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1. Introduction

The competitive diffusion game is a game-theoretic model of information
spreading on a graph proposed by Alon et al. [1]. It is introduced in order
to study information diffusion phenomena on social network services (SNS),
such as Facebook and Twitter. For example, viral marketing is a typical
commercial activity utilizing information diffusion phenomena on a social
network. A game-theoretical setting happens when several companies want
to sell interoperable products via viral marketing.

In the model, each player has its own information, and their objective
is to spread it to as many vertices as possible; the score of a player is the
number of vertices that eventually receives the player’s information. Initially,
all vertices are inactive. A player’s strategy is just to choose a vertex of a
given graph as a source, from which their information automatically spreads
to other vertices along edges in a step-by-step manner. Once an inactive
vertex receives first information from a player, the vertex gets to believe
the information, that is, it joins the player’s side and newly diffuses the
information to its adjacent vertices. Even if a vertex of a player’s side newly
receives information from another player, it does not change its mind and
remains in the current player’s side. If an inactive vertex simultaneously
receives information from more than one player, the vertex gets confused
and does not join any player’s side from then on. The scores of the players
are determined when the diffusion stops.

This game models the following situation: The graph is a social net-
work, where each vertex represents a person and each edge indicates that
two persons (i.e., two endpoints of the edge) are friends with each other in
an SNS. The players are commercial companies that want to sell interop-
erable products via viral marketing. Each company asks a person on the
SNS to advertise its own product by paying some amount of money. The
person receiving money recommends the product of the company to his/her
friends. After a person receives a recommendation of a product from a friend,
he/she decides to buy the product and newly recommends the product of the
company to his/her friends. Sometimes a person simultaneously receives two
types of recommendations. Then he/she gets confused, and he/she does not
buy any of the products and recommend anything.
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In analyses of game-theoretic models, one of the typical approaches is
to focus on Nash equilibria, which is because finding a Nash equilibrium
might help to predict the behaviour of rational players. It is known that
every finite game always has a mixed-strategy Nash equilibrium, though a
pure Nash equilibrium does not always exist. In fact, there is a graph of the
two-player competitive diffusion game that has no pure Nash equilibrium [1],
though a pure Nash equilibrium always exists for the competitive diffusion
game with any number of players under some restricted graph classes such
as cycles [3]. If a game has a pure Nash equilibrium, it implies that it is
relatively easy to analyze. From such a viewpoint, several studies try to find
reasonable classes of graphs under which a pure Nash equilibrium always
exists. For more details, see the following subsection.

1.1. Related work

There are many studies that focus on the existence of a pure Nash equi-
librium of the two-player competitive diffusion game. For example, Alon et
al. give a graph with diameter 3 that has no pure Nash equilibrium [1].
Takehara et al. give a stronger example, a graph with diameter 2 which has
no pure Nash equilibrium [19]. On the other hand, Small and Mason show
that a pure Nash equilibrium always exists on trees [17]. Roshanbin shows
that a pure Nash equilibrium always exists on cycles and grid graphs [16],
and Sukenari et al. show that a pure Nash equilibrium always exists on torus
grid graphs [18]. These results are about the two-player competitive diffusion
game. For three or more players, the situation is different. For example, in
most of the cases, a path always has a pure Nash equilibrium. The exception
is the case where the number of players is 3 and the number of vertices is at
least 6. On the other hand, a cycle always has a pure Nash equilibrium for
the case where the number of players and the number of vertices are arbi-
trary [3]. Li and Shigeno investigate the existence of pure Nash equilibria on
weighted paths and cycles with an arbitrary number of players [14], where
the score of a player is defined as the total weight of the vertices influenced
by the player. Note that their model allows negative weights.

If the number k of players is bounded by a constant, it can be done in
polynomial time to check whether a given graph has a pure Nash equilibrium
or not, because the number of combinations of strategies is O(nk), where n
is the number of vertices. On the other hand, it is not trivial to check
the existence of a pure Nash equilibrium for general k. Etesami and Basar
show that the decision problem of the existence of a pure Nash equilibrium
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Nash equilibrium 
always exists

Nash equilibrium 
may not exist

Tree
[17]

Path

Interval graph
[Theorem 3]

Block graph
[Theorem 2]

Complete graph

Split graph
[Theorem 1]

Strongly chordal graph
[Theorem 5]

Chordal graph
[Theorem 4]

Figure 1: Graph classes and the existence of a pure Nash equilibrium. Connections between
two graph classes imply that the above one is a super class of the below one.

for general k is NP-complete [6]. Furthermore, Ito et al. show that the
decision problem of the existence of a pure Nash equilibrium is W[1]-hard
when parameterized by k [12].

1.2. Our results

In this paper, we investigate the existence of a pure Nash equilibrium of
the two-player competitive diffusion game on chordal and its related graphs.
A graph is called chordal if every induced cycle in the graph has exactly three
vertices. The class of chordal graphs is well studied in many research fields,
and they are also called rigid circuit graphs or triangulated graphs. Partic-
ularly in algorithm theory, it is considered very important, because many
NP-hard graph optimization problems become tractable if the input graph is
restricted to be chordal. Due to the tractability, chordal approximation (i.e.,
modifying an input graph to make chordal) is used in various research fields,
such as graphical modeling in statistics and numerical computation. Further-
more, the notion of clustering coefficient, which is a well-used measure for
social network analysis (e.g., [11, 20]), is related to triangulated structures; a
graph with a high clustering coefficient tends to be locally triangulated, that
is, the subgraph induced by a vertex and its closed neighborhood tends to
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be chordal. In other words, social networks might be considered to satisfy a
relaxed notion of chordality [4, 9]. These are motivations to focus on chordal
graphs.

We obtain the following results: We show that a pure Nash equilibrium
always exists on split graphs, block graphs, and interval graphs, all of which
are well-known subclasses of chordal graphs. On the other hand, we show
that there is a (strongly) chordal graph that has no pure Nash equilibrium;
the boundary of the existence of a pure Nash equilibrium is found. The
results are summarized in Figure 1.

The rest of the paper is organized as follows. In Section 2, we define
several notations and terminologies and introduce graph classes. Section 3 is
the main part of this paper. We show that a pure Nash equilibrium always
exists on block graphs, split graphs, and interval graphs. In Section 4, we
give a (strongly) chordal graph that has no pure Nash equilibrium. Section
5 concludes the paper by giving some remarks for future work.

2. Preliminaries

In this paper, we use the standard graph notation. Let G = (V,E) be
an undirected connected graph where |V | = n and |E| = m. For a graph
G′, the vertex set (resp., edge set) of G′ is denoted by V (G′) (resp., E(G′)).
If {u, v} ∈ E(G), we say that u (resp., v) is a neighbor of v (resp., u), or
vertices u and v are adjacent inG. The set of neighbors of v inG is denoted by
NG(v), or simply by N(v). Namely, NG(v) = {u ∈ V (G) | {v, u} ∈ E(G)}.
Similarly, the set of closed neighbors of v in G is denoted by NG[v] or N [v],
that is, NG[v] = NG(v) ∪ {v}. For V ′ ⊆ V , let G[V ′] denote the subgraph
induced by V ′. A graph G is called complete if every vertex pair is adjacent
in G. The complete graph on n vertices is denoted by Kn.

A vertex set C is called a clique if G[C] is a complete graph. Moreover,
a clique C of G is called maximal if G has no clique C ′ such that C ( C ′.

2.1. Competitive diffusion game

Let p1 and p2 be players 1 and 2, respectively. Also, let G = (V,E) be
an undirected connected graph. Then the two-player competitive diffusion
game on G proceeds as follows (see also Figure 2).

Time 0. All the vertices are set inactive.
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Figure 2: An example of a two-player competitive diffusion game. White vertices with “1”
and “2” stand for vertices dominated by p1 and p2, respectively. A white vertex with no
number is inactive and a grey vertex is neutral. (a) At Time 0, the graph is in the initial
state where all the vertices are inactive. (b) At time 1, p1 chooses v3 and p2 chooses v8.
(c) At time 2, v2 and v6 are dominated by p1 and v7 and v9 are dominated by p2. Vertex
v5 becomes neutral. (d) At time 3, v4 is dominated by p2. Since no player can dominate
a vertex any more, the game ends. In the end of the game, v1 is an inactive vertex. The
utility of p1 is U1(v3, v8) = 3 and the utility of p2 is U2(v3, v8) = 4.

Time 1. Player p1 and p2 choose arbitrary vertices, respectively say vp1 and
vp2 in V . These are called initial vertices. If a vertex v is chosen by
only one player p, we say v is dominated by p. If both players choose a
vertex v, the vertex v becomes neutral. Let V1 := {vp1} and V2 := {vp2}
if vp1 6= vp2 , and let V0 := {v} as the set of neutral vertices if vp1 = vp2 .
Once a vertex v is set into V1, V2, or V0, v is never removed from then
on.

Time t (t ≥ 2). For every inactive vertex v ∈ V , check N(v) ∩ Vp1 and
N(v) ∩ Vp2 . If both are nonempty, v becomes neutral. Update V0 :=
V0 ∪ {v}. If only N(v) ∩ Vp1 (resp., N(v) ∩ Vp2) is nonempty, p1 (resp.,
p2) dominates v. Update Vp1 := Vp1 ∪ {v} (resp., Vp2 := Vp2 ∪ {v}). If
no inactive vertex changes the status, the process ends. The utilities
(or scores) of p1 and p2 are respectively determined as |Vp1| and |Vp2|.

The vertex s chosen by player p at Time 1 is called the strategy of p. For
two players p1 and p2, a strategy profile s = (s1, s2) is a pair of strategies of
p1 and p2. For a strategy profile s, the utility Ui(s) of pi is |Vpi |, that is, the
number of vertices dominated by pi at the end of a game. In Figure 2, the
utility of p1 is U1(v3, v8) = 3 and the utility of p2 is U2(v3, v8) = 4.

For a strategy s of player p1 (resp., p2), a strategy s∗ of player p2 (resp., p1)
is called a best response if it satisfies that U2(s, s

∗) = maxs′∈V U2(s, s
′) (resp.,
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U1(s
∗, s) = maxs′∈V U1(s

′, s)). Then we define a pure Nash equilibrium in
the two-player competitive diffusion game.

Definition 1. A strategy profile s = (s1, s2) is called a pure Nash equilibrium
if there is no vertex v ∈ V such that U1(v, s2) > U1(s1, s2) or U2(s1, v) >
U1(s1, s2), that is, if no player can increase their utility by changing their
own strategy.

In other words, a strategy profile s = (s1, s2) is a pure Nash equilibrium
if s1 and s2 are best responses to each other.

We call the two-player competitive diffusion game 2-CDG for short. Also,
we simply use the term “Nash equilibrium” instead of “pure Nash equilib-
rium” hereafter. Note that if two players choose an identical initial vertex,
their utilities are both 0, which cannot be a Nash equilibrium if |V | ≥ 2.
Thus, in the arguments of this paper, we assume that the vertices chosen by
the players are distinct and the utilities are at least 1.

Before concluding this subsection, we give a small remark about the usage
of the word “changing a strategy” or something like that, to avoid confusion.
To argue that a strategy profile s = (s1, s2) is a Nash equilibrium, we some-
times say that p1 and p2 has no incentive to change their strategies. Or, to
show that a strategy profile s = (s1, s2) is not a Nash equilibrium, we may
say that player p1 changes their strategy s1 to another strategy (typically, a
best response) s′1 to increase their utility. These words “change” are used to
compare two strategies and are not used for explaining the players’ behaviors
inside of the game process; the change is done before the game really starts.

2.2. Graph classes

In this subsection, we define several graph classes. A graph G = (V,E) is
a chordal graph if every cycle of length at least 4 has a chord, or equivalently
every induced cycle has exactly 3 vertices [5]. A graphG = (V,E) is a strongly
chordal graph if it is a chordal graph and every cycle of even length (≥ 6)
has an odd chord, that is, an edge that connects two vertices that are an odd
distance apart from each other in the cycle. Equivalently, a strongly chordal
graph is a chordal graph that includes no n-sun (for n ≥ 3) as an induced
subgraph [7]. Here, an n-sun forms a graph of 2n vertices that consist of a
central Kn with vertices {v1, v2, . . . , vn} and outer vertices {u1, u2, . . . , un}
with edges {ui, vi} and {ui, vi+1} for i = 1, . . . , n and n + 1 ≡ 1. Examples
of chordal and strongly chordal graphs are shown in Figures 10 and 11 in
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Section 4; it is easy to see that both graphs have no chordless cycle with
length at least 4, and the graph in Figure 10 is not a strongly chordal graph
but chordal graph, because it contains a 3-sun.

A graph G = (V,E) is a block graph if every maximal 2-connected com-
ponent is a clique [10]. Intuitively, a block graph can be considered a tree by
regarding each of its maximal cliques as a meta-vertex or a meta-edge. By
the definition of a block graph, a tree is also a block graph.

A graph G = (V,E) is a split graph if V can be partitioned into an
independent set I and a clique C (see Figure 3) [15]. By definition, an n-sun
is a split graph. A graph G = (V,E) is an interval graph if there is a set of
intervals on the real line where the intervals correspond to the vertices such
that G has edge {u, v} if and only if two intervals corresponding to u and v
intersect. We call such a set of intervals an interval representation of G [13].
An example of an interval graph with an interval representation is shown in
Figure 5.

Note that strongly chordal, block, split, and interval graphs are all chordal.
Figure 1 also shows the relations among these graphs. For example, the class
of strongly chordal graphs includes that of block graphs, and they include
that of trees. For more information about graph classes, see [2].

3. The Existence of a Nash equilibrium

Before starting this section, we give a general and basic observation.

Proposition 1. Suppose that u, u′ and v ( 6= u) are vertices in a graph G,
and N(u′) ⊆ N(u). In a 2-CDG on G, if u′ is a best response for v, then u
is also a best response for v.

This proposition clearly holds, because a vertex dominated by p1 under
strategy profile (u′, v) is also dominated by p1 under (u, v).

A typical way to show that a given strategy profile (u, v) is a Nash equilib-
rium is by contradiction. If it is not a Nash equilibrium, u (resp., v) is not a
best response for v (resp., u), which implies that there is a better strategy for
v than u. By Proposition 1, candidates of a better strategy can be restricted
to {v′ ∈ V | @v′′ ∈ V : N(v′) ( N(v′′)}. Namely, what we show is that the
existence of a better strategy u′ ∈ {v′ ∈ V | @v′′ ∈ V : N(v′) ( N(v′′)} for v
than u leads to a contradiction.

In the following subsections, we investigate the existence of a Nash equi-
librium for subclasses of chordal graphs.
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3.1. Split graph

Theorem 1. In any 2-CDG on split graphs, a Nash equilibrium always exists.

To show Theorem 1, we prove the following three lemmas.

Lemma 1. Let G = (C ∪ I, E) be a split graph, where C forms a clique
and I is an independent set. If the strategy profile of p1 and p2 is (u, v)
with u, v ∈ C, the utilities of p1 and p2 are U1(u, v) = |N(u) \ N(v)| =
|N(u)|−|N(u)∩N(v)| and U2(u, v) = |N(v)\N(u)| = |N(v)|−|N(u)∩N(v)|,
respectively.

Proof. We can observe that every w ∈ C \ {u, v} becomes neutral because
C forms a clique. For a vertex w in I, we consider the following cases:
(a) w is adjacent to both u and v, which also becomes neutral, (b) w is
adjacent to u but not adjacent to v, which is dominated by p1, (c) w is
not adjacent to u but adjacent to v, which is dominated by p2, and (d) w
is adjacent to neither vertex u nor v, which remains inactive because all
the neighboring vertices are neutral in C. Thus we count the number of the
vertices of (b), which is |(N(u)\N(v))∩I|. By adding 1 for u itself, we obtain
U1(u, v) = |(N(u)\N(v))∩I|+1. By 1 = |{u}| = |{v}| = |(N(u)\N(v))∩C|,
we have U1(u, v) = |(N(u)\N(v))∩I|+ |{u}| = |(N(u)\N(v))∩I|+ |(N(u)\
N(v))∩C| = |N(u)\N(v)|. Similarly, we have U2(u, v) = |N(v)\N(u)|.

Lemma 2. On any split graph G = (C ∪ I, E), if both p1 and p2 choose
strategies (i.e., vertices) in C, neither p1 nor p2 can increase their own utility
by changing their strategy to a vertex in I.

Proof. Suppose that p1 changes the strategy from u∈ C to x ∈ I. Then,
U1(x, v) = 1, that is, the least score, because the vertices in N(x) (⊆ N(v))
are neutral or v itself. The same argument holds for p2.

By a similar argument, we can see that if the game on a split graph has
a Nash equilibrium, its strategy profile must consist of two distinct vertices
in C.

From Lemmas 1 and 2, we obtain Lemma 3, which concludes Theorem 1.

Lemma 3. There is a Nash equilibrium (u, v) for u, v ∈ C.

Proof. We prove this by contradiction; if there is no Nash equilibrium (u, v)
for any u, v ∈ C, a contradiction arises as we see below. Consider that p1 and
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Figure 3: Nash dynamics on a split graph, where clique C is colored in gray

p2 choose vertices two distinct vertices u, v ∈ C, respectively. Since it is not
a Nash equilibrium, at least one player can increase their utility by changing
their strategy to a new strategy, which is also a vertex in C by Lemma 2.
This new strategy profile again consists of two distinct vertices in C, and the
same arguments perpetually continue.

The argument yields an infinite sequence of strategy profiles on C. It
contains a cyclic subsequence 〈s(1), s(2), . . . , s(k)〉 where s(1) and s(k) are equiv-
alent, because otherwise it contradicts the finiteness of C. See Figure 3. Let
s(j) = (u(j), v(j)) for j = 1, . . . , k, where k ≥ 3 by definition. Since p1 and p2
alternatively changes their strategies (otherwise, we can ignore intermediate
changes), we can assume that player p1 change the strategy u(j) to u(j+1) and
p2 stays at the strategy v(j+1) := v(j) for odd j < k and player p2 changes
the strategy v(j) to v(j+1) and p1 stays at the strategy u(j+1) := u(j) for even
j < k, without loss of generality. If k is odd, u(k) = u(1) and v(k) = v(1) holds
by the equivalence of s(1) and s(k). If k is even, u(k) = v(1) and v(k) = u(1)

holds and the positions of p1 and p2 are exchanged. Since the case of even k
can be reduced to the odd case by duplicating the sequence, we show that a
contradiction arises only for odd k in the following.

The above sequence implies that U1(s
(1)) < U1(s

(2)), U2(s
(2)) < U2(s

(3)),
. . . , U2(s

(k−1)) < U2(s
(k)) = U2(s

(1)). By summing up these inequalities, we
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obtain

(k−1)/2∑
i=1

(U1(s
(2i−1)) + U2(s

(2i))) <

(k−1)/2∑
i=1

(U1(s
(2i)) + U2(s

(2i+1))). (1)

By Lemma 1, the left side is transformed as follows:

(k−1)/2∑
i=1

(|N(u(2i−1)) \N(v(2i−1))|+ |N(v(2i)) \N(u(2i))|)

=

(k−1)/2∑
i=1

(|N(u(2i−1))|+ |N(v(2i))|)−
k−1∑
j=1

|N(u(j)) ∩N(v(j))|

On the other hand, the right side is transformed as follows:

(k−1)/2∑
i=1

(|N(u(2i)) \N(v(2i))|+ |N(v(2i+1)) \N(u(2i+1))|)

=

(k−1)/2∑
i=1

(|N(u(2i))|+ |N(v(2i+1))|)−
k∑
j=2

|N(u(j)) ∩N(v(j))|. (2)

Here, recall that s(1) = s(k), v(j+1) = v(j) for odd j, and u(j+1) = u(j) for even
j hold, which also implies u(k) = u(1) and v(k) = v(1) = v(2). Thus, we have

(2) =

(k−1)/2∑
i=1

(|N(u(2i−1))|+ |N(v(2i))|)−
k−1∑
j=1

|N(u(j)) ∩N(v(j))|,

which is equal to the left side and contradicts the strict inequality of (1).
This completes the proof.

3.2. Block graph

Theorem 2. In any 2-CDG on block graphs, a Nash equilibrium always
exists.

For a block graph G, let C denote the set of all maximal cliques, i.e.,
maximal 2-connected components. A vertex u is called a cut vertex if G[V \
{u}] is disconnected. If v is not a cut vertex, v belongs to a unique maximal
2-connected component (i.e., maximal clique) C, and its neighbors are all in
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Figure 4: The figure of G(C, u) and G̃(C, u) for a maximal clique C and a cut vertex u on
a block graph.

C. For a cut vertex u in a maximal clique C, let G(C, u) be the connected
component in G[V \ C ∪ {u}] that contains u, G̃(C, u) be the component
consisting of the remaining vertices. In other words, G̃(C, u) is the connected
component in G[V \ {u}] that contains C \ {u} (see also Figure 4). Let
ν(C, u) = |V (G(C, u))|, which is equal to n − |V (G̃(C, u))|. For a pair of
C ∈ C and a vertex x ∈ C, we define w(C, x) as follows:

w(C, x) =

{
ν(C, x) x is a cut vertex in C,

1 otherwise.

For a maximal clique C, we sort the values w(C, u)’s of all u’s in the de-
scending order as w1(C), w2(C), . . . , w|C|(C), and let the corresponding u’s
be uC1 , u

C
2 , . . . , u

C
|C|, respectively. Then a Nash equilibrium of 2-CDG on a

block graph G is characterized as follows.

Lemma 4. Let C∗ be a maximal clique satisfying w2(C
∗) = maxC∈C w2(C).

Then, the strategy profile (uC
∗

1 , uC
∗

2 ) is a Nash equilibrium, and the utilities
of p1 and p2 are w1(C

∗) and w2(C
∗), respectively.

Proof. We first remark that the utilities of p1 choosing u ∈ C and p2 choosing
v ∈ C are w(C, u) and w(C, v), respectively. In fact, if p1 and p2 choose u and
v in C respectively, the other vertices in C become neutral. Thus, the vertices
which can be dominated by p1 or p2 are in G[V \ C]. Since p1 (resp., p2)
can dominate the vertices in G(C, u) (resp., G(C, v)) and cannot dominate
the vertices in G̃(C, u) (resp., G̃(C, v)), the utility is |V (G(C, u))| = w(C, u)
(resp., |V (G(C, v))| = w(C, v)). Notice that the utility w(C, u) of p1 choosing
u does not depend on p2’s choice as long as p2 chooses a vertex in C.
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We now show that strategy profile (uC
∗

1 , uC
∗

2 ) is a Nash equilibrium. We
see neither p1 nor p2 has an incentive to change their strategy. We first
consider p1. If p1 may have an incentive to change their strategy, a better
one than uC

∗
1 must be outside of C∗, because w(C∗, uC

∗
1 ) is the largest among

w(C∗, u)’s for u ∈ C∗. Let v be the vertex in V \ C∗ that p1 might move
to, and v′ be the nearest vertex in C∗ from v. Note that such v′ is a cut
vertex and uniquely determined due to the property of block graphs. Since
p2 is in C∗, the vertices that p1 at v can dominate are in G(C∗, v′), which
implies that U1(v, u

C∗
2 ) ≤ |V (G(C∗, v′))| = ν(C∗, v′) = w(C∗, v′) ≤ w(C∗)1 =

U1(u
C∗
1 , uC

∗
2 ) holds. Namely, p1 does not have an incentive to change the

strategy from uC
∗

1 to such v.
We next show by contradiction that p2 does not have an incentive to

change their strategy; we assume that p2 has. Then, a better strategy than
uC
∗

2 must be outside of C∗ again, because the unique candidate uC
∗

1 in C∗

has been already occupied by p1. Thus we consider the case where p2 moves
to v ∈ V \ C∗, and let v′ be the nearest vertex in C∗ from v. By a similar
argument as above, p2 has no incentive to move to v if the corresponding
v′ is in C∗ \ {uC∗1 }. Only the possible case is v′ = uC

∗
1 . Here, we can as-

sume that v is adjacent to v′(= uC
∗

1 ), because otherwise p2 can increase
their utility by approaching to uC

∗
1 , which reduces a neutral vertex. Since

v and uC
∗

1 are adjacent, there is a maximal clique C ′ such that v, uC
∗

1 ∈ C ′.
Then, the utilities of p1 and p2 for strategy profile (uC

∗
1 , v) are w(C ′, uC

∗
1 )

and w(C ′, v), respectively. Since p2 moves to v in order to increase their
utility, w(C ′, v) > w(C∗, uC

∗
2 ) holds. By p2 moving to v, uC

∗
2 ∈ C∗ be-

comes vacant, which implies that p1 gets to dominate at least uC
∗

2 and the
vertices in V (G(C∗, uC

∗
2 )), that is, w(C ′, uC

∗
1 ) > w(C∗, uC

∗
2 ). These imply

that w(C∗, uC
∗

2 ) = w2(C
∗) < w2(C

′) ≤ maxC∈C w2(C), which contradicts the
definition of C∗. This completes the proof.

Clearly the strategy profile of Lemma 4 always exists, and hence a Nash
equilibrium always exists on a block graph. This concludes the proof of
Theorem 2.

3.3. Interval graph

Theorem 3. In any 2-CDG on interval graphs, a Nash equilibrium always
exists.

Before starting the proof of Theorem 3, we introduce new notation and
basic concepts concerning interval graphs. We assume that an interval graph

13
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Figure 5: An example of an interval graph (left) and its interval representation
sorted in increasing order of the initial endpoints ai’s (right). In this example, I =
{[a1, b1], . . . , [a5, b5]} and Imax = {[a1, b1], [a2, b2], [a5, b5]}.

G = (V,E) is given by intervals I = {I1, . . . In}, where each interval Ii =
[ai, bi] (i = 1, . . . n) of two integers ai ≤ bi corresponds to vertex i. The
endpoint ai of Ii is called the initial endpoint and the other endpoint bi is
called terminal endpoint. We assume that {I1, . . . In} are sorted in increasing
order of the initial endpoints ai’s (see Figure 5).

We also assume that ai’s and bi’s are all distinct without loss of generality.
Recall that two vertices i and j are adjacent on an interval graph if and only if
the corresponding intervals Ii and Ij intersect. In this section, the arguments
are described mainly in interval representations. For example, we say that
a player p chooses an interval Ii (or simply i) instead that p chooses vertex
i. If interval Ii contains interval Ij, that is, ai ≤ aj ≤ bj ≤ bi, it is denoted
by Ij ⊆ Ii, and N(j) ⊆ N(i) holds in G. On the other hand, if two intervals
Ii and Ij intersect where i < j and Ij 6⊆ Ii, we say that Ii and Ij properly
intersect.

Let Imax denote {Ii ∈ I | @Ij ∈ I : Ii ( Ij}, that is, Imax is the
set of intervals in I that are not contained in any other interval. We call
Imax the maximal set of I. By this definition, for Ii, Ij ∈ Imax with i < j,
ai < aj and bi < bj hold. Here, we consider the case |Imax| = 1. In such
a case, the vertex u∗ corresponding to the interval in Imax is adjacent to
any other vertex in G. It implies that 2-CDG on G always has a Nash
equilibrium, which forms (u∗, v) for ∀v 6= u∗. Thus, we assume that |Imax| > 1
hereafter. Note that strategies for Nash equilibria in the 2-CDG on I can
be restricted to vertices in Imax by Proposition 1 and |Imax| > 1. For
a vertex set V ′ corresponding to I ′, the subgraph of G induced by V ′ is
denoted also by G[I ′]. Note that G[Imax] is also connected. In general, G[I ′]

14
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Figure 6: This figure shows the case that p1 and p2 choose strategies i and j, respectively.
Red (resp., blue) bold intervals are dominated by p1 (resp., p2). Grey intervals become
neutral. Black intervals remain to be inactive.

can be disconnected. We say that vertex u is reachable from v if there is
a path between u and v. In terms of intervals, an interval Iu is reachable
from Iv if there is a sequence of intervals Iu = Iu1 , Iu2 , . . . , Iuk = Iv, where
Iui and Iui+1

intersect for i = 1, . . . , k − 1. For I ′ ⊆ I, let R(I ′) and
L(I ′) denote the right-most interval and the left-most interval, respectively,
which means that br = max{bi | [ai, bi] ∈ I ′} holds for [ar, br] := R(I ′)
and al = min{ai | [ai, bi] ∈ I ′} holds for [al, bl] := L(I ′). Also, let C(I ′, I)
denote the set of intervals in I ′ that are reachable from I in G[I ′]. That
is, C(I ′, I) is the set of intervals corresponding to the connected component
of G[I ′] containing I. Thus, C(I ′, R(I ′)) (resp., C(I ′, L(I ′))) are the set
of intervals in I ′ that are reachable from the right-most (resp., left-most)
interval. We simply write CR(I ′) and CL(I ′) instead of C(I ′, R(I ′)) and
C(I ′, L(I ′)), respectively.

We further introduce new notation. For x ∈ R, define Ib<x = {Ii =
[ai, bi] ∈ I | bi < x} and Ia>x = {Ii = [ai, bi] ∈ I | ai > x}, or something like
that. Let us focus on a pair (i, j) of intervals in Imax such that i 6= j and
Ii∩Ij 6= ∅, that is, (i, j) forms an edge e in G. We call such a pair of intervals
neighboring or adjacent . Note that ai < aj implies bi < bj by the property of
Imax. By using the notation, we can explicitly express the players’ utilities
when they choose neigboring intervals in Imax.

Lemma 5. Suppose that G is an interval graph defined by I, and players
p1 and p2 choose neighboring Ii and Ij with i < j in Imax in 2-CDG on G,
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respectively. Then, the utilities of p1 and p2 are U1(i, j) = |CR(Ib<aj ∪ {Ii})|
and U2(i, j) = |CL(Ia>bi ∪ {Ij})|, respectively.

Proof. Intervals in I intersecting [aj, bi] intersect both Ii and Ij, and thus
such intervals (vertices) become neutral at Time 2 (see Figure 6). Since strat-
egy profile (i, j) forms an edge {i, j}, no other vertex becomes neutral after
Time 2, because intervals that are newly dominated by p1 and p2 respectively
spread to the left-hand direction and the right-hand direction on the line. We
can see that the set of such neutral intervals are I \ (Ib<aj ∪Ia>bi ∪ {Ii, Ij}).
By eliminating these from I, we obtain G[Ib<aj ∪ Ia>bi ∪ {Ii, Ij}]. If we
further remove Ij from G[Ib<aj ∪ Ia>bi ∪ {Ii, Ij}], the graph consists of at
least two connected components, and the connected component contain-
ing Ii is G[CR(Ib<aj ∪ {Ii})]; CR(Ib<aj ∪ {Ii}) is the set of intervals (ver-
tices) that are eventually dominated by p1. Similarly, CL(Ia>bi ∪ {Ij}) is the
set of intervals that are eventually dominated by p2. From these, we have
U1(i, j) = |CR(Ib<aj ∪ {Ii})| and U2(i, j) = |CL(Ia>bi ∪ {Ij})|.

By this lemma, we define the following for neighboring Ii, Ij ∈ Imax with
i < j:

wmax(i, j) = max{|CR(Ib<aj ∪ {Ii})|, |CL(Ia>bi ∪ {Ij})|},
wmin(i, j) = min{|CR(Ib<aj ∪ {Ii})|, |CL(Ia>bi ∪ {Ij})|}.

These values represent the utilities of two players choosing the vertices of
e = {i, j} with i < j, where wmax(i, j) ≥ wmin(i, j).

We now show that a Nash equilibrium always exists in any 2-CDG on
interval graphs.

Lemma 6. Suppose that G is an interval graph defined by I with |Imax| > 1,
and Iα is the strategy of p1 (resp., p2) in Imax. Then, there is a best response
Iβ of p2 (resp., p1) in Imax such that Iβ intersects Iα.

Proof. Suppose that strategy Iv ∈ Imax of player p2 is a best response for
strategy α of p1. If Iv ∩ Iα 6= ∅, the statement of the lemma holds. Thus, we
assume otherwise, where α < v without loss of generality; aα < bα < av < bv
holds. We then claim that there exists a strategy v′ ∈ Imax of player p2 which
is a best response for strategy α of p1 such that α < v′ < v. If it is true, we
can prove the lemma by repeatedly applying the argument.
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To show the claim, we first show that the graph induced by {Iv}∪Ia>av \
(I(α,v,0) ∪ I(α,v,1)) is connected and dominated by p2 under strategy profile
(α, v), where I(α,v,0) and I(α,v,1) are respectively the set of the neutral inter-
vals under (α, v) and the set of the vertices dominated by p1 under (α, v).
Actually, Ia>av ∩ (I(α,v,0) ∪ I(α,v,1)) = ∅ holds as follows: Otherwise, there
exists Iu = [au, bu] ∈ Ia>av ∩ (I(α,v,0) ∪ I(α,v,1)), where v < u. Since no in-
terval in Ia>av intersects Iα by bα < av, the timing that I ′ becomes neutral
or dominated by p1 is after Time 2. That is, there is a sequence of intervals
(Iα, Iα1 , . . . , Iαk , Iu) such that Iαi ∩Iαi+1

6= ∅ for i = 1, . . . , k−1, Iα∩Iα1 6= ∅,
Ik ∩ Iu 6= ∅, and Iαi ’s are dominated by p2. Since bα < av < bv < au,
some Iαi satisfies Iαi ∩ Iv 6= ∅; this means Iαi is dominated by p2 or becomes
neutral at Time 2, which contradicts the assumption. Thus, it follows that
{Iv}∪Ia>av \ (I(α,v,0) ∪I(α,v,1)) = {Iv}∪Ia>av . Here, to show that the graph
induced by {Iv} ∪ Ia>av is connected, we assume otherwise; {Iv} ∪ Ia>av is
partitioned into two or more connected sets of intervals. Let I ′ and I ′′ be
the left-most and second left-most connected intervals, respectively, and let
a′′ be the left-end of the intervals in I ′′. Note that Iv = [av, bv] belongs to
I ′, and thus bv < a′′ holds. Since graph G is connected, I ′ and I ′′ have a
common neighboring interval [a′, b′] outside {Iv}∪Ia>av . Then, [a′, b′] should
satisfy that a′ < av and a′′ < b′, but it contradicts Iv = [av, bv] ∈ Imax. By
these, the graph induced by {Iv} ∪ Ia>av \ (I(α,v,0) ∪ I(α,v,1))(= {Iv} ∪ Ia>av)
is connected.

We now see which intervals are dominated by p2 under strategy profile
(α, v). As seen above, the intervals in {Iv} ∪ Ia>av are eventually dominated
by p2. Additionally, some intervals (including Iv) in Ia>bα \ Ia>av are domi-
nated by p2, which we call Ĩ as a set; we have U2(α, v) = |Ĩ ∪{Iv}∪Ia>av | =
|Ĩ ∪ Ia>av |. Here, we consider to change p2’s initial vertex from v to a v′,
where Iv′ ∈ Imax satisfies Iv′ ∩ Iv 6= ∅ and v′ < v. Since Iv does not intersect
Iα, Iv is dominated by p2 at Time 2 under strategy profile (α, v′), which
implies that p2 dominates the intervals in {Iv} ∪ Ia>av again. Furthermore,
the intervals in Ĩ are also dominated by p2 under strategy profile (α, v′),
because they are nearer to Iv than Iα and nearer also to Iv′ than Iα. Thus,
the intervals in Ĩ ∪ Ia>aj are dominated also by p2 under strategy profile
(α, v′), which implies that v′ is also a best response for strategy α of p1. By
repeatedly applying the same argument, we can find a best response α for β
where β is adjacent to α.

We are ready to show the following lemma, which completes the proof of
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Figure 7: In the proof of Claim 1, consider the case when p1 changes the initial interval
from Iα to Iu (u < β). The blue interval represents Iβ . One of the red intervals is Iα and
the other is Iu.

Theorem 3.

Lemma 7. Suppose that G = (V,E) is an interval graph of interval repre-
sentation I, and let Ẽ = {{i, j} ∈ E | i, j ∈ Imax}, E∗ = {{i, j} ∈ Ẽ |
wmin(i, j) = max{i,j}∈Ẽ wmin(i, j)} and E∗∗ = {{i, j} ∈ E∗ | wmax(i, j) =
max{i,j}∈E∗ wmax(i, j)}. Let e∗ = {α, β} be an edge maximizing |j− i| among
{i, j} ∈ E∗∗. Then, strategy profile (α, β) is a Nash equilibrium, and the
utilities of p1 and p2 are wmax(α, β) and wmin(α, β), respectively.

Proof. Without loss of generality, we assume that p1 and p2 take strategy
profile (α, β), where α < β and U1(α, β) ≥ U2(α, β). Then, the utilities of p1
and p2 are U1(α, β) = |CR(Ib<aβ ∪ {Iα})| and U2(α, β) = |CL(Ia>bα ∪ {Iβ})|,
respectively. We show that neither p1 nor p2 has an incentive to change their
initial vertices (α, β).

Claim 1. Player p1 has no incentive to change the initial vertex α.

We prove this by contradiction. Suppose that p1 has an incentive to
move. Then, we can restrict candidates of alternative initial vertex u of p1
as intervals in Imax that are adjacent to β by Lemma 6; the utilities change
to U1(u, β) and U2(u, β). There are two cases: (1) u < β and (2) β < u. For
case (1), we can see that Iα and Iu intersect by Iβ ∩ Iα 6= ∅, Iβ ∩ Iu 6= ∅,
and Iβ, Iα, Iu ∈ Imax as seen in Figure 7. The new utility of p1 is U1(u, β) =
|CR(Ib<aβ ∪ {Iu})|. Here, we compare U1(α, β) = |CR(Ib<aβ ∪ {Iα})| and
U1(u, β) = |CR(Ib<aβ ∪ {Iu})|. Note that Ib<aβ may have several connected
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Figure 8: In the proof of Claim 1, consider the case when p1 changes the initial interval
from Iα to Iu (u > β). The blue interval represents Iβ . Player p2 changes the strategy
from Iα (dark red interval) to Iu (a red interval).

components, and R(Ib<aβ∪{Iα}) = Iα and R(Ib<aβ∪{Iu}) = Iu hold because
both Iα and Iu intersect Iβ. Here, Iα or Iu may connect several components
in Ib<aβ . Since Iα and Iu properly intersect, the left of the two intervals can
connect more connected components in Ib<aβ than the right one. There are
two cases, α > u or α < u. In case of α < u, U1(α, β) is not smaller than
U1(u, β). Then, p1 has no incentive to move to u. In case of α > u, we have

U1(α, β) = |CR(Ib<aβ ∪ {Iα})| ≤ |CR(Ib<aβ ∪ {Iu})| = U1(u, β).

Here, the inequality should be strict, because otherwise p1 has no incentive to
move to u again. The utility of p2 changes from U2(α, β) = |CL(Ia>bα∪{Iβ})|
to U2(u, β) = |CL(Ia>bu ∪ {Iβ})|. Since Ia>bα ⊆ Ia>bu , U2(α, β) ≤ U2(u, β)
holds; we have U1(α, β) < U1(u, β) and U2(α, β) ≤ U2(u, β). This contradicts
α, β} ∈ E∗∗ ⊆ E∗ in any case.

For case (2), i.e., β < u, we have aβ < au < bβ < bu by Iβ, Iu ∈ Imax.
See Figure 8. The utilities of p1 and p2 change from U1(α, β) and U2(α, β)
to U1(u, β) = |CL(Ia>bβ ∪ {Iu})| and U2(u, β) = |CR(Ib<au ∪ {Iβ})|. Here, we
see whether such a change is possible by case analysis: (i) au < bα and (ii)
au > bα. In case (i), Iα and Iu intersect. We now consider strategy profile
(α, u). Then, the utilities of p1 and p2 are U1(α, u) = |CR(Ib<au ∪ {Iα})| and
U2(α, u) = |CL(Ia>bα ∪ {Iu})|, respectively. Then, we have

U2(α, u) = |CL(Ia>bα ∪ {Iu})| ≥ |CL(Ia>bβ ∪ {Iu})| = U1(u, β) > U1(α, β),
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since p1 have an incentive to move to Iu under (α, β) by the assumption. We
also have

U1(α, u) = |CR(Ib<au ∪ {Iα})| ≥ |CR(Ib<aβ ∪ {Iα})| = U1(α, β).

Namely, the utilities of both players under (α, u) are at least U1(α, β), and
the greater one is strictly greater than U1(α, β). This contradicts either
{α, β} ∈ E∗∗. We next consider case (ii) au > bα. In this case, Iu ∈ Ia>bα
holds; Iu is not neutral under (α, β). This together with Iu ∩ Iβ 6= ∅ and
Ia>bβ ⊆ Ia>bα implies that an interval in Ia>bβ reachable from Iu is also
reachable from Iβ in G[Ia>bα ] via Iu; CL(Ia>bβ ∪ {Iu}) ⊆ CL(Ia>bα ∪ {Iβ})
holds, which implies

U1(u, β) ≤ U1(β, α) = U2(α, β) ≤ U1(α, β).

This contradicts that p1 has an incentive to change initial vertex α to u.

Claim 2. Player p2 has no incentive to change the initial vertex β.

We prove this by contradiction again. Suppose that p2 has an incentive
to move to v ∈ Imax, which intersects α (by Lemma 6). Then, U2(α, v) >
U2(α, β) holds. Furthermore, after the strategy is changed, p2 gets a utility
not smaller than p1’s utility, that is, U2(α, v) = wmax({α, v})>wmin({α, v}) =
U1(α, v) holds because otherwise it contradicts {α, β} ∈ E∗. By {α, β} ∈ E∗,
we also have U1(α, v) = wmin({α, v}) ≤ wmin({α, β}) ≤ wmax({α, β}) =
U1(α, β). Here, actually U1(α, v) < U1(α, β) holds as follows: if all the in-
equalities hold with equality, then we have U1(α, β) = U2(α, β) = U1(α, v) <
U2(α, v); the existence of strategy profile (α, v) contradicts {α, β} ∈ E∗∗.

We now focus on the order relation of v and α. There are two cases: (1)
v > α and (2) v < α. In case (1), the utility of p1 changes from U1(α, β) =
|CR(Ib<aβ∪{Iα})| to U1(α, v) = |CR(Ib<av∪{Iα})|, which must be smaller than
U1(α, β) by the above argument. This implies v < β. Then, the utility of p2
changes from U2(α, β) = |CL(Ia>bα ∪ {Iβ})| to U2(α, v) = |CL(Ia>bα ∪ {Iv})|,
which is not greater than |CL(Ia>bα ∪ {Iβ})| by v < β. This contradicts that
p2 has an incentive to move to v.

In case (2) (i.e., v < α), the utility of p1 changes from U1(α, β) =
|CR(Ib<aβ ∪ {Iα})| to U1(α, v) = |CL(Ia>bv ∪ {Iα})|. See Figure 9. We now
compare this U1(α, v) and U2(α, β) = |CL(Ia>bα ∪ {Iβ})|. By v < α, we
have Ia>bα ⊆ Ia>bv . If Iv and Iβ do not intersect, then Iβ ∈ Ia>bv . This
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Figure 9: Case (2) (i.e., v < α) in the proof of Claim 2. Player p2 changes the intial vertex
from Iβ (dark blue interval) to Iv (blue interval).

and Iα ∩ Iβ 6= ∅ imply that CL(Ia>bα ∪ {Iβ}) ( CL(Ia>bv ∪ {Iα}), that is,
U2(α, β) < U1(α, v) = wmin({α, v}), which contradicts {α, β} ∈ E∗. Thus Iv
and Iβ intersect. We here consider strategy profile (v, β). The utilities of p1
and p2 are U1(v, β) = |CR(Ib<aβ ∪ {Iv})| and U2(v, β) = |CL(Ia>bv ∪ {Iβ})|,
respectively. Here, v < α implies

U2(v, β) = |CL(Ia>bv ∪ {Iβ})| ≥ |CL(Ia>bα ∪ {Iβ})| = U2(α, β).

Furthermore, we have

U1(v, β) = |CR(Ib<aβ ∪ {Iv})| ≥ |CR(Ib<aβ ∪ {Iα})| = U1(α, β)

by v < α. Then, U2(v, β) = U2(α, β) and U1(v, β) = U1(α, β) hold, that
is, {v, β} ∈ E∗∗, because otherwise it contradicts {α, β} ∈ E∗∗. Due to
v < α < β, |β − v| is greater than |β − α|. This again contradicts the choice
of (α, β), that is, β − α is maximum among |j − i|’s of {i, j} ∈ E∗∗.

Thus, neither p1 nor p2 has incentive to move, which implies that (α, β)
is a Nash equilibrium.

4. The Non-existence of a Nash equilibrium

In this section, we give a chordal graph that has no Nash equilibrium of 2-
CDG. We also give a strongly chordal graph that has no Nash equilibrium of
2-CDG. Since a strongly chordal graph is also chordal, it might be sufficient
to give the latter graph, although the size of the former graph is smaller as
a chordal graph.
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Figure 10: A chordal graph with no Nash
equilibrium.

Figure 11: A strongly chordal graph with
no Nash equilibrium.

Theorem 4. There is a chordal graph with 9 vertices and diameter 3 that
has no Nash equilibrium of 2-CDG.

Theorem 5. There is a strongly chordal graph with 12 vertices and diameter
3 that has no Nash equilibrium of 2-CDG.

Figures 10 and 11 show concrete instances of these theorems, and Table 1
shows the payoff matrix for the instance in Figure 10, though the one for
Figure 11 is put in an appendix. In the table, each element (vi, vj) in the
payoff matrix represents (U1(vi, vj), U2(vi, vj)), and we leave the elements of
the lower triangle of the matrix empty for legibility. We can get the values
(α, β) for (vi, vj) with i > j by referring (β, α) at (vj, vi). By using Table
1, we can verify that one player has an incentive of changing the strategy
for every strategy profile. For example, we start at (v1, v4), whose element
is (7, 1). Here, p2 has an incentive to move to v3, and then the utilities at
(v1, v3) are (3, 4). Then, p1 has an incentive to move to v2, and the utilities
at (v2, v3) are (4, 3). This procedure continues as (v2, v1) and (v3, v1), which
is essentially equivalent to (v1, v3); it is an endless loop.

Proof of Theorem 4. We first confirm that the graph of Figure 10 satisfies the
properties of Theorem 4. Clearly, the number of vertices and the diameter
are 9 and 3, respectively. It is also a chordal graph, because every induced
cycle has exactly 3 vertices. We then prove this theorem by showing any
strategy profile of the 2-CDG on the graph is not a Nash equilibrium. Thus
one way for proving this is to check all the cells in Table 1, but it is time-
consuming, and we reduce the number of checks by symmetry. We first focus

22



Table 1: The payoff matrix in the chordal graph of Figure 10

v1 v2 v3 v4 v5 v6 v7 v8 v9
v1 (0, 0) (4, 3) (3, 4) (7, 1) (6, 1) (6, 2) (5, 2) (6, 1) (6, 2)
v2 (0, 0) (4, 3) (6, 1) (6, 2) (7, 1) (6, 1) (6, 2) (5, 2)
v3 (0, 0) (6, 2) (5, 2) (6, 1) (6, 2) (7, 1) (6, 1)
v4 (0, 0) (1, 7) (5, 3) (3, 5) (3, 5) (2, 5)
v5 (0, 0) (5, 2) (3, 4) (5, 3) (4, 3)
v6 (0, 0) (1, 7) (5, 3) (3, 5)
v7 (0, 0) (5, 2) (5, 2)
v8 (0, 0) (1, 7)
v9 (0, 0)

on v1, v2 and v3, which are symmetric. The best response for v1 is v3. By the
symmetry, that for v3 is v2 and that for v2 is v1; these form cyclic relations
of best responses. Thus any strategy profile containing one of v1, v2 and v3
is not a Nash equilibrium. We next consider v5, v7 and v9. For v5, there are
two best responses, which are v1 and v2 with utility 6. This implies that
any strategy profile containing one of v5, v7 and v9 is not a Nash equilibrium.
Finally, we consider v4, v6 and v8. For v4, there are two best responses, which
are v1 and v5 with utility 7, and it follows that any strategy profile containing
v4, v6 and v8 cannot be a Nash equilibrium. Thus, this graph has no Nash
equilibrium.

The graph of Figure 10 is not a strongly chordal graph, because an even
cycles has no odd chord. In fact, cycle (v1, v9, v3, v7, v2, v5, v1) does not have
odd chord (v1, v7) (or, (v9, v2), (v3, v5)). For a stronger result, we need another
example.

Proof of Theorem 5. We first confirm that the graph of Figure 11 satisfies the
properties of Theorem 4. Clearly, the number of vertices and the diameter are
12 and 3, respectively. It is also a chordal graph, because every induced cycle
has exactly 3 vertices. Furthermore, we can see that it does not have any sun
as an induced graph, by checking whether every maximal clique satisfies the
condition. This graph has three types of maximal cliques, e.g., {x1, . . . , x6},
{x4, x5, x6, x11} and {x2, x7, x8}, and none of them can be extended to a sun.
We then prove this theorem by showing any strategy profile of the 2-CDG
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on the graph is not a Nash equilibrium. See also Table A.3. We first focus
on x2, x4 and x6, which are symmetric to each other. The best response for
x2 is x4. By symmetry, that for x4 is x6 and that for x6 is x2. Thus, any
strategy profile containing one of x2, x4 and x6 is not a Nash equilibrium.
We next see x1, x3 and x5, which are also symmetric to each other. The best
response for x1 is x4 with utility 5, which implies that any strategy profile
containing one of x1, x3 and x5 is also not a Nash equilibrium. We then see
x7 (that is, x9 and x11). The best responses for x7 are x2 and x6 with utility
8, which implies that any strategy profile containing one of x7, x9 and x11 is
also not a Nash equilibrium. Finally, we consider x8 (that is, x10 and x12).
The best responses for x8 are x2 and x7 with utility 10, which again implies
that any strategy profile containing one of x8, x10 and x12 is also not a Nash
equilibrium. Overall, the graph does not have a Nash equilibrium.

5. Concluding remarks

In this paper, we studied the existence of a Nash equilibrium in 2-CDG.
We showed that a Nash equilibrium always exists on a split graph, a block
graph, and an interval graph. In particular, the proofs for block graphs and
interval graphs give an idea to find a Nash equilibrium efficiently; a Nash
equilibrium is found by computing utilities for only O(n) strategy profiles.
On the other hand, we gave instances with no Nash equilibrium on (strongly)
chordal graphs. These results show the boundary of the existence of a Nash
equilibrium in 2-CDG on chordal graphs.

In the proofs for the existence of Nash equilibrium in split, interval, and
block graphs, we implicitly or explicitly use the property that for a strategy
s1 there is a best response s2 such that s1 and s2 are adjacent, which is useful
to restrict possible strategies for the other player’s improvement. Also it gives
the observation that a graph in such a graph class has a Nash equilibrium of
(s1, s2) where s1 and s2 are adjacent. We here call such a property of Nash
equilibria adjacency. A natural question arises: does the above property hold
in general? Or does every graph having a Nash equilibrium also have a Nash
equilibrium with adjacency?

The answer is no, because there is a graph whose unique Nash equilibrium
does not satisfy adjacency. For example, the graph in Figure 12 has a unique
Nash equilibrium (v3, v5), which are not adjacent. Table 2 shows the pay-off
matrix of this graph. By checking the table, it is easy to see that (v3, v5) is
a Nash equilibrium. Note that v3 (resp., v5) is the best response for v5 (v3).
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Figure 12: A graph having the unique Nash equilibrium (v3, v5) without adjacency.

Also the best responses for v1 are v3 and v4. The best responses for v4 are v3
and v5. By the symmetricity of v1, v2, v6, v7 and that of v3, and v5, we can
check that (v3, v5) is the unique Nash equilibrium.

Table 2: The pay-off matrix of Figure 12.

v1 v2 v3 v4 v5 v6 v7
v1 (0, 0) (3, 3) (2, 4) (2, 4) (2, 3) (2, 2) (3, 3)
v2 (0, 0) (2, 3) (2, 4) (2, 4) (3, 3) (2, 2)
v3 (0, 0) (3, 2) (3, 3) (4, 2) (3, 2)
v4 (0, 0) (2, 3) (4, 2) (4, 2)
v5 (0, 0) (3, 2) (4, 2)
v6 (0, 0) (3, 3)
v7 (0, 0)

Then, the next question arises: are there other natural classes of graphs
in which every graph having a Nash equilibrium also has a Nash equilibrium
with adjacency? Notice that the graph in Figure 12 is not chordal. Maybe
an interesting question is to find such a class of graphs and to investigate the
relationship between the class and subclasses of chordal graphs.
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