
Optoelectronic Implementation of Compact and
Power-efficient Recurrent Neural Networks
Taisei Ichikawa†, Yutaka Masuda†, Tohru Ishihara†, Akihiko Shinya‡, and Masaya Notomi‡

† Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
‡ NTT Nanophotonics Center / Basic Research Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Japan

Abstract—Optoelectronic implementation of artificial neural
networks (ANNs) has been attracting significant attention due
to its potential for low-power computation at the speed of light.
Among the ANNs, adopting recurrent neural network (RNN) is a
promising solution since it provides sufficient inference accuracy
with a more compact structure than other ANNs. This paper
proposes a novel optoelectronic architecture of RNN. The key
idea is to implement the vector-matrix multiplication optically
to exploit the speed of light and implement the activation and
feedback electronically to exploit the controllability of electronics.
The electronics part is composed of an electrical feedback circuit
with a dynamic latch to synchronize the recurrent loops with a
clock signal. Using a commercial optoelectronic circuit simulator,
we confirm the correct behavior of the optoelectronic RNN.
Experimental results obtained using TensorFlow show that the
proposed optoelectronic RNN achieves more than 98% inference
accuracy in image classification with a minimal footprint without
sacrificing low-power and high-speed nature of light.

Index Terms—optical computing, neuromorphic computing,
recurrent neural network

I. INTRODUCTION

Today’s highly developed information society would not
have been realized without optical communication and CMOS
LSI technologies. Traditionally, optical communication tech-
nology has been developed for long-distance communication.
However, recent innovations in nanophotonics have moved it
to shorter distances and are now migrated onto silicon chips as
optical networks-on-a-chip. Concurrently, the rapid progress of
research on neural network (NN) has stimulated research on
optical neural network (ONN) [1]–[9]. Whereas multi-layer
perceptrons (MLPs) generally provide higher expressiveness
by exploiting the deep-layer structure, such a structure requires
an extremely large footprint. On the other hand, recurrent
neural network (RNN) has a loop structure which results
in a smaller implementation area than MLP. Especially for
image classification, RNN can achieve outstanding inference
accuracy with a much smaller area than the other DNN
counterparts. For example, Visin et al. proposed an efficient
RNN model [10] that replaced the fully connected layers with
RNN that swiped through the image, attaining accuracy of
99.55% with MNIST dataset, a widely used image database
of handwritten digits.

To incorporate the ultra-fast nature of light into the RNN
model, several previous works [11], [12] proposed optical
implementation of RNN. Although those RNNs perform the
inference processing at the speed of light, they involve a large
footprint since all neurons and edges in the model are based on

a large photonics device called Mach-Zehnder Interferometer
(MZI), which limits the scalability of the ONN. Tait et al.
proposed a more compact optoelectronic RNN [1] based on
micro-ring modulator array. However, this RNN in turn has
a structure with higher delays in optical-to-electrical signal
conversion, limiting the overall performance of the RNN.

In this paper, we propose for the first time an optoelectronic
RNN architecture that performs the inference processing at the
speed of light without sacrificing the compact nature of RNN.
The key idea of the proposed architecture is to implement
the vector-matrix multiplication part optically and implement
the activation and feedback part electronically. Thanks to the
electro-optic hybrid implementation, the proposed architecture
fully takes advantage of the speed of light and the controlla-
bility of the electronics. Experimental results obtained using
TensorFlow show that the proposed RNN achieves inference
accuracy of more than 98% in MNIST with a minimal
footprint, without sacrificing optics’ low-power consumption
and high-speed nature. Using a commercial optoelectronic
circuit simulator, we have also verified that the optoelectronic
RNN works correctly. The rest of the paper is organized
as follows. Section II summarizes several previous works
on the ONNs. Section III proposes a detailed architecture
of our optoelectronic RNN. Section IV shows experimental
results obtained with the optoelectronic circuit simulator and
TensorFlow. Section V concludes this paper.

II. RELATED WORKS
A. Coherent RNN with Mach-Zehnder Interferometer Array

In [5], a fully optical neural network (ONN) architecture
is presented. The core part of the ONN architecture is a
matrix multiplication unit composed of a reconfigurable Mach-
Zehnder Interferometer (MZI) array. Although this ONN ar-
chitecture is much faster than the electronic counterparts, one
significant drawback in the architecture is high photonic com-
ponent utilization and area cost. The area for the implementa-
tion is quadratically proportional to the number of neurons in
the network. In [6], a more compact ONN architecture based
on Fast Fourier Transform (FFT) is proposed. However, the
area required for the implementation is massive as the number
of MZIs required is still quadratic to the number of neurons.

All-optical recurrent neural network (RNN) based on the
MZI array described above is proposed in [11] [12]. This RNN
architecture performs low-power and high-speed sequence pro-
cessing using the MZI array and looped waveguides. Although



the architecture is more compact than ONN proposed in [5]
[6] thanks to the recurrent structure, the circuit is inherently
massive as it is based on the MZI array presented in [5].

B. RNN based on Incoherent Accumulation

An optical circuit structure for vector-matrix multiplication
(VMM) based on wavelength division multiplexing (WDM)
is proposed in [1]. The incoming WDM carrier waves are
weighted by modulators called microring (MRR) weight
banks. The weighted optical signals are then summed as
photocurrent by a photodetector. Although this architecture is
very area-efficient, it has an oscillation issue. If WDM waves
are given to a photodetector, an oscillation in photocurrent
occurs. This is known as a beat note. One simple approach
to eliminate the beat note is low-pass filtering. However, this
prevents VMM from exploiting the ultra-high-speed nature of
light since the time constant of the low-pass filter is more
than two orders of magnitude bigger than that of the fully
optical operations. In [2]–[4], [7], [13], [14], similar optical
VMM circuits are proposed. These circuits are very small since
they are based on photodetector-based accumulation. However,
they also have the beat note issue in the photodetector, which
prevents the light-speed operation of optical VMM.

The main focus of [1] is on the photonic implementation of
a continuous time RNN (CT-RNN). Although this CT-RNN is
much more compact than the optical RNNs proposed in [11]
[12], it requires low-pass filtered amplifiers to eliminate the
beat note, limiting the overall performance of the RNN.

C. ONN based on All-Optical Coherent VMM

A fully coherent VMM based on WDM is proposed in
[8], [9]. This VMM employs an optical accumulation circuit
using an optical power combiner to solve the beat note issue
incurred in the photodetector-based accumulation presented
in the previous subsection. The schematic of an ONN is
depicted in Fig. 1. Each layer of the ONN is composed of
the MRR weight bank [1], parallelized multipliers based on
Mach Zehnder Modulator (MZM), an accumulator based on
an optical combiner [15], and an optoelectronic activation
circuit based on [16] which directly implements a nonlinear
function. The incoming WDM carrier waves are first weighted
by the MRR weight banks and then the weighted WDM signals
are passed to the MZMs for the multiplication. Once the
outputs of the MZMs are given to the power combiner as
WDM signals, optical accumulations are performed in parallel.
Optical waves with the same wavelength are accumulated in
the power combiner. This accumulation is performed for every
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Fig. 1. Optical neural network based on coherent VMM [9].

different wavelength in parallel. Since the coherent light is
used throughout the multiply and accumulation operation, the
light-speed VMM calculation is possible in this architecture.
Finally, the accumulated values are extracted by micro-ring
resonators and given to the activation circuits separately. The
activation circuit is operated in an electronics domain after
optical-to-electrical (O-E) conversion by a photodetector [16].
Since this architecture employs the MRR weight bank and the
optical combiner for the VMM calculation, it takes advantage
of the architectures proposed in [5] and [1], respectively.

III. PROPOSED OPTOELECTRONIC RNN ARCHITECTURE

This section proposes an RNN architecture based on the
ONN presented in Fig. 1. To the best of our knowledge, this
is the first proposal of an optoelectronic RNN based on this
compact and ultra-fast ONN architecture.

A. Electrical Feedback Circuit with Dynamic Latches in RNN

Most of the up-to-date research activities on optical neu-
ral networks (ONNs) are focused on a feed-forward type
of architecture, such as multi-layer perceptrons (MLPs) and
convolutional neural networks (CNNs). The main reason for
this trend is that there are no memory devices to store analog
optical signals. If a digital optical flip-flop such as proposed in
[17] is used instead of storing analog activation results, analog-
to-digital conversion (ADC) is needed, which consumes a large
amount of energy and area in the recurrent feedback circuitry.

As a remedy to this issue, this section proposes an electrical
analog memory based on a dynamic latch. The schematic of
the dynamic latch is depicted in the upper left of Fig. 2.
Like DRAM cells, the dynamic latch stores electrical charge
in the parasitic capacitance on the input of a Mach-Zehnder
modulator (MZM). When the transmission gate is ON, the
charge moves to the parasitic capacitance, which corresponds
to the write operation. Once the transmission gate is turned
OFF, the charge is kept stored in the capacitance, which
corresponds to the hold operation. This dynamic latch enables
energy-efficient feedback operation in the optoelectronic RNN.

B. Optoelectronic RNN Architecture

Figure 2 shows the overall structure of optoelectronic RNN.
As presented in the upper part of Fig. 2, the activation circuits
and the following dynamic latches are implemented in the
electronics domain. The optical VMM is implemented in the
optics domain, as shown at the bottom of Fig. 2. For given
x0 and x1 as electrical inputs, and v0 and v1 as electrical
feedback signals, the optics domain calculates two VMMs
which correspond to the arguments of (1) and (2) where the
f represents the activation function. The b0 and b1 represent
the biases for the activation circuits, respectively.

V0 = f(v0W0,0 + v1W0,1 + x0W0,2 + x1W0,3 + b0). (1)

V1 = f(v0W1,0 + v1W1,1 + x0W1,2 + x1W1,3 + b1). (2)

The optical signals with the red and green in Fig. 2 correspond
to (1) and (2), respectively. The propagation delay of optical
waves traveling through optical waveguides is proportional to
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Fig. 2. Proposed optoelectronic RNN architecture with dynamic latches.

the total path length. The total length of the path starting from
the MZM to the input of the activation circuit can be designed
to be less than 1 mm. Since the speed of light traveling in the
semiconductor waveguides is about 100µm/ps, the delay of
the optical VMM is less than 10 ps. The worst case delay
of the activation circuit based on the O-E converter proposed
in [16] is about 30 ps. According to circuit simulation for
the dynamic latch designed with 16 nm CMOS process
technology [18], the write delay of the latch is less than 10 ps.
As a result, the recurrent cycle time can be less than 50 ps,
corresponding to the recurrent clock frequency of 20 GHz.

The dynamic latch explained in section III-A can be accu-
rately functioned as a temporal analog memory in the feedback
circuit of the optoelectronic RNN. Since the leakage current
drawn through the transmission gate of the dynamic latch is
an order of picoampere, the amount of charge lost by the
leakage current within several tens of picoseconds is an order
of 0.01 attocoulomb. This charge loss corresponds to less than
0.01% of the value stored in the dynamic latch since the
parasitic capacitance of the MZMs is around 1.0 femtofarad.
Therefore, the dynamic latch accurately works as a temporal
analog memory in the optoelectronic RNN which operates
with a clock cycle time of fewer than 100 picoseconds.

IV. EXPERIMENTAL EVALUATION

Section IV-A examines the functional behavior of the pro-
posed RNN via the optoelectronic circuit simulator. Then,
using TensorFlow, Section IV-B demonstrates the area and
power-saving effects thanks to the proposed RNN.

A. Optoelectronic Circuit Simulation

1) Evaluation Setup: As a test circuit, we design the
optoelectronic RNN circuit with dynamic latches based on the
circuit depicted in Fig. 2. The electrical signals x0 and x1

are inputs to the input layer, and v0 and v1 are inputs to the
hidden layer. Only in the first clock cycle, h0 and h1 are used
as the inputs to the hidden layer. V0 and V1 are the outputs
from the activation function, which are recurrently connected
to v0 and v1. Remind that the red and green allows are the
optical waves. In the experiment, we prepare four sequences.
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Fig. 3. Optoelectronic circuit simulation results. (a) Comparison with ex-
pected values. Solid lines correspond to V0 and V1, and doted lines are
expected results. (b) Comparison between the output in the previous cycle
and current input.

More specifically, x0 and x1 are set to [1,−1, 1,−1] and
[1, 1, 1, 1], respectively. The weights W0i and W1i are set to
[1, 1, 1,−1] and [1, 1, 1,−1], as noted to red and green circles,
respectively. Both h0 and h1 are set to 1. For the above setting,
we preliminary calculate the ideal v0 and v1, which are both
[2, 2, 4, 6]. In the experiment, we use an ELU function as the
activation function, set the clock period to 100 ps, and simulate
the optoelectronic circuit using a commercial optoelectronic
circuit simulator in order to verify the behavior of the designed
circuit.

2) Evaluation Results: Figure 3 shows the simulation re-
sults with the test circuit. In Fig. 3(a), solid lines correspond
to V0 and V1, and donated gray lines are ideal results. From
the figure, we can see that the output voltage converges to
the expected value. For example, in the third clock cycle, V0

converges to ”4”, which is an ideal result. This consistency
indicates that optoelectronic functions work accurately through
the dynamic latches and optical VMM. Figure 3(b) shows
the comparison between the output and input values, e.g.,
V0 and v0. We can see that the output value in the previous
clock cycle is successfully used in the next clock cycle. This
means that the hold operation and synchronization in the
dynamic latches work correctly, enabling an accurate control
mechanism. From the above, we experimentally confirm that
the proposed optoelectronic RNN circuit works correctly in
terms of functional operation.

B. Accuracy, Power, and Area Estimation

1) Evaluation Setup: As a benchmark, we use MNIST,
a widely used handwritten digits collection. To classify the
MNIST images by RNN, we handle 28 iterations of 28
pixels for every image sample of MNIST. We design test
circuits based on the proposed RNN architecture and evaluate
their accuracy using TensorFlow, an open-source library for
numerical computation and large-scale machine learning. The
input and output layers have 28 and 10 nodes, respectively. The
number of nodes in the hidden layer is swept to 16, 32, 64,
and 98. We assume that the minimum detectable power of the
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Fig. 4. Accuracy, power, and area comparison between MLP architecture [9]
and proposed RNN architecture.

photodetector is 10 µW in this evaluation. The signal power
of the laser source is determined so that the signal power is no
less than the minimum detectable power of the photodetector
(i.e., 10 µW), even if the signal power is attenuated through
the power splitters and the combiners in the optical VMM.
Based on the signal power of the laser sources, the total power
consumption of the optoelectronic RNN circuit is calculated.

2) Evaluation Results: Bar charts in Fig. 4 show the power-
saving effects thanks to the proposed RNN architecture. As
shown in Fig. 4, the proposed RNN can dramatically reduce
the power dissipation compared to the WDM-based optical
MLP [9]. For example, when we set the number of nodes in
the hidden layer to 98, the proposed RNN consumes the power
dissipation of 1.65 ×101 W while the MLP requires 4.83 ×101

W. Namely, the proposed RNN reduces the power dissipation
to 34%, which is a significant power saving effect. Moreover,
by mitigating the accuracy constraint, the power dissipation
of the proposed RNN can be further reduced. For example,
when the accuracy constraint is set to 97% and the number of
nodes in the hidden layer is set to 32, the power dissipation
can be further reduced by one order of magnitude from 1.65
×101 W to 1.25 ×100 W. From the above, we experimentally
confirm that the proposed optoelectronic RNN can provide
good inference accuracy while dramatically reducing power
dissipation. The results of area comparison between the optical
MLP proposed in [9] and our RNN architecture are shown in
the line chart of Fig. 4. The area of Mach-Zehnder modulator
and micro-ring resonator used in the comparison is determined
based on the value used in [14] for fair comparison. As can be
seen from the line chart in Fig. 4, the area of our RNN with
98-node is more than 3X smaller than the MLP based ONN
[9] without sacrificing the inference accuracy. In summary, we
experimentally confirm that the proposed optoelectronic RNN
can provide good inference accuracy in image classification
with a minimal area without sacrificing low-power and high-
speed nature of light.

V. CONCLUSION

This paper proposed a novel architecture of optoelectronic
RNN. The key idea behind the proposed architecture is that
the vector-matrix multiplication part is implemented optically

and the activation and feedback part is implemented electron-
ically. Thanks to this electro-optic hybrid implementation, the
proposed architecture fully takes advantage of the ultra high-
speed nature of light and the controllability of the electronics.
Experimental results obtained using TensorFlow showed that
the proposed optoelectronic RNN architecture achieves more
than 98% inference accuracy in image classification with a
very compact and low-power circuit structure without sacrific-
ing the high-speed nature of light. We also confirm the correct
operation of the optoelectronic RNN using a commercial op-
toelectronic circuit simulator. Our future work will be devoted
to developing edge and node pruning algorithms for achieving
better power- and area-efficiency without compromising the
accuracy of the classification.
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