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The purpose of this paper is to investigate the guiding mechanism of hydromagnetic 

whistlers along the Earth's magnetic field-aligned plasma column in the magnetosphere 

by use of wave theory. The radial density distribution perpendicular to the magnetic 

field is assumed to be Gaussian and we use the method in which the fields are expanded 

into power series of the radial distance from the column axis. And the condition for 

trapping in a duct is discussed for enhanced, and depressed, ducts. The existence of 

trapping frequency region, which is closely related to the duct modulation factor, is 

demonstrated and the duct width necessary for trapping is also estimated. 

1. Introduction 

Guidance of hydromagnetic waves (Alfven waves) along the lines of flux of the 

Earth's magnetic field has been discussed by some workers (Jacobs and Watanabe 1964; 

Obayashi 1965) in order to explain the micropulsation whistlers. Since then it has been 

assumed that hydromagnetic whistlers propagate almost along the magnetic lines of force. 

Fejer and Lee (1967) discussed the guidance of Alfven waves in a cold plasma from 

several points of view. They also briefly mentioned the guidance by field-aligned ducts 

and demonstrated by a numerical example the fact that ducted propagation could occur 

in a field-aligned duct only a few kilometers wide, in which plasma density was about 

15% greater than that in the surrounding medium. Recently Kitamura (1967) made 

calculations of the propagation paths of hydromagnetic whistlers in the magnetosphere 

to investigate the deviation of ray paths from the magnetic field line. He showed 

that the waves cannot reach the ionosphere in almost all cases, since the wave normal 

angle becomes very large in the vicinity of the bottom of the magnetosphere. To 

overcome this discrepancy of computational results from the fact that micropulsation 

whistlers are really observed on the ground, we propose the ducted propagation of 

Alfven waves in the magnetosphere (Hayakawa, Ohtsu and Iwai 1968) . 
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2. Electromagnetic wave fields in a plasma 

A duct aligned with the Earth's magnetic field is assumed to be a column with 

non-sharp boundary as shown in Fig. 1. The radial distribution of the plasma density 

in the duct is taken to be Gaussian as follows and shown in Fig. 2. 

where r is the radial distance from axis, and a is a measute of the duct width. N. is 

the ambient plasma density and N c is the central plasma density of the duct. The 

Earth's magnetic field is assumed to be homogeneous in the whole region and parallel 

to the duct axis, i.e., z-axis. The cylindrical coordinate system (r, rp, z) used are also 

shown in Fig. 1. 

The electric field of electromagnetic wave propagating in an inhomogeneous, and 

anisotropic, plasma is governed by the following wave equation, 

(2) 

where time factor is assumed to be exp(iwt) and k 0 is a free space wave number. 

Plasma tensor (•) is written as follows. 

(3) 

0 

Assuming that the plasma is composed of electrons and protons, the elements of (e) 

can be given as, 
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Fig. 1 Duct model and cylindrical 

coordinates. 
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where wp1 (j= i, e) and wc1 (j= i, e) are respectively angular plasma frequency and 

cyclotron frequency of the j particle. The expressions of €;'8 to the right in eq. (4) are 

approximations under such a condition as that wp;':f>wc;, wp;';f>w and m;';f>m,. 

functions of r due to the radial density inhomogeneity. 

t;'S are 

Since hydromagnetic whistlers in the magnetosphere are left hand polarized waves, 

the wave polarization is given by iE%/ E, = l. If a~oo. then N (r) must tend to Nc and 

this means that the plasma is homogeneous. The simple travelling left hand polarized 

wave along z axis in this homogeneous plasma is given as follows in cartesian and 

cylindrical coordinates, 

(5) 

where n (> 0) is the longitudinal refractive index of hydromagnetic whistlers in a 

homogeneous plasma (N = Nc). Incidentally the expression of n in terms of t;'s is 

(6) 

where the superscript c indicates the value at the center of a duct. Substituting eq. (4) 

into eq. (6}, we can get the following familiar expression for L-waves. 

(w p;') z 
w(w-wc;) 

(7) 

Now we will seek for a solution of the following form, which tends to the asympto

tic solution given by eq. (5) when a~oo for fixed r, 

E=F(r)exp(iwt+i~-ik0nz) (8) 

where n takes the value given by eq. (6), and the cylindrical components of F are func

tions of r only. 

Here we consider the electron density defined by eq. (1) as a function of r: = r j a, 

and not a function of r. Then we can write down eq. (2) in components using the new 

variable r:. 

3. Trapping conditions 

For hydromagnetic whistlers to be trapped in a field-aligned duct, the following two 

conditions are needed (Northover 1959). 

(1) The amplitude of electromagnetic wave fields decreases radially at a rate larger 

than what the radial scattering factor r - 112 represents. 
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(2) Most of the energy flow is confined to the central region of a duct. 

To investigate the trapping condition (1), it is necessary to study the behavior of 

electromagnetic fields at far distances from the axis. When r is very large, the asym

ptotic expansions for F(r) are given as follows, 

I 

F (r)=exp (-isk 0ar) 'E.fn ,--. -•· ·-· (9) 

where fn = Cfnr. fn~. /u). s is a complex quantity repre3enting the radial damping rate 

of wave field. 

Substitution of eq. (9) into component expressions of eq. (2) and picking up the most 

predominant terms in r yields the following equations, 

-snfo z=OJ 
-i€z4 /or + (82 + (n 2-€t4 ))fo+ = 0 

-snfor +(s 2-es4 )/o. = O 

UO) 

where the superscript a indicates the value in the ambient plasma. For the solution 

(/0., / 0,, / 0 . ) to be nontrivial, the determinant composed of the coefficients of (/0,, fo1. 
f 0,) must be zero and this yields the following equation for s using eq. (4), 

gayz(l - y2)s' +g((y+ A) {y2- R(l-yz)} +y'(l-A))sz 

+R( y 2(1-A)2-(y+A)2)=0 O» 

where g, y, A and R are defined as, 

y =_!!!_ CO< y< l), 
W e ; 

A= N. -Na 
N. , 

R= m;. 
m, 

Among the solutions, those with Im(s) < 0 are physically admittable. For the solu

tions with Im(s) < 0 to exist, there are t wo cases, taking eq. OJ) as a quadratic equation 

for s2• 

(1) Two solutions s 1
2 and sa2 are both negative. 

(2) s 1
2 and Sz2 are both imaginary. 

Case (2) corresponds to the leaky waves. This case is satisfied only when the 

longitudinal propagation constant is complex. So we don't consider this case. 

Case (1) r equires that the discriminant D of eq. O» is positive, i.e. 

D> O 

and g((y+ A){ y2- R(l-y2) } +y'(l - A))>O 

R(y2(1 - A) 2-(y+A) 2)>0 

For the relation 0$ to be satisfied, it requires that 

(13) 

04) 

U$ 
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only for A< O. 

- A y>---
2-A 

If A>O, it appears that the relation 0.~ can never be satisfied. Next 
the relation 0.4\ requires the following relation taking into account the largeness of R, 

y +A< O. (17) 

Therefore, relations M and U7) are combined to yield 

- A 
2_ A < y<-A (-A>O) . (18) 

With relation (18) satisfied, the discriminant of eq. (11) is always positive for reasonable 

values of modulation factor. 

Therefore trapping of waves is possible only for depressed ducts and impossible for 

enhanced ducts. And the trapping frequency region is given by eq. (18) and shown in 

Fig. 3. The upper and lower cut-offs of trapping frequency ragion are found to be 

w 

Modulation factor (-A ) 

Fig. 3 Trapping frequency region vs. duct modulat ion factor. 

T rapping is possible in shaded region. 
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closely related to the duct modulation factor. From Fig. 3, we can show the following 

facts. 

(1) For a hydromagnetic whistler to be trapped in a field-aligned duct, the duct 

must be depressed. 

(2) If the modulation factor of the depressed duct is relatively small, the trapping 

frequency width is small, and accordingly the upper, and the lower, cut-off 

frequencies take relatively low values. 

(3) For higher frequency waves to be trapped, it is necessary that a duct exists 

where the modulation is deeply depressed. 

Suppose that the trapping condition (1) is satisfied, then we must estimate the ele

ctromagnetic fields in the axial region of a duct to investigate the trapping candition 

(2). Using an expansion form of the density distribution given by eq. (1) in a series of 

.-2 near the axis and taking into account the fact that F,-+1, F 1-+i, and F,-+0 for a-+ 

oo, we can write the electric field components in the axial region of a duct as follows. 

F~=i+ :E.Un ,2n 
• •l 

Substituting the above series expansions into the component expressions of eq. (2), 

we obtain the difference equations for the unknown coefficients. After some manipula

tions, we will show only the relevant coefficients, 

vo=O 
..l, = -3i,u, 

v1=-koan,u, 

iCo +e) 
n 2 +2E2c 

where o= E,c-.," and e=Ezc-E2"· Higher order terms in eq. M can be neglected. 

So we obtain the magnetic field components by the use of Maxwell's equations. 

Then we can estimate the energy flow in the axial region of a duct. Using the 

complex Poynting vector, we can show that the energy flow is directed throughly parallel 

to the axis of a duct. 

Therefore the total energy flow along a duct is given by 

where S. is the z-component of the Poynting vector. 

Then we get 

(21) 



To estimate the order of magnitude of the energy flow, we must define the upper limit 

of the integral rm. Also rm is the measure of the confinement of energy flow in the 

axial region (r<rm) and defined by 

k 0 a !Im(s)! rm=rr (23) 

Due to the exponential decrease of the field at large radial distances, we can neglect 

the contribution of the range from rm to infinity to the integral. Therefore eq. (~ is 

integrated to yieid 

P - 2rra
2
n[ rm

2 
+ - 1-( , _ · _ 2ivt ) 4+0( 6)] - C 2 4 " 1 'L/tt kona t'm t"m 

where r: is wave impedance of free space. 

For the field to be fairly well localized near the axis oft a, duct we require 

&5) 

in the trapping frequency region. This condition gives the measure of a duct width. 

7r 

koa> !Im(s)l 

As the value of Im(s) in eq. ~ and eq. ~. we take the one with smaller absolute 

value of the two solutions of eq. ~~. From the considerations of eq. (11), the minimum 

duct width necessary for wave trapping appears in the form k0aj.jg and shown in Fig. 

4. From this figure, we can show that 

(1) Provided that g is kept constant, the higher the wave frequency becomes, the 

thinner does the duct width necessary for trapping, become. 

(2) As the minimum duct width appears in the form koaf,jg, the quantity g, the 

ratio of ion gyrofrequency to ion plasma frequency is a very important quantity. 

We can see that the minimum duct width koaf,jg is determined by the use of 

plots in Fig. 4 for a given value of wave frequency. Then if g is small, even 
thin ducts can support ducted propagation of hydromagnetic whistlers. 

4. Conclusions 

We derived the trapping conditions, i.e., trapping frequency region and minimum 

trapping duct width, which enable the hydromagnetic whistlers to be trapped in a field-



aligned duct. The important point is that only depressed ducts can support the ducted 

propagation of hydromanetic whistlers in the magnetosphere. The trapping frequency 

region, whose upper and lower cut-offs are closely related to the duct modulation factor, 

is demonstrated, and the minimum trapping duct width is also estimated. 
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As a simple numerical example, we consider the ducted propagation of Pc 1 waves 

in the magnetosphere. If we assume the modulation factor of a depressed duct to be 

about - 0. 1. the minimum duct width necessary for trapping of 1 Hz waves is about a 

few hundred kilometers in the magnetosphere (L~3. 5) . 
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