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The macroscopic distribution of fluid flows, which affect the quality of final products for 

various kinds of materials, is often difficult to describe in mathematical formulae, and hinders 

the implementation of empirical knowledge in scaling up. In the present study, we described 

the characteristics of the flow distribution in SiC solution growth by using the position of the 

saddle point and optimized the solution growth conditions by computational fluid dynamics 

simulation, machine learning and a genetic algorithm. As a result, we successfully obtained 

the candidates of the optimal condition for the solution growth of 6-inch SiC crystals from the 

empirical knowledge gained from 3-inch crystal growth, by adding the topological description 

to the objective function. The present design of the objective function using the topological 

description can possibly be applied to other crystal growth or materials processing problems 



  

2 
 

and to overcome scale-up difficulties, which can facilitate the rapid development of functional 

materials such as SiC wafers for power device applications. 

 

1. Introduction 

Fluid flow that arises in many materials processing techniques, such as crystal growth, 

casting, thin film fabrication, and polymer processing, is critical to the quality and 

characteristics of the final product and optimization of the system[1]. Recent advances in 

computational fluid dynamics (CFD) aid in the design of suitable conditions for materials 

processing[2]. Furthermore, the application of machine learning techniques to CFD 

simulations greatly reduces the calculation time, so that it is possible to efficiently optimize 

the conditions for materials processing[3–9]. For mathematical optimization of the conditions 

for materials processing, it is necessary to define the objective function representing the 

optimal conditions to achieve high-quality products. In most cases, local values near or on the 

boundary between the material and fluid areas, such as the flow vectors, temperature, and 

crystal growth rate, are used as the objective function and optimized. However, not only such 

local property values but also the global flow distribution often determine the quality of final 

products. For example, in the solution growth of silicon carbide (SiC), which is a promising 

method to obtain high-quality crystals for high-power devices[10–15], the crystal quality and 

crystal growth rate largely depend on the global flow distribution, since the global flow 

affects the transport of solute atoms, long-term growth stability and the attachment of 

polycrystals crystalized at the bottom of the crucible or in solution on the grown surface [12,16–

24]. However, as is the case with the processing of other materials, the optimal global flow 

distribution is difficult to define. In the field of mathematics, the characteristic features of 

vector fields are extracted, visualized, and classified by topology. In the present study, we 

optimized the global flow distribution during solution growth of 6-inch SiC crystals from the 

knowledge gained from smaller size (3-inch) crystal growth by means of topological 

description as well as machine learning. 

  

2. Topological description of flow 

In topological analysis of a vector field, a stagnation point where the flow is zero in a 

vector field is important. Figure 1 shows stagnation points that occur in a two-dimensional 

conservative vector field. A stagnation point around which the flow is swirling as shown in 

Fig. 1(a) is called a center point, while a stagnation point where the incoming flow is 

deflected and directed in a different direction as shown in Fig. 1(b) is called a saddle point[25]. 
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Although the flow velocities at these two points were zero, we can identify from the 

calculation of the index of a vector field. The index of a vector field is an integer that 

describes the character of a stagnation point. The index IC of the closed loop C in the two-

dimensional vector field f(x,y) is defined as follows[25]: 

𝐼𝐼𝐶𝐶 = 1
2𝜋𝜋

[𝜙𝜙]𝐶𝐶 (1) 

where 𝜙𝜙 is the angle between the vector f on C and the x axis, and [𝜙𝜙]𝐶𝐶 represents the total 

change in 𝜙𝜙 while going around C. Note that the index IC is independent of the path of the 

closed loop C. To calculate the index, it is not necessary to know the vector field at all points, 

only at several points on C. Fig. 1(c) and 1(d) show an example of the calculation of the 

index. When the closed curve C is rotated once counterclockwise as in Fig. 1(c), the vector on 

C rotates clockwise. As shown in Fig. 1(d), the vector rotates clockwise from 1 to 8 and the 

index can be calculated as -1. Since the indexes of the center and saddle points are 1 and -1, 

the stagnation points can be distinguished by calculation of the index. 

 

3. Method 

3.1. CFD simulation 

Figure 2 shows a schematic illustration of the 6-inch SiC solution growth furnace. In 

top-seeded solution growth (TSSG) of SiC, a Si-based solvent is melted in a carbon crucible. 

More details on the TSSG setup are found in the literature[5,6,26]. The CFD simulation was 

performed on a 2D steady axisymmetric model by taking account of the heat transport, mass 

transport, and convection using CGSim software[27]. The temperatures inside the seed shaft 

(T), the rotation speeds of the seed shaft (ωs) and crucible (ωc) and the position of the crucible 

(z) were set as variable parameters.  

 

3.2. Machine learning 

For rapid optimization of the 6-inch TSSG condition, we constructed a machine 

learning model to predict the results of CFD simulation from the variable parameters using a 

neural network (NN), as previously reported[4]. We prepared 490 CFD simulations with 

different values for the variable parameters. The values were randomly selected from the 

ranges shown in Table 1, which were determined based on actual growth experiments. The 

490 datasets were divided into training (397), validation (44) and testing (49) datasets. The 

former two datasets were used for training of the NN model, while the testing dataset was 

used for evaluation of the trained NN model. Figure 3 shows the structure of NN. In addition 

to the 4 variable parameters (T0, ωs, ωc and z), the coordinate positions in the solvent (r, y) 
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were used as input parameters. Thus, this NN model predicts the temperature (T) and 

velocities of horizontal and vertical flows (vh, vv) from the TSSG conditions and the position 

in the solvent. The number of hidden layers is 2 and the number of nodes for each hidden 

layer is 128. Rectified linear unit (ReLU) was used as the activation function. The NN was 

optimized by adaptive moment estimation (Adam) using TensorFlow[28]. Figure 4 shows 

parity plots of the temperature distribution, horizontal flow velocity distribution, and vertical 

flow velocity distribution for the test data as well as the predicted distributions of temperature 

and fluid flow. The plot points are concentrated on the straight red line. As shown in Figs. 

4(d) and 4(e), the distribution of temperature and solution flow was well-reconstructed by the 

trained NN model. Table 2 summarizes the coefficients of determination (R2) and average 

root mean square error (RMSE) for the prediction values of temperature, horizontal flow 

velocity, and vertical flow velocity. The values of RMSE for flow speed are enough low 

compared to the typical range of flow speed for horizontal direction (-100 ~ 200 mm/s) and 

vertical direction (-100 ~ 50 mm/s).  These results indicate that the trained NN model was 

sufficiently precise to search for the optimal crystal growth conditions. While CFD simulation 

requires about 10 h, the prediction by the trained NN could calculate the distributions within 1 

s with Intel® Core™ i5-8365UE CPU, enabling us to mathematically optimize the crystal 

growth conditions within a feasible calculation time with high precision. 

 

3.3. Extraction of stagnation points 

From the flow velocity distribution v(r, y) calculated as 2-dimensional data grid, we 

extracted stagnation points by the calculation of the index for 8-neibour. Figure 5 shows a 

schematic illustration of the index calculation for flow velocity at point A. To judge whether 

point A is a stagnation point or not, the index at point A is calculated by Eq. (1) with the 

square connecting the 8 neighbors of point A as a closed curve C. By repeating this 

calculation at each point in the solvent, stagnation points were extracted, including center 

points (IC = 1) and saddle points (IC = -1). On the boundary, the index was calculated by 

creating a mirror image of the flow distribution at the boundary. By this operation, boundary 

saddle points can be extracted. A program was made to automatically determine stagnation 

points by calculating the index for each mesh point in the solution. Figure 6 shows the result 

of the extraction of stagnation points in the CFD simulation result as one example. Center, 

saddle and boundary saddle points were successfully extracted with calculation times of less 

than 0.1 second with Intel® Core™ i5-8365UE CPU. The extracted stagnation points were 
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used to calculate the objective function for the macroscopic flow distribution as described in 

the next section. 

 

3.4. Mathematical optimization 

A genetic algorithm (GA) was applied as the mathematical optimization method to 

determine the optimal variable parameters for the 6-inch TSSG condition. GA is a parallel 

iterative searching algorithm that is inspired by the idea of “survival of the fittest” and 

“natural selection” from evolution theory, which repeats evaluation, selection, crossover, and 

mutation after initialization until the stopping condition is satisfied[29,30]. Multi-objective 

optimization of the objective functions described in the next section was performed using 

NSGA-II[31], a high-speed non-dominated sorting algorithm. The population size and 

termination criteria were set to 1000 and 100, respectively. The multi-objective optimization 

cannot produce a perfect solution of the incommensurability between different objectives. A 

series of Pareto-optimal solutions, which shows the trade-off relationship between objectives, 

were produced by GA[32]. 

 

4. Design of objective functions for 6-inch SiC crystal growth 

 Since solution growth of SiC has advantages in obtaining high-quality bulk crystals 

using dislocation conversion [10,11,14,15,33–37], many researchers have reported the bulk crystal 

growth of SiC, especially by the TSSG method [12,13,38–43]. Recently, crystal growth of SiC 

wafers with a diameter of 4 inches and a thickness of 20 mm has been reported[44] and the 

possibility of growing larger SiC crystals by TSSG was investigated[5]. As is the case with 

other materials processing operations, scaling-up always encounters difficulties, and in some 

cases the empirical knowledge gained from manufacturing small products cannot be 

transferred directly to a process for larger products. In our study on TSSG of 3-inch SiC 

wafers combining actual experiments and CFD simulations, we found the homogeneous 

temperature distribution in the solution to suppress unintentional precipitation of crystals on 

the crucible and the crystal, and the homogeneous horizontal component of solution flow on 

the crystal to maintain a smooth growth surface by the switching flow method[37,45], which are 

defined as objective functions F1 and F2 as follows; 

𝐹𝐹1 = max
in solution

�𝑇𝑇(𝑟𝑟,𝑦𝑦)� − min
in solution

�𝑇𝑇(𝑟𝑟,𝑦𝑦)�, (2) 

𝐹𝐹2 = max
on crystal

�𝑣𝑣ℎ(𝑟𝑟, 𝑦𝑦)� − min
on crystal

�𝑣𝑣ℎ(𝑟𝑟,𝑦𝑦)�. (3) 
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These two objective functions should be minimized and can be calculated from the results 

predicted by the trained NN. In addition, we noticed in our experiments of 3-inch SiC growth 

that the global flow distribution shown in Figure 7, in which two vortexes are separated at the 

top and bottom, is favorable for stable crystal growth. However, unlike the former two 

situation, the current situation is difficult to represent as mathematical descriptions for the 

optimization of 6-inch SiC crystal growth conditions since the characteristic feature is not 

described by the local values as F1 and F2 but the global distribution of solution flow. 

Therefore, here we utilized the topological description to represent the desired flow conditions 

as mathematical formulae. 

 For the achievement of the two vortexes separated at the top and bottom, two saddle 

points should exist in the center of the solution (r = 0) and on the crucible wall (r = rc), which 

makes a heteroclinic connection. It seems that it is no preferential position (y) of these two 

boundary saddle points as long as two vortexes separated at the top and bottom. Thus, we set 

the referent points (P and Q) at the middle of the solution (y = 0.5ds), and defined the 

objective function F3 as follows: 

𝐹𝐹3 = 𝑚𝑚𝑚𝑚𝑚𝑚(|S𝑘𝑘P�����|) + 𝑚𝑚𝑚𝑚𝑚𝑚(|S𝑘𝑘Q�����|), (4) 

where Sk are the saddle points in the solution and P and Q are the referent saddle points. |S𝑘𝑘P�����| 

and |S𝑘𝑘Q�����| stand for the distances between the kth saddle point and P and Q. The objective 

function F3 is the sum of the distances between the saddle point and the coordinates of the 

referent point. Here, the coordinates of the referent saddle point as (r, y) = P(0, 0.5ds) and 

Q(rc, 0.5ds). If there is no saddle point, we assign F3 a large value (F3 = 1000). Calculation of 

the objective function F3 during optimization was possible from the results predicted by the 

trained NN and the algorithm for the extraction of stagnation points. 

 

5. Results of optimization 

Figure 8 shows the pareto front for the three objective functions F1, F2 and F3 as well 

as the distributions of temperature and solution flow velocity for 6-inch SiC crystal growth 

with the selected optimal solutions, which indicates a trade-off relationship between the 3 

objective functions. Among the pareto solutions, Solution-(A) is a solution with a small value 

of F3, solution-(B) is a solution with a moderate value of F3, and solution-(C) is a solution 

with a large value of F3. The values of the objective functions and the parameters of the 

crystal growth conditions are tabulated in Table 3. The larger the value of F3 is, the more 

greatly saddle points deviate from the referent saddle points. Note that most of the solutions 

satisfy the desired conditions in which the solution flow is separated at the top and bottom, 
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although a few solutions did not seem to be satisfactory, as shown for solution-(D), in which 

the number of vortexes is different and complex solution flow is formed near the center of the 

crucible. This indicates that the objective function F3 is a good description of the desired 

condition. 

To verify the effectiveness of adding the objective function F3 which topologically 

describes the desired global flow distribution, we conducted multi-objective optimization 

without the objective function F3. Figure 9 shows the pareto front for the two objective 

functions F1 and F2 as well as the three objective functions with a value of F3 of less than 10. 

Although some solutions seem to occasionally satisfy the desired conditions, most of the 

pareto solutions have a quite different distribution of fluid flow in which the number and the 

configuration of vortexes are different, as shown for solution-(E).  

Among the pareto solutions for the three objective functions F1, F2 and F3 with 

relatively small values of F3 (<10), we found two types of distributions for the solution. In 

one, the lower vortex is pushed by the upper vortex as shown in Fig. 8 (solution-(A)), and in 

the other the boundary line between the upper and lower vortex is linear as shown in Fig. 9 

(solution-(E)). Since the former type of distribution may result in the transportation of the 

precipitated crystals on the bottom of the crucible to the grown crystal, the latter type, in 

which precipitated crystals tends to be confined by the bottom vortex, was determined to be 

preferable. As a result, we have successfully obtained the candidate of optimal crystal growth 

condition as solution-(F).  

In the present study, we successfully obtained the candidates of optimal condition for 

solution growth of 6-inch SiC wafers from the empirical knowledge gained from smaller size 

(3-inch) crystal growth by using the topological description of the objective function. The 

present design of the objective function using the topological description can possibly be 

applied to other crystal growth or materials processing systems to overcome difficulties in 

scaling-up, which can lead to the rapid development of functional materials, such as SiC 

wafers for power device applications. 

 

5. Summary 

We optimized the solution flow distribution during solution growth of SiC crystal with the 

diameter of 6 inch based on the knowledge gained from 3-inch growth by using the objective 

function designed by the topological description. A machine learning model that can rapidly 

and precisely predict the temperature and fluid flow distributions in solution from a set of 

input variables for crystal growth conditions was constructed from the training dataset of CFD 
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simulations using neural networks. Saddle points in the solution were successfully extracted 

from the predicted fluid flow distribution followed by the application of index theory. The 

objective functions were designed considering the global flow distribution, in which two 

vortexes are separated at the top and bottom by the distances between the coordinates of the 

saddle point and referent points. After multi-purpose optimization of the designed objective 

function, we successfully obtained crystal growth conditions that can realize the desired flow 

distribution. The present results indicate that the optimization of the objective function 

represented by topological description of fluid flow can enable us to overcome the difficulties 

faced in scaling-up and lead to the rapid development of functional materials, such as SiC 

grown by solution growth. 
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M. Isono, S. Harada*, K. Kutsukake, T. Yokoyama, M. Tagawa, T. Ujihara 

 

Optimization of flow distribution by topological description and machine learning in 

SiC solution growth 

 

ToC 

Application of the topological description of fluid flow to the design of the objective function 

for the optimization of the material process enables us to implement the empirical knowledge 

gained from small size production in scaling up crystal growth. We successfully find the 

optimal conditions for the solution growth of 6-inch SiC wafers from the empirical knowledge 

gained from 3-inch wafer growth by using CFD simulation, machine learning and 

mathematical optimization. 

 
 

 

  



  

12 
 

 

 
Figure 1. Schematic illustration of (a) center and (b) saddle points in vector field and (c) 

example of calculation of index for closed loop C including saddle point inside loop. 𝜙𝜙1,2 

represents the angle between the vectors 1 and 2. When the closed curve C is rotated once 

counterclockwise, (d) the vector rotates clockwise from 1 to 8 and the index can be calculated 

as -1. 
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Figure 2. Schematic illustration of TSSG furnace for 6 inch.  
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Table 1. Ranges of variable parameters for CFD simulations.  

Parameter Symbol Units Lower limit Upper limit 

Rotation speed of 
seed crystal 𝜔𝜔s rpm 0 200 

Rotation speed of 
crucible 𝜔𝜔c rpm -50 50 

Position of 
crucible 𝑧𝑧 mm 140 200 

Temperature T0 K 2073 2173 
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Figure 3. Structure of neural networks for prediction of temperature and solution flow 

distributions from variable parameters.  
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Table 2. Coefficients of determination (R2) and average root mean square error (RMSE) for 

the prediction values of temperature, horizontal flow velocity, vertical flow velocity. 

Parameter R
2
 score RMSE 

T 0.999 0.273 K 

vh 0.996 1.14 mm/s 

vv 0.996 0.593 mm/s 
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Figure 4. Parity plots of (a) the temperature (K), (b) horizontal flow velocity (m/s), and (c) 

vertical flow velocity (m/s) for the test data as well as (d) one example of CFD simulation and 

(e) corresponding predicted distributions of temperature and fluid flow for 6-inch crystal 

growth. 
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Figure 5. Schematic illustration of index calculation for flow velocity at point A. The sum of 

the angles between the vectors at the 8 points neighoring A (a-h) can determine whether the 

point A is a stagnation point or not based on index theory. 
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Figure 6. Example of extraction of center and saddle points in fluid flow by CFD simulation 

for 6-inch crystal growth. Note that this solution flow distribution was randomly picked up 

from the CFD simulation results for the demonstration of automatic extraction of stagnation 

points and was not related to the optimal solution flow distribution. 
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Figure 7. Empirically optimal global flow distribution in 3-inch TSSG experiment, in which 

two vortexes are separated at the top and bottom.  
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Table 3. Values of objective functions and parameters for pareto solutions. 

Solution# 
F1 

(K) 

F2 

(m/s) 

F3 

(mm) 

𝜔𝜔s 

(rpm) 

𝜔𝜔c 

(rpm) 

𝑧𝑧 

(mm) 

𝑇𝑇0 

(K) 

(A) 1.64 0.0485 1.21 155 -42 146 2073 

(B) 2.51 0.0310 16.6 80 -21 200 2073 

(C) 4.22 0.00517 52.0 30 -12 153 2079 

(D) 5.66 0.00828 17.1 13 9 197 2173 

(E) 2.48 0.0111 - 59 -24 200 2073 

(F) 3.19 0.0246 8.84 53 -12 200 2073 
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Figure 8. Pareto front for three objective functions F1, F2 and F3 as well as distributions of 

temperature and solution flow velocity with selected optimal solutions for 6-inch crystal 

growth. 
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Figure 9. Pareto front for two objective functions F1 and F2 in comparison with three 

objective functions with F3 less than 10, as well as distributions of temperature and solution 

flow velocity for 6-inch crystal growth with selected solutions. 


