1	Muscle evaluation and hospital-associated disability in acute hospitalized older
2	adults
3	
4	Masaaki Nagae ¹ , Hiroyuki Umegaki ¹ , Akito Yoshiko ² , Kosuke Fujita ¹ , Hitoshi
5	Komiya ¹ , Kazuhisa Watanabe ¹ , Yosuke Yamada ¹ , Tomomichi Sakai ¹
6	
7	¹ Department of Community Healthcare and Geriatrics, Nagoya University Graduate
8	School of Medicine, Aichi, Japan
9	² Faculty of Liberal Arts and Sciences, Chukyo University, Aichi, Japan
10	
11	Address correspondence to: Hiroyuki Umegaki. Department of Community Healthcare
12	and Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho,
13	Showa-ku, Nagoya, Aichi 466-8550. E-mail: <u>umegaki@med.nagoya-u.ac.jp</u>
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

25 Abstract

- 26 **OBJECTIVES:** We aimed to examine the association of muscle evaluation, including muscle
- 27 ultrasound, with hospital-associated disability (HAD), focusing on ADL categories.
- 28 **DESIGN:** A prospective observational cohort study.
- 29 SETTING AND PARTICIPANTS: We recruited patients aged 65 years or older who were admitted
- 30 to the geriatric ward of an acute hospital between October 2019 and September 2021.
- 31 MEASUREMENTS: Handgrip strength, bioimpedance analyzer-determined skeletal muscle mass,
- 32 bilateral thigh muscle thickness (BATT), and the echo intensity of the rectus femoris on muscle
- 33 ultrasound were performed as muscle assessments. HAD was evaluated separately for mobility
- 34 impairments and self-care impairments.
- 35 **RESULTS:** In total, 256 individuals (mean age, 85.2 years; male sex, 41.8%) were analyzed. HAD in
- 36 mobility was more common than HAD in self-care (37.5% vs. 30.0%). Only BATT was independently
- 37 associated with HAD in mobility in multiple logistic regression analysis. There was no significant
- 38 association between muscle indicators and HAD in self-care.
- 39 CONCLUSION: A lower BATT was associated with a higher prevalence of HAD in mobility,
- 40 suggesting the need to reconsider muscle assessment methods in hospitalized older adults. In addition,
- 41 approaches other than physical may be required, such as psychosocial and environmental interventions
- 42 to improve HAD in self-care.

44	Keywords
45	Hospital-associated disability, Mobility, Self-care, Muscle thickness, Sarcopenia
46	
47	Introduction
48	Functional decline is common in older adults, and a strategy for preventing an activity of daily living
49	(ADL) decline is required. In the International Classification of Functioning Disability and Health
50	(ICF) framework established by the World Health Organization (WHO) in 2001, ADLs are also
51	considered a significant part of the "activities and participation" component[1]. The evaluation of
52	ADLs is important for independent daily living in older adults living in the community.
53	An ADL decline due to hospitalization is often referred to as hospital-associated disability
54	(HAD). HAD is commonly defined as the new loss of one or more elements of basic ADLs[2]. A
55	recent meta-analysis reported a 30% prevalence rate for HAD[3], and this rate has not changed in the
56	last three decades[4]. Risk factors for HAD include multiple domains, such as background factors,
57	acute illness, and factors during hospitalization[2,5]. For example, the reported risk factors for HAD
58	include age, mobility, cognitive function, ADL and instrumental ADL (IADL) levels, comorbidities,
59	geriatric syndromes, social factors, depression, malnutrition, polypharmacy, and illness severity. Older

hospitalized patients are frailer and share multiple risk factors that would heighten the risk of HAD.

61	HAD is associated with poor prognosis after discharge, including increased mortality, a non-return to
62	pre-illness functional levels[6], an increased readmission rate[7], and institutionalization[8]. Therefore,
63	prevention and early intervention of HAD in hospitalized older adults is an urgent clinical task.
64	In recent years, a relationship between sarcopenia and HAD has also been indicated. Sarcopenia
65	is defined as a progressive skeletal muscle disorder involving decreased muscle mass, muscle strength,
66	and physical function[9]. Low handgrip strength at acute hospitalization is associated with ADL
67	dependency[10] and is a risk factor for newly developed ADL disability after discharge[11]. Therefore,
68	evaluation of muscle strength, muscle mass, and physical function in hospitalized older adults could
69	be important for preventing HAD. However, it often has some limitations. Muscle strength can be
70	restricted or underestimated by acute illness or comorbidities such as paralysis or cognitive
71	dysfunction. Muscle mass is commonly assessed by dual-energy X-ray absorptiometry (DXA) or
72	bioelectrical impedance analysis (BIA), but these modalities are expensive, involve radiation exposure,
73	and can be affected by hydration status. Moreover, the evaluation of physical function in hospitalized
74	older adults is often restricted to bedridden individuals due to acute illness or comorbidity.
75	Muscle ultrasound of the quadriceps femoris has recently been found useful for evaluating
76	muscle morphology and muscle quality[12]. The muscle thickness of the quadriceps femoris shows
77	strong correlations with muscle mass[13], and echo intensity (EI) is an indicator of skeletal muscle
78	quality[14]. Muscle ultrasound has been performed in clinical practice to diagnose sarcopenia[15] and

to predict mortality[16], and worse recovery of ADLs[17]. We have also previously reported that higher corrected EI of the quadriceps femoris was associated with hospital-associated complication[18], and also reported that the thigh muscle thickness tended to be associated with mortality within 3 months after discharge[19].

83 It would be meaningful to explore the relationship between muscle evaluation, including muscle ultrasound and HAD, but in clinical practice, it may be more useful to classify ADLs by category 84 85 because changes in ADL during hospitalization are not uniform, and management needs to be changed accordingly. In particular, mobility (ICF chapter: d4) and self-care (ICF chapter: d5) are considered to 86 87 be key points of ADL assessment by WHO[1]. The former comprises four subdomains-changing and maintaining body position; carrying, moving, and handling objects; walking and moving; and moving 88 89 around using transportation, while the latter comprises seven subdomains-washing oneself; caring 90 for body parts; toileting; dressing; eating; drinking; and looking after one's health. The classification 91 of ADLs in hospitalized older adults can be used to set goals during hospitalization and to improve 92 quality of daily life after discharge. 93 Therefore, in the present study of acute hospitalized older adults, we examined the association 94 of muscle evaluation, including muscle ultrasound, with ADL categories. The hypothesis was that 95 muscle thickness and EI would both be related to HAD but that the relationship would differ by ADL 96 categories,.

97	
//	

98 Materials and Methods

1. Setting and participants

100	We used data from a prospective observational cohort study conducted in a geriatric ward of an
101	acute hospital, which was very similar to ACE unit[20]. Written informed consent was obtained from
102	all participants. If participants were unable to provide consent, family members provided consent on
103	their behalf. The study was approved by the Ethics Committee of Nagoya University Graduate School
104	of Medicine (approval number 2019-0260) and conducted in accordance with the provisions of the
105	Declaration of Helsinki and its later amendments.
106	We recruited patients aged 65 years or older who were admitted to the geriatric ward of Nagoya
107	University Hospital between October 2019 and September 2021. Participants were excluded if (1) they
108	were discharged within 48 h; (2) they or their family members did not provide written informed
109	consent; (3) their estimated life expectancy was within 1 month, as determined by their attending
110	physician; (4) they were readmitted within 3 months after discharge and were enrolled at the time of
111	their previous admission; (5) they were transferred from other departments; and (6) there was any
112	other reason for the patient's participation to be reconsidered.
113	

2. Data collection

115 Data were first registered in the medical charts within 48 h and also at discharge.

116

117 **2.1. Data collection at admission**

118 Background data were obtained from clinical records, including age, sex, type of admission 119 (emergency or planned), residence before this hospitalization, height, weight, and body mass index 120 (BMI). The attending geriatrician conducted a comprehensive geriatric assessment to determine the 121 cognitive, functional, and nutritional status of each participant. Cognitive function was assessed using 122 the Mini-Mental State Examination (MMSE), which is scored from 0 to 30, with a lower score 123 indicating poorer cognitive status[21]. The degree of depressive condition was assessed by the 124 Geriatric Depression Scale-15 (GDS-15), which is scored from 0 to 15, with a higher score indicating 125 more depressed[22]. A cutoff value of 6 or higher was considered to indicate depressive symptoms[23]. 126 Basic ADLs at baseline (2 weeks before admission) were assessed using the Barthel Index (BI)[24]. 127 The BI comprises 10 items (eating, transfers, grooming, toilet use, bathing, walking, stairs, dressing, 128 bowels, and bladder) and is scored from 0 to 100, with a lower score indicating greater dependence. 129 IADLs were assessed using the Lawton and Brody scale, which is scored from 0 to 8, with a lower 130 score indicating greater dependence[25]. Nutritional status was assessed using the Mini-Nutritional 131 Assessment-Short Form (MNA-SF), which is scored from 0 to 14, with a lower score indicating poorer 132 nutritional status[26]. Comorbidity was evaluated using the Charlson Comorbidity Index (CCI)[27].

133 2.2. Muscle ultrasound

134 Muscle ultrasound was performed within the first 7 days of admission by the same physician. The procedure was as described previously[18]. A B-mode ultrasound system (GE LOGIQ e; GE 135 136 Healthcare Japan, Tokyo, Japan) with a 5-10 MHz linear-array probe was used. The ultrasound 137 settings were as follows: frequency, 8 MHz; gain, 70 dB; depth, 4.0-6.0 cm; and focus point 1 (top of 138 the image). The depth was unchanged during the measurements of the same participants. The 139 participants were instructed to lie in the supine position, and a sufficient amount of water-soluble 140 transmission gel was applied to the skin to achieve acoustic coupling. Images of the rectus femoris 141 (RF) and vastus intermedius (VI) were obtained at the midpoint between the greater trochanter and 142 proximal border of the patella on both lower limbs. Three images of the quadriceps in each lower limb 143 were taken perpendicularly to the femur bone in the transverse plane, and the mean muscle thickness 144 and subcutaneous fat thickness were obtained. Bilateral thigh muscle thickness (BATT) was defined 145 as the sum of the muscle thickness (right RF + right VI + left RF + left VI)[28]. The EI of the RF was 146 measured with ImageJ software, version 1.52k (National Institutes of Health, Bethesda, MD). EI was 147 determined by 8-bit gray scale analysis and is expressed as arbitrary units (a.u.) in the range of 0–255. 148 The EI of the RF was measured in the largest possible rectangular region of interest, avoiding the 149 visible fascia. These methods for measuring BATT and the EI of the RF had high reliability (interclass 150 correlation coefficients [1.1] = 0.995 [0.994-0.996] for BATT and 0.989 [0.986-0.991] for the EI of

the RF). Because the EI of the RF is attenuated by the subcutaneous fat thickness, the corrected EI of the RF was also calculated by the following formula: corrected $EI = EI + 40.5278 \times$ subcutaneous fat thickness (cm)[29].

154

155 **2.3. Other muscle assessments**

- 156 Handgrip strength and bioimpedance analyzer-determined skeletal muscle mass were also measured
- 157 for comparison with muscle ultrasound.
- 158 Handgrip strength was measured by a Jamar-type hand-held dynamometer (Baseline Hydraulic Hand
- 159 Dynamometer, Fabrication Enterprises Inc., Elmsford, NY). Two trials were taken with each hand,
- and the maximum value was recorded. The measurement was taken with the elbows fixed at 90° in
- 161 the sitting position but, when the participant struggled to achieve the sitting position, it was taken in
- 162 the supine position. Skeletal muscle mass (SMM) was measured by a portable bioimpedance analyzer
- 163 (InBody S10; InBody Co., Ltd., Tokyo, Japan), and the skeletal muscle index (SMI) was calculated by
- 164 dividing SMM by height squared (kg/m^2) .
- 165
- 166 2.4. Data collection at discharge
- 167 Discharge destination (including in-hospital death and transfer to another department), length

168 of hospital stay, and the BI were obtained from medical records.

170	2.5. HAD
171	The BI was bi-classified into mobility and self-care categories through the application of the
172	ICF[30]. BI (mobility) includes transfers, walking, and stairs (total score, 0-40), whereas BI (self-
173	care) includes eating, grooming, toilet use, bathing, dressing, bowels, and bladder (total score, 0-60).
174	In this study, HAD was evaluated separately for mobility impairments (HAD in mobility) and self-
175	care impairments (HAD in self-care). A previous review using the BI determined that the minimal
176	amount of functional decline was 10%[31]. Therefore, in the present study, HAD in mobility and HAD
177	in self-care were defined as a $\geq 10\%$ decrease in the BI score at discharge compared with baseline (2
178	weeks before admission).
179	
180	3. Statistical analysis
181	All statistical analyses were conducted using SPSS software, version 28 (IBM Corp., Armonk,
182	NY). Continuous variables are reported as the mean \pm standard deviation or the median (interquartile
183	range), whereas categorical variables are reported as absolute numbers and percentages. BI (mobility)

185 calculated. Student's t-test or Mann-Whitney U test was used to compare muscle indicators (handgrip

and BI (self-care) were compared between admission and discharge and the prevalence of HAD was

186 strength, SMI, BATT, EI, and corrected EI) in two groups (with HAD and without HAD). Multiple

169

184

187	logistic regression analysis was conducted to clarify muscle indicators that were independently
188	associated with HAD after adjustment for potential confounders. The confounding factors were age
189	and sex in Model 1, age, sex, MMSE, CCI, and MNA-SF in Model 2, and age, sex, MMSE, CCI,
190	MNA-SF, BI at admission, IADLs, and GDS-15 in Model 3. Spearman's correlation coefficient was
191	used to examine the relationships between muscle indicators and other related parameters. It was also
192	used to examine the relationships between these related parameters and HAD by Student's t-test or
193	Mann–Whitney <u>U</u> test (for continuous variables) and χ^2 test (for categorical variables). A P-value less
194	than 0.05 was considered statistically significant in all comparisons.
195	
196	Results
197	The number of participants was 256, after excluding cases of in-hospital death (n=20), transfer
198	to another department (n=6), and a missing value of the BI (n=18). The median length of hospital stay
199	was 17 (11-28).
200	Table 1 shows the background characteristics of the participants at admission. The mean age

201 was 85.2 ± 5.9 years, the percentage of men was 41.8%, the median MMSE value was 21 (13-26), the

202 median CCI value was 2 (1–3), the mean MNA-SF was 8.6 ± 3.4 , and the median BI was 85 (51.3–

203 100).

204 Table 2 shows the changes in the BI score (the difference from baseline to discharge) and the

205	prevalence of HAD. The median BI (mobility) and BI (self-care) at baseline were 35 and 55,
206	respectively, and were lower at discharge. HAD in mobility was more common than HAD in self-care
207	(37.5% vs. 30.0%). On the other hand, in 19.9% of cases, the BI score at discharge was higher than at
208	baseline.
209	Table 3 shows the values of muscle indicators in the two groups (with and without HAD).
210	Handgrip strength was lower in both the HAD in mobility and HAD in self-care groups than in the
211	groups without HAD. BATT was lower only in the HAD in mobility group. In contrast, SMI, EI, and
212	corrected EI were not significantly different between the two groups.
213	Table 4 illustrates the results of multiple logistic regression analysis conducted to clarify muscle
214	indicators that were independently associated with HAD in mobility. BATT [odds ratio 0.57, 95%
215	confidence interval 0.36–0.89, P=0.013] was independently associated with HAD in mobility in Model
216	3, whereas handgrip strength, SMI, EI, and corrected EI were not.
217	Table 5 shows the results of multiple logistic regression analysis to clarify the muscle indicators
218	that were independently associated with HAD in self-care. No significant associations of HAD in self-
219	care were seen for all muscle indicators, but especially in Models 2 and 3.
220	Supplementary Table 1 details the results of correlations among muscle indicators and related
221	parameters. Handgrip strength was significantly related to age, MMSE, MNA-SF, BI at baseline, and
222	IADLs.

223	Table 6 shows the values of related parameters compared in groups with and without HAD.
224	Both HAD groups showed a higher age, lower MMSE, and lower IADLs. The prevalence of depressive
225	symptoms was higher in HAD in mobility, whereas the MNA-SF and BI were lower in HAD in self-
226	care.
227	
228	Discussion
229	In this study, we classified ADL declines during hospitalization into HAD in mobility and HAD
230	in self-care and examined the association with muscle indicators. To our knowledge, this is the first
231	study to classify HAD into mobility and self-care categories and to investigate their association with
232	muscle indicators. Our results indicated that HAD in mobility was more common than HAD in self-
233	care. In addition, a lower BATT was significantly associated with a higher prevalence of HAD in
234	mobility, unlike handgrip strength and EI. Regarding HAD in self-care, no significant associations
235	were found with muscle indicators.
236	With regards to the association between muscle mass and ADLs, a meta-analysis reported that
237	a low muscle mass was associated with worsening ADLs in community-dwelling older adults[32],
238	while the Position Statements of the Sarcopenia Definition and Outcomes Consortium (SDSC)
239	concluded that lean muscle mass measured by DXA was not a good predictor of adverse health-related
240	outcomes, including an ADL decline[33]. A recent longitudinal study evaluating the annual assessment

241	of ADLs in individuals who experienced hospitalization showed that pre-hospital muscle mass on
242	DXA was not associated with new ADL disabilities at follow-up[11]. Moreover, in a recent systematic
243	review including inpatients, most longitudinal studies reported that muscle mass was not associated
244	with ADL scores[34]. In the present study of muscle mass assessment, a BIA-based muscle mass
245	indicator (i.e., SMI) was not associated with HAD in mobility, unlike an ultrasound-based muscle
246	mass indicator (i.e., BATT) (Table 4).
247	The following reasons might explain why the association between muscle mass and HAD in
248	this study differed from that of previous studies. First, there are differences in the evaluation of ADLs.
249	In contrast with the present study, previous studies used the BI as the entire ADL assessment or just a
250	part of the assessment (transferring, bathing, and dressing). In this study, BATT was also associated
251	with HAD in mobility and not associated with HAD in self-care. That may suggest improving muscle
252	mass of lower limbs is essential for prevention of HAD in mobility, which is more closely associated
253	with physical functional decline. BATT could prevent HAD in mobility, which reflects physical
254	function rather that self-care. Second, previous studies targeted community-dwelling individuals or
255	those in rehabilitation hospitals, whereas the participants in the present study were more frail acute
256	inpatients, which may have affected the results by increasing the muscle changes caused by acute
257	inflammation or disuse. Third, muscle mass evaluation using BIA is regarded as one of the standard
258	methods in clinical settings[35], and many studies have used the SMI as an index of muscle mass,

259	which is calculated from both muscles of the upper and lower limbs. Muscle mass evaluation by
260	ultrasound was also reported to be a reliable and valid method for the assessment of muscle size in
261	older adults[36]. The anterior thigh muscles are more prone to muscle loss than other muscles and are
262	more commonly and severely affected in sarcopenia[37]. These muscles are fundamental to mobility
263	skills. Therefore, BATT, which could directly evaluate them, may be more suitable for assessing
264	mobility skills than SMI. In addition, the BIA method can be affected by hydration status[38], which
265	may influence the results in the case of inpatients with dehydration or overhydration. Muscle
266	ultrasound is a relatively simple and less invasive measurement method, and it is commonly available
267	in clinical practice. The results of the present study may indicate the need for a reconsideration of the
268	assessment of muscle mass or interventions in hospitalized older adults. However, BATT could also
269	be temporarily increased by inflammation or vascular permeability[39]. Thus, this method must be
270	used properly and a cutoff value must be established.
271	Regarding the association between muscle strength and ADLs in hospitalized older adults,
272	previous studies reported that a low handgrip strength at admission was associated with ADL
273	dependency[10] and was a risk factor for newly developed ADL disability after discharge[11]. In fact,
274	in the present study, handgrip strength was associated with HAD in univariate analysis, but not in
275	multivariate analysis. The participants of this study had a higher rate of undernutrition or cognitive
276	decline that was related to low handgrip strength (Supplementary Table 1), thereby weakening the

association between handgrip strength and HAD in mobility. Furthermore, handgrip strength could be
underestimated due to acute illness, and it does not necessarily reflect lower limb muscle strength[40].
A recent study showed that knee extension strength was decreased by 11% during hospitalization,
while handgrip strength was unchanged[41]. There may be challenges in the use of handgrip strength
to assess mobility status in hospitalized older adults.

282 It has been reported that muscle EI is related to muscle strength in older adults[42], therefore, 283 EI may become an important parameter for understanding the physical condition in older adults. 284 Furthermore, in terms of EI, previous studies among subacute and convalescent rehabilitation wards 285 reported that EI of the quadriceps was independently associated with motor Functional Independence 286 Measure scores and was related to the recovery of ADLs[17,43]. In contrast with these results, EI was 287 not associated with HAD in mobility in the present study. This is possibly because muscle quality 288 could not be accurately evaluated by EI in the acute phase. A recent review reported that EI is affected 289 by not only muscle damage, but also water balance or glycogen under acute conditions[14]. It has been 290 suggested that muscle intracellular hydration status is related to functional capacity[44] and that the 291 glycogen level within skeletal muscle is related to exercise durability[45]. It may be thought that 292 factors other than muscle fibers affected EI and its relationship with HAD in the present study. 293 However, in the intensive care unit, a change in EI was associated with intensive care unit-acquired 294 muscle weakness or mortality [46,47]. Further research is required to explore the association between

EI and clinical outcomes in various settings, such as home medical care and nursing homes.

296	In contrast to the results of HAD in mobility, no muscle indicators were associated with HAD
297	in self-care. Self-care is commonly defined as the practice of activities that an individual initiates and
298	carries out in order to maintain life, health, and well-being[48], and HAD in self-care has been
299	associated with prolonged functional recovery and increased mortality[6]. A previous study indicated
300	that the risk factors for HAD in self-care were grouped into three main themes: patient factors,
301	healthcare provision, and hospital environment[49]. The authors suggested that a fear of falls and
302	nurses' work overload were barriers to functional self-care, while having a positive mindset and an
303	age-friendly environment were facilitators of functional self-care. Another study reported that patients
304	who received a higher amount of ADL/self-care training through occupational therapy had a lower
305	risk of readmission[50]. In the present study as well, these environmental factors appear to have been
306	more closely associated with HAD in self-care than muscle indicators. However, a lower MMSE,
307	MNA-SF, BI at baseline, and IADLs and a higher age were found in HAD in self-care (Table 6). The
308	prevention of HAD in self-care may be required to identify the above risk factors early in acute
309	hospitalization and to conduct multidisciplinary interventions with the involvement, for example, of
310	physicians, nurses, dietitians, occupational therapists, and family members.
311	This study provides important findings, but some limitations should be considered. First,
312	muscle evaluation by ultrasound was conducted by the seventh day after admission (median interval=

313	second days) because our research was performed after medical treatment. In addition, measurements
314	of handgrip strength and BIA were not always performed on the same day as muscle ultrasound.
315	Muscle changes caused by disuse after hospitalization may thus have affected the results. However,
316	the association between BATT, bioimpedance analyzer-determined skeletal muscle mass and HAD in
317	mobility was not changed when we controlled for the measurement date. Second, rehabilitation during
318	hospitalization might have influenced the results. Rehabilitation exercise to prevent deterioration of
319	physical function may affect HAD, but early rehabilitation is commonly conducted in the acute care
320	setting, and most participants had individually undergone rehabilitation. Third, restrictions on family
321	visits on hospital due to COVID-19 pandemic might affect the results. However, access to
322	physiotherapist and dieticians were not restricted during the hospitalization. Before and after the
323	COVID-19 pandemic, BATT and HAD were unchanged, and not significantly different in this study,
324	The association between BATT and HAD in mobility was also unchanged even after adjusting before
325	and after the COVID-19 pandemic.
326	Fourth, this study was conducted at a single university hospital. Our findings should be verified
327	at other facilities.
328	

329 Conclusion

330 We found that only a lower BATT, not other muscle indicators, was significantly associated

331	with a higher prevalence of HAD in mobility. The results of this study suggest muscle ultrasound is
332	useful for evaluations of older adults in acute care settings. There are several modalities for muscle
333	evaluations, and each one of them has strong points and weakness, and clinicians should know these
334	characteristics of modalities for appropriate evaluations and interpretations of the results. Muscle
335	ultrasound can be considered for muscle evaluation in acute care, and may be used more widely.
336	Physical rehabilitation and a nutritional intervention aimed at improving muscle mass could be
337	emphasized to prevent HAD in mobility. However, no muscle indicators were related to HAD in self-
338	care. Thus, psychosocial and environmental intervention approaches may be required to prevent HAD
339	in self-care, rather than physical training.
340	
341	Acknowledgements: We thank the participants and staff members who helped with the current study.
342	
343	Conflict of interest: The authors declare there are no conflicts of interest.
344	
345	Ethical statement: The study was approved by the Ethics Committee of Nagoya University Graduate
346	School of Medicine (approval number 2019-0260) and conducted in accordance with the provisions
347	of the Declaration of Helsinki and its later amendments.
348	

349 Funding statement: This work was supported by JSPS KAKENHI (grant numbers JP21H02826).

- 350 The authors have no conflict of interest to declare.
- 351

352	Author contributions: Masaaki Nagae: Conceptualization, Methodology, Formal analysis,
353	Investigation, Data curation, Writing-original draft preparation. Hiroyuki Umegaki: Writing-review
354	and editing, Supervision, Funding acquisition. Akito Yoshiko: Writing-review and editing. Kosuke
355	Fujita: Validation. Hitoshi Komiya: Project administration. Kazuhisa Watanabe: Software. Yosuke
356	Yamada: Visualization. Tomomichi Sakai: Resources.
357	

```
358 References
```

- 359 [1] World Health Organization. The International Classification of Functioning, Disability and
- 360 *Health (ICF)*. Geneva, Switzerland: World Health Organization; 2001.
- 361 [2] Covinsky KE, Pierluissi E, Johnston CB. Hospitalization-associated disability "She was probably
- able to ambulate, but i'm not sure." JAMA J Am Med Assoc 2011;306(16):1782–93. doi:
- 363 10.1001/jama.2011.1556.
- 364 [3] Loyd C, Markland AD, Zhang Y, et al. Prevalence of Hospital-Associated Disability in Older
- 365 Adults: A Meta-analysis. J Am Med Dir Assoc 2020;21(4):455-461.e5. doi:
- 366 10.1016/j.jamda.2019.09.015.

367	[4]	Brown CJ. After Three Decades of Study, Hospital-Associated Disability Remains a Common
368		Problem. J Am Geriatr Soc 2020;68(3):465-6. doi: 10.1111/jgs.16349.
369	[5]	Zisberg A, Shadmi E, Gur-Yaish N, Tonkikh O, Sinoff G. Hospital-Associated Functional
370		Decline: The Role of Hospitalization Processes Beyond Individual Risk Factors. J Am Geriatr
371		Soc 2015;63(1):55–62. doi: 10.1111/jgs.13193.
372	[6]	Boyd CM, Landefeld CS, Counsell SR, et al. Recovery of activities of daily living in older adults
373		after hospitalization for acute medical illness. J Am Geriatr Soc 2008;56(12):2171-9. doi:
374		10.1111/j.1532-5415.2008.02023.x.
375	[7]	Tonkikh O, Shadmi E, Flaks-Manov N, Hoshen M, Balicer RD, Zisberg A. Functional status
376		before and during acute hospitalization and readmission risk identification. J Hosp Med
377		2016;11(9):636–41. doi: 10.1002/jhm.2595.
378	[8]	Portegijs E, Buurman BM, Essink-Bot ML, Zwinderman AH, de Rooij SE. Failure to Regain
379		Function at 3 months After Acute Hospital Admission Predicts Institutionalization Within 12
380		Months in Older Patients. J Am Med Dir Assoc 2012;13(6):569.e1-569.e7. doi:
381		10.1016/j.jamda.2012.04.003.
382	[9]	Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet 2019;393:2636-46. doi: 10.1016/S0140-
383		6736(19)31138-9.
384	[10]	Meskers CGM, Reijnierse EM, Numans ST, et al. Association of Handgrip Strength and Muscle

385		Mass with Dependency in (Instrumental) Activities of Daily Living in Hospitalized Older Adults
386		- The Empower Study. J Nutr Heal Aging 2019;23:232–8. doi: 10.1007/s12603-019-1170-5.
387	[11]	Andrews JS, Gold LS, Reed MJ, et al. Appendicular Lean Mass, Grip Strength, and the
388		Development of Hospital-Associated Activities of Daily Living Disability Among Older Adults
389		in the Health ABC Study. Journals Gerontol Ser A 2021;XX:1-7. doi: 10.1093/gerona/glab332.
390	[12]	Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition
391		and diagnosis. Age Ageing 2019;48:16-31. doi: 10.1093/ageing/afy169.
392	[13]	Madden KM, Feldman B, Arishenkoff S, Meneilly GS. A rapid point-of-care ultrasound marker
393		for muscle mass and muscle strength in older adults. Age Ageing 2021;50:505-10. doi:
394		10.1093/ageing/afaa163.
394 395	[14]	10.1093/ageing/afaa163. Stock MS, Thompson BJ. Echo intensity as an indicator of skeletal muscle quality: applications,
	[14]	
395	[14]	Stock MS, Thompson BJ. Echo intensity as an indicator of skeletal muscle quality: applications,
395 396	[14]	Stock MS, Thompson BJ. Echo intensity as an indicator of skeletal muscle quality: applications, methodology, and future directions. Eur J Appl Physiol 2021;121:369–80. doi: 10.1007/s00421-
395 396 397		Stock MS, Thompson BJ. Echo intensity as an indicator of skeletal muscle quality: applications, methodology, and future directions. Eur J Appl Physiol 2021;121:369–80. doi: 10.1007/s00421- 020-04556-6.
395 396 397 398		Stock MS, Thompson BJ. Echo intensity as an indicator of skeletal muscle quality: applications, methodology, and future directions. Eur J Appl Physiol 2021;121:369–80. doi: 10.1007/s00421- 020-04556-6. Fukumoto Y, Ikezoe T, Taniguchi M, et al. Cut-off values for lower limb muscle thickness to
 395 396 397 398 399 		Stock MS, Thompson BJ. Echo intensity as an indicator of skeletal muscle quality: applications, methodology, and future directions. Eur J Appl Physiol 2021;121:369–80. doi: 10.1007/s00421- 020-04556-6. Fukumoto Y, Ikezoe T, Taniguchi M, et al. Cut-off values for lower limb muscle thickness to detect low muscle mass for sarcopenia in older adults. Clin Interv Aging 2021;16:1215–22. doi:

403		A single-center prospective observational study. Clin Nutr 2021;40:1338–47. doi:
404		10.1016/j.clnu.2020.08.022.
405	[17]	Akazawa N, Kishi M, Hino T, et al. Intramuscular adipose tissue in the quadriceps is more
406		strongly related to recovery of activities of daily living than muscle mass in older inpatients. J
407		Cachexia Sarcopenia Muscle 2021;12:891–9. doi: 10.1002/jcsm.12713.
408	[18]	Nagae M, Umegaki H, Yoshiko A, et al. Echo intensity is more useful in predicting hospital-
409		associated complications than conventional sarcopenia-related parameters in acute hospitalized
410		older patients. Exp Gerontol 2021;150:111397. doi: 10.1016/j.exger.2021.111397.
411	[19]	Nagae M, Umegaki H, Yoshiko A, et al. Muscle changes on muscle ultrasound and adverse
412		outcomes in acute hospitalized older adults. Nutrition 2022 in press.
413	[20]	Palmer R, Landefeld C, Kresevic D, et al. A medical unit for the acute care of the elderly. J Am
414		Geriatr Soc 1994; 42: 545-552. doi: 10.1111/j.1532-5415.1994.tb04978.x.
415	[21]	Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the
416		cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–98. doi: 10.1016/0022-
417		3956(75)90026-6.
418	[22]	Almeida OP, Almeida SA. Short versions of the Geriatric Depression Scale: A study of their
419		validity for the diagnosis of a major depressive episode according to ICD-10 and DSM-IV. Int J
420		Geriatr Psychiatry 1999;14:858-65. doi: 10.1002/(SICI)1099-1166(199910)14:10<858::AID-

421 GPS35>3.0.CO;2-8.

422	[23]	Dennis M, Kadri A, Coffey J. Depression in older people in the general hospital: A systematic
423		review of screening instruments. Age Ageing 2012;41:148-54. doi: 10.1093/ageing/afr169.
424	[24]	MAHONEY FI, BARTHEL DW. FUNCTIONAL EVALUATION: THE BARTHEL INDEX.
425		Md State Med J 1965;14:61–5.
426	[25]	Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities
427		of daily living. Gerontologist 1969;9:179–86.
428	[26]	Rubenstein LZ, Harker JO, Salvà A, Guigoz Y, Vellas B. Screening for undernutrition in geriatric
429		practice: Developing the Short-Form Mini-Nutritional Assessment (MNA-SF). Journals Gerontol
430		- Ser A Biol Sci Med Sci 2001;56:366–72. doi: 10.1093/gerona/56.6.M366.
431	[27]	Medical C. a New Method of Classifying Prognostic in Longitudinal Studies : Development. J
432		Chronic Dis 1987;40:373–83.
433	[28]	Wilson D V., Moorey H, Stringer H, et al. Bilateral Anterior Thigh Thickness: A New Diagnostic
434		Tool for the Identification of Low Muscle Mass? J Am Med Dir Assoc 2019;20:1247-1253.e2.
435		doi: 10.1016/j.jamda.2019.04.005.
436	[29]	Young HJ, Jenkins NT, Zhao Q, Mccully KK. Measurement of intramuscular fat by muscle echo
437		intensity. Muscle and Nerve 2015;52:963-71. doi: 10.1002/mus.24656.
438	[30]	Prodinger B, O'Connor RJ, Stucki G, Tennant A. Establishing score equivalence of the functional

439		independence measure motor scale and the barthel index, utilizing the international classification
440		of functioning, disability and health and rasch measurement theory. J Rehabil Med 2017;49:416-
441		22. doi: 10.2340/16501977-2225.
442	[31]	Buurman BM, Van Munster BC, Korevaar JC, De Haan RJ, De Rooij SE. Variability in
443		measuring (instrumental) activities of daily living functioning and functional decline in
444		hospitalized older medical patients: A systematic review. J Clin Epidemiol 2011;64:619–27. doi:
445		10.1016/j.jclinepi.2010.07.005.
446	[32]	Wang DXM, Yao J, Zirek Y, Reijnierse EM, Maier AB. Muscle mass, strength, and physical
447		performance predicting activities of daily living: a meta-analysis. J Cachexia Sarcopenia Muscle
448		2020;11:3–25. doi: 10.1002/jcsm.12502.
449	[33]	Bhasin S, Travison TG, Manini TM, et al. Sarcopenia Definition: The Position Statements of the
450		Sarcopenia Definition and Outcomes Consortium. J Am Geriatr Soc 2020;68:1410-8. doi:
451		10.1111/jgs.16372.
452	[34]	Lunt E, Ong T, Gordon AL, Greenhaff PL, Gladman JRF. The clinical usefulness of muscle mass
453		and strength measures in older people: A systematic review. Age Ageing 2021;50:88-95. doi:
454		10.1093/ageing/afaa123.
455	[35]	Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 Consensus
456		Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc 2020;21:300-307.e2. doi:

10.1016/j.jamda.2019.12.012. 457

458	[36]	Nijholt W, Scafoglieri A, Jager-Wittenaar H, Hobbelen JSM, van der Schans CP. The reliability
459		and validity of ultrasound to quantify muscles in older adults: a systematic review. J Cachexia
460		Sarcopenia Muscle 2017;8:702–12. doi: 10.1002/jcsm.12210.
461	[37]	Kara M, Kaymak B, Frontera WR, et al. Diagnosing sarcopenia: Functional perspectives and a
462		new algorithm from ISarcoPRM. J Rehabil Med 2021;53. doi: 10.2340/16501977-2851.
463	[38]	Ceniccola GD, Castro MG, Piovacari SMF, et al. Current technologies in body composition
464		assessment: advantages and disadvantages. Nutrition 2019;62:25-31. doi:
465		10.1016/j.nut.2018.11.028.
466	[39]	Welch C, Greig CA, Hassan-Smith ZK, Pinkney TD, Lord JM, Jackson TA. A pilot observational
467		study measuring acute sarcopenia in older colorectal surgery patients. BMC Res Notes
468		2019;12:1-7. doi: 10.1186/s13104-019-4049-y.
469	[40]	Phillipe de Lucena Alves C, Câmara M, Dantas Macêdo GA, et al. Agreement between upper and
470		lower limb measures to identify older adults with low skeletal muscle strength, muscle mass and
471		muscle quality. PLoS One 2022;17:e0262732. doi: 10.1371/journal.pone.0262732.
472	[41]	Hartley P, Romero-Ortuno R, Wellwood I, Deaton C. Changes in muscle strength and physical
473		function in older patients during and after hospitalisation: A prospective repeated-measures
474		cohort study. Age Ageing 2021;50:153-60. doi: 10.1093/ageing/afaa103.

475	[42]	Fukumoto Y, Ikezoe T, Yamada Y, et al. Skeletal muscle quality assessed from echo intensity is
476		associated with muscle strength of middle-aged and elderly persons. Eur J Appl Physiol
477		2012;112:1519–25. doi: 10.1007/s00421-011-2099-5.
478	[43]	Akazawa N, Kishi M, Hino T, Tsuji R, Tamura K, Moriyama H. Increased intramuscular adipose
479		tissue of the quadriceps is more strongly related to declines in ADL than is loss of muscle mass in
480		older inpatients. Clin Nutr 2021;40:1381–7. doi: 10.1016/j.clnu.2020.08.029.
481	[44]	Lorenzo I, Serra-Prat M, Carlos Yébenes J. The role of water homeostasis in muscle function and
482		frailty: A review. Nutrients 2019;11:1–15. doi: 10.3390/nu11081857.
483	[45]	Schweitzer GG, Kearney ML, Mittendorfer B. Muscle glycogen: where did you come from,
484		where did you go? J Physiol 2017;595:2771–2. doi: 10.1113/JP273536.
485	[46]	Mayer KP, Thompson Bastin ML, Montgomery-Yates AA, et al. Acute skeletal muscle wasting
486		and dysfunction predict physical disability at hospital discharge in patients with critical illness.
487		Crit Care 2020;24:1–12. doi: 10.1186/s13054-020-03355-x.
488	[47]	Umbrello M, Guglielmetti L, Formenti P, et al. Qualitative and Quantitative Muscle Ultrasound
489		Changes in Covid-19 Related Ards Patients. Nutrition 2021;91–92:111449. doi:
490		10.1016/j.nut.2021.111449.
491	[48]	Orem D, Taylor S, Renpenning K. Nursing: Concepts of practice, 6th edn. St. Louis:
492		Mosby, 2001.

493	[49]	Chan EY, Samsudin SA, Lim YJ. Older patients' perception of engagement in functional self-
494		care during hospitalization: A qualitative study. Geriatr Nurs (Minneap) 2020;41:297-304. doi:
495		10.1016/j.gerinurse.2019.11.009.
496	[50]	Edelstein J, Walker R, Middleton A, Reistetter T, Gary KW, Reynolds S. Higher Frequency of
497		Acute Occupational Therapy Services Is Associated With Reduced Hospital Readmissions. Am J
498		Occup Ther 2022;76:1–9. doi: 10.5014/ajot.2022.048678.
499		

Table 1: Background characteristics

Age, years	85.2 ± 5.9
Male sex	107 (41.8%)
Emergency admission	169 (66.0%)
Main diseases	Neurological 59 (23.0%), respiratory 18 (7.0%),
	cardiovascular 12 (4.7%), gastrointestinal 9
	(3.5%), musculoskeletal 9 (3.5%),
	dermatological 16 (6.3%), endocrinal 21
	(8.2%), urinary 26 (10.2%), hematological 20
	(7.8%), psychological 3 (1.2%), others 62
	(24.2%), unknown 1(0.4%)
Height, cm (n=243)	152.7 ± 9.9
Weight, kg (n=255)	48.3 ± 11.2
BMI, kg/m ² (n=243)	20.7 ± 3.9
MMSE (n=245)	21 (13–26)
CCI	2 (1–3)
MNA-SF (n=237)	8.6 ± 3.4
BI	85 (51.3–100)

IADLs	4 (1–7)
Depressive symptoms (GDS \geq 6) (n=210)	93 (44.3%)
Handgrip strength, kg (n=209)	15.4 ± 6.9
	(Male 19.7 \pm 6.5, Female 11.8 \pm 4.9)
SMI, kg/m ² (n=178)	6.3 ± 1.5
	(Male 7.1 \pm 1.2, Female 5.7 \pm 1.3)
Interval from admission to ultrasound, days	2 (1-3)
BATT, cm (n=228)	3.3 ± 1.0
	(Male 3.5 \pm 1.0, Female 3.1 \pm 0.9)
EI, a.u. (n=228)	94.0 ± 15.2
	(Male 92.2 \pm 15.2, Female 95.3 \pm 15.1)
Corrected EI, a.u. (n=225)	113.2 ± 13.5
	(Male 109.2 \pm 13.4, Female 116.1 \pm 12.8)

Data are presented as mean ± standard deviation, median (interquartile range), or number (percentage). a.u., arbitrary units; BATT, bilateral anterior thigh thickness; BI, Barthel Index; BMI, body mass index; CCI, Charlson Comorbidity Index; EI, echo intensity; GDS, Geriatric Depression Scale; IADLs, instrumental ADLs; MMSE, Mini-Mental State Examination; MNA-SF, Mini-Nutritional Assessment-Short Form; SMI, skeletal muscle index.

Table 2: Changes in the BI score and the prevalence of HAD

	BI score at admission	Change in BI score	HAD
BI (mobility)	35 (20-40)	-2.8 ± 9.8	93 (37.5%) (n=248)
BI (self-care)	55 (30-60)	-3.2 ± 13.4	73 (30.0%) (n=243)

Data are presented as mean \pm standard deviation, median (interquartile range), or number (percentage).

BI, Barthel Index; HAD, hospital-associated disability.

Change in BI score means the difference from admission to discharge.

HAD means that the BI score at discharge was 10% lower or more than at admission, except for cases

where the score at admission was 0.

	Mobility			Self-care			
	Without HAD (n=155)	With HAD (n=93)	P-value	Without HAD (n=170)	With HAD (n=73)	P-value	
Handgrip strength, kg	16.7 ± 7.1 (n=132)	13.3 ± 5.9 (n=74)	<0.01	$16.2 \pm 6.9 \text{ (n=155)}$	13.8 ± 6.4 (n=50)	0.035	
SMI, kg/m ²	6.4 ± 1.4 (n=105)	$6.2 \pm 1.5 (n=69)$	0.18	6.5 ± 1.3 (n=123)	6.1 ± 1.6 (n=49)	0.08	
BATT, cm	3.4 ± 1.0 (n=141)	3.1 ± 1.0 (n=83)	0.024	$3.4 \pm 1.0 \ (n=158)$	3.2 ± 1.0 (n=62)	0.20	
EI, a.u.	92.9 ± 13.8 (n=140)	95.7 ± 17.3 (n=83)	0.22	93.1 ± 14.7 (n=157)	95.2 ± 16.5 (n=63)	0.35	
Corrected EI, a.u.	111.8 ± 12.8 (n=139)	115.2 ± 13.9 (n=82)	0.07	$112.4 \pm 13.0 \text{ (n=156)}$	114.7 ± 14.2 (n=61)	0.25	

Table 3: The values of muscle indicators compared in groups with and without HAD

Data are presented as mean ± standard deviation. a.u., arbitrary units; BATT, bilateral anterior thigh thickness; EI, echo intensity; HAD, hospital-associated

disability; SMI, skeletal muscle index.

	Model 1		Model 2		Model 3	
	Odds ratio	P-value	Odds ratio	P-value	Odds ratio	P-value
Handgrip strength	0.92 (0.87–0.98)	<0.01	0.95 (0.89–1.01)	0.09	0.94 (0.88–1.01)	0.11
SMI	0.93 (0.72–1.19)	0.54	0.94 (0.71–1.24)	0.65	0.96 (0.70–1.33)	0.81
BATT	0.81 (0.59–1.10)	0.18	0.71 (0.49–1.04)	0.08	0.57 (0.36–0.89)	0.013
EI	1.01 (0.99–1.03)	0.49	1.01 (0.99–1.03)	0.48	1.00 (0.98–1.03)	0.71
Corrected EI	1.01 (0.99–1.04)	0.25	1.02 (0.99–1.04)	0.17	1.01 (0.99–1.04)	0.38

Table 4: Association of muscle indicators with HAD in mobility in multiple logistic regression analysis

Model 1 was adjusted by age and sex. Model 2 was adjusted by age, sex, MMSE, CCI, and MNA-SF. Model 3 was adjusted by age, sex, MMSE, CCI, MNA-

SF, BI (at baseline), IADLs, and depressive symptoms. BATT, bilateral anterior thigh thickness; BI, Barthel Index; CCI, Charlson Comorbidity Index; EI,

echo intensity; IADL, instrumental ADLs; MMSE, Mini-Mental State Examination; MNA-SF, Mini-Nutritional Assessment-Short Form; SMI, skeletal muscle

index.

	Model 1		Model 2		Model 3	
	Odds ratio	Р	Odds ratio	Р	Odds ratio	Р
Handgrip strength	0.93 (0.87–0.99)	0.021	0.99 (0.91–1.07)	0.74	0.97 (0.88–1.06)	0.51
SMI	0.73 (0.55–0.99)	0.040	0.81 (0.56–1.16)	0.25	0.84 (0.55–1.28)	0.42
BATT	0.95 (0.68–1.32)	0.75	0.77 (0.48–1.24)	0.28	0.73 (0.42–1.28)	0.27
EI	1.00 (0.98–1.02)	0.75	1.00 (0.98–1.03)	0.88	1.00 (0.97–1.03)	0.86
Corrected EI	1.01 (0.98–1.03)	0.52	1.01 (0.98–1.04)	0.70	1.00 (0.97–1.04)	0.81

Table 5: Association of muscle indicators with HAD in self-care in multiple logistic regression analysis

Model 1 was adjusted by age and sex. Model 2 was adjusted by age, sex, MMSE, CCI, and MNA-SF. Model 3 was adjusted by age, sex, MMSE, CCI, MNA-

SF, BI (at baseline), IADLs, and depressive symptoms. BATT, bilateral anterior thigh thickness; BI, Barthel Index; CCI, Charlson Comorbidity Index; EI,

echo intensity; IADLs, instrumental ADLs; MMSE, Mini-Mental State Examination; MNA-SF, Mini-Nutritional Assessment-Short Form; SMI, skeletal muscle index.

		Mobility			Self-care		
	Without HAD	With HAD (n=93)	P-value	Without HAD	With HAD (n=73)	P-value	
	(n=155)			(n=170)			
Age, years	84.5 ± 5.6	86.5 ± 6.2	0.010	84.4 ± 5.5	87.2 ± 6.1	< 0.01	
Female sex	86 (55.5%)	57 (61.3%)	0.37	95 (55.9%)	42 (57.5%)	0.81	
MMSE	23 (17–28) (n=148)	19 (10.5–23) (n=89)	<0.01	24 (18–28) (n=168)	15 (3.5–20) (n=65)	< 0.01	
CCI	2 (1–3)	2 (1–3)	0.68	2 (1-3)	2 (1–3)	0.053	
MNA-SF	8.6 ± 3.5 (n=149)	8.7 ± 3.1 (n=82)	1.00	9.1 ± 3.2 (n=166)	7.8 ± 3.5 (n=60)	<0.01	
BI	85 (60–100)	85 (55–95)	0.17	90 (70–100)	70 (50–90)	<0.01	
IADLs	5 (1-8)	3 (1–6)	<0.01	6 (2–8)	2 (0-3.5)	< 0.01	

Table 6: The values of related parameters compared in groups with and without HAD

Depressive symptoms50 (37.6%) (n=133)42 (56.8%) (n=74)<0.0170 (42.7%) (n=164)22 (51.2%) (n=43)0.32

 $(GDS \ge 6)$

Data are presented as mean ± standard deviation, median (interquartile range), or number (percentage). BI, Barthel Index; CCI, Charlson Comorbidity Index;

GDS, Geriatric Depression Scale; HAD, hospital-associated disability; IADLs, instrumental ADLs; MMSE, Mini-Mental State Examination; MNA-SF, Mini-

Nutritional Assessment-Short Form.