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Abstract

Widespread utilization of autonomous vehicles is expected to bring multiple benefits

to society, such as more efficient use of energy, less traffic congestion, and most

importantly, fewer accidents, injuries and fatalities. As a result, there has been

increasing research and investment in the development of these vehicles. Efforts

to accelerate the mass adoption of autonomous driving technology have led to the

rapid broadening of the operational domains of autonomous vehicles in recent years,

i.e., autonomous vehicles are no longer expected to operate only in simplistic driving

environments.

Surrounding structures and other objects often prevent autonomous vehicles from

fully observing the driving environment, a phenomenon known as “occlusion”. In

complex driving environments such as urban areas, partial occlusion of the driving

environment by buildings, walls, foliage, etc. is inevitable, however, most autonomous

driving systems do not explicitly take this limitation of their sensing modules into

account during their motion planning stage, and only consider detected observable

obstacles. This failure to consider occlusion while planning an autonomous vehicle’s

motion can lead to catastrophic accidents at critical locations such as low visibility

intersections, for example, where the vehicle can mistakenly assess that it is safe to

enter the intersection as no obstacles are currently detected, while there is, in fact, a

vehicle rapidly approaching from an occluded area of the intersection.

One approach commonly used in occlusion-aware motion planners to deal with

the risk imposed by occlusions is to explicitly assume that there are virtual obstacles

approaching at high speed from outside of the visible areas of the roadway, on a path

that will intercept the ego vehicle’s trajectory. By assuming the worst-case scenario,

and treating these virtual obstacles as if they are real, the motion of the ego vehicle

can be efficiently and safely planned. However, approaches that are based on the

assumed presence of virtual obstacles have two main drawbacks: excessively conser-

vative movement due to the worst-case assumption, which can result in deadlock,

i.e., the inability to move forward, and a lack of road position adjustment by the ego

i



vehicle, which prevents it from obtaining a better vantage point by moving to the

side of its lane.

In the context of navigation, “deadlock” is sometimes used to refer to a situation

where multiple traffic participants are waiting for the others to pass through a conflict

zone, e.g., an intersection, a merging area, or a narrow one-lane road, such that none

of them can actually proceed. However, the meaning of “deadlock” in the context of

this dissertation is slightly different, as it does not refer to an encounter between actual

vehicles but between the ego vehicle and virtual vehicles assumed to be approaching

at high speed from occluded areas. By assuming that such hypothetical vehicles

are always approaching at high speed, the ego vehicle is forced to stop and wait

indefinitely when visibility is severely limited.

The lack of road position adjustment is a more straightforward problem. Most

occlusion-aware motion planners mainly consider the longitudinal motion of the ego

vehicle, i.e., its speed, and ignore lateral motion, i.e., a movement toward the vehicle’s

lane boundaries. In other words, it is commonly assumed that the ego vehicle will

always travel along the center of the lane. While this assumption simplifies the

planning process, driving in the lane’s center does not always yield the best visibility

of the driving environment.

In this dissertation, we attempt to solve these two main weaknesses of occlusion-

aware motion planning approaches which are based on assumptions of approaching

virtual vehicles. To solve the deadlock problem, we proposed using the hypothetical

visibility of approaching, hidden vehicles, as well as potential changes in their behavior

after observing the ego vehicle, to plan the ego vehicle’s speed. Our proposed speed

planner first estimates visibility from point of view of the ego vehicle and potential

hidden vehicles, using a 3D LiDAR scan and a road network map. The speed planner

then predicts the states of occluded vehicles using a particle filter algorithm which

supports possible changes in the behavior of approaching hidden vehicles based on

their ability to see the ego vehicle. The behavior model for the hidden vehicles which is

used to predict their states is based on an analysis of real driving data. An experiment

confirms that our proposed speed planner can generate deadlock-free crossing motion
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at a blind intersection of two narrow roads, a maneuver that a baseline planner was

not able to execute since the ego vehicle stopped indefinitely before entering the

intersection.

Regarding road position planning, we proposed predicting and quantifying the vis-

ibility conditions of driving environments using high-definition 3D point cloud maps

and road network maps. The quantified visibility conditions are then used to plan

road positions for the ego vehicle that will result in minimal occlusion (i.e., maximum

visibility). Our proposed visibility estimation method first approximates a 3D scan

of a specified viewpoint using a 3D point cloud map. The approximated scan and 3D

points representing the area of the relevant surrounding lanes are then projected onto

depth images, which are consequently compared to identify the visible and occluded

regions of the relevant parts of the driving environment from the specified viewpoint.

This visibility estimate is then quantified by calculating the ratio of the visible areas

of the driving environment to the total area of the relevant driving environment, to

determine an area’s visibility ratio. Candidate trajectories for the ego vehicle, with

different lateral offsets from the reference path, are then generated, and visibility ra-

tios along each candidate trajectory are calculated. Finally, a visibility cost derived

from the visibility ratio is used along with other planning costs to determine the op-

timal output trajectory. The proposed planner was tested in various simulated traffic

scenarios while using live localization and object detection results. Our experimental

results show that the ego vehicle was able to effectively minimize occlusions, and con-

sequently discover occluded vehicles earlier, in most cases, when the proposed road

position planner was used, in comparison to a baseline planner.
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Chapter 1

Introduction

Autonomous vehicles, also known as driverless vehicles, have been gaining increasing

attention from both the public and the research community due to their potential

benefits. Since the majority of traffic accidents are caused by human error [1], traffic

safety is expected to improve dramatically as conventional automobiles and trucks

are replaced by autonomous vehicles. Apart from the safety aspect, these vehicles

also offer other potential benefits, such as reduced fuel consumption, emissions and

traffic congestion [2–4].

Initial development of autonomous vehicle dates as far back as the 1970s [5].

Two decades later, successful demonstrations of partially autonomous driving tech-

nology were presented to the public [6,7]. However, fully autonomous driving without

human intervention has proved much more difficult. The first significant demonstra-

tion of successful, long-distance autonomous driving without human control was the

DARPA Grand Challenge in 2005 [8,9], which was an off-road competition. In 2007,

the DARPA Urban Challenge [10] was held in a simulated urban environment, and

objectives and situations typically encountered in daily driving, such as avoiding

collisions with static and dynamic objects while obeying traffic laws, negotiating in-

tersections and merging into moving traffic, were introduced. Even though these

tasks were not fully representative of real-world driving scenarios, they included the

essential components of fully autonomous driving in an urban area. Only a few of

the teams were able to navigate the course successfully [11–16], demonstrating that
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autonomous driving in an urban area was possible, though not straightforward, with

certain key issues remaining to be resolved.

The challenges faced when developing truly autonomous driving are not only due

to the complexity of many driving scenarios, but also the result of uncertainty in the

perception module of these vehicles. The perception module extracts and interprets

information about the surrounding environment before passing that information on to

other modules in the system. As a result, any perception uncertainty, if not handled

properly, can lead to errors in the operation of the system [17, 18]. Uncertainty in

the perception module comes from a variety of sources, such as intrinsic sensor error,

adverse weather conditions or occlusions.

Uncertainty due to occlusion is frequently present and unavoidable in many driving

scenarios. Various structures in the driving environment, such as buildings and walls,

can prevent an autonomous vehicle from fully observing its surroundings. Hilly ter-

rain, curves in the road, large trucks and foliage can also reduce the vehicle’s visibility

of the driving environment. While encountering occlusion is inevitable and routine,

the majority of autonomous driving systems do not explicitly take this sensing lim-

itation into account in their motion planning stage, since an autonomous vehicle’s

motion planning is typically based only on information about detected, observable

objects in the local environment, resulting in potential occluded objects being en-

tirely ignored [19–21]. Failure to consider occlusion during motion planning can lead

to catastrophic accidents at critical locations, such as low visibility intersections in

residential areas similar to the one shown in Fig. 1-1.

Due to walls and vegetation close to the intersection, the intersecting road on

either side cannot be fully observed by the ego vehicle. If the ego vehicle ignores the

occlusion completely, it will mistakenly assume that the intersection is safe to enter,

as no obstacles or other traffic participants have been detected. However, there could

actually be vehicles approaching from either side. In such a situation, an accident is

likely to occur as it would be too late for the ego vehicle to initiate emergency braking

after the approaching vehicle has become observable.

The occlusion problem could potentially be solved by utilizing additional data from
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Figure 1-1: Example of a low-visibility intersection in a residential area.

external sources, for example via vehicle-to-everything (V2X) communication [22–26].

Such solutions are currently not feasible on a large scale because high-quality network

devices with low latency are typically required to transmit the necessary information

reliably in real-time. The hardware required also imposes additional infrastructure

costs, and widespread deployment could take years or even decades. Therefore, relying

solely on communication technologies to handle occlusion issues could delay the mass

deployment of autonomous vehicles.

A feasible alternative solution to the occlusion problem is to incorporate visibil-

ity information during the motion planning stage, so that autonomous vehicles are

aware of the possibility of hidden traffic participants, and can consider their sensing

limitations before generating safe motion in areas with low visibility. Over the years,

several different approaches for occlusion-aware motion planning have been proposed.

These approaches can be broadly categorized into three categories; machine learning,

Partially Observable Markov Decision Process (POMDP) and virtual obstacles.

Machine learning-based approaches utilize either human driving data or data from

a simulation to train a function that maps the sensory inputs to control action out-

puts. While machine learning-based approaches have been shown to be effective for

replicating the driving behavior of human drivers, especially those whose data they

have been trained with, the relationships between sensor inputs and output actions

are often not obvious, i.e., these approaches tend to lack interpretability.
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POMDP-based approaches directly incorporate perception uncertainty and possi-

ble future developments in the surrounding traffic situation into the decision-making

process via observation and transition models, making these approaches very versatile

and applicable in many scenarios. Nevertheless, POMDP-based approaches are typi-

cally computationally expensive, and many cannot be used in real-time applications.

Approaches based on virtual obstacles explicitly assume that undetected vehicles

are approaching from the occluded areas of the traffic environment, and the worst-

case scenario is often assumed, i.e., these occluded objects are approaching at very

high speed. By treating these virtual obstacles as if they are real, the motion of the

ego vehicle can be efficiently planned, and risk due to occlusion, i.e., the risk of col-

liding with unobserved traffic participants, is acknowledged and clearly represented.

Moreover, these virtual obstacle-based approaches tend to involve low computational

complexity, therefore, they can be applied in various scenarios in real-time, making

them suitable for real-world applications. Despite these advantages, virtual obstacle-

based approaches are not without their drawbacks. These approaches have two main

shortcomings: excessively conservative ego vehicle movement due to the worst-case

assumption, which can lead to deadlock, and a lack of road position adjustment ca-

pability, which can result in less than optimal visibility.

In some locations, such as low-visibility intersections, being excessively cautious

can lead to an indefinite deadlock of the ego vehicle. It is important to note that a

deadlock is usually used to refer to an extreme traffic situation where vehicles on two

or more roadways are all waiting for the others to pass a conflict area, such as an

intersection or a narrow one-lane road, in order to free up the space for them, and thus

none of them can successfully continue forward. However, the meaning of deadlock

as used in this dissertation is slightly different as it does not refer to encounters

between actual vehicles but between the ego vehicle and virtual vehicles assumed to

be approaching at high speed from occluded areas. At low-visibility intersections,

the ego vehicle can often see only a very limited portion of the intersecting roads

before it enters the junction. Fig. 1-2a shows an example of such a situation. Since

virtual vehicles are assumed to be approaching from the occluded areas at very high
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(a) Visibility of intersecting roads before entering intersection.

(b) Visibility of intersecting roads after entering intersection.

Figure 1-2: Low-visibility intersection where deadlock caused by excessively cautious
motion planning can occur.

speed, if there is an occluded area in close proximity to the ego vehicle, as is the

case at this intersection, the ego vehicle is not allowed to proceed forward and has to

come to a full stop, as it would collide with unobserved, virtual vehicles if it entered

the intersection. Even if the ego vehicle advances all the way to the stop line, the

view of the intersecting road is still limited, and high-speed vehicles could reach the

intersection before the ego vehicle has transited. The only way the ego vehicle can

increase its visibility is by moving forward and partially entering the intersection, as

shown in Fig. 1-2b. Otherwise, the ego vehicle is stuck in a deadlock since it does not

have sufficient visibility to move forward, yet cannot increase its visibility without

doing so. This type of deadlock is one of the main shortcomings of occlusion-aware
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(a) Visibility of intersecting road when ego vehicle is in the center
of its lane.

(b) Visibility of intersecting road when ego vehicle is at the left
edge of its lane.

Figure 1-3: Low-visibility T-junction. Vehicle positioned on the left edge of its lane
has better visibility of the merging road.

planning approaches based on virtual vehicles.

The other main drawback of virtual obstacle-based motion planning is the lack

of a road position adjustment feature. Most existing occlusion-aware planners only

consider the longitudinal motion of the ego vehicle, while ignoring its lateral motion.

Thus, it is often assumed that the ego vehicle will always travel along the center

of its lane. Although staying in the center of the lane keeps the ego vehicle away

from potential obstacles in adjacent lanes or on the roadside, it can result in inferior
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visibility of the driving environment in some scenarios, as compared to being on the

left or right edge of the lane. A sample scenario is shown in Fig. 1-3a, where the

ego vehicle, which is shown in green, is in the center of its lane. From this position,

the visibility of the ego vehicle, indicated by the green area, is poorer than when the

ego vehicle keeps to the left, as shown in Fig. 1-3b. Note that the vehicle shown in

Fig. 1-3, as well as other subsequent figures in this dissertation, is equipped with an

omnidirectional sensor that covers 360 degrees around the vehicle. However, only the

frontal visible region will be shown for the sake of a clearer illustration.

Our goal in this dissertation is to solve these two main problems with conventional

occlusion-aware motion planning approaches based on virtual obstacles: deadlock due

to the worst-case assumption and lack of road position planning. With the scope of

this dissertation limited to only one type of occluded traffic participants, i.e., vehicles,

our proposed solution for the deadlock problem is to utilize the visibility of the hidden

vehicles to predict potential changes in their behavior based on this visibility, in

order to better plan the speed of the ego vehicle. Specifically, instead of assuming

hidden vehicles will always approach at a continuous, high speed, i.e., the worst-

case assumption, we model interactions with approaching virtual vehicles under the

assumption that they will likely change their behavior after observing the ego vehicle.

This approach allows the ego vehicle to avoid deadlock by increasing its visibility

of the occluded areas after sufficiently exposing itself to other traffic participants.

Regarding road position planning, we propose predicting and quantifying visibility

conditions of driving environments using high-definition (HD) maps consisting of 3D

point clouds and road network maps. The quantified visibility condition will then be

used for planning the road position of the ego vehicle in order to minimize occlusion.

The rest of this dissertation is organized as follows: In Chapter 2, previous work

related to this research topic is introduced. Details of a speed planner designed to

overcome deadlock at intersections with mandatory stops, by estimating the visibil-

ity of hidden vehicles, are then presented in Chapter 3. In Chapter 4, we propose

a generic, deadlock-free speed planner that relies on a more accurate approaching

vehicle behavior model, in order to more realistically predict the behavior of virtual
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vehicles assumed to be approaching occluded intersections. The details of this ap-

proaching vehicle behavior model, which was derived through an analysis of real-world

driving data, are also provided in Chapter 4. An approach for predicting and quanti-

fying the visibility conditions of driving environments using HD maps is presented in

Chapter 5. In Chapter 6, we develop and test a road position planning method that

minimizes occlusions, which is based on the improved version of the visibility predic-

tion and quantification approach described in Chapter 5. Finally, the conclusions of

this dissertation are given in Chapter 7, along with a discussion of potential future

work that could be conducted to expand on this research.

The main contributions of this dissertation are as follows:

• A deadlock-free speed planner for low-visibility intersections with mandatory

stops.

• An approach for estimating visibility from the point of view of other vehicles,

without using their actual sensing data.

• A visibility-dependent behavior model for vehicles approaching occluded inter-

sections. based on an analysis of real driving data.

• A generic, deadlock-free speed planner for blind intersections that utilizes the

visibility of both the ego vehicle and hidden vehicles.

• An approach for predicting the visibility conditions of driving environments

using HD maps.

• The concept of a visibility ratio as a method which can be used to quantify

visibility from a given location, as well as its calculation method.

• An extension of the proposed visibility prediction approach, to address occlu-

sions caused by objects that are not included in HD maps.

• A road position planner that can adjust the ego vehicle’s lateral position to

minimize occlusions.
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Chapter 2

Related Work

The planning module of an autonomous vehicle system relies upon the perception

module to provide information about the driving environment [17, 18]. Most early

motion planning research exclusively considered the risk of colliding with detected

obstacles [19–21]. Although these approaches have proven to be sufficiently safe

in many circumstances, they may not be safe in complex driving scenarios where

portions of the environment are occluded. As the operational design domain (ODD)

of autonomous vehicles continues to broaden, and encounters with occlusions become

inevitable, the number of studies on how to achieve safe navigation in scenarios with

occluded areas has increased.

One of the obvious solutions to the occlusion problem is to employ external aids via

communication technologies. Therefore, previous investigations related to vehicle-to-

everything (V2X) communication are presented first in Section 2.1, along with reasons

why these approaches may not be feasible yet in the event of large-scale adoption of

autonomous vehicles. In Section 2.2, research on occlusion-ware motion planning,

which is a more viable alternative, and the details of commonly used techniques are

discussed, along with their advantages and drawbacks. More specifically, previous

research based on machine learning, Partially Observable Markov Decision Process

(POMDP) and virtual obstacles are introduced in Sections 2.2.1, 2.2.2 and 2.2.3,

respectively. Since visibility estimation is one of the most crucial components of an

occlusion-aware motion planner, common visibility estimation methods are presented
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in Section 2.3. In Section 2.4, both the strong points and shortcomings of different

techniques used in existing occlusion-aware motion planners are summarized, and the

research gaps we aim to fill with this dissertation are noted.

2.1 Vehicle-to-everything (V2X) communication

Several studies have proposed utilizing additional information obtained from exter-

nal sources to ensure the safe navigation of autonomous vehicles in complex traffic

scenarios. For example, in [26] additional sensing data from road junction infras-

tructure, transmitted via a low-latency mobile network, is used in parallel with the

onboard perception module to plan longitudinal motion that is safe and comfortable

for passengers. Zhao et al. [22] proposed an algorithm for safely scheduling connected

automated vehicles (CAVs) traveling through an uncontrolled intersection that in-

volves sharing information among the vehicles. In [25], an approach for increasing

the situational awareness of an automated bus by fusing information from other con-

nected vehicles, as well as from infrastructure with local sensors, was introduced.

While leveraging additional information from other sources can improve overall

sensing coverage of targeted environments, a high-quality communications network

with low latency is typically required in order to transmit the necessary information

reliably in real-time. Additionally, in the case of vehicle-to-infrastructure (V2I) com-

munication, where a vehicle receives data from fixed installations, multiple sensors per

installation are often required to provide adequate local coverage, as demonstrated

in [27] and [28]. These additional hardware requirements translate into extra time

and investment that will be needed before autonomous vehicles can operate safely.

As a result, the wide-scale adoption of approaches that depend on information from

external sources will likely be slow.
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2.2 Occlusion-aware motion planning

Instead of relying on additional data from external sources to reduce occlusion-related

hazards, many researchers have focused on ensuring that autonomous vehicles can

navigate safely even without complete observation of the driving environment by

identifying occluded regions and considering them during motion planning. Several

different approaches for occlusion-aware planning have been proposed in recent years.

These approaches can be broadly classified into three categories: machine learning,

Partially Observable Markov Decision Process (POMDP) and virtual obstacles.

2.2.1 Machine learning

Machine learning-based approaches have been widely used for planning autonomous

vehicle motion when encountering occlusions. Occluded intersection navigation tasks

are often modeled as reinforcement learning (RL) problems [29–31]. In [29], the navi-

gation problem was modeled as a Markov Decision Process (MDP), where the optimal

MDP policy was obtained indirectly by learning a state-action value function, i.e., a

Q-function, using a Deep Q-Network (DQN). In [32], the problem was formulated as

an MDP with hierarchical options (HOMDP), in which the planner first assesses the

status of the driving environment before generating an output action in the form of

continuous acceleration or deceleration, accordingly. While these studies have shown

that reinforcement learning has the potential to be used for decision-making when

encountering occluded areas, training an RL agent outside a simulation can be a

challenging task. It is important to note that with recent advancements in RL al-

gorithms, it is possible to train an RL agent directly on raw sensor input obtained

from the real world. One of the most notable examples of such recent RL algorithms

is the soft actor-critic algorithm introduced in [33], which allows an RL actor to learn

to control a 3-finger dexterous robotic hand to manipulate an object from raw RGB

images of the object. This type of approach will likely become more applicable to

other real-world tasks, including navigation in occluded areas, in the future.

Instead of utilizing data from simulations, other researchers have focused on de-
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veloping approaches that can learn from real-world driving data. As reported by

Yoshihara et al. in [34], expert drivers, i.e., driving school instructors with years of

experience, take proactive action to avoid possible collisions by slowing down as they

approach intersections with poor visibility. In [35], proactive braking prior to entering

occluded intersections without traffic signals was modeled using a potential risk func-

tion, with expert driving data being used to estimate the parameters of the function.

Similarly, in [36] the driving data of experts was used to determine the parameters

of a speed planner for blind intersections. In order to train a planner to learn proac-

tive driving strategies for navigating blind intersections directly from driving data,

Morales et al. [37] used a set of trajectory features, e.g., acceleration, speed and jerk,

to describe driving behavior. The weights of such features were then obtained through

Inverse Reinforcement Learning (IRL). In [38], reliance on hand-crafted features was

avoided by using Deep Autoencoders.

While machine learning-based methods have proven to be very effective at repli-

cating the driving behavior of experts, the inexplicability of their output is a major

drawback. Another limitation of ML approaches is their inability to generalize, i.e.,

their weakness when applied in driving scenarios other than the ones which they were

specifically trained for.

2.2.2 Partially Observable Markov Decision Process (POMDP)

Partially Observable Markov Decision Processes (POMDPs) are often used for plan-

ning the motion of autonomous vehicles in scenarios where there is incomplete knowl-

edge of the driving environment, e.g., when encountering occlusions. By framing

motion planning as a POMDP, sensing limitations and uncertainty are directly re-

flected by the observation model. The states of hidden traffic participants can be

estimated by utilizing both current and past observations via belief state updates.

Due to the generality of the POMDP framework, it has been used in several studies

on occlusion-aware planning.

In [39], the optimal level of acceleration/deceleration in a merging scenario at an

occluded intersection was formulated as a continuous POMDP problem. An initial
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assumption regarding the pose and velocity of a possible occluded vehicle was prede-

fined, then the POMDP model was solved offline using a Monte Carlo Value Iteration

(MCVI) algorithm. Likewise, POMDP was used for occluded intersection crossing

tasks in [40], where the worst-case assumption regarding occluded vehicles was used,

i.e., occluded vehicles were assumed to be right at the boundaries of the visible area

and to be traveling at the maximum allowable speed. The routes of the occluded

vehicles were determined using belief state updates. In order to reduce the level of

computational complexity, the authors proposed a custom POMDP solver designed

specifically for their model. Moreover, they utilized an action prioritization method

which makes the ego vehicle favor acceleration over maintaining a constant speed or

deceleration, in order to avoid deadlock. In [41], a hidden vehicle model included an

associated “existence probability”, which allows more flexibility than simply assuming

the worst-case scenario. The Toolkit for approximating and Adapting POMDP solu-

tions In Realtime (TAPIR) [42] was used to solve their POMDP model. The possible

presence of hypothetical hidden vehicles was handled using a similar probabilistic ap-

proach in [43], where the probability of their existence was modeled to be dependent

on the traffic density of each lane. In addition to the current visibility of the ego vehi-

cle, simulated future visibility along the planning horizon was also incorporated into

planning, allowing the ego vehicle to actively position itself to minimize occlusion.

An optimized policy was obtained by solving the POMDP using TAPIR [42].

While a POMDP is very versatile and can be applied in various scenarios, solving

its optimal policy, which maps the current belief state to an output action, is often

computationally expensive. Some prior studies, such as [39, 44, 45], have relied on

pre-computing the policy offline. As a result of continuous improvement of POMDP

solvers and increasing hardware performance over the years, several recent studies

have successfully planned the output motion of an autonomous vehicle during execu-

tion time, as in [40,41,43,46]. However, these approaches utilize a coarsely discretized

action space to reduce computation complexity.
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2.2.3 Virtual obstacles

One of the most common approaches used to reduce the risk of collision with un-

observed traffic participants, which has been adopted in various autonomous driving

systems, is to explicitly assume that there are always virtual obstacles approaching at

high speed from the boundaries of the visible region, on a course that will intercept

the ego vehicle’s trajectory. By treating these approaching, virtual traffic participants

as real moving obstacles, it is possible to regulate the speed of the ego vehicle so that

collisions with these potential occluded objects can be avoided.

In [47], a safe ego vehicle speed when encountering a blind intersection was calcu-

lated based on the time-to-collision (TTC) of the ego vehicle and a virtual occluded

vehicle at a collision point located within the intersection. A more conservative cal-

culation of TTC was utilized in [48], which included reaction time as a delay before

the autonomous vehicle begins braking. In [49,50], instead of collision points, poten-

tial collision zones were used in order to represent a wider range of possible collision

scenarios. While these studies propose effective approaches for modeling risk from

unobserved, moving objects, they may suffer from uncertainty in perception, i.e., inac-

curate prediction, as most rely on strict assumptions regarding the position and speed

of virtual traffic participants. One way to handle the uncertainty associated with the

states of virtual obstacles is to utilize a probabilistic approach. In [51], a particle

filter-based approach for predicting the motion of occluded traffic participants was

used. Possible unobserved objects were represented using particles whose states were

continuously updated as new information from the vehicle’s sensors became available.

A similar particle filter-based approach for probabilistic risk assessment in areas con-

taining occlusions was also proposed in [52]. As these methods explicitly deal with

uncertainty during hidden object prediction, they are likely to be more robust in

scenarios where sensing information is noisy. Nevertheless, these methods are often

criticized for their lack of a safety guarantee, as virtual traffic participants are often

treated as points or particles that lack dimensionality.

In order to ensure the safety of vehicles navigating in areas with occlusions, Orze-
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chowski et al. [53] proposed extending the set-based approach used for predicting the

future occupancy of detected traffic participants, introduced in [54], to handle poten-

tial road users that are occluded. The future states of virtual objects traveling from

the edges of the visible area were over-approximated and represented as reachable

sets. These reachable sets cover all possible future states of the virtual objects, based

on a set of assumptions regarding their initial speed, position, orientation and local

traffic rules. Since the reachable sets include the worst-case scenario, the output mo-

tion of the ego vehicle was deemed safe if its future trajectory did not intersect with

any of the reachable sets within the planning horizon. Reachable set prediction has

subsequently been utilized in numerous studies [55–63], since using reachable sets to

represent the possible future states of occluded traffic participants provides a guar-

antee of safety. However, since these reachable sets include the worst-case scenario,

they often result in overly conservative ego vehicle control outputs.

One of the main advantages of approaches that are based on virtual obstacles is

a clear relationship between potential risks and the output actions of the ego vehicle.

Another strong point of these approaches is that they are typically computationally

efficient and real-time capable, as the assumption regarding the states of virtual

obstacles, namely that they are approaching from just outside the visible area at

a high and constant speed, simplifies the planning problem. While this worst-case

assumption simplifies motion planning when encountering occlusions, it can result

in excessively cautious ego vehicle movement, and in locations where visibility is

severely limited, it can lead to indefinite deadlock. Vulnerability to deadlock is a

significant drawback of virtual obstacle-based motion planning approaches, as the

ego vehicle sometimes does not have sufficient visibility to proceed from its current

position, but unless it moves forward it cannot improve its visibility of the driving

environment. Another shortcoming of these approaches is that they often lack road

position adjustment capability. Many approaches simply assume that the ego vehicle

will always travel along the center of its lane, and therefore lateral position planning

is not supported. While driving in the center of a lane creates buffer zones between

the ego vehicle and potential obstacles on the roadside or in adjacent lanes, in some
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situations, e.g. at highly occluded intersections, it may result in poorer visibility of

the driving environment compared to moving to the edge of the lane.

2.3 Visibility estimation

Identifying both the visible and occluded regions of a vehicle’s surroundings given

its position, a process known as visibility estimation, is an essential component of

safe navigation when encountering occluded areas, and various approaches have been

proposed.

In studies that focus on motion planning in a specific scenario, such as intersection

crossing [47, 64] or parked car passing [65], an environmental model is used to esti-

mate either the visible or occluded areas of the current driving environment. These

approaches have low computational costs, as the relationship between the location

of the vehicle and its visibility can often be expressed in analytic form. However,

these approaches tend to be limited to specific scenarios, and thus are not generally

applicable to other driving situations.

Another common approach for estimating visible or occluded regions of an envi-

ronment is 2D ray-tracing. First, structures or objects in the scene are represented

using 2D geometric shapes, then rays originating from the sensor’s position and hit-

ting the edges of these shapes, along with the sensor’s range, are used to define the

boundaries of the visible area. This type of approach is often used in conjunction with

road network maps in order to obtain road boundaries and the positions of stationary

objects in the local environment [39–41, 43–46, 48–50, 52, 53, 55, 63, 66, 67]. While 2D

ray-tracing is more versatile than using a model of the environment for visibility es-

timation, its accuracy may suffer in areas with complex occlusions, e.g., areas where

a hill causes the occlusion.

Zhang et al. [61] used Octomap [68] to estimate both current and future visibility

of the ego vehicle in 3D. The importance of performing visibility estimation in 3D was

demonstrated in one of their experiments, in which an autonomous vehicle driving

uphill is faced with an occlusion caused by the hill’s summit. In [69], a point cloud
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map obtained from a 3D light detection and ranging (LiDAR) unit was used along

with a road network map to estimate the ego vehicle’s visibility of the surrounding

lanes. This approach converts the captured 3D scan and known positions of the

surrounding lanes into depth images. These two depth images are then compared

in order to determine the visible and occluded regions of the lanes. This approach

was shown to work well in real-world environments with hilly road segments. The

main drawback of this approach, however, is the requirement that a 3D scan be

captured at the location where visibility is to be estimated. This limits the usability

of this approach to locations where 3D scans are available. Moreover, when using

this method, the 3D scans can only be used to estimate visibility under one specific

sensor configuration, which is the configuration used to acquire the scans.

2.4 Research gaps

As presented in Sections 2.2.1, 2.2.2, and 2.2.3, each commonly used technique for

planning ego vehicle motion in areas with occlusions has its own strengths and weak-

nesses. These points are summarized in Table 2.1 to facilitate comparison.

The ability of virtual obstacle-based methods to plan output motion in real-time in

various driving scenarios makes these approaches the most suitable for real-world ap-

plications. Nevertheless, most virtual obstacle-based approaches have two key draw-

backs which need to be addressed: excessively conservative ego vehicle movement due

to the worst-case assumption which can result in deadlock, and inability to adjust

the position of the ego vehicle within its lane to improve visibility.

In order to alleviate the problem of excessively cautious motion, in [59] and [63]

the reachable sets were repeatedly updated as new observations became available. As

a result, more accurate estimates of the states of hidden traffic participants could be

obtained and utilized to improve driving efficiency. In [60] and [61], overly cautious

motion was mitigated by considering estimated future visibility, and by encouraging

the ego vehicle to actively improve its visibility of the driving environment. In [70],

a heuristic strategy was used to escape deadlock in an intersection merging scenario.
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Table 2.1: Summary of advantages and disadvantages of popular occlusion-aware
motion planning techniques proposed in previous studies.

Machine learning POMDP Virtual obstacles

Advantages Human driving styles
are directly modeled

Perception uncertainty
is considered

Future development
of driving situation
taken into account

Risk is clearly
represented

Applicable in various
scenarios

Low computational
complexity

Real-time capable

Disadvantages
Relationship between
output action and
occlusion is unclear

Scenario specific

Computationally
intensive

Usually not
real-time capable

Excessively conservative
movement and deadlock
risk due to the
worst-case assumption

Cannot adjust position
of the ego vehicle
within lane to improve
visibility

The ego vehicle was allowed to slowly advance into the intersection for a certain

distance after its velocity reached zero at the edge of the intersection, allowing it

to obtain additional visibility and escape deadlock. Although these previous studies

offer countermeasures for avoiding deadlock in some driving scenarios, the underlying

cause of the deadlock problem, i.e., an unrealistically strict assumption regarding the

behavior of occluded vehicles, remains unaddressed.

The lack of road position planning in virtual obstacle-based motion planning ap-

proaches has been addressed in a few recent studies. In [47], road positions that

were not safe from potential collisions with occluded obstacles were discarded by the

planner. Although unsafe road positions could be eliminated using this approach, vis-

ibility gain by adjusting the ego vehicle’s lateral position was not directly considered.

Andersen et al. [65] proposed a framework for passing parked vehicles that takes the
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size of the blind spot into account during trajectory optimization via Model Predic-

tive Control (MPC). While this approach has been shown to generate efficient driving

behavior when encountering occlusions, it was designed specifically for passing parked

vehicles. In [60] and [61], estimated future visibility was used to actively adjust the

ego vehicle’s road position in order to increase visibility of the driving environment

and reduce the risk of collision with potential occluded vehicles. Although the ap-

proach proposed in [60] was shown to be applicable in various situations, it lacks

highly accurate 3D visibility estimation. Zhang et al. [61] addressed this problem by

utilizing Octomap [68] to estimate both current and future visibility, however, the

future visibility was estimated using a pre-constructed Octomap and predicted occu-

pancy of other obstacles. As a result, estimations of future occlusions resulting from

objects that were not present during the offline generation of the Octomap may not

be accurate. Additionally, ground truth information regarding the state of objects

was obtained directly from the simulator. Therefore, performance of the planner with

a realistic level of uncertainty in the perception module was not tested in [61].

The research presented in this dissertation aims to fill gaps left unaddressed in

previous studies regarding the two main shortcomings of virtual obstacle-based tech-

niques. It will do so by proposing:

• A deadlock-free speed planner that directly addresses the underlying cause of

deadlock when using virtual obstacle-based motion planning techniques, i.e.,

their strict assumptions regarding the behavior of occluded vehicles, by taking

into account potential changes in the behavior of hidden vehicles after they have

detected the ego vehicle.

• An occlusion-aware motion planning approach that is capable of minimizing

occlusion by strategically adjusting the ego vehicle’s position within its lane,

based on highly accurate, 3D estimates of current and future visibility condi-

tions, which is applicable in various traffic scenarios and able to operate with a

realistic level of perception uncertainty.
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Chapter 3

Deadlock-free Speed Planning Using

Estimated Visibility of Approaching

Vehicles

3.1 Introduction

Most autonomous vehicles plan their trajectories based on the environmental infor-

mation they observe, such as the positions of detected objects, but in order to achieve

comfortable and safe navigation unobservable risks, such as the risk caused by hidden

vehicles, need to be appropriately incorporated into motion planning.

In some critical locations, such as intersections with low visibility, failing to take

occlusions into account during planning could lead to a serious accident. Intersections

like the ones shown in Fig. 3-1 are dangerous because oncoming traffic traveling along

the intersecting roads cannot be completely observed due to the occlusions caused

by the walls and buildings on either side of the ego vehicle. In order to navigate

such blind intersections safely, autonomous vehicles must be capable of predicting

possible oncoming vehicles approaching from the occluded areas and plan their motion

accordingly.

When encountering uncontrolled, blind intersections, a simple driving strategy
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(a) Intersection A.

(b) Intersection B.

Figure 3-1: Low-visibility intersections in residential areas with mandatory stops.

that autonomous vehicles can employ to avoid collisions with occluded vehicles is to

reduce their speed until they gain sufficient visibility of the intersection, and then

accelerate across if it is safe to do so. However, when encountering blind intersections

with stop signs or red traffic lights, they must first come to a full stop and then begin

crossing from the stop line. Since visibility from the stop line at some intersections

is insufficient to ensure safe intersection crossing, it can lead to a deadlock situation

because the ego vehicle cannot move forward and cannot complete the cross. One

possible motion the ego vehicle could perform is to move forward from the stop line

and enter the intersection slightly in order to increase its visibility. Nevertheless,

blindly entering the intersection without considering if possible oncoming vehicles

can observe and have enough time to respond to the ego vehicle’s movement into the

intersection, can be dangerous.

22



In this chapter, we describe a method for crossing low-visibility intersections with

mandatory stops when visibility from the stopping point is insufficient to continue

across. We utilize the estimated visibility of possible approaching vehicles to decide

whether it is safe to slowly proceed forward after stopping. To validate the proposed

method, driving data was collected from an expert driver when encountering occluded

intersections in residential areas with mandatory stops. Speed profiles generated

when using the proposed method were similar to those observed when these types of

intersections were encountered by the expert driver.

The contributions of the proposed method are:

• A speed planner which allows safe crossing of low-visibility intersections with

mandatory stops, even when there is insufficient visibility to advance from the

stopping point.

• Estimation of visibility of the ego vehicle from the perspective of approaching

vehicles, without obtaining their actual sensing data.

The remainder of this chapter is organized as follows: In Section 3.2, the proposed

method is described in detail. Comparisons between the speed profiles of an expert

driver and those generated by the proposed method are then presented in Section

3.3. In Section 3.4, our experimental results are discussed and the conclusions of this

investigation are presented.

3.2 Blind intersection crossing

The proposed method can be understood as consisting of two parts, movement plan-

ning before, and after, making a mandatory stop at a stop line. As it approaches the

stop line, the ego vehicle reduces its speed to prepare to come to a full stop. This

stage is shown in Fig. 3-2a. After the full stop (Fig. 3-2b), if the ego vehicle deter-

mines that it can reach the other side of the intersection safely before any possible

oncoming vehicles arrive, it begins crossing. However, if the ego vehicle’s visibility is

insufficient to safely cross the intersection from its stopping point, it slowly proceeds
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(a) Ego vehicle slows down, preparing to stop at
mandatory stop.

(b) Ego vehicle stops at mandatory stop, but
there is insufficient visibility to continue across
the intersection.

(c) After exposing itself to possible oncoming
vehicles, the ego vehicle starts to move forward
into the intersecting road.

(d) As the ego vehicle moves forward, its visibil-
ity of the intersecting road increases sufficiently
to ensure a safe crossing of the intersection.

Figure 3-2: Stages of crossing a severely occluded intersection using the proposed
algorithm.

into the intersection to increase its visibility. After the ego vehicle has exposed itself

to possible approaching vehicles and given them enough time to respond (Fig. 3-2c),

the ego vehicle moves forward. As it does so, its visibility will finally be sufficient to

cross the intersection, as depicted in Fig. 3-2d. The details of the proposed method

are given in the following subsections.

3.2.1 Safety constraint for intersection crossing

The structure of a typical intersection in a residential area is depicted in Fig. 3-

2a. As can be seen in the figure, there is a mandatory stop ahead in the lane on

which the ego vehicle is traveling, indicating that users of the intersecting road may
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have higher priority. Given that the ego vehicle is not on a priority road, it is clear

that it can safely cross the intersection if, and only if, it will completely clear the

intersection before any vehicles approaching along the intersecting roadway arrive at

the intersection.

In order to facilitate the formulation of a safety constraint for the crossing of an

intersection, vehicle positions are represented with respect to a system of coordinates

based on their displacement from a key point along their current lane, which is shown

in Fig. 3-2a. The ego vehicle’s position is represented using its displacement (𝑠ego)

from the mandatory stop line in its lane, such that (𝑠ego) remains negative until the

ego vehicle passes the mandatory stop line. The positions of vehicles moving along the

intersecting lanes are defined as their displacement from the center of the intersection

(𝑑𝑖).

Having defined the coordinates and assuming that the acceleration of the ego

vehicle is constant, the displacement the ego vehicle achieves in time interval 𝑡ego can

be calculated as follows:

𝑑ego = 𝑣ego𝑡ego +
1

2
𝑎ego𝑡

2
ego (3.1)

where 𝑑ego, 𝑣ego, and 𝑎ego represent the displacement, velocity, and acceleration of the

ego vehicle respectively. Therefore, the time it will take the ego vehicle to completely

cross the intersection (𝑡ego) can be calculated using the following equation:

𝑡ego =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√︀

𝑣2ego + 2𝑎ego𝑑ego − 𝑣ego

𝑎ego
, if 𝑎ego ̸= 0

𝑑ego

𝑣ego
, if 𝑎ego = 0

(3.2)

where 𝑑ego is the minimum displacement the ego vehicle needs to achieve in order to

completely avoid a collision with an approaching vehicle traveling on the center of its

lane, which is given by:

𝑑ego = 𝑙ego +
𝑤other𝑖

2
+ 𝑠center − 𝑠ego (3.3)
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where 𝑙ego is the length of the ego vehicle, 𝑤other𝑖 is the width of a vehicle traveling in

the intersecting lane and 𝑠center is the distance between the center of the intersection

and the mandatory stop line, as shown in Fig. 3-2b. In a similar manner, the time

any vehicle traveling along the intersecting road takes to arrive at the intersection

(𝑡other𝑖) is given by the following equation:

𝑡other𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√︁
𝑣2𝑖 + 2𝑎𝑖(|𝑑𝑖| − 𝑤ego

2
)− 𝑣𝑖

𝑎𝑖
, if 𝑎𝑖 ̸= 0

|𝑑𝑖| − 𝑤ego
2

𝑣𝑖
, if 𝑎𝑖 = 0

(3.4)

where 𝑤ego is the width of the ego vehicle and 𝑑𝑖, 𝑣𝑖, and 𝑎𝑖 represent the displace-

ment, velocity and acceleration of the vehicle traveling along the intersecting road,

respectively. Thus, the ego vehicle can safely cross the intersection if the following

inequality is satisfied with regard to all of the vehicles on the intersecting road:

𝑡ego < 𝑡other𝑖 (3.5)

3.2.2 Visibility estimation

In order to produce a safe and reliable control output for the crossing of an intersection

with limited visibility, it is crucial to be able to accurately estimate the current

visibility of the ego vehicle.

The proposed planning method adopts a visibility estimation approach proposed

in [69]. As this estimation method utilizes real sensing data, it is capable of correctly

identifying which parts of the driving environment are occluded from the point of

view of the ego vehicle, even in a complex scenario. The visibility estimation method

consists of the following steps:

1. Create a depth image from a 3D LiDAR scan.

2. Select a pixel from a region of interest in the depth image.
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Figure 3-3: An example of a depth image created from a 3D LiDAR scan for the
ego vehicle’s visibility estimation. For illustration purposes, the sample image only
shows the region that corresponds to the frontal part of the 360-degree 3D scan. The
brightness of each pixel indicates the depth, i.e., bright pixels are associated with
object points far from the 3D LiDAR.

3. Compare the actual, measured depth of the pixel’s location with the depth of

the region of interest in the depth image.

4. Mark the region of interest as occluded if its depth is greater than the depth of

the actual measurement.

An example of a depth image created from a 3D LiDAR scan for the ego vehicle’s

visibility estimation is shown in Fig. 3-3.

Since our planning method requires information about whether vehicles traveling

along the intersecting road are able to see the ego vehicle, visibility estimates from

the points of view of these vehicles are also needed. Although the estimated visibility

from the vantage points of the other vehicles cannot be achieved directly using the

same estimation method described above, it is possible to estimate which regions the

ego vehicle can be observed from without the actual sensing data of those vehicles.

As shown by the shaded blue area in Fig. 3-2c, if a vehicle on the intersecting

road has a clear line of sight from its sensor, or from the driver’s seat in the case of

a human-driven car, to the front bumper of the ego vehicle, then the ego vehicle can

be observed. Therefore, the ego vehicle can also be seen from any position where a

clear line of sight originating from the ego vehicle’s front bumper can reach. Based on

this assumption, the areas that the ego vehicle is visible from can be approximated

by shifting the origin of a 3D LiDAR scan to the front bumper of the ego vehicle and

performing visibility estimation. Therefore, the yellow shaded area in Fig. 3-2c shows

the areas from which the ego vehicle can be observed. Note that since the LiDAR

sensor is installed slightly behind the leading edge of the ego vehicle’s front bumper,
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(a) Both the area visible to the ego vehicle (represented by the green
rectangles) and the area where the ego vehicle can be observed from
(represented by the yellow rectangles) are small as the ego vehicle ap-
proaching the stop line.

(b) Area visible to the ego vehicle (represented by the green rectangles)
remains small, while area where the ego vehicle can be observed from
(represented by the yellow rectangles) grows significantly larger as the
ego vehicle stopping the stop line.

Figure 3-4: Examples of visibility estimation using real sensing data. Green rectangles
represent area visible to the ego vehicle. Yellow rectangles represent locations where
the ego vehicle can be observed from. Red rectangles represent occluded regions.

oncoming vehicles can usually observe the ego vehicle before the ego vehicle can detect

them, as shown in both Figs. 3-2b and 3-2c. Examples of visibility estimation near

an intersection using real sensing data are shown in Fig. 3-4.
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3.2.3 Particle filter

While the simplest approach to modeling the risk of collision with occluded vehicles is

to assume that there are always virtual vehicles traveling at a certain speed toward the

intersection from the boundaries of the perceptive field, in this study prediction of the

states of oncoming vehicles approaching along the intersecting road is performed using

a particle filter, in order to handle uncertainty that might arise from the perception

module.

Each particle in our model represents a hypothetical oncoming vehicle. The state

of a particle is described by a set of parameters, {𝑑𝑖, 𝑣𝑖, 𝑎𝑖, 𝑉𝑖, 𝑇observe𝑖}, where 𝑑𝑖, 𝑣𝑖,

and 𝑎𝑖 are the distance from the intersection’s center to the particle, the particle’s

velocity and the particle’s acceleration, respectively. The visibility status of each

particle, denoted by 𝑉𝑖, includes three possible states: visible by the ego vehicle,

occluded from the ego vehicle, or occluded from the ego vehicle but able to see the

ego vehicle. Finally, 𝑇observe𝑖 is the length of time the ego vehicle has been visible to

a particle.

The prediction process starts by generating a number of particles traveling at

random speeds toward the intersection from locations. Their states are then updated

at every sampling interval using the following motion model:

𝑎𝑖 =𝑎freedrive𝑖

𝑣𝑖 =𝑣𝑖𝑡+ 𝑎𝑖𝑡

𝑑𝑖 =𝑑𝑖 + 𝑣𝑖𝑡+
1

2
𝑎𝑖𝑡

2

(3.6)

where 𝑎freedrive𝑖 is the free road acceleration component in the Intelligent Driver Model

(IDM) [71], given by the following equation:

𝑎freedrive𝑖 = 𝑎max[1− (
𝑣𝑖

𝑣max
)2]. (3.7)

Lastly, every particle has a weight associated with it which decreases as the particle

becomes visible to the ego vehicle. A visible particle is depicted in Fig. 3-2d as a
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faded vehicle. The remaining particles with non-zero weights are treated as actual

vehicles during the ego vehicle’s motion planning.

3.2.4 Decision making

Controlling ego vehicle motion is equivalent to deciding proper ego vehicle acceleration

at each time step given its current state, {𝑠ego, 𝑣ego, and 𝑎ego} and current sensory

input. Crossing a blind intersection with a mandatory stop mainly involves two types

of motion; braking, to come to a full stop at the stop line, followed by acceleration,

to cross the intersection and continue forward. The required deceleration for the ego

vehicle to brake to a stop (𝑏stopping) can be calculated as follows:

𝑏stopping =
𝑣2ego

2𝑠ego
. (3.8)

Note that the 𝑏stopping is always negative, indicating that it is deceleration, and that

𝑠ego remains negative until the ego vehicle reaches the stop line. For acceleration, free

road acceleration in Eq. 3.7 is used. Unlike braking, the ego vehicle can safely accel-

erate at 𝑎freedrive if, and only if, inequality 3.5 holds for all possible oncoming vehicles

on the intersecting road. However, at intersections where visibility is severely limited,

the safety constraint may never be satisfied while the ego vehicle is at a complete stop

at the mandatory stop line. Consequently, this could result in a deadlock problem,

where the ego cannot move forward from the stop line.

In order to prevent a deadlock situation, it is assumed that if a vehicle approaching

along the intersecting road has observed the ego vehicle waiting at the stop line, it

will decelerate and slightly change its lateral position, as shown in Fig. 3-2c, after

some reaction time, 𝑇𝑟𝑒𝑎𝑐𝑡. Given such an assumption, the ego vehicle is consequently

allowed to perform a displacement of 𝑠enter into the intersecting road if it has been

observed by possible oncoming vehicles for a certain period of time (𝑇𝑟𝑒𝑎𝑐𝑡) and still

cannot cross the entire intersection safely from the stop line.

Moving from the mandatory stop to a full stop again after performing displacement

𝑠enter can be achieved by constantly accelerating at 𝑎enter until the ego vehicle has
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Algorithm 1 Algorithm for crossing intersections with mandatory stops.
Input: 𝑠ego, 𝑣ego, 𝑎ego

Output: 𝑎ego

1: if 𝑠ego ≥ 0 then
2: 𝑎ego ← 𝑎freedrive

3: for each particle i do
4: if (𝑡ego < 𝑡other𝑖) then
5: 𝑎ego = 𝑎freedrive

6: else
7: if (𝑠ego < 𝑠accel) then
8: if (𝑇observe𝑖 ≥ 𝑇𝑟𝑒𝑎𝑐𝑡) then
9: 𝑎ego = 𝑎enter

10: else
11: 𝑎ego = 0
12: end if
13: else
14: 𝑎ego = 𝑏enter

15: end if
16: break
17: end if
18: end for
19: else
20: 𝑎ego = 𝑏stopping

21: end if
22: return 𝑎ego

achieved displacement 𝑠accel from the stop line, then continuously decelerating at

𝑏enter to come to a complete stop after achieving an additional displacement of 𝑠brake.

Values of 𝑠accel and 𝑠brake can be calculated using the following equations:

𝑣2enter =2𝑎enter𝑠accel

0 =𝑣2enter + 2𝑏enter𝑠brake

(3.9)

𝑠enter = 𝑠accel + 𝑠brake (3.10)

𝑠accel =𝑠enter(
|𝑏enter|

𝑎enter + 𝑏enter
)

𝑠brake =𝑠enter(
𝑎enter

𝑎enter + |𝑏enter|
)
. (3.11)

By moving forward, i.e., closer to the intersection, the ego vehicle can increase its
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visibility sufficiently so that it can finally cross. The complete decision-making process

is summarized in Algorithm 1.

3.3 Experiments

In order to evaluate the proposed method of crossing highly occluded intersections

with mandatory stops, the proposed planner’s output driving behaviors were com-

pared to those of an expert human driver, an instructor at a driving school in Japan

who has over 15 years of safe driving experience. The driving behavior of the expert

driver was used as a reference for safe human driving behavior. An experimental

vehicle equipped with various sensors for data collection was driven through several

intersections in a residential area by the expert driver, and speed profiles of the ve-

hicle were recorded. To fairly evaluate the proposed automated intersection crossing

method, a simple yet realistic closed-loop simulation was created using the same

driving data recorded in the real-world residential area. The proposed method was

then used in the closed-loop simulation to generate speed profiles when crossing the

selected intersections.

Details of the experimental conditions, along with a comparison of the speed

profiles of the expert driver and those generated by the proposed, automated crossing

method at low-visibility intersections with a mandatory stop, are presented in the

following subsections.

3.3.1 Experimental vehicle

The experimental vehicle, a Toyota Prius (shown in Fig. 3-5), was equipped with a 3D

LiDAR (Velodyne HDL64E-S2) on its roof along with a Global Navigation Satellite

System (GNSS) receiver for localization. A wheel encoder was also installed for speed

measurement. Positioning or localization of the experimental vehicle was performed

in real-time at 10Hz, primarily using the Normal Distributions Transform (NDT)

scan-matching method proposed in [72]. After initialization using a position from the

GNSS receiver, NDT scan-matching was used to match the current 3D scan of the

32



Figure 3-5: Experimental vehicle equipped with 3D LiDAR , GNSS receiver and wheel
encoder.

driving environment with a high-definition point cloud map of the same environment,

as shown in Fig. 3-6. The vehicle’s localization system then returns the current

position of the vehicle in the point cloud map.

3.3.2 Experimental environment

The experiment was conducted on a public road in a residential area in Nagoya, Japan.

As this chapter focuses on crossing a low-visibility intersection from a mandatory stop,

two intersections that meet these criteria were selected. Street views of the selected

intersections are shown in Fig. 3-1. Intersections A (Fig. 3-1a) and B (Fig. 3-1b)

both have a clear stop line, indicating that vehicles need to come to a full stop before

entering the intersection. There are also buildings or walls on both sides of the road

that severely limit the visibility of the intersecting road, a type of intersection that is

very common in residential areas in Japan.

Two types of maps that complementarily represent the experimental environment

were created. The first type of map is a high-definition point cloud map, an example

of which is shown in Fig. 3-6. These maps contain 3D renderings of the environment

in the form of multiple scan points captured by a Mobile Mapping System (MMS)

using a LiDAR . The point cloud map is mainly used for localization, as described
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Figure 3-6: High-definition point cloud map for localization using NDT scan-
matching.

Figure 3-7: Road network map containing information about road networks in our
experimental environment. The red line with an arrowhead shows one complete driv-
ing loop in the experiment.

in Section 3.3.1. The other type of map is a road network map an example of which

is shown in Fig. 3-7. Unlike the point cloud map, the road network map does not

contain an exact representation of the driving environment but is a higher level of

representation that shows the positions of lane boundaries, traffic signs, pedestrian

crossings and intersections.

In order to record the driving data efficiently, the driving route was designed to
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be a loop. The driving direction is indicated by the red line with an arrowhead in

Fig. 3-7. During each completed loop, the expert driver crossed Intersections A and

B once. A total of eight laps were completed, resulting in eight crossings of each

intersection.

3.3.3 Closed-loop simulation based on recorded data

As mentioned in Section 3.2.2, the visibility estimation approach used in the proposed

method utilizes sensing data captured from the current position of the ego vehicle.

As sensory input is used for visibility estimation, it consequently affects the planner’s

output as well. Therefore, in order to fairly compare the speed profiles produced

when using the proposed method with those of the expert driver, input sensing data

for the proposed planner must be similar to that encountered when the expert was

driving. A simple simulator was therefore created to satisfy this requirement under

the following assumptions:

• The expert driver was driving in a straight line.

• The sampling rate of the 3D LiDAR is exactly 10 Hz.

• There were no dynamic objects in the scenes.

The working principle of the simulator is straightforward; when given a position,

the simulator outputs the corresponding 3D scan from the recorded data. The pro-

posed planner takes this 3D scan and the position of the scan as inputs from the

simulator. The planner then estimates visibility, computes output acceleration or

deceleration, and sends the longitudinal displacement that will occur by the next

data sampling, which takes place every 0.1 seconds, given the current velocity and

the output acceleration, back to the simulator. The simulator then computes the

new position of the ego vehicle using the received displacement. After the simulator

compares the new position with all of the available positions in the recorded data, it

returns the 3D scan associated with the closest position to the planner. The simu-

lation loop is therefore complete. It is important to note that even though the ego
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Table 3.1: Parameters used for speed profile generation.

Parameter Value Parameter Value

𝑙ego 4.5m 𝑤other𝑖, 𝑤ego 1.0m
𝑎max 2.5m/s2 𝑣max 10.0m/s
𝑇𝑟𝑒𝑎𝑐𝑡 1.2 s 𝑠enter 6.0m
𝑎enter 1.2m/s2 𝑏enter -0.2m/s2

vehicle’s movement is entirely simulated, the sensory input provided by the simulator

is realistic as it uses recorded, real-world data.

Using the closed-loop simulation and the parameters shown in Table 3.1, speed

profiles at Intersections A and B were generated. Parameters 𝑙ego, 𝑤ego, and 𝑤other𝑖

were defined using the dimensions of the Toyota Prius. Maximum acceleration 𝑎max

was determined based on the data from [73], and maximum velocity 𝑣max was set to

approximately the local speed limit. Reaction time 𝑇𝑟𝑒𝑎𝑐𝑡 was selected based infor-

mation presented in [74]. The allowable displacement from the stop line, 𝑠enter, was

selected to ensure that the ego vehicle could obtain sufficient visibility of the intersect-

ing road while leaving enough space for approaching vehicles to cross the intersection

without a collision. Lastly, 𝑎enter and 𝑏enter were determined such that together they

represent a careful advance from the stop line into the intersecting road.

The simulation started 50m before the intersection, with the ego vehicle traveling

at a velocity of 6.94m/s (25 km/h), and ended 50m after exiting the intersection.

In order to validate the effect of utilizing approximations of the visibility of the ap-

proaching vehicles for motion planning, speed profiles were created with and without

this information.

3.3.4 Speed profile comparison

As can be seen by comparing Figs. 3-8 and 3-9, the speed profiles generated when

using the proposed method are similar to those of the expert driver in both the

time and displacement dimensions, especially after stopping. In addition, when the

proposed method was used without estimation of the visibility of approaching vehicles,
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(a) Variation in speed in relation to displacement from center of intersection.

(b) Variation in speed over time.

Figure 3-8: Comparison of speed profiles of expert driver and proposed method at
Intersection A.

indicated by the blue dotted lines in Figs. 3-8 and 3-9, the ego vehicle could not move

forward to cross the intersection after stopping, as visibility from the ego vehicle’s

point of view was very limited.

The resulting speed profiles for both intersections consist of a similar sequence of

behaviors, labeled by numbers in Figs. 3-8b and 3-9b. As indicated by 1 , the ego

vehicle remained at the stop line for a short period of time at both intersections, in

order to expose itself to possible oncoming traffic, when using the proposed method

and when being driven by the expert driver. It then began to move forward slowly
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(a) Variation in speed in relation to displacement from center of intersection.

(b) Variation in speed over time.

Figure 3-9: Comparison of speed profiles of expert driver and proposed method at
Intersection B.

into the intersecting road 2 . As the ego vehicle moved forward, its visibility of the

intersection became sufficient to ensure safe crossing. As a result, it began accelerating

again at 3 . However, a slight difference between the speed profiles at intersections

A and B can be observed. As shown in Fig. 3-9b, the ego vehicle’s acceleration

when slowly moving forward, 2 , was steady at Intersection B, while this acceleration

fluctuated slightly when using the proposed method at intersection A, as shown in

Fig. 3-8b.
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3.4 Conclusion

In this chapter, a method for crossing low-visibility intersections with a mandatory

stop was proposed. The proposed method utilizes the estimated visibility of pos-

sible approaching vehicles to decide whether it is safe to proceed forward from the

mandatory stopping point when visibility is insufficient for intersection crossing.

Speed profiles of an expert driver when crossing the chosen blind intersections

were used for comparison with those produced when using the proposed method. Our

results showed that the proposed method could generate driving behavior comparable

to that of an expert driver at low-visibility intersections with mandatory stops. The

resulting speed profiles revealed similar motion when the vehicle was being driven by

an expert driver and when the vehicle was autonomously driven using the proposed

method, at both of the selected intersections. This included pausing at the stop line

in order to expose the vehicle to possible oncoming traffic, moving slowly into the

intersecting road to gain additional visibility, and accelerating to cross the intersection

after having obtained sufficient visibility. However, when using the proposed motion

planning method, the speed of the ego vehicle as it began to move slowly forward

from the stop line was slightly different at Intersections A and B, with smoother

acceleration observed at Intersection B. This may be due to more limited visibility

at Intersection A. Furthermore, it was found that when the proposed method was

used without estimating the visibility of approaching vehicles, the ego vehicle could

not successfully cross the intersections due to severely limited visibility. This suggests

that estimation of the visibility of possible approaching vehicles is crucial information

for an automated crossing of such intersections when using a virtual obstacle-based

motion planner.

Lastly, it should be noted that the proposed method relies on several parameters

which were manually selected, e.g., 𝑠enter. The optimal values of these parameters

may differ at different intersections.
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Chapter 4

Visibility-Dependent Behavior Model

for Approaching Vehicles

4.1 Introduction

A common strategy used to ensure safe motion by the ego vehicle when the environ-

ment is not fully observable, especially at intersections, is to assume that there are

virtual vehicles approaching at a constant, high speed from immediately outside the

visible area toward a conflict point where a collision with the ego vehicle could occur.

Under this assumption, it is possible to limit the ego vehicle’s speed such that it will

not collide with any dynamic objects that could potentially be approaching from the

occluded areas. While this approach has been shown to be effective for generating

a safe speed profile for the ego vehicle, it can also result in a deadlock situation,

where the ego vehicle does not have sufficient visibility to safely proceed forward into

an intersection, but cannot gain additional visibility without doing so. As a result,

the ego vehicle remains stopped indefinitely at the edge of the intersection. This is

especially likely to occur at an intersection with severely restricted visibility since the

distance the ego vehicle can observe along the intersecting road is very limited. If it

is assumed that there is a hypothetical vehicle traveling towards the intersection at a

high and constant speed from just beyond this observable distance, this hypothetical

vehicle will be able to reach the conflict point very quickly, making it impossible for
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the ego vehicle to cross the intersection without potentially colliding with this virtual,

approaching vehicle. In order to escape this situation, a simple heuristic strategy can

be implemented such as having the ego vehicle advance slowly into the blind intersec-

tion for a limited distance after its speed reaches zero at the edge of the intersection.

However, driving too far into the intersection without knowing whether or not other

traffic participants are expecting such an event could cause an accident.

In Chapter 3, we investigated a deadlock scenario at blind intersections with

mandatory stops. Visibility from the points of view of approaching vehicles was

estimated using road network map information and real sensing data from the ego

vehicle’s 3D LiDAR unit. This estimated visibility was then used to regulate the

ego vehicle’s forward movement out of the deadlock position. It was found that the

planner proposed in the previous chapter allowed the ego vehicle to proceed forward

from a stop line to gain additional visibility before starting to cross an intersection,

in a manner similar to that of an experienced driver. However, the planner proposed

in the previous chapter relied on a special action (the ego vehicle creeping forward)

that was triggered after the vehicle was stopped long enough at a mandatory stop

to be sufficiently observed by other traffic participants. Moreover, that investigation

lacked a detailed analysis of changes in the behavior of approaching vehicles after the

ego vehicle became observable to them, i.e., an analysis of the visibility-dependent

behavior of approaching vehicles.

In this chapter, we extend and generalize our proposed occlusion-aware motion

planner that utilizes the visibility of both the ego vehicle and approaching vehicles

to formulate safe crossing maneuvers at blind intersections by proposing a visibility-

dependent behavior model for vehicles approaching occluded intersections which is

based on our analysis of collected, real-world driving data. The proposed visibility-

dependent behavior model will allow our planner to predict changes in the behavior

of approaching vehicles in response to detecting the ego vehicle waiting to enter the

intersection. Our proposed generic, deadlock-free planner utilizes a particle filter al-

gorithm for occluded object prediction, which allows the planner to handle perception

uncertainty and incorporate changes in the behavior of occluded traffic participants
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after they have observed the ego vehicle.

In order to verify the effectiveness of our expanded motion planner and visibility-

dependent behavior model, experiments were carried out using a simulation of the

crossing of a blind intersection. We found that the proposed planner could avoid a

deadlock situation even at intersections with severely limited visibility. Moreover,

our experimental results revealed that both the level of perception accuracy assumed

in the occluded object prediction algorithm, as well as the mounting position of the

sensor used for detecting surrounding obstacles, had significant impacts on the speed

at which the ego vehicle could safely cross occluded intersections.

The work in this chapter is a direct extension of the work in Chapter 3. The new

contributions of the work described in this chapter are as follows:

• A generic, deadlock-free motion planner for blind intersections which utilizes

the visibility of both the ego vehicle and approaching vehicles.

• A visibility-dependent behavior model for vehicles approaching occluded inter-

sections, based on an analysis of real-world driving data.

The remainder of this chapter is organized as follows: In Section 4.2, details of the

expanded planner are provided. In Section 4.3, our driving data collection method is

described, an analysis of the data is presented, and the proposed visibility-dependent

approaching vehicle behavior model for blind intersections is described. In Section

4.4, details of the experimental procedures used to evaluate the performance of the

proposed planner, the results of those experiments, including a baseline comparison

to verify the planner’s ability to achieve better, deadlock-free motion generation per-

formance, and the effects of perception uncertainty and sensor mounting position are

presented in Sections 4.4.1, 4.4.2, and 4.4.3, respectively. Finally, the conclusions of

this chapter are discussed in Section 4.5.
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(a) An occluded vehicle travels toward the intersection at a constant
speed. The ego vehicle is not yet observable by the occluded vehicle.

(b) As the occluded vehicle moves closer to the intersection, the front
bumper of the ego vehicle becomes visible, but the occluded vehicle is
still hidden from the perspective of the ego vehicle. After detecting the
ego vehicle, the occluded vehicle may change its behavior.

Figure 4-1: Detection of the ego vehicle by an approaching, occluded vehicle. The
occluded vehicle may change its behavior after observing the ego vehicle.

4.2 Proposed deadlock-free, blind intersection plan-

ner

In order to cross an intersection safely, the ego vehicle must pass through the area

where the different roadways intersect before any other object, visible or occluded,
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arrives at the same location and intercepts it. The proposed planner predicts occluded

vehicles using a particle filter, and then determines whether the ego vehicle can cross

an intersection without colliding with any of these predicted vehicles based on this safe

crossing condition. To handle the deadlock problem, a particle filter-based, occluded

vehicle prediction module in the proposed planner utilizes the visibility of both the

ego vehicle and hidden vehicles. Visibility from the ego vehicle’s perspective is used

to identify regions where occluded vehicles might exist, while the visibility of hidden

vehicles is used to determine their behavior. An illustration of an occluded vehicle

before and after observing the ego vehicle is given in Fig. 4-1. By considering possible

changes in the behavior of approaching vehicles after detecting the ego vehicle, the

proposed planner can avoid becoming trapped in a deadlock situation.

The details of each of the proposed planner’s components are given in this section

in the following order. First, the conditions required for safe intersection crossing are

explained, and a safe crossing strategy is derived based on these conditions. Next, as

the main focus of this work is navigating intersections with limited visibility, charac-

teristics of the visibility of both the ego and approaching vehicles at blind intersections

are then illustrated. In the third and final subsection, the prediction of occluded ob-

jects based on a particle filter algorithm is described.

4.2.1 Safe intersection crossing strategy

An intersection, by definition, is the area where two or more roadways intersect, and

this is where collisions between vehicles traveling along the intersecting roadways

occur. In the case of a simple intersection involving only two roadways crossing at

a 90-degree angle, as shown in Fig. 4-2, the overlapping area is represented by the

red rectangle. In order for the ego vehicle to cross the intersection safely, it has to

enter and exit the overlapping area before any vehicle traveling on the other roadway

arrives. If the ego vehicle cannot ensure that it is safe to cross, it must remain outside

the overlapping zone by stopping before the intersection to avoid a potential collision.

This analysis leads us to a strategy for choosing safe actions for the ego vehicle as
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Figure 4-2: Simple, blind intersection model. Red shaded area represents the over-
lapping travel zone where a collision could potentially occur.

it approaches an intersection:

𝑆𝑎𝑓𝑒 𝐴𝑐𝑡𝑖𝑜𝑛 =

⎧⎨⎩𝐶𝑟𝑜𝑠𝑠, if 𝑡ego < 𝑡other

𝑆𝑡𝑜𝑝, if 𝑡ego ≥ 𝑡other

, (4.1)

where 𝑡ego is the time required by the ego vehicle to completely pass through the

overlapping area from its current position, while 𝑡other is the time an approaching

vehicle will take to reach the overlapping area. In the event of multiple approaching

vehicles, the minimum time until one of the other vehicles on the crossing roadway

arrives at the overlapping zone is used as 𝑡other.

In the proposed planner, the action Cross is defined as applying a constant accel-

eration of 𝑎cross
ego to completely cross the intersection. On the other hand, the action

Stop represents a constant reduction of speed at the rate of 𝑎stop
ego in order to stop

before the overlapping zone if the ego vehicle is traveling at the maximum allowable

speed, 𝑣allow
ego , which is given by:

𝑣allow
ego =

√︁
−2𝑎stop

ego 𝑋ego, (4.2)

where 𝑋ego is the ego vehicle’s current position.
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By assuming constant acceleration, we can calculate time 𝑡, the time required by

any vehicle to travel a total distance of 𝑑, using the following kinematic equation:

𝑡 =

⎧⎪⎪⎨⎪⎪⎩
√
𝑣2 + 2𝑎𝑑− 𝑣

𝑎
, if 𝑎 ̸= 0

𝑑

𝑣
, if 𝑎 = 0

, (4.3)

where 𝑎 and 𝑣 represent the instantaneous acceleration and velocity of the vehicle,

respectively.

In the case of the ego vehicle, despite uncertainty in the state estimation process,

the calculation of 𝑡ego is relatively straightforward as the relevant information, i.e.,

𝑣ego, 𝑎cross
ego , and, 𝑋ego, are all available. Additionally, the total distance the ego vehicle

needs to travel in order to pass through the overlapping zone completely can be

calculated as follows:

𝑑ego = 𝑋ego + 𝑙ego +𝑊cross, (4.4)

where 𝑙ego is the length of the ego vehicle and 𝑊cross is the width of the intersecting

roadway.

In contrast, the state of approaching vehicles cannot be fully observed at occluded

intersections, therefore, a prediction of the existence of occluded vehicles and their

current state, 𝜒𝑡, has to be made in order to estimate their time of arrival at the

overlapping zone, i.e., 𝑡other. One common approach for estimating 𝑡other at occluded

intersections is to assume that there is always a vehicle traveling toward the intersec-

tion at high speed, from outside the visible zone. While such an assumption simplifies

the estimation of 𝑡other, it may also lead to a deadlock situation when the intersecting

roadway is heavily occluded.

In order to solve the deadlock problem, a more elaborate behavior model for

approaching vehicles, one that captures possible changes in their motion after they

have observed the ego vehicle, i.e., a visibility-dependent behavior model, is proposed

in this chapter. Therefore, a particle filter-based occluded object prediction method

that allows the use of a complex motion model is utilized in the proposed planner to

predict the current state of approaching occluded vehicles, 𝜒𝑡. The proposed occluded
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Algorithm 2 Algorithm of proposed generic, deadlock-free planner.
Input: 𝑋ego, 𝑣ego, 𝑎cross

ego , 𝑎stop
ego , 𝑋sensor, 𝑙ego, 𝑊ego, 𝑊cross, 𝜒𝑡−1, 𝐷sensor, 𝐷map

Output: 𝑎cross
ego , 𝑎stop

ego , or 0
1: 𝑣allow

ego ← CalcAllowableSpeed(𝑋ego, 𝑎
stop
ego )

2: 𝑑ego ← CalcCrossingDistance(𝑋ego, 𝑙ego,𝑊cross)
3: 𝑡ego ← CalcTravelTime(𝑑ego, 𝑣ego, 𝑎

cross
ego )

4: 𝑉ego ← EstEgoVisibility(𝑋ego, 𝑋sensor, 𝐷sensor, 𝐷map)
5: 𝑉other ← EstOtherVisibility(𝑋ego, 𝑋sensor, 𝐷sensor, 𝐷map)
6: 𝜒𝑡 ← PredOccludedVehicle(𝜒𝑡−1, 𝑉ego, 𝑉other)
7: 𝑡other ← CalcTravelTime(𝜒𝑡)
8: if 𝑡ego < 𝑡other then
9: return 𝑎cross

ego
10: else
11: if 𝑣ego ≥ 𝑣allow

ego then
12: return 𝑎stop

ego
13: else
14: return 0
15: end if
16: end if

vehicle prediction method uses estimated visibility of both the ego vehicle, 𝑉ego, and

of the approaching vehicles, 𝑉other. In most complex scenarios, both 𝑉ego and 𝑉other

can be estimated using map information 𝐷map, sensing data 𝐷sensor, and the position

of the ego vehicle and its sensor, 𝑋ego and 𝑋sensor, respectively, as demonstrated

in Chapter 3. However, in some situations, e.g., at simple occluded intersections,

visibility estimation can also be performed without using real sensing data. Visibility

estimation will be described in more detail in Section 4.2.2.

By using the occluded vehicle prediction output 𝑡other and the time required by

the ego vehicle to completely cross the intersection 𝑡ego, the appropriate output ac-

tion for the ego vehicle can be determined. Therefore, the proposed planner can be

summarized as shown in Algorithm 2, where CalcAllowableSpeed, CalcCrossingDis-

tance, and CalcTravelTime refer to Eq. 4.2, Eq. 4.4, and Eq. 4.3, respectively. The

visibility estimation of both the ego vehicle (EstEgoVisibility) and approaching vehi-

cles (EstOtherVisibility) will be explained in Section 4.2.2 as previously mentioned.

The function PredOccludedVehicle represents a particle filter-based occluded object

prediction method, which will be described in Section 4.2.3.

48



Figure 4-3: Example of visibility estimation results using real sensing data. The green,
yellow and red squares indicate regions observable by the ego vehicle, regions from
which other vehicles can observe the ego vehicle, and occluded regions, respectively.
The visibility estimation approach proposed in the previous chapter can be directly
incorporated into the planner proposed in this chapter for application in complex,
real-world environments.

4.2.2 Visibility at blind intersections

The first step toward the prediction of occluded dynamic objects and their current

state is to understand the characteristics of visibility at blind intersections. Visibility

from the ego vehicle’s point of view at an intersection depends on various factors, some

of which are static, i.e., sensor position, sensor coverage, the intersection’s geometry,

the presence of stationary objects such as buildings and walls, etc. On the other hand,

there are components affecting visibility that can change over time, such as dynamic

surrounding objects, parked vehicles, trees that shed their leaves, etc. Therefore,

in order to correctly determine the optimal motion of the ego vehicle in areas with

occlusions, visibility should be estimated in real-time using sensing data. However, in

the absence of dynamic occlusions, i.e., occlusions caused by moving objects, visibility

can also be estimated with adequate accuracy without using current sensing data.

In order to demonstrate how visibility changes at an occluded intersection, in this

investigation, visibility estimation is performed using a closed-form expression based

on the intersection’s geometry and the position of the ego vehicle and its sensor.

However, it is important to emphasize that the planner proposed in this work
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can be used in more complex, real-world environments by replacing the geometry-

based visibility estimation approach used here with an estimation approach that relies

on actual sensing data. For example, the visibility estimation method employed in

Chapter 3 utilizes 3D LiDAR data and HD maps to accurately identify the occluded

and visible regions of a complex environment, as shown in Fig. 4-3.

In order to estimate visibility without sensing data, a simple model of a blind

intersection such as the one depicted in Fig. 4-2 can be used. As can be seen in

the figure, the ego vehicle cannot fully observe the intersecting roadway due to the

occluding walls of the buildings at the intersection’s corners. The solid, green line in

Fig. 4-2 represents a clear line of sight from the sensor of the ego vehicle, defining the

maximum visible distance along the intersecting roadway in that direction. Based

on the geometry of the intersection, the furthest distance that is visible from the ego

vehicle, i.e., the ego vehicle’s visibility, 𝑉ego, can be estimated using the following

equation:

𝑉ego =
(𝑋ego +𝑋sensor +

𝑊cross
2

)× (𝑊ego
2

)

(𝑋ego +𝑋sensor)
, (4.5)

where 𝑋ego is the distance from the intersection’s entrance to the front bumper of

the ego vehicle. The sensor’s position relative to the ego vehicle’s front bumper is

represented by 𝑋sensor, and the width of the ego vehicle’s roadway is denoted by 𝑊ego.

Therefore, it is evident from Eq. 4.5 that the ego vehicle’s visibility depends on its

distance from the entrance to the intersection, the intersection’s geometry and the

mounting position of its sensor.

Using Eq. 4.5, it is possible to determine how visibility from the point of view

of the ego vehicle changes as the ego vehicle approaches an intersection, i.e., we can

generate a visibility profile. As can be seen from the visibility profiles shown in Fig.

4-4, the ego vehicle’s visibility remains virtually constant when the ego vehicle is

located at a position distant from the intersection, but its visibility starts to increase

exponentially as the ego vehicle advances closer to the intersection. The effects of the

intersection’s geometry can also be observed from the visibility profile since visibility

begins to increase sooner the greater the width of the ego vehicle’s roadway. Also note
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Figure 4-4: Visibility profiles of the ego vehicle and other vehicles at blind inter-
sections of roadways of various widths. In each scenario, the ego vehicle’s sensor
is located 2 meters to the rear of its front bumper. The widths of the intersecting
roadways are assumed to be equal.

that the visibility of the ego vehicle when it reaches the intersection’s entrance, i.e.,

𝑋ego = 0, is significantly different depending on the width of the intersecting road, as

indicated in Fig. 4-4 with (∙) markers along the solid lines at the 0-meter position,

where the color of each line represents an intersecting roadway of different width.

Although the ego vehicle’s visibility becomes infinitely large as the sensor reaches the

intersection’s entrance regardless of the width of the intersecting roadway, when the

intersecting road is narrower there is a steeper and more delayed increase in the ego

vehicle’s visibility.

While modern autonomous vehicles are generally equipped with multiple sen-

sors mounted at various locations, the main sensors for perception tasks are usually

mounted close to the center of the vehicle, e.g., on the roof, to increase overall sens-

ing coverage. When the sensor is mounted in this location, the ego vehicle can be

observed by occluded vehicles traveling along the intersecting roadway before they

can be detected by the ego vehicle, as depicted in Fig. 4-2, where the solid yellow

and green lines represent the distance the ego vehicle can be observed from the inter-

secting roadway, 𝑉other, and visibility from the ego vehicle’s sensor, 𝑉ego, respectively.
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It is important to note that 𝑉other is not the actual visibility of any particular vehicle

traveling along the intersecting roadway, from the perspective of the “other vehicle”,

but the furthest distance from the intersection that the ego vehicle can be seen from.

However, for the sake of conciseness, will be used to refer to the visibility of other

vehicles. In a manner similar to that used in Eq. 4.5 to define visibility from the

perspective of the ego vehicle, the relationship between visibility from other vehicles

and the position of the ego vehicle can be expressed as follows:

𝑉other =
(𝑋ego +

𝑊cross
2

)× (𝑊ego
2

)

(𝑋ego)
. (4.6)

In Fig. 4-4, similar characteristics can be observed between the visibility of the ego

vehicle and that of the other vehicles, but with an earlier increase in the visibility of

the other vehicles, as illustrated by the dashed lines. As shown by the red lines in Fig.

4-4, when the ego vehicle arrives at the intersection its visibility is still very limited,

while approaching vehicles traveling on the intersecting road can observe it from a

much more distant location. Thus, the difference between 𝑉other and 𝑉ego results in

the ego vehicle becoming visible to other vehicles before the ego vehicle can observe

them. In a deadlock situation, even though the ego vehicle does not have sufficient

visibility to cross the intersection from its current position, it is likely that it can be

observed by vehicles approaching from the occluded area. This is important because

this difference in visibility is utilized in our proposed method to solve the deadlock

problem, by modeling approaching vehicle behavior to be dependent on whether or

not these vehicles can observe the ego vehicle attempting to cross the intersection.

4.2.3 Particle filter-based, occluded vehicle prediction

As pointed out in Section 4.2.1, the prediction of occluded vehicles is a crucial com-

ponent of planning safe ego vehicle motion through blind intersections. In order to

incorporate perception uncertainty and allow flexibility in the occluded vehicle be-

havior model during prediction, we used a particle filter algorithm in our model. The

schematic diagram shown in Fig. 4-5 illustrates the main steps of a basic particle
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Figure 4-5: Diagram of a particle filter algorithm

filter algorithm.

The algorithm begins by generating a finite number of particles 𝒩particle, where a

set of 𝒩particle particles at time 𝑡 can be denoted as follows:

𝜒𝑡 = {𝑥
1
𝑡 , 𝑥

2
𝑡 , 𝑥

3
𝑡 , · · · , 𝑥

𝒩particle
𝑡 }. (4.7)

Each particle 𝑥𝑖
𝑡, when 1 ≤ 𝑖 ≤ 𝒩particle, contains a state. In this study, a particle’s

state represents a hypothesis of the state of an occluded vehicle at time 𝑡. Specifically,

the state of each vehicle traveling on the intersecting roadway is represented by the

state of a particle, which can be represented as:

𝑥𝑖
𝑡 = {𝑑𝑖𝑡, 𝑣𝑖𝑡, 𝑎𝑖𝑡, 𝐴𝑖

𝑡}, (4.8)

where 𝑑𝑖𝑡 represents displacement from the current position of the particle to the inter-

section’s center, while 𝑣𝑖𝑡 and 𝑎𝑖𝑡 are the particle’s speed and acceleration, respectively.

The last state variable, 𝐴𝑖
𝑡, is a Boolean variable indicating whether or not the particle

is aware of the ego vehicle, which will be explained in more detail below.

After the particles are initialized, the current estimation of each particle’s (i.e.,

each occluded vehicle’s) state, 𝜒𝑡, is recursively updated at every time step ∆𝑡, as

a new observation becomes available. Starting from the previously estimated state,
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𝜒𝑡−1, the current state of every particle is predicted using a motion model. The

motion model used in this study is as follows:

𝑑𝑖𝑡 =𝑑𝑖𝑡−1 + 𝑣𝑖𝑡∆𝑡+
1

2
𝑎𝑖𝑡∆𝑡2

𝑣𝑖𝑡 =𝑣𝑖𝑡−1 + 𝑎𝑖𝑡∆𝑡

𝑎𝑖𝑡 =𝑓(𝑑𝑖𝑡−1, 𝑣
𝑖
𝑡−1, 𝐴

𝑖
𝑡)

𝐴𝑖
𝑡 =

⎧⎪⎨⎪⎩𝑇𝑟𝑢𝑒 , if 𝑇observe𝑖 ≥ 𝑇𝑟𝑒𝑎𝑐𝑡

𝐹𝑎𝑙𝑠𝑒 , if 𝑇observe𝑖 < 𝑇𝑟𝑒𝑎𝑐𝑡

, (4.9)

where 𝑇observe𝑖 is the length of time the ego vehicle has been observable by the particle,

which is determined by 𝑑𝑖𝑡 < 𝑉other. The parameter 𝑇𝑟𝑒𝑎𝑐𝑡 represents a recognition

delay, i.e., the time it takes the approaching vehicle to become aware of the ego

vehicle after it has become visible. The instantaneous acceleration of a particle, 𝑎𝑖𝑡,

is determined by a function 𝑓 , which in this work is designed to be dependent on

the particle’s visibility of the ego vehicle. This 𝑓 function represents the visibility-

dependent behavior of approaching vehicles, which will be used to avoid a deadlock

situation, as will be explained in more detail in Section 4.3.

It is important to note that function 𝑓 is not limited to the behavior model

proposed in this work, nor it is restricted to only one specific type of traffic participant.

It can also be used to represent completely different behavior models, including the

conventional approaching vehicle behavior model commonly used in blind intersection

planners, i.e., a vehicle traveling toward the intersection at a constant speed can be

expressed by a constant function, which outputs zero acceleration regardless of the

state of the approaching vehicle. Moreover, the occluded object behavior function 𝑓

can be applied to other types of traffic participants, e.g., pedestrians and bicycles.

After predicting the states of all of the particles using the motion model, these

particles represent samples drawn from a state transition distribution, 𝑝(𝑥𝑡|𝑥𝑖
𝑡−1). As

observation 𝑧𝑡 becomes available, each particle is assigned an importance weight based

on an observation model, 𝑝(𝑧𝑡|𝑥𝑖
𝑡). In this work, the Bernoulli distribution is used as
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our observation model:

𝑝(𝑧𝑡|𝑥𝑖
𝑡) =

⎧⎨⎩1− 𝛼, 𝑑𝑖𝑡 < 𝑉ego

𝛼, 𝑑𝑖𝑡 ≥ 𝑉ego

, (4.10)

where 𝛼 represents the accuracy of the visible area classifier.

Lastly, a set of 𝒩particle particles is re-sampled, based on their importance weights.

This set of 𝒩particle particles now represents the current state estimate, 𝜒𝑡. All of the

processes described above are then repeated at every time step.

4.3 Proposed visibility-dependent behavior model for

approaching vehicles

In order to address the occluded intersection deadlock problem, a more elaborate

model for the behavior of approaching vehicles is proposed in this section. The pro-

posed behavior model aims to capture possible changes in the behavior of approaching

vehicles conditional on their visibility of the ego vehicle, i.e., a visibility-dependent

behavior model. The proposed behavior model is incorporated into the particle filter-

based occluded vehicle prediction algorithm introduced in Section 4.2.3, via function

𝑓 .

As the proposed behavior model is based on the analysis of collected real-world

driving data, the details of the collection of this data are given below in the first sub-

section. An analysis of this driving data is then presented in the following subsection.

Lastly, the proposed visibility-dependent behavior model is described.

4.3.1 Collection of driving data

It is essential to model the behavior of approaching vehicles in a way that represents

the real behavior of actual drivers. In order to understand how drivers behave when

they encounter an intersection with limited visibility, driving data collected in such

an environment is required. Therefore, an experiment was carried out to collect the
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required driving data, the details of which are described below.

Driver types

Studies have shown that experienced and expert drivers tend to take proactive action

to avoid collisions, e.g., by slowing down as they approach an uncontrolled intersection

with poor visibility [34,75]. However, it is neither safe nor reasonable to assume that

every driver approaching such an intersection will behave in this manner. Therefore,

our data collection experiment included three different types of drivers in order to

capture a wide range of driving behavior at blind intersections:

• Expert drivers: Driving school instructors

• Elderly drivers: Drivers 65 years old or older

• Typical drivers: Drivers who do not belong to the other two groups

A total of 18 drivers from these three groups participated in our data collection exper-

iment. The participants included five male expert drivers, two elderly female drivers,

two elderly male drivers, four typical female drivers, and five typical male drivers. In-

formed consent was obtained from all participants involved in the study. All personal

information was handled carefully to protect the privacy of the participants.

Experimental vehicle

The vehicle used for data collection was the Toyota Prius shown in Fig. 4-6. It was

equipped with a 3D LiDAR sensor (Velodyne VLP-16) and a GPS receiver, which

allowed real-time localization via the 3D Normal Distributions Transform (3D-NDT)

scan-matching method proposed in [72]. Along with data from the previously men-

tioned sensors, CAN-bus data, which included speed and brake pedal pressure, was

also collected. By fusing data from these different sensors, the position, orientation

and speed of the vehicle at each location along its route could be obtained.
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Figure 4-6: Experimental vehicle

Figure 4-7: Experimental environment

Experimental environment

The environment selected for data collection was a residential area of Nagoya, Japan

containing several intersections with notably low visibility and no traffic signals. The

driving route used for data collection is shown in Fig. 4-7. From the beginning to

the end of the route, each driver crossed a total of four blind intersections. Two of

the intersections required drivers to make a mandatory stop (Intersections A and B),
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Figure 4-8: Speed profiles of all drivers when approaching and crossing blind inter-
sections in a residential neighborhood (232 intersection crossings by 18 drivers).

while the other two intersections (Intersections C and D), did not require drivers to

stop prior to crossing.1

4.3.2 Driving data analysis

A total of 232 intersection crossings by 18 drivers were collected. In order to visualize

all of the crossing data from the various intersections in one graph, the distance from

the center of each intersection to the experimental vehicle was used to represent the

location of the vehicle. Profiles of crossing speeds at the selected blind intersections

are shown in Fig. 4-8. We can see that most of the drivers initially approached the

intersections at a speed of approximately 8m/s, which is just below the local speed

limit of 8.33m/s, i.e., 30 km/h, and that the majority of drivers slowed down as they

approached the intersections. However, in some cases, drivers maintained a relatively

high speed as they crossed the intersections. The data suggests there is a variety of

possible driving behavior when drivers encounter blind intersections.

In order to further analyze the behavior of the approaching vehicles, cluster anal-

1A satellite view of the experimental environment and driving route can be found at https:
//drive.google.com/open?id=1CbrP0BYfK0tPR_Qs60Qkjov-PJDk3pEK&usp=sharing
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Figure 4-9: Results of cluster analysis using K-Mean algorithm on collected speed
profiles of drivers crossing all intersections. Red, yellow and green lines represent
average speed profile of each cluster. Vertical bands show standard deviation of
vehicle speed at each location.

ysis was performed. The K-Mean clustering algorithm [76] was used to group similar

speed profiles into clusters. The optimal number of clusters, which is the main pa-

rameter of the K-Mean clustering algorithm, was determined based on the silhouette

coefficient [77]. As a result, the speed profiles were divided into three groups. The

average speed at each location in relation to the intersection, i.e., the average speed

profile, for each of the three clusters is represented by the red, yellow, and green lines

in Fig. 4-9. The standard deviation of vehicle speed at each location for each cluster

is represented by a vertical band.

As indicated by the red speed profile in Fig. 4-9, cruising through intersections at

a constant speed appears to be one of common the behaviors of approaching vehicles.

The yellow and green speed profiles both show approaching vehicles slowing down

prior to a blind intersection, however, the green speed profile indicates a more abrupt

deceleration compared to the yellow speed profile.
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Figure 4-10: Speed profiles of the three possible behaviors in proposed behavior model
for vehicles approaching blind intersections.

4.3.3 Proposed visibility-dependent behavior model

Based on our analysis of the collected data, we created a behavior model for vehicles

approaching blind intersections. The proposed model consists of three possible behav-

iors, Cruising, Slowing down and Yielding, which correspond to the red, yellow and

green speed profiles shown in Fig. 4-9, respectively. Note that these speed profiles

are not linked directly to particular drivers, but represent behaviors, i.e., sometimes

the same driver may fit a different speed profile, based on the driving environment at

the time they encountered the intersection. In other words, the driving behavior of

particular drivers may vary based on the visibility of the intersection, and whether

or not approaching vehicles are observed along the intersecting road.

Our ultimate goal when designing the approaching vehicle behavior model was to

use it for defining function 𝑓 in our proposed particle filter-based occluded vehicle

prediction method. As function 𝑓 is used for estimating the instantaneous acceleration

of occluded vehicles, a speed profile for each behavior in the time domain is required.

Therefore, we next modeled a speed profile for each intersection approaching behavior,

and these speed profiles are shown in Fig.4-10. For the Cruising profile, the vehicle

approaches and crosses the intersection at a constant speed of 𝑣cruise
other , resulting in zero

acceleration the entire time. As for the Slowing down profile, the vehicle also travels
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Figure 4-11: Proposed behavior transition for vehicles approaching blind intersections.

toward the intersection at a speed of 𝑣cruise
other initially, however, at some point, it starts to

decelerate at a rate of 𝑎slow
other, before accelerating again to cross the intersection. Lastly,

the Yielding profile represents behavior similar to Slowing down, but the vehicle slows

down to a full stop prior to the intersection, from an initial speed of 𝑣cruise
other . Apart from

the minimum speed before crossing the intersection, another difference between the

Yielding and Slowing down profiles is the rate at which the vehicles decelerate. For

the Yielding profile, the approaching vehicle applies a relatively sharper deceleration

of 𝑎yield
other in order to come to a full stop before the intersection.

We propose that these behaviors are connected, and that transitions between them

can be explained by whether or not the driver detects another traffic participant on

the intersecting road and the deceleration required to yield after detecting another

vehicle. These transitions are represented in the form of a diagram in Fig. 4-11, which

shows an approaching vehicle starts in the Cruising state, i.e., traveling toward an

intersection at a constant speed of 𝑣cruise
other . When no other traffic participant is observed

on the intersecting roadway, the approaching vehicle remains in the same state. The

transition from Cruising behavior occurs when the driver of the approaching vehicle

becomes aware of the ego vehicle on the intersecting roadway, i.e., when 𝐴𝑖
𝑡 is true,

since the ego vehicle has become observable for a period of at least 𝑇𝑟𝑒𝑎𝑐𝑡. This
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transition results in Yielding if the amount of deceleration required to come to a full

stop, 𝑎stop
other, does not exceed a limit of 𝑎yield

other, as the approaching vehicle can easily

come to a full stop in order to yield to the ego vehicle in this case. Otherwise,

the driver behavior switches from Cruising to Slowing down since the approaching

vehicle would have to decelerate too abruptly to stop, and therefore is likely to only

slow down and pass the intersection before the ego vehicle.

This proposed behavior model can be viewed as a more elaborate extension of

the worst-case scenario behavior model commonly used in related studies on virtual

obstacle-based motion planning, where occluded vehicles are assumed to maintain a

constant speed regardless of the situation, since it provides a behavior transition from

worst-case scenario behavior, i.e., Cruising, to other behaviors which can be observed

in real traffic. Even though the proposed behavior transitions are deterministic and

only conditioned on two factors, namely, observation of other traffic participants

and the amount of deceleration required for stopping, it can be further extended to

probabilistic transitions which are conditioned on other factors, e.g., the probability of

an approaching vehicle changing its state from Cruising to Yield could be set higher

in situations where it is traveling toward an intersection with a mandatory stop

4.4 Experiments

In order to validate the performance of the proposed intersection crossing planner at

occluded intersections, a closed-loop intersection crossing simulator was developed,

which allowed us to test the proposed planner under various visibility conditions and

sensor configurations while leaving other factors that might affect the output motion

unchanged. Fig. 4-12 shows the outputs of the closed-loop simulator, illustrating

the operation of the proposed planner during an intersection crossing event. The

simulation begins with the ego vehicle 50 meters from the intersection’s entrance,

traveling toward the intersection at the maximum speed of 8.3m/s. At each time step,

the simulator uses the output acceleration from the proposed planner to compute the

ego vehicle’s speed and position at the next time step. These processes are then
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Table 4.1: Values of major parameters used in occluded intersection crossing experi-
ments.

Parameter Value Parameter Value

𝑙ego 4.5 m 𝑤ego 1.7 m

𝑊ego 5.0m, 15.0 m 𝑊cross 5.0m, 15.0 m

𝑎cross
ego 3.0 m/s2 𝑎stop

ego -3.0 m/s2

𝑎yield
other -1.5 m/s2 𝑎slow

other -0.8 m/s2

𝑣cruise
other 8.3 m/s 𝑇𝑟𝑒𝑎𝑐𝑡 2.3 s

repeated every 0.1 seconds until the simulation times out after 20 seconds.

Three different experiments were carried out in order to highlight various char-

acteristics of the proposed planner.2 In each experiment, the planner was tested at

two intersections with different visibility conditions; one where the intersecting roads

were both 5 meters wide, and one where the intersecting roads were both 15 meters

wide. The major parameters used in these simulation experiments are summarized

in Table 4.1.

4.4.1 Baseline comparison

An initial experiment was carried out to verify the effectiveness of the visibility-

dependent behavior model for approaching vehicles at solving the deadlock problem.

The proposed planner was compared with a baseline model which assumed that an

occluded vehicle was approaching the intersection at a constant speed from outside

the area visible to the ego vehicle. In this experiment, the sensor was mounted 2

meters from the front end of the ego vehicle, i.e., 𝑋sensor = 2𝑚. Moreover, perception

accuracy was set to be 100%, i.e., 𝛼 = 1.0.

Fig. 4-12 shows a sequence of ego vehicle motions generated by the proposed

planner at a 5-meter-wide, blind intersection. The hypothetical occluded vehicles (or

“particles”) are depicted with either an × (representing a possible collision) or a ∙

(representing a collision-free crossing) depending on whether or not they will reach
2Videos of our experiment can be found at https://youtu.be/Bic2QL2RQps
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(a) Ego vehicle slows down and prepares to stop at the intersection’s entrance as its visibility,
shown by the green lines, is insufficient for crossing.

(b) Ego vehicle has come to a full stop at the intersection’s entrance. Even though its
visibility is still limited, it can be observed by other vehicles from some distance since its
front bumper is aligned with the edge of the intersection.

Figure 4-12: Examples of simulation results for four stages of ego vehicle motion when
crossing an occluded intersection.

the overlapping zone of the intersection before the ego vehicle finishes crossing, i.e.,

𝑡ego ≥ 𝑡other or 𝑡ego < 𝑡other, respectively. The colors of these particles indicate their

current behavior; green represents Yield behavior, yellow represents Slowing down

behavior and red represents Cruise behavior.
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(c) Ego vehicle begins to move into the intersection after it has stopped and estimated that
other, hidden vehicles have seen it waiting to cross. As a result of moving forward, the ego
vehicle gains additional visibility of the intersecting roadway.

(d) Ego vehicle crosses intersection as the visibility has become sufficient.

Figure 4-12: Examples of simulation results for four stages of ego vehicle motion when
crossing an occluded intersection. (cont.)

As can be seen in Fig. 4-12a, the ego vehicle slowed down as it approached the

intersection since its visibility, shown by the green lines, was very limited. Similarly,

the ego vehicle was observable by vehicles approaching on the intersecting roadway

only after they reached a position very close to the intersection, i.e., after entering
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the area between the two yellow lines. As depicted in Fig. 4-12b, the ego vehicle then

came to a full stop at the entrance to the intersection. From this position, the ego

vehicle’s visibility was still insufficient for crossing, however, the ego vehicle could now

be observed by approaching vehicles from a more distant location, as its front end

was now aligned with the corner. Therefore, some of the particles started to change

their behavior from Cruising to Slowing down or Yield, depending on their location.

As shown in Fig. 4-12c, once the ego vehicle had stopped at the intersection for some

time, all of the particles close to the intersection changed their behavior to Yield.

Consequently, the ego vehicle began crossing the intersection, as the safe crossing

condition defined in Eq. 4.1 was satisfied, as shown in Fig. 4-12d. As a result

of proceeding forward, the ego vehicle gained more visibility along the intersecting

roadway, causing the hypothetical occluded vehicles to be eliminated.

The proposed planner’s speed profile when crossing a 5-meter-wide intersection is

represented by the dashed green line in Fig. 4-13a. We can see that the ego vehicle

reduced its speed continuously until reaching a full stop. It then remained at rest

for a few seconds before starting to accelerate again. As for the baseline planner, its

speed profile is depicted by the solid red line in Fig. 4-13a. When approaching the

intersection, the baseline and proposed planners generated identical motion, therefore,

both speed profiles overlap perfectly. However, after the ego vehicle came to a full

stop, the baseline planner did not generate any crossing motion command due to

insufficient visibility. Consequently, the ego vehicle remained in a deadlocked situation

until the simulation timed out.

The estimated time of arrival (ETA) for the ego vehicle, 𝑡ego, and the predicted

occluded vehicle, 𝑡other, for both the baseline and proposed planners, are shown in

Fig. 4-13b. The green and cyan dashed lines represent 𝑡ego and 𝑡other, respectively,

as estimated by the proposed planner. Initially, 𝑡other was extremely low and it re-

mained almost unchanged. Meanwhile, 𝑡ego continuously decreased as the ego vehicle

approached the intersection at a constant speed. Since 𝑡ego remained larger than

𝑡other, the ego vehicle began braking. As the ego vehicle’s speed fell, 𝑡ego decreased

at a slower rate before beginning to increase again as the vehicle slowed to a full
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(a) Ego vehicle speed profiles at a 5 meter-wide, occluded intersection.

(b) Estimated time of arrival of ego and other vehicles at a 5 meter-wide,
occluded intersection.

Figure 4-13: Comparison of motion generated by proposed and baseline planners at
a 5 meter-wide, occluded intersection.

stop. After coming to a full stop, 𝑡ego remained constant, while 𝑡other began increasing

after a few seconds as the particles began to adjust their speed. The increasing 𝑡other

eventually surpassed the constant 𝑡ego, allowing the ego vehicle to begin crossing the

intersection. As the ego vehicle crossed the intersection, 𝑡ego began to drop until it

finally reached zero once the crossing of the intersection was completed.

For the baseline planner, plots of 𝑡ego and 𝑡other are identical to those for the
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(a) Ego vehicle speed profiles at 15 meter-wide, occluded intersection.

(b) Estimated time of arrival of ego and other vehicles at 15 meter-wide,
occluded intersection.

Figure 4-14: Comparison of proposed and baseline planners at a 15 meter-wide, oc-
cluded intersection.

proposed planner prior to the full stop, as shown in Fig. 4-13b. In contrast to the

proposed planner, however, 𝑡other and 𝑡ego remained almost unchanged after the stop,

causing the gap between them to remain nearly constant. As 𝑡other never exceeded 𝑡ego,

the ego vehicle continued to be trapped in a deadlock until the end of the simulation.

We also compared the two planners at an intersection with relatively better visi-
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bility, i.e., at an intersection of two roads that were both 15 meters wide. As shown

in Fig. 4-14a, the output speed profiles of both planners are identical. Initially, the

ego vehicle approached the intersection at a constant speed, then it started to slow

down in order to prepare for a stop prior to entering the intersection. However, as

it approached the intersection, the ego vehicle started to accelerate and crossed the

intersection without stopping.

Similarly, the estimated 𝑡other and 𝑡ego of the proposed and baseline planners are

indistinguishable, as can be seen in Fig. 4-14b. As the ego vehicle progressed toward

the intersection at a constant speed, 𝑡ego gradually declined, while 𝑡other increased at

an accelerating rate. Even though 𝑡ego started to rise due to braking, the ego vehicle’s

visibility increased exponentially as the ego vehicle reached the intersection, and 𝑡other

eventually exceeded 𝑡ego. This was the moment the ego vehicle started to accelerate

to cross the intersection.

4.4.2 Effects of perception inaccuracy

As mentioned in Section 4.2.3, the proposed planner utilizes a particle filter algorithm

for occluded vehicle prediction in order to account for uncertainty from the perception

module. This experiment aims to investigate how perception inaccuracy affects the

output motion of the proposed planner. The proposed planner was tested using

occluded intersections of both 5 and 15 meter-wide roadways using two different

perception accuracy values (𝛼 = 1.0 and 𝛼 = 0.7), while 𝑋sensor was set to 2 meters,

representing the location of a rooftop-mounted LiDAR unit.

When encountering the intersection of the 5 meter-wide roads, the speed profiles

shown in Fig. 4-15a indicate that, overall, the output motions of the proposed planner

are similar no matter which 𝛼 value is used. More specifically, when assuming perfect

perception (𝛼 = 1.0), the ego vehicle slowed down and came to a full stop prior to the

intersection. After a few seconds of waiting at the entrance to the intersection, the

ego vehicle finally began crossing it. However, in the case of imperfect perception,

i.e., when 𝛼 = 0.7, the ego vehicle remained at rest slightly longer before it started

crossing the intersection.

69



(a) Ego vehicle speed profiles at 5 meter-wide, occluded intersection.

(b) Estimated time of arrival of ego and other vehicles at 5 meter-wide,
occluded intersection.

Figure 4-15: Effects of perception noise on proposed planner at 5 meter-wide, occluded
intersection.

The effect of noisy perception is evident in Fig. 4-15b. The estimated time of

arrival of occluded vehicle, 𝑡other, appears to fluctuate more when 𝛼 = 0.7. Moreover,

𝑡other began exceeding 𝑡ego later than when perception was ideal.

Fig. 4-16a shows the resulting speed profiles for both perception accuracy settings

at an occluded intersection of two roads with a width of 15 meters. The output
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(a) Ego vehicle speed profiles at 15 meter-wide, occluded intersection.

(b) Estimated time of arrival of ego and other vehicles at 15 meter-wide,
occluded intersection.

Figure 4-16: Effects of perception noise on proposed planner at 15 meter-wide, oc-
cluded intersection.

motions at both settings are similar, i.e., the ego vehicle slowed down before crossing

the intersection without stopping. While both settings output similar motions, when

𝛼 was set to 0.7 the proposed planner generated a lower minimum speed and had

a more delayed crossing action than when 𝛼 = 1.0. Furthermore, as shown in Fig.

4-16b, the estimate of 𝑡other is noisier when perception is imperfect.
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4.4.3 Effects of sensor mounting position

As described in Section 4.2.2, one factor that significantly affects the ego vehicle’s

visibility at blind intersections is the sensor mounting position, 𝑋sensor. The purpose

of this experiment was to investigate the effects of the sensor mounting position on

the motion outputs of the proposed planner.

Two sensor positions were tested in this experiment. The sensor was either

mounted close to the vehicle’s center, i.e., 𝑋sensor = 2.0 meters, which is consis-

tent with a rooftop-mounted LiDAR unit, or the sensor was simulated to be mounted

at the front of the vehicle, i.e., 𝑋sensor = 0.0 meters, consistent with a front bumper-

mounted sensor. In both cases, 𝛼 was set to 1.0, representing perfect perception.

As can be seen in Fig. 4-17a, the output speed profiles for the two sensor locations

are clearly different when the intersecting roads are 5 meters wide. The green dashed

line shows that the ego vehicle came to a full stop and waited before crossing the

intersection when the sensor was mounted close to the vehicle’s center, 𝑋sensor = 2.0.

On the contrary, when the sensor was mounted at the front of the ego vehicle, as

illustrated by the solid blue line, the ego vehicle slowed down until it reached a

minimum speed of 1.82m/s before crossing the intersection without stopping.

Variation in the outputs of the proposed planner with different sensor mounting

positions can also be observed in Fig. 4-17b. When the sensor was front-mounted,

𝑡other increased rapidly as the ego vehicle was about to reach the entrance of the in-

tersection, as depicted by the blue line. Meanwhile, 𝑡other remained nearly unchanged

when using the center-mounted configuration.

At an intersection of two 15 meter-wide roads, an intersection with relatively

better visibility, the output speed profiles of the two sensor configurations are more

similar, as can be seen in Fig. 4-18a. In both cases, the ego vehicle slowed down

before accelerating again and continuing through the intersection. However, when

the sensor was mounted close to the center of the ego vehicle, the vehicle decelerated

until it reached a minimum speed of 3.32 m/s, which is 1.50m/s slower than when

the front-mounted sensor configuration was used.

72



(a) Ego vehicle speed profiles at 5 meter-wide, occluded intersection with
sensor at 0 and 2 meters from front bumper.

(b) Estimated time of arrival of ego and other vehicles at 5 meter-wide,
occluded intersection with sensor at 0 and 2 meters from front bumper.

Figure 4-17: Comparison of the effect of sensor mounting position on planner output
at 5 meter-wide, occluded intersection.

Despite slight variations in timing between the increase in 𝑡other and 𝑡ego, depend-

ing on the location of the sensor unit, the motion planning outputs for both sensor

positions were very similar at the intersection of the 15 meter-wide roads, as shown

in Fig. 4-18b.
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(a) Ego vehicle speed profiles at 15 meter-wide, occluded intersection with
sensor at 0 and 2 meters from front bumper.

(b) Estimated time of arrival of ego and other vehicles at 15 meter-wide,
occluded intersection with sensor at 0 and 2 meters from front bumper.

Figure 4-18: Comparison of effect of sensor mounting position on planner output at
15 meter-wide, occluded intersection.

4.5 Conclusion

In this chapter, we proposed a generic, deadlock-free motion planner that utilizes the

visibility of both the ego and approaching vehicles to generate safe crossing motion

74



at blind intersections. In order to support possible changes in the behavior of ap-

proaching traffic participants, based on their ability to see the ego vehicle, and to

account for uncertainty in perception accuracy, the proposed planner utilizes a parti-

cle filter algorithm for occluded vehicle prediction. To model the visibility-dependent

behavior of occluded vehicles at intersections, real driving data was collected from

multiple drivers when crossing blind intersections in a residential area, which was then

analyzed. Based on our analysis of the behavior of these vehicles when approaching

low-visibility intersections, an approaching vehicle behavior model, dependent on their

visibility of the ego vehicle, was introduced.

To validate the ability of our proposed method to overcome the deadlock problem

at blind intersections, the proposed planner was compared with a baseline planner that

simply assumed other vehicles were approaching from the occluded area at a constant

speed. Our comparison of the performance of the proposed and baseline planners in

a simulation experiment showed that the proposed planner could generate deadlock-

free crossing motion at a blind intersection of two narrow roads (each 5 meters wide),

while the baseline planner could not. The effects of perception accuracy and sensor

position on the output motion of the planner were also investigated. As for the effects

of noisy perception, it was found that inaccuracy in perception generally caused the

proposed planner to slightly delay its intersection crossing action. Furthermore, it was

found that the sensor mounting position significantly affected the motion output of

the proposed planner at intersections of narrow roadways with poor visibility. When

the sensor was mounted at the front of the ego vehicle, the vehicle slowed down but

did not stop prior to crossing the intersection. In contrast, when a center-mounted

sensor configuration was used, the ego vehicle slowed to a complete stop before it

started crossing the intersection.

It is important to note that while closed-form expressions were used in this in-

vestigation to estimate visibility at blind intersections, a more sophisticated visibility

estimation approach, such as the one used in our previous work described in Chap-

ter 3, could be used instead, enabling the proposed planner to deal with complex,

real-world environments.
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Furthermore, even though this work only considers potential occluded vehicles,

other types of traffic participants, such as pedestrians and cyclists, could also be

integrated into the occluded object prediction by properly defining their behavior

models. Moreover, as the proposed planner offers an approach for considering poten-

tial changes in the behavior of occluded traffic participants, it could be extended to

cover other situations where more than one behavior by the occluded dynamic objects

is possible, e.g., potential deceleration by an occluded cyclist who, after becoming vis-

ible, is warned by the ego vehicle’s horn. Note also that the concept of changes in the

behavior of occluded dynamic objects can be utilized within the POMDP framework

as well, to solve for the optimal action in more complex scenarios.
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Chapter 5

Visibility Prediction and

Quantification Using High Definition

Maps

5.1 Introduction

As autonomous driving technology advances, the scope of operation of autonomous

vehicles also expands, and they are increasingly expected to navigate not only along

relatively consistent, well-defined roadways like expressways, but also in more complex

environments such as cities. One of the problems faced when navigating in such

complex environments is occlusion which prevents autonomous vehicles from fully

observing the traffic environment. With incomplete knowledge of its surroundings,

safe motion planning becomes increasingly difficult for the vehicle.

In order to achieve safe, occlusion-aware motion planning, the ability to identify

the visible and occluded areas of any given location, based on the vehicle’s sensor con-

figuration, is indispensable, not only to estimate visibility at its current location but

also to predict visibility along the road ahead. In addition, a method of quantifying

these visibility conditions is equally essential for planning the ego vehicle’s motion

when encountering occlusions, especially its motion in the lateral direction, i.e., road
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Figure 5-1: Street view of a section of hilly road close to Nagoya University. The
occlusion in this scene is caused not only by the surrounding vertical structures, but
also by the contour of road itself.

position planning. Such a quantified approach would allow the ego vehicle to compare

two or more locations in terms of visibility and plan its motion accordingly.

Several related studies have used simple 2D shapes to represent objects in driving

scenes, in order to use geometry to estimate the visible area of the driving environ-

ment from the vehicle’s point of view. While computationally inexpensive, such an

approach may not be applicable in complex terrains, such as on the hill shown in

Fig. 5-1, where occlusions are caused not only by surrounding objects but also by the

undulating contour of the road itself.

In this chapter, a method of estimating visibility in such complex driving environ-

ments is proposed. In addition, a visibility ratio, which is a number that represents

the degree of visibility from a particular location, is introduced. The proposed method

uses high-definition (HD) maps, which are a combination of 3D point clouds and road

network maps, to estimate visibility at any viewing point within the maps. The pro-

posed approach first approximates a 3D scan at the specified viewing point using a 3D

point cloud map and a sensor configuration. The scan is then projected onto an image

plane to create a depth image. A similar projection is applied to a set of 3D points

representing the area above the surrounding road’s surface, which are obtained from

a road network map. Subsequently, a depth buffering algorithm is used to determine
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which regions of the road network are visible from a specified viewing point. Finally,

the visibility ratio is calculated by dividing the visible area of interest by the total

driving environment relevant to the location of the viewing point.

The proposed method was tested in both simple, simulated environments and in

complex, real-world settings with irregular terrain, and our experimental results show

that the proposed method is able to estimate visibility in both settings. Moreover,

the visibility ratio was found to be indicative of changes in visibility under several

conditions, such as when the vehicle’s lateral position was varied at an intersection, or

when driving up or down a hill. These experimental results suggest that the proposed

method could be used to predict and quantify the visibility conditions of any location

contained within the HD maps.

The main contributions of this work are as follows:

• An approach to estimate visible and occluded regions of complex driving envi-

ronments using HD maps.

• The concept of a visibility ratio that represents the degree of visibility from any

location with a numerical value, as well as a practical method of calculating

such a value.

The remainder of this chapter is organized as follows: In Section 5.2, the proposed

visibility estimation method is described in detail. Experimental conditions and re-

sults, in both simulated and real-world driving environments, are presented in Section

5.3, along with a discussion of these results. Finally, in Section 5.4, our conclusions

and the limitations of the proposed method are provided.

5.2 Visibility estimation using HD maps

In this section, the proposed visibility estimation algorithm is explained in detail.

First, the concept of how to estimate the visible regions of a driving environment using

a road network map and a 3D scan is described. Next, an approach to approximate
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Figure 5-2: Projection of 3D points onto a 2D image plane. A set of 3D points
representing the area of interest is projected onto a depth image. By comparing the
resulting depth image with those of other objects in the scene, we can estimate which
regions of the area of interest are visible from the specified viewing point.

the required 3D scan from a point cloud map is presented. Finally, the method for

calculating a visibility ratio is explained.

5.2.1 Estimation of visible regions

The proposed algorithm depends heavily on the ability to determine which regions

of the driving environment are observable from a specified location. The task of

identifying whether an object in a scene is visible from a given viewpoint has been

well-studied in the field of computer graphics. One of the standard algorithms for

solving such problems is the depth buffering or z-buffering algorithm.

The depth buffering algorithm works by first projecting 3D points representing

an object’s surface, onto a 2D image, 𝒟. The width and height of image 𝒟 are fixed

and denoted by 𝒟horizontal
resolution and 𝒟vertical

resolution, respectively. As illustrated in Fig. 5-2, the

3D coordinates [𝑥, 𝑦, 𝑧]⊤ of each representative point 𝑝 on the object’s surface are

converted into a corresponding pixel position on an image plane [�̄�, 𝑣]⊤. Each pixel
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of image 𝒟(�̄�, 𝑣) contains the distance from the viewing point to the object’s surface

or depth, 𝑑.

This process is repeated for all of the objects in the scene. Therefore, each 3D

object 𝒪 has an associated depth image 𝒟. In order to determine whether or not the

object of interest, denoted by 𝒪interest, is visible from a particular viewing point, depth

image 𝒟interest is compared with the depth images of other objects, 𝒟1, . . . ,𝒟𝒩object ,

where 𝒩object is the number of other objects in the scene, a comparison which is

performed pixel by pixel. Suppose the depth value of 𝒟interest at pixel [�̄�, 𝑣]⊤ is

smaller than those of the other objects at the same pixel position. In that case, the

object of interest is visible at coordinates [𝑥, 𝑦, 𝑧]⊤ which corresponds to pixel [�̄�, 𝑣]⊤.

In the case of driving environments, the object of interest is the space above the

road surface that may be occupied by other vehicles or obstacles. A set of 3D points

representing the surface of the lane’s center, 𝒫lane = {𝑝lane1, . . . , 𝑝lane𝒩lane
}, where

𝒩lane is the total number of surface points, are first extracted from a road network

map. Each point on the lane’s surface can be defined as follows:

𝑝lane𝑖 =

⎡⎢⎢⎢⎣
𝑥lane𝑖

𝑦lane𝑖

𝑧lane𝑖

⎤⎥⎥⎥⎦ . (5.1)

A representative point in the area above the lane is then obtained by shifting the

z-coordinate of the extracted lane surface point upward by fixed value ℋobject:

𝑝interest𝑖 =

⎡⎢⎢⎢⎣
𝑥interest𝑖

𝑦interest𝑖

𝑧interest𝑖

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑥lane𝑖

𝑦lane𝑖

𝑧lane𝑖 +ℋobject

⎤⎥⎥⎥⎦ . (5.2)

By projecting all of the resulting points, 𝒫interest = {𝑝interest1, . . . , 𝑝interest𝒩interest
}, onto

an image plane, depth image 𝒟interest is generated. In order to generate depth images

of other objects in the environment, 𝒟1, . . . ,𝒟𝒩object , surface points of each of those

objects are required. However, it is not necessary to create a separate depth image
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for each individual object, as the goal is only to determine whether the object of

interest, i.e., the area above the lane’s surface, is visible or occluded by any other

object in the scene. Consequently, surface points of all the surrounding objects can

be collectively projected onto a single depth image designated 𝒟other. Depending on

the density of the 3D scan, output depth image 𝒟other may be sparse. In order to

address the sparsity problem, box filtering is applied to 𝒟other. As a result, many of

the empty pixels of 𝒟other are filled.

Filled depth image 𝒟other is then directly compared with 𝒟interest to determine

the visible regions of the area of interest. Using this approach, if a 3D scan of the

environment captured by a LiDAR unit is available, the scan points can be used

directly as the surface points of the objects in the scene. Therefore, it is possible to

determine which regions of the driving environment are visible by the sensor from the

location where the scan was captured from.

5.2.2 3D scan approximation using a point cloud map

As described in 5.2.1, if a road network map and a 3D scan of the local surroundings

acquired by a LiDAR sensor are both available, visibility of the driving environment

from the sensor’s point of view can be estimated. However, this estimated visibility is

the visibility from a single position, i.e., the position of the sensor when the scan was

obtained. Therefore, 3D scans from different points of view are needed to estimate

visibility for the entire environment.

In order to approximate 3D scans acquired from different locations, a point cloud

map is used. Let 𝒫map = {𝑝map1, . . . , 𝑝map𝒩map
} be the available 3D point cloud map,

where 𝒩map is the number of points in the map. To simulate a 3D scan captured

at a target position 𝑝target by a LiDAR unit with the sensing range of 𝒮range, points

neighboring 𝑝target in 𝒫map within the radius of 𝒮range are selected to construct a base

scan as follows:

𝒫base = {𝑝map ∈ 𝒫map | ‖𝑝map − 𝑝target‖ < 𝒮range} . (5.3)
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Each of the selected points is then transformed to a local coordinate of the simulated

sensor as follows:

⎡⎣𝑝′base𝑖

1

⎤⎦ =

⎡⎣R3×3 T3×1

0 1

⎤⎦−1

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥base𝑖

𝑦base𝑖

𝑧base𝑖

1

⎤⎥⎥⎥⎥⎥⎥⎦ (5.4)

where T3×1 and R3×3 are a 3D translation vector and a 3D rotation matrix, respec-

tively. T3×1 and R3×3 represent the position and orientation of the LiDAR sensor

with respect to the coordinate system of point cloud map 𝒫map, respectively. The

transformed point cloud 𝒫 ′
base contains all of the points within the sensing range of

the simulated LiDAR unit. However, some of the points in 𝒫 ′
base would not have been

captured if an actual sensor had been to be placed at the specified viewing point, as

some of them would have been outside of the sensor’s field of view (FOV) or occluded.

These points need to be removed in order to obtain a realistic, simulated 3D scan

from the specified location. The removal of these points is done by projecting all of

the points in 𝒫 ′
base onto depth image 𝒟other. The pixel position (�̄�, 𝑣) and the depth

value 𝑑 of the projected points can be calculated as follows:

�̄� =

⌊︂
arctan(

𝑦

𝑥
)× 𝒟

horizontal
resolution

2𝜋

⌉︂
(5.5)

𝑣 =

⌊︃
(arctan(

𝑧√︀
𝑥2 + 𝑦2

)× 180

𝜋
− 𝒮 lower

angle )×
𝒟vertical

resolution

𝒮vertical
FOV

⌉︃
(5.6)

𝑑 =
√︀

𝑥2 + 𝑦2 + 𝑧2 (5.7)

where 𝒮vertical
FOV is the vertical field of view of the sensor in degrees, which is equivalent

to:

𝒮vertical
FOV = 𝒮upper

angle − 𝒮
lower
angle . (5.8)

After the projection, only pixels that fall within the depth image, i.e., {(�̄�, 𝑣) : 0 ≤

�̄� < 𝒟horizontal
resolution , 0 ≤ 𝑣 < 𝒟vertical

resolution}, are kept, as they correspond to points within

the sensor’s field of view. Furthermore, if multiple points fall onto the same pixel
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Figure 5-3: Area of interest in the context of driving. The yellow shaded area indicates
the range of the sensor (𝒮range). A set of lane segments within the yellow area is
defined as ℒneighbor, while ℒreachable represents lane segments that share the direction
of travel and reachable from 𝑝target (highlighted in green). The segments highlighted
in red represent ℒintersect, which are intersecting lane segments that could potentially
be occupied by oncoming vehicles.

position, the point with the minimum depth value is kept since it is not occluded by

other points.

The resulting depth image 𝒟other can then be reverted into a 3D scan. However,

for the estimation of visible regions, 𝒟other can be up-sampled using box filtering and

then compared directly with 𝒟interest.

5.2.3 Calculation of visibility ratio

By using the approach described in Sections 5.2.1 and 5.2.2, it is possible to determine

which regions are visible from a specified viewing point. However, in some circum-

stances, it is useful to encapsulate the visibility information for a specified location in

a single numerical value, e.g., when comparing the visibility of two locations. There-

fore, the concept of a visibility ratio is introduced. A visibility ratio, denoted by 𝒱 , is

a number representing the degree of visibility from a particular location. It is defined

as a ratio between the area visible from the specified location and the total area of

interest. The value of a visibility ratio can range from 0 to 1, where 0 indicates the
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area of interest is entirely occluded, while 1 indicates the area of interest is entirely

visible.

Suppose a visibility ratio for position 𝑝target, shown as a blue arrow in Fig. 5-3, is

to be calculated. First, the area of interest needs to be defined. Let ℒneighbor be a set

of lane segments within the sensor’s range (𝒮range) measured from 𝑝target. Under the

assumption that traffic participants will not travel against a lane’s intended direction,

the area of interest, i.e., the relevant area in the context of driving, at position 𝑝target,

consists of the space above subsets of ℒneighbor which are located on the following

lanes:

• Lanes with the same driving direction that are reachable from position 𝑝target,

denoted by ℒreachable.

• Lanes with the opposite driving direction from position 𝑝target that intersect any

of the ℒreachable lanes, denoted by ℒintersect.

Therefore, ℒreachable ∪ ℒintersect represents all of the relevant lane segments which

are potentially observable from position 𝑝target. After the relevant lane segments

are identified, a set of 3D points representing the area above those segments, i.e.,

𝒫interest = {𝑝interest1, . . . , 𝑝interest𝒩interest
}, and a corresponding depth image, 𝒟interest,

can be obtained from a road network map as described in Section 5.2.1. Next, a

depth image of the environment, 𝒟other, is generated using the approach explained in

Section 5.2.2. Let 𝒩 visible
interest be the number of points in 𝒫interest that are visible from

𝑝target. By comparing 𝒟other with 𝒟interest, 𝒩 visible
interest can be determined. Finally, as-

suming that the points in 𝒫interest are uniformly distributed across the surface of the

lanes, a visibility ratio 𝒱 can be calculated as follows:

𝒱 =
𝒩 visible

interest

𝒩interest
, (5.9)

where 𝒩interest is the total number of points in 𝒫interest.
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Table 5.1: Parameters used for visibility estimation.

Parameter Value Parameter Value

ℋobject 1.5m 𝒮range 200.0m
𝒟horizontal

resolution 720 pixels 𝒟vertical
resolution 64 pixels

𝒮upper
angle 2.0 deg 𝒮 lower

angle -26.8 deg

5.3 Experiments

The proposed method was tested in both simulated and real-world driving environ-

ments. The goal of the first experiment was to verify that the proposed algorithm can

determine visibility in relatively simple driving environments, therefore, a simulated,

urban area was used. The goal of the second experiment was to confirm that the

proposed approach is also applicable to complex, real-world environments, therefore,

HD maps of a real-world location were created and used for visibility estimation. The

same set of parameters, which are listed in Table 5.1, was used in both experiments.

5.3.1 Evaluation in a simulated environment

As the objective of the first experiment was to validate the proposed method in

a simplistic landscape, Town01 of the CARLA simulator was selected as the test

environment [78]. Town01 is a simulated urban area with entirely flat terrain. It

has a right-hand traffic system that consists of two-lane roads and intersections. The

HD maps for Town01, which include both road network and point cloud maps, were

obtained from a publicly available source.1

Visibility along Town01 roadways was estimated using the proposed method, un-

der the assumption that the sensor was located at the center of the lane, parallel to

the ground, and pointed directly forward in alignment with the lane’s travel direc-

tion. The resulting visibility estimations are shown in Fig. 5-4. The color of a lane

indicates visibility at each location, where lighter colors are associated with higher

visibility and darker colors with lower visibility. As can be seen in Fig. 5-4, straight
1HD maps of Town01 can be downloaded from https://bitbucket.org/carla-simulator/

autoware-contents/src/master/maps/
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Figure 5-4: Visibility of the driving environment in CARLA’s Town01 as estimated
using the proposed method. Lighter colors represent areas with higher visibility, while
darker colors indicate lower visibility locations.

road segments tend to have higher visibility than areas close to intersections or cor-

ners. Apart from the distance to junctions or curves, a lane’s direction of travel also

affects how visibility changes. As indicated by the color gradient in the figure, visi-

bility gradually decreases when a lane approaches a junction or corner, until reaching

the area immediately preceding an intersection or corner, where it starts to increase

again. As a vehicle travels away from a junction or a curve towards a straight segment

of the road, visibility increases rapidly.

This is an expected result, as the terrain is completely flat. In such an environ-

ment, occlusions are likely to be caused only by vertical objects such as buildings or

walls located near intersections or corners. The more cluttered the area, the lower its
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(a) Original intersection.

(b) Modified (occluded) intersection.

Figure 5-5: Comparison of visibility at the original and modified reference intersec-
tions in CARLA’s Town01. The modified intersection has additional objects, i.e.,
kiosks and a bin, placed near the corner of the building to limit visibility.

visibility tends to be.

In order to investigate the effects of occluding objects on visibility near intersec-

tions, an additional experiment was conducted. The intersection highlighted by the

red rectangle in Fig. 5-4 was selected as a reference location. The selected intersection

was then modified by adding three small kiosks and a bin close to the intersection to

further obstruct the view. Fig. 5-5a shows the reference intersection from the original

Town01, and the modified intersection is shown in Fig. 5-5b.

The point cloud map of the modified Town01 was created using an open-source
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Figure 5-6: Comparison of visibility at the original and modified intersections shown
in Fig. 5-5.

tool.2 Visibility estimation was then performed using the proposed algorithm under

the same assumptions as for the previous experiment. Fig. 5-6 shows the visibility of

the lane leading to the reference intersection, i.e., the right-hand lane shown in the

red rectangle in Fig. 5-4, in both the original and modified Town01 intersections. The

dashed blue line in Fig. 5-6 represents visibility at the modified intersection, revealing

that visibility remains significantly lower prior to the modified intersection, i.e., at

𝑦 = −215𝑚 to 𝑦 = −205𝑚, compared to visibility prior to the original intersection,

represented by the solid blue line. Note that the 𝑥 and 𝑦 values given in the rest of

this chapter, are in reference to a Cartesian grid used to identify locations in Town01

as a whole, and do not represent distances from corners or intersections, etc.

In the previous experiments, the sensor was assumed to be located at the exact

center of the lane. Consequently, the visibility estimated in those experiments rep-

resents the visibility of the driving environment a vehicle will have at each location

2The tool for point cloud map creation is available at https://github.com/carla-simulator/
ros-bridge/tree/master/pcl_recorder
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(a) Visibility at original intersection.
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(b) Visibility at modified intersection.

Figure 5-7: Effects of lateral position shift on ego vehicle visibility at the original and
modified intersections shown in Fig. 5-5.
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if it stays at the center of the lane, assuming its sensor is mounted at the center of

the vehicle. However, if a vehicle deviates from the lane’s center, its visibility will be

altered. To examine the effects of lateral shift from the lane’s center on ego vehicle

visibility, the visibility of the selected intersection was also estimated under the con-

dition that there is a 2-meter deviation from the center of the lane, to either the left

or right.

Fig. 5-7a shows visibility from the perspective of the ego vehicle at the original

reference intersection from three different lateral positions (lane center, 2 meters to

the left of center and 2 meters to the right of center). As can be seen from the

figure, visibility tends to be lowest when the vehicle is located on the right side of

the lane, especially in the area close to the entrance of the intersection. Moreover,

keeping left appears to result in slightly better visibility than staying in the middle

of the lane at this intersection. Similar patterns were also found at the modified

(occluded) intersection, as shown in Fig. 5-7b. In the case of the modified intersection,

where more occluding objects are present, the visibility gain from keeping left is most

apparent right before the intersection, i.e., at 𝑦 = −207𝑚 to 𝑦 = −205𝑚.

This improvement in visibility when driving on the left side of the lane is likely

caused by the increased line-of-sight angle, which is the angle measured horizontally

from the forward direction of the sensor to the edge of the closest occluding object.

A larger line-of-sight angle generally translates into a broader field of view. As the

occluding objects at the reference intersection were on the right side, moving to the

left increased the line-of-sight angle and, consequently, visibility along the intersecting

roadway.

5.3.2 Evaluation in a real-world environment

In order to verify that the proposed algorithm is also applicable to complex, real-world

environments, a second experiment was conducted using a location in a real neigh-

borhood near Nagoya University, in Nagoya, Japan. Point cloud and road network

maps of the area were created using the Mobile Mapping System (MMS) developed

by Mitsubishi Electric Corporation.
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Figure 5-8: Road network map of an area near Nagoya University, where colors
indicate road elevation.

Although an MMS was used to create point cloud and road network maps in this

experiment, it is worth noting there are other ways to generate HD maps. Point cloud

maps could be generated by using Simultaneous localization and mapping (SLAM)

algorithms [79,80]. SLAM algorithms mainly utilize LiDAR scans captured from the

environment to estimate the mapping platform’s trajectory during the data collec-

tion. With the estimated trajectory, captured scans can be transformed to the correct

coordinates and then combined to create a point cloud map. Road network maps can

be generated automatically by extracting information such as road and lane bound-

aries from the point cloud maps of the same environment [81, 82]. However, more

often than not, road network maps are created manually using specialized software,

which allows users to use the point cloud maps of the same driving environment as
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Figure 5-9: Visibility map of a residential area near Nagoya University (detail of area
enclosed in dashed red rectangle in Fig. 5-8).

references.3

The road network map is shown in Fig. 5-8, where colors are used to indicate

the elevation of the road. Unlike the simulated urban environment in the previous

experiment, it is apparent from this map that the roads in this area are not all level,

as a significant change in elevation can be observed in several locations.

A section of this real-world neighborhood with some resemblance to the environ-

ment used in the previous experiment was first investigated. The targeted region,

indicated by the dashed red rectangle in Fig. 5-8, is a residential area that consists

of narrow roads, intersections and buildings.4 As can be seen from the road network

3Commonly used free software for creating road network maps include VectorMap-
Builder (https://tools.tier4.jp) and ASSURE mapping tools (https://github.com/hatem-darweesh/
assuremappingtools)

4A satellite view of the targeted residential area can be found at https://www.google.com/maps/
@35.1617009,136.957285,235m/data=!3m1!1e3
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map, the selected residential area is relatively flat, similar to Town01 of the CARLA

simulator.

Fig. 5-9 shows visibility in the selected area as estimated using the proposed

method. The arrows in the figure indicate a lane’s direction of travel, while the colors

of the arrows indicate the visibility from that location. Similar to the results shown

in Fig. 5-4, visibility slowly decreases as a lane approaches intersections and quickly

increases as the lane exits intersections and continues along straight segments of the

roads. Moreover, overall visibility in the selected area appears to be low, as was

expected since the area is cluttered with buildings, while the straight segments of the

road are relatively short.

Additionally, in order to investigate the effects of uneven terrain on visibility, a

hilly segment of the road, located in the area enclosed by the dashed blue rectangle

in Fig. 5-8, was chosen as another region of interest. Fig. 5-1 is a photograph of

the selected road segment. In contrast to CARLA Town01, Japan uses a left-hand

driving traffic system, therefore, the photograph illustrates the surroundings from

the vehicle’s point of view as it travels uphill in the left lane.5 As can be seen in the

photograph in Fig. 5-1, visibility further along the road is obscured by the undulating

contour of the road itself, with zero visibility of the other side of the hill.

Visibility at the selected hill was estimated using the proposed algorithm, and is

shown in Fig. 5-10, where it can be observed that visibility gradually decreases as the

road approaches the top of the hill, but as the road begins to go downhill visibility

increases sharply. The visibility profile of both lanes, along with the hill’s elevation

profile, are shown in Fig. 5-11. The visibility profiles reveal that there also appears

to be a significant drop in visibility around 𝑦 = −94150𝑚 to 𝑦 = −94100𝑚 in both

lanes.

These changes in visibility were mainly caused by the change in the road’s slope.

If a vehicle is traveling uphill in the left lane, as illustrated in Fig. 5-1, its visibility

profile will be similar to the blue line in Fig. 5-11. As the vehicle approaches the

5The Google Streetview of the selected hill can be found at https://goo.gl/maps/
eW1V2uzJEW3GP2Gt5
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Figure 5-10: Visibility map of a hill near Nagoya University (detail of area enclosed
in dashed blue rectangle in Fig. 5-8).

bottom of the hill, at 𝑦 = −94200𝑚, its sensor will remain almost horizontal as the

area is relatively flat. The farthest position it can observe from this location will

be the bottom of the hill, i.e., 𝑦 = −94150𝑚. Since the farthest position that is

visible will not change until the vehicle begins to go uphill and its sensor starts to

point upward, its visibility will decrease as it gets closer to the bottom of the hill.

As soon as the vehicle starts to go uphill, its visibility will increase sharply, as the

farthest position it can now observe has become the top of the hill. After that, the

vehicle’s visibility will gradually decrease again until it reaches the top of the hill,
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Figure 5-11: Visibility and elevation plot of the hill shown in Fig. 5-10. Left and
right lanes are defined according to the driving scenario shown in Fig. 5-1.

but will finally increase once more as it starts descending the other side of the hill.

A similar but opposite sequence of events will happen to vehicles traveling in the

opposite direction, as indicated by the orange line in Fig. 5-11.

5.4 Conclusion

In this chapter, we have proposed a visibility estimation method that can be used

in complex, real-world driving environments, as well as a method of quantifying vis-

ibility at a particular location in the driving environment. The proposed visibility

estimation method utilizes HD maps that include both 3D point clouds and road

network maps. The 3D point cloud map is used to approximate a 3D scan taken from

a specified viewpoint. The approximated scan and 3D points representing the area

of relevant surrounding lanes are projected onto depth images. The resulting depth

images are then compared in order to determine the visible and occluded regions

of the driving environment from that particular viewpoint. The proposed approach
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was experimentally verified to be effective in both simulated and real-world driving

environments, including a real driving environment with complex, hilly terrain.

The proposed visibility ratio, which is a numerical value representing the degree

of visibility from a particular location, is computed by dividing the visible area of

interest by the total relevant driving area. Our experimental results suggest that the

visibility ratio calculated using the proposed method is representative of actual road

visibility from a specified location.

As the proposed method is able to identify the areas of a driving environment that

are visible and occluded from a specified viewpoint, it could be used in the motion

planning stage to determine occluded regions of the surrounding roads from the ego

vehicle’s current point of view. The information regarding occluded areas could then

be used for predicting unobserved traffic participants that may pose a collision risk to

the ego vehicle. Additionally, since the visibility ratio is representative of the degree

of visibility from a particular location, it could be used as one of the costs of an

optimization-based motion planner, so that the vehicle would not only avoid collision

with observable objects but also reduce its potential risk of colliding with hidden

objects by actively gaining more visibility of the traffic environment via active road

position adjustment.

Since the proposed method relies on HD maps, its accuracy is highly dependent

on the quality of the information available in those maps. Furthermore, it cannot

detect occlusions caused by dynamic objects which are not included in the point cloud

maps. Moreover, there are other sources of occlusion apart from objects present in

a driving scene, such as adverse weather conditions, which have been reported to

cause degradation in sensor performance in several studies [83–86]. The dynamic

object problem could potentially be mitigated by leveraging detection results from

the perception module. As for limitations due to adverse weather, sensor fusion

seems to be one of the more promising solutions. However, both problems remain to

be investigated and resolved.
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Chapter 6

Road Position Adjustment for

Maximizing Visibility

6.1 Introduction

In complex driving scenarios, ranging from urban streets full of obstacles and low-

visibility intersections, to hilly and winding roads in rural areas, it is almost impossible

for autonomous vehicles to obtain complete information about the driving environ-

ment at all times due to occlusions, i.e., sensor blind spots caused by obstructions.

In order to navigate safely in areas with occlusions, the visibility conditions of the

driving environment must be considered during the motion planning stage.

The topic of visibility-aware, or occlusion-aware, motion planning has gained in-

creasing attention in recent years. However, despite the steadily growing body of

research on motion planning in areas with limited visibility, the majority of existing

studies have focused almost exclusively on longitudinal motion planning, in which the

autonomous vehicle is either assumed to be driving exclusively in the center of a lane

or along a pre-generated trajectory. In many situations, by strategically making the

autonomous vehicle deviate from the center of its lane, occlusion can be significantly

reduced, i.e., visibility of the driving environment can be increased, increasing the ego

vehicle’s chances of discovering hidden traffic participants. Therefore, ignoring road

position adjustment during motion planning can result in inefficient output motion.
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A few studies have considered optimizing the ego vehicle’s lateral position, or road

position, in order to proactively improve visibility. However these approaches tend to

be scenario-specific, e.g., they are designed specifically for intersection crossing [34,43]

or passing parked vehicles [65]. Another component missing from existing approaches

is the use of highly accurate visibility estimation. In most of these studies, visible

region estimation is typically performed by representing surrounding obstacles with

simple 2D geometric shapes and then performing ray-casting. While using 2D repre-

sentation is computationally efficient, it results in inaccurate estimation of visibility

in areas with complexly-shaped obstacles or undulated terrain. Lastly, uncertainty

within the perception modules used for localization and object detection is rarely

taken into consideration.

In this chapter, we propose a motion planner capable of actively adjusting the ego

vehicle’s lateral position within its lane, i.e., its road position, to minimize occlusions,

which is achieved by estimating current and future visibility. The planner proposed

in this chapter is applicable in various scenarios and tolerates realistic uncertainty

from perception modules. Additionally, this work extends the 3D visibility estima-

tion approach described in Chapter 5, which allows the proposed system to handle

occlusions caused by objects that are not present in high-definition (HD) maps by

incorporating live sensing data from the onboard LiDAR unit during the estimation

process.

The road position adjustment-capable motion planner proposed in this chapter

first generates several physically feasible trajectories for the ego vehicle from its cur-

rent position, using different lateral offsets from the reference path. Visibility along

each candidate trajectory is then estimated in 3D using HD maps and live sensing

data, in order to achieve accurate estimation in complex environments. Subsequently,

the visibility conditions of each trajectory are quantified and converted into a visi-

bility cost. Finally, the optimal trajectory is selected from the generated candidates

based on visibility and other planning costs.

The proposed planner was tested in the CARLA simulator [78] in three different

scenarios where occlusions were present. These test scenarios consisted of crossing a
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T-junction, making a right turn, and preparing to pass a parked vehicle not present

in the HD maps. In order to verify that the proposed planner is practical under

conditions of perception uncertainty, actual localization and object detection results

obtained in real-time were used. Our experimental results showed that the proposed

planner could generate a trajectory that allowed the ego vehicle to minimize occlusions

and consequently detect occluded traffic participants earlier than the baseline planner

in most cases. Furthermore, our improved visibility estimation approach was able to

accurately estimate occlusions caused by a parked vehicle, even though it was not

present in the HD maps.

The main contributions of this work are as follows:

• A motion planner capable of actively adjusting the ego vehicle’s lateral posi-

tion to minimize occlusions, which is applicable in various scenarios and under

conditions where perception uncertainty is present.

• Extension of our previously proposed visibility estimation approach for handling

occlusions caused by objects which do not appear in HD maps, by incorporating

live sensing data.

The remainder of this chapter is organized as follows: In Section 6.2, details of our

proposed motion planner are provided, including conversion of visibility conditions

into trajectory costs, as well as optimal trajectory selection. In Section 6.3, details

of our approach for estimation of visibility at specified locations using 3D HD maps

and live sensing data are provided. In Section 6.4, the details of the experimental

procedure used to assess the proposed planner are given. Our experimental results

when using the proposed and baseline planners in multiple variations of the three

scenarios described above, i.e., T-junction crossing, turning right, and preparing to

pass a parked vehicle, are presented in Sections 6.4.1, 6.4.2, and 6.4.3, respectively.

Finally, the conclusions of this investigation are provided in Section 6.5.
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6.2 Proposed motion planner

This section provides the operational details of our proposed motion planner, which

is based on OpenPlanner [21], an open-source, integrated planner used for mobile

robot navigation in highly dynamic environments. OpenPlanner includes various

components such as a global planner, a trajectory generator and a behavior state

generator.1 The difference between our proposed planner and OpenPlanner is mainly

in the local planning stage, where our planner generates a set of candidate trajectories

and then selects the best trajectory. Additionally, the proposed planner includes a

visibility estimator that can quantify the visibility conditions of a specified location.

Unlike the local planner in OpenPlanner, the proposed planner also considers visibility

along the candidate trajectories, in addition to other standard planning criteria such

as the risk of collision with detected obstacles, lane center deviation and stability.

The overall architecture of our proposed planner is described in Section 6.2.1. In

Section 6.2.2, integration of the visibility cost of the candidate trajectories, which is

the primary improvement over the original OpenPlanner, is presented in detail.

6.2.1 Planner architecture

Fig. 6-1 shows the overall architecture of our proposed motion planner, which consists

of three main components: a global planner, a local planner, and a visibility estimator.

Since the proposed planner shares a similar design with OpenPlanner, some of its

components, namely the global planner and the behavior state generator inside the

local planner, are adopted into the planner proposed in this work. These components

are shown with dashed boundaries in Fig. 6-1.

The objective of the global planner is to find the optimal route from the vehicle’s

starting position to its destination. A road network map, which contains information

on lanes, intersections, traffic directions, speed limits, and traffic signs, is used by the

global planner to construct a routing graph. Consequently, dynamic programming is

1The latest source code of OpenPlanner can be found at https://github.com/hatem-darweesh/
autoware.ai.openplanner
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Figure 6-1: Architecture of the proposed motion planner.

applied to calculate the best route from the starting vertex to the goal vertex in the

routing graph.

After the global route is determined, it is utilized by the local planner as a ref-

erence for creating candidate trajectories, i.e., rollout generation. The local planner

generates a total of 𝒩rollout rollouts along the global reference path. The generated

rollouts are denoted by {ℛ𝑟}𝒩rollout
𝑟=1 . All rollouts are parallel to the global path and

are spaced evenly to each side of the reference path, with each rollout being 𝒲rollout

apart from the adjacent candidate trajectories. The rollouts originate from the ego

vehicle’s current position and extend forward longitudinally to the end of the plan-

ning horizon (ℋplanning). Fig. 6-2 shows an example of rollouts generated by the local

planner.

Each rollout has associated costs, including a center cost (𝑐center), transition cost

(𝑐transition), longitudinal collision cost (𝑐lon
collision), lateral collision cost (𝑐lat

collision), and

visibility cost (𝑐visibility). Each cost indicates how good or bad a candidate trajectory

is relative to other candidate trajectories regarding that particular aspect of the tra-

jectory. A summation of the costs for all of the generated rollouts in a particular

cost category is equal to one. The calculation of common planning costs, i.e., 𝑐center,

𝑐transition, 𝑐lon
collision, 𝑐lat

collision, is the same as described in [21]. Visibility cost 𝑐visibility
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Figure 6-2: Generation of candidate trajectories.

is calculated using visibility ratio 𝒱 , a numerical value that quantifies the visibility

condition at a specified location from the perspective of the ego vehicle, as proposed

in Chapter 5 and improved upon in this work. As shown in Fig. 6-1, the visibility es-

timator takes a road network map, a point cloud map, the ego vehicle’s current pose,

and live LiDAR data as inputs, and outputs visibility ratio 𝒱 , which is then utilized

by the local planner. More information about the visibility estimator is provided in

Section 6.3. A weighted sum of all of the costs associated with each rollout (𝒞) is

calculated as follows:

𝒞 = 𝑤center𝑐center + 𝑤transition𝑐transition + 𝑤lon
collision𝑐

lon
collision

+ 𝑤lat
collision𝑐

lat
collision + 𝑤visibility𝑐visibility (6.1)
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where 𝑤center, 𝑤transition, 𝑤lon
collision, 𝑤lat

collision, and, 𝑤visibility are normalized weights. Fi-

nally, the rollout with the lowest 𝒞 is selected as the output trajectory.

After the output trajectory is selected, the behavior state generator, adopted

from [21], determines the output action, i.e., going forward along the same trajectory,

stopping or changing the trajectory, based on information about surrounding obstacles

and traffic light status.

6.2.2 Visibility cost calculation

The visibility cost of each rollout (𝑐visibility) is calculated from the visibility ratios

𝒱 of positions sampled evenly along the rollout. Let a total of 𝒩sampling sampled

locations along a rolloutℛ𝑟 be {𝑙𝑟,𝑠}
𝒩sampling
𝑠=1 , where 𝑙𝑟,1 represents the sampled location

closest to the current position. The visibility ratio of 𝑙𝑟,𝑠 is denoted by 𝒱𝑟,𝑠, and can

be calculated using the approach detailed in Section 6.3. This visibility ratio is

positively correlated with visibility conditions, i.e., the higher the value, the better

the ego vehicle’s visibility at location 𝑙𝑟,𝑠. However, visibility cost 𝑐visibility has an

inverse relationship with the visibility condition. Therefore, visibility ratio 𝒱𝑟,𝑠 is

first converted into occlusion ratio 𝒪′
𝑟,𝑠 using the following equation:

𝒪′
𝑟,𝑠 = 1− 𝒱𝑟,𝑠. (6.2)

The value of 𝒪′
𝑟,𝑠 also ranges from zero to one, similar to 𝒱𝑟,𝑠. However, higher values

of 𝒪′
𝑟,𝑠 are associated with a higher degree of occlusion.

Theoretically, if 𝑙𝑟,𝑠 is located on a straight, level segment of road without any

obstacles, the value of 𝒪′
𝑟,𝑠 should be zero. However, since 𝒪′

𝑟,𝑠 is estimated using

live sensing data and point cloud maps, which can be noisy, 𝒪′
𝑟,𝑠 is sometimes a very

small number close to zero. Similarly, there are also cases where 𝒪′
𝑟,𝑠 is very close

to one, despite 𝑙𝑟,𝑠 being completely occluded. In order to mitigate the noise issue

in practice, extreme values of 𝒪′
𝑟,𝑠 are squashed to zero or one using the following
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equation:

𝒪𝑟,𝑠 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, 𝒪′

𝑟,𝑠 < 𝒯lower

𝒪′
𝑟,𝑠, 𝒯lower ≤ 𝒪′

𝑟,𝑠 ≤ 𝒯upper

1, 𝒪′
𝑟,𝑠 > 𝒯upper

(6.3)

where 𝒯lower and 𝒯upper are the lower and upper thresholds of 𝒪′
𝑟,𝑠, respectively.

Squashed 𝒪′
𝑟,𝑠 values are denoted by 𝒪𝑟,𝑠.

In order to calculate the visibility cost of an entire rollout ℛ𝑟, a discounted sum

of 𝒪𝑟,𝑠 for all of the sampled locations along the rollout (𝑐′visibility𝑟
) is first calculated

as follows:

𝑐′visibility𝑟 =

𝒩sampling∑︁
𝑠=1

𝛾𝑠−1𝒪𝑟,𝑠, (6.4)

where 𝛾 ∈ (0, 1) is a discount factor used to account for an increasing level of un-

certainty in the calculated value of 𝒪𝑟,𝑠 along rollout ℛ𝑟. The further the sampled

position is from the current position, i.e., the higher the 𝑠 index, the more delay

there is before the ego vehicle will actually reach that position. During the delay, cir-

cumstances within the surrounding traffic environment may change, e.g., occluding

obstacles may move, or new obstacles may be detected. Therefore, the significance

of 𝒪𝑟,𝑠 is discounted by 𝛾. The closer to zero the value of 𝛾, the lower the impact of

𝒪𝑟,𝑠 at distant positions on overall rollout visibility cost 𝑐′visibility𝑟
. This overall rollout

visibility cost 𝑐′visibility𝑟
is further normalized to obtain the final visibility cost of a

rollout (𝑐visibility𝑟
), such that the sum of 𝑐visibility𝑟

over all generated rollouts is equal

to one. The normalization process begins by identifying a set of rollouts with the

lowest 𝑐′visibility𝑟
. This set of rollouts is denoted byℳ, and can be formally defined as

follows:

ℳ = {𝑐′visibility𝑟 | 𝑐
′
visibility𝑟 = 𝑐*visibility}, (6.5)

where

𝑐*visibility = min{𝑐′visibility𝑟}
𝒩rollout
𝑟=1 . (6.6)

The value of visibility cost 𝑐visibility𝑟 can then be calculated using the following equa-
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tion:

𝑐visibility𝑟 =

⎧⎨⎩0, 𝑐′visibility𝑟 ∈ℳ

(𝒩rollout − |ℳ|)−1, 𝑐′visibility𝑟 /∈ℳ
. (6.7)

Finally, 𝑐visibility𝑟 is used in Eq. 6.1 to calculate the overall cost of a rollout. In

special cases where every rollout has an indistinguishable visibility condition, i.e.,

where 𝑐′visibility𝑟
is equal for all 𝑟, all of the outputs of Eq. 6.7 automatically become

zero. Thus, the visibility cost does not have any impact on the overall rollout cost

calculation in Eq. 6.1.

6.3 Visibility estimator

In this section, our visibility estimator is explained in detail. The goal of the visibility

estimator is to calculate a numerical value that is indicative of the visibility condition

of an input location. The visibility estimation method used in this chapter is based

on an algorithm previously presented in Chapter 5 that leverages the information

available in HD maps, i.e., a combination of a road network map and a point cloud

map. The main improvement introduced here, over the method proposed in Chapter

5, is the ability to take into account occlusions caused by objects that are not present

in the point cloud map, which is achieved by incorporating a 3D scan captured in

real time by a LiDAR sensor.

Our approach for identifying the visible regions of surrounding roads using a 3D

scan and a road network map is first explained in Section 6.3.1. In Section 6.3.2, a

method for estimating the required local 3D scan from a point cloud map and a live

3D scan is then described. Finally, a method of calculating a visibility ratio from the

estimated visible region is presented in Section 6.3.3.

6.3.1 Estimation of visible regions

Regions visible from a specified location are estimated using the z-buffering (depth

buffering) algorithm introduced in Chapter 5. As shown in Fig. 6-3, the algorithm

first projects a set of 3D points that are representative of the surfaces of surrounding
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Figure 6-3: Projection of 3D points onto a 2D image plane. A set of 3D points
representing the area of interest is projected onto a depth image. By comparing the
resulting depth image with those of other objects in the scene, regions visible from
the specified viewing point can be estimated.

objects onto a 2D image plane. The 3D coordinates of each surface point [𝑥, 𝑦, 𝑧]⊤ are

then converted into a pixel position [�̄�, 𝑣] and a pixel depth value 𝑑 of a depth image

𝒟 that has a fixed pixel width and height of 𝒟horizontal
resolution and 𝒟vertical

resolution, respectively.

Pixel position (�̄�, 𝑣) and depth value 𝑑 of the projected point can be calculated as

follows:

�̄� =

⌊︂
arctan(

𝑦

𝑥
)× 𝒟

horizontal
resolution

𝒮horizontal
FOV

⌉︂
(6.8)

𝑣 =

⌊︃
(arctan(

𝑧√︀
𝑥2 + 𝑦2

)− 𝒮 lower
angle )×

𝒟vertical
resolution

𝒮vertical
FOV

⌉︃
(6.9)

𝑑 =
√︀

𝑥2 + 𝑦2 + 𝑧2, (6.10)

where 𝒮horizontal
FOV and 𝒮vertical

FOV are the horizontal and vertical fields of view, respectively,

in radians. The variable 𝒮 lower
angle denotes the elevation angle with respect to the ground

plane, from the specified viewing point to the lowest 3D point. During the projection,

only the points that fall within the boundaries of the depth image, i.e., {(�̄�, 𝑣) |
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�̄� ∈ [0,𝒟horizontal
resolution ), 𝑣 ∈ [0,𝒟vertical

resolution)}, are kept. Moreover, if more than one point is

projected onto the same pixel position, only the point with the lowest depth value is

preserved, as it is not occluded by other points.

Visible areas of an object of interest with an associated depth image 𝒟interest

can subsequently be identified by comparing 𝒟interest with a depth image of other

surrounding objects 𝒟other. This comparison is performed pixel-wise. If the depth

value 𝑑 of 𝒟interest in pixel [�̄�, 𝑣]⊤ is smaller than that of the other depth images

located at the same pixel position, surface point [𝑥, 𝑦, 𝑧]⊤ of the object of interest,

which corresponds to pixel [�̄�, 𝑣]⊤, is visible from the specified viewing location.

In driving environments, the space above the surfaces of the surrounding lanes

that other traffic participants or obstacles may occupy is considered the object of

interest for visible region estimation. Therefore, a set of 3D points that represents

the surfaces of those lanes is first extracted from a road network map. This set of

points is denoted by 𝒫lane = {𝑝lane𝑖}
𝒩lane
𝑖=1 where 𝒩lane is the total number of lane

surface points. Each point in the set can be defined as follows:

𝑝lane𝑖 =

⎡⎢⎢⎢⎣
𝑥lane𝑖

𝑦lane𝑖

𝑧lane𝑖

⎤⎥⎥⎥⎦ . (6.11)

Representative points of the area above the surfaces of the lanes can then be obtained

by offsetting the z-coordinate of each lane surface point upward by fixed value ℋobject:

𝑝interest𝑖 =

⎡⎢⎢⎢⎣
𝑥interest𝑖

𝑦interest𝑖

𝑧interest𝑖

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑥lane𝑖

𝑦lane𝑖

𝑧lane𝑖

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0

0

ℋobject

⎤⎥⎥⎥⎦ . (6.12)

The resulting points 𝒫interest = {𝑝interest𝑖}
𝒩lane
𝑖=1 are subsequently projected onto an

image plane to create depth image 𝒟interest. Similarly, surface points of all surrounding

objects are projected onto a depth image 𝒟other. Since 𝒟other can be sparse, depending

on its source, a box filter is utilized to fill the empty pixels of 𝒟other, based on the
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values of their neighboring pixels. Finally, the filled 𝒟other is compared with 𝒟interest to

determine which parts of the surrounding lanes are visible from the specified viewing

location.

If a 3D scan of the driving environment, taken by a LiDAR unit from the specified

viewing point, is available, the captured scan points can be used as the surface points

of the objects in the scene. In that case, depth image 𝒟other can then be generated

directly. As a result, this approach can be used to estimate the visible regions of the

surrounding lanes from any viewing location within the road network map if a 3D

scan captured from that location is available.

6.3.2 3D scan estimation

Visibility from any position within a road network map can be estimated if a 3D scan

of the surrounding area captured at that position is available Estimating regions that

are visible from the ego vehicle’s current position is also straightforward, as the 3D

scan can be directly acquired from the onboard LiDAR unit. However, as described

in Section 6.2.2, the calculation of the visibility cost of a trajectory candidate requires

information regarding visibility conditions at future ego vehicle positions. Therefore,

the ability to predict 3D scans at those future positions is essential.

In order to estimate 3D scans at future ego vehicle positions, a point cloud map

and a scan obtained from the LiDAR unit at the current position are used. The

incorporation of the live scan acquired at the vehicle’s current position is the main

distinction between the approach proposed here and the algorithm proposed in Chap-

ter 5. The live scan is used to account for objects that were not present during point

cloud map generation.

First, the point cloud map is used to obtain a base scan at a specified future

location. Let 𝒫map = {𝑝map𝑖}
𝒩map
𝑖=1 be the input 3D point cloud map, where 𝒩map

represents the total number of points in the map. In order to simulate a 3D scan

obtained at a targeted future position 𝑝target by a LiDAR unit with the sensing range

of 𝒮range, the 3D points in 𝒫map that are within range 𝒮range from 𝑝target are denoted
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as base scan points and can be defined as follows:

𝒫base = {𝑝map ∈ 𝒫map | ‖𝑝map − 𝑝target‖ < 𝒮range}. (6.13)

The resulting base scan 𝒫base cannot be used directly for visible region estimation as

it only contains points from objects that were present during map generation.

In order to add objects that do not appear in the point cloud map to the estimated

scan, a live scan captured by the LiDAR unit at its current position 𝑝current is used.

Each point in the live scan, [𝑥′
live𝑖, 𝑦

′
live𝑖, 𝑧

′
live𝑖]

⊤, is first transformed to point cloud

map coordinates using the following equation:

⎡⎣𝑝live𝑖

1

⎤⎦ =

⎡⎣map
currentR3×3

map
currentT3×1

0 1

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣
𝑥′

live𝑖

𝑦′live𝑖

𝑧′live𝑖

1

⎤⎥⎥⎥⎥⎥⎥⎦ , (6.14)

where map
currentT3×1 is a 3D translation vector, and map

currentR3×3 is a 3D rotation matrix,

representing the current position and orientation of the LiDAR sensor, respectively,

relative to the coordinate system of point cloud map 𝒫map. The resulting transformed

live scan is denoted as:

𝒫live = {𝑝live𝑖}
𝒩live
𝑖=1 , (6.15)

where 𝒩live is the number of live scan points. The scan 𝒫live is now in the same

coordinate system as 𝒫base and therefore can be combined directly as follows:

𝒫estimate = 𝒫base + 𝒫live. (6.16)

All of the points in the resulting 𝒫estimate are in point cloud map coordinates. There-

fore, they need to be further transformed to the local coordinates of the simulated

LiDAR scanner, whose origin is located at 𝑝target. The transformation of each point
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[𝑥estimate𝑖, 𝑦estimate𝑖, 𝑧estimate𝑖]
⊤ in 𝒫estimate is performed using the following equation:

⎡⎣𝑝′estimate𝑖

1

⎤⎦ =

⎡⎣map
targetR3×3

map
targetT3×1

0 1

⎤⎦−1

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥estimate𝑖

𝑦estimate𝑖

𝑧estimate𝑖

1

⎤⎥⎥⎥⎥⎥⎥⎦ , (6.17)

where the target 3D position and orientation of the simulated LiDAR sensor with

respect to the coordinate system of the point cloud map 𝒫map are represented by
map
targetT3×1 and map

targetR3×3, respectively.

Finally, resulting estimated scan 𝒫 ′
estimate = {𝑝′estimate𝑖}

𝒩estimate
𝑖=1 is projected onto

a 2D image plane using the method described in Section 6.3.1, in order to generate

depth image 𝒟other.

6.3.3 Calculation of visibility ratio

The approach described in Sections 6.3.1 and 6.3.2 can be used to identify which

regions of the surfaces of surrounding lanes are visible from a specified viewing point.

However, the proposed motion planner cannot easily use the resulting visible regions

for candidate trajectory selection as they are not quantified. Therefore, this sec-

tion explains an approach for calculating a quantitative value representing visibility

conditions at a particular location from visible region estimation results.

Visibility ratio 𝒱 is a numerical value that represents the degree of visibility from

a particular location, a concept which was first introduced in Chapter 5. Its value is

equal to a ratio of the area visible from the specified viewing location in relation to

the total area of interest:

𝒱 =
𝒜visible

𝒜interest
, (6.18)

where 𝒜interest is the total area of interest, and 𝒜visible is the portion of the total area

of interest which is visible from a particular viewing location. As 𝒜visible ⊆ 𝒜interest,

the value of a visibility ratio ranges from 0 to 1, where 0 indicates that the area of

interest is completely occluded from the viewing position, while 1 indicates the area
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Figure 6-4: Area of interest 𝒜interest for an ego vehicle at location 𝑝target. The yellow
shaded area represents sensing range 𝒮range. Lane segments located within the yellow
area are defined as the set ℒneighbor. Lane segments within ℒneighbor that have the
same driving direction as the ego vehicle and are reachable from position 𝑝target are
designated as ℒreachable, and are represented by green lines. Lane segments with
opposite traffic directions than the ego vehicle that intersect the ℒreachable lanes are
designated as ℒintersect, and are represented by red lines.

of interest is entirely visible.

In order to calculate the visibility ratio of a given position 𝑝target, the area of

interest 𝒜interest first needs to be defined. Let ℒneighbor be a set of lane segments that

are within sensing range 𝒮range from location 𝑝target. Assuming that no road users will

travel in the wrong, i.e., opposite, direction, areas that are relevant in the context

of driving from position 𝑝target, i.e., 𝒜interest, are comprised of the space above the

following lane segments within ℒneighbor:

• Lanes with the same driving direction as the ego vehicle’s lane that are reachable

from position 𝑝target, which are denoted by ℒreachable.

• Lanes with the opposite driving direction (in relation to the ego vehicle) from

position 𝑝target that intersect any of the ℒreachable lanes, which are denoted by

ℒintersect.

Examples of lane segments ℒreachable and ℒintersect are shown in Fig. 6-4 as green and

red lines, respectively.
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Once the relevant lane segments are identified, a set of 3D points representing the

area above those segments, i.e., 𝒫interest, is obtained from the road network map and

used to generate corresponding depth image 𝒟interest using the approach described in

Section 6.3.1. The resulting depth image 𝒟interest is then compared with 𝒟other, which

is estimated using the method explained in Section 6.3.2. Finally, assuming that the

points in 𝒫interest are uniformly distributed across the surface of the lanes, 𝒜interest

in Eq. 6.18 can be replaced by the total number of points in 𝒫interest. Similarly, the

number of points in 𝒫interest that are visible from 𝑝target can be used as 𝒜visible.

6.4 Experiments

In order to verify the effectiveness and applicability of the proposed planner in re-

ducing the risk of collision with potentially occluded obstacles in various situations,

experiments were carried out in three different traffic scenarios: T-junction crossing,

turning right, and preparing to pass a parked vehicle. One or more target vehicles

were placed within an occluded area in each scenario. The position of the ego vehicle

when these hidden vehicles were first detected, measured by the distance from its

starting position, was used for evaluation. In other words, shorter distances from the

ego vehicle’s starting position represent better performance when detecting occluded

targets, as this represents earlier, more effective, and thus safer detection. In the

T-junction crossing and right turn scenarios, the primary sources of occlusion are

static objects such as buildings, kiosks, and walls. In order to verify the ability of

the proposed system to take into account occlusions caused by objects that are not

included in the HD maps, in the third scenario, the occlusion is caused by a parked

vehicle that was not present when the HD map was generated.

Town01 in the CARLA simulator [78], which represents a flat, urban area, was

chosen as the experimental environment. All of the roads in the town are two-lane

roads, and the traffic travels in a right-side direction. A map of Town01 is shown in

Fig. 6-5, where the orange, blue, and red rectangles represent the locations of the T-

junction crossing, right turn, and preparing to pass a parked vehicle traffic scenarios,
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Figure 6-5: Town01 of the CARLA simulator. The orange rectangle indicates the
location of the T-junction crossing scenario, the blue rectangle indicates the location
of the right turn scenario, and the red rectangle indicates the location of the straight
road where the ego vehicle has to prepare to pass a parked vehicle. The small, red
rectangles are examples of the positions of hidden (or occluding) vehicles in each
scenario.

respectively.

The performance of the proposed planner was compared to that of a baseline

planner (OpenPlanner [21]), which does not consider visibility when planning the

vehicle’s output trajectory. Real-time object detection and localization results were

achieved using “lidar_euclidean_cluster_detect” and “ndt_matching” modules avail-

able in Autoware [87], respectively. The maximum lateral deviation of the ego vehicle

was implicitly limited so that it would never go out of its lane via𝒲rollout and 𝒩rollout.

In this experiment, 𝒩rollout was set to 3 to keep the computational load manageable

for real-time planning. The value of𝒲rollout was set to 0.5m resulting in the expected
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Table 6.1: Parameters used by the proposed and baseline planners in our experiments.

Parameter Value Parameter Value

𝒯lower 0.1 𝒯upper 0.9
𝒩sampling 10 𝒩rollout 3
𝛾 0.85 ℋplanning 50 m
𝒟horizontal

resolution 720 pixels 𝒟vertical
resolution 64 pixels

𝒮 lower
angle -0.47 rad 𝒮range 50.0 m
𝒮horizontal

FOV 2𝜋 rad 𝒮vertical
FOV 0.50 rad

ℋobject 1.5 m 𝒲rollout 0.5 m
Baseline planner-specific parameters:

𝑤center 0.25 𝑤transition 0.25
𝑤lon

collision 0.25 𝑤lat
collision 0.25

Proposed planner-specific parameters:

𝑤center 0.1 𝑤transition 0.3
𝑤lon

collision 0.1 𝑤lat
collision 0.1

𝑤visibility 0.4

maximum lateral shift of 1m in both left and right directions. The same parameters

were used in both planners, except for those which were specific to each planner, as

shown in Table 6.1. All parameters remained the same in each test scenario.

6.4.1 Scenario I: T-junction crossing

In this scenario, the ego vehicle must drive straight through an uncontrolled T-

junction, where the merging roadway is on its right. The ego vehicle starting position

in this scenario is at the bottom edge of the orange rectangle in Fig. 6-5. From its

starting position, the ego vehicle has to go straight, pass through the T-junction, and

reach its goal at the top edge of the orange rectangle. We tested two variations of this

scenario, the first of which involves occlusion of the intersection, primarily by a large

building set back from the road, which we called the “clear intersection” variation.

The second variation included additional structures located very close to the corner,
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(a) Slightly occluded T-junction in the original Town01 (clear intersec-
tion).

(b) Heavily occluded T-junction in the modified Town01 (occluded in-
tersection).

Figure 6-6: T-junctions used in Scenario I.

which we called the “occluded intersection” variation.

The challenge in this scenario mainly stems from the occlusions caused by the

structures near the intersection, as shown in Fig. 6-6a, which prevent the ego vehicle

from fully observing the roadway merging from the right. Therefore, the merging

road was chosen as the location for the target vehicle. Three different location con-

figurations were used for the target vehicle. In the first configuration, the vehicle was

placed at 𝑥 = 105𝑚, which is approximately 11.5𝑚 from the intersection’s entrance.

In the second and third configurations, the vehicle was placed at 𝑥 = 110𝑚 and

𝑥 = 115𝑚, respectively. In all three configurations, the target vehicle was positioned
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at the center of the right lane of the merging road, i.e., 𝑦 = −195.25𝑚. Both plan-

ners were tested 50 times in each of the three configurations, resulting in 150 junction

crossings per planner.

Clear intersection variation

First, we will discuss the “clear intersection” variation of the T-junction scenario. The

output trajectories for the proposed and baseline planners in all three of the target

vehicle configurations tested (𝑥 = 105𝑚, 𝑥 = 110𝑚, and 𝑥 = 115,𝑚) are shown in

Fig. 6-7 as orange and blue lines, respectively. We can see that the output trajectories

for each planner are similar for all three target vehicle configurations. When using

the baseline planner, the ego vehicle stayed close to the center of its lane most of the

time. On the other hand, when using the proposed planner, the ego vehicle started

moving to the left side of the lane soon after the experiment began and kept left until

finally moving back closer to the lane’s center as it crossed the intersection.

As can be observed in Fig. 6-8 (bottom), although the lateral position shift

differed slightly between each run for both planners, their output trajectories were

consistent overall. Fig. 6-8 (top) also shows the change in visibility ratio 𝒱 along the

ego vehicle’s trajectory, averaged over 50 runs. At the beginning of the experiment,

the visibility ratio remained constant at approximately 1.0 for both planners, which

indicates that all relevant areas of the driving environment could be fully observed

during that period. As the ego vehicle approached the intersection and the intersec-

tion came within sensor range 𝒮range, the visibility ratio started to drop, signifying

incomplete observation of the merging roadway from that point onward. As shown

by the shaded area in Fig. 6-8 (top), there is a slight difference in the drop in the

visibility ratio between the two planners, with the visibility ratio along the proposed

planner’s trajectories remaining relatively higher than those of the baseline planner,

suggesting that the proposed planner was able to choose an output trajectory with

better visibility conditions compared to the baseline planner.

Although the trajectories output by both planners were consistent for all three

target vehicle location configurations, the locations where the ego vehicle first detected
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(a) 𝑥 = 105𝑚

(b) 𝑥 = 110𝑚 (c) 𝑥 = 115𝑚

Figure 6-7: Output trajectories generated by the baseline and proposed planners dur-
ing the “clear intersection” T-junction traffic scenario, with positions of the ego vehicle
when the occluded vehicles were discovered. The 𝑥 distances represent coordinates of
a Cartesian system for CARLA Town01, not distances from the corner.

119



(a) 𝑥 = 105𝑚

(b) 𝑥 = 110𝑚 (c) 𝑥 = 115𝑚

Figure 6-8: Average visibility ratio (top) and lane center deviation (bottom) along the
output trajectories of the baseline and proposed planners during the “clear intersec-
tion” T-junction traffic scenario. The 𝑥 distances represent coordinates of a Cartesian
system for CARLA Town01, not distances from the corner.

the target vehicle, i.e., the discovery positions, in each hidden vehicle configuration

are clearly different, as shown by the orange and blue stars in Fig. 6-7, where a red

rectangle depicts the hidden vehicle in each configuration. Differences in the discovery

positions when using the various target vehicle locations can also be observed in Fig.

6-9, in which distributions of the discovery positions for both planners in the tested

configurations are shown using histograms and cumulative histograms. The x-axes in
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(a) 𝑥 = 105𝑚

(b) 𝑥 = 110𝑚 (c) 𝑥 = 115𝑚

Figure 6-9: Distributions of the ego vehicle discovery positions (i.e., distance of the
ego vehicle from its starting point when occluded vehicles were detected) during the
“clear intersection” T-junction traffic scenario. The 𝑥 distances represent coordinates
of a Cartesian system for CARLA Town01, not distances from the corner.

Fig. 6-9 show the distance traveled along the lane’s center from the starting position

of the ego vehicle. Note that the distance traveled along the lane’s center is exactly the

same as the actual distance the ego vehicle has traveled if, and only if, the ego vehicle

remains at the center of the lane without any lateral deviation during the entire run.
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However, since lateral motion within the ego vehicle’s lane has a negligible effect on

distance traveled, for the sake of conciseness distance traveled along the ego vehicle’s

lane from its starting position will be referred to as distance traveled, travel distance,

or distance in this chapter unless stated otherwise.

As can be observed in Fig. 6-9a, a distribution of the proposed planner’s discovery

position when the target vehicle was placed close to the intersection, at 𝑥 = 105𝑚, is

clearly bimodal, with the first and second peaks located at approximately 48𝑚 and

56𝑚 from the ego vehicle’s starting position, respectively. The discovery position

distribution of the baseline planner appears to be bimodal as well. However, the two

peaks are very close to each other, with all of the discovery positions clustered around

55.5𝑚 from the ego vehicle’s starting position.

Fig. 6-9b shows distributions of the discovery positions in the second configu-

ration, where the target vehicle was located at 𝑥 = 110𝑚. The resulting discovery

positions are very consistent for both planners in this configuration. For the baseline

planner, the discovery positions appear to be normally distributed with their center

at approximately 58.5𝑚. On the other hand, in the case of the proposed planner,

the majority of the first detections of the hidden vehicle occurred slightly earlier, at

58.2𝑚, causing the distribution to skew to the right.

Discovery position distributions for the last configuration, where the hidden vehi-

cle was placed furthest from the intersection at 𝑥 = 115𝑚, are shown in Fig. 6-9c.

The distribution results when using the proposed planner show two visible peaks that

are relatively close to each other. The first peak is located at roughly 64.5𝑚 from the

ego vehicle’s starting position, while the second peak occurs slightly later at approx-

imately 65𝑚. For the baseline planner, the resulting discovery position distribution

generally resembles the second mode of the distribution for the proposed planner,

with its peak located at 65𝑚. However, as can be observed in Fig. 6-9c, in a few

trials, the ego vehicle detected the hidden vehicle significantly later when using the

baseline planner.

A summary of the statistics of the ego vehicle positions when discovering the

hidden vehicles in each hidden vehicle configuration during the “clear intersection”
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Table 6.2: Summary of statistics of ego vehicle positions when discovering hidden
vehicles in the “T-junction crossing” traffic scenario (Scenario I), for both the “clear”
and “occluded” variations of the intersection, for both the proposed and baseline
methods. Distances are measured from the ego vehicle’s starting point. “Count”
represents the number of successful detections per 50 trials.

Clear T-junction
𝑥 = 105𝑚 𝑥 = 110𝑚 𝑥 = 115𝑚

Proposed Baseline Proposed Baseline Proposed Baseline
count 50 50 50 50 50 50
mean 52.17 55.73 58.41 58.58 64.59 65.22
std 4.20 0.70 0.21 0.27 0.36 0.61
min 47.27 54.67 58.03 58.10 64.02 64.36
median 55.27 55.60 58.37 58.57 64.54 65.02
max 57.82 57.00 58.95 59.24 65.52 67.15

Occluded T-junction
𝑥 = 105𝑚 𝑥 = 110𝑚 𝑥 = 115𝑚

Proposed Baseline Proposed Baseline Proposed Baseline
count 50 50 50 50 50 50
mean 63.10 62.92 68.74 69.61 72.74 72.87
std 0.80 0.55 0.23 0.36 0.20 0.25
min 61.69 61.17 68.26 68.77 72.31 72.27
median 63.14 62.95 68.76 69.69 72.79 72.88
max 64.61 64.22 69.27 70.34 73.07 73.34

variation of the T-junction traffic scenario (mean, standard deviation, minimum, me-

dian and maximum distances from the starting point until detection) as well as the

total number of experiments where the ego vehicle successfully detected the target

vehicle (count), are given in the top part of Table 6.2. As can be seen from the table,

the ego vehicle was able to detect the hidden vehicles in all configurations with both

planners. Moreover, the table shows that both the mean and median distances from

the ego vehicle’s starting position when the hidden vehicle was detected were smaller

when using the proposed planner than when using the baseline planner in every target

vehicle configuration tested.
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From the results shown in Figs. 6-7, 6-8, and 6-9, it is clear that the output

trajectories and discovery positions during each run differed slightly, even when using

the same planner and hidden target configuration. This slight deviation was expected

since an actual localization and detection module were used in the experiment instead

of directly utilizing the ground truth information from the simulation. The effects of

using live perception modules seem to be most evident in the first configuration, as

shown in Fig. 6-7a and Fig. 6-9a, where the discovery position distribution appears

to be bimodal, with the two modes being significantly far apart in the case of the

proposed planner. In this configuration, the hidden vehicle was initially occluded

from the ego vehicle’s point of view by the corner of the building and a street light

pole, located at (𝑥 = 101𝑚, 𝑦 = −202𝑚) in Fig. 6-7a. Although the size of the

pole is small, when it is far from the ego vehicle it can effectively prevent the front

end of the target vehicle from being detected by the LiDAR-based detector used in

the experiments, as point cloud sparsity positively correlates with range. Therefore,

there are two possible ways the ego vehicle can detect the target vehicle. The first

option, which allows the target vehicle to be discovered earlier, is to detect it through

the gap between the building corner and the street light pole. This early detection

through the opening between two occluding objects could explain the first peak of

the proposed planner’s discovery position distribution, shown in Fig. 6-9a, which

occurs at approximately 48𝑚 from the ego vehicle’s starting position. By keeping

the ego vehicle on the left side of the lane, the proposed planner widened the gap

between the building and the pole, thus allowing the ego vehicle to briefly detect the

target vehicle earlier. While early detection was physically possible, the target vehicle

was not discovered in some runs due to the imperfect performance of the perception

module. Another relatively more straightforward way to observe the hidden vehicle

is to get close enough to the intersection that both the pole and the corner of the

building no longer obstruct the view. The second peak of the proposed planner’s

discovery position distribution, and the entire position distribution for the baseline

planner, reflect this later but simpler method of detecting the hidden vehicle. Similar

situations also occurred in the third hidden vehicle configuration, as can be observed
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in Fig. 6-7c and 6-9c. In the third configuration, the gap occurred between the

corner of the building and a tree located at (𝑥 = 107𝑚, 𝑦 = −202𝑚) in Fig. 6-7c.

Despite some minor variation, the results are generally consistent, suggesting that the

proposed planner could cope with noisy perception to some degree in this scenario.

The smaller mean and median discovery distances when using the proposed planner

to detect the hidden vehicles in all three configurations, as shown in Table 6.2, suggest

that the ego vehicle would likely detect a hidden vehicle earlier in this scenario when

using the proposed planner, as compared to the baseline planner.

Occluded intersection variation

In order to investigate how different levels of occlusion can affect the output trajecto-

ries produced by the proposed planner, additional experiments were conducted using

the modified (occluded) T-junction. Several additional obstructions were placed close

to the corner of the building, as can be seen in Fig. 6-6b. Except for the modifications

to the nearest corner of the T-junction, the experiments were set up in exactly the

same way as before, i.e., 50 runs for each planner in each of the three target vehicle

location configurations, resulting in a total of 150 trials per planner.

Fig. 6-10 shows the output trajectories for both planners at the modified inter-

section for all three hidden target vehicle placements. Similar to the results at the

original T-junction, shown in Fig. 6-7, the ego vehicle generally stayed close to the

lane’s center when using the baseline planner, while the ego vehicle gradually moved

to the left side of the lane soon after leaving its starting point when using the pro-

posed planner, as happened in the previous clear intersection scenario. However, the

ego vehicle did not move back to the center of its lane as it approached the occluded

intersection when using the proposed planner; instead, it deviated further to the left

of its lane before entering and eventually crossing the intersection. Differences in the

lateral deviation profiles of the ego vehicle when using the proposed planner at the

two experimental T-junctions can be further observed by comparing Fig. 6-11 with

Fig. 6-8. As can be seen, when comparing these two figures, apart from the lateral

deviation, the visibility ratio along the output trajectory at the heavily occluded T-
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(a) 𝑥 = 105𝑚

(b) 𝑥 = 110𝑚 (c) 𝑥 = 115𝑚

Figure 6-10: Output trajectories generated by the baseline and proposed planners
during the “occluded intersection” T-junction traffic scenario, with positions of the
ego vehicle when the occluded vehicles were discovered. The 𝑥 distances represent
coordinates of a Cartesian system for CARLA Town01, not distances from the corner.
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(a) 𝑥 = 105𝑚

(b) 𝑥 = 110𝑚 (c) 𝑥 = 115𝑚

Figure 6-11: Average visibility ratio (top) and lane center deviation (bottom) along
the output trajectories of the baseline and proposed planners during the “occluded
intersection” T-junction traffic scenario. The 𝑥 distances represent coordinates of a
Cartesian system for CARLA Town01, not distances from the corner.

junction is also dissimilar to that of the original intersection, and this was also true

when using the baseline planner, with the drop in the visibility ratios falling more

sharply at the modified intersection. Moreover, the visibility ratios dropped to a lower

level than when the planners encountered the less cluttered T-junction. Another dis-

tinction between the two tested intersections is the recovery of the visibility ratio as

the ego vehicle approaches the intersection. The increase in the visibility ratios at
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(a) 𝑥 = 105𝑚

(b) 𝑥 = 110𝑚 (c) 𝑥 = 115𝑚

Figure 6-12: Distributions of ego vehicle discovery positions (i.e., distance of the
ego vehicle from its starting point when occluded vehicles were detected) during
the “occluded intersection” T-junction traffic scenario. The 𝑥 distances represent
coordinates of a Cartesian system for CARLA Town01, not distances from the corner.

the modified intersection happened later than at the original intersection, although

the increase was relatively smoother and more steady, as can be seen in Fig. 6-11.

The stable gain of visibility at the modified intersection also directly affected the

distributions of the discovery positions, as the distributions at this heavily occluded
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junction were all unimodal, as can be seen in Fig. 6-12. As shown in Fig. 6-

12a, in the first configuration, where the hidden vehicle was placed closest to the

intersection, the ego vehicle usually discovered the target vehicle after having traveled

approximately 63𝑚 from its starting position, regardless of which planner was used,

therefore, both planners achieved similar discovery positions. However, when the

target vehicle was placed at 𝑥 = 110𝑚 in the second configuration, the difference in

the discovery position distributions when using the two planners is apparent. As can

be observed in Fig. 6-12b, the majority of initial detections occurred at 68.75𝑚 and

69.75𝑚 when using the proposed and baseline planners, respectively, indicating that

the ego vehicle could detect the occluded target vehicle earlier in this hidden vehicle

configuration when the proposed planner was used. Fig. 6-12c shows the resulting

distributions of discovery positions for both planners in the last configuration, where

the hidden vehicle was furthest from the intersection, i.e., at 𝑥 = 115𝑚. The resulting

distributions for both planners appear to be very similar, with discovery of the hidden

vehicle occurring at around 72.9𝑚, whether the proposed or baseline planner was

used.

The summary statistics of the discovery positions in the experiments carried out

at the modified (occluded) T-junction are given in the bottom half of Table 6.2, which

shows that the proposed planner achieved lower mean and median detection distances

from the ego vehicle starting position when the hidden target vehicles were detected

in the second and third configurations. However, both mean and median detection

distances were lower in the first configuration when using the baseline planner.

The experimental results, which are shown in Fig. 6-10 and 6-11, indicate that the

ego vehicle also moved to the left side of the lane prior to crossing the heavily occluded

T-junction when using the proposed planner. This movement was anticipated because

being on the left side of the lane provides the ego vehicle with a better view of the

occluded, merging road to the right of the ego vehicle, even with the additional

occlusions. However, unlike at the original, less-occluded T-junction, where the road

to the right becomes minimally obstructed as soon as the ego vehicle passes the corner

of the building, the view of the merging roadway is blocked right up to the corner
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of the modified T-junction. Therefore, when using the proposed planner, the ego

vehicle continued traveling on the left side of its lane and entered the occluded T-

junction without reverting to the center of the lane, in order to maintain additional

visibility of the intersection. A sharper and deeper decline in the visibility ratio and

its later but smoother recovery, can be observed at the modified T-junction compared

to the original T-junction. These are the effects of a higher degree of occlusion caused

by the additional obstacles. The more severe occlusion also resulted in a smoother

and steadier increase in the visibility ratio, as there was no gap between these closely

placed obstructing objects where the ego vehicle could “peek” through. Therefore, the

occlusion is relatively more consistent. This consistent occlusion near the modified

junction is reflected by the unimodal distributions of the discovery positions in all

of the tested hidden vehicle configurations, as shown in Fig. 6-12. It is evident

from Table 6.2 that, in every configuration, hidden vehicle detections at the occluded

intersection generally happened later than at the original intersection. The table also

shows that the proposed planner achieved earlier detections compared to the baseline

planner in two of the three hidden vehicle configurations, with the first configuration,

where the hidden target was placed very close to the heavily occluded intersection,

being the exception.

6.4.2 Scenario II: Turning

In this scenario, the ego vehicle initially drives straight along a short segment of road,

then turns right at an intersection. This scenario occurs in the region indicated by the

blue rectangle in Fig. 6-5. As in the T-junction crossing scenario, two variations of

this scenario were tested, the first of which, referred to as the “clear corner”, involves

occlusion mainly from a roadside wall. In the second variation, which we called the

“occluded corner”, additional structures were added close to the corner to further

obstruct the view of the intersection from the ego vehicle.
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(a) Slightly occluded corner in the original Town01 (clear corner).

(b) Heavily occluded corner in the modified Town01 (occluded corner).

Figure 6-13: Corners used for right turn in Scenario II.

Clear corner variation

In this variation of the right turn scenario, after driving along a straight road the ego

vehicle makes a right turn at a corner which is partially occluded by an opaque wall

that obstructs the ego vehicle’s line of sight of the intersecting road, as shown in Fig.

6-13a, a corner in the original CARLA Town01. Although the ego vehicle does not

need to cross into other lanes in this scenario, there is still the risk of collision with

vehicles stopped in the ego vehicle’s lane, especially if the road to the right is not

fully observable. Therefore, the hidden target vehicle was placed in various locations

in the same lane the ego vehicle will be traveling in after rounding the corner. In the
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first, second and third configurations, the target vehicles were placed in the middle

of the ego vehicle’s lane 𝑥 = 105𝑚, 𝑥 = 110𝑚, and 𝑥 = 115𝑚, respectively, where

𝑥 is a coordinate of a Cartesian system used to map CARLA Town01. The proposed

and baseline planners were tested 50 times each in each configuration.

Fig. 6-14 shows the output trajectories generated in all three hidden vehicle

configurations by the proposed and baseline planners, represented by the orange and

blue lines, respectively. The initial output trajectories appear to be similar for all

three configurations. However, when using the proposed planner, the ego vehicle

moved towards the left side of its lane to increase its visibility of the intersecting road

when approaching the intersection. In contrast, when using the baseline planner, the

ego vehicle stayed close to the lane’s center right up to the entrance of the intersection.

As shown by the ends of the orange and blue lines in Fig. 6-14, during or just after

the right turn maneuver, the ego vehicle stopped at a different position in each hidden

vehicle configuration to avoid colliding with the hidden vehicles, approximately 5𝑚

to 6𝑚 from the rear end of the parked target vehicles.

Differences in the stopping position of the ego vehicle in each configuration can

also be observed in the lateral deviation plot in Fig. 6-15, where a dashed red line

indicates the entrance of the intersection. As can be seen from the lateral deviation

profiles of the tested configurations, when using the proposed planner, the ego vehicle

initially moved to the left of the lane, then generally moved back to the center of

the lane before it started turning right at the corner. Nonetheless, there appears to

be a slight difference in the output trajectories produced by the two planners during

the first hidden vehicle configuration, however, the ego vehicle briefly inched to the

left immediately before turning, regardless of which planner was used. Fig. 6-15 also

shows similar visibility ratio profiles for the two planners in the tested configurations.

When the ego vehicle was close to the corner, the visibility ratio dropped, indicating

that the area around the corner was not fully observable from these positions. The

visibility ratio increased again once the ego vehicle almost reached the intersection’s

entrance and started to turn. Of the two tested planners, the proposed planner seems

to have maintained a higher visibility ratio as the ego vehicle approached the entrance
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(a) 𝑥 = 105𝑚

(b) 𝑥 = 110𝑚 (c) 𝑥 = 115𝑚

Figure 6-14: Output trajectories generated by the baseline and proposed planners
during the “clear corner” right turn traffic scenario, with positions of the ego vehicle
when the occluded vehicles were discovered. The 𝑥 distances represent coordinates of
a Cartesian system for CARLA Town01, not distances from the corner.
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(a) 𝑥 = 105𝑚

(b) 𝑥 = 110𝑚 (c) 𝑥 = 115𝑚

Figure 6-15: Average visibility ratio (top) and lane center deviation (bottom) along
the output trajectories of the baseline and proposed planners during the “clear corner”
right turn traffic scenario. The 𝑥 distances represent coordinates of a Cartesian system
for CARLA Town01, not distances from the corner.

of the intersection.

As indicated by the orange and blue markers in Fig. 6-14, the locations where

the ego vehicle first discovered the hidden target vehicles in this scenario are very

consistent for all configurations under both planners. The distributions of the dis-

covery positions, which are shown in Fig. 6-16, also confirm this consistency, as all

of the distributions are unimodal. In the configuration where the target vehicle was
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(a) 𝑥 = 105𝑚

(b) 𝑥 = 110𝑚 (c) 𝑥 = 115𝑚

Figure 6-16: Distributions of the ego vehicle discovery positions (i.e., distance of the
ego vehicle from its starting point when occluded vehicles were detected) during the
“clear corner” right turn traffic scenario. The 𝑥 distances represent coordinates of a
Cartesian system for CARLA Town01, not distances from the corner.

placed closest to the corner, i.e., the first configuration, the ego vehicle using the

baseline planner made the majority of its detections at around 58.8𝑚 from its start-

ing position, whereas these detections mainly occurred at approximately 59𝑚 when

using the proposed planner, as shown in Fig. 6-16a, therefore, the baseline planner
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yielded earlier detection in the first hidden vehicle configuration. However, as shown

in Fig. 6-16b, in the second configuration where the target vehicle was placed at

𝑥 = 110𝑚, the hidden vehicle was detected later when using the baseline planner,

compared to the proposed planner. The peak of the discovery distribution in the case

of the baseline planner is at 66.9𝑚, but at 66.7𝑚 for the proposed planner. In the

last configuration, where the target vehicle is farthest from the corner, the peaks of

the distributions for the proposed and baseline planners are very close to each other

at around 69.8𝑚, as can be observed in Fig. 6-16c, although there were a number

of trials in this last hidden vehicle configuration where the ego vehicle using the pro-

posed planner was able to detect the target vehicle relatively earlier, as indicated by

the portion of the orange distribution on the left that is not overlapped by the blue

distribution.

The distributions of ego vehicle positions when discovering the hidden vehicles us-

ing each planner under the three hidden vehicle placement configurations in the “clear

corner” variation of Scenario II are also summarized using the number of successful

detections (count), as well as mean, median, standard deviation, minimum value, and

maximum value of the discovery positions in Table 6.3 (top). As can be observed from

the table, using the proposed planner resulted in lower mean and median distances

from the ego vehicle’s starting position when first detecting the hidden vehicle in the

second and third configurations but in higher values in the first configuration.

As the results in Figs. 6-14 and 6-15 show, when using the proposed planner, the

ego vehicle initially moved to the left and then reverted back to the center of its lane

before turning right at the corner. The initial movement to the left was expected.

Since the ego vehicle’s view of the corner on its right is blocked by the wall near the

intersection, being on the left side of the lane increases the visible area of the road

around the corner. This increased visibility is also reflected by a relatively higher

visibility ratio along the trajectories generated by the proposed planner compared to

those output by the baseline planner, as shown in Fig. 6-15. This figure also shows

that the output lateral deviation profiles are similar for all of the hidden vehicle

configurations, with a slight difference in the first configuration in which the hidden
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Table 6.3: Summary of statistics of ego vehicle positions when discovering hidden
vehicles in the “right turn” traffic scenario (Scenario II), for both the “clear” and
“occluded” variations of the corners, for both the proposed and baseline methods.
Distances are measured from the ego vehicle’s starting point. “Count” represents the
number of successful detections per 50 trials.

Clear corner
𝑥 = 105𝑚 𝑥 = 110𝑚 𝑥 = 115𝑚

Proposed Baseline Proposed Baseline Proposed Baseline
count 50 50 50 50 50 50
mean 58.95 58.77 66.56 66.82 69.59 69.76
std 0.24 0.24 0.21 0.29 0.22 0.19
min 58.51 58.24 66.02 66.06 69.10 69.35
median 58.93 58.75 66.56 66.89 69.63 69.75
max 59.76 59.38 66.99 67.40 69.98 70.28

Occluded corner
𝑥 = 105𝑚 𝑥 = 110𝑚 𝑥 = 115𝑚

Proposed Baseline Proposed Baseline Proposed Baseline
count 50 50 50 50 50 50
mean 64.95 66.41 71.09 72.44 74.31 74.25

std 0.74 0.33 0.56 0.25 0.37 0.25
min 63.87 65.84 70.43 71.54 73.73 73.49
median 64.72 66.36 70.94 72.42 74.22 74.28
max 66.48 67.19 72.69 72.90 75.64 74.88

vehicle was placed closest to the corner. The difference shown in Fig. 6-15a is likely

caused by the ego vehicle detecting the target vehicle earlier, while still on the initial,

straight segment of the road, and trying to avoid the parked vehicle by moving to

the left. However, when the ego vehicle arrived at the intersection, it had to abort

its diversion and start turning right. In the other configurations, the ego vehicle

detected the target vehicles later, i.e., closer to the turning point, and therefore no

brief diversion to the left occurred. As can be observed in Fig. 6-16, the difference

in the resulting discovery positions for both planners is modest at this corner. The

reason for this marginal difference is believed to be an adequate level of visibility at
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this corner. Although the wall indeed blocks the view of the intersection to the right

of the ego vehicle, it is not located very close to the corner. As a result, visibility

increases rapidly as the ego vehicle moves sufficiently close to the intersection.

Occluded corner variation

In order to investigate the effects of severe occlusion on motion planner output trajec-

tories and discovery positions during this turning scenario, modifications were made

to the original corner in Town01 to reduce ego vehicle visibility at the corner. Two

kiosks were added, very close to the intersection, adjacent to the existing wall, as

shown in Fig. 6-13b. All other experimental conditions were identical to those used

in the previous experiment, i.e., three different placements of the hidden vehicle and

a total of 50 trials per planner in each placement configuration.

The output trajectories of both planners at the highly occluded corner are shown

in Fig. 6-17. Similar to the output trajectories at the original corner, when using the

proposed planner the ego vehicle moved to the left as it approached the intersection,

before reverting to the center immediately before turning. After turning, the ego

vehicle came to a complete stop 5𝑚 to 6𝑚 away from the rear end of the parked

target vehicle in all three of the hidden vehicle configurations.

Unlike at the original, slightly occluded corner, Fig. 6-18 shows that at the modi-

fied, heavily occluded corner the lane deviation profiles were nearly indistinguishable

among the three hidden vehicle configurations for each planner, i.e., although the de-

viation profiles differed between the two planners, the results remained very consistent

for each planner. When using the proposed planner, the ego vehicle did not divert to

the left immediately before turning at the occluded corner in the first hidden vehicle

configuration, as can be observed in Fig. 6-18a. Moreover, the ego vehicle stayed

on the left side of the lane longer before moving back to the center when turning, as

compared to its trajectory the less occluded corner, i.e., the “clear corner.” Fig. 6-18

also shows that the visibility ratio dropped to a lower level and then increased later,

in comparison to the right turn at the less occluded corner.

The distributions of the discovery positions appear to be the major distinction
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(a) 𝑥 = 105𝑚

(b) 𝑥 = 110𝑚 (c) 𝑥 = 115𝑚

Figure 6-17: Output trajectories generated by the baseline and proposed planners
during the “occluded corner” right turn traffic scenario, with positions of the ego
vehicle when the occluded vehicles were discovered. The 𝑥 distances represent coor-
dinates of a Cartesian system for CARLA Town01, not distances from the corner.
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(a) 𝑥 = 105𝑚

(b) 𝑥 = 110𝑚 (c) 𝑥 = 115𝑚

Figure 6-18: Average visibility ratio (top) and lane center deviation (bottom) along
the output trajectories of the baseline and proposed planners during the “occluded
corner” right turn traffic scenario. The 𝑥 distances represent coordinates of a Carte-
sian system for CARLA Town01, not distances from the corner.

between the planner results at the original and the modified corners, as can be ob-

served in Fig. 6-19. Except for the third hidden vehicle configuration, the difference

between the ego vehicle’s discovery positions when using the proposed and baseline

planners is apparent. In the first configuration, when using the proposed planner,

there was a bimodal distribution of the discovery positions, with the first and second

peaks occurring at approximately 64.5𝑚 and 65.75𝑚, respectively. On the other

140



(a) 𝑥 = 105𝑚

(b) 𝑥 = 110𝑚 (c) 𝑥 = 115𝑚

Figure 6-19: Distributions of ego vehicle discovery positions (i.e., distance of the
ego vehicle from its starting point when occluded vehicles were detected) during the
“occluded corner” right turn traffic scenario. The 𝑥 distances represent coordinates
of a Cartesian system for CARLA Town01, not distances from the corner.

hand, when using the baseline planner, there was a unimodal distribution in the dis-

covery position results, with its peak at roughly 66.75𝑚. When the target vehicle

was placed at 𝑥 = 110𝑚, i.e., during the second hidden vehicle configuration, results

for both planners show a unimodal distribution of the discovery positions, with the
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proposed planner achieving earlier detection overall, as the ego vehicle was generally

able to spot the hidden vehicle at around 70.8𝑚 from its starting position when using

the proposed planner compared to 72.5𝑚 when using the baseline planner. However,

in the last configuration, where the target was placed furthest from the corner, the

distribution results for both planners were very similar, with both planners having

their discovery peaks at around 74.25𝑚.

The difference in discovery positions when using each planner can be further ob-

served in the lower half of Table 6.3. During the first two hidden vehicle configura-

tions, the proposed planner achieved significantly lower mean and median distances

from the ego vehicle’s starting position to where the target vehicles were discovered.

Nonetheless, no difference in the discovery position is apparent in the last config-

uration, as the proposed planner yielded a lower median but higher mean distance

compared to the baseline planner.

Fig. 6-17 shows that the overall movement of the ego vehicle when using the

proposed planner at the heavily occluded intersection is similar to that at the original

intersection, i.e., moving to the left side of the lane soon after the experiment begins,

then returning to the center of the lane just before turning right. However, by com-

paring the results shown in Fig. 6-18, we can see that the ego vehicle stayed on the

left side of its lane longer in the scenario with the occluded corner, as compared to the

original, less occluded corner. The extended deviation to the left is the direct effect

of the higher degree of occlusion at the modified corner. Unlike at the original corner,

the additional obstacles at the modified corner obstructed the ego vehicle’s view of the

road ahead all the way to the intersection’s entrance. Therefore, the proposed planner

kept the ego vehicle to the left side of its lane to gain additional visibility for as long

as possible before beginning its turn. The increased occlusion is also responsible for

the absence of the brief diversion to the left that occurred at the original corner in

the first configuration, as shown in Fig. 6-15a. The ego vehicle did not detect the

target vehicle in the first hidden vehicle configuration as early when encountering the

heavily occluded corner as it did at the original, less obstructed corner, therefore, the

ego vehicle did not initiate an avoidance maneuver before turning.
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We can see from these results that the proposed planner offers a clear advan-

tage over the baseline planner when detecting the hidden target vehicles behind the

heavily occluded corner. As shown in Fig. 6-19, the majority of detections occurred

significantly earlier when traveling along the output trajectory of the proposed plan-

ner, except during the last hidden vehicle configuration, during which both planners

achieved similar performance. When using the proposed planner in the last hidden

vehicle configuration, the target vehicle was not in detection range until the ego vehi-

cle had already reverted to the center of its lane for turning. Therefore, the proposed

planner did not offer any advantage over the baseline planner in detecting the target

vehicle.

6.4.3 Scenario III: Preparing to pass a parked vehicle

In this scenario, the ego vehicle travels along a straight road until it encounters a

truck parked in its lane. The location in Town01 where this scenario takes place is

indicated by the red rectangle in Fig. 6-5. The ego vehicle has to come to a complete

stop behind the parked truck to prepare to pass it. This scenario is different from

the previously tested scenarios as the occlusion is not caused by static structures

present in the point cloud map, e.g., buildings or walls, but instead, the road ahead

is obstructed by a parked truck, which is not a part of the mapped environment.

Experiments in this scenario aim to verify improvements in our previously proposed

visibility estimation method for handling occlusions caused by objects not included in

HD maps. As safe passing requires additional computation and other considerations

that are not currently supported by the proposed planner, the experiments in this

traffic scenario focus exclusively on the output motion of the ego vehicle prior to

passing.

In this scenario, the truck parked in the ego vehicle’s lane is an obstacle occluding

the ego vehicle’s view of the road ahead. In addition to this occluding obstacle, there

are two detection targets; a second truck parked in the same lane as the occluding

parked truck, located at various distances ahead of the first truck in each configuration

of the scenario, and a normal passenger car parked in the opposite lane, with its
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Figure 6-20: Straight road in Scenario III. Two trucks are parked in the ego vehicle’s
lane, and a car is parked in the approaching lane.

front end is facing the approaching ego vehicle. The passenger car is also placed at

various distances from the occluding obstacle in each configuration of the scenario.

An example of the arrangement of the three vehicles in this scenario (besides the ego

vehicle) is shown in Fig. 6-20.

Three target vehicle location configurations were used in this experiment. In all

three configurations, the occluding vehicle (the first truck) is parked at 𝑥 = 240𝑚. In

the first configuration, the targeted truck and passenger car are placed at 𝑥 = 250𝑚

and 𝑥 = 255𝑚, respectively. In the second configuration, both target vehicles are

moved further from the occluding vehicle, i.e., 𝑥 = 255𝑚 for the targeted truck and

𝑥 = 260𝑚 for the targeted car. In the third configuration, the targeted truck and

passenger car are placed at 𝑥 = 260𝑚 and 𝑥 = 265𝑚, respectively. A total of 50

experimental runs were carried out per planner (baseline and proposed) in each of

the three configurations.

Fig. 6-21 shows the output trajectories of both planners in all three of the tested

configurations. Ego vehicle trajectories generated by the proposed planner are shown

in orange, while the blue lines represent the trajectories generated by the baseline

planner. The output motion for each planner appears to be very consistent over all

three target vehicle configurations. When using the baseline planner, the ego vehicle

traveled straight ahead from its starting position and remained in the center of its
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(a) 𝑥 = 240𝑚, 𝑥 = 250𝑚, 𝑥 = 255𝑚

(b) 𝑥 = 240𝑚, 𝑥 = 255𝑚, 𝑥 = 260𝑚

(c) 𝑥 = 240𝑚, 𝑥 = 260𝑚, 𝑥 = 265𝑚

Figure 6-21: Output trajectories generated by the baseline and proposed planners
during the “preparing to pass” traffic scenario, with positions of the ego vehicle when
the other vehicles were discovered. The 𝑥 distances represent coordinates of a Carte-
sian system for CARLA Town01, not distances from the starting point.
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lane until coming to a complete stop behind the occluding truck, although there were

a small number of trials in which the ego vehicle made a slight deviation to the left

before stopping. In contrast, when using the proposed planner, the ego vehicle always

moved to the left side of its lane after leaving its starting location. Moreover, when

the ego vehicle came to a complete stop behind the parked truck, it was always located

on the left side of its lane.

Differences in the lateral deviation profiles when using each of the two planners

can be clearly seen at the bottom of Fig. 6-22. The baseline planner generally kept

the ego vehicle at the center of its lane, as indicated by the blue lines, apart from

a few trials in which the ego vehicle eventually drifted towards the left side of the

lane. When using the proposed planner, the orange lines show that the ego vehicle

consistently moved to the left border of its lane and remained there until it came

to a complete stop behind the occluding truck. The top of Fig. 6-22 also shows

a stark difference in the visibility ratios for the ego vehicle as it moved along the

trajectories produced by the proposed and baseline planners, especially near the ego

vehicle’s stopping position. Initially, the visibility ratios declined linearly for both

planners. However, in the case of the proposed planner, the visibility ratio started to

increase again as soon as the ego vehicle reached the left border of its lane. When

stopping behind the occluding vehicle, the proposed planner generally achieved a

higher visibility ratio compared to the baseline planner.

The positions where the three other vehicles in this scenario (the occluding truck,

the occluded truck, and the occluded car) were detected are indicated by markers in

Fig. 6-21. The distributions of these discovery positions are shown in Fig. 6-23. By

comparing Figs. 6-23a, 6-23b, and 6-23c, we can see that the discovery positions for

the parked occluding truck, i.e., the first truck, are similar for both planners in all

vehicle placement configurations. The ego vehicle generally detected the occluding

truck after traveling approximately 7𝑚 from its starting position, regardless of the

planner used. However, Figs. 6-23g, 6-23h, and 6-23i show a significant difference

in the discovery distributions between the two planners when detecting the target

truck hidden behind the first parked truck. As can be seen in Fig. 6-23g, when the
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(a) 𝑥 = 240𝑚, 𝑥 = 250𝑚, 𝑥 = 255𝑚

(b) 𝑥 = 240𝑚, 𝑥 = 255𝑚, 𝑥 = 260𝑚 (c) 𝑥 = 240𝑚, 𝑥 = 260𝑚, 𝑥 = 265𝑚

Figure 6-22: Deviation from lane’s center and visibility ratio along the output tra-
jectories of the baseline and proposed planners when traveling along a straight road
toward the parked vehicles. The 𝑥 distances represent coordinates of a Cartesian
system for CARLA Town01, not distances from the starting point.

target truck was placed closest to the occluding truck, i.e., only 10𝑚 ahead of it,

and the proposed planner was used, the hidden truck was generally discovered by the

ego vehicle at 40𝑚 or 43.5𝑚 from its starting position. As shown by the cumulative

histograms in Fig. 6-23g, the proposed planner detected the hidden truck in 17 out

of the 50 trials, whereas the same hidden truck was only detected in 2 of the 50 trials

when using the baseline planner. Similarly, Fig. 6-23h shows that the baseline planner
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(a) 𝑥 = 240𝑚

(b) 𝑥 = 240𝑚 (c) 𝑥 = 240𝑚

Figure 6-23: Distributions of the ego vehicle discovery positions (i.e., distance of
ego vehicle from its starting point when occluded vehicles were detected) during the
“preparing to pass” traffic scenario, where (a, b, c) = discovery of the occluding truck
in each target vehicle configuration, (d, e, f) = discovery of hidden truck parked in
front of the occluding truck, and (g, h, i) = discovery of car parked in the opposite lane.
The 𝑥 distances represent coordinates of a Cartesian system for CARLA Town01, not
distances from the starting point.
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(d) 𝑥 = 255𝑚

(e) 𝑥 = 260𝑚 (f) 𝑥 = 265𝑚

Figure 6-23: Distributions of the ego vehicle discovery positions (i.e., distance of
ego vehicle from its starting point when occluded vehicles were detected) during the
“preparing to pass” traffic scenario, (a, b, c) = discovery of the occluding truck in each
target vehicle configuration, (d, e, f) = discovery of hidden truck parked in front of
the occluding truck, and (g, h, i) = discovery of car parked in the opposite lane(cont.)
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(g) 𝑥 = 250𝑚

(h) 𝑥 = 255𝑚 (i) 𝑥 = 260𝑚

Figure 6-23: Distributions of the ego vehicle discovery positions (i.e., distance of
ego vehicle from its starting point when occluded vehicles were detected) during the
“preparing to pass traffic scenario, (a, b, c) = discovery of the occluding truck in each
target vehicle configuration, (d, e, f) = discovery of hidden truck parked in front of
the occluding truck, and (g, h, i) = discovery of car parked in the opposite lane(cont.)
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only made six successful detections of the target truck when it was parked 15𝑚 ahead

of the first truck, while the proposed planner yielded 39 detections, most of which

occurred at approximately 43.75𝑚 from its starting position, a significantly higher

number of detections. The same pattern can also be observed in the last configuration,

as shown in Fig. 6-23i. The distribution peak for detection distances when using the

proposed planner is roughly at 43.75𝑚 when the targeted truck was parked 20𝑚

ahead of the first truck, and the proposed planner resulted in 45 successful detections

of the target truck out of the 50 trials. On the other hand, the second truck was only

detected during 5 of 50 trials when using the baseline planner.

The distributions of the ego vehicle’s positions when detecting the targeted passen-

ger vehicle in the opposite lane, in all three configurations are shown in Figs. 6-23d,

6-23e, and 6-23f. As shown in Figs. 6-23d and 6-23e, the resulting distributions for

both planners appear to be very wide, with no prominent peak in the first and second

vehicle location configurations. In both of these configurations, the proposed planner

achieved slightly earlier discovery as can be seen in Figs. 6-23d and 6-23e. In both

the first and second target vehicle configurations, the car was detected in every trial

by both planners. In the last configuration, where the targeted passenger vehicle in

the opposite lane was located a considerable distance from the occluding truck, most

detections occurred at 45𝑚 and 45.5𝑚 when using the proposed and baseline plan-

ners, respectively. Nevertheless, the proposed planner achieved a noticeably higher

detection rate (32/50) compared to the baseline planner (18/50), as indicated by the

cumulative histograms in Fig. 6-23f.

Table 6.4 shows a summary of the statistics of the ego vehicle discovery success

rates and positions when detecting the other vehicles in this scenario in each of the

three vehicle configurations tested. As can be seen from the table, the occluding truck

was detected by the ego vehicle in every trial, regardless of the planner used. The

proposed planner achieved lower mean and median travel distances before detecting

the occluding truck in the first and third configurations. However, it yielded a lower

mean but higher median travel distance in the second configuration. In the case of

the hidden truck parked in front of the first truck, the proposed planner achieved a
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significantly higher number of successful detections by the ego vehicle. Although the

baseline planner achieved lower mean and median travel distances before discovery, it

is worth noting that the ego vehicle only detected the hidden truck during six trials in

the second vehicle configuration and during five trials in the third configuration, out

of 50 total trials in each configuration. As shown in the lower part of Table 6.4, the

second target vehicle, i.e., the car parked on the other side of the road, was discovered

in all experimental trials in the first and second hidden vehicle configurations when

using both planners, but not in the third configuration, where the proposed planner

achieved significantly better detection performance. The proposed planner yielded

lower mean and median travel distances prior to the detection of the parked car in

all three vehicle configurations.

As can be seen in Figs. 6-21 and 6-22, in the majority of the trials when using

the proposed planner, the ego vehicle deviated to the left of its lane and eventually

came to a complete stop behind the occluding vehicle on the left side of the lane,

because moving to the left allowed the ego vehicle to achieve a better view of the

road ahead. Since there was not enough space for the ego vehicle to pass the parked

truck without briefly entering the opposite lane, it had to come to a stop behind

the truck and prepare for a passing maneuver. Although the ego vehicle was not

able to simply pass the parked truck, coming to a stop on the left side of the lane

benefited the ego vehicle by enabling it to observe both the area beyond the truck

and obstacles in the opposite lane, as indicated by its higher visibility ratio at its

stopping position in Fig. 6-22. Moreover, Fig. 6-23 and Table 6.4 show that the ego

vehicle was more likely to discover target vehicles placed behind the occluding truck

and in the opposite lane, compared to the baseline planner. Information regarding

obstacles in these areas is crucial in determining whether a safe passing maneuver

can be performed, therefore, the proposed planner put the ego vehicle in a relatively

safer position for passing in this scenario, compared to the baseline planner. Note

that the deviation to the left of the lane by the ego vehicle when using the proposed

planner did not occur immediately after the beginning of the experiment. As can

be observed in Figs. 6-21 and 6-22, there is a brief segment after departing from its
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Table 6.4: Summary of statistics of ego vehicle positions when discovering other vehi-
cles during the “preparing to pass” traffic scenario (Scenario III), for both the proposed
and baseline methods. Distances are measured from the ego vehicle’s starting point.
“Count” represents the number of successful detections per 50 trials.

Occluding truck
𝑥 = 240𝑚 𝑥 = 240𝑚 𝑥 = 240𝑚

Proposed Baseline Proposed Baseline Proposed Baseline
count 50 50 50 50 50 50
mean 7.72 7.99 7.55 7.80 7.54 7.86
std 0.72 1.05 0.72 1.07 0.77 1.15
min 6.74 6.55 6.48 6.59 6.52 6.45
median 7.60 7.79 7.64 7.34 7.40 7.58
max 9.26 10.45 9.50 10.36 9.76 10.59

Target truck
𝑥 = 250𝑚 𝑥 = 255𝑚 𝑥 = 260𝑚

Proposed Baseline Proposed Baseline Proposed Baseline
count 17 2 39 6 45 5
mean 41.51 43.41 43.05 42.36 43.69 43.32

std 1.67 1.72 1.02 1.79 0.32 0.76
min 39.71 42.19 39.12 39.16 42.60 42.38
median 40.66 43.41 43.47 43.03 43.72 43.71

max 43.83 44.62 44.59 44.12 44.17 44.10
Target vehicle in the opposite lane

𝑥 = 255𝑚 𝑥 = 260𝑚 𝑥 = 265𝑚

Proposed Baseline Proposed Baseline Proposed Baseline
count 50 50 50 50 32 18
mean 36.31 37.03 41.72 41.89 45.18 45.58
std 0.98 1.01 1.07 1.00 0.42 0.39
min 34.72 35.55 39.84 39.85 44.36 45.19
median 36.07 37.01 41.59 41.95 45.06 45.51
max 38.88 38.86 43.33 43.47 46.08 46.62

starting position where the ego vehicle was traveling straight along the center of its

lane. This behavior was expected because the parked truck was initially outside of
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the ego vehicle’s field of perception, i.e., its sensing range Therefore, the proposed

planner calculated the output motion as if the road ahead was clear, and thus there

was no benefit in moving away from the lane’s center. However, the planner shifted

the ego vehicle to the left as soon as the parked truck was within detection range.

It is important to emphasize that the parked truck was not included in the HD

maps, so the ego vehicle had to rely on its live detection results to evaluate the unex-

pected occlusion it encountered in the surrounding traffic environment. Nevertheless,

the detection results in these experiments were not perfect. The shape and orienta-

tion of several obstacles in the vicinity of the ego vehicle were sometimes incorrectly

estimated, and these occasional, incorrect detection results caused the baseline plan-

ner to veer the ego vehicle to the left in a few trials, as can be observed in Figs. 6-21

and 6-22. In those incidents, the obstacles were mistakenly judged to be very close

to the right side of the ego vehicle’s lane, as a result, the baseline planner tried to

avoid them. These sporadic deviations to the left account for why the ego vehicle was

sometimes able to discover the hidden target truck when using the baseline planner,

as shown in Figs. 6-23g, 6-23h, and 6-23i, and in Table 6.4. In most of the trials

where the erroneous deviation in lane position did not occur, the target truck could

not be detected when using the baseline planner. Similarly, as can be observed in

Fig. 6-23f and Table 6.4, the number of successful detections of the target vehicle in

the opposite lane when using the baseline planner in the third vehicle configuration

was inflated by these irregular swerves. These deviations increased the chance of suc-

cessful detections because the visibility of the target vehicle in the opposite lane was

better when the ego vehicle was on the left side of its lane, compared to the lane’s

center. Furthermore, when the target vehicles were placed very far away from the

occluding truck in the third configuration, almost at the edge of the sensing field of

the ego vehicle from its stopping position, reducing the distance to the target vehicle

even marginally may have significantly increased the detection rate.
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6.5 Conclusion

In this chapter, we have proposed a motion planner capable of actively adjusting

the ego vehicle’s lateral position in order to minimize occlusions in various traffic

scenarios under uncertainty from the perception modules. We have also extended

the 3D visibility estimation approach proposed in Chapter 5 for handling occlusions

caused by objects not present in HD maps.

The proposed planner first generates candidate trajectories with different lateral

offsets from the reference path. Current and future visibility along each trajectory is

then estimated using live sensing data from the LiDAR unit and HD maps, which are

then converted into a visibility cost. Finally, the visibility cost and other planning

costs are used to determine the optimal output trajectory.

Experiments were conducted in the CARLA simulator [78] to evaluate our pro-

posed and improved methods. Live localization and object detection results were

used in three traffic scenarios where occlusions were present; crossing an occluded

T-junction, making a right turn at an occluded corner, and preparing to pass a large,

parked vehicle not present in the HD maps. Our results showed that the ego vehicle

was able to effectively minimize occlusions and consequently discover occluded vehi-

cles earlier in most cases when the proposed planner was used, in comparison to a

baseline planner. Moreover, the occlusions caused by the parked vehicle that was not

present in the HD maps were correctly estimated when using our extended visibility

estimation approach.

During our review of related research in Chapter 2, we noted that there is a com-

mon assumption, adopted in several of the approaches that have been proposed for

regulating the ego vehicle’s speed when encountering occluded areas in the driving

environment, that the ego vehicle will generally travel along the lane’s center. In-

stead of simply using the center of the lane as a reference, the planner proposed in

this chapter can be used to plan a reference trajectory that will minimize occlusions

by altering the lateral position, i.e., road position, of the ego vehicle within its lane.

Therefore, the use of trajectories generated by our proposed motion planner, in con-
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junction with existing speed planners, should result in less conservative and more

efficient driving in traffic scenarios involving occlusions.

This work has focused only on occlusions caused by surrounding objects. How-

ever, occlusions can also be caused by several other factors, such as sensor failure

or adverse weather conditions. These types of occlusions should also be considered

in future research in order to ensure the safe navigation of autonomous vehicles in

broader operational domains. One potential solution is to extend the visibility esti-

mation method improved upon in this work to support multiple sources of sensing

information. Although only one sensing modality, namely LiDAR, was considered in

this paper, the concept of quantifying estimated visibility conditions along candidate

trajectories and converting them into visibility costs for trajectory selection could

also be applied when using multiple sensing modalities.

While deviating from the lane center can increase driving efficiency in occluded

areas, it is essential to note that being close to the lane boundaries could also have a

negative outcome, as the ego vehicle would be closer to other traffic participants on

the adjacent lanes than it would be from the center. Although the proposed planner

already takes into account a collision with other traffic participants when planning

the output trajectory, other road users may not understand the ego vehicle’s change

in direction toward them and react in an unsafe way. This potential issue could be

mitigated by utilizing multiple sensors to increase the total perception coverage of

the ego vehicle so that only minimal deviation is sufficient to enhance the visibility

significantly.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this dissertation, we have attempted to solve the two major drawbacks of occlusion-

aware motion planning approaches based on virtual vehicles, namely, deadlock due to

their worst-case assumptions, and their lack of road position planning functionality.

In order to solve the deadlock problem, we proposed using the estimated visibility

of hidden vehicles, and potential changes in their behavior after having observed the

ego vehicle, to plan the ego vehicle’s speed. For road position planning, we proposed

first predicting and quantifying the visibility conditions of driving environments using

HD maps consisting of 3D point cloud and road network maps and then using the

quantified visibility conditions to plan the road position of the ego vehicle so that

occlusions are minimized.

In Chapter 3, we first proposed a deadlock-free method for crossing low-visibility

intersections with a mandatory stop, as deadlock is prone to occur at these types

of intersections. The proposed method uses the estimated visibility of possible ap-

proaching vehicles to decide whether it is safe to trigger a predefined, special action

for escaping deadlock, which involves proceeding slowly forward from the mandatory

stop, where visibility is insufficient for a complete intersection crossing, in order to

gain additional visibility. A comparison of speed profiles generated when using the

proposed method to cross such intersections, and when an expert driver crossed them,
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showed that the proposed planner could generate driving behavior similar to that of

the expert at low-visibility intersections with a mandatory stop. Additionally, our

experimental results showed that when the estimated visibility of approaching vehi-

cles was not used for motion planning, the proposed method could not successfully

cross the intersections due to deadlocks. This finding indicates that estimation of

the visibility of possible approaching vehicles is crucial information for crossing such

intersections without deadlock.

While the planner proposed in Chapter 3 could escape deadlocks at blind intersec-

tions with a mandatory stop, it relied on forward movement from the stop line which

was triggered using estimated visibility of the ego vehicle by approaching vehicles.

However, the proposed planner lacked a detailed analysis of the actual behavior of

approaching vehicles after they observed the ego vehicle, i.e., the visibility-dependent

behavior of the approaching vehicles. Therefore, in Chapter 4, we proposed a generic,

deadlock-free motion planner that uses the visibility of both the ego vehicle and

approaching vehicles to generate safe crossing motion at blind intersections. The

proposed planner utilizes a particle filter algorithm for occluded vehicle prediction in

order to support possible changes in the behavior of approaching traffic participants

based on their ability to see the ego vehicle and to account for uncertainty in per-

ception accuracy. Real driving data from multiple drivers crossing blind intersections

in a residential area was also collected and analyzed in order to model the visibility-

dependent behavior of occluded vehicles at intersections. We then compared the

proposed generic, deadlock-free planner with a baseline planner that simply assumes

the worst-case scenario, i.e., hidden vehicles are approaching from the occluded areas

at a constant, high speed. The results of our comparison under various conditions

showed that our proposed planner could generate deadlock-free crossing motion at a

blind intersection of two narrow roads (each 5 meters wide), while the baseline plan-

ner could not. The effects of perception accuracy and sensor position on the output

motion of the planner were also investigated. It was found that noisy perception

generally caused the proposed planner to slightly delay intersection crossing action.

Regarding the sensor mounting position, a front-mounted configuration resulted in a

158



less reduction in the ego vehicle speed and the elimination of a complete stop before

crossing uncontrolled intersections, as compared to a sensor mounted at the center of

the vehicle.

As a first step toward road position planning when encountering occluded areas,

in Chapter 5, we proposed a visibility estimation method using HD maps, i.e., a

combination of 3D point cloud and road network maps, that is applicable in complex

driving environments. We also introduced an approach for quantifying the visibility

conditions at a particular location with a numerical value, namely a visibility ratio.

A 3D scan of a specified viewpoint is first approximated using a 3D point cloud

map. The approximated scan and 3D points representing the area of the relevant

surrounding lanes are then projected onto depth images. To identify the visible

and occluded regions of the driving environment from the specified viewpoint, the

resulting depth images are then compared. Finally, the visibility ratio is computed

by dividing the visible area of interest by the total relevant driving area. The proposed

visibility estimation approach was tested in both simulated and real-world terrain.

Our results suggest that the visibility ratio calculated using the proposed method

was representative of actual road visibility from a specified location within the HD

maps. Furthermore, using the visibility estimation method proposed in Chapter 5,

it is also possible to predict and quantify the visibility conditions of the road ahead.

Consequently, this predicted visibility can be used for planning the optimal road

position which will result in the least occlusion.

In Chapter 6, we proposed a motion planner capable of actively adjusting the ego

vehicle’s lateral position, i.e., road position, in order to minimize occlusions in various

traffic scenarios under perception uncertainty. We also extended an approach for 3D

visibility estimation proposed in Chapter 5 to also include the use of live sensing data,

so that it can handle occlusions caused by objects that are not present in the HD

maps. First, candidate trajectories with different lateral offsets from the reference

path are generated. The current and future visibility conditions along each trajec-

tory are then estimated, allowing their visibility ratios to be calculated using the

proposed extended visibility estimation approach. Finally, a visibility cost, computed
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from the visibility ratio, is used along with other planning costs to determine the op-

timal output trajectory. The proposed planner was tested in various simulated traffic

scenarios using both live localization and object detection results. Our experimental

results showed that the ego vehicle was able to effectively minimize occlusions and

consequently discover occluded vehicles earlier when the proposed planner was used,

in most cases, in comparison to a baseline planner. Moreover, occlusions caused by a

parked vehicle that was not present in the HD maps were correctly estimated when

using our extended visibility estimation approach.

To unify the approaches proposed in this dissertation into a single system, one

could use the road position planner described in Chapter 6 to first plan the reference

trajectory that will result in maximum visibility of the driving environment, based

on an approach for visibility prediction and quantification introduced in Chapter 5.

Once a reference trajectory is obtained, the deadlock-free speed planner presented in

Chapters 3 and 4 could then be used to regulate the ego vehicle’s motion along the

reference trajectory. By planning the motion of the ego vehicle in this manner, the

resulting motion should be efficient. The ego vehicle would not need to reduce its

speed as much to safely traverse through occluded areas, due to the better visibility

achieved by strategically adjusting its road position. As a result, deadlocks would also

be less likely. In a situation where a deadlock is inevitable, the ego vehicle would still

be able to escape an indefinite standstill by taking the visibility of hidden vehicles,

and potential changes in their behavior after detecting the ego vehicle, into account.

Being able to ensure the safe navigation of autonomous vehicles in areas that

contain occlusions will certainly broaden their operational domains, making the mass

adoption of autonomous vehicles one step closer to reality. This will eventually trans-

late into natural resources being used more efficiently and millions of invaluable lives

saved — the potential societal benefits envisioned decades ago by many great minds

when autonomous driving technology was first being developed.
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7.2 Future Work

The speed planner proposed in Chapters 3 and 4 only considers potential occluded

vehicles. In future research, other types of traffic participants such as pedestrians and

cyclists should also be considered. The addition of other types of traffic participants

should be as straightforward as modifying the motion model of the particle filter-based

occluded object prediction module used in our proposed speed planner.

Moreover, in Chapter 4, the behavior of hidden traffic participants is modeled

to be affected mainly by their visibility of the ego vehicle. Future improvement of

the proposed behavior model should take into account other actions or events that

are common in driving scenarios and can significantly influence the motion of traffic

participants. For example, possible deceleration by an approaching cyclist or vehicle

after the ego vehicle gives an audible warning with the horn should be considered.

Similarly, other factors such, as the right-of-way, can also be incorporated into the

behavior model of hidden traffic participants.

Although motion planning of the ego vehicle at an intersection with a mandatory

stop is already discussed in Chapter 3, a mandatory stop is only one of many traffic

rules that directly affect how the ego vehicle should navigate in the environment.

Other traffic regulations, such as traffic lights which are very common at intersec-

tions, should also be considered in future research to increase feasibility in real-world

applications of the motion planner.

The visibility estimation method proposed in this dissertation still has much room

for improvement, since our approach exclusively utilizes sensing data from a 3D Li-

DAR to identify the visible and occluded regions of driving environments. Modern

autonomous vehicles typically have multimodal sensing capabilities, i.e., they are

often equipped with several types of sensors in order to provide redundancy or com-

plementarity to the system, therefore, visibility estimation methods should be able

to make use of data from various types of sensors. One possible way to achieve such

fusion is to use Bayesian inference. Regions of interest in the driving environment can

first be identified as either visible or occluded using data from an individual sensing
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modality. Then, individual results from all of the sensors can be fused together, tak-

ing into consideration the accuracy of each sensor for estimating visibility, in order

to achieve reliable, final estimation results. This fusion can also be applied to other

sources of information, such as information from other vehicles via V2V communica-

tion, or indirect observations of the driving environment via the convex mirrors which

are typically placed near occluded intersections to improve visibility [88].

Additionally, the visibility estimation approach in this dissertation focuses only on

occlusions caused by surrounding objects. Nevertheless, many other factors such as

defective sensors or adverse weather conditions have been reported in several studies

[83–86] to have caused degradation of visibility or occlusions in driving environments.

These potential sources of occlusion should be considered in future investigations as

well.

The proposed road position planner could be further enhanced by taking into

account predicted future trajectories of surrounding traffic participants, both visi-

ble and occluded, as they directly influence the future visibility of the ego vehicle.

Finally, instead of calculating visibility ratios entirely online, it would be more com-

putationally efficient to precalculate them using only point cloud and road network

maps, embed the results in the road network map, and then dynamically update the

ratios again online using live 3D scans to reflect the changes in visibility caused by

objects not present in the point cloud map.
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