term impact of intrauterine growth restriction in a diverse U.S. cohort of children: the EPOCH			
414	study. Obesity (Silver Spring). 2014;22(2):608-15.			
415	36. Aye CYL, Lewandowski AJ, Lamata P, Upton R, Davis E, Ohuma EO, et al. Prenatal and			
416	$Postnatal\ Cardiac\ Development\ in\ Offspring\ of\ Hypertensive\ Pregnancies.\ Journal\ of\ the\ American$			
417	Heart Association. 2020;9(9):e014586.			
418	37. Wikstrom AK, Gunnarsdottir J, Nelander M, Simic M, Stephansson O, Cnattingius S.			
419	Prehypertension in Pregnancy and Risks of Small for Gestational Age Infant and Stillbirth.			
420	Hypertension. 2016;67(3):640-6.			
421	38. Baulon E, Fraser WD, Piedboeuf B, Buekens P, Xiong X. Pregnancy-induced hypertension			
422	and infant growth at 28 and 42 days postpartum. BMC Pregnancy Childbirth. 2005;5:10.			
423				
424				
425				
426				
427				
428				
429				
430				
431				
432				
433				
434				
435				
436				
437				
438				
439				
440				
441				

early growth during the first three years of life in offspring from mothers with pregnancy-induced

hypertension. Pregnancy Hypertens. 2016;6(4):361-6.

404

442 Figure legends

- 443 Figure 1. Flow diagram of this study population.
- 444 Data on 44,657 infants registered in the NRNJ database from 2003 to 2015 were available.
- 445 Physical assessment was performed at birth, corrected age of 1.5 years, and chronological age
- 446 of 3 years. HDP, hypertensive disorders of pregnancy; NICU, neonatal intensive care unit
- Figure 2. The trajectories of mean Z-scores for height and weight in the HDP and non-HDPgroups.
- 450 The mean Z-scores for height and weight with 95% confidence intervals in the HDP and non-
- 451 HDP groups were evaluated (2A, male height; 2B, male weight; 2C, female height; 2D, female
- 452 weight). HDP, hypertensive disorders of pregnancy; p < 0.05, p < 0.01
- 454 Figure 3. Relationships between the Z-scores at birth and Δ the Z-scores during the first 3 years
- $\,$ $\,$ in the HDP and non-HDP groups $\,$
- 456 Z-scores at birth (X-axis) vs. Δ Z-scores (Y-axis) in the HDP (red) and non-HDP (blue) groups
- 457 are presented to depict the distribution (3A, male height; 3B, male weight; 3C, female height;
- 458 and 3D, female weight). HDP: hypertensive disorders of pregnancy

- $471 \\ 472$

	HDP	Non-HDP		
Variables	(n = 1,188)	(n = 3,956)	<i>p</i> -value	
Maternal characteristics				
Maternal age (years)	34 (31–38)	32 (28–35)	< 0.01	
Gestational age (weeks)	29.1 (27.4–30.6)	27.4 (25.6–29.3)	< 0.01	
Primiparity	692 (58.2)	1,917 (48.5)	< 0.01	
Cesarean section	1,143 (96.2)	2,821 (71.3)	< 0.01	
GDM or DM	52 (4.4)	122 (3.1)	0.03	
Histological CAM	151 (12.7)	1,960 (49.5)	< 0.01	
PROM	44 (3.7)	1,866 (47.2)	< 0.01	
NRFS	456 (38.4)	1,030 (26,0)	< 0.01	
ACS treatment	657 (55.3)	2,400 (60.7)	< 0.01	
Neonatal characteristics				
Male	538 (45.3)	2,097 (53.0)	< 0.01	
Birth height (cm)	34.5 (31.5–37.0)	34.5 (31.8–37.1)	0.07	
Birth weight (g)	926 (697–1,126)	960 (740–1,207)	< 0.01	
Head circumference (cm)	25.5 (23.2–27.0)	25.0 (23.0–26.8)	< 0.01	
Small for gestational age	648 (54.5)	495 (12.5)	< 0.01	
RDS	812 (68.4)	2,530 (64.0)	< 0.01	
Chronic lung disease	313 (26.3)	1,075 (27.2)	0.57	
PPHN	19 (1.6)	236 (6.0)	< 0.01	
IVH (III or IV)	17 (1.4)	160 (4.0)	< 0.01	
PVL	28 (2.4)	129 (3.3)	0.11	
Sepsis	71 (6.0)	339 (8.6)	< 0.01	
Necrotizing enterocolitis	8 (0.7)	50 (1.3)	0.09	
PDA banding	49 (4.1)	335 (8.5)	< 0.01	
LCC	125 (10.5)	508 (12.8)	0.03	
Total parenteral nutrition	986 (83.0)	3,364 (85.0)	0.09	

480 Table 1 Maternal and neonatal characteristics in the HDP and non-HDP groups

HDP, hypertensive disorders of pregnancy; GDM, gestational diabetes mellitus; DM, diabetes
mellitus; CAM, chorioamnionitis; PROM, premature rupture of the membranes; NRFS, nonreassuring fetal status; ACS, antenatal corticosteroid; RDS, respiratory distress syndrome;
PPHN, persistent pulmonary hypertension of the newborn; IVH, intraventricular hemorrhage;
PVL, periventricular leukomalacia; PDA, patent ductus arteriosus; LCC, late-onset circulatory
collapse. Data are presented as the median (interquartile range) or n (%).

488

	Univariate	Multivariate #1	Multivariate #2
	β coefficient (95% CI)	β coefficient (95% CI)	β coefficient (95% CI)
Male height Δ Z-score	1.10 (0.97 to 1.23)	0.02 (-0.09 to 0.13)	0.03 (-0.08 to 0.13)
Male weight Δ Z-score	1.26 (1.13 to 1.39)	0.17 (0.05 to 0.30)	0.17 (0.05 to 0.30)
Female height Δ Z-score	0.92 (0.80 to 1.04)	0.04 (-0.06 to 0.15)	0.05 (-0.05 to 0.15)
Female weight Δ Z-score	1.17 (1.04 to 1.29)	0.27 (0.14 to 0.39)	0.27 (0.15 to 0.39)

Table 2. Effect of intrauterine exposure to HDP on postnatal growth during the first 3 yearsafter birth in the univariate and multivariate regression analyses

492 The effect of HDP on the Δ Z-scores for height and weight between birth and 3 years of age in 493 the HDP and non-HDP groups was evaluated using univariate and multivariate regression 494 analyses. Multivariate analyses (#1 and #2) were adjusted for each covariate as follows:

#1 (prenatal and early postnatal factors): maternal age, parity, gestational age, mode of delivery,
gestational diabetes mellitus/diabetes mellitus, histological chorioamnionitis, antenatal
corticosteroid treatment, and Z-score of birth height (or weight).

498 #2 (prenatal, early postnatal, and postnatal factors at NICU discharge): maternal age, parity, 499 gestational age, mode of delivery, gestational diabetes mellitus/diabetes mellitus, histological 500 chorioamnionitis, antenatal corticosteroid treatment, Z-score of birth height (or weight), 501 chronic lung disease, intraventricular hemorrhage (grade III/IV), periventricular leukomalacia, 502 sepsis, necrotizing enterocolitis, patent ductus arteriosus banding, late-onset circulatory 503 collapse, and total parenteral nutrition. Data are presented as β coefficients (95% confidence 504 interval [CI]).

505 HDP, hypertensive disorders of pregnancy; CI, confidence interval

- 506
- 507
- 508 509

510

511

512

- 513
- 514
- 515

516

517

518

519

520

522Table 3. Interaction between infant sex and HDP on postnatal body weight during the first 3523years

Multivariate #1 Multivariate #2
β coefficient (95% CI) <i>p</i> -value β coefficient (95% CI) <i>p</i> -value
Infant sex \times HDP0.04 (-0.1 to 0.19)0.550.12 (-0.03 to 0.27)0.13
The interaction between infant sex and HDP on the Δ Z-score of body weight between birth
and 3 years of age was evaluated using multivariate analyses. Multivariate analyses (#1 and
#2) were adjusted for covariates, as follows:
#1 (prenatal and early postnatal factors): maternal age, parity, gestational age, mode of delivery
gestational diabetes mellitus/diabetes mellitus, histological chorioamnionitis, antenata
corticosteroid treatment, infant sex, Z-score of birth weight, and infant sex \times HDP.
#2 (prenatal, early postnatal, and postnatal factors at NICU discharge): maternal age, parity
gestational age, mode of delivery, gestational diabetes mellitus/diabetes mellitus, histologica
chorioamnionitis, antenatal corticosteroid treatment, infant sex, Z-score of birth weight
chronic lung disease, intraventricular hemorrhage (grade III/IV), periventricular leukomalacia
sepsis, necrotizing enterocolitis, patent ductus arteriosus banding, late-onset circulatory
collapse, total parenteral nutrition, and infant sex \times HDP. Data are presented as β coefficients
(95% confidence interval [CI]).
HDP, hypertensive disorders of pregnancy; CI, confidence interval