
DVFS Virtualization for Energy Minimization of Mixed-Criticality Dual-OS Platforms

Takumi Komori∗, Yutaka Masuda∗, and Tohru Ishihara∗
∗Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, JAPAN

Abstract—A dual-OS platform can efficiently implement
emerging mixed-criticality systems by consolidating a real-time
OS (RTOS) and a general-purpose OS (GPOS). Although the
dual-OS platform attracts increasing attention, it often suffers
from energy inefficiency in the GPOS for guaranteeing real-
time responses of the RTOS. This paper proposes an energy
minimization method called DVFS virtualization, which allows
running multiple DVFS policies dedicated to the RTOS and
GPOS, respectively. The experimental evaluation using a com-
mercial processor showed that the proposed hardware could
change the supply voltage within 500ns and reduce the energy
consumption of typical applications by 60% in the best case
compared to conventional dual-OS platforms.

Index Terms—Dynamic voltage scaling, Virtual machine mon-
itors, Real-time systems, Mixed-criticality, Embedded software

I. INTRODUCTION

Recent embedded systems are becoming complicated day
by day. For example, robots now have to capture images from
a camera, process them by OpenCV, and interact with an
operator remotely via an SSL-protected connection; while con-
trolling machinery as traditional. A mixed-criticality system
is this kind of embedded system which serves both critical
machinery control and non-critical information processing.

A dual-OS platform is suitable for implementing the mixed-
criticality system [1]–[6]. A lightweight real-time OS (RTOS)
is tiny and verifiable, bringing highly reliable real-time capa-
bility desirable for machinery control. However, the RTOS
with limited functionality is unsuitable for implementing a
complicated large-scale application. In contrast, a general-
purpose OS (GPOS) like Linux has rich libraries and util-
ities. Moreover, a developer can use open-source software
(OSS) without modification. Therefore, the GPOS provides
a highly efficient development environment. Unfortunately,
constant updates of the GPOS imply that complete validation
of such a colossal software is nearly impossible. In addition,
an unmodified commercially available GPOS cannot guarantee
real-time capability due to its significant interrupt latency
and difficulty in predicting the behavior [7]–[9]. The dual-
OS platform takes advantage of the RTOS and GPOS by
simultaneously executing the OSes with virtualization.

Implementing the dual-OS platform is widely studied; how-
ever, no previous research tackled minimizing energy con-
sumption. As we explain later, existing energy reduction meth-
ods for mixed-criticality systems rely on a single scheduler and
cannot be applied to the dual-OS platform.

This paper, for the first time, proposes an energy minimiza-
tion method for the dual-OS platform called DVFS virtual-
ization. Figure 1 summarizes our method. Conventional dual-
OS platforms shown in Fig. 1(a) must keep the performance

RTOS

P
ow

er
∝

V
D
D
2

WCET

time

RTOS GPOS

Average execution time (AET)

(a) Conventional DVFS

RTOSRTOS

P
ow

er
∝

V
D
D
2 WCET

time

loss

conv. loss

Low efficiency (∼80%)
yet fast transition

loss

Conversion loss involved

GPOS

Non-optimal

(b) Conventional DVFS with fast transition regulator

Fast transition

RTOSRTOS

P
ow

er
∝

V
D
D
2

WCET

time

Optimal

RTOS GPOS

VMM

MUXfast

VDD, f VDD, f

Slow
transition

Slow
transition

Highly efficient (∼95%) buck converters

AET

GPOS

Exploiting slack

(c) Proposed DVFS virtualization

Fig. 1: Summary of the proposed energy minimization. Exist-
ing dual-OS platforms must keep the performance high enough
for the RTOS and suffer from low energy efficiency (a). A
voltage regulator capable of changing its output fast enables
the performance lowering of the GPOS, but an on-chip fast
regulator is inefficient and can only produce a few levels of
voltage (b). The proposed method realizes fast performance
transition using two highly-efficient voltage regulators and
schedules the GPOS based on the average execution time of
the RTOS. The GPOS can aggressively lower its performance
for the dynamic slack induced by the RTOS, improving the
energy efficiency of the dual-OS platform (c).



high enough, and the GPOS cannot aggressively reduce energy
consumption. Regulators capable of changing output voltage
fast allow the GPOS to run slower but suffer from energy loss
due to the low conversion efficiency [10], [11], as shown in
Fig. 1(b). More detail on the relation between the conversion
efficiency and the transition speed in voltage regulators is
summarized in Sect. IV. Our method provides stable power
supplies with a high conversion efficiency of 95% at the
best case [12] and clocks dedicated to both OSes. The power
supplies and clocks are quickly switched by multiplexers, as
shown in Fig. 1(c). As a result, like OSes are virtualized, the
RTOS and GPOS can adjust their performance independently
to reduce the energy consumption of the dual-OS platform
efficiently. Since the behavior of both the OSes is monitored by
the virtual machine monitor (VMM) depicted in Fig. 1(c), the
GPOS can exploit the slack dynamically produced by the early
completion of the RTOS to reduce more energy. The detailed
algorithm for exploiting the dynamic slack to minimize energy
consumption is explained in Sect. III-A. The contribution of
the paper is summarized as follows;

• DVFS algorithms to minimize the energy consumption
of the dual-OS platform are proposed for the first time.
The algorithms reduce energy consumption efficiently by
applying different optimal DVFS policies for each OS.

• A fast transition mechanism of voltage and frequency
is also proposed. Without this mechanism, the proposed
DVFS algorithm might violate the real-time constraints
of the RTOS.

Combining the above proposed DVFS algorithms and the fast
transition mechanism for voltage and frequency realizes DVFS
virtualization, which carries out individual DVFS for each
OS. The speed and energy overhead of DVFS virtualization is
verified negligible.

The rest of the paper is constructed as follows: Section II
shows the execution model of a typical dual-OS platform and
the downside of the traditional energy minimization method
for a mixed-criticality system. Section III proposes DVFS
algorithms to minimize the energy of the dual-OS platform
and shows the difficulty of realizing it. Section IV proposes
hardware implementation of DVFS virtualization. Section V
evaluates the proposed method using a commercial processor.
Section VI concludes the paper.

II. RELATED WORKS

This section introduces the execution model of a general
dual-OS platform and existing energy minimization algorithms
for mixed-criticality systems. We also describe the issue of
applying existing algorithms to the dual-OS platform. Ad-
ditionally, we later summarize existing voltage regulators in
Sect. IV.

A. Execution model of dual-OS platform

A general virtualized dual-OS platform consolidates an
RTOS and a GPOS, as shown in Fig. 2. The processor has three
privilege levels: User, Supervisor, and Hypervisor modes. The
VMM runs on the Hypervisor mode to manage virtual CPU

GPOS

Application

Virtual Machine Monitor

RTOS & App

User

Supervisor

Hypervisor

Privilege Level

Virtual core 2Virtual core 1

Fig. 2: The example of dual-OS consolidation.

RTOS

GPOS

Idle

Running

Interrupt

Running

Preempted

Masked

Running

Idle

Yield

t

Fig. 3: Dual-OS execution scheme.

cores. Under the VMM, the RTOS and GPOS run as illustrated
in Fig. 3. The GPOS can only run when the RTOS is idle. The
processor executes the RTOS immediately on RTOS interrupts
anytime during the processor executes the GPOS. All the
GPOS interrupts are disabled while the RTOS is running. After
the RTOS completes all the tasks and becomes idle again, the
GPOS resumes. The RTOS always takes precedence over the
GPOS, and it guarantees real-time capability.

B. Existing mixed-criticality DVFS algorithms

Dynamic Voltage and Frequency Scaling (DVFS) is one of
the most popular methods to minimize the energy consump-
tion of the processor, which can drastically reduce energy
consumption by lowering operating voltage and performance
(clock frequency). When applying DVFS to the embedded
system, lowering the performance as much as possible while
guaranteeing real-time constraints is most important. There-
fore, algorithms to keep the performance of the processor
minimum required, especially methods to incorporate DVFS
into the OS, have been widely investigated over the years [13].

The most popular methods to implement the mixed-
criticality system are the extended scheduling theory inherited
from [14]. Like the traditional scheduling theory, such methods
schedule tasks based on minimum activation periods and
worst-case execution times (WCETs). We refer to this type
of mixed-criticality system as a single-OS platform since one
scheduler handles all the tasks regardless of their criticality.

Previous DVFS algorithms for the single-OS platform
model all the tasks regardless of their criticality and reduce
energy consumption while guaranteeing real-time constraints
[15]–[18]. Since schedulability and energy consumption are
trade-offs, parameters must be optimized to balance them.
Scheduling with non-optimal parameters causes an increase
in energy consumption by around 20% [15].

Single-OS platforms are mainly developed for automobiles
and avionics, where all the tasks are strictly modeled. Thus,
algorithms for the single-OS platform cannot be applied to
embedded systems requiring the GPOS due to the following
reasons:



1) One cannot determine the minimum activation periods
and WCETs of tasks. It is unrealistic to analyze a
colossal GPOS and OSS running on it and determine
the minimum activation periods and WCETs of every
process and thread.

2) Scheduling algorithms are different. Single-OS plat-
forms assume priority-based scheduling, while the
GPOS uses round-robin-based scheduling.

3) The latency of switching the supply voltage and clock
frequency is rarely considered. General buck converters
and PLLs take roughly 100 µs to change their output
and might affect real-time capability [13]. Most previous
works evaluate their algorithms only in simulations
[15]–[18], showing that applying DVFS for the single-
OS platform on a physical processor is unrealistic.

The above discussions show that embedded systems requiring
the GPOS cannot utilize energy minimization algorithms for
single-OS platforms.

A new DVFS algorithm applicable to the dual-OS-based
mixed-criticality system is therefore needed. The dual-OS
platform drastically improves software flexibility by allowing
the use of the GPOS. Essential OSS such as ROS, OpenCV,
GStreamer, and others does not operate on any system other
than the GPOS. Customers can add, remove, and update
applications freely on the GPOS while protecting the static
supplier application on the RTOS. The dual-OS platform is
essential to consolidate real-time operations and functions
requiring the GPOS, and its energy minimization is desired.

III. ENERGY MINIMIZATION OF DUAL-OS PLATFORM

This section proposes several DVFS algorithms to mini-
mize the energy consumption of the dual-OS platform under
different practical situations, respectively. The algorithms can
be divided roughly into two groups whether they offer the
soft real-time capability to the GPOS (Sect. III-A2) or not
(Sect. III-A1). Furthermore, for the soft real-time GPOS, we
propose a method to exploit the early completion of the RTOS
(Sect. III-A3) and an extension for a processor which only
supports a discrete set of frequencies (Sect. III-A4). Addition-
ally, this section discusses the difficulty of implementing the
algorithm in Sect. III-B. The energy reduction thanks to the
proposed algorithms are later evaluated in Sect. V.

Note that the operating voltage is also scaled to the ap-
propriate value corresponding to the frequency as is done
in the traditional DVFS techniques, although only frequency
scaling is explicitly described in the following explanation.
The performance of the GPOS must be determined based
on its CPU utilization. The following example controls the
clock frequency of the GPOS for 10 unit times (except for
Fig. 4). The GPOS runs at the same clock frequency within
this time period when running on a processor that supports
the continuous clock frequency. For a processor that only
supports a discrete set of frequencies, the GPOS changes its
clock frequency once in the time period.

A. DVFS algorithms for dual-OS platform

1) Naive approach: The most naive DVFS algorithm for
the dual-OS platform is letting the RTOS run at the fastest
and the GPOS at the slowest clock frequency, as shown in
Fig. 4. If no DVFS is applied, the RTOS executes two tasks,
T1 and T2, at the maximum clock frequency fmax, and the
GPOS is executed at fmax. The sum of the CPU utilization
of the RTOS and GPOS is less than 1, and idle time exists.
If DVFS is applied, the clock frequency of the GPOS is set
to the minimum (fmin), while T1 and T2 remain to run at
fmax, reducing the energy consumed by the GPOS. However,
the execution of the GPOS does not complete, and the idle
time is eliminated. Assuming the supply voltage and clock
frequency are scaled fast enough, this case is equivalent to
continuing to operate the processor at the fastest frequency
for the RTOS. Since every task of the RTOS should meet the
deadline at least for the fastest frequency, this algorithm can
guarantee the real-time constraint of the RTOS. On the other
hand, scheduling of the GPOS is performed as best effort, and
no performance is guaranteed. When no soft real-time task
exists in the GPOS, this algorithm is easiest to implement,
and a considerable energy reduction is expected.

2) Soft real-time approach: Controlling the sum of the CPU
usage of the RTOS URT and GPOS UGP to URT + UGP = 1
gives the soft real-time capability to the GPOS, as shown
in Fig. 5. Before applying DVFS in Fig. 4, CPU utilization
of each OS is URT = 0.5 and UGP = 0.3. Providing the
clock frequency fGP = UGPfmax/(1 − URT) = 0.6fmax

for the GPOS reduces energy consumption while keeping the
performance of the GPOS. Typically, periodically measuring
the execution time of the GPOS estimates UGP like CPUFreq
governor of Linux [19]. One can also estimate UGP in a more

Time
0 1 2 3 4 5 6 7 8 9 10

RTOS : fmax

GPOS : fmax

GPOS : fmin

RTOS : fmax

Preempted Preempted

T1 T2

T1 T2

T1

T1

Fig. 4: The naive DVFS algorithm for the dual-OS platform.

Time
0 1 2 3 4 5 6 7 8 9 10

RTOS : fmax

GPOS : fGP

T1 T2 T1

Fig. 5: A DVFS algorithm to give the GPOS soft real-time
capability. The GPOS completes its execution unlike Fig. 4.



refined manner [20].
The total energy consumption of the whole circuit operating

with the clock frequency f is composed of the following.
• The energy consumption, which is proportional to the

square of the supply voltage of the core (the dynamic
energy consumption of the core) : Ed(f)

• The energy consumption, which is proportional to the
supply voltage of the core (the static energy consumption
of the core) : Es(f)

• The power consumption, which is not related to the
supply voltage of the core : Ps

Therefore, denoting the supply voltage corresponding to the
clock frequency f as VDD(f), we get the average energy
consumption per unit time before and after applying DVFS
as described in (1) and (2), respectively.

E0/T = (URT + UGP)fmax{Ed(fmax) + Es(fmax)}
+ (1− URT − UGP)fmaxEs(fmax) + Ps. (1)

Edvfs/T = URTfmax{Ed(fmax) + Es(fmax)}

+ UGPfmax

{
VDD(fGP)

VDD(fmax)

}2

Ed(fmax)

+ UGPfmax
VDD(fGP)

VDD(fmax)
Es(fmax) + Ps. (2)

This algorithm is expected to reduce the dynamic energy
consumption of the GPOS proportional to UGP

3 under the
approximation that VDD(f) ∝ f .

3) Exploiting early completion of RTOS: The CPU utiliza-
tion of the RTOS is also estimated by periodically measuring
the execution time like the GPOS. The periodic measuring
offers the average CPU utilization based on the past execution
results. However, if the WCETs and the minimum activation
periods are given for every task of the RTOS, URT can be
estimated in a more fine-grained manner. For the RTOS, the
worst-case CPU utilization is determined from the sum of
the worst-case execution times in the hyper-period. On every
task completion, the estimated CPU utilization of the RTOS is
adjusted lower because the RTOS sometimes completes earlier
than its WCET. Since the GPOS is executed as the lowest
priority task, modifying the clock frequency for the GPOS
when the RTOS enters idle exploits the early completion of
the RTOS task in a fine-grained manner. For example, consider
two RTOS tasks, T1 and T2, whose WCETs are as shown in
Fig. 5, and they finish earlier than the WCETs, as shown in
Fig. 6. With WCETs, URT = 0.5, and fGP = 0.6fmax. When
T1 finishes at the time 1, the worst-case URT is updated to

Time
0 1 2 3 4 5 6 7 8 9 10

RTOS : fmax

GPOS fGP1 fGP2

T1 T2 T1

Fig. 6: Exploiting the early completion of the RTOS.

0.4. Therefore, after the finish of T1, the GPOS can run with
fGP1 = 0.5fmax. In addition, after T2 finishes, URT is updated
to 0.3, determining fGP2 = fmax/3.

4) When processor can only operate with discrete set of
frequencies: General processors can only operate with a
discrete set of clock frequencies, and the GPOS cannot run
at fGP. To achieve the maximum energy efficiency, the GPOS
should run using two different clock frequencies of fGPH and
fGPL (fGPH > fGP > fGPL) so that the GPOS runs at fGP

on average, as shown in Fig. 7. Selecting the frequency closest
to fGP as fGPH and fGPL minimizes energy consumption.

In this case, the GPOS consumes UGPL of the CPU time
at fGPL and UGPH of the time at fGPH. Here,

UGPL =
(1− URT)(fGPH − fGP,AVE)

fGPH − fGPL
, (3)

and UGPH = 1 − URT − UGPL. The total CPU utilization is
URT + UGPH + UGPL = 1.0, meaning no idle time exists.
Note that the number of instructions the GPOS executes for
the unit time is kept equal, and the performances of the GPOS
before and after applying DVFS are equivalent. The GPOS is
recommended to begin with fGPL at the start of a time period
and switch to fGPH later. Starting with fGPL helps the GPOS
run at the slower clock frequency for a longer time when the
algorithm discussed in Sect. III-A3 gradually lowers URT (and
UGPH) on task completion.

With the discrete operating conditions, average energy con-
sumption per unit time is expressed as

Ediscrete/T = URTfmax{Ed(fmax) + Es(fmax)}

+ UGPHfGPH

{
VDD(fGPH)

VDD(fmax)

}2

Ed(fmax)

+ UGPHfGPH
VDD(fGPH)

VDD(fmax)
Es(fmax)

+ UGPLfGPL

{
VDD(fGPL)

VDD(fmax)

}2

Ed(fmax)

+ UGPLfGPL
VDD(fGPL)

VDD(fmax)
Es(fmax)

+ Uidlefmin
VDD(fmin)

VDD(fmax)
Es(fmax) + Ps. (4)

Note that if fGP < fmin, we cannot eliminate the idle time
and let the GPOS run at fmin for UGPfmax/fmin of CPU time.

0 1

RTOS
fmax

RTOS
fmax

GPOS
fmax

Idle
fmax

fGPHfGPL

GPOS

URT UGPHUGPL
Utilization

Fig. 7: A DVFS scheme for the processor with discrete set of
clock frequencies.



In this case, Uidle = 1−URT−(fmax/fmin)UGP of CPU time
is consumed by the processor idling.

B. Difficulty of implementing algorithms

In conventional dual-OS platforms, the GPOS only runs
when the RTOS is idle, and the RTOS can preempt the GPOS
anytime [1]–[6]; therefore, generally, one cannot predict when
the RTOS starts executing and requires high performance.
When the RTOS interrupts while the GPOS is running slower,
the RTOS continues to run at the same low performance and
might violate real-time constraints because general DC-DC
converters and PLLs take roughly 100 µs to change their output
[13]. As discussed above, the proposed DVFS algorithms
cannot be applied to the conventional dual-OS platform as
is because they might violate real-time constraints. Generally,
in the conventional dual-OS platform, the GPOS must be
conservative to guarantee real-time constraints of the RTOS,
and the energy reduction becomes insufficient.

IV. IMPLEMENTATION OF DVFS VIRTUALIZATION

This section shows the hardware and software structure to
realize DVFS algorithms discussed in Sect. III-A.

A. Hardware component for DVFS virtualization

This section proposes the hardware structure shown in
Fig. 8, which realizes immediate performance change and
energy minimization in the dual-OS platform. Usually, the
processor is equipped with only one PLL for its core clock.
However, we use two PLLs dedicated to the RTOS and
GPOS, and we also use different power supplies for them.
Additionally, an analog multiplexer is used to switch the power
supply quickly.

With the proposed hardware, the RTOS and GPOS have
their power supplies and clocks to perform DVFS control
without interfering with each other; we refer to this DVFS
virtualization. From the software’s perspective, the proposed
hardware is seen as illustrated in Fig. 9. Two virtual processors
dedicated to the RTOS and GPOS are running on the same
physical processor, and they run with independent power sup-
plies and clock frequencies. The RTOS wakes up immediately
after interrupting the GPOS execution like the present virtual-
ization methods. At the same time, the proposed hardware also

Core

PLL

PLL

Chip

RTOS

RTOS

GPOS

GPOS

Fig. 8: Proposed hardware structure. The RTOS and the
GPOS have their own power supplies and regulators. The
multiplexer changes the performance immediately along with
an OS switching.

Application

GPOS

Supply PLLSupply PLL

RTOS & App

Virtual Machine Monitor

Fig. 9: The proposed system from the software’s perspective.

switches the power supply and the clock frequency. Therefore,
no matter how slow the GPOS is, the RTOS can resume to a
high-speed mode instantly. Virtualization in software means
a technique to pretend simultaneous execution of multiple
OSes by switching them quickly. The proposed hardware
pretends simultaneous execution of multiple DVFS algorithms
by switching the supply and clock instantly; this helps realize
the proposed DVFS algorithms, which use different DVFS
policies for each OS.

Previous studies proposed a DVFS method called voltage
dithering, which uses a small number of stable supply voltages
and switches them instantaneously to meet the speed of the
processor to the speed required [21]. However, our method
is different from the dithering since our method is possible
to use fine-grained programmable voltage sources with high
conversion efficiency by allowing a slow transition of voltage
supply dedicated to individual OSes. Voltage dithering can
only perform coarse-grained DVFS since the rapid transition
between a small number of discrete voltages is more important
than fine-grained DVFS for the dithering. In contrast, our
method can realize more energy-efficient DVFS using fine-
grained supply voltage.

Another previous study proposed an on-chip buck converter
using an integrated inductor that realizes voltage transition
within 20 ns [10]; however, integrating an inductor is quite
difficult, resulting in only around 70% conversion efficiency.
An on-chip, 20 ns transition time switched-capacitor converter
with integrated capacitors instead of an inductor is also pro-
posed [11]. Nevertheless, switched-capacitor can only output
discrete voltages like dithering and cannot achieve conversion
efficiency higher than 90%, which is inferior to off-chip buck
converters. In addition, on-chip LDO can respond fast enough
but suffers from a low conversion efficiency lower than both
buck and switched capacitor converters [10], [11]. Our method
can utilize inductor-based buck converters, which provide a
conversion efficiency of more than 95% in the best case [12].
This type of converter offers slow-transition yet fine-grained
voltage levels to the processors, which enables the processor
to run at the optimal supply voltage.

In summary, an ideal processor for the proposed method
should be equipped with the following features.

• It can execute an RTOS and GPOS simultaneously by a
virtualization support mechanism.

• It has two PLLs to generate the core clock and can switch
them immediately by a synchronized multiplexer.



• It can change the supply voltage and clock frequency
along with an OS switching.

• It can operate with continuously changing supply voltage
and corresponding clock frequency.

B. Software component for DVFS virtualization

A general dual-OS platform comprises the VMM, RTOS,
and GPOS. Each component has the following suitability for
implementing DVFS virtualization.

• The VMM is the most suitable component to imple-
ment DVFS virtualization because it can measure CPU
utilization and switch the supply and clock along with
the OS switching. However, the VMM must somehow
know the execution state of tasks of the RTOS to exploit
their early completion, which requires a communication
channel between the VMM and RTOS.

• The RTOS is suitable for implementing DVFS virtual-
ization. A general RTOS supports cyclic tasks, which is
useful to measure CPU utilization periodically. Addition-
ally, the execution states of tasks can be handled, and
the early completion is easily exploited. Nevertheless, the
supply and clock switching at the preemption should not
be implemented in the RTOS. Suppose the situation that
the RTOS interrupts when the GPOS is running slowly,
and the RTOS has to immediately start running faster
than the GPOS to meet the deadline. The VMM handles
the interrupt first, saves the context of the GPOS, and
distributes the interrupt to the RTOS. Therefore, if the
supply and clock are controlled after the RTOS starts,
the acceleration of the clock might delay and affect real-
time capability. Note that the supply and clock switching
at the transition from the RTOS to GPOS can safely be
implemented in the RTOS.

• The GPOS should not implement DVFS virtualization.
The GPOS handling critical hardware such as the power
supply and clock might lead to a fatal situation. For
example, the GPOS might incorrectly control the supply
voltage and prevent the correct operation of the RTOS
because of a bug. Furthermore, multiple research warns
that the GPOS can illegally access the information of
the Secure side of ARM TrustZone —the most popular
virtualization mechanism for the dual-OS platform— by
maliciously controlling DVFS [22], [23].

As discussed above, the VMM and RTOS are suitable for
implementing DVFS virtualization. Implementing only supply
and clock switching on the VMM and others on the RTOS is
also recommended.

V. EXPERIMENTAL RESULTS

This section provides experimental results of voltage tran-
sition latency and energy efficiency of the proposed method
using a commercial processor board integrating ARM Cortex-
M33. Section V-A describes the hardware structure used for
the experiment. Section V-B shows that even if the GPOS runs
slowly, the RTOS can start to run fast within 500 nanoseconds.
Section V-C explains how the proposed method is emulated

using the commercial processor. Section V-D shows that the
energy consumption according to (4) can be obtained by the
proposed method, and the extra energy consumption intro-
duced by adding hardware components is negligible. Sec-
tion V-E shows that the proposed method reduces the energy
consumption of typical applications by 60% in the best case.

A. Evaluation setup

This paper selects NXP i.MX RT685 as a target micro-
controller unit (MCU) to emulate the proposed platform. As
discussed in Sect. IV, the ideal processor to implement the
proposed method is equipped with specific features. Unfortu-
nately, no processor on the current market can be treated as
ideal. Although RT685 is an embedded MCU and not an ap-
plication processor, simple core and peripheral configurations
make it easy to implement software. In addition, the evaluation
board is designed to allow access to the power supply of the
core, and we can easily experiment. The core is equipped with
ARM TrustZone technology, so we can implement virtualiza-
tion using VMM. The above discussions show that RT685 is
suitable for verifying the proposed method’s essential part.

Figure 10 shows the circuit used for emulating the proposed
method, and Fig. 11 shows its photo. The circuit is mainly
constructed from four ICs and other components.

• LTC3542 is a buck converter to generate the supply
voltage for the RTOS VRT.

• AD5160 is a digital potentiometer inserted into the feed-
back path of the buck converter. We can control VRT by
adjusting the wiper of this potentiometer connected as a
rheostat.

• ADG839 is an analog multiplexer to distribute VGP and
VRT according to the signal from the MCU Vsw.

PCA9420

LDO

Buck

Buck

LTC3542

10
k
Ω

120 kΩ

5V

3.3V

22 pF

AD5160 (100 kΩ)

VGP

VRT

Fig. 10: The circuit for emulating DVFS virtualization (instan-
tiation of Fig. 8).



Fig. 11: Photo of the experiment cirtuit.

• PCA9420 is a designated power management IC for
RT685, and its output is generally supplied to the core.
In our experiment, we used the output of PCA9420 as
the supply voltage for the GPOS VGP.

B. Voltage transition latency

Firstly, we switched Vcore from VGP to VRT while the
CoreMark benchmark was running on the processor to verify
that the circuit depicted in Fig. 10 works correctly. Figure 12
shows the voltage transition when Vcore is switched from
VGP = 0.7V to VRT = 1.13V. The transition time when
the control signal Vsw falls is treated as zero. Due to the load
step of a DC-DC converter, VRT and VGP vary immediately,
where VRT rises and VGP falls. Vcore does not change rapidly
because of the decoupling capacitors and takes roughly 500 ns
to reach the level of VRT. We also confirmed that the processor
correctly operates while Vcore is transitioning. General VMM

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

−100 0 100 200 300 400 500 600 700 800 900
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

V
R
T
,V

G
P
,V

c
o
re

[V
]

V
sw

[V
]

Time [ns]

VswVsw

VRTVRT

VGPVGP

VcoreVcore

Fig. 12: Switching from 0.7V, 75MHz to 1.13V, 300MHz.
The falling of the switching signal (Vsw) causes the change in
the connection of the power supply from the GPOS (VGP) to
the RTOS (VRT), and the supply voltage of the core (Vcore)
rises within 500 ns.

takes more than 1 µs to switch the context from the GPOS to
the RTOS [2]–[6]. Therefore, the switching latency of Vcore

negligibly affects the real-time capability.

C. Emulation setup of proposed method

RT685 is not equipped with the hardware support discussed
in Sect. IV. Therefore, we emulate the proposed method in the
following manner.

Only one PLL can generate the core clock in RT685. Thus,
we generate a fixed 300MHz clock from the PLL and divide it
by 1, 2, or 4 just before the core to realize immediate switching
of 300MHz, 150MHz, and 75MHz of the clock frequency.
Although RT685 can operate at 275MHz and 220MHz, we
do not use these operating conditions in this experiment since
they cannot be generated from 300MHz by an integer divider.

RT685 supports virtualization by ARM TrustZone technol-
ogy; however, it cannot handle the supply voltage and clock.
Therefore, we add a function on the software of the VMM to
control the supply and clock upon distributing an interrupt to
the RTOS and transitioning from the RTOS to the GPOS.

After Vsw is changed and the RTOS starts execution, the
clock frequency must be increased when Vcore is matched to
VRT completely. We controlled the clock as follows in this
paper.

1) Start a timer when controlling Vsw.
2) A compare-match occurs after 500 ns are passed.
3) The DMA is triggered by the match and writes a divider

setting to the memory-mapped register.
Note that when yielding to the GPOS, the supply and clock
can be switched simultaneously.

D. Emulation results in energy reduction and overhead

This experiment verifies energy reduction and overhead
introduced by adding the hardware. The CoreMark benchmark
is executed on both the RTOS and GPOS, and we measure
the energy consumption of the whole circuit. We applied
the algorithm for the soft real-time GPOS, and it is run on
the processor operated with a discrete set of frequencies, as
discussed in Sect. III-A4. We selected CoreMark to evaluate
the typical energy consumption of RT685 because NXP —
the vendor of RT685— uses CoreMark for their energy
consumption measurement.

In this experiment, we measure the energy consumption
of all the components on the board, including the newly
equipped DC-DC converter (LTC3542), the digital poten-
tiometer (AD5160), and the analog multiplexer (ADG839),
as well as existing essential parts (e.g., PCA9420, external
flash, and others), to evaluate the energy overhead introduced
by implementing the mechanism of immediately scaling the
core voltage in addition to the energy consumption of the
processor core. Note that both the experiments with and
without the newly developed board employ the essential parts,
and it consumes a considerable amount of power constantly
regardless of the speed of the processor core.

Although the ultimate goal of this work is to minimize the
energy consumption of the entire system on the board, this



experiment measures and evaluates the power consumption
(energy per unit time as shown in the vertical axes in Fig. 14
and Fig. 15) instead of the energy consumption. We can
convert the power consumption to energy consumption by
dividing the measured power value by the frequency of the
processor core. However, showing the energy consumption
value obtained by this conversion may be misleading because
the DVFS technique scales the operating voltage of the pro-
cessor only and the components other than the processor are
independent of the DVFS. Lower the core frequency, higher
the energy consumption of the components other than the
processor, which is misleading. Therefore, we show the power
consumption (i.e., energy per unit time) on the vertical axes
in Fig. 14 and Fig. 15. Note that the reduction rates of power
consumption and energy consumption are equal.

1) Previous method: We measure energy consumption us-
ing the constant supply voltage of 1.15V and clock frequency
of 300MHz with the unmodified evaluation board circuit
depicted in Fig. 13. Figure 14 shows the change in energy
consumption per unit time E0/T for different CPU utilization
rates of the RTOS URT and the GPOS UGP. The energy
consumption linearly and positively depends on URT and UGP

according to (1).
2) Proposed method: We measure energy consumption

using the variable supply voltage of 0.7V, 0.8V, and 1.15V

PCA9420

Buck

5V

Fig. 13: The unmodified evaluation board circuit for the
previous dual-OS platform.

85

90

95

100

105

110

115

120

125

0 0.2 0.4 0.6 0.8 1

URT
=
0.0

URT
=
0.1

URT
=
0.2

...URT
=
0.8

URT
=
0.9

E
0
/T

[m
J/

s]

UGP

Fig. 14: Energy consumption per unit time of the conven-
tional dual-OS platform for CoreMark benchmark, which
corresponds to the result without applying DVFS. The energy
consumption per unit time linearly and positively depends on
URT and UGP according to (1).

and clock frequency of 75MHz, 150MHz, and 300MHz for
the GPOS with the hardware of Fig. 10. We used the constant
supply voltage of 1.13V and clock frequency of 300MHz for
the RTOS as is deployed in the evaluation board of RT685.

Figure 15 shows the change in energy consumption
Ediscrete/T for different CPU utilization rates of the RTOS
URT and the GPOS UGP. Edvfs/T is also plotted as dashed
lines assuming that RT685 could operate with the continuously
changing clock frequency. The actual energy consumption
Ediscrete/T is the straight lines connecting dots on the ideal
curve of Edvfs/T .

3) Energy reduction of proposed method: Figure 16 shows
the change in energy reduction ratio for different CPU utiliza-
tion of the RTOS URT and the GPOS UGP. Smaller URT+UGP

is, fGP is likely to be slower, improving the energy reduction
ratio. The maximum energy reduction is approximately 43%.
A notable observation from Fig. 16 is that the reduction ratio is
always positive. This counterintuitive result claims that even
if VRT = VGP = 1.13V (i.e., the maximum voltage), the
energy consumption is reduced from the original hardware
configuration depicted in Fig. 13, which uses 1.15V as the
supply voltage, although we added the hardware components.

Adding the hardware components of Fig. 10 introduces the
following consumption.

• The static consumption of ADG839: According to the
datasheet, the static current consumption of ADG839 is
3 nA. The supply voltage of 3.3V results in static power
consumption of 9.9 nW.

• The static consumption of AD5160: According to the
datasheet, the static current consumption of AD5160 is
3 µA. The supply voltage of 3.3V results in static power
consumption of 9.9 µW.

• The loss of the on-resistance of ADG839: According to

40

50

60

70

80

90

100

110

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

URT
=
0.1

URT
=
0.2

...
URT

=
0.8

URT
=
0.9

E
d
v
fs
/T

[m
J/

s]

UGP

Fig. 15: Energy consumption per unit time of DVFS virtu-
alization for CoreMark benchmark, which corresponds to the
result of the soft real-time approach discussed in Sect. III-A.
The ideal energy consumption plotted as dashed lines follow
(2), and the actual energy consumption per unit time plotted as
solid lines connect three points on the ideal curve by straight
lines according to (4).



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

U
R
T
=
0.1

U
R
T
=
0.2

...U
R
T
=
0.8

U
R
T
=
0.9

1
−
E

d
is
c
re
te
/E

0

UGP

Fig. 16: Energy reduction of DVFS virtualization for Core-
Mark benchmark, which also corresponds to the results of
the soft real-time approach discussed in Sect. III-A. DVFS
virtualization reduces energy consumption for all conditions.

the datasheet, the on-resistance of ADG839 is typically
0.35Ω. Also, according to the datasheet of RT685, cur-
rent consumption is roughly 50mA when executing Core-
Mark at 300MHz. Therefore, the power consumption at
the on-resistance is estimated at around 0.875mW.

• The idling consumption of LTC3542: According to the
datasheet, LTC3542 consumes 0.5mA when idle. The
supply voltage of 5V results in idling power consumption
of 2.5mW.

• The idling consumption of PCA9420: According to the
datasheet, PCA9420 consumes 0.7 µA when idle. The
supply voltage of 5V results in idling power consumption
of 3.5 µW.

The sum of all the above power consumption values is only
3.4mW, which is much smaller than the power consumption
of the processor. Therefore, the energy overhead introduced
by adding a power supply and switch is negligible.

The conversion efficiency of LTC3542 might be higher than
PCA9420, and this causes energy reduction for the case VRT =
VGP. Also note that although RT685 can operate at 300MHz
with the supply voltage of 1.13V, PCA9420 can only generate
1.15V. On the other hand, the combination of LTC3542 and
AD5160 can adjust the output voltage for about a 2mV step,
realizing 300MHz operation of RT685 with the supply voltage
of just 1.13V.

The result of this experiment is summarized in the follow-
ing.

• The power consumption overhead introduced by adding
a power supply and a switch for DVFS virtualization is
negligible.

• Applying DVFS virtualization to a commercial micro-
processor gives the energy consumption expressed as
(4). Automobile and avionics often comply with TDMA
scheduling, which executes multiple software for stati-
cally allocated time windows [24]. ARINC-653 and AU-
TOSAR specify the typical TDMA scheduling scheme,

which can easily measure accurate CPU utilization of the
RTOS and GPOS at runtime, realizing to obtain similar
results to those shown in Fig. 16 when applied.

E. Emulation results with industry applications

In this experiment, we applied the proposed method for
several example applications provided by NXP. Like the exper-
iment in Sect. V-D, the RTOS executes the CoreMark bench-
mark, but the GPOS executes one of the example applications.
We selected the following four applications, representing the
typical usage of RT685 that NXP expects.

• ML: An application that captures voice audio from the
digital microphone on the board and detects words by a
neural network.

• Crypto: An application that demonstrates the crypto-
graphic functionality of the mbed-TLS library using a
dedicated accelerator.

• GUI: An application that draws GUI animation on an
external LCD using the LVGL library.

• Wi-Fi: An application that communicates with an external
machine using a Wi-Fi module.

We applied the naive algorithm discussed in Sect. III-A1 to the
above four applications because they do not have soft real-
time constraints. Note that even this naive algorithm is not
realizable without our proposed DVFS virtualization because
existing dual-OS platforms take several tens of microseconds
to change the speed of the processor, which may cause
violating the deadlines of real-time tasks.

Figure 17 shows the change in the relative energy reduction
of the proposed method for different CPU utilization rates
of the RTOS URT. The smaller URT is, the more energy
is reduced, and reduced energy decreases according to the
increase of URT. Our method reduces energy consumption by
31% on average. The maximum energy reduction is more than
60%, which is better than the result in Fig. 16. This experiment
uses several peripherals and reduces their energy consumption,
causing a higher energy reduction ratio than Fig. 16, which

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

Average

R
el

at
iv

e
E

ne
rg

y
R

ed
uc

ti
on

URT

ML

Crypto

GUI

Wi-Fi

Fig. 17: Energy reduction of DVFS virtualization for several
applications. DVFS virtualization reduces energy consumption
by 31% on average.



does not use a peripheral. Another notable observation from
Fig 17 is that the reduction ratio of GUI application is below
zero at URT = 1. However, the increased energy is only 2%.

The summary of the experimental results is as follows;
• DVFS virtualization can be applied to various applica-

tions and does not prevent the correct operation.
• A high energy reduction ratio can be obtained for typical

applications of RT685 regardless of their types.

VI. CONCLUSION

This paper proposed DVFS virtualization, which combines
the DVFS algorithm to minimize the energy consumption
of a dual-OS platform and the hardware structure to switch
the performance immediately. The proposed DVFS algorithm
efficiently reduces energy consumption by simultaneously
running two different DVFS policies suitable for the RTOS
and GPOS, respectively. The algorithm also automatically
exploits the early completion of the RTOS than its WCET
to save energy. In addition to the energy reduction, the
proposed hardware realizes immediate switching of the supply
voltage and clock frequency, which prevents the dual-OS from
violating the real-time constraints of the RTOS even when the
GPOS aggressively lowers the voltage to save energy. Also,
our method can use general buck converters whose voltage
conversion efficiency is typically more than 90%, although the
voltage transition is slow. Such chopper DC-DC converters can
efficiently produce fine-grained levels of voltages, better than
integrated switched-capacitor DC-DC converters and voltage
dithering, which are inefficient or can only produce discrete
levels of voltages.

The evaluation experiment using the commercial processor
board showed that the proposed hardware could change the
supply voltage within 500 ns and reduce the energy consump-
tion of typical applications by 60% in the best case com-
pared to traditional dual-OS platforms without preventing their
correct operation. We also experimentally demonstrated that
the energy consumption overhead introduced by the additional
hardware is negligible, and the energy consumption is widely
reduced following the theoretical formula.

Our future work includes developing a processor with
hardware supports for the proposed DVFS virtualization, im-
proving the time to change the performance, and applying the
DVFS virtualization to multicore processors.

ACKNOWLEDGMENT

This work is supported by JST CREST Grant Number
JPMJCR18K1.

REFERENCES

[1] G. Heiser, “The Role of Virtualization in Embedded Systems,” in
Workshop on Isolation and Integration in Embedded Systems, 2008.

[2] Y. Kinebuchi, W. Kanda, Y. Yumura, K. Makijima, and T. Nakajima,
“A Hardware Abstraction Layer for Integrating Real-Time and General-
Purpose with Minimal Kernel Modification,” in Software Technologies
for Future Dependable Distributed Systems, 2009.

[3] B. Zuo, K. Chen, A. Liang, H. Guan, J. Zhang, R. Ma, and H. Yang,
“Performance Tuning Towards a KVM-Based Low Latency Virtualiza-
tion System,” in International Conference on Information Engineering
and Computer Science (ICIECS), 2010.

[4] M. Liu, D. Liu, Y. Wang, M. Wang, and Z. Shao, “On Improving Real-
Time Interrupt Latencies of Hybrid Operating Systems with Two-Level
Hardware Interrupts,” IEEE Transactions on Computers, 2011.

[5] D. Sangorrı́n, S. Honda, and H. Takada, “Reliable Device Sharing Mech-
anisms for Dual-OS Embedded Trusted Computing,” in International
Conference on Trust and Trustworthy Computing (TRUST), 2012.

[6] P. Dong, A. Burns, Z. Jiang, and X. Liao, “TZDKS: A New TrustZone-
Based Dual-Criticality System with Balanced Performance,” in Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2018.

[7] J. Yang, Y. Chen, H. Wang, and B. Wang, “A Linux kernel with
fixed interrupt latency for embedded real-time system,” in International
Conference on Embedded Software and Systems (ICESS), 2005.

[8] R. Rybaniec and P. Z. Wieczorek, “Measuring and minimizing interrupt
latency in Linux-based embedded systems,” in Photonics Applications
in Astronomy, Communications, Industry, and High-Energy Physics
Experiments, 2012.

[9] L. Perneel, H. Fayyad-Kazan, and M. Timmerman, “Can Android be
used for real-time purposes?” in International Conference on Computer
Systems and Industrial Informatics (ICCSII), 2012.

[10] W. Kim, D. Brooks, and G.-Y. Wei, “A Fully-Integrated 3-Level DC-DC
Converter for Nanosecond-Scale DVFS,” IEEE Journal of Solid-State
Circuits, 2012.

[11] B. Zimmer, Y. Lee, A. Puggelli, J. Kwak, R. Jevtić, B. Keller et al.,
“A RISC-V Vector Processor With Simultaneous-Switching Switched-
Capacitor DC–DC Converters in 28 nm FDSOI,” IEEE Journal of Solid-
State Circuits, 2016.

[12] F.-F. Ma, W.-Z. Chen, and J.-C. Wu, “A Monolithic Current-Mode
Buck Converter With Advanced Control and Protection Circuits,” IEEE
Transactions on Power Electronics, 2007.

[13] N. Min Allah, Y.-J. Wang, J.-S. Xing, M. Nisar, and A.-R. Kazmi,
“Towards Dynamic Voltage Scaling in Real-Time Systems-A Survey,”
IJCSES International Journal of Computer Sciences and Engineering
Systems, 2007.

[14] S. Vestal, “Preemptive Scheduling of Multi-criticality Systems with
Varying Degrees of Execution Time Assurance,” in International Real-
Time Systems Symposium (RTSS), 2007.

[15] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele, “Energy efficient
DVFS scheduling for mixed-criticality systems,” in International Con-
ference on Embedded Software (EMSOFT), 2014.

[16] I. Ali, Y.-I. Jo, S. Lee, W. Y. Lee, and K. H. Kim, “Reducing Dynamic
Power Consumption in Mixed-Critical Real-Time Systems,” Applied
Sciences, 2020.

[17] L. Behera and P. Bhaduri, “An Energy-Efficient Time-Triggered
Scheduling Algorithm for Mixed-Criticality Systems,” Design Automa-
tion for Embedded Systems, 2020.

[18] Y.-W. Zhang, “Energy-Aware Mixed-criticality Sporadic Task Schedul-
ing Algorithm,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 2021.

[19] B. Dominik, CPUFreq Governors. [Online]. Available:
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

[20] S. Akram, J. B. Sartor, and L. Eeckhout, “DVFS performance prediction
for managed multithreaded applications,” in International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2016.

[21] Y. Shakhsheer, S. Khanna, K. Craig, S. Arrabi, J. Lach, and B. H.
Calhoun, “A 90nm data flow processor demonstrating fine grained DVS
for energy efficient operation from 0.25V to 1.2V,” in Custom Integrated
Circuits Conference (CICC), 2011.

[22] E. M. Benhani and L. Bossuet, “DVFS as a Security Failure of
TrustZone-enabled Heterogeneous SoC,” in International Conference on
Electronics, Circuits and Systems, 2018.

[23] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “VoltJockey: Breaching TrustZone
by Software-Controlled Voltage Manipulation over Multi-Core Frequen-
cies,” in ACM SIGSAC Conference on Computer and Communications
Security, 2019.

[24] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and M. Wolf, “Spe-
cial Session: Future Automotive Systems Design: Research Challenges
and Opportunities,” in International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2018.


