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ABSTRACT
Molecular dynamics simulation on some molecular liquids was performed to study sound dispersion on the molecular scale. The sound
velocity was determined from the intermediate scattering function, and the relation between the longitudinal modulus and frequency was
compared with the frequency-dependent longitudinal modulus in the q = 0 limit evaluated by the Kubo–Green theory. The sound dispersion
of a monoatomic liquid up to qσ ≅ 2 was almost quantitatively explained by the viscoelasticity in the q = 0 limit when the wavenumber
dependence of the heat capacity ratio was taken into account. The situation was similar for a polyatomic molecular liquid for which the
intramolecular degrees of freedom were fixed. For a polyatomic liquid with intramolecular degrees of freedom, the sound dispersion on the
molecular scale was connected to the high-frequency limit of the ultrasonic relaxation mode assigned to the vibrational energy relaxation. After
subtracting the contribution of the vibrational energy relaxation, both the longitudinal viscoelasticity and the sound dispersion depended little
on the presence of intramolecular degrees of freedom.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0098098

I. INTRODUCTION

Ultrasonic spectroscopy is one of the experimental methods for
monitoring relaxation processes in liquids.1 It measures the velocity
or the attenuation coefficient of sound as a function of frequency.
Simple hydrodynamics predicts sound velocity to be independent
of frequency and the attenuation coefficient to be proportional to
frequency squared, which actually holds in frequency ranges where
no microscopic relaxation occurs. In other words, the microscopic
relaxation processes can be observed as the deviation from the
hydrodynamic frequency dependence.

Classical ultrasonic experiments using electric or optical
devices have been performed in the frequency range below sev-
eral GHz. Because the sound wavelength in this frequency range is
much longer than the molecular size, the wavenumber dependence
of material properties can be neglected, and the focus can be solely
on frequency dependence.

Sound measurement at higher frequencies is possible by means
of scattering experiments of quantum beams of shorter wavelengths.

Traditionally, such experiments have been performed using thermal
neutrons, and the Brillouin scattering experiments using x-ray or
deep ultraviolet light are possible at the present time owing to the
development of synchrotron facilities. The sound velocity in the THz
frequency range, corresponding to the nm−1 wavenumber range, can
be determined with these techniques, and experimental results on
various liquids have been accumulated.2–8

On the molecular scale, the sound velocity is usually faster than
that in the low-wavenumber limit, and it is often referred to as “fast
sound.”2,9 The fast sound is sometimes ascribed to the viscoelas-
tic relaxation of liquids, i.e., the sound velocity in the THz regime
becomes higher because the structural relaxation is frozen. However,
considering that the sound wavelength is comparable to the molec-
ular size, the viscoelastic properties of a liquid may depend on the
wavenumber in addition to frequency, and the effects of wavenum-
ber and frequency are not separated. In molecular dynamics (MD)
simulation, the sound velocity of a finite wavenumber can be eval-
uated from the intermediate scattering function. The viscoelastic
relaxation in the zero-wavenumber (q = 0) limit can, in turn, be
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determined from the time correlation functions associated with the
stress tensor of the whole system through the Kubo–Green theory.10

By comparing these two properties, we can evaluate how well the vis-
coelastic relaxation in the frequency regime can explain the sound
dispersion in the molecular scale quantitatively, which is one of the
principal purposes of this work.

The MD simulations and theoretical studies on fast sound have
been performed mainly on simple monoatomic fluids and water, and
the presence of the fast sound was successfully reproduced in these
studies.11–17 Upon extending the physical insights obtained on these
two systems to polyatomic organic liquids, there are numerous addi-
tional factors that should be taken into account. For example, in a
polyatomic organic molecule, the densities of mass and scattering
length are delocalized. The repulsive core of an organic molecule
is highly anisotropic, which leads to a strong coupling between the
translational and rotational modes. In classical ultrasonic studies, it
is also well known that the presence of the intramolecular vibrational
modes can be a reason for sound dispersion through vibrational
energy relaxation.18,19 The second purpose of this work is to examine
the effects of these factors that are specific to polyatomic liquids.

To increase the complexity of the system step by step in
this work, three target systems were chosen. The first one is a
monoatomic Lennard-Jones (LJ) fluid, which is considered as the
starting point of our computational analysis. The results of our MD
simulation are analyzed based on the well-established theory on the
acoustic wave of a simple fluid. The second system is liquid cyclo-
hexane, the intramolecular geometry of which was fixed to the stable
chair conformation. The theory on a simple liquid is extended there
and used for analysis. The third system is liquid cyclohexane, the
intramolecular degrees of freedom of which are included. Particu-
lar attention was devoted here to the coupling of vibrational energy
relaxation with longitudinal viscoelasticity, and a novel theoretical
method is proposed for analyzing the contributions of the vibra-
tional energy relaxation. We would like to comment here that the
latter two models of cyclohexane were chosen to clarify the contri-
butions of various factors specific to polyatomic molecular liquids,
and we do not intend to reproduce the acoustic properties of real
cyclohexane liquid in this work.

This paper is organized as follows: Sec. II gives the detailed
description of the systems under consideration. The theoretical
formulation is given in Sec. III, and Sec. IV is devoted to the com-
putational procedures. The numerical results are, then, shown in
Sec. V, moving from the simpler to the more complex ones. The
results of all the systems are, then, summarized in Sec. VI.

II. SYSTEMS UNDER CONSIDERATION
The first system considered in this study is the one-component

LJ fluid. All the physical quantities of the LJ fluid are given in LJ
reduced units, in which the LJ parameters ϵ (the depth of the inter-
action potential) and σ (atomic diameter), the mass of an atom m,
and the Boltzmann constant kB are unity. The numerical calculations
were performed at two thermodynamic conditions. The temperature
was set at T = 0.75 and 3.0, whereas the number density ρ was fixed
at 0.85. The condition of T = 0.75 corresponds to the liquid close
to the triple point, and T = 3.0 corresponds to the compressed gas
above the critical temperature.

Second, we treat a model polyatomic liquid composed of rigid
cyclohexane molecules described by the TraPPE-UA model.20 In the
TraPPE-UA model, the methylene (–CH2–) group is treated as a
united atom. The cyclohexane molecule in this model is, thus, a six-
site cyclic molecule. The C–C bond lengths are fixed at 0.154 nm as
determined in the TraPPE-UA model. The bond angles, which are
usually treated as flexible, were also fixed at 114.0○ by keeping the
dihedral angles in the chair form. The temperature was 298.15 K,
and the density was set to be the experimental value at ambient
pressure.21

The third model liquid considered is the six-site united atom
model of cyclohexane for which the intramolecular degrees of free-
dom are fully taken into account. The nonbonding interaction
between two methylene sites was taken from the TraPPE-UA model.
The potentials for the bond angle and the dihedral angle were also
taken from the TraPPE-UA model. Although the bond lengths are
fixed in the TraPPE-UA model, they are described by the harmonic
potential for which the bottom and spring constant are 0.154 nm and
5.02416 × 105 kJ mol−1 nm−2, respectively. In short, the third model
cyclohexane is the same as the second one, except for the treatment
of the intramolecular degrees of freedom.

Our focus of the third model is mainly on the contribution of
the vibrational energy relaxation to sound dispersion, and we would
like to comment here on two possible artifacts in this model. First,
in principle, the intramolecular vibrational modes should be treated
in a quantum way because its vibrational frequency is usually larger
than that of the thermal energy, kBT. The classical approximation
overestimates the vibrational heat capacity, which results in an over-
estimation of the contribution of the vibrational energy relaxation
to sound dispersion. The second artifact is the use of the united
atom model for the methylene group, which neglects the intramolec-
ular vibrational modes associated with hydrogen atoms. The neglect
of these modes leads to an underestimation of the vibrational heat
capacity, but we believe that its effect is small because vibrational
excitations of these modes are in reality, suppressed in a quantum
way.

III. THEORETICAL FORMULATION
A. Simple LJ fluid

The theory on the dynamics of simple fluids is already well-
established, and the theoretical formulation below follows the
textbook of Boon and Yip.9

The theory is based on the generalized Langevin formalism,
where the degrees of freedom of the system are divided into slow
and fast. The time development of the former is treated explic-
itly, whereas the contribution of the latter is regarded as a random
force. The densities of conserved quantities are usually regarded
as the set of the slow variables in considering the dynamics in
low-q regime, where q stands for the wavenumber. The conserved
quantities in the present system are the number of molecules,
the linear momenta, and the total energy, and their correspond-
ing densities are, respectively, defined in the reciprocal space as
follows:

ρ̃n(q) ≡∑l exp(iq ⋅ rl), (1)
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j̃m(q) ≡∑lmṙl exp(iq ⋅ rl), (2)

ρ̃ϵ(q) ≡∑l[
1
2

m∣ṙ l∣
2
+

1
2∑l′u(rll′)] exp(iq ⋅ rl). (3)

Here, the summation over l runs over all the atoms and that of l’
does l′ ≠ l. The position of atom l is denoted as rl, rll′ indicates
the relative position between atoms l and l’, and u(rll′) stands for
the potential function of the interaction energy between them. In
homogeneous fluids, the quantities at different q values are decou-
pled from each other because of the translational symmetry. The
momentum density j̃m(q)was divided into longitudinal (̃jm ∥ q) and
transverse (̃jm�q) components, and only the longitudinal compo-
nent is coupled to the number density ρ̃n(q) and the energy density
ρ̃ϵ(q). Hereafter, we set the coordinate of the system such that the z
axis is parallel to q, and the magnitude of the vector q is denoted as
q. The longitudinal momentum density is, thus, described as j̃m,z(q).
Considering that ρ̃ϵ(q) is not orthogonal to ρ̃n(q), a new variable is
defined as

ρ̃ϵ′(q) ≡ ρ̃ϵ(q) −
⟨ρ̃∗n(q)ρ̃ϵ(q)⟩
⟨ρ̃∗n(q)ρ̃n(q)⟩

ρ̃n(q), (4)

which is orthogonal to both ρ̃n(q) and j̃m,z(q).
Based on the standard theoretical procedure, the time devel-

opment of ρ̃n(q), j̃m,z(q), and ρ̃ϵ′(q) is given by the generalized
Langevin equation (GLE) as follows:

˙̃ρn(q, t) =
iq
m

j̃m,z(q, t), (5)

˙̃jm,z(q, t) = −
iq
m
⟨̃j∗m,z(q)j̃m,z(q)⟩
⟨ρ̃∗n(q)ρ̃n(q)⟩

ρ̃n(q, t)

+
⟨ρ̃∗ϵ′(q)˙̃jm,z(q)⟩

⟨ρ̃∗ϵ′(q)ρ̃ϵ′(q)⟩
ρ̃ϵ′(q, t)

− ∫

t

0
dτK̃ jj(q, t − τ)j̃m,z(q, τ) + R̃j(q, t), (6)

˙̃ρϵ′(q, t) = −
⟨ρ̃∗ϵ′(q)˙̃jm,z(q)⟩

⟨̃j∗m,z(q)j̃m,z(q)⟩
j̃m,z(q, t)

− ∫

t

0
dτK̃ϵ′ϵ′(q, t − τ)ρ̃ϵ′(q, t) + R̃ϵ′(q, t). (7)

The cross terms of the memory functions are neglected here due to
the different symmetries of the random forces R̃j(q, t) and R̃ϵ′(q, t)
in the q = 0 limit.9

The comparison of the GLEs above with the hydrodynamic
equations relates the memory functions K̃ jj(q, t) and K̃ϵ′ϵ′(q, t)
with the transport coefficients. The former K̃ jj(q, t) is related to
the frequency-dependent and wavenumber-dependent longitudinal
viscosity, ηL(ω, q), as follows:

q2

ρm
ηL(ω, q) = ∫

∞

0
dte−iωtK̃ jj(q, t). (8)

Here, the mass density is denoted as ρm and ω stands for angular
frequency. The q = 0 limit, ηL(ω, q = 0), is given by the linear com-
binations of the frequency-dependent shear and volume viscosities,
denoted as ηs(ω) and ηv(ω), respectively, as follows:

ηL(ω) ≡ ηL(ω, q = 0) = ηv(ω) +
4
3

ηs(ω). (9)

The wavenumber-dependent heat diffusivity, DT(q), is related to
K̃ϵ′ϵ′(q, t) as follows:

q2DT(q) = ∫
∞

0
dtK̃ϵ′ϵ′(q, t). (10)

The quantity directly determined in the Brillouin spectroscopy
is the dynamic structure factor, the inverse Fourier transformation
of which, with respect to frequency, gives the intermediate scattering
function defined as

Ĩ(q, t) ≡
1
V
⟨ρ̃∗n(q, t = 0)ρ̃n(q, t)⟩, (11)

where V stands for the volume of the system. Its initial value,
denoted as

χ̃(q) ≡ Ĩ(q, t = 0) =
1
V
⟨ρ̃∗n(q)ρ̃n(q)⟩, (12)

is the static structure factor.
The intermediate scattering function is in some cases described

by the sum of the exponential decay and the damped oscillation as
follows:9,22

Ĩ(q, t)
χ̃(q)

= (1 − aP(q))[e−kT(q)t +
kT(q)
ω′P(q)

e−kP(q)t sin ω′P(q)t]

+ aP(q)e−kP(q)t[cos ω′P(q)t +
kP(q)
ω′P(q)

sin ω′P(q)t]. (13)

The first exponential term in the first square bracket gives the
thermal diffusion (Rayleigh line), and the second square bracket
is ascribed to the longitudinal acoustic wave (Brillouin doublet).
The second terms in the square brackets are introduced to guaran-
tee ¨̃I(q, t) = 0. The wavenumber-dependent sound velocity, c(q), is,
then, given by

c2
(q)q2

= ω2
P(q) ≡ ω′2P (q) + k2

P(q). (14)

The relation between ωP(q) and c(q) gives the sound dispersion as a
function of frequency.

From Eqs. (5) and (6), the low-frequency limiting value of
the isothermal sound velocity, cT,0(q), is given at the limit of
K̃ jj(q, t) = 0 and ρ̃ϵ′(q, t) = 0 as

c2
T.0(q) =

⟨̃j∗m,z(q)j̃m,z(q)⟩
m2⟨ρ̃∗n(q)ρ̃n(q)⟩

. (15)

The adiabatic sound velocity in the low-frequency limit, cS,0(q),
then, corresponds to the limit of K̃ jj(q, t) = 0 and K̃ϵ′ϵ′(q, t) = 0 as

c2
S.0(q) = c2

T.0(q) +
∣⟨ρ̃∗ϵ′(q)˙̃jm,z(q)⟩∣

2

q2⟨ρ̃∗ϵ′(q)ρ̃ϵ′(q)⟩⟨̃j∗m,z(q)j̃m,z(q)⟩
, (16)
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and their ratio defines the wavenumber-dependent heat capacity
ratio as

γ(q) ≡
c2

S.0(q)
c2

T.0(q)
. (17)

The high-frequency limiting values of the isothermal and adiabatic
sound velocities, denoted as cT,∞(q) and cS,∞(q), respectively, are
related to the second derivative of the longitudinal momentum
correlation function as

c2
T⋅∞(q) =

⟨̇̃j∗m,z(q)˙̃jm,z(q)⟩

q2⟨̃j∗m,z(q)j̃m,z(q)⟩
, (18)

c2
S⋅∞(q) = c2

T⋅∞(q) + c2
S.0(q) − c2

T.0(q). (19)

When the memory functions K̃ jj(q, t) and K̃ϵ′ϵ′(q, t) are Marko-
vian, the damping coefficients kT(q) and kP(q) are related to the
frequency-independent transport coefficients as

kT(q) = DT(q)q
2, (20)

2kP(q) = [
ηL(q)

ρm
+ [γ(q) − 1]DT(q)]q

2. (21)

In the presence of slow relaxation modes in liquid, the mem-
ory function K̃ jj(q, t) becomes non-Markovian, and the longitudinal
viscosity is a complex function of frequency,

ηL(q, ω) = η′L(q, ω) −
i
ω

ΔG′L(q, ω), (22)

where the first and the second terms of the right-hand side denote
the real and imaginary parts, respectively. In such a case, Eq. (13) is,
in principle, unable to describe the intermediate scattering function
in the whole-time region. However, when the frequency dependence
of ηL(q, ω) is not strong, the description of the intermediate scat-
tering function by Eq. (13) approximately holds, and the apparent
sound velocity and damping coefficient are given by

c2
(q) ≃ c2

S,0(q) +
ΔG′L(q, ωP(q))

ρm
, (23)

2kP(q) ≃ [
η′L(q, ωP(q))

ρm
+ [γ(q) − 1]DT(q)]q

2. (24)

With these equations, the longitudinal viscoelastic relaxation,
ηL(q, ω), can be determined from the acoustic wave in the interme-
diate scattering function.

The longitudinal viscosity in the hydrodynamic limit is related
to the volume viscosity and the shear viscosity. According to the
Kubo–Green theory, the shear viscosity is, in turn, given by the time
correlation function of the pressure tensor as10

ηs(ω) = ∫
∞

0
dte−iωtG(t), (25)

G(t) ≡
V

kBT
⟨Pxz(0)Pxz(t)⟩, (26)

where kB and T stand for the Boltzmann constant and the absolute
temperature, respectively. The Kubo–Green theory also describes
the volume viscosity in terms of the time correlation function of the
adiabatic pressure fluctuation, δP′(t), as follows:23–26

ηv(ω) = ∫
∞

0
dte−iωtK(t), (27)

K(t) ≡
V

kBT
⟨δP′(0)δP′(t)⟩. (28)

When calculating K(t) by means of MD simulation, the expres-
sion of δP′(t) changes according to the ensemble of the system. In
a constant-volume constant-temperature (NVT) ensemble, which
was used in this work, the effect of the total energy variation, δE(t),
should be linearly projected out from the pressure fluctuation, δP(t),
as follows:

δP′(t) ≡ δP(t) −
⟨δPδE⟩
⟨∣δE∣2⟩

δE(t). (29)

B. Extension to rigid molecular liquid
The dynamics of polyatomic molecular liquids described in this

study is based on the interaction-site model, where the rotation of
rigid molecules is described as a coupled translation of interaction
sites.27 Given that the number density of each site is a conserved
quantity, these number density modes behave as slow modes, to be
treated as explicit variables in a GLE formalism, and the intermedi-
ate scattering function becomes a square matrix with the dimension
equal to the number of sites. In the present cyclohexane model, how-
ever, only the total number density of the methylene sites is relevant
in the consideration of Brillouin spectroscopy because all six sites
are equivalent and other five components are decoupled from the
total number density mode. Therefore, ρ̃n(q) is defined for model
cyclohexane as the total number density of the interaction sites as
follows:

ρ̃n(q) ≡∑l∑α∈l exp(iq ⋅ rlα). (30)

The index l runs over whole molecules, and α refers to the interaction
site that belongs to molecule l. The scattering length of all the sites
is equal, and thus, the scattering length density is proportional to
ρ̃n(q), and the inelastic scattering spectrum is given as the Fourier
transformation of the autocorrelation function of ρ̃n(q), which is
denoted as Ĩ(q, t) and is defined by substituting ρ̃n(q) defined by
Eq. (30) into Eq. (12). The definition of the momentum density is
also modified as

j̃m(q) ≡∑l∑α∈lmṙlα exp(iq ⋅ rlα), (31)

where m stands for the mass of the CH2 site for our model
cyclohexane. The energy density is, then, given by

ρ̃ϵ(q) ≡∑l∑α∈l[
1
2

m∣ṙ lα∣
2
+

1
2∑l′∑α′u(rlα,l′α′)] exp(iq ⋅ rlα).

(32)
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The summation of the kinetic energies of sites within a molecule is
equal to the sum of the translational and rotational energies of the
molecule. The rotational energy is, thus, implicitly included in the
first term of the square bracket. With these modifications of the def-
initions of variables, the theoretical formulation for simple fluid is
applicable to the polyatomic liquids composed of rigid molecules.

We shall here comment on the effects of the site asymmetry of
the molecule. Owing to the equivalence of the six sites of this model
cyclohexane, the densities of both mass and scattering length are
proportional to ρ̃n(q), and the contributions of other five compo-
nents of the site densities, which are associated with the rotational
modes, can be neglected. When the sites within the molecule are
heterogeneous, the intermediate scattering function Ĩ(q, t) becomes
different from the time correlation function of ρ̃n(q), and the time
derivative of ρ̃n(q) is not proportional to j̃m(q). Even in such a case,
the contribution of the rotational mode can be neglected in the small
q regime because it is proportional to q2 in the low-q limit. The
effects of the coupling with the rotational modes, then, increase with
increasing q, which can be a reason for the discrepancy between the
longitudinal viscoelasticity determined by the sound dispersion at a
finite wavenumber and that of the q = 0 limit.

C. Treatment of intramolecular vibration
The description of the dynamics based on the interaction-site

model is also used for the third model, and the definitions of the
number density and the momentum density are the same as that for
the rigid model, Eqs. (30) and (31). The energy density, ρ̃ϵ(q), should
be modified to include the intramolecular vibrational energy.

The rigid and the intramolecular parts of the energy density,
denoted as ρ̃ϵ1(q) and ρ̃ϵ2(q), respectively, are defined first as below.
The definition requires the division of the kinetic energy, which
begins with that of the site velocity, ṙlα, into three terms as follows:

ṙlα = vCM,l + vR,lα + vI,lα. (33)

The first term stands for the center-of-mass velocity of the molecule
l with a usual definition. The second term denotes the rotational
velocity, and the remaining part is assigned to the intramolecu-
lar velocity, vI,lα. The definition of the rotational velocity, vR,lα, is
given by

vR,lα ≡ ωl × δrlα, (34)

ωl ≡ I−1
l ⋅∑α(δrlα ×mṙlα), (35)

where Il stands for the inertia moment tensor and δrlα denotes the
relative position of site α in the molecule l from the molecular center-
of-mass. Even if a molecule can take various conformations, such
as chair and boat forms of cyclohexane, the translational and the
rotational velocities are defined in the same way by evaluating the
inertia moment tensor using the instantaneous conformation of the
molecule. With these definitions of velocities, ρ̃ϵ1(q) and ρ̃ϵ2(q) are
defined as

ρ̃ϵ1(q) ≡∑l∑α∈l[
1
2

m∣vCM,l + vR,lα∣
2
+

1
2∑l′∑α′u(rlα,l′α′)]

× exp(iq ⋅ rlα), (36)

ρ̃ϵ2(q) ≡∑l∑α∈l[
1
2

m∣vI,lα∣
2
+ φlα] exp(iq ⋅ rlα). (37)

Here, the intramolecular vibrational potential energy of a molecule
l is divided into the contributions of site α as the second term of the
square bracket of Eq. (37), φlα. The definition of φlα is somewhat
arbitrary, and the following convention was used in the numeri-
cal calculation in this study. The bond stretching energy is equally
assigned to the two sites connected by the bond. The potential energy
associated with the bond angle is wholly assigned to the central site.
The A–B–C–D dihedral potential was equally assigned to the central
two sites, B and C. Although in the present model the intramolecular
LJ and electrostatic interactions are absent, they should be included
in φlα if present. In the case of the rigid model, the definition of
ρ̃ϵ1(q) by Eq. (36) is equal to that of ρ̃ϵ(q) by Eq. (32) because vI,lα
in Eq. (33) is equal to zero.

The summation of ρ̃ϵ1(q) and ρ̃ϵ2(q) gives the total energy
density as

ρ̃ϵ(q) = ρ̃ϵ1(q) + ρ̃ϵ2(q), (38)

which is explicitly given by

ρ̃ϵ(q) =∑l∑α∈l[
1
2

m{∣vCM,l + vR,lα∣
2
+ ∣vI,lα∣

2
}

+
1
2∑l′∑α′u(rlα,l′α′) + φlα] exp(iq ⋅ rlα). (39)

The kinetic energy term in Eq. (39) is different from the ordinary
one, 1

2 m∣ṙ lα∣
2. Provided that the difference in the two definitions

of the kinetic energy disappears after the summation over all the
sites within a molecule, the difference can be regarded like the dif-
ference in the division of the kinetic energy of a molecule into the
contributions of its sites.

The exclusion of the linear correlations with the number den-
sity mode, ρ̃n(q), defines ρ̃ϵ1′(q) and ρ̃ϵ2′(q), respectively [Eq. (4)].
Note that ρ̃ϵ1′(q) and ρ̃ϵ2′(q)might not be orthogonal to each other.

The fluctuation of the total energy, δE(t) in Eq. (29), can also
be divided into a rigid and an intramolecular part, denoted as δE1(t)
and δE2(t), respectively. Their definition is omitted here for brevity
because they are similar to Eqs. (36) and (37). The exchange of
energy between δE1(t) and δE2(t) corresponds to the vibrational
energy relaxation. The linear correlation with δE is, then, excluded
to define δE′1 and δE′2 as performed on δP in Eq. (29). We propose
here the division of ηv(ω) into a rigid and an intramolecular part,
denoted as ηv1(ω) and ηv2(ω), respectively, based on the division of
the total energy fluctuation.

First, we rewrite the Kubo–Green formula for ηv(ω) [Eqs. (27)
and (28)] using the Liouvillian operator, L, as follows:

ηv(ω) =
V

kBT∫
∞

0
dte−iωt

⟨δP′eiLtδP′⟩. (40)

Next, the projection operator onto δE′2(t) is denoted as P2, and the
projection operator Q2 is defined as Q2 = 1 − P2. The rigid part of
the volume viscosity, ηv1(ω), is connected to the time correlation
function of the projected Liouvillian, Q2LQ2, as
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ηv1(ω) = ηv(ω) − ηv2(ω)

=
V

kBT∫
∞

0
dte−iωt

⟨δP′eiQ2LQ2tQ2δP′⟩ (41)

because it means that the viscoelastic relaxation under the condi-
tion that the intramolecular vibrational energy is frozen. After some
mathematical calculations, which is described in Sec. S1 of the sup-
plementary material in detail, the expression of the intramolecular
part, ηv2(ω), is simply given as

ηv2(ω) =
V[∫

∞

0 dte−iωt
⟨δP′eiLtδE′2⟩]

2

kBT∫
∞

0 dte−iωt⟨δE′2eiLtδE′2⟩
, (42)

and its direct evaluation is possible by MD simulation.

IV. COMPUTATIONAL DETAILS
All the simulation runs throughout this work were performed

using the GROMACS software package.28 All the molecules in a
system were contained in a cubic cell with a periodic boundary
condition. The volume of the cell was fixed, whereas the tempera-
ture was controlled by means of the Nosé–Hoover method.29 The
equation of motion was integrated using the leapfrog algorithm.

The MD simulation runs of the first model were performed on
systems composed of 8000 LJ atoms. The time steps of the integra-
tion of the equation of motion were Δt = 0.001 for T = 0.75 and
0.0005 for T = 3.0. The duration of production runs was 108 steps
for T = 0.75 and 5 × 107 steps for T = 3.0, respectively, and both
runs were preceded by equilibration runs of more than 107 steps.
The intermolecular LJ interaction was cut off at a distance of r = 4.0.
The time constant of the Nosé–Hoover thermostat was chosen to be
τbath = 100, which was considered to be sufficiently small to exclude
possible artifacts due to the coupling with the thermostat.

The simulation run of the second model was performed on a
system composed of 1210 cyclohexane molecules. The time constant
of the bath was set at 100 ps, and the equation of motion was inte-
grated with a time step of 1 fs. The intramolecular geometry was
fixed using the SHAKE algorithm.29 The duration of the production
run was 100 ns, preceded by an equilibration run of 100 ns duration.

The conditions of the MD simulation runs of the flexible cyclo-
hexane liquid were the same as for the rigid one, except for the
absence of the constraints of intramolecular geometry. Because the
Nosé–Hoover thermostat is also directly coupled to the kinetic part
of the intramolecular vibrational energy, the presence of the thermo-
stat may affect the rate of vibrational energy relaxation. We, thus,
performed several runs with different values of the time constant
of the bath and confirmed that the coupling was weak enough and
the effect of the thermostat on the vibrational energy relaxation was
negligible when the time constant was 100 ps.

V. RESULTS AND DISCUSSION
A. Simple atomic fluids

The static structure factors at the two temperatures, T = 0.75
and 3.0, are shown in Fig. 1. Both functions exhibit a strong peak at
q = 6.8, which represents the correlation between adjacent
molecules. At the higher temperature, the peak height was lower and
the peak was broader, which can be ascribed to the increased thermal
fluctuation and the decrease in the effective size of the molecules due

FIG. 1. The static structure factors of the LJ fluids at T = 0.75 (red) and 3.0 (blue).

to the softness of the repulsive core. At wavenumbers lower than the
peak, the structure factors were small, representing small isothermal
compressibility. All the above properties are typical for dense liquids.

The intermediate scattering functions were calculated at
wavenumbers q = nqmin, where n is an integer, and qmin =

2π
L = 0.298

was the smallest wavenumber of the cubic cell of the size L. The
intermediate scattering functions at T = 0.75 and at the four lowest
wavenumbers are plotted in Fig. 2. The functions at these wavenum-
bers clearly showed damped oscillation, and both the frequency and
the damping of the oscillation became faster with increasing q. The
results of the MD simulation were, then, fitted by Eq. (13); χ̃(q),
aP(q), kT(q), ω′P(q), and kP(q) were treated as fitting parameters.
The fitting functions describe the simulation results well (Fig. 2).

The wavenumber-dependent sound velocities, c(q), determined
from the fitting, are shown in Fig. 3. The low- and high-frequency
limiting values of the isothermal and the adiabatic sound velocities
were also calculated from Eqs. (15), (16), (18) and (19) and were
plotted together for comparison. The results at T = 0.75 and 3.0 are
shown separately in Figs. 3(a) and 3(b), respectively.

The sound velocity increases with q in the low-q regime at
both temperatures. It exhibits a maximum at an intermediate q
and then decreases with q in the higher-q regime. The sound

FIG. 2. The intermediate scattering functions at T = 0.75 and at wavenumbers
q = 0.298 (red), 0.595 (blue), 0.892 (green), and 1.19 (black). The results of the
MD simulation are shown with the filled circles, and the fitting curves from Eq. (13)
are drawn with the solid curves.
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FIG. 3. The sound velocity as a function of wavenumber at the temperatures (a)
T = 0.75 and (b) 3.0. The sound velocity determined from the fitting of the interme-
diate scattering functions is shown with the red circles, and the blue, green, black,
and orange curves show cT,0(q), cS,0(q), cT,∞(q), and cS,∞(q), respectively.

velocity approaches cS,0(q) in the low-q limit. All these tendencies
were already reported in literature studies.9,12,13,15 Comparing the
results at the two temperatures, the absolute value of the sound
velocity increases with temperature, which is, of course, ascribed
to the increased thermal velocity of the molecules. In addition,
the approach of c(q) to cS,0(q) occurs at higher q, which can
be understood as the faster viscoelastic relaxation at the higher
temperature.

The sound velocity exhibits a maximum at q = 1.8 at T = 0.75
and at q = 2.1 at T = 3.0, and it displays a plateau around the max-
imum wavenumber. However, compared with the high-frequency
limiting values, cT,∞(q) and cS,∞(q), the plateau never means
that the high-frequency limiting behavior was reached. Rather, the
plateau is realized as the result of the competition of the increasing
trend at lower-q and the decreasing one at higher-q. The former is
ascribed to the viscoelastic relaxation, and the latter is ascribed to the
softening of the static structure factor of Eq. (15).

Another point to be noted is that the difference between cT,0(q)
and cS,0(q) decreases with increasing q. Given that the ratio of
their squares defines the heat capacity ratio through Eq. (17), their
decrease in difference means the decrease in γ(q) with q. The val-
ues of γ(q) − 1 at both temperatures calculated from Eq. (17) are
plotted in Fig. 4 as a function of the wavenumber. A decrease with
q is observed at both temperatures, as expected, and the degree of
decrease is larger at the lower temperature. Although γ(q) around
q = 0 is larger at the lower temperature, the order is inverted at
higher q.

FIG. 4. The heat capacity ratio as a function of the wavenumber. The values of
γ(q) −1 at T = 0.75 and 3.0 are plotted with the red and the blue curves,
respectively.

As γ(q) in the hydrodynamic limit is the thermodynamic quan-
tity given by the ratio of the isobaric and isochoric heat capacities,
the decrease in γ(q) with q requires some explanation. According
to Eq. (6), the expression of cS,0(q) involves the time derivative of
the momentum density, which becomes the pressure tensor in the
q = 0 limit. The effect of the long-range attractive interaction on
pressure is known to be larger than that of energy. Therefore, the
attractive interaction may also contribute to the pressure tensor in
the lower-q regime, and its contribution can decrease with q due to
the long-range nature of the attractive interaction. The contribution
of the attractive interaction naturally decreases with temperature.
We, thus, consider that the dispersion of γ(q) in Fig. 4 originates
from the intermolecular attractive interaction.

According to Eq. (23), the frequency-dependent longitudinal
modulus, ΔG′L(q, ω), can be estimated from the sound velocity
dispersion as follows:

ΔG′L(q, ωP(q)) = ρm[c2
(q) − c2

S,0(q)]. (43)

Similarly, based on Eqs. (20) and (24), the longitudinal viscosity,
η′L(q, ωP(q)), is also evaluated from the fitting parameters of the
intermediate scattering functions as follows:

η′L(q, ωP(q)) =
ρm

q2 [2kP(q) − [γ(q) − 1]kT(q)]. (44)

Both of these equations contain the information on the physi-
cal properties at the finite wavenumber. By contrast, their q = 0
counterparts can be calculated from the time correlation functions
of the shear stress or the adiabatic pressure fluctuation through
Eqs. (25)–(29). Their comparison tells us whether we need to take
the q-dependence of the physical properties into account in the
analysis of Brillouin spectroscopy on the molecular scale.

The comparison between the longitudinal modulus from the
intermediate scattering function (filled circles) and that from the
Kubo–Green theory (solid curve) is performed in Fig. 5(a), where
they agree well with each other at both temperatures at q < 2. This
seems to suggest that the q-dependence of the physical properties is
unnecessary for the sound dispersion description up to q = 2, and the
fast sound of the LJ fluid is wholly ascribed to the longitudinal vis-
coelastic relaxation. However, it should be kept in mind that here we
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FIG. 5. (a) The longitudinal modulus, ΔG′L(ω), and (b) the longitudinal viscos-
ity, η′L(ω), as functions of frequency. The results at T = 0.75 and 3.0 are shown
with the red and the blue symbols, respectively. The functions from the interme-
diate scattering function are shown with the filled circles, and the results from
the Kubo–Green theory are shown with the solid curves. In (a), the open circles
show the results of Eq. (43) when replacing cS,0(q) with the results at the lowest
wavenumber, qmin = 0.298.

used the information on the q-dependence of cS,0(q), which was not
available in the experiment. Because experimental analysis is usually
performed based on the comparison between c(q) and cS,0(q ≃ 0),
we also calculated ΔG′L(q, ω) using Eq. (43) replacing cS,0(q) with
the constant value at the lowest wavenumber, qmin = 0.298 (open
circles). The replacement makes the deviation of ΔG′L(q, ω) from
ΔG′L(ω) faster, indicating that the information on the q-dispersion
of heat capacity ratio is necessary for the quantitative analysis of the
fast sound in the higher-q regime.

The corresponding comparison on the longitudinal viscosity is
shown in Fig. 5(b). Although the value of η′L(q, ω) from the inter-
mediate scattering function was close to that of η′L(ω) from the
Kubo–Green theory, they did not agree as well as the longitudi-
nal modulus. The agreement is quantitatively good at the lowest
wavenumber, qmin = 0.298, at both temperatures, but the estima-
tion from the intermediate scattering function overestimates the
longitudinal viscosity at higher wavenumbers.

The fast sound of the LJ fluids is explained by the longitudinal
viscoelastic relaxation, ηL(ω), which, in turn, is given by the lin-
ear combination of the shear and the volume viscosities according
to Eq. (9). It is, thus, interesting to determine which component is
more important in sound dispersion, ηs(ω) or ηv(ω). In Fig. 6, the
complex longitudinal viscosity, ηL(ω), is divided into the contribu-
tions of the shear and the volume viscosities at both temperatures.

FIG. 6. The viscoelastic relaxation as a function of frequency at the temperatures
of (a) T = 0.75 and (b) 3.0. The longitudinal complex viscosity (green) is divided
into the contributions of shear (blue) and volume (red) viscosities. The real and the
imaginary parts are drawn with the solid and the dotted curves, respectively.

The real and the imaginary parts are plotted together, and the latter
corresponds to the longitudinal modulus according to Eq. (22).

In Fig. 6(a), the viscoelastic relaxation at T = 0.75 is clearly
bimodal, as in the cases of dense liquids. The faster and the slower
relaxation modes are usually assigned to binary collision and struc-
tural relaxation, respectively. The latter relaxation mode disappears
at T = 3.0, which makes the overall viscoelastic relaxation to be
faster. As discussed in relation to the sound dispersion in Fig. 3,
the faster deviation of c(q) from cS,0(q) at the lower temperature
is ascribed to the slower viscoelastic relaxation of Fig. 6. Compar-
ing the contributions of ηs(ω) and ηv(ω), the former is dominant
in ηL(ω) at both temperatures. Therefore, it is safe to say that the
fast sound of LJ fluids is caused mainly by shear relaxation. Bolma-
tov and co-workers studied the collective dynamics of compressed
argon by both inelastic x-ray scattering and MD simulation.15 They
found that the emergence of the transverse wave is correlated with
that of the fast sound and concluded that the fast sound is caused by
the shear part of the viscoelastic relaxation. The dominance of the
shear contribution to the longitudinal viscoelastic relaxation (Fig. 6)
is, thus, in harmony with their conclusion.

A comment regarding the deviation between η′L(q, ω) from the
intermediate scattering function and η′L(ω) from the Kubo–Green
theory is as follows: in the calculation, it was assumed that the
rate of exponential decay of the intermediate scattering function is
governed by the heat diffusivity [Eq. (20), which was used in trans-
forming Eq. (24) into Eq. (44)]. The decay of the energy density is
also governed by heat diffusion, and ρ̃n(q) and ρ̃ϵ′(q) were expected
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FIG. 7. The normalized autocorrelation functions of ρ̃n(q) (red) and ρ̃ϵ′(q) (blue)
at T = 0.75 and q = 1.19.

according to Eq. (20) to decay at the same rate. The normalized auto-
correlation functions of ρ̃n(q) and ρ̃ϵ′(q) at T = 0.75 and q = 1.19
are shown in Fig. 7. Both correlation functions consist of fast oscil-
lation and slow decay. Comparing their slow relaxation, the decay of
ρ̃ϵ′(q) appears to be a little faster than that of ρ̃n(q). This suggests
that the dynamics of the energy density is partly decoupled from
that of the number density at this wavenumber, which violates one
of the assumptions in the derivation of Eq. (44). We believe that this
might be one of the reasons for the deviation in longitudinal viscosity
observed in Fig. 5(b).

B. Rigid cyclohexane in chair conformation
The static structure factor of this cyclohexane model is shown

in Fig. 8. The structure factor presents a strong peak at q = 12.5 nm−1,
and the whole shape of the structure factor resembles the simple
LJ fluid (Fig. 1). The self-part of the static structure factor was cal-
culated by taking only the intramolecular correlation into account
and was also added to the plot. The self-part is a monotonically
decreasing function of q, and the peak width around q = 0 indi-
cates the reciprocal size of the spatial distribution of the sites within
a molecule.

FIG. 8. The static structure factor (solid curves) of the liquid cyclohexane model
and its self-part (dotted curves). The functions for the rigid and flexible models are
drawn in red and blue, respectively.

FIG. 9. The sound velocity of rigid cyclohexane as a function of wavenumber. The
sound velocities determined from the fitting of the intermediate scattering functions
are shown with the red circles, and the blue, green, black, and orange curves show
cT,0(q), cS,0(q), cT,∞(q), and cS,∞(q), respectively.

The intermediate scattering function was calculated at
wavenumbers q = nqmin, where qmin = 1.04 nm−1 is the minimum
wavenumber of the cubic cell, and it was fitted into Eq. (13) to obtain
necessary parameters. The wavenumber-dependent sound velocity
determined from the intermediate scattering function, c(q), is shown
in Fig. 9 as a function of q, together with cT,0(q), cS,0(q), cT,∞(q),
and cS,∞(q) calculated from the static correlation functions.

The wavenumber dependence of the sound velocity of rigid
cyclohexane liquid resembles that of the simple LJ fluid (Fig. 3).
The sound velocity from the intermediate scattering function, c(q), is
always larger than cT,0(q) and cS,0(q). A plateau is observed around
q = 3–4 nm−1 in c(q), and it decreases with decreasing q to approach
cS,0(q) at the q = 0 limit. The decrease in c(q) with increasing q at
q > 5 nm−1 is ascribed to the decreases in cT,0(q) and cS,0(q). The
difference between cT,0(q) and cS,0(q) decreases with q, suggesting
the wavenumber dependence of the heat capacity ratio.

The heat capacity ratio is plotted in Fig. 10 as a function of the
wavenumber q. The value of γ(q) around q = 0 is as large as those
of the LJ fluids of Fig. 4, and it decreases with increasing q, as also
observed in the LJ fluids. Compared with the LJ fluids, however,
the decrease is smaller, and an increase is observed in the higher q

FIG. 10. The heat capacity ratio of liquid cyclohexane as a function of the
wavenumber in the rigid (red) and the flexible (blue) models.
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regime. The origins of the difference were not explored in this work,
but there are many possible reasons, as follows: First is the contribu-
tion of the rotational energy to the heat capacity ratio; second is the
finite size of the molecule; and third is that the range of the attrac-
tive interaction is relatively small in molecular liquids because it is
determined by the size of the interaction site rather than that of the
whole molecule.

The longitudinal modulus and longitudinal viscosity were cal-
culated from the intermediate scattering function using Eqs. (43)
and (44), respectively, and compared with those of the q = 0 limit
from the Kubo–Green theory in Fig. 11. The agreement with the lon-
gitudinal modulus [Fig. 11(a)] covers up to q = 4 nm−1 [the range for
which the dependence of cS,0(q) on the wavenumber is included in
Eq. (43)]. The deviation appears at lower q values, q ≅ 2–3 nm−1,
when cS,0(q) is replaced with cS,0(qmin). The agreement for the longi-
tudinal viscosity [Fig. 11(b)] is worse than that for the longitudinal
modulus [Fig. 11(a)]. Although good agreement is observed at q
= qmin, the longitudinal viscosity from the intermediate scattering
function is larger than that of the Kubo–Green theory at higher q.
The longitudinal viscosity in Fig. 11(b) exhibits a bimodal relaxation,
with the faster and the slower modes at around 0.5 and 20 ps−1,
respectively. The bimodal relaxation resembles that of the LJ liquid
at T = 0.75, and the two relaxation modes can be assigned to the
structural relaxation and the binary collision, respectively. The fre-
quency range of the sound dispersion calculated in the present MD
simulation, 1 < ω < 10 ps−1, was higher than that of the structural

FIG. 11. (a) The longitudinal modulus as a function of frequency, ΔG′L(ω), and
(b) the longitudinal viscosity of liquid cyclohexane in the rigid model as a function
of frequency. The functions from the intermediate scattering function are shown
with the red filled circles, and those from the Kubo–Green theory are shown with
the blue solid curves. The open circles in (a) represent the results of Eq. (43) with
replacing cS,0(q) by the results at the lowest wavenumber, qmin = 1.04 nm−1.

relaxation, and hence, the structural relaxation is frozen in the fast
sound observed in this work.

The complex frequency-dependent longitudinal viscosity is
divided into the contributions of the shear and volume viscosities in
Fig. 12. Bimodal relaxation is observed in both ηs(ω) and ηv(ω), and
the relaxation frequencies of both modes of ηv(ω) are a little higher
than those of ηs(ω). The contribution of the shear viscosity amounts
to about two-thirds of the longitudinal viscosity, which means that
the fast sound in this model cyclohexane was mainly caused by
shear relaxation. Compared with the results of monoatomic LJ fluids
(Fig. 6), the relative contribution of the volume viscosity was higher
in the molecular liquid, which might be ascribed to the contribution
of the rotational degrees of freedom.

In summary, the fast sound was observed in the liquid cyclo-
hexane of the rigid model and was ascribed to the longitudinal
viscoelastic relaxation. The longitudinal modulus calculated from
the sound dispersion agreed well with that at the q = 0 limit of
the Kubo–Green theory up to q = 4 nm−1, when the wavenumber-
dependence of cS,0(q) is taken into account; the replacement of cS,0(q)
with cS,0(qmin) lowers the wavenumber, at which stage the deviation
from the q = 0 spectrum begins. The longitudinal viscosity originates
mainly from the shear viscosity, although the contribution of the
volume viscosity is not negligible. All the properties above are quali-
tatively similar to those of the monoatomic LJ fluids, and we consider
that the sound dispersion of the rigid polyatomic liquid shares the
common mechanism to that of the simple liquid.

C. Flexible cyclohexane
The static structure factor of the flexible cyclohexane liquid

and its self-part are plotted in Fig. 8 together with those of the
rigid model. They show that the liquid structure is almost the same
irrespective of the intramolecular constraint. Small differences were
found in both functions, and these may be ascribed to the distortion
of the intramolecular structure by the intermolecular interaction and
the minor but non-negligible population of the boat conformation in
the flexible model.

The sound velocity was calculated from the intermediate scat-
tering function through the fitting by Eq. (13) and was compared

FIG. 12. The viscoelastic relaxation of rigid cyclohexane liquid. The complex lon-
gitudinal viscosity (green) is composed of the contributions of the shear (blue) and
volume (red) viscosities. The real and imaginary parts are drawn with the solid and
the dotted curves, respectively.

J. Chem. Phys. 156, 244505 (2022); doi: 10.1063/5.0098098 156, 244505-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

with the low-frequency limits of the isothermal and adiabatic sound
velocities, cT,0(q) and cS,0(q) (Fig. 13). The high-frequency limits
cT,∞(q) and cS,∞(q) are not shown here because they are extremely
high due to the intramolecular vibration. The corresponding results
on the rigid model, which were already shown in Fig. 9, are plotted
together for comparison.

The sound velocity from the intermediate scattering function is
almost independent of the treatment of the intramolecular degrees
of freedom. The difference in the low-frequency isothermal sound
velocity is also small, reflecting the similarity of the static struc-
ture factor (Fig. 8). By contrast, the presence of the intramolecular
degrees of freedom significantly reduces cS,0(q), particularly in the
low-q region, q < 5 nm−1. Due to the decrease in cS,0(q) in the flexible
model, a large difference remains between c(q) and cS,0(q) even at
the lowest wavenumber of the present calculation, qmin = 1.04 nm−1.
Therefore, the degree of the fast sound compared with the hydrody-
namic limit was large in the flexible model, and the large dispersion
of the sound velocity was expected in the wavenumber regime lower
than qmin.

Experimental results of Brillouin spectroscopy in the GHz fre-
quency regime showed that a large dispersion of the sound velocity
is observed in many organic liquids, including cyclohexane, and
they are assigned to the vibrational energy relaxation.18 Because
the fluctuation of the intramolecular vibrational energy was fully
included in the calculation of cS,0(q) using Eq. (16), it is regarded
as the low-frequency limiting value of the sound dispersion due to
the vibrational energy relaxation. By contrast, the frequency of the
sound in this wavenumber regime is of the order of THz, which
is much higher than the frequency of vibrational energy relaxation
reported in experimental works. Therefore, it is plausible that a large
sound dispersion is present at q < qmin due to the vibrational energy
relaxation.

The wavenumber-dependent heat capacity ratio defined by the
ratio of c2

S,0(q) to c2
T,0(q) is plotted in Fig. 10 and is compared with

that of the rigid model. The presence of intramolecular degrees of
freedom significantly reduces the heat capacity ratio, as is expected
from Fig. 13, and the wavenumber dependence of γ(q) also becomes

FIG. 13. The sound velocity of liquid cyclohexane as a function of the wavenumber.
The sound velocity determined from the fitting of the intermediate scattering func-
tions is shown with the red circles, and the blue and green curves show cT,0(q)
and cS,0(q), respectively. The results of the flexible model are shown with the filled
or solid symbols, and those of the rigid model are shown with the open or dotted
ones.

weaker. The decrease in the heat capacity ratio at the q = 0 limit
can also be understood in terms of thermodynamic heat capac-
ity. Because the intramolecular vibrational heat capacity contributes
almost equally to the isobaric and isochoric heat capacities, its inclu-
sion naturally reduces the ratio of the two heat capacities. However,
the vibrational heat capacity is overestimated in the present classical
MD simulation, which leads to the underestimation of γ(q) in the
flexible model.

The longitudinal modulus and the longitudinal viscosity were
calculated from the intermediate scattering functions and were com-
pared with those at q = 0 evaluated by the Kubo–Green theory in
Fig. 14. In Fig. 14, the longitudinal modulus exhibits a nonzero off-
set near ω = 0.1 ps−1, and the longitudinal viscosity increases with
the decreasing frequency in the same frequency range. These offsets
and increases originate from the relaxation mode in the lower fre-
quency regime. The oscillatory behavior near ω = 100 ps−1 is due to
the intramolecular vibration.

According to Fig. 14(a), the longitudinal modulus from the
intermediate scattering function is described by the modulus at q
= 0 up to q = 3 nm−1. Therefore, the fast sound at q ≤ 3 nm−1 is
explained by the viscoelastic relaxation at the low-q limit. Although
the results of the replacement are not shown for brevity, the neglect
of the q-dependence of cS,0(q) hardly affects this conclusion because
the variation of cS,0(q) is small at q ≤ 3 nm−1, as shown in Fig. 13.
The agreement in the longitudinal viscosity is not so good compared
with that in the longitudinal modulus, as are the cases of the LJ fluid
and the rigid cyclohexane.

FIG. 14. (a) The longitudinal modulus, ΔG′L(ω), as a function of frequency and
(b) the longitudinal viscosity, η′L(ω), of liquid cyclohexane in the flexible model as
functions of frequency. The functions from the intermediate scattering function are
shown with the red filled circles; the blue solid curves follow the function of the
Kubo–Green theory.
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The longitudinal modulus at q = 0 shown in Fig. 14(a) is divided
into the contributions of the shear and the volume moduli according
to Eq. (9). The latter is, then, further divided into the rigid and the
intramolecular parts based on the theoretical formalism described in
Sec. II C. The division was numerically performed on flexible cyclo-
hexane, and the results are shown in Fig. 15. The contributions of the
shear and the volume moduli to the longitudinal modulus of rigid
cyclohexane are also plotted together for comparison.

The contribution of the intramolecular vibration is nearly con-
stant at ω < 10 ps−1, which describes the excess modulus when the
intramolecular vibrational energy is frozen. Since the longitudinal
viscosity converges to the constant value at ω = 0.1 ps−1, the off-
set of the longitudinal modulus is assigned to the vibrational energy
relaxation. Both the shear and the rigid parts are close to zero at
ω = 0.1 ps−1, and they increase with the increasing frequency of
up to 10 ps−1. Therefore, the relaxation processes other than the
intramolecular mode are completed at ω < 0.1 ps−1. Provided that
the sound dispersion at q ≤ 3 nm−1 corresponds to the longitudinal
modulus at q = 0, c(q) at q < qmin is expected to converge to the
high-frequency limiting value of the vibrational energy relaxation
with decreasing q.

The frequency-dependent shear and volume moduli of the rigid
cyclohexane are also plotted in Fig. 15, which are close to the shear
and rigid parts of the flexible model at ω < 10 ps−1. It can be naturally
understood as that the intramolecular vibrational modes behave as
frozen at frequencies higher than the vibrational energy relaxation;
this is also in harmony with the sound dispersion in Fig. 13, which
showed that c(q) is hardly affected by the introduction of intramolec-
ular constraints. Therefore, the difference in acoustic properties of
these two models is that the presence of the intramolecular vibra-
tional modes lowers the heat capacity ratio through the vibrational
heat capacity at frequencies lower than the vibrational energy relax-
ation, which decreases cS,0(q) and increases the apparent degree of
the fast sound.

The time correlation function of δE′2(t) is plotted in Fig. 16 to
show the time scale of vibrational energy relaxation. The correlation
function is divided by the number of molecules, N. The vibrational

FIG. 15. The longitudinal modulus of the flexible cyclohexane at the q = 0 limit
(black solid curve) is divided into the shear modulus (red solid curve), the rigid part
(blue solid curve), and the intramolecular part (green solid curve) of the volume
modulus, ωη′′v (ω). The corresponding functions of the rigid model ωη′′s (ω) (red
dotted) and ωη′′v (ω) (blue dotted) are plotted together for comparison.

FIG. 16. The time correlation function of δE′2(t).

energy relaxation hardly occurs up to several ps, which is in harmony
with the constant ωη′′v2(ω) (green curve) in Fig. 15. The time corre-
lation function decays on the time scale of 100 ps, and the decay is
almost completed at t = 5 ns.

The energy relaxation due to the intramolecular conforma-
tional isomerization is included in the vibrational energy relax-
ation in the present definition, in addition to the relaxation of the
intramolecular vibrational mode around the energy minimum of
each conformation. The relaxation of the conformational equilib-
rium is, thus, buried within the decay of the correlation function
in Fig. 16, and its contribution is not separated. Campbell and
co-workers determined the rate of the conformational isomeriza-
tion of liquid cyclohexane as the function of pressure using nuclear
magnetic resonance spectroscopy.30 They found that the isomeriza-
tion rate is an increasing function of pressure, which means that
the isomerization reaction rate is limited by the activation of the
intramolecular vibrational energy. If the same mechanism also holds
for our model system, the time scale of the conformational isomer-
ization is expected to be similar to or longer than the vibrational
energy relaxation. A rough analysis of the chair–boat conforma-
tional isomerization is performed in Sec. S2 of the supplementary
material, which shows that the equilibration rate of the isomeriza-
tion reaction is about 2 × 109 s−1. Anyway, it is safely said that the
conformational isomerization is also frozen within the time scale of
acoustic oscillation.

The decoupling between the acoustic dynamics and the
intramolecular vibrational energy can also be confirmed from the
dynamics of ρ̃n(q), ρ̃ϵ1′(q), and ρ̃ϵ2′(q). Their time correlation
functions at q = qmin are normalized and plotted in Fig. 17. The nor-
malization factors of the autocorrelation functions are their initial
values, and those of the cross-correlation functions are the geomet-
ric means of the initial values of the autocorrelation functions of the
corresponding components.

The autocorrelation functions of both ρ̃n(q) and ρ̃ϵ1′(q) are
composed of acoustic oscillation and the slow exponential decay, as
is represented in Eq. (13). Their cross-correlation function is neg-
ative, and they oscillate with the same frequency, which indicates
that ρ̃n(q) and ρ̃ϵ1′(q) are coupled with each other through the
adiabatic compression of the sound wave. By contrast, the autocorre-
lation function of ρ̃ϵ2′(q) shows a quite fast oscillation and very slow

J. Chem. Phys. 156, 244505 (2022); doi: 10.1063/5.0098098 156, 244505-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0098098
https://www.scitation.org/doi/suppl/10.1063/5.0098098


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 17. The normalized time correlation functions associated with ρ̃n(q), ρ̃ϵ1′(q),
and ρ̃ϵ2′(q) of flexible cyclohexane at q = qmin.

decay. The former corresponds to the intramolecular vibration, and
the latter corresponds to the vibrational energy relaxation and the
diffusion of vibrationally hot molecules. The decay rate of the slow
component, thus, indicates that the vibrational energy relaxation is
slower than the oscillation of the sound wave. The acoustic oscilla-
tion does not appear in the correlation functions involving ρ̃ϵ2′(q),
and the cross correlations with ρ̃n(q) and ρ̃ϵ1′(q) are almost zero,
which means that the intramolecular vibrational energy density is
decoupled from the sound wave. Although the adiabatic compres-
sion of the sound wave increases the translational and the rotational
energies, they are not transferred into the intramolecular vibrational
energy during the period of the acoustic oscillation.

Kamiyama and co-workers performed an experiment on inelas-
tic x-ray scattering of liquid CCl4.6 They determined the sound dis-
persion in the nm−1 regime and compared it with the sound velocity
in the GHz regime that exhibits a dispersion due to the vibra-
tional energy relaxation. By fitting the dispersion in the nm−1 regime
into a model function, they concluded that the sound dispersion
in the nm−1 regime is connected to the low-frequency limit of the
vibrational energy relaxation, rather than the high-frequency limit.
Their conclusion appears to disagree with our present result that
the intramolecular vibrational energy is frozen during the acoustic
oscillation in the nm−1 regime. A possible explanation for the dis-
agreement is that the wavenumber-dependent heat capacity ratio
was not taken into account in their experimental analysis, which
leads to an underestimation of the excess longitudinal modulus
caused by the viscoelastic relaxation.

VI. SUMMARY
In this work, the sound dispersion of three molecular liquids

in the molecular scale wavenumber range was studied by MD sim-
ulation. A sound velocity faster than the hydrodynamic limit was
observed in all the systems, and it was explained by the longitu-
dinal viscoelastic relaxation. The comparison with the frequency-
dependent longitudinal modulus at the q = 0 limit, which was
evaluated by the Kubo–Green theory, showed that the fast sound
up to q ∼ 2 nm−1 can be explained quantitatively by the longitu-
dinal modulus in the q = 0 limit, indicating that the emergence of
the fast sound is ascribed to the longitudinal viscoelastic relaxation.

The heat capacity ratio and, thus, the adiabatic sound velocity in the
low-frequency limit exhibit a q-dependence in the higher-q regime,
which should be taken into account for the quantitative analysis of
the sound dispersion in this wavenumber regime.

The consideration of the intramolecular vibrational degrees
of freedom decreases the adiabatic sound velocity in the low-
frequency limit, whereas the sound dispersion in the nm−1 range
is hardly affected by the intramolecular vibration. This means that
the intramolecular modes behave as frozen at a frequency higher
than the vibrational energy relaxation. The degree of fast sound is,
thus, increased by the intramolecular vibrational degrees of freedom.
The vibrational energy relaxation also appears in the longitudinal
viscoelastic relaxation at the q = 0 limit, and the longitudinal modu-
lus in the q = 0 limit quantitatively describes the sound dispersion
up to 2–3 nm−1 even in the presence of the vibrational energy
relaxation. A theoretical formulation to extract the contribution of
the vibrational energy relaxation in the viscoelastic relaxation was
proposed based on the projection operator formalism. After sub-
tracting the contribution of the vibrational energy relaxation thus
determined, the remaining viscoelastic relaxation agrees well with
that of the rigid molecular model without intramolecular degrees of
freedom.

We recently measured the sound dispersion of some molec-
ular liquids, including cyclohexane, in the nm−1 range by means
of the inelastic x-ray scattering method. An analysis based on the
theoretical formalism proposed in this work is now in progress.

SUPPLEMENTARY MATERIAL

See the supplementary material for the derivation of Eq. (42)
and an analysis of conformational isomerization of flexible
cyclohexane.
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