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Abstract Purpose: Precise polyp detection and localisation are essential for
colonoscopy diagnosis. Statistical machine learning with a large-scale dataset
can contribute to the construction of a computer-aided diagnosis system for
the prevention of overlooking and miss-localisation of a polyp in colonoscopy.
We propose new visual explaining methods for a well-trained object detector,
which achieves fast and accurate polyp detection with a bounding box towards
a precise automated polyp localisation.

Method: We refine gradient-weighted class activation mapping for more accu-
rate highlighting of important patterns in processing a convolutional neural
network. Extending the refined mapping into multiscaled processing, we de-
fine object activation mapping that highlights important object patterns in
an image for a detection task. Finally, we define polyp activation mapping
to achieve precise polyp localisation by integrating adaptive local threshold-
ing into object activation mapping. We experimentally evaluate the proposed
visual explaining methods with four publicly-available databases.
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Results: The refined mapping visualises important patterns in each convolu-
tional layer more accurately than the original gradient-weighted class acti-
vation mapping. The object activation mapping clearly visualises important
patterns in colonoscopic images for polyp detection. The polyp activation map-
ping localises the detected polyps in ETIS-Larib, CVC-Clinic and Kvasir-SEG
database with mean Dice scores of 0.76, 0.72 and 0.72, respectively.
Conclusions: We developed new visual explaining methods for a convolutional
neural network by refining and extending gradient-weighted class activation
mapping. Experimental results demonstrated the validity of the proposed
methods by showing that accurate visualisation of important patterns and
localisation of polyps in a colonoscopic image. The proposed visual explaining
methods are useful for the interpreting and applying a trained polyp detector.

Keywords Colonoscopy · polyp detection · polyp localisation · model
analysis · computer-aided diagnosis · deep learning

1 Introduction

Early detection of colorectal polyps is an essential task in colonoscopy. Es-
pecially, accurate polyp detection is indispensable since each 1% increase in
adenoma detection rate was associated with a 3% decrease in interval colorec-
tal cancer incidence [1,2]. Furthermore, a polyp’s type and size are vital for
colonoscopy diagnosis [3–5]. For desicions on a polyp’s type and size, a pre-
cise polyp localisation is also necessary. However, there are potential risks of
overlooking and incorrect localisation of polyps. Hence, a computer-aided diag-
nosis (CAD) system has a potential demand for the support of an endoscopist.
Toward constructing a CAD system for colonoscopy, machine-learning-based
polyp detectors have been proposed [1,2,6–10]. In particular, several previous
works reported fast and accurate polyp-detection models of YOLO [1,2,6].
These works trained YOLO [11,12] with their large-scale in-house datasets and
bounding-box annotations. Even though they achieved high polyp-detection
performances, these detectors predict only rectangular bounding-box regions
for polyps.

On the other hand, fully-convolutional-network (FCN)-based polyp seg-
mentation methods such that U-Net [13] and its variants predict the pixel-wise
location of polyps [7–10]. However, the construction of large-scale training data
is a bottleneck for FCN-based methods since pixel-wise annotation is more
complex and time-consuming than the bounding-box annotation. Currently,
there is no publicly-available large dataset of colonoscopic images with pixel-
wise annotations. Due to the lack of a large dataset, the previous works [7–10]
adopted cross-validation by mixing several small publicly-available datasets
for training and testing machine-learning methods. Since their evaluations ig-
nore the data and annotation biases in each dataset by mixing the subsets
of datasets, their cross-validation cannot validate the generalisation ability of
trained models against unseen patterns. Furthermore, the previous works [8,9]
performed cross-dataset evaluation by training a model with one dataset and
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testing a trained model with other datasets for several public datasets. The
cross-dataset evaluations showed lower evaluation values than cross-validation
ones. Moreover, these datasets are designed to evaluate polyp-localisation per-
formance, not for the training of machine-learning models. These results im-
ply the limitation of FCN-based methods with the current public dataset to
achieve a high generalisation ability.

This paper proposes new visual explaining methods for a trained object
detector towards precise automated polyp localisation. Our visual explaining
methods localise polyps’ region by analysing a trained YOLO’s activations. In
other words, the proposed methods achieve polyp localisation without pixel-
wise annotations of polyps. Instead of a supervised approach with FCNs, we
present a practical approach for polyps’ localisations. The proposed method
is the first work of a precise analysis-based localisation method for a polyp
detector. First, we refine Gradient-Weighted Class Activation Mapping (Grad-
CAM) to highlight important patterns in a convolutional layer in processing
a convolutional neural network (CNN). This refinement is achieved by select-
ing only positive gradients for the computation of neuron importance weights.
Second, extending the refined Grad-CAM into multiscaled processing, we de-
fine Object Activation Mapping (OAM), highlighting objects’ patterns in an
image for YOLO’s object detection. Third, by integrating local thresholding
into OAM, we define Polyp Activation Mapping (PAM) to achieve precise
polyp localisation. These methods highlight important patterns of an input
image in the polyp-detection task step by step. Figure 1 shows the processing
flow of the proposed methods. Finally, we present experimental validation of
the proposed visual explaining methods by applying them to the well-trained
YOLOv3 model, which achieved practical polyp-detection performance in our
previous work [4]. In the experiment, we use four publicly-available databases,
which are completely different from the training data of our trained YOLOv3.
Thereby, we fairly evaluate the localisation performance of the proposed visu-
alisation method.
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Fig. 1 Overview of our anlaysis of an object detector.
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Fig. 2 Architecture and outputs of YOLOv3. (a) architecture. (b) output tensors.

2 Overview of YOLOv3

We briefly summarise the architecture, and training and test steps of YOLOv3
[12]. As shown in Fig. 2(a), YOLOv3 comprises two parts: backbone and head.
The backbone part is Darknet-53 which extracts image features from input.
The head part outputs predictions for three scales. In the i-th scale, YOLOv3
divides an input colour image X ∈ RH×W×3 into Ui × Vi discretised regions
as cells and predicts B candidates of an object’s location for each cell.

YOLOv3 uses bounding box priors. These are refered to as anchors. The
k-th anchor of the i-th scale has predefined width Awik

and height Awik
. Fur-

thermore, YOLOv3 adopts gird-cell coordinate (cxij , cyij ) in the divided X .
The origin in grid-cell coordinate is the left-top corner of X , and (cxij , cyij )
represents grid-corner indices for the j-th cell in the i-th scale. YOLOv3 com-
putes txijk

, tyijk , twijk
, thijk

, and outputs a centre (bxijk
, byijk), width bwijk

, and
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height bhijk
of a location for an object by

bxijk
= σ(txijk

) + cxij , (1)

byijk = σ(tyijk) + cyij , (2)

bwijk
= Awik

etwijk , (3)

bhijk
= Ahik

ethijk , (4)

where e is a Napier’s constant and σ(·) is a sigmoid function. Furthermore,
YOLOv3 computes an objectness score σ(toijk) and category scores σ(tcijk1

),
σ(tcijk2

), . . . σ(tcijkC
) for the k-th anchor of the j-th cell in the i-th scale. There-

fore, for the i-th scale, YOLOv3 outputs a tensor Ti ∈ RSi×Si×(B(4+1+C))) as
shown in Fig. 2(b). By expressing all the parameters of YOLOv3 as a param-
eter vector θ, we define YOLOv3 as a function f(X ;θ) that outputs sets of
objetcs’ locations given by Eqs. (1)-(4), objectness scores σ(toijk), and cate-
gory scores σ(tcijkl

) for i = 1, 2, 3, j = 1, 2, . . . , Si × Si, k = 1, 2, . . . , B and
l = 1, 2, . . . , C.

In the training step, YOLOv3 ignores low-confident predictions by thresh-
olding object scores with η. For each object, YOLOv3 finds the best locali-
sation by computing IoU (Intersection over Union) |S ∩ S∗|/|S ∪ S∗| between
a predicted region S and ground truth S∗, where | · | expresses the number

of pixels in a region. We set weights 1obj
ijk = 1 and 1

obj
ijk = 0 for the best lo-

calisation and the others, respectively, for each object. Furthermore, we set
1
non
ijk = 1 − 1

obj
ijk . By using ground truth t∗xijk

, t∗yijk , t∗wijk
, t∗hijk

, t∗cijk1
, t∗cijk2

,
. . . t∗cijkC

for input X , we have a loss functional by

L (f(X ;θ)) =

λbox

3∑
i=1

S2
i∑

j=1

B∑
k=1

1
obj
ijk

(
|txijk

− t∗xijk
|2 + |tyijk − t∗yijk |2

+ |twijk
− t∗wijk

|2 + |thijk
− t∗hijk

|2
)

−
3∑
i=1

S2
i∑

j=1

B∑
k=1

(
1
obj
ijk log

(
σ(toijk)

)
+ 1

non
ijk log

(
1− σ(toijk)

))

−
3∑
i=1

S2
i∑

j=1

B∑
k=1

C∑
l=1

1
obj
ijk

(
t∗cijkl

log
(
σ(tcijkl

)
)

+ (1− t∗cijkl
) log

(
1− σ(tcijkl

)
))
,

(5)

where we set S1 = 6, S2 = 12, S3 = 24, B = 3, C = 9, and η = 0.6 as shown
in Fig. 1(a). In Eq. (5), 1obj

ijk and 1
non
ijk reduce the effects of class imbalances
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between cells expressing objects and background in training and increase sen-
sitivity and specificity in object detections. By using a training set {Xn}Nn=1,

we search θ̂ by solving

arg min
θ

E
n

[
L (f(Xn;θ))

]
. (6)

In the testing step for a query, YOLOv3 adopts different postprocessing
from the training step. For the output tensors, YOLOv3 firstly apply thresh-
olding of scores ζ = σ(toijk)σ(tcijkl

) by τ and then applies non-maximum
suppression [14,15] for detected bounding boxes, where overlapping thresh-
olding [14] is 0.5. Finally, YOLOv3 predicts the selected bounding boxes with
objectness and category scores. Note that the locations of output bounding
boxes are re-scaled from grid coordinate into the coordinate of an input image.

3 Methods

3.1 Original Grad-CAM

To analyse a trained YOLOv3 model, we refine Grad-CAM [16]. For the re-
finement, we introduce the original definition. For a classification task, we set
y(c) to be output of CNN for any class c. Furthermore, for u = 1, 2, . . . , U ,

v = 1, 2, . . . , V and m = 1, 2, . . . ,M , we set A(m) = (a
(m)
uv ) to be the m-th

feature map of size U ×V at a convolutional layer. Setting ∂y(c)

∂a
(m)
uv

a gradient of

y(c) with respect to a
(m)
uv , we have a neuron importance weight

α(c)
m =

1

UV

U∑
u=1

V∑
v=1

∂y(c)

∂a
(m)
uv

. (7)

Since α
(c)
m expresses an importance of A(m) for class c [16], we can visualise

important image pattern at a convolutional layer for any class c by the linear
combination of feature maps

L
(c)
Grad = ((`(c)uv )), `(c)uv = ReLU

(
M∑
m=1

α(c)
m a(m)

uv

)
, (8)

where ReLU(x) = max{x, 0} for x ∈ R.

3.2 PosiGrad-CAM

As guided backpropagation suppresses negative gradients [17], only positive
gradients are essential for highlighting the important patterns on an image.
However, the guided backpropagation leads to an over selection and results
in the visualisation of textures instead of objects since a positive-gradient
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neuron in a current layer can have impacts even for negative-gradient neurons
in the next layer. Instead of backpropagating only positive gradients, we simply
use positive gradients to compute neuron importance weights. Therefore, we
redefine the definition in Eq. (7) by

β(c)
m =

1

UV

U∑
u=1

V∑
v=1

ReLU

(
∂y(c)

∂a
(m)
uv

)
. (9)

Using Eq. (9), we have Positive-Gradient-Weighted Class Activation Mapping
(PosiGrad-CAM) by

L
(c)
Posi = ((l(c)uv )), l(c)uv = ReLU

(
M∑
m=1

β(c)
m a(m)

uv

)
. (10)

3.3 Object activation mapping

To highlight important patterns of an input image in object detection, we
define Object Activation Mapping (OAM) for YOLO.

For the k-th anchor in a scale i ∈ {1, 2, 3}, by re-ordering activated object-
ness scores σ(toijk) and l-th category scores σ(tcijkl

) in output tensors Ti over
the cell index j with respect to grid-cell coordinates, we have objectness map

Oik = ((o
(ik)
uv )) ∈ RUi×Vi and l-th category map Pikl = ((p

(ikl)
uv )) ∈ RUi×Vi ,

respectively, for the k-th anchor at the i-th scale. In this paper, we refer to

Pikl of l = 1 as a polypness map Pik = ((p
(ik)
uv )) since we set the first categoy

to be a polyp. As the same manner of the postprocessing in YOLOv3 with a
criterion τ ∈ [0, 1), we use score-based thresholding by a weight

1
(ik)
uv =

{
1, if o

(ik)
uv p

(ik)
uv ≥ τ,

0, otherwise.
(11)

In this paper, we set τ = 0.1. Using the weight in Eq. (11), we define a total
objectness score for the i-th scale in the head part by

ξi =

B∑
k=1

Ui∑
u=1

Vi∑
v=1

1
(ik)
uv o

(ik)
uv . (12)

As shown in Fig. 2, YOLOv3 bases on a multiscale feature extraction. The
head part bases on the extracted feature maps of three scales, that is, tensors
A1,A2 and A3 of the body part as shown in Fig. 2(a). Each tensor Ai′ consists

of feature maps Ai′m = ((a
(i′m)
uv )) ∈ RUi′×Vi′ , m = 1, 2, . . . ,Mi′ , where we set

M1 = 128,M2 = 256,M3 = 512, for a scale index i′ ∈ {1, 2, 3} in the body
part. Note that Ui = Ui′ and Vi = Vi′ . Therefore, extending Eq. (9), we define
a neuron importance weight for the multiple scales by

γ(ii
′)

m =
1

Ui′Vi′

Ui′∑
u=1

Vi′∑
v=1

ReLU

(
∂ξi

∂a
(i′m)
uv

)
. (13)
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By using normalised weight γ̄
(ii′)
m =

γ(ii′)
m√∑M
i′

m=1 |γ
(ii′)
m |2

, we have

L(ii′) = ((l(ii
′)

uv )), l(ii
′)

uv = ReLU

Mi′∑
m=1

γ̄(ii
′)

m a(i
′m)

uv

 , (14)

for scales of indexes i and i′.
After resizing L(ii′) = ((l

(ii′)
uv )) ∈ RUi′×Vi′ into L̄(ii′) = ((l

(ii′)
xy )) ∈ RW×H

of input size W ×H, we obtain OAM

L = ((lxy)) =

3∑
i=1

3∑
i′=1

wi′L̄
(ii′) ∈ RW×H , (15)

where we set w1 : w2 : w3 = 1
M1

: 1
M2

: 1
M3

for balancing the difference
of the number of feture maps among the three layers. This OAM highlights
important patterns of an input image for object detection by using multiple
output tensors and multiscale feature maps.

3.4 Polyp activation mapping

We integrate local thresholding to OAM to highlight polyp regions. YOLOv3
predicts polyps’ locations by Eqs (1)-(4), and we have a mask W = ((wxy)) ∈
{0, 1}H×W , where wxy expresses existence and inexistence of detected polyps
by 1 and 0, respectively, at (x, y) on an input discrete image. For the detected
rectangular region with the highest object score on an image, we compute a
thresholding criterion κ of an OAM heatmap by Otsu’s method [18]. Using L,
W and κ, we define Polyp Activation Mapping (PAM) by

L = ((lxy)), lxy = ReLU (lxywxy − κ) . (16)

4 Experiments

4.1 Settings

We implemented OAM and PAM, and experimentally analysed the trained
YOLOv3 reported in Ref. [4] by them. We used a single GPU V100 of 32
GB (NVIDIA) and Keras with the TensorFlow backend for experiments. As
described in Ref. [4], the adopted YOLOv3 was trained with 68,852 colono-
scopic images collected in five hospitals with IRB approval. In training, we
applied fine-tuning to the weights of the pre-trained backbone (Darknet-53
without the last layer) [12] with the stochastic gradient descent and the same
data augmentations of Ref. [2]. For these images, we have only bounding-box
annotations of polyps. Therefore, we used this in-house data for only training
and tested the proposed methods with publicly-available databases.
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We used four publicly-available databases: SUN colonoscopy video database
[2], ETIS-Larib polyp [19], CVC-Clinic [20] and Kvasir-SEG databases [21].
The SUN database includes 49,136 colonoscopic images of 100 polyps and
109,554 images without a polyp. These images are extracted from colono-
scopic videos as temporally successive still images. The ETIS-Larib, CVC-
Clinic, and Kvasir-SEG include 196, 612, and 1000 images of polyps, respec-
tively. These images are extracted from colonoscopic videos without temporal
successiveness. In the SUN database, bounding-box annotations of polyps and
pathological information, including polyps’ sizes and morphologies, are avail-
able. Therefore, we used the SUN database for qualitative evaluations. On the
other hand, pixel-wise annotations of polyps are available in the other three
databases. We used the three databases for quantitative evaluations of local-
isations. Note that the trained YOLOv3 achieved AUC 0.98 and mean IoU
0.70 for the SUN colonoscopy video database, as reported in Ref. [4].

4.2 Analysi of score thresholding

To validate the object-score-based approach for the polyp localisation, we
checked objectness maps Oik and polypness maps Pik for i = 1, 2, 3 and
k = 1, 2, 3 in YOLOv3’s detections. We used time-sequential colonoscopic im-
ages of the case of ID 66, where only one protruded-type polyp exists, in the
SUN database as test images. Since this protruded-type polyp has a typical
hemisphere shape and exists around a fold, we think this is a good example for
our analysis. Figure 3 shows an example of test images and YOLOv3 output
for it. As shown in Fig. 3(b), a protruded polyp is correctly detected. Figure
4 shows the visualised Oik and Pik for the input image in Fig. 3(a).

Figures 4(a) and (b) show objectness and polypness maps without the score
thresholding of Eq. (11). In Fig. 4(a), only one cell has a non-zero value among
the objectness maps. On the other hand, many cells in polypness maps have
non-zero values in Fig. 4(b). This comparison clarifies that only objectness
scores contribute to the localisation of a polyp, and category scores are used
only for deciding whether an object is a polyp or not. After the thresholding,
only one cell has a non-zero value in Figs. 4(c) and (d). Note that we confirmed

(a) (b)

Fig. 3 Examples of an input and detection result. (a) input. (b) detection result. A bound-
ing box shows a polyp’s location with its objectness.
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these observations are shared characteristics of the trained YOLOv3, even for
other images in ID 66 and other cases.

4.3 Qualitative evaluation of PosiGrad-CAM

To validate the advantage of PosiGrad-CAM in multiscale processing, we per-
formed the following comparisons. First, we computed OAM heatmaps for the
image in Fig. 3(a), where we used neuron importance weights of Grad-CAM
and PosiGrad-CAM to compare them. In these computations, we also visualise
L̄(ii′) for i = 1, 2, 3 and i′ = 1, 2, 3 of the scales in the head and body parts,
respectively. Figure 5 summarises the results. Second, we computed OAM
heatmaps using Grad-CAM and PosiGrad-CAM for images of 100 polyps in
the SUN database. Figure 6 shows the examples of OAM heatmaps, where
polyps of protruded (Is, Isp, Ip) and flat (IIa) types with different sizes (2-18
mm) exist for the two-kind computations.

Figure 5(b) shows that PosiGrad-CAM-based OAM depicted the polyp
location with large values in the heatmap, while Fig. 5(a) shows that Grad-
CAM-based OAM failed to capture the polyp’s location. In the middle and
right figures for T1 in Fig. 5(d), PosiGrad-CAM heatmaps have large values
for the polyp’s location. On the other hand, Grad-CAM heatmaps in Figs.
5(c) failed to capture the polyp’s location. Furthermore, Fig. 6 clarifies that
PosiGrad-CAM-based OAM captures the polyp locations for polyps of dif-
ferent sizes and morphologies. These comparisons clarify the validity of the
PosiGrad-CAM-based computation for OAM.

4.4 Qualitative evaluation of OAM and PAM

To evaluate the temporal coherence of the proposed methods, we computed
OAM and PAM heatmaps for sequential colonoscopic images in the SUN
colonoscopy video database. Figure 7 shows examples of these heatmaps for
still images extracted from two videos, where the protruded- and the flat-type
polyps, respectively, exist.

Figure 7 shows the examples of OAM and PAM for colonoscopic videos.
These results illustrate the consistent highlighting of polyps in videos. In ad-
dition to the highlight of polyps, Fig. 7(a) shows that the OAM heatmap at
the furthest on the right has high values for a bubble, leading to false-positive
detection. However, PAM heatmaps in the fourth row of Fig. 7(a) have high
values for only polyp locations. The localisation results in the bottom row of
Figs. 7(a) and (b) illustrate the shapes of protruded- and flat-type polyps.
These results imply that the trained YOLOv3 is a reasonable model for the
precise detection and localisation of polyps in colonoscopy.
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Fig. 4 Objectness and polypness maps for each anchor at three scales. The left and right
columns show objectness and polypness maps, respectively. The top and bottom rows show
maps for the before and after the score thresholding, respectively.
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Fig. 5 Comparison of Grad-CAM and PosiGrad-CAM. (c) and (d) show the heatmaps
of Grad-CAM and PosiGrad-CAM computation, respectively. In (c) and (d), row and col-
umn express head-part scale i and body-part scale i′, respectively. (a) and (b) show OAM
heatmaps based on Grad-CAM and PosiGrad-CAM computation, respectively. In (a), we
set wi′ = 1 for i′ = 1, 2, 3.
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Fig. 6 Comparison of OAM heatmaps between PosiGrad-CAM and Grad-CAM based com-
putations.

4.5 Quantitative evaluation of PAM

Finally, we quantitatively evaluated the localisation accuracy of PAM by using
three databases: ETIS-Larib, CVC-Clinic and Kvaseir-SEG databases. We set
a non-zero region in a PAM heatmap as an estimated polyps’ region R. For
a ground-truth R∗ and R, we used a Dice score (2|R ∩ R∗|)/(|R| + |R∗|) as
an evaluation value, where | · | expresses the number of pixels in a region.
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input
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PAM

OAM

(a)

input

detection

PAM

OAM

(b)

Fig. 7 Examples of the proposed visual explanation for colonoscopic videos. In (a) and (b),
images from the top to bottom rows show input images, detection results, OAM heatmaps
and PAM heatmaps respectively.

Furthermore, we defined detection rate as the ratio of detected images in a
database, where each detected image has a Dice score equal to or larger than
δ. Figure 8 summarises the detection rates and mean Dice scores for the three
databases. Figure 9 shows the examples of localisation results for the three
databases.

Since the proposed method is the first work of the analysis-based object
localisation for an object detector, a direct comparison of performances among
the proposed and state-of-the-art methods is unavailable. Instead of the direct
comparison, we presented the two-kind comparisons. As the first compari-
son, we compared the localisation accuracy of PAM between Grad-CAM and
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Fig. 8 Evaluation of PAM-based detection and localisation. (a) detection rate. (b) mean
Dice score. In (a) and (b), δ expresses a thresholding criteria.

Table 1 Comparison of localisation accuracy of PAM between Grad-CAM and PosiGrad-
CAM based computations with δ = 0.1. We used a mean Dice score as a metric.

PosiGrad-CAM Grad-CAM

CVC-Clinic 0.701 0.423
ETIS-Larib 0.747 0.406
Kvasir-SEG 0.704 0.452

Table 2 Cross-dataset evaluations of FCN-based methods reported in previous works [8,9].
The Dice scores of ResNet++ with conditional random field and test-time argumentation,
and the ones of U-Net, DoubleU-Net, BA-Net and PolypSegNet are reported in Ref. [8] and
Ref. [9], respectively.

Training Testing
U-Net ResUNet++ Double BA-Net Polyp
[13] [8] U-Net [7] [10] SegNet[9]

Kvasir-SEG
CVC-Clinic 0.750 0.671 0.753 0.766 0.781
ETIS-Lalib 0.602 0.400 0.644 0.671 0.718

CVC-Clinic
Kvasir-SEG 0.668 0.721 0.676 0.684 0.702
ETIS-Lalib 0.575 0.397 0.612 0.637 0.686

PosiGrad-CAM based computation with δ = 0.1 as shown in Table 1. For the
second comparison, we quoted the state-of-the-art performances of FCNs in
cross-datasets evaluations [8,9], as shown in Table 2, since we don not have
pixel-wise annotations of polyps for our in-house data.

Figure 8 shows the validity of PAM. In Fig. 8(a), the detection rates with
δ = 0.1 for ETIS-Larib, CVC-Clinic and Kavasir-SEG are 0.852, 0.977 and
0.987, respectively. Furthermore, the mean Dice scores of correctly detected
polyps for δ = 0.10, 0.20, . . . , 0.50 in the three databases are over 0.70 in Fig.
8(b). These results clarify the generalisation ability of our trained YOLOv3
and PAM both for polyp detection and localisation. Furthermore, Table 1
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Fig. 9 Examples of PAM-based localisation in three databases: ETIS-Larib, CVC-Clinic
and Kvasir-SEG databases.
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shows that the PAM computed by PosiGrad-CAM outperformed the one com-
puted by the original Grad-CAM. Moreover, the comparison between Fig. 8(b)
and Table 2 shows the higher generalisation ability of PAM than FCN-based
methods.

5 Discussion

Experimental results in the analysis of score thresholding and qualitative eval-
uation of PosiGrad-CAM demonstrated the validity of utilising multiscale
object scores, selecting positive gradients, and processing multiscale feature
maps for the visual explanation. Even though Grad-CAM generally visualises
blurred and corrupted shapes of objects only for a simple classification task,
the proposed OAM accurately visualise important object patterns in the de-
tection of polyps with different sizes (2-18 mm) and morphologies (Is, Isp, Ip,
and IIa).

Qualitative evaluations of OAM and PAM show their stable performance
against temporal changes in each colonoscopic video. This temporal coherence
of the visual explanations is necessary for practical applications since unstable
performance is unconvincing for endoscopists. Furthermore, comparing the
visualisations between OAM and PAM clarifies the patterns a detector reacts
and selects in processing. For example, in Fig. 7(a), PAM visualises only a
detected polyp, whilst OAM visualises injected water and a bubble and polyp.
From these visualisations, we can examine which patterns are essential for a
detector’s processing. We think our visual explaining methods offer clues for
interpreting the detection results.

Quantitative evaluations of PAM with the three databases demonstrate
the advantage of PAM towards practical application to colonoscopy. In Fig.
8(a), the polyp detection with the PAM-based rejection achieved high detec-
tion rates in the three databases. In Fig. 8(b), PAM worked well in polyp
localisations for all the three databases with δ ≥ 0.1. As shown in Fig. 9,
the primal polyps’ locations are correctly computed, while the regions around
ambiguous boundaries between colon walls and polyps result in wrong local-
isations. However, annotators’ biases might exist in the G.T. labels since a
boundary between a colon wall and polyp is essentially ambiguous. Even for
the three databases with different annotators’ biases, that is, G.T. labels in-
cluding uncertainty, our PAM averagely works well. These results show that
the proposed method localises a polyp accurately if a given model detects a
polyp. Furthermore, Tables 1 and 2 also support the validity of PAM. In Ta-
ble 1, our PosiGrad-CAM based PAM outperformed Grad-CAM based one.
Comparing scores in Table 2 and Fig. 8(b), PAM achieved more stable locali-
sation for all the databases than the state-of-the-art methods trained with the
publicly-available databases.
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6 Conclusions

This paper proposed visual explaining methods for precise polyp localisa-
tion. The series of experimental evaluations demonstrated the validity of the
methods for polyp localisation. In addition to PAM’s localisation of detected
polyps, OAM’s visualisation of important object patterns increases the inter-
pretability of detection results. Even though the existing FCN-based methods
with publicly-available databases achieved insufficient generalisation ability
of polyp localisation, our visual explaining method localise polyps accurately
even in unseen data if the trained YOLO has a generalisation ability for the
detection task.
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