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Abstract

It is an important problem for mathematical physics to derive the mathe-
matical model of quantum theory. A modern approach, called General Prob-
abilistic Theories (GPTs), starts from informational and operational aspects
about states and measurements. From a mathematical perspective, studies
of GPTs aim to characterize proper positive cones by physically meaningful
conditions. Studies of GPTs have been widespread recently, but they remain
incomplete.

One of the essential problems of GPTs is to characterize the Standard
Entanglement Structure (SES) from Entanglement Structures (ESs). ES is
a possible structure of a quantum composite system in GPTs. It is strongly
believed in standard quantum theory (or traditional physics) that a model
of a composite system is uniquely determined as the SES. However, a model
of composite system in GPTs is not uniquely determined. Moreover, because
the definition of ESs is derived only from physically reasonable postulates,
ESs other than the SES are not denied as a model of some physical composite
systems. In other words, there is a theoretical possibility that some physical
composite systems obey other ESs instead of the SES. Therefore, it is an
important problem to find (additional) reasonable postulates that determine
various ESs as the standard one. For this problem, we need to investigate the
diversity of ESs and characterize them by physically reasonable postulates.

In order to investigate the diversity of ESs, this thesis considers a funda-
mental informational task called state discrimination. State discrimination
is a task whose success probability depends on the performance of measure-
ments in models, and the equivalent condition of perfect state discrimination
is orthogonality of states in standard quantum theory. On the other hand,
the prior works [29, 30] have revealed that some ESs of GPTs have extraor-
dinary performances for discrimination tasks, i.e., some models enable to
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discriminate non-orthogonal states. The preceding studies [29, 30] entirely
depend on a certain type of concrete measurements beyond standard quan-
tum theory. This thesis then explores general measurements and gives equiv-
alent conditions for a given measurement to have a performance superior to
standard quantum theory. These equivalent conditions moreover give two
important applications. One is the derivation of the SES by the bound of
the performance for discrimination tasks when we impose an additional con-
dition. Another one is non-simulability of beyond-quantum measurement.
These two applications mean that models in beyond-quantum measurement
is distinguished from the SES by state discrimination.

Next, this thesis focuses on self-duality. In GPTs, it is known that self-
duality has an important role in characterizing Euclidean Jordan Algebras
when considering the combination of self-duality and a kind of symmetric
condition called homogeneity. However, it is an open problem how drastically
just one of the above two conditions restricts models even when considering
ESs instead of all models. Therefore, we first explore a group-symmetric
condition in ESs. As a result, we reveal that a group-symmetric condition
weaker than homogeneity derives the SES uniquely from ESs.

On the other hand, it is so challenging to explore self-dual ESs that no
example of self-dual ESs is known except for the SES. Moreover, consid-
ering general models in GPTs, only a few examples of self-dual and non-
homogeneous models are known. Then, in order to clarify the diversity of
self-dual models, this thesis develops a general theory of self-duality. Apply-
ing the general theory, we show the existence of self-dual ESs except for the
SES. Moreover, the general theory also gives an important classes of self-dual
ESs called Pseudo Standard Entanglement Structures (PSESs). A PSES is
a self-dual ES that cannot be distinguished from the SES by physical exper-
iments with small errors. We show the existence of an infinite number of
PSESs. Furthermore, we also show that some of PSESs discriminate non-
orthogonal states, i.e., we show that some models enable non-orthogonal
discrimination even though the ES is self-dual and near the SES.
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Chapter 1

Introduction

This thesis addresses General Probabilistic Theories (GPTs) [10–20, 22–38,
A1,A2]. The studies of GPTs aim to characterize models of physical theory,
including quantum theory.

The mathematical model of quantum theory describes physical systems
very precisely. However, such consistency to physical systems is the al-
most only reason why the model of quantum theory is given as the present
form. Many researchers therefore have studied foundations of quantum the-
ory [10,48–54]. Recently, as quantum information theory has been developed,
operational and informational aspects of quantum theory have been investi-
gated.

The approach of GPTs is one of such frameworks for a foundation of quan-
tum theory to discuss operational and informational aspects in mathematical
models. Because GPT only imposes fundamental postulates on models, there
exist continuously many models in GPTs. The main aim of the studies of
GPTs is to find reasonable postulates that derive the model of quantum the-
ory from such models. As seen in the next section, many preceding studies
have provided not only deep knowledge about a foundation of quantum the-
ory [10, 11, 13, 31, 37] but also many contributions to quantum information
theory [12, 17, 23]. However, many problems are not solved completely, and
this thesis tackles such problems.

In terms of derivation of the model of quantum theory, it is an essential
problem to distinguish quantum theory from models with similar structures
to quantum theory. An entanglement structure [25–32] is a typical example of
such similar models. This thesis investigates how drastically some properties
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Chapter 1. Introduction

ρ
state

i
outcome

{Mi}i∈Imeasurement

w.p. pi

Figure 1.1: When a state ρ is measured by a measurement M = {Mi}i∈I ,
an outcome i ∈ I is obtained with probability pi.

characterize entanglement structures and reveal the diversity of entanglement
structures.

1.1 Concept and Motivation of General Prob-
abilistic Theories

A model of GPTs is given as a generalized model of quantum theory with
states and measurements. In quantum theory, a state is assigned informa-
tion about the system, and a measurement is a process to extract partially
the information with a certain probability distribution. Such probability
distributions are applied to topics of quantum information theory. As a gen-
eralization of quantum theory and quantum information theory, GPT also
starts with the following concept of measurement process on a state and
information with probability distribution.

Apply a measurement M = {Mi}i∈I to a given state ρ. Then, only one
outcome i is obtained with a certain probability pi (Figure 1.1). Here, we
assume the probability pi is exactly given as a function of ρ and Mi, which
corresponds to the empirical law that the same state and the same measure-
ment give the same probability distribution. As a prerequisite for dealing
with probabilistic measurement processes, a model of GPTs contains such a
structure mathematically. Also, as an operationally inevitable requirement,
we assume that the state space and measurement space are convex because
we can consider mixture objects with a certain probability.

As a minimum structure to deal with the above probabilistic measurement
process, a model of GPTs is defined by a proper positive cone in a real-vector
space with an inner product (Definition 2.2.1). The rigorous definition is
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Chapter 1. Introduction

given in Section 2.2.1, but roughly speaking, a model of GPTs is defined
by each different proper positive cone. This definition is mathematically so
general that there exist continuously many different models in GPTs even
if the dimension of the vector space is finite. The main motivation of the
studies of GPTs is to derive the model of quantum theory from such many
different models by reasonable conditions about probability distributions of
states and measurements.

1.2 Approaches to Characterization of Physical
Models

Roughly speaking, there are three approaches to characterize the traditional
models of physical systems (especially quantum theory). The first approach
is to impose traditional postulates in theoretical physics or quantum infor-
mation theory, which is well-considered in early studies of GPTs. A typical
example is no-signaling principle, a property in both classical and quantum
theory. It was believed that quantum theory is a model that has the most
correlated causality with no-signaling principle. However, the reference [10]
found a model with no-signaling principle with more correlated causality than
quantum theory. Another typical example is no-cloning principle, which is
a property of quantum theory but not classical theory. In early studies, no-
cloning principle is considered a peculiar property in quantum theory. How-
ever, the reference [11] showed that the availability of cloning processes is a
peculiar property in classical theory. In this way, traditional postulates often
do not characterize quantum theory (they sometimes characterize classical
theory).

The second approach is to impose a limit of a performance for an in-
formation task. Traditional postulates in the first approach are often qual-
itative. In order to characterize quantum theory, we need indicators more
quantitative than traditional postulates. A typical example of quantitative
postulate is given as a limit of a performance for certain information tasks.
The reference [12] introduced a performance for a communication task, and
the reference [12] showed that the upper bound of the performance char-
acterizes the amount of correlation in models. Such an informational ap-
proach is not only accurate but also well-motivating not only for foundation
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Chapter 1. Introduction

of physics but also for practical physics. An upper bound of a performance
for information tasks regulates our operational limit to physical systems or
information processing. In other words, such characterizations provide a
rigorous statement why an unknown model cannot be implemented on any
physical system. Therefore, many information tasks have been considered
recently [12,17,18,26,27,29,30,33–35]. However, a condition of performance
for information tasks to characterize quantum theory has not been found yet.

The third approach focuses on mathematical properties. Recently, the
reference [37] showed that a strongly symmetric condition derives essentially
finite types of models, including quantum theory. Also, the reference [22]
imposes the same condition and a condition about spectrality, and it derives
the thermodynamical behavior of quantum theory. In this way, mathemat-
ically strong conditions determine models drastically. However, such strong
conditions do not often have reasonable physical meanings. In order to give a
physical meaning of such conditions, we need to investigate the relationship
between such mathematical conditions and performances for some informa-
tional tasks or physical operations.

This thesis deals with the second and the third approach for the problem
in the next section.

1.3 Non-uniqueness of Entanglement Structures

For a foundation of quantum theory, it is essential to distinguish the model
of quantum theory from similar models. In GPTs, all models are roughly di-
vided into two types; the first type is a model with a finite number of extremal
rays (Definition 2.1.2) and the second type is a model with an infinite number
of extremal rays. The model of quantum theory has an infinite number of
extremal rays, and therefore, it is more important to investigate such mod-
els. One important class of such models is Entanglement Structures (ESs).
ES is a possible structure of a quantum composite system in GPTs [25–32].
Even though a model of a composite system is uniquely determined in stan-
dard quantum theory, it is not uniquely determined in GPTs. Because the
definition of ES is physically reasonable, there is a theoretical possibility of
another ES in physics. Therefore, an investigation of ESs contributes not
only to a foundation of quantum theory but also to an evaluation of other
possibilities of quantum-like physical models.
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Chapter 1. Introduction

In order to investigate the diversity of ESs, this thesis studies the following
five theme.

A. Characterization of Dual-Operator-Valued Measurement (Section 3.2)

B. Non-Simulability of Beyond Quantum Measurement (Section 3.2.3)

C. Entanglement Structures with Group Symmetry (Section 4.1.2)

D. Self-Dual Modification (Section 4.2)

E. Existence of PSES and Difference from the SES (Section 4.3)

These themes are related to both of the second and the third approaches in
Section 1.2. Here, we roughly divide them into two parts as follows in terms
of the approaches.

First, corresponding to the second approach in Section 1.2, this thesis fo-
cuses on a fundamental informational task called state discrimination. State
discrimination is a task whose success probability depends on the perfor-
mance of measurements in a given model, and it is equivalent to orthogonality
of states in standard quantum theory. On the other hand, preceding stud-
ies [29, 30] revealed that some models of GPTs discriminate non-orthogonal
states. The preceding studies [29, 30] entirely depend on some usable con-
crete measurements beyond standard quantum theory. As Theme A, this
thesis explores in detail such measurements beyond standard quantum the-
ory. As a result, we give an equivalent condition when a measurement has a
performance superior to standard quantum theory. By applying the equiv-
alent condition to the characterization of ESs, we additionally show that
a bound of the performance for a discrimination task determines ESs with
certain condition as the SES uniquely. Also, as Theme B, by applying the
results about beyond-quantum measurements, we discuss the simulability of
beyond-quantum measurement in standard quantum theory and reveal its
impossibility.

Second, corresponding to the third approach in Section 1.2, this thesis
focuses on two mathematical properties, self-duality and homogeneity. Self-
duality means the equivalence between the proper cone and its dual cone.
Homogeneity is a strongly symmetric condition about a group acting on the
vector space. If a proper cone satisfies self-duality and homogeneity, the cone
induces the structure of Euclidean Jordan Algebra. Cones corresponding to
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Chapter 1. Introduction

Euclidean Jordan Algebra are classified into essentially finite types of cones,
including the model of quantum theory. This result is given by the refer-
ences [2, 3] in pure mathematics, but it has been open for a long time how
drastically only one of the conditions determines a structure of proper posi-
tive cones. Moreover, only a few examples of self-dual cones are known [6].
Other known examples of self-dual cones also satisfy homogeneity, and there-
fore, such examples are classified essentially finitely. This thesis investigates
the diversity of ESs with one of the above two conditions. As Theme C,
we show that a weaker condition about group symmetry is sufficient to de-
rive the standard entanglement structure than homogeneity. On the other
hand, as Theme E, we show that self-duality does not derive the standard
entanglement structure even if we impose an additional condition that the
model cannot be distinguished from the standard entanglement structure by
physical experiments. In order to show the result about self-duality, we give
a general theory about self-dual cones as Theme D.

1.4 Outlines and Contributions

First, we explain the outline of this thesis. In Chapter 2, we give mathemati-
cal definitions and fundamental propositions about GPTs. In Section 2.1, we
give a definition and fundamental properties of positive cones. In Section 2.2
and Section 2.3, we introduce a model of GPTs and entanglement structures,
respectively. In Section 2.3, we give some important examples of entangle-
ment structures. Properties of the examples are written in Appendix A.1.
In Chapter 3, we investigate state discrimination in ESs. In Section 3.1, we
introduce state discrimination and preceding studies about it. In Section 3.2,
as our Main result 1, we characterize Dual-Operator-Valued Measurements
(DOVMs) by the performance for state discrimination. Also, as our Main
result 2, we give the setting of simulability of DOVMs and show its impos-
sibility. In Section 3.3, we give proofs about the results in Chapter 3. In
Chapter 4, we investigate the diversity of ESs with self-duality and group
symmetry. In Section 4.1, we introduce preceding studies about self-duality
and homogeneity, and we show that a weak symmetric condition determines
the standard entanglement structures uniquely as the main result 3. In Sec-
tion 4.2, as our Main result 4, we give a general theory about self-dual cones.
In Section 4.3, as our Main result 5, we introduce Pseudo Standard Entan-
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Chapter 1. Introduction

glement Structures (PSESs), and we show the existence of an infinite number
of PSESs and their performance for state discrimination. In Section 4.4, we
give proofs of the statements in Chapter 4. In Chapter 5, we conclude this
thesis.

Next, we mention the contributions of the results in this thesis. About
Theme A, the Author has fully contributed to the all contents. The Au-
thor’s contributions to Theme B are the first setting, results, and its proof.
The present setting of Theme B (Definition 3.2.10) is obtained by discussing
with Prof. Masahito Hayashi. Theme C, Theme D, and Theme E are the
main results of [A1]. The Author’s contributions to Theme C are the setting,
results, and its proof. The settings of Theme C, Theme D, and Theme E
especially Definition 4.2.1 and ϵ-distinguishability (in Section 4.3.1) were ob-
tained by discussing with Prof. Masahito Hayashi. Also, in Section 2.3 and
Appendix A.1, this thesis gives some examples of entanglement structures
that play an important role in the reference [A2]. The Author’s main contri-
butions in the reference [A2] are the mathematical parts and the construction
of the examples in Appendix A.1.
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Chapter 2

Mathematical description of
GPTs

In this chapter, we introduce GPTs and their mathematical description.
First, as a preliminary, we introduce positive cones and their fundamen-

tal properties in Section 2.1. Positive cones play an essential role to define
a model of GPTs. Roughly speaking, a model of GPTs, especially ESs, is
determined by a proper positive cone. Therefore, a study of GPTs is math-
ematically regarded as a characterization of certain proper positive cones.

Next, we introduce a model of GPTs and give some important examples
of models in Section 2.2. A model of GPTs is defined by a proper positive
cone in a real vector space. In a model of GPTs, states, measurements, and
other objects are defined by the structure of the positive cone and its dual
cone.

Finally, we introduce a bipartite composite model of two submodels in
GPTs and entanglement structures in Section 2.3. In GPTs, a model of
the composite system is not uniquely determined even if the subsystems are
equivalent. An entanglement structure is defined as a possible composite
model whose submodels are equivalent to quantum theory.

2.1 Preliminaries

In this section, we enumerate properties about positive cones. Section 2.1.1
gives definitions and fundamental properties. Section 2.1.2 gives properties
about set-operations over continuous indices. Section 2.1.1 gives properties
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Chapter 2. Mathematical description of GPTs

about group symmetry. Many properties are applied in whole of this thesis,
but some properties are not applied here. We give such properties in order
to explain the mathematical aspects about positive cones.

2.1.1 Definition and Fundamental Properties of Positive
Cones

In this thesis, we assume that any vector space V is finite-dimensional.
First, we define positive cones and proper cones.

Definition 2.1.1 (Positive Cone and Proper Cone). Let C be a subset of a
finite-dimensional real vector space V. We say that C is a positive cone if C
satisfies the following two conditions:

1. rx ∈ C for any r ≥ 0 and any x ∈ C.

2. C is closed convex set with non-empty interior.

Also, we say that a positive cone C is proper if C satisfies the equation C ∩
(−C) = {0}1.

Next, we define an extremal ray of a positive cone, which is convenient
for discussion of positive cones.

Definition 2.1.2 (Extremal Ray). We say that a subset R ⊂ V is a ray if
R is written as

R = {rx|r ≥ 0} (2.1)

for an element x ∈ V. Also, given a positive cone C, we say that a ray R ⊂ C
is an extremal ray of C if any convex decomposition of an arbitrary element
x ∈ R over any element xi ∈ C with

x =
∑
i

aixi (2.2)

implies xi ∈ R.

1In some references, a proper cone is also called a pointed cone.
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Hereinafter, we denote a set of all extremal rays of a proper cone C as
ER(C). Similarly, given a convex set X, we denote a set of all extremal points
of the set X as EP(X).

Here, we give another perspective of the structure of proper cones. Given
a proper cone C, we define a relation ≤C as

x ≤C y ⇔ y − x ∈ C. (2.3)

Then, the relation ≤C is a partial order. Actually, the following proposition
holds.

Proposition 2.1.3 ( [1, Section 2.4.1]). Let C be a proper positive cone.
Then, the relation ≤C is a partial order.

In this way, the definition of proper cone is characterized by the structure
of partial order. In GPTs, a model is defined by a partial order which is
derived from a proper cone.

Next, we define an order unit of proper cone, which is regarded as a
normalized factor of a model of GPTs.

Definition 2.1.4 (order unit). Given a proper cone C, we say that an element
u ∈ C◦ is an order unit of C, where the set X◦ is denoted as interior of X.

An order unit is characterized by the order relation defined by the proper
cone.

Proposition 2.1.5. Given a proper cone C and an element u ∈ C, the fol-
lowing two conditions are equivalent:

1. u is an order unit of C.

2. For any element x ∈ V, there exists a natural number n such that
x ≤C nu.

Proof of Proposition 2.1.5. [STEP1] (i)⇒(ii)
Because u is an order unit of C, there exists a parameter ϵ > 0 such that

the epsilon ball Nϵ(u) of u satisfies Nϵ(u) ⊂ C. Therefore, any element x ∈ V
satisfies the relation u− ϵ

||x||x ∈ C. Because of the definition of ≤C, we obtain
the following inequalities:

u− ϵ

||x||
x ≥C 0

x ≤C
||x||
ϵ
u. (2.4)
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Hence, there exists a natural number n such that x ≤C nu.

[STEP1] (ii)⇒(i)
Let {xi}di=1 be an orthonormal basis in V . For any i, there exists a natural

number ni such that xi ≤C niu. Then, consider the set X := {x ∈ V | ||x|| =
1}. Any element x ∈ X has a decomposition over {xi} as x =

∑
i aixi,

where ai is a real number satisfying
∑

i |ai|2 = 1. Therefore, we obtain the
inequality x ≤C

∑
i |ai|2niu. Here, the number

∑
i |ai|2ni is bounded for any

x ∈ X. Hence, there exists a natural number n0 such that x ≤C n0u for any
x ∈ X. Therefore, the relation u − 1

n0
x ∈ C holds for any ||x|| = 1, which

implies that the 1
n0

ball of u is contained by C. Thus, the element u belongs
to interior of C.

Next, we define the dual cone of a positive cone. There are some parallel
ways to define a dual cone. In this thesis, we define the dual cone embedded
onto the original vector space V by the inner product.

Definition 2.1.6 (Dual Cone). Given a positive C, we define its dual cone
C∗ as

C∗ := {x ∈ V|〈x, y〉 ≥ 0 ∀y ∈ C} . (2.5)

Then, the following proposition ensures that a dual cone is a proper cone
when the original cone is proper.

Proposition 2.1.7 ( [1, Section 2.6.1]). Given a proper positive C, the dual
cone C∗ is proper positive cone. Also, given a proper positive C, the dual of
dual cone is equal to the original cone, i.e., the equation (C∗)∗ = C holds.

About dual cones, the following two propositions are very important for
the proof of whole of this thesis.

Proposition 2.1.8 ( [1, Section 2.6.1]). Given two proper cones C1 and C2,
the following two conditions are equivalent:

1. C1 ⊂ C2.

2. C∗
2 ⊂ C∗

1 .
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Proposition 2.1.9. Given a proper cone C1 and C2, the following two equa-
tions hold:

(C1 + C2)∗ = C∗
1 ∩ C∗

2 . (2.6)

(C1 ∩ C2)∗ = C∗
1 + C∗

2 . (2.7)

Proof of Proposition 2.1.9. [OUTLINE] The equation (2.7) is shown by the
same way as (2.6). Then, we show only (2.6) here.

[STEP1] Proof of the inclusion relation (C1 + C2)∗ ⊂ C∗
1 ∩ C∗

2 of (2.6).
Let x be an element in (C1 + C2)∗. Because two cones C1 and C2 contain

the element 0, arbitrary elements y1 ∈ C1 and y2 ∈ C2 satisfy yi ∈ C1 + C2 for
i = 1, 2. Therefore, the elements satisfy 〈x, yi〉 ≥ 0 for i = 1, 2. Because y1, y2
are arbitrary, the element x belongs to C∗

1 and C∗
2 , which implies x ∈ C∗

1 ∩C∗
2 .

[STEP2] Proof of the inclusion relation ⊃ of (2.6).
Let x be an element in C∗

1 ∩ C∗
2 . Therefore, arbitrary elements y1 ∈ C1

and y2 ∈ C2 satisfy 〈x, yi〉 ≥ 0 for i = 1, 2, which implies the inequality
〈x, y1 + y2〉 ≥ 0. Because y1, y2 are arbitrary, the element x belongs to
(C1 + C2)∗.

2.1.2 Properties about Uncountable Operation of Posi-
tive Cones

First, the following proposition guarantees that the intersection of uncount-
able positive cones is also a positive cone.

Proposition 2.1.10. Let {Cλ}λ∈Λ be a family of positive cones with an un-
countably infinite set Λ. There exists a positive cone C such that the relation
Cλ ⊃ C holds for any λ ∈ Λ. Then, the set

⋂
λ∈Λ Cλ is a positive cone, i.e.,⋂

λ∈Λ Cλ satisfies the following three conditions:

(i)
⋂

λ∈Λ Cλ is closed and convex.

(ii)
⋂

λ∈Λ Cλ has an inner point.

(iii)
⋂

λ∈Λ Cλ ∩
(
−
⋂

λ∈Λ Cλ
)
= {0}.
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Proof. [STEP1] Proof of (i).
Because Cλ is a positive cone for any λ ∈ Λ, Cλ is closed and convex.

Because Cλ is closed,
⋂

λ∈Λ Cλ is also closed. Take any two elements x, y ∈(⋂
λ∈Λ Cλ

)
. Because x and y satisfy x, y ∈ Cλ for any λ, px + (1 − p)y ∈ Cλ

for any p ∈ [0, 1], which implies that px+ (1− p)y ∈
(⋂

λ∈Λ Cλ
)
i.e.,

⋂
λ∈Λ Cλ

is convex.

[STEP2] Proof of (ii).
Because the assumption Cλ ⊃ C holds for any λ ∈ Λ,

(⋂
λ∈Λ Cλ

)
⊃ C

holds. Also, because C is a positive cone, C has an inner point, which also
belongs to the interior of

⋂
λ∈Λ Cλ.

[STEP3] Proof of (iii).
This is shown because the set

⋂
λ∈Λ Cλ ∩

(
−
⋂

λ∈Λ Cλ
)

is written as

⋂
λ∈Λ

Cλ ∩

(
−
⋂
λ∈Λ

Cλ

)
=
⋂
λ∈Λ

(Cλ ∩ (−Cλ)) =
⋂
λ∈Λ

{0} = {0}. (2.8)

Next, we discuss the sum of uncountable sets. We remark the definition
of the sum of uncountable sets.

Definition 2.1.11. Let {Xλ}λ∈Λ be a family of sets Xλ with an uncountably
infinite set Λ. We define the set

∑
λ∈ΛXλ as

∑
λ∈Λ

Xλ := Clo

({∑
i∈I

xi

∣∣∣∣∣xi ∈ Xi, I ⊂ Λ is a finite subset set

})
, (2.9)

where Clo(Y ) is the closure of a set Y .

Then, the following proposition guarantees that the sum of uncountable
positive cones is also a positive cone.

Proposition 2.1.12. Let {Cλ}λ∈Λ be a family of positive cones with an un-
countably infinite set Λ. There exists a positive cone C such that the positive
cone Cλ satisfies Cλ ⊂ C for any λ ∈ Λ. Then, the set

∑
λ∈Λ Cλ is a positive

cone, i.e.,
∑

λ∈Λ Cλ satisfies the following three conditions:

(i)
∑

λ∈Λ Cλ is closed and convex.
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(ii)
∑

λ∈Λ Cλ has an inner point.

(iii)
∑

λ∈Λ Cλ ∩
(
−
∑

λ∈Λ Cλ
)
= {0}.

Proof. [STEP1] Proof of (i).
By the deinifion 2.1.11,

∑
λ∈Λ Cλ is closed. Take any two elements x, y ∈(∑

λ∈Λ Cλ
)
. By the definition 2.1.11, the elements x, y are written as x =

limn→∞ xn and y = limn→∞ yn, where xn, yn ∈ Cn. Therefore, the element
zn(p) = pxn + (1− p)yn belongs to Cn for p ∈ [0, 1]. Because limn→∞ zn(p) =

px+ (1− p)y, the element px+ (1− p)y belongs to
∑

λ∈Λ Cλ.

[STEP2] Proof of (ii).
Because the inclusion relation Cλ0 ⊂

∑
λ∈Λ Cλ holds for any element λ0 ∈

Λ,
∑

λ∈Λ Cλ has an inner point that is also an inner point of Cλ0 .

[STEP3] Proof of (iii).
By the definition 2.1.11, the element 0 belongs to

∑
λ∈Λ Cλ, which implies

the relation {0} ⊂
∑

λ∈Λ Cλ∩
(
−
∑

λ∈Λ Cλ
)
. Then, we show {0} ⊃

∑
λ∈Λ Cλ∩(

−
∑

λ∈Λ Cλ
)

as follows. Because the assumption Cλ ⊂ C holds for any λ ∈ Λ

and because the positive cone C is closed, the set
∑

λ∈Λ Cλ defined as a
closure satisfies the inclusion relation C ⊃

∑
λ∈Λ Cλ. The inclusion relation

−C ⊃ −
∑

λ∈Λ Cλ also holds. Therefore, the following inclusion relation holds:

∑
λ∈Λ

Cλ ∩

(
−
∑
λ∈Λ

Cλ

)
⊂ C ∩ (−C) = {0}. (2.10)

Finally, the following lemma gives a relation between an intersection and
a sum over uncountable positive cones.

Lemma 2.1.13. Let {Cλ}λ∈Λ be a family of positive cones with an uncount-
ably infinite set Λ, and let C1, C2 be positive cones satisfying C1 ⊂ Cλ ⊂ C2 for
any λ ∈ Λ. Then, the dual cone

(⋂
λ∈Λ Cλ

)∗ is given by
∑

λ∈Λ C∗
λ.

Proof of lemma 2.1.13. Because of the assumption C1 ⊂ Cλ ⊂ C2, Proposi-
tion 2.1.8 implies C∗

1 ⊃ C∗
λ ⊃ C∗

2 . Therefore, proposition 2.1.10 and propo-
sition 2.1.12 imply that the two sets

(⋂
λ∈Λ Cλ

)∗ and
∑

λ∈Λ C∗
λ are positive

cones.
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Now, we show the duality. Take an arbitrary element y ∈
⋂

λ∈Λ Cλ and an
arbitrary element x ∈

∑
λ∈Λ C∗

λ. Then, there exists a sequence xn ∈
∑

λ∈Λ C∗
λ

such that limn→∞ xn = x and xn is a finite sum of elements in Cλ for each n.
Because xn is a finite sum of elements in Cλ, the inequality 〈xn, y〉 ≥ 0 holds.
Therefore, x, y satisfies the following inequality:

〈x, y〉 = lim
n→∞

〈xn, y〉 ≥ lim
n→∞

0 = 0, (2.11)

and thus, we obtain the relation y ∈
(∑

λ∈Λ C∗
λ

)∗, i.e.,
⋂

λ∈Λ Cλ ⊂
(∑

λ∈Λ C∗
λ

)∗.
The opposite inclusion relation is shown as follows. For any λ ∈ Λ, the
inclusion relation

∑
λ∈Λ C∗

λ ⊃ C∗
λ, and Proposition 2.1.8 implies the inclusion

relation
(∑

λ∈Λ C∗
λ

)∗ ⊂ (C∗
λ)

∗ = Cλ. This inclusion relation holds for any
λ ∈ Λ, and therefore, we obtain the inclusion relation

(∑
λ∈Λ C∗

λ

)∗ ⊂ ⋂λ∈Λ Cλ.
As a result, we obtain

⋂
λ∈Λ Cλ =

(∑
λ∈Λ C∗

λ

)∗.
2.1.3 Group Actions on Positive Cone

In this thesis, we discuss group symmetry on positive cones. In this thesis,
we mainly consider a subgroup G of GL(V).

At first, we introduce the following symmetry (called G-symmetry) for a
set X (or a positive cone C) under a subgroup G of GL(V):

G-symmetry a set X is G-symmetric ⇔ g(x) ∈ X for any x ∈ X and any
g ∈ G.

Also, we say that a set of families X is G-symmetric if any element g ∈ G

and any family {Xλ}λ∈Λ ∈ X satisfy {g(Xλ)}λ∈Λ ∈ X .
Next, we define the following condition about a subgroup G ⊂ GL(V).

adjoint-closed group G is a closed subgroup of GL(V) including the identity
map and G satisfies g∗ ∈ G for any element g ∈ G.

Lemma 2.1.14. Let G be an adjoint-closed subgroup of GL(V), and let C be
a G-symmetric positive cone. Then, C∗ also satisfies G-symmetry.

Proof of lemma 2.1.14. Take arbitrary elements x ∈ C∗, y ∈ C, and g ∈ G.
Because G is adjoint-closed, the relation g∗ ∈ G holds. Also, because C is G-
symmetric, the relation g∗(y) ∈ C holds. Therefore, we obtain the inequality

〈g(x), y〉 = 〈x, g∗(y)〉 ≥ 0, (2.12)

which implies the relation g(x) ∈ C∗.
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Simply speaking, lemma 2.1.14 shows that adjoint-closedness transmits
G-symmetry from C to C∗.

2.2 A Model of GPTs

In this section, we give a definition and examples of models of GPTs.

2.2.1 Definition of a Model of GPTs

First, we define a model of GPTs by a proper cone in real vector space.

Definition 2.2.1 (A Model of GPTs). A model of GPTs is defined by a tuple
G = (V , 〈 , 〉, C, u), where (V , 〈 , 〉), C, and u are a real-vector space with
inner product, a proper cone, and an order unit of C∗, respectively.

Given a model of GPTs, a state is defined as normalized element in the
cone by order unit.

Definition 2.2.2 (State Space of GPTs). Given a model of GPTs G =

(V , 〈 , 〉, C, u), the state space of G is defined as

S(C, u) := {ρ ∈ V|〈ρ, u〉 = 1} . (2.13)

Here, we call an element ρ ∈ S(C, u) a state of G.

Proposition 2.2.3 ( [1, special case of Section 2.3.2]). Given a model G =

(V , 〈 , 〉, C, u), the state space S(C, u) is convex.

Due to Proposition 2.2.3, the state space S(C, u) has extremal points.
Hereinafter, we call an element EP(S(C, u)) a pure state of G.

Next, we define effects and measurements.

Definition 2.2.4 (Effect Space). Given a model of GPTs G = (V , 〈 , 〉, C, u),
the effect space of G is defined as

E(C, u) := {E ∈ V|E ≥C∗ 0} . (2.14)

Here, we call an element E ∈ E(C, u) an effect of G. Also, we say that an
effect E is proper if E satisfies 0 ≤C∗ E ≤C∗ u.
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Definition 2.2.5 (Measurements of GPTs). Given a model of GPTs G =

(V , 〈 , 〉, C, u), we say that a family {Mi}i∈I is a measurement if Mi ∈ E(C, u)
and

∑
i∈I Mi = u. The index i is called an outcome of the measurement.

Here, we denote the set of all measurements as M(C, u). Especially, we
denote the set of measurements with n-number of outcomes as Mn(C, u).

Hereinafter, we assume that the set I is finite. This assumption is also
usual in GPTs when the dimension of V is finite.

Now, we give a proposition about the effect space and the measurement
space.

Proposition 2.2.6. Let G = (V , 〈 , 〉, C, u) be a model of GPT. For any
effect E ∈ E(C, u), there exists a number r > 0 such that rE is proper effect
and the family {rE, u− rE} belongs to M(C, u).

This proposition holds because u is order unit of C∗ and Proposition 2.1.5
holds.

Next, we describe the measurement processing. Let us consider the case
a state ρ is measured by a measurement {Mi}i∈I (Figure 2.1). Then, an
outcome i ∈ I is obtained with probability 〈ρ,Mi〉. In this setting, the
family {〈ρ,Mi〉}i∈I constitutes a probability distribution because the above
definitions imply the inequality

〈ρ,Mi〉 ≥ 0 (∀i ∈ I) (2.15)

and the equality

∑
i∈I

〈ρ,Mi〉 =

〈
ρ,

(∑
i∈I

Mi

)〉
= 〈ρ, u〉 = 1. (2.16)

The definitions of states and measurements come from the postulate that
the family {〈ρ,Mi〉}i∈I constitutes a probability distribution, i.e., the family
satisfies two relations (2.15) and (2.16), and the mathematical structure of
proper cone is a typical minimal structure to discuss such processing.

The above definitions are direct generalization of the model of classical
and quantum theory as seen in Section 2.2.2.

Finally, we define a transformation of GPTs.
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ρ
state

i
outcome

{Mi}i∈Imeasurement

w.p. ⟨ρ,Mi⟩

Figure 2.1: When a state ρ is measured by a measurement M = {Mi}i∈I ,
an outcome i ∈ I is obtained with probability 〈ρ,Mi〉.

Definition 2.2.7 (Transformation of GPTs). Given a model of GPTs G =

(V , 〈 , 〉, C, u), the transformation space of G is defined as

T (C) := {f ∈ GL(V)|f(C) = C} . (2.17)

Here, we call an element f ∈ T (C) a transformation of G. Also, we say that
a transformation f ∈ T (C) is a channel if f satisfies f(S(C, u)) ⊂ S(C, u).

In GPTs, a transformation sometimes is regarded as a time-evolution of
states. In order to discuss dynamics on physical systems, we need to deal
with time-evolutions. However, Definition 2.2.7 is not a direct generaliza-
tion of time-evolution of traditional theory. Therefore, some studies impose
additional assumption for transformations (for example reversibility [22]) for
the aim to deal with a transformation as a time-evolution. Because this the-
sis does not aim to deal with time-evolution, we apply Definition 2.2.7 for
convenience.

2.2.2 Examples of Model of GPTs

Next, we give two examples of models of GPTs.
The first example is classical probability theory, which corresponds to

probabilistic structure of physical systems obeying classical theory.

Example 2.2.8 (Classical probabilistic theory). Consider RN as a vector
space with the standard inner product ( , ), take RN

+ := {(xj)Nj=1 ∈ RN |
xj ≥ 0 (∀j)} and e = (1, 1, · · · , 1), and consider the model (RN , ( , ),RN

+ , e).
Then, the set of all states S(RN

+ , e) satisfies

S(RN
+ , e) = {(xj)Nj=1 ∈ RN | xj ≥ 0 (∀j),

N∑
j=1

xj = 1}. (2.18)
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Therefore, S(RN
+ , e) is the set of all random variables on RN . Next, we

consider measurements of (RN ,RN
+ , e). Because (RN

+ )
∗ = RN

+ , the set of all
measurements is given as follows:

M(RN
+ , e) =

{
{Mi}i∈Ω,Mi ∈ RN

+

∣∣∣∣∣
N∑
i=1

Mi = e

}
. (2.19)

Therefore, in this model, a measurement is equivalent to an event of the
random variables.

For example, we regard the model (RN , ( , ),RN
+ , e) as the model of

rolling dices with the case N = 6. First, a state (xj)
6
j=1 corresponds to

the skewed dice that the probability of the pip j is given as xj. Next, we
take M1 = (1, 0, 1, 0, 1, 0),M2 = (0, 1, 0, 1, 0, 1), then the family {M1,M2} is
a measurement. Now {M1,M2} corresponds to the events of parity of pips,
that is, the probability of to roll odd pips is given as (xj)6j=1·M1 = x1+x3+x5.
In this way, the model (RN , ( , ),RN

+ , e) corresponds to classical probabilistic
theory. Here, we simply call classical theory.

The second example is quantum theory.

Example 2.2.9 (Quantum theory). Let H be finite-dimensional Hilbert
space, and let LH(H) be the set of all Hermitian matrices on H. Regard
LH(H) as a real vector space with the inner product 〈x, y〉 := Trxy. More-
over, let L+

H(H) be the set of all positive semi-definite matrices. Then we
consider the model (LH(H),Tr,L+

H(H), I), where I is the identity matrices
on H. First, the set of all states S(L+

H(H), I) satisfies

S(L+
H(H), I) = {ρ ∈ T+(H) | Tr ρ = 1}. (2.20)

Therefore, the set of all states S(L+
H(H), I) is the set of all density matrices

on H. Next, we consider measurements of (LH(H),Tr,L+
H(H), I). Because(

L+
H(H)

)∗
= L+

H(H), the set of all measurements is given as follows:

M(L+
H(H), I) =

{
{Mi}i∈Ω, Mi ∈ L+

H(H)

∣∣∣∣∣∑
i

Mi = I

}
. (2.21)

Therefore, in this model, a measurement is equivalent to a Positive Operator
Valued Measures (POVMs).
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It is a standard definition of quantum theory whose states and measure-
ments are defined as density matrices and POVMs, respectively. In the per-
spective of their physical implementation, density matrices and POVMs are
available in a physical system. In this way, the model (LH(H),Tr,L+

H(H), I)

corresponds to standard quantum theory.
Of course, there are many other examples than classical and quantum

theory. Some of such models are seen in Section 2.3.
An important aim of studies of GPTs is to derive the above two ex-

amples. For classical theory, many operationally reasonable derivations has
been found [11, 31]. On the other hand, it is an open problem to derive
quantum theory by reasonable postulates. Especially, the essential problem
is separation from entanglement structures as seen in Section 2.3.

2.3 Entanglement Structures

In this section, we aim to define our main target, Entanglement Structures
(ESs). For this aim, we introduce a composite system in GPTs in Sec-
tion 2.3.1. Then, we give the definition of entanglement structure as a model
of a typical composite system in GPTs in Section 2.3.1.

2.3.1 Composite System in GPTs

This thesis considers bipartite systems of two models (VA, 〈 〉A, CA, uA) and
(VB, 〈 〉B, CB, uB). A model of bipartite system is defined as follows.

Definition 2.3.1 (Bipartite Model). Given two submodels (VA, 〈 〉A, CA, uA)
and (VB, 〈 〉B, CB, uB), we say that a model (V , 〈 〉, C, u) is a model of bipartite
composite system if the model satisfies the following conditions:

V = VA ⊗ VB, (2.22)

〈x1, x2〉 =
∑
i,j

〈a(i)1 , a
(j)
2 〉A〈b(i)1 , b

(j)
2 〉B

for x1 =
∑

i a
(i)
1 ⊗ b

(i)
1 and x2 =

∑
j a

(j)
2 ⊗ b

(j)
2 , (2.23)

CA ⊗ CB ⊂C ⊂ (C∗
A ⊗ C∗

B)
∗ , (2.24)

u = uA ⊗ uB, (2.25)
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where the tensor product CA ⊗ CB is defined as

CA ⊗ CB := {
∑
i

ai ⊗ bi | ai ∈ CA, bi ∈ CB}. (2.26)

As seen in Definition 2.3.1, a model of composite system is given by the
tensor product. The above conditions (2.22), (2.23), and (2.25) are not only
natural but also come from the following discussions. Consider the case that
Alice and Bob measure their local states independently. On Alice’s system,
a measurement {e(i)A }i∈I ∈ M(CA, uA) affects a state ρA ∈ S(CA, uA), and
also a measurement {e(j)B }j∈J ∈ M(CB, uB) affects a state ρB ∈ S(CB, uB)
on Bob’s system. There are I × J possibilities of obtained outcomes. These
measurements and states are not correlated, and therefore, the possibility to
get an outcome (i, j) is given as

〈ρA, e(i)A 〉A〈ρB, e(j)B 〉B, (2.27)

which is the same possibility that the product measurement {e(i)A ⊗ e
(j)
B af-

fects the product state ρA ⊗ ρB on a model of bipartite composite system
because of the conditions (2.23) and (2.25). In order to describe such an
independent operation in tensor vector space, we need the condition (2.22).
Also, the reference [21, 25] shows that the condition (2.22) is derived from
local tomography, which states that any element in composite system is de-
termined by only the joint probability of product measurements. In this way,
the above three conditions (2.22), (2.23), and (2.25) are reasonable for the
minimal request about local operations.

On the other hand, because a positive cone is not a vector space (more
strictly does not satisfies the universality of tensor product), the condition
(2.24) is not a trivial condition. However, the definition of bipartite system in
GPTs is so motivative that the condition (2.24) is derived from operational
postulates. Here, we give two ways to derive the definition of models of
bipartite composite system.

The first way is derived from availability of product elements.

Postulate 2.3.2 (Availability of Product Elements [28]). In bipartite system,
any product state is available, i.e., the state ρ = ρA ⊗ ρB belongs to S(C, u)
for any ρA ∈ S(CA, uA) and any ρB ∈ S(CB, uB). Also, any product effect is
available, i.e., the effect e = eA⊗eB belongs to E(C, u) for any eA ∈ E(CA, uA)
and any eB ∈ E(CB, uB).
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Postulate 2.3.2 implies the condition (2.24) as follows. Because C is convex
and because of the definition of positive cone, the relation ρ = ρA ⊗ ρB ∈
S(C, u) implies the inclusion relation C ⊃ CA ⊗ CB. Similarly, the relation
e = eA ⊗ eB ∈ E(C, u) implies the inclusion relation C∗ ⊃ C∗

A ⊗ C∗
B, and we

obtain C ⊂ (C∗
A ⊗ C∗

B)
∗ by apprying Proposition 2.1.8 for the above inclusion

relation.
For the second way to derive the condition (2.24), we define projection

onto subsystem by elements.

Definition 2.3.3 (Projection onto Subsystem by Elements). Define the pro-
jection onto VB by an element xA ∈ VA as

PxA
:VA ⊗ VB → VB,

PxA
:
∑
i

λia
(i) ⊗ b(i) 7→

∑
i

λi〈a(i), xA〉1b(i), (2.28)

where a(i) ∈ VA and b(i) ∈ VB. Also, define the projection onto VA by the
effect xB ∈ VB, similarly.

By using the above projections, we state the following postulate.

Postulate 2.3.4 (Equivalence of Projections onto Subsystems). In bipartite
system, any effect eA ∈ E(CA, uA) satisfies the equation PeA(C) = CB. Also,
any effect eB ∈ E(CB, uB) satisfies the equation PeB(C) = CA. The same
relations also hold for any states, i.e., any state ρA ∈ S(CA, uA) satisfies the
equation PρA(C) = CB. Also, any state ρB ∈ S(CB, uB) satisfies the equation
PρB(C) = CA.

Postulate 2.3.4 also derives the condition (2.24), i.e., the following propo-
sition holds.

Proposition 2.3.5. If a model of bipartite system (V , 〈 〉, C, u) satisfies Pos-
tulate 2.3.4, the inclusion relation (2.24) holds.

Proof of Proposition 2.3.5. First, we prove the inclusion relation C ⊂ (C∗
A ⊗ C∗

B)
∗

by contradiction. Assume that there exists an element x ∈ C such that
x 6∈ (C∗

A ⊗ C∗
B)

∗, and x can be written as
∑

i λia
(i) ⊗ b(i), where λi ∈ R,

a(i) ∈ CA, b(i) ∈ CB. Because of the relation x 6∈ (C∗
A ⊗ C∗

B)
∗, there exists

a separable effect e ∈ C∗
A ⊗ C∗

B such that 〈x, e〉 < 0. Because C∗
A ⊗ C∗

B is
spanned by product elements, we choose e as the product element eA ⊗ eB,
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where eA ∈ C∗ and eB ∈ C∗, without loss of generality. However, we obtain
the following inequality:

0 > 〈x, eA ⊗ eB〉 =

〈∑
i

λia
(i) ⊗ b(i), eA ⊗ eB

〉
=
∑
i

λi〈a(i), eA〉A〈b(i), eB〉B

=

〈∑
i

λi〈a(i), eA〉Ab(i), eB

〉
B

= 〈PeA(x), eB〉B. (2.29)

This inequality implies PeA(x) 6∈ CB, which contradicts to the assumption.
The opposite inclusion relation CA ⊗ CB ⊂ C is similarly shown by the

equation PρA(C) = CB and PρB(C) = CA.

Both Postulate 2.3.2 and Postulate 2.3.4 are reasonable requests about
local operations. Then, a model of bipartite composite system is defined
as Definition 2.3.1. Because of the condition (2.24), a model of bipartite
composite system is not uniquely determined from submodels in general,
which is most important fact for this thesis. As seen before, no-correlated
operation corresponds to tensor product. Especially, an element is called
entangled if the element cannot be written as any convex combination of
tensor product elements. In quantum information theory, entangled elements
are main resource for whole of informational tasks. The cone C of a model
of a composite system (in Definition 2.3.1) rules the diversity of entangled
elements, i.e., the cone C determines the limit of available resources in the
system. This is the reason why the above non-uniqueness of C is important.

On the other hand, it is empirically known that classical theory does
not includes entanglement elements, which is shown by the above definition
of composite system in GPTs. Let us consider a model of two classical-
subsystems (RNA , ( , ),RNA

+ , e) and (RNB , ( , ),RNB
+ , e). The left-hand-side

of the inclusion relation (2.24) is given as

RNA
+ ⊗ RNB

+ = RNANB
+ . (2.30)

Also, because of the equation (RN
+ )

∗ = RN
+ , the right-hand-side of the inclu-

sion relation (2.24) is given as(
(RNA

+ )∗ ⊗ (RNB
+ )∗

)∗
=
(
RNA

+ ⊗ RNB
+

)∗
= (RNANB

+ )∗ = RNANB
+ . (2.31)

Therefore, the both sides of inclusion relation (2.24) are equivalent. In other
words, The model of composite system of two classical-subsystems is uniquely
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determined as classical theory on large system, which implies that the model
of classical composite system has no entangled elements. Moreover, the refer-
ence [31] shows that such no-entanglement property derives classical theory
uniquely, i.e., the left-hand-side and the right-hand side in (2.24) are equal
if and only if one of cones CA or CB is equal to RN

+ for some N .
As the above discussion, the model of composite system of classical theory

is naturally determined as classical theory on a large system. On the other
hand, in the case of quantum theory, the model of composite system is not
unique. This thesis addresses this problem and investigate the diversity of
the model of quantum composite systems.

2.3.2 Diversity of Entanglement Structures

In this thesis, we consider models of bipartite composite system of two quan-
tum subsystems. Let (LH(HA),Tr,L+

H(HA), I) and (LH(HB),Tr,L+
H(HB), I)

be models of quantum theory on Alice’s system and Bob’s system. In
this case, a model of bipartite composite system is given as (LH(HA ⊗
HB),Tr, C, I) satisfying the condition (2.24). Because of the equation (L+

H(H))∗ =

L+
H(H), the condition (2.24) is modified as

SEP(A;B) ⊂ C ⊂ SEP(A;B)∗, (2.32)

where the proper cone SEP(A;B) is defined as

SEP(A;B) := L+
H(HA)⊗ L+

H(HB). (2.33)

In this thesis, the model (LH(H),Tr, C, I) satisfying (2.24) is called an En-
tanglement Structure (ES), and we denote the model as C by omitting other
objects for simplicity. Of course, there is the diversity of ESs. In other words,
an entanglement structure is not uniquely determined by the postulates in
Section 2.3.1.

On the other hand, it is strongly believed that physical systems obey
the model (LH(H),Tr,L+

H(H), I). In bipartite composite system, the model
is defined as the cone L+

H(HA ⊗ HB), which is neither the smallest one nor
the largest one in (2.32). Moreover, it is not completely clarified how the
entanglement structure L+

H(HA ⊗HB) is derived. In this thesis, we call the
entanglement structure L+

H(HA ⊗HB) the Standard Entanglement Structure
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(SES), and we denote the model L+
H(HA ⊗HB) as SES(A;B). Our interest

is the question what uniquely determines ESs as the SES.
The diversity of ESs is so large that some ESs are counterexample to some

important mathematical properties. For example, the model SEP(A;B) is
a typical example that does not satisfy entropy preserving spectrality [A2].
Also, an ES satisfies 1-symmetry but does not satisfy 2-symmetry [A2]. We
explain the details of the above two examples and its importance in Ap-
pendix A.1. The SES satisfies the above mathematical structures, and there-
fore, the class of ESs contains various models separated from the SES. On the
other hand, there exist many near ESs to the SES, called Pseudo Standard
Entanglement Structures (PSES)s, which are introduced in Section 4.4. In
this way, there are variable types of ESs, and therefore, the derivation of the
SES is important and difficult problem in GPTs.
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State Discrimination in GPTs

In this chapter, we investigate the performance for state discrimination tasks
in ESs. State discrimination is a fundamental information task considered in
quantum information theory [39–45]. Because some performance for many
other information tasks is derived from the performance for state discrimina-
tion, it is important to investigate the performance for state discrimination.
Therefore, the performance for discrimination tasks is one of candidates to
derive the SES from ESs. In this thesis, we investigate how drastically an
extraordinary performance for discrimination tasks determines ESs.

First, we introduce state discrimination and its performance in Section 3.1.
In quantum information theory, there are many different types of discrimina-
tion tasks. This thesis mainly discusses two types of them (Definition 3.1.1
and Definition 3.1.2). Also, we review important preceding studies about
state discrimination in Section 3.1. The two types of discrimination tasks
has been studied very well in quantum theory [39–46]. Especially, some
types have been studied in GPTs [33–35] and certain ESs [29,30].

Second, as Theme A, we investigate the performance for discrimination
tasks of Dual-Operator-Valued Measurements (DOVMs) in Section 3.2. The
preceding studies [29, 30] showed that DOVMs with a certain form has ex-
traordinary performance for the discrimination task of Definition 3.1.1. This
thesis investigates the performance of general DOVMs, and we give equiva-
lent conditions when a DOVM has extraordinary performance for discrimina-
tion tasks. Furthermore, we show how drastically this equivalent conditions
determine ESs.

Third, as Theme B, this thesis discusses simulability of DOVMs in Sec-
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candidates unknown
one-shot

state
measurement

outcome

identify with large probability 

Figure 3.1: When number of candidates {ρi}ni=1 of unknown state ρ is given,
the player aims to identify ρ with large probability.

tion 3.2.3. A DOVM (especially non POVM) cannot be simulated in standard
quantum theory when the dimension of the system is equivalent. However,
there is a possibility to simulate a given DOVM in a high-dimensional system.
In this section, we show that a certain class of DOVMs cannot be simulated
in any high dimensional quantum system as an application of the result in
Section 3.2.3.

The proofs of statements in this chapter are written in Section 3.3.

3.1 Introduction and Preceding Studies

In this section, we introduce state discrimination and briefly review preceding
studies about state discrimination. In Section 3.1.1, we define two types of
discrimination tasks (Definition 3.1.1 and Definition 3.1.2), and see their
performance in standard quantum theory. In Section 3.1.2, we explain our
preceding studies about the performance for discrimination tasks in certain
ESs, and we point out the reason why the preceding studies restrict to certain
ESs.

3.1.1 General Definition of Discrimination Tasks

In discrimination tasks, a player is given a number of candidates {ρi}ni=1 of
unknown state ρ. The player apply arbitrary one-shot measurement {Mi}ni=1

and obtain an outcome i. The player identifies the unknown state ρ from the
outcome i with large probability (Figure 3.1).

The aim of discrimination tasks is to find a measurement that minimize
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the error probability, and there are many ways to describe the tasks mathe-
matically. In this thesis, we mainly discuss the following two settings.

The first one is perfect discrimination.

Definition 3.1.1 (perfect distinguishablity). Let {ρk}nk=1 be a family of
states ρk ∈ S(C, u). Then, {ρk}nk=1 are perfectly distinguishable if there exists
a measurement {Mk}nk=1 ∈ M(C, u) such that 〈ρk,Ml〉 = δkl.

Because of the equation 〈ρk,Ml〉 = δkl in Definition 3.1.1, it is the only
possibility to get outcome k that the unknown state ρ is equal to ρk. In other
words, if and only if the candidates of state {ρk}nk=1 are perfectly distinguish-
able, the player estimates the unknown state ρ with probability 1.

The second one is discimination with the minimization of the sum of error
probabilities. In this setting, we consider the situation that the number of
candidates is two.

Definition 3.1.2 (Minimization of the Sum of Error Probabilities). Given
a two-elements family of states {ρ1, ρ2} with ρk ∈ S(C, u), the sum of errors
by M = {M1,M2} is defined as

Err(ρ1; ρ2;M ) = Tr ρ1M2 + Tr ρ2M1. (3.1)

Then, the minimization of the sum of errors in an entanglement structure C
is defined as

ErrC(ρ1; ρ2) := min
M∈M2(C,u)

Err(ρ1; ρ2;M ). (3.2)

In this task, the player aims to find a measurement that minimize the sum
of error probability. In statistics, the part Tr ρ1M2 and Tr ρ2M1 are called
Type I error and Type II error, respectively. We remark that ρ1 and ρ2 are
perfectly distinguishable if and only if ErrC(ρ1; ρ2) = 0 because the following
equation holds:

Tr ρi(M1 +M2) = Tr ρiI = 1. (3.3)

In the SES, more generally in standard quantum theory, the discrimina-
tion tasks 3.1.1 and 3.1.2 are well-studied as follows [39, Section 3.2]. First, in
the model (LH(H),Tr,L+

H(H), I), the following two conditions are equivalent:

1. {ρi} is perfectly distinguishable.
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2. Tr ρiρj = 0 for any i 6= j.

Second, in the model (LH(H),Tr,L+
H(H), I), especially in the SES, the min-

imization of the sum of errors is given as

ErrL+
H(H)(ρ1; ρ2) = ‖ρ1 − ρ2‖1, (3.4)

whose minimizer measurement {M1,M2} is given by

M1 =
1

2
(ρ1 − ρ2 + |ρ1 − ρ2|) , (3.5)

M2 =
1

2
(−ρ1 + ρ2 + |ρ1 − ρ2|) . (3.6)

3.1.2 Discrimination Tasks in Entanglement Structures

Roughly speaking, the width of measurement space M(C, u) determines the
performance for the above discrimination tasks. Therefore, it is a possibility
in an ES C that the performance is further improved than that of SES(A;B)

when its measurement space M(C, I) is larger than M(SES, I). Recently, the
preceding studies [29,30] have investigated the performance for discrimination
task 3.1.1 in some entanglement structures.

The reference [29] has investigated the performance for the discrimination
task 3.1.1 in the entanglement structure SEP(A;B), and it has given an
equivalent condition to discriminate two pure states in SEP(A;B) perfectly.

Theorem 3.1.3 ( [29]). Let ρ(1) = ρ
(1)
A ⊗ ρ

(1)
B and ρ(2) = ρ

(2)
A ⊗ ρ

(2)
B be pure

states in SEP(A;B). ρ1 and ρ2 are perfectly distinguishable in SEP(A;B),
i.e., there exists a measurement M ∈ M2(SEP(A;B), I)E such that Tr ρiMj =

δij if and only if the following inequality holds:

Tr ρ
(1)
A ρ

(2)
A + Tr ρ

(1)
B ρ

(2)
B ≤ 1. (3.7)

Also, the reference [30] has investigated the performance for the discrim-
ination task 3.1.1 in more general classes. The reference [30] defined the
following two One-parameter family of entanglement structures.

Definition 3.1.4 (One-parameter family of entanglement structures (I)).
For s ≥ 0, we define the positive cone Cneg

s as

Cneg
s = {X ∈ T (AB) | Tr ρX ≥ 0 (∀ρ : separable), neg(X) ≤ sTrX } ,

(3.8)
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where the function neg : T (AB) → [0,∞) is defined as

neg(X) = max
λ eigenvalue of X

{−λ, 0}. (3.9)

Definition 3.1.5 (One-parameter family of entanglement structures (II)).
For a vector v ∈ HA ⊗HB, let sc(v) be the value

sc(v) =

{
λ1λ2 v 6= 0,

0 v = 0,
(3.10)

where λ1 ≥ λ2 ≥ · · · ≥ λd are Schmidt coefficients of v/‖v‖.
Then, for s ≥ 0, we define

C(0)
s := conv{|v〉〈v| | v ∈ HA ⊗HB, sc(v) ≤ s},
Csc
s := T+(AB) + Γ(C(0)

s ),
(3.11)

where Γ is partial transposition, i.e., Γ = id⊗>.

Then, the reference [30] gave sufficient conditions to discriminate two
separable pure states in the above entanglement structures.

Theorem 3.1.6 ( [30]). Given a pair of two pure separable states ρ1, ρ2, the
states ρ1 and ρ2 are perfectly distinguishable by a measurement M(Cneg

s , I) if
the point (Tr ρA1 ρA2 ,Tr ρB1 ρB2 ) belongs to the set

{ (x, y) ∈ [0, 1]2 | xy ≤ 16s2(1− x)(1− y) } (3.12)

for s ∈ [0, 1/4]. Also, given a pair of two pure separable states ρ1, ρ2, the
states ρ1 and ρ2 are perfectly distinguishable by a measurement M(Csc

s , I) if
the point (Tr ρA1 ρA2 ,Tr ρB1 ρB2 ) belongs to the set

{ (x, y) ∈ [0, 1]2 | xy ≤ t(1− x)(1− y) } (3.13)

for t ∈ [0, 1] with s =
√
t/(1 + t).

The preceding studies [29, 30] showed that the above certain ESs have
extraordinary performance for discrimination task 3.1.1. However, the pre-
ceding studies [29, 30] cannot address more general ESs even if we consider
only the ESs C satisfying C ⊂ SES(A;B).

On the other hand, there exists an indicator that does not change in
any entanglement structure. As an example, we introduce the capacity of a
model. Define the number Cap(C) of a model C as the maximum number
m of perfectly distinguishable states {ρk}mk=1 in the model C. The following
proposition is known for the capacity of entanglement structures.
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Proposition 3.1.7 ( [35, proposition4.5]). For any cone C, Cap(C) = dim(HA⊗
HB) holds if C satisfies SEP(A;B) ⊂ C ⊂ SEP∗(A;B).

The proofs of both Theorem 3.1.3 and Theorem 3.1.6 essentially depend
on the following certain formed measurement {M1,M2}.

M1 = T1 + Γ(T1), M2 = T2 + Γ(T2),

T1 =
1

2γ


γ 0 0 −β1β2γ/α1α2

0 γ − 1 0 −(γ − 1)β1/α1

0 0 γ − 1 −(γ − 1)β2/α2

−β1β2γ/α1α2 −(γ − 1)β1/α1 −(γ − 1)β2/α2 2− γ

 ,

T2 =
1

2γ


0 0 0 0

0 1 β1β2γ/α1α2 (γ − 1)β1/α1

0 β1β2γ/α1α2 1 (γ − 1)β2/α2

0 (γ − 1)β1/α1 (γ − 1)β2/α2 2(γ − 1)

 ,
(3.14)

where Γ = id⊗>, αi ∈ [0, 1], and γ = α1 + α2. Of course, the above
measurement does not generate all measurements in entanglement structures.
In the next section, we generalize the preceding studies [29,30], i.e., this thesis
investigates general measurement and its performance for the discrimination
tasks 3.1.1 and 3.1.2 in any entanglement structures.

3.2 Theme A : Characterization of DOVMs via
Discrimination Tasks

In this section, we classify Dual-Operator-Valued Measurements (DOVMs)
and characterize them by the performance for information tasks as Main
Result 1. First, we define DOVMs and classify them into five types (Def-
inition 3.2.1-3.2.4) by their eigenvalues in Section 3.2.1. A DOVM is an
available measurement in a certain ESs, which consists of Hermitian matri-
ces (not necessarily positive semi-definite). This thesis classifies DOVMs by
the interval between the maximum and the minimum eigenvalues. Second,
we characterize DOVMs by discrimination tasks (Definition 3.1.1 and 3.1.2)
as Theorem 3.2.5 and 3.2.6 in Section 3.2.2. It is known that some types of
DOVMs have extraordinary performance for perfect discrimination [29, 30].

38



Chapter 3. State Discrimination in GPTs

This thesis generalizes the preceding studies, i.e., this thesis investigates the
performance for discrimination tasks for general DOVMs. As a result, we give
equivalent conditions for extraordinary performance for two types of discrim-
ination tasks (Theorem 3.2.5 and Theorem 3.2.6). Moreover, as an applica-
tion of one of the equivalent conditions, the performance for discrimination
task derives the SES from ESs with an inclusion relation (Theorem 3.2.7).
Furthermore, as an application of Main Theme A, in section 3.2.3, we de-
fine simulability of DOVMs and show non-simulability of BQ measurement
(Theorem 3.2.11).

3.2.1 Classes of DOVMs

Because the condition (2.32) implies the inclusion relation C∗ ⊂ SEP∗(A;B)

for any entanglement structure C, any measurement in M2(C, I) belongs to
M2(SEP(A;B), I). In this thesis, we call a measurement in M2(SEP(A;B), I)

a Dual-Operator-Valued Measure (DOVM), and we use the following nota-
tion:

DOVM(A;B) := M2(SEP(A;B), I). (3.15)

Any effect of DOVMs is Hermitian, and therefore, any effect has only real
eigenvalues. In this thesis, DOVMs are classified into the following four
classes of measurements by the relation about eigenvalues. Hereinafter, we
denote the k-th eigenvalue of a Hermitian matrix X in ascending order as
λk(X).

Definition 3.2.1 (Beyond Quantum (BQ)). We say that a measurement
M = {Mi}2i=1 ∈ DOVM(A;B) is Beyond Quantum (BQ) if one of the effects
Mi satisfies the inequalities λ1(Mi) < 0 and λd(Mi) ≥ 1.

Definition 3.2.2 (Advantage Quantum (AQ)). We say that a measurement
M = {Mi}2i=1 ∈ DOVM(A;B) is Advantage Quantum (AQ) if one of the
effects Mi satisfies the inequalities λ1(Mi) < 0 and 1+λ1(Mi) < λd(Mi) < 1.

Definition 3.2.3 (Non-Advantage Quantum (NAQ)). We say that a mea-
surement M = {Mi}2i=1 ∈ DOVM(A;B) is Non-Advantage Quantum (NAQ)
if one of the effects Mi satisfies the inequalities λ1(Mi) < 0 and λd(Mi) ≤
1 + λ1(Mi).
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Definition 3.2.4 (Positive-Operator-Valued-Measure (POVM)). We say that
a measurement M = {Mi}2i=1 ∈ DOVM(A;B) is a Positive-Operator-Valued-
Measure (POVM) if any effects Mi satisfies the inequalities λ1(Mi) ≥ 0.

Here, we remark that the set of POVM is equal to the set of (two-
valued) measurements in the SES. Also, we remark that the names of the
above classes BQ(A;B), AQ(A;B), and NAQ(A;B) come from the results in
Theme A and Theme B. As seen in the following sections, any measurement
in BQ(A;B) cannot be simulated in the SES, any measurement in AQ(A;B)

has an advantage for the discrimination task 3.1.2 over any POVM, and any
measurement in NAQ(A;B) has no advantages for the discrimination tasks
3.1.1 and 3.1.2 over any POVM.

A typical example of DOVMs is the measurement (3.14). The reference
[29] shows that the matrices M1 and M2 in (3.14) are not positive semi-
definite, i.e., λ1(Mi) < 0. Because of the equation M1 +M2 = I, the matrix
Mi satisfies λd(Mi) > 1, and therefore, the measurement (3.14) is BQ.

Now, we denotes each set of all measurements belonging to the above
classes as BQ(A;B), AQ(A;B), NAQ(A;B), and POVM(A;B), respectively.
By the above definitions, the following relation holds:

DOVM(A;B)

=BQ(A;B) ] AQ(A;B) ] NAQ(A;B) ] POVM(A;B).
(3.16)

Our purpose is to characterize each of the classes by the discrimination tasks
3.1.1 and 3.1.2. In the next section, we give a complete characterization for
the classes.

3.2.2 Extraordinary Performance of Discrimination Tasks

Now, we give a characterization of the classes by discrimination tasks. First,
we give a necessary and sufficient condition when a DOVM has superior
performance for the discrimination task 3.1.1.

Theorem 3.2.5 (Main Result A-1). Given a measurement M = {Mi}i=1,2 ∈
DOVM(A;B), the following two conditions are equivalent

1. M ∈ BQ(A;B)

2. There exists a pair of two pure states ρ1 and ρ2 in S(SES(A;B), I) such
that Tr ρiMj = δij and Tr ρ1ρ2 > 0.
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Theorem 3.2.5 states that the class BQ(A;B) is characterized by the
superior performance for discrimination task 3.1.1 to that of the SES.

Similarly, we give a necessary and sufficient condition when a DOVM has
superior performance for the discrimination task 3.1.1.

Theorem 3.2.6 (Main Result A-2). Given a measurement M = {Mi}i=1,2 ∈
DOVM(A;B), the following two conditions are equivalent

1. M ∈ BQ(A;B) ∪ AQ(A;B)

2. There exists a pair of two states ρ1 and ρ2 in S(SES(A;B), I) such that

Err(ρ1; ρ2;M) < 1− 1

2
‖ρ1 − ρ2‖1. (3.17)

Moreover, if the condition 1 holds, ρ1 and ρ2 can be chosen as a state
S(SEP(A;B), I) in condition 2.

Theorem 3.2.5 states that the class BQ(A;B)∪AQ(A;B) is characterized
by the superior performances for discrimination task 3.1.2 to that of the SES.

We summarize the characterization as a table (Table 3.1).

Table 3.1: Characterization of DOVMs by the performance for discrimination
tasks. When the class has a performance superior to POVM, we denote
checkmarks.

discrimination task BQ AQ NAQ POVM

perfect discrimination (3.1.1) ✓ × × -
discrimination with minimum error (3.1.2) ✓ ✓ × -

Applying Theorem 3.2.6 for the characterization of the SES, we obtain
the following theorem.

Theorem 3.2.7 (Main Result A-3). Given an entanglement structure C ⊂
SES(A;B), the following conditions are equivalent:

1. C = SES(A;B)

2. Any pair of two state ρ1, ρ2 ∈ S(C, I) satisfies ErrC(ρ1; ρ2) = 1− 1
2
‖ρ1−

ρ2‖1.
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Theorem 3.2.7 states that the SES is uniquely determined by discrimina-
tion tasks 3.1.1 from any ES with smaller state space than that of the SES.
In other words, an ES has extraordinary performance for discrimination task
if the ES has smaller state space than that of the SES, which is regarded as
a generalization of the result of [29, 30] in the viewpoint of characterization
of ESs by discrimination tasks.

3.2.3 Theme B : Non-Simulability of BQ Measurements

In this section, as Theme B, we define simulability of DOVMs and reveal
the impossibility to simulate BQ measurement. In Section 3.2.3, we define
simulability of DOVMs and show non-simulability of BQ measurement (The-
orem 3.2.11).

It is believed and well-verified that our physical systems obey standard
quantum theory or the SES. Therefore, a measurement in DOVM \ POVM
cannot be implemented in physical system. However, there is a possibility
that such a measurement beyond standard quantum theory can be imple-
mented in high-dimensional standard quantum theory. An effect e of a mea-
surement in DOVM \ POVM is a non-positive matrix, and there exists a
state of the SES such that Tr ρe < 0. In order to exclude such a “negative
probability”, we introduce the domain of a measurement as follows.

Definition 3.2.8 (Domain of an element in SEP∗). Given an element X ∈
SEP∗, we define the domain of X as

D(X) := {ρ ∈ L+
H(HA ⊗HB) | Tr ρX ≥ 0}. (3.18)

Definition 3.2.9 (Domain of DOVM). We define the domain of a DOVM
M = {Mi}i∈I as

D(M ) :=
⋂
i∈I

D(Mi). (3.19)

By definition, any DOVM M satisfies SEP(A;B) ⊂ D(M ) ⊂ SEP∗(A;B).
Next, we define n-simulability of a DOVM in standard quantum theory

as follows.

Definition 3.2.10 (quantum n-simulability of a DOVM). Let M = {Mi}i∈I
be a DOVM. We say that M is quantum n-simulable if there exists a natural
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number n and a POVM N = {Ni}i∈I on (HA ⊗HB)
⊗n such that

Tr ρ⊗nNi = Tr ρMi
∀ρ ∈ D(M) (3.20)

If a DOVM M = {Mi}i∈I is n-simulable, the probability distribution
{Tr ρMi} is simulated by {Tr ρ⊗nNi} independent of a given (unknown) state
ρ. Of course, it does not attain n-simulability to simulate a probability
distribution {Tr ρMi} for a certain state.

In general, any unknown state ρ cannot be copied. However, in physical
situation, an initial state is prepared by a certain way. The same preparation
generates the same state ρ. In this situation, we can apply the measurement
{Ni}i∈I for ρ⊗n even if the state ρ is unknown. On the other hand, some-
one wants to consider a situation that we cannot copy the given unknown
ρ. In this case, we can apply only adaptive measurements (or one way Local
Operation and Classical Information measurement) [39, 46], which is imple-
mented by n-times sequence of measurement on the local system. If we want
to consider such setting, we restrict the class of resource measurements.

Also, we note that it is useless to consider “infinite-simulability”. When
we apply an infinite number of operation for the copies of an unknown state ρ,
we completely extract the information of ρ. Then, we can easily simulate the
probability {Tr ρMi} because we can determine the value Tr ρMi completely.
Therefore, this thesis considers n-simulability for an exact finite number n.

This thesis considers POVMs as resource measurements. Even though
we consider the class of POVMs, any measurement in BQ is not n-simulable
for any natural number n.

Theorem 3.2.11 (Main Result B-1). Let us consider H = HA ⊗HB. Any
DOVM M ∈ BQ is not quantum n-simulable for any natural number n.

This theorem is obtained from Theorem 3.2.5 as follows. Take an ar-
bitrary DOVM M ∈ BQ. Because of Theorem 3.2.5, there are two non-
orthogonal states ρ1, ρ2 ∈ S(L+

H(HA ⊗ HB), I) such that ρ1, ρ2 are per-
fectly distinguishable by M = {M1,M2}, i.e., Tr ρiMj = δi,j. The relation
Tr ρiMj = δi,j implies that ρi belongs to the domain of M . However, be-
cause the states ρ1 and ρ2 are non-orthogonal, i.e., Tr ρ1ρ2 > 0, the following
inequality holds:

Tr ρ⊗n
1 ρ⊗n

2 = (Tr ρ1ρ2)
n > 0 (3.21)
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In other words, the two states ρ⊗n
1 and ρ⊗n

2 are non-orthogonal. Therefore,
any POVM N does not discriminate ρ⊗n

1 and ρ⊗n
2 perfectly, which implies

the equality (3.20) never holds.
In this way, this thesis clarifies that any measurement in BQ is not n-

simulable for any natural number n. On the other hand, it is an open problem
whether other classes of DOVMs are n-simulable.

Here, we remark that non-simulability is derived from the possibility
to discriminate non-orthogonal states perfectly as seen in the above proof.
This relation between non-simulability and perfect discrimination of non-
orthogonal states holds not only in ESs but also in more general models. In
this paper, we give an example of such models that contains a non-simulable
measurement in Appendix A.2.

3.3 Proofs of theorems in Chapter 3

In this section, we prove statements in Chapter 3.

3.3.1 Proof of Theorem 3.2.5

Proof. [STEP1] 1 ⇒ 2

Without loss of generality, we assume that M1 satisfies λ1(Mi) < 0 and
λd(M1) ≥ 1. By spectral decomposition, the matrix M1 is decomposed into
projections Ek as

M1 :=
d∑

k=1

λk(M1)Ek. (3.22)

Here, we denote the eigenvector of Ek as |ψk〉. Because {M1,M2} is a mea-
surement, i.e., M1 +M2 = I, the matrix M2 is also decomposed into projec-
tions Ek as

M2 :=
d∑

k=1

(1− λk(M1))Ek. (3.23)
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Take a pair of matrices ρ1 and ρ2 as

ρi : = |ϕi〉〈ϕi| (i = 1, 2) (3.24)

|ϕ1〉 : =

√
λd(M1)− 1

λd(M1)− λ1(M1)
|ψ1〉+

√
1− λ1(M1)

λd(M1)− λ1(M1)
|ψd〉 , (3.25)

|ϕ2〉 : =

√
λd(M1)

λd(M1)− λ1(M1)
|ψ1〉+

√
− λ1(M1)

λd(M1)− λ1(M1)
|ψd〉 . (3.26)

Then, the matrices ρ1 and ρ2 are rank 1 and positive semi-definite, i.e., ρ1 and
ρ2 belong to S(SES, I). Also, the choice of ρi implies the following equations:

Tr ρiMj = δij. (3.27)

Therefore, ρ1 and ρ2 are perfectly distinguishable by M . Finally, we obtain
the equation Tr ρ1ρ2 > 0 as follows:

Tr ρ1ρ2 = | 〈ϕ1|ϕ2〉 |2

=
(λd(M1)

2 + λ1(M1)
2 − λd(M1)− λ1(M1))

2

(λd(M1)− λ1(M1))
2

=
(λd(M1) (λd(M1)− 1) + λ1(M1)

2 − λ1(M1))
2

(λd(M1)− λ1(M1))
2

(a)
> 0. (3.28)

The inequality (a) is shown by the inequalities λ1(M1) < 0 and λd(M1) ≥ 1.

[STEP2] 2 ⇒ 1

At first, because a POVM perfectly discriminates only orthogonal states,
M 6∈ POVM(A;B). Then, one of the effects M1 is not positive semi-definite.
Without loss of generality, we assume that M1 is not positive semi-definite,
which implies λ1(M1) < 0.

Now, we show M ∈ BQ(A;B) by contradiction. Then, we assume that
λd(M1) < 1. Because of the equation M1+M2 = I, we obtain the inequality

λ1(M2) = 1− λd(M1) > 0, (3.29)

which implies that λk(M2) > 0 for any k = 1, · · · , d. Therefore, TrM2ρ > 0

for any non-zero ρ ∈ L+
H(HA ⊗HB). This contradicts the existence of ρ1 ∈

S(SES(A;B), I) such that Tr ρ2M1 = 0. Therefore, we obtain λd(M1) ≥ 1,
which implies that M belongs to BQ(A;B).
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3.3.2 Proof of Theorem 3.2.6

For the proof of Theorem 3.2.6, we apply the following facts.

Proposition 3.3.1 ( [39, equation (3.59)]). Given a pair of states ρ1 and ρ2
in S(L+

H(H), I), the following equation holds:

min
0≤T≤I

Tr ρ1(I − T ) + Tr ρ2T = 1− 1

2
‖ρ1 − ρ2‖1, (3.30)

where the order relation ≤ is defined by T ≥ 0 ⇔ T ∈ L+
H(H).

Proposition 3.3.2 ( [8]). If a Hermitian matrix X ∈ LH(HA⊗HB) satisfies
‖I −X‖2 ≤ 1, then X belongs to SEP(A;B).

Proof of Theorem 3.2.6. [STEP1] 1 ⇒ 2

Because of the relation M ∈ BQ(A;B) ∪ AQ(A;B), one of the matrices
Mi satisfies λd(Mi)−λ1(Mi) > 1. Without loss of generality, we assume that
the matrix M1 satisfies λd(M1) − λ1(M1) > 1. By spectral decomposition,
the matrix M1 is decomposed into projections Ek as

M1 :=
d∑

k=1

λk(M1)Ek. (3.31)

Then, we take two states ρ1 and ρ2 as

ρ1 :=
1

d
I, (3.32)

ρ2 :=
1

d
I +

1√
2d

(E1 − Ed) . (3.33)

The state ρ1 belongs to SEP(A;B). Because the following inequality holds:

‖dρ2 − I‖2 =‖ 1√
2
(E1 − Ed) ‖2 = 1, (3.34)

Proposition 3.3.2 implies ρ2 ∈ SEP(A;B). Then, the following inequality
shows (3.17).

Err(ρ1; ρ2;M ) = Tr ρ1M2 + ρ2M1

=Tr ρ1 + Tr (ρ2 − ρ1)M1 = 1 + Tr
1√
2d

(E1 − Ed)M1

=1 +
1√
2d
λ1 −

1√
2d
λd = 1 +

1√
2d

(λ1 − λd)

<1− 1√
2d

= 1− 1

2
‖ρ1 − ρ2‖1. (3.35)
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[STEP2] 2 ⇒ 1

We show the contraposition, i.e., the statement that the relation M ∈
NAQ ∪ POVM implies the inequality

Err(ρ1; ρ2;M ) ≥ 1− 1

2
‖ρ1 − ρ2‖1. (3.36)

Proposition 3.3.1 shows the inequality (3.36) in the case M ∈ POVM. There-
fore, the remaining case is only M ∈ NAQ. Without loss of generality,
λ1(M1) < 0 and λd(Mi) ≤ 1 + λ1(Mi) hold.

Because λ1(M1) < 0 and λd(M1) ≤ 1 + λ1(M1) hold, the inequality
λd(M1) < 1 holds, which implies that M2 = I −M1 is positive semi-definite.
Therefore, the relation 0 ≤ 1

λd(M2)
M2 ≤ I, i.e., M ′ ∈ M(SES(A;B), I) holds,

and we define M ′ as M ′ = {I − 1
λd(M2)

M2,
1

λd(M2)
M2}. Then, the following

inequality holds:

Err(ρ1; ρ2;M ) = λd(M2) (Err(ρ1; ρ2;M
′))

≥λd(M2)ErrSES(A;B)(ρ1; ρ2) = λd(M2)

(
1− 1

2
‖ρ1 − ρ2‖1

)
(a)
>1− 1

2
‖ρ1 − ρ2‖1. (3.37)

The inequality (a) is shown by the inequality λd(M2) = 1− λ1(M1) > 1. As
a result, M ∈ NAQ satisfies (3.36).

3.3.3 Proof of Theorem 3.2.7

Prof of Theorem 3.2.7. The statement 1 ⇒ 2 has already been shown by
(3.4). Then, we show the contraposition of 2 ⇒ 1 as follows.

Assume that the inclusion relation C ⊊ SES(A;B) holds, which implies
the inclusion relation C∗ ⊋ SES(A;B). Then, there exists a matrix T ∈
C∗ \SES(A;B). Especially, the matrix T belongs to SEP∗(A;B)\SES(A;B),
which implies that λ1(T ) < 0 and λd(T ) > 0 hold. Now, we take the matrix
T ′ := 1

λd(T )
T , which belongs to C∗. Because of the equation λd(T

′) = 1,
the matrix I − T belongs to SES(A;B) ⊂ C∗. As a result, the family T ′ =

{T ′, I − T ′} belongs to M(C, I). Also, T ′ satisfies λ1(T ′) = λ1(T )
λd(T )

< 0. As a
result, the measurement T ′ is AQ. Hence, Theorem 3.2.6 shows the negation
of the condition 2.
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Chapter 4

Self-duality and Existence of
PSESs

In this chapter, we explore ESs with self-duality and group symmetry. Self-
duality and homogeneity play an important role to derive algebraic structure
in physical systems. When a model satisfies self-duality and homogeneity,
the proper cone of the model is characterized by Euclidean Jordan Alge-
bras [2–4, 37], which essentially lead limited types of models including clas-
sical and quantum theory [2, 3]. Also, the successful result [37] derives the
models corresponding to Jordan Algebras. However, it is an open problem
how drastically one of the above two properties determines ESs. This thesis
attacks this problem and investigates the diversity of ESs with self-duality
and symmetric conditions.

First, in Section 4.1, we briefly introduce self-duality and homogeneity,
and we investigate ESs with group symmetric conditions as Theme C. In this
section, we show that an ES with self-duality and homogeneity is limited to
the SES (Theorem 4.1.4). Also, we show that an ES with global unitary
symmetry is limited to the SES (Theorem 4.1.5). These two results imply
that global unitary symmetry is a weaker condition than the condition in the
reference [37].

Second, in Section 4.2, as Theme D, in order to investigate ESs with
self-duality, we give a general theory about self-duality. In this section, we
define a pre-dual cone and show that any pre-dual cone can be modified
to a self-dual cone (Theorem 4.2.2). Next, we clarify the relation between
exact hierarchy of pre-dual cones and independent family of self-dual cones
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(Theorem 4.2.5).
The above general theory implies there are infinitely many self-dual ESs.

Moreover, this thesis attacks harder problem, i.e., we investigate the existence
of a self-dual ES that is near the SES in Section 4.3.1. This thesis defines
a condition called ϵ-undistinguishability, where the model cannot be distin-
guished from the SES by verification of maximally entangled states [57–67].
In this thesis, we call a model with self-duality and ϵ-undistinguishability
ϵ-Pseudo Standard Entanglement Structures (ϵ-PSESs), and we show that
infinite existence of ϵ-PSESs for any ϵ > 0 (Theorem 4.3.4) as Theme E. In
contrast to the similarity in terms of ϵ-undistinguishability, we see operational
difference between the SES and PSESs in terms of state discrimination tasks.
In Section 4.3.2, we show that some types of PSESs have non-orthogonal per-
fectly distinguishable states (Theorem 4.3.5).

The proofs of statements in Chapter 4 are written in Section 4.4.

4.1 Topics about Self-Duality and Group Sym-
metry in ESs

In this section, we review the preceding studies about self-duality and group
symmetric conditions in GPTs, and we investigates the diversity of ESs with
group symmetric conditions.

First, we introduce self-duality and group symmetric conditions, includ-
ing homogeneity in Section 4.1.1. Also, we introduce cones with a pair of
conditions, i.e., symmetric cones, which is essentially classified into five types.

Second, as Main Result 3, we clarify the uniqueness of the ES with cer-
tain group symmetric conditions in Section 4.1.2. We show that a model
with symmetric cones is limited to the SES (Theorem 4.1.4). Furthermore,
we show that a weak group symmetric condition derives the SES in ESs
(Theorem 4.1.5).

4.1.1 Self-Duality and Homogeneity

In the studies of proper cones, two properties self-duality and homogeneity
play an important role.

First, we define self-dual cone.
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Definition 4.1.1 (Self-Duality). We say that a positive cone C is self-dual
when the cone C satisfies C = C∗.

In some studies of GPTs, Definition 4.1.1 is called strong self-duality. On
the other hand, some studies say that a positive cone C ⊂ V is weakly self-
dual when there exists a linear automorphism f on V such that f(C∗) = C. It
is known that any proper cone C is weakly self-dual [38]. The reference [38]
has shown that the state space and the effect space of any model can be
transformed by linear map from one to another, where the effect space is
considered as the subset of V∗. That is, the result [38] can be interpreted in
our setting as follows; the state space and effect space become equivalent by
changing inner product. This process is called self-dualization in [38]. How-
ever, this thesis addresses entanglement structures, whose local structures
are completely equivalent to standard quantum theory. Standard quantum
theory fixes the inner product, and therefore, entanglement structures also
possess the fixed inner product Tr. Therefore, this thesis discusses strong
self-duality, and the result [38] cannot be used for our purpose. Hereinafter,
we call the property C = C∗ self-dual (omitting “strong”).

Another important symmetric property is homogeneity.

Definition 4.1.2. For a positive cone C in a vector space V, define the set
Aut(C) as

Aut(C) := {f ∈ GL(V) | f(C) = C}. (4.1)

Then, we say that a positive cone C is homogeneous if there exists a map
g ∈ Aut(C) for any two elements x, y ∈ C◦ such that g(x) = y.

A proper cone with self-duality and homogeneity is called a symmetric
cone, which is essentially classified into finite kinds of cones including the
SES [2, 3]. In order to introduce the classification of symmetric cones, we
define the direct sum of cones as follows:

Definition 4.1.3. If a family of positive cones {Ci}ki=1 satisfies Ci∩Cj = {0}
for any i 6= j, the direct sum of Ci is defined as

k⊕
i=1

Ci :=

{
k∑

i=1

xi

∣∣∣∣∣xi ∈ Ci

}
. (4.2)
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Here, we say that a positive cone C is irreducible if the cone C cannot be
decomposed by a direct sum over more than 1 positive cones as

C =
k⊕

i=1

Ci. (4.3)

Irreducible symmetric cones are classified into the following five cases
[2,3]: (i). PSD(m,R), (ii). PSD(m,C), (iii). PSD(m,H), (iv). Lorentz(1, n−
1), (v). PSD(3,O), where n and m are arbitrary positive integers, PSD(m,K)

denotes the set of positive semi-definite matrices on a m-dimensional Hilbert
space over a field K and Lorentz(1, n− 1) is defined as

Lorentz(1, n− 1) := {(z, x) ∈ R⊕ Rn−1 | |z|2 ≥ |x|2, z ≥ 0}. (4.4)

About reducible symmetric cones, it is known that any symmetric cone C
can be decomposed by a direct sum over irreducible symmetric cones Ci as

C =
k⊕

i=1

Ci (4.5)

[5].
In this way, symmetric cones have been studied well as a general theory

of proper cones. However, it is an open problem how drastically symmet-
ric cones determine entanglement structures. Also, it is an open problem
how drastically either self-duality or homogeneity determine entanglement
structures. In this thesis, we explore these problems.

4.1.2 Theme C : ESs with group symmetry

Here, we investigate ESs with group symmetric conditions.
First, we show that an ES C is equal to SES(A;B) if the cone C is sym-

metric.

Theorem 4.1.4 (Main Result C-1). Assume a symmetric cone C satisfies
(2.32). Then, C = SES(A;B).

In other words, the combination of self-duality and homogeneity uniquely
determine the SES. The preceding study [37] gives a condition about sym-
metry to derive symmetric cone. Therefore, restricting ESs, i.e., under the
condition (2.24), the condition in [37] derives the SES.
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Moreover, the SES is uniquely determined by another group symmetric
condition. Here, we define the class of global unitary maps given as

GU(A;B) :={g ∈ GL(T (HA ⊗HB)) | g(·) := U †(·)U,
U is a unitary matrix on HA ⊗HB}. (4.6)

Then, the condition GU(A;B)-symmetry uniquely derives the SES from all
ESs.

Theorem 4.1.5 (Main Result C-2). Assume that a model C satisfies (2.32)
and GU(A;B)-symmetric. Then, C = SES(A;B).

The condition GU(A;B)-symmetry is weaker condition than homogeneity
as the following proposition.

Proposition 4.1.6. A symmetric cone C with (2.32) satisfies that Aut(C) ⊃
GU(A;B).

Theorem 4.1.4 implies that Aut(C) is larger than GU(A;B) under the
condition that C is a symmetric cone with (2.32). Proposition 4.1.6 is shown
by Theorem 4.1.4 and the inclusion relation Aut(SES(A;B)) ⊃ GU(A;B).
Since Theorem 4.1.4 requires a larger symmetry than theorem 4.1.5 under
the condition (2.32), we can conclude that the assumption of Theorem 4.1.4
is stronger than that of Theorem 4.1.5, which implies the condition in [37] is
stronger than GU(A;B)-symmetry under the condition (2.32).

In this way, a kind of group symmetric conditions can determine entangle-
ment structures well. On the other hand, it is an open and difficult problem
how drastically self-duality restricts entanglement structures. In order to
investigate self-dual entanglement structures, we state general theory in the
next section.

4.2 Theme D : Pre-Dual Cone and Self-Dual
Modification

In this section, we introduce pre-dual cones and state general theories for
the construction of self-dual models satisfying (2.32). In Section 4.2.1, we
introduce pre-dual cone and discuss the meaning of pre-duality in physics.
In this thesis, we introduce pre-duality as a mathematical representation of
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the existence of projective measurements. In Section 4.2.2, we show that
pre-dual cone can be modified to a self-dual cone (Theorem 4.2.2). Also, we
show the relation between exact hierarchy of pre-dual cones and independent
family of self-dual cones (Theorem 4.2.5).

4.2.1 Pre-dual Cone and Its Meaning in Physics

In standard quantum theory, there exists a measurement {ei}i∈I such that the
post-measurement state with the outcome i is given as ei/Tr ei independently
of the initial state when the effect ei is pure. Such a measurement is called
a projective measurement [51–56]1. The measurement projectivity is one of
the postulates of standard quantum theory [51–54]. Therefore, in this paper,
we impose that any model C satisfies the following condition: for any pure
effect e ∈ E(C, u), there exists a measurement {ei} such that an element ei0
is equal to e, and the post-measurement state is given as ei0 := ei0/Tr ei0 .

Pure effects span the effect space E(C, u) with convex combination, and
the effect space E(C, u) generates the dual cone C∗ with constant time. There-
fore, the existence of projective measurement implies the inclusion relation
C ⊃ C∗. In this paper, this property C ⊃ C∗ is called pre-duality.

Definition 4.2.1 (Pre-Dual Cone). Given a proper cone C in V, we say that
C is pre-dual if C satisfies the inclusion relation C ⊃ C∗.

Here, we remark on the relation between projectivity and repeatabil-
ity. The following relation between projectivity and repeatability is also dis-
cussed in [52, Discussion] and [56]. Repeatability is a postulate of standard
quantum theory, sometimes included in the projection postulate [51, 52]2.

1The above property is sometimes called repeatability, but this thesis defines repeatabil-
ity as the latter property (Figure 4.2). As the following discussion, the two properties are
strictly distinguished from each other in general. However, in finite-dimensional standard
quantum theory, the two properties are equivalent, as shown in [56].

2One may think that the settings in [51] and [52] should not be categorized as repeata-
bility in our setting. However, the reference [51] starts from a similar assumption like
repeatability defined in this thesis and derives projectivity of measurements from the as-
sumption. Also, the discussion of the translated version of [52, Discussion] emphasizes dis-
tinguishability. Therefore, we divide the references [51,52] from the references [53–55]. As
mentioned in the former footnote, these two properties are equivalent in finite-dimensional
quantum theory. On the other hand, this thesis distinguishes projectivity and repeatability
from the viewpoint of GPTs, and the main statement in this section is that “projectivity
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ρ ei

initial
state

post
measurement

state

{ei}
projective

measurement

Figure 4.1: When a projective measurement {ei} is applied to the system
with an initial state ρ, we obtain an outcome i and the corresponding post-
measurement state ei = ei/Tr ei independent of the initial state ρ.

ρ σei σei

initial
state

post-measurement states
with an outcome i

{ei} {ei}
the same measurement

Figure 4.2: When an initial state is measured by a measurement {ei} twice,
the post-measurement states of first and second measurement with an out-
come i are equivalent.

Repeatability ensures that the same effect is observed with probability 1
in the sequence of the same measurements, and the effects do not change
the post-measurement state (figure 4.2). Repeatability requests that the
tuple of post-measurement states {σei}i∈I is perfectly distinguishable, i.e.,
the equation Trσeiej = δi,j holds. In other words, repeatability requests
the |I| number of constraints for the post-measurement state σei . On the
other hand, projectivity determines post-measurement states completely. In
other words, projectivity requests the same number of constraints for the
post-measurement state as the dimension of C∗. In general, the number of
outcomes |I| is smaller than the dimension of C∗; therefore, projectivity is a
stronger postulate than repeatability in terms of the number of constraints.

Now, we consider pre-dual models of composite systems (T (HA⊗HB), C, IA;B).
For example, let us consider the model that contains only separable mea-
surements. In such a model, the dual cone is given as C∗ = SEP(A;B), and

derives pre-duality”.
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therefore, the model satisfies C = SEP(A;B)∗ because the dual of a dual cone
is equal to the original cone. However, the state space S(SEP(A;B)∗, IA;B)

has excessive many states; the state space S(SEP(A;B)∗, IA;B) has not only
all quantum states but also all entanglement witnesses with trace 1. Then,
there exist two state ρ1, ρ2 ∈ S(C, IA;B) such that they satisfy Tr ρ1ρ2 < 0.
Not only the case C = SEP(A;B)∗, but also any pre-dual model has two
states ρ1, ρ2 with Tr ρ1ρ2 < 0 unless C = C∗. In this way, pre-dual models
have a gap between the state space and the effect space unless C = C∗. In
order to remove such a gap, we apply a theorem called self-dual modification
in the next section, i.e., we show the possibility to extend the measurement
effect space and restrict the state space with satisfying C̃ ⊃ C̃∗.

4.2.2 Self-Dual Modification and Hierarchy of Pre-Dual
Cones

Then, we show that any pre-dual model can be always modified to self-dual
model.

Theorem 4.2.2 (Main Result D-1). Let C be a pre-dual cone in V. Then,
there exists a positive cone C̃ such that

C ⊃ C̃ = C̃∗ ⊃ C∗. (4.7)

A self-dual cone C̃ satisfing (4.7) is called a Self-Dual Modification (SDM)
of C. Here, we remark that the reference [9] has also shown a result essentially
similar to Theorem 4.2.2. In the reference [9], a cone is defined as a closed
convex set satisfying only the property that rx ∈ C for any r ≥ 0 and any
x ∈ C. This thesis assumes additional properties, C has non-empty interior
and C ∩ (−C) = {0}. Actually, we can easily modify the proof in [9] for our
definition, but this thesis gives another proof based on Zorn’s Lemma for
reader’s convenience in Section 4.4.3.

In this way, when we want to investigate self-dual cones, it is sufficient to
focus on pre-dual cones. Here, we remark that SDM is not uniquely deter-
mined by a given pre-dual cone because the proof of Theorem 4.2.2 is derived
from Zorn’s Lemma, also because the proof in [9] is neither constructive nor
deterministic 3. However, in order to examine the uniqueness even with the

3Because a SDM C̃ is not uniquely determined by C, the notation C̃ is slightly confusing,
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above symmetric condition, we prepare the following two concepts among
several cones. Indeed, even when two self-dual cones are self-dual modifica-
tions of different pre-dual cones, they are not necessarily different self-dual
cones in general. For example, when we have three different self-dual cone
C1, C2, C3, then C1 + C2 and C2 + C3 are pre-dual cones, but C2 is regarded as
a modification of C1 + C2 and C2 + C3. Hence, the following two concepts are
useful to clarify the difference among self-dual modifications.

Definition 4.2.3 (n-independence). For a natural number n, we say that
a family of sets {Ci}ni=1 is n-independent if no sets Ci (1 ≤ i ≤ n) satisfy
that Ci ⊂

∑
j ̸=i Cj. Especially, we say that {Ci}ni=1 is n-independent family of

cones when any Ci is a positive cone.

Definition 4.2.4 (exact hierarcy with depth n). For a natural number n, we
say that pre-dual cone C has an exact hierarchy with depth n if there exists a
family of sets {Ci}ni=1 such that

C ⊃ C1 ⊋ C2 ⊋ · · · ⊋ Cn ⊃ C∗
n ⊋ · · · ⊋ C∗

1 ⊃ C∗. (4.8)

Especially, we say that {Ci}ni=1 is an exact hierarchy of cones when any Ci is
a positive cone.

Then, as an extension of theorem 4.2.2, the following theorem shows the
equivalence between the existence of an n-independent family of self-dual
cones and the existence of an exact hierarchy of pre-dual cones with depth
n.

Theorem 4.2.5 (Main Result D-2). Let C be a positive cone. The following
two statements are equivalent:

1. there exists an exact hierarchy of pre-dual cones {Ci}ni=1 satisfying C ⊃
Ci ⊃ C∗.

2. there exists an n-independent family of self-dual cones {C̃i}ni=1 satisfy-
ing that C̃i is a self-dual modification of Ci, i.e., C̃i is a self-dual cone
satisfying Ci ⊃ C̃i ⊃ C∗

i .

but for a convenience in the latter discussion, we often denote a SDM of C as C̃ in this
thsis. In other words, when we use the notation C̃, the set C̃ is a self-dual cone satisfying
C ⊃ C̃ ⊃ C∗.
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Because of Theorem 4.2.5, when we want to show the existence of different
self-dual cones, it is sufficient to show the existence of an exact hierarchy
of pre-dual cones. When we apply Theorem 4.2.5 to the existence of self-
dual ESs, we need to show the existence of an exact hierarchy of pre-dual
ESs. Such a hierarchy is easily constructed by adding an extremal ray to
SEP(A;B) because the set SES(A;B) \ SEP(A;B) is an infinite set. In
Section 4.3, we apply Theorem 4.2.5 to the existence of self-dual ESs with
an important additional condition.

4.3 Theme E : Existence of PSESs and Differ-
ence from the SES

In this section, we investigate PSESs. PSESs are introduced by verification
of maximally entangled states. Recently, many studies discussed verification
of maximally entangled states from theory [57–62] to experiment [63–67].
However, their verification ensures only that the constructed state is close to
the maximally entangled state because their verification inevitably contains
small errors. Therefore, an ES attains verification of maximally entangled
states if the ES has all states that are close to the maximally entangled states.
Simply considering, ESs with large state space attains the verification, but
self-duality bans such surplus of states. Then, this thesis investigates a class
of ESs, called PSESs, with self-duality and attainment of the verification
with small errors.

First, in Section 4.3.1, we define ϵ-PSESs and explain the importance
of the definition. Next, in Section 4.3.2, we show the infinite existence of
ϵ-PSESs for any ϵ > 0 (Theorem 4.3.4). Finally, in Section 4.3.3, we show
that there exist ϵ-PSESs with non-orthogonal perfect discrimination for any
ϵ > 0 (Theorem 4.3.5).

4.3.1 Definition of PSES and Its Importance

Here, we want to consider self-dual ESs near the SES, i.e., self-dual ESs
that have a small distance from the SES. In this thesis, as an operational
meaningful distance between models, we introduce experimental verification
of a given model. To consider the experimental verification of a given model,
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we consider the distinguishability of two state spaces of two given models C1
and C2. Given a state σ ∈ S(C2, u2), the quantity

D(C1‖σ) := min
ρ∈S(C1,u1)

‖ρ− σ‖1 (4.9)

expresses how well the state σ is distinguished from states in C1. Optimizing
the state σ, we consider the quantity

D(C1‖C2) := max
σ∈S(C2,u2)

D(C1‖σ), (4.10)

which expresses the optimum distinguishability of the model C2 from the
model C1. Hence, the quantity D(SES(A;B)‖C) expresses how the standard
model SES(A;B) can be distinguished from a model C.

However, we often consider the verification of a maximally entangled state
because a maximally entangled state is the furthest state from separable
states. That is, when the range of the above maximization (4.10) is restricted
to maximally entangled states, the distinguishability of the standard model
SES(A;B) from the model C is measured by the following quantity:

D(C) := max
σ∈ME(A;B)

D(C‖σ), (4.11)

where the set ME(A;B) is denoted as the set of all maximally entangled states
on HA ⊗ HB. Given a model C, we introduce ϵ-undistinguishable condition
as

D(C) ≤ ϵ. (4.12)

That is, if a model C satisfies ϵ-undistinguishablity, even when we pass ver-
ification test for a maximally entangled state with ϵ-errors, we cannot deny
the possibility that our system is the model C (figure 4.3). Clearly, there are
many models satisfying this condition, for example, SEP∗ satisfies it because
D(SEP∗) = 0. However, such an ES is not self-dual, therefore, we can easily
deny the possibility of SEP∗ by imposing self-duality.

Then, we call an ES ϵ-Pseudo Standard Entanglement Structures (ϵ-
PSESs) if the ES satisfies self-duality and ϵ-undistinguishablity. In other
words, ϵ-PSESs are models that cannot be denied by self-duality and verifi-
cation test for a maximally entangled state with ϵ-errors. A typical example
of ϵ-PSESs is of course the SES, but another example of ϵ-PSESs is not
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verifier

ρ

SES

This is the maximally entangled

state σ almost surely !

verifier

ρ′

K

This is the maximally entangled

state σ almost surely !

Figure 4.3: Even if the verifier’s system is subject to an ϵ-undistinguishable
entanglement structure C 6= SES(A;B), the verifier achieves the verification
task of a given maximally entangled state σ with error ϵ by preparing a state
ρ′ ∈ C satisfying ‖ρ′ − σ‖1 ≤ ϵ. In this sense, such verification tasks can not
distinguish the entanglement structures SES(A;B) and C when C satisfies
ϵ-undistinguishability.

known, especially in the case when ϵ is very small. In this section, we inves-
tigate the problem whether there exists another example of ϵ-PSESs. As a
result, we give an infinite number of examples of PSESs by applying a general
theory given in the next section.

4.3.2 Existence of PSESs

In this section, in order to discuss variety of ϵ-PSESs, we apply Theorem 4.2.5
to a model of the quantum composite system on HA ⊗HB with dim(HA ⊗
HB) = d2. Then, we show infinite number of exactly different ϵ-PSESs.

First, we denote MEOP(A;B) as the set of all maximally entangled or-
thogonal projections on HA ⊗HB, i.e.,

MEOP(A;B) :=
{
E⃗ = {|ψk〉〈ψk|}d

2

k=1

∣∣∣ 〈ψk|ψl〉 = δkl,

|ψk〉〈ψk| : maximally entangled state on HA ⊗HB

}
.

(4.13)

Now, we define the followin sets for the construction of PSESs.

Definition 4.3.1. Given a subset P ⊂ MEOP(A;B) and a parameter r ≥ 0,
we define the following set of non-positive matrices:

NPMr(P)

:=
{
ρ = −λE1 + (1 + λ)E2 +

1

2

d2∑
k=3

Ek

∣∣∣0 ≤ λ ≤ r, E⃗ = {Ek} ∈ P
}
.

(4.14)
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Using the above set NPMr(P), given a parameter r ≥ 0, we define the fol-
lowing two cones C(0)

r (P) and Cr(P) as

C(0)
r (P) : = SES(A;B) + NPMr(P), (4.15)

Cr(P) : =
(
C(0)∗
r (P) + NPMr(P)

)∗
. (4.16)

Then, the following proposition holds.

Proposition 4.3.2. Given HA, HB, define a real number r0(A;B) as

r0(A;B) :=
(√

2d− 2
)
/4. (4.17)

When two parameters r1 and r2 satisfy r2 ≤ r1 ≤ r0(A;B), two cones Cr1(P)

and Cr2(P) are pre-dual cones satisfying (2.32) and the inclusion relation

Cr2(P) ⊊ Cr1(P). (4.18)

Proposition 4.3.2 guarantees that Cr(P) is pre-dual for any r ≤ r0. There-
fore, Theorem 4.2.2 gives a self-dual modification of Cr(P) with (2.32). Next,
we calculate the value D(C̃r(P)). The following proposition estimates the
value D(C̃r(P)).

Proposition 4.3.3. Given a parameter r with 0 < r ≤ r0(A;B) and a
self-dual modification C̃r(P), the following inequality holds:

D(C̃r(P)) ≤ 2

√
2r

2r + 1
. (4.19)

For the latter use, we define the parameter ϵr as

ϵr := 2

√
2r

2r + 1
. (4.20)

Proposition 4.3.3 implies that the model C̃r(P) is an ϵr-PSES with (2.32).
Also, due to (4.18) in Proposition 4.3.2, for an arbitrary number n, an exact
inequality

0 < rn < · · · < r1 ≤ r0(A;B) (4.21)
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gives an exact hierarchy of pre-dual cones {Cri(P)}ni=1 with (2.32). Thus,
Theorem 4.2.5 gives an independent family {C̃ri(P)} with (2.32), and the
distance D(C̃ri(P)) is estimated as

D(C̃ri(P)) ≤ 2

√
2ri

2ri + 1
< 2

√
2r1

2r1 + 1
= ϵr1 (4.22)

by inequalities (4.19) and (4.21). In other words, the family {C̃ri(P)} is an
n-independent family of ϵr1-PSESs. Because n is arbitrary and ϵr1 → 0 holds
with r1 → 0, we obtain the following theorem.

Theorem 4.3.4 (Main Result E-1). For any ϵ > 0, there exists an infinite
number of ϵ-PSESs.

In other words, there exist infinite entanglement structures that cannot
be distinguished from the SES by a verification of a maximally entanglement
state with small errors even if the entanglement structure is self-dual.

4.3.3 Non-Orthogonal Discrimination in PSESs

In this section, we discuss the difference between ϵ-PSESs and the SES in
terms of informational tasks. We see the difference between the behav-
iors of perfect discrimination in C̃r(P) and SES. For this aim, we show
that any self-dual modification C̃r(P) in Section 4.3.1 has a measurement
to discriminate non-orthogonal states in C̃r(P) perfectly for a certain subset
P ⊂ MEOP(A;B).

First, given a vector P⃗ = {Pk}d
2

k=1 ∈ MEOP(A;B), we define a vector
E⃗P = {P ′

k}d
2

k=1 ∈ MEOP(A;B) as

P ′
1 := P2, P ′

2 := P1, P ′
k = Pk (k ≥ 3). (4.23)

Then, given a vector P⃗ = {Pk}d
2

k=1 ∈ MEOP(A;B), we define a subset
P0(P⃗ ) ⊂ MEOP(A;B) as

P0(P⃗ ) := {P⃗ , E⃗P}. (4.24)

Now, we consider perfect discrimination in a self-dual modification C̃r(P0(E⃗)).
By the equations (4.14) and (4.24), the following two matrices belong to
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NPMr(P0(E⃗)) for any E⃗ and any 0 ≤ λ ≤ r:

M1(λ; P⃗ ) := −λP1 + (1 + λ)P2 +
1

2

∑
k≥3

Pk,

M2(λ; P⃗ ) := −λP ′
1 + (1 + λ)P ′

2 +
1

2

∑
k≥3

P ′
k = (1 + λ)P1 − λP2 +

1

2

∑
k≥3

Pk,

(4.25)

which implies that Mi(λ; P⃗ ) ∈ C(0)∗
r (P0(P⃗ )) ⊂ C̃r(P0(P⃗ )) for i = 1, 2. Also,

because of the equation (4.23), the equation M1(λ; P⃗ )+M2(λ; P⃗ ) = I holds.
Therefore, the familyM(λ; P⃗ ) = {Mi(λ; P⃗ )}i=1,2 is a measurement in C̃r(P0(P⃗ ))

when 0 ≤ λ ≤ r.
Next, we choose a pair of distinguishable states by M(λ; P⃗ ). Let |ψk〉 be

a normalized eigenvector of Pk. Then, we define two states ρ1, ρ2 as follows:

ρ1 : = |ϕ1〉〈ϕ1| , ρ2 := |ϕ2〉〈ϕ2| ,

|ϕ1〉 : =

√
r

2r + 1
|ψ〉1 +

√
r + 1

2r + 1
|ψ〉2 ,

|ϕ2〉 : =

√
r + 1

2r + 1
|ψ〉1 +

√
r

2r + 1
|ψ〉2 .

(4.26)

Because of the relation P⃗ ∈ MEOP(A;B), the projections Pi and Pj are
orthogonal for i 6= j, which implies the equations

〈ψi|ψj〉 = δi,j, (4.27)

〈ψi|Pj|ψi〉 = δi,j. (4.28)

Therefore, the following relation holds for i, j = 1, 2:

Tr ρiMj(r; P⃗ ) = δi,j, (4.29)

i.e., the states ρ1 and ρ2 are distinguishable by the measurement M(λ; P⃗ ).
Next, we show that ρ1, ρ2 ∈ C̃r(P0(P⃗ )), which is shown as follows. Because

of the equation NPMr(P0(P⃗ )) := {Mi(λ; P⃗ )|0 ≤ λ ≤ r, i = 1, 2}, any
extremal element x ∈ C(0)

r (P0(P⃗ )) can be written as x = σ+Mi(λ; P⃗ ), where
σ ∈ SES(A;B), 0 ≤ λ ≤ r, i = 1, 2. Moreover, the following two inequalities
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hold:

Tr ρ1M1(λ; P⃗ ) = −λ
r

2r + 1
+ (1 + λ)

r + 1

2r + 1
= (λ+ r + 1)

1

2r + 1

(a)

≥
r + 1

2r + 1
≥ 0, (4.30)

Tr ρ1M2(λ; P⃗ ) = −λ
r + 1

2r + 1
+ (1 + λ)

r

2r + 1
= (−λ+ r)

1

2r + 1

(b)

≥ 0. (4.31)

The equations (a) and (b) are shown by the inequality 0 ≤ λ ≤ r. Because
the inequality Tr ρ1σ ≥ 0 holds for any σ ∈ SES(A;B), we obtain Tr ρ1x ≥
0 for any x ∈ C(0)

r (P0(P⃗ )), which implies ρ1 ∈ C(0)∗
r (P0(P⃗ )). Therefore,

ρ1 ∈ C̃r(P0(P⃗ )) because of the inclusion relation C(0)∗
r (P0(P⃗ )) ⊂ C̃r(P0(P⃗ )).

The same discussion derives that ρ2 ∈ C̃r(P0(P⃗ )). As a result, we obtain a
measurement and a distinguishable pair of two states by the measurement in
C̃r(P0(P⃗ )).

Finally, the following equality implies that ρ1 and ρ2 are non-orthogonal
for r > 0:

Tr ρ1ρ2 = 2
r(r + 1)

(2r + 1)2
> 0. (4.32)

That is to say, ρ1 and ρ2 are perfectly distinguishable non-orthogonal states.
Here, we apply Proposition 4.3.3 to the case with ϵ = 2

√
(2r)/(2r + 1).

Then, C̃r(P0(P⃗ )) is an ϵ-PSES that contains a pair of two perfectly distin-
guishable states ρ1 and ρ2 with

Tr ρ1ρ2
(a)

≥
ϵ2(ϵ2 + 8)

32
(4.33)

if r satisfies ϵ = 2
√
(2r)/(2r + 1). The inequality (a) is shown by simple

calculation as seen in Section 4.4.7 (Proposition 4.4.5). We summarize the
result as the following theorem.

Theorem 4.3.5 (Main Result E-2). For any ϵ > 0 satisfying ϵ = 2
√

(2r)/(2r + 1),
there exists an ϵ-PSES that has a measurement and a pair of two perfectly
distinguishable states ρ1, ρ2 with (4.33).

In this way, ϵ-PSESs are different from the SES in terms of state discrimi-
nation. This result implies the possibility that orthogonal discrimination can
characterize the standard entanglement structure rather than self-duality.
Such a discussion provides an important conjecture as seen in Section 5.2.
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4.4 Proofs in Chapter 4

4.4.1 Proof of theorem 4.1.4

In order to prove Theorem 4.1.4, we consider the capacity of a model. About
the symmetric cones in the list in Section 4.1.1, preceding studies investigated
the capacity of models and the dimension of vector spaces as follows [5]. In
this table, the dimension is defined as the dimension of vector space including
the symmetric cone, and dim/cap means the ratio of the dimension / the
capacity.

Table 4.1: List about irreducible symmetric cones

symmetric cone capacity dimension dim/cap

PSD(m,R) m m(m+ 1)/2 (m+ 1)/2

PSD(m,C) m m2 m

PSD(m,H) m m(2m− 1) 2m− 1

Lorentz(1, n− 1) 2 n n/2

PSD(3,O) 3 8 8/3

Then, we obtain the following lemma.

Lemma 4.4.1. Let HA,HB be finite-dimensional Hilbert spaces with dimen-
sion larger than 1. If an irreducible symmetric cone C satisfies (2.32), i.e.,
SEP(A;B) ⊂ C ⊂ SEP∗(A;B), the cone C is the SES, i.e., C = PSD(m,C)
for m = dim(HA ⊗HB).

Proof of Lemma 4.4.1. At first, C is restricted to the five cases in the list.
proposition 3.1.7 implies that C has the capacity m = dim(HA⊗HB), which
denies the possibilities C = Lorentz(1, n − 1) and C = PSD(3,O) because
dim(HA ⊗ HB) ≥ 4. Also, the cone C is contained by the vector space
of Hermitian matrices on HA ⊗ HB with C-valued entries. Therefore, the
dimension is given by m2. Only the case with C = PSD(m,C) satisfies
the ratio of the dimension and the capacity of C among the cones listed in
Table 4.1, which shows the desired statement.

Then, we prove Theorem 4.1.4.
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Proof of Theorem 4.1.4. First, we decompose C by a direct sum over irre-
ducible symmetric cones Ci as

C =
k⊕

i=1

Ci. (4.34)

Because each ER(Ci) is disjoint and because any pure state ρ cannot be writ-
ten as ρ = ρ1+ρ2 for any Hermitian matrices ρ1, ρ2 that are not transformed
by multiplying any real number, the inclusion relation

ER(SEP(A;B)) ⊂
k⋃

i=1

ER(Ci) (4.35)

holds. Because the set ER(SEP(A;B)) is topologically connected, ER(SEP(A;B))

cannot be written as the disjoint sum of closed sets. Therefore, there exists
an index i0 such that ER(SEP(A;B)) ⊂ ER(Ci0), which implies SEP(A;B) ⊂
Ci0 . Because Ci0 is self-dual, the inclusion relation SEP∗(A;B) ⊃ Ci0 holds.
Hence, we apply lemma 4.4.1 to Ci0 , and we obtain Ci0 = SES(A;B). Thus,
we obtain the inclusion relation C ⊃ SES(A;B), which implies C = SES(A;B)

because C is self-dual.

4.4.2 Proof of Theorem 4.1.5

Proof of Theorem 4.1.5. We show the statement by contradiction. Assume
that C 6= SES(A;B). If C satisfies C ⊊ SES(A;B), C is not self-dual because
of the inclusion relation C ⊊ SES(A;B) ⊊ C∗. Therefore, we assume the
existence of the element x ∈ C\SES(A;B) without loss of generality. Because
x ∈ SEP∗(A;B) \ SES(A;B), there exists a pure state ρ ∈ SES(A;B) such
that Tr ρx < 0. Because ρ is pure, there exists a unitary map g ∈ GU(A;B)

such that g(ρ) ∈ SEP(A;B). Also, because C is GU(A;B)-symmetry, g(x) ∈
C. However, Tr g(ρ)g(x) = Tr ρx < 0, and therefore, g(x) 6∈ SEP∗(A;B).
This contradicts to g(x) ∈ C ⊂ SEP∗(A;B).

4.4.3 Proof of theorem 4.2.2

Proof of theorem 4.2.2. [OUTLINE] First, as STEP1, we define X as a set
of all pairs of pre-dual cone and its dual cone, and we also define an order
relation on X . Next, as STEP2, we show the existence of a maximal element
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in X by Zorn’s lemma, i.e., we show that any totally ordered subset B ⊂ X
has an upper bound in X . Finally, as STEP3, we show that any maximal
element corresponds to self-dual cone.

[STEP1] Definition of X and an order relation on X .
Define the set X of all pairs of pre-dual cone and its dual as:

X :=
{
X :=(CX , C∗

X) ⊂ V × V
∣∣∣C ⊃ CX , CX is pre-dual cone

}
. (4.36)

Also, we define an order relation � on X as

X � Y ⇔ CX ⊇ CY , and C∗
X ⊆ C∗

Y for any X = (CX , C∗
X),

Y = (CY , C∗
Y ).

[STEP2] The existence of the maximal element.
The aim of this step is showing the existence of the maximal element of

X by applying Zorn’s lemma. For this aim, we need to show the existence of
an upper bound for every totally ordered subset in X . That is, it is needed
to show that the element written as

X ′ :=

(⋂
B∈B

CB,
( ⋂

B∈B

CB
)∗)

(4.37)

is an upper bound in X for a totally ordered subset B ⊂ X . Since any X ∈ B
satisfies X � X ′ by definition of X ′, non-trivial thing is X ′ ∈ X . Therefore,
we show this membership relation in the following.

Because any CB satisfies CB ⊃ C∗, the subset
⋂

B∈B CB has non-empty
interior. Therefore, it is sufficient to show that

⋂
B∈B CB is pre-dual in order

to show X ′ ∈ X . That is, the condition X ′ ∈ X follows from the relation(⋂
B∈B CB

)∗
⊂
⋂

B∈B CB.
For any X = (CX , C∗

X) ∈ B and Y = (CY , C∗
Y ) ∈ B, one of the following

inclusion relations holds by total order of B:

CX ⊇ C∗
X ⊇ C∗

Y (X � Y ) , (4.38)

CX ⊇ CY ⊇ C∗
Y (Y � X) . (4.39)

Therefore, CX ⊃ C∗
Y holds for any X,Y ∈ B, which implies

⋂
B∈B CB ⊃

CX for any X ∈ B. Hence, we have
∑

B∈B C∗
B ⊂

⋂
B∈B CB because the
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set
⋂

B∈B C∗
B ⊃ C∗

X is a positive cone, i.e., closed under linear combina-
tion of non-negative scalars. Because lemma 2.1.13 guarantees the relation(⋂

B∈B CB
)∗

=
∑

B∈B C∗
B, the above discussion implies X ′ is pre-dual, and

therefore, we obtain the relation X ′ ∈ X .
Consequently, we have finished showing that every totally ordered in X

has an upper bound in X . Therefore, Zorn’s lemma ensures the existence of
the maximal element X � X̃ ∈ X .

[STEP3] Self-duality of any maximal element.
We consider maximal element of X = (C, C∗) and write the maximal

element as X̃ = (C̃, C̃∗). Here, we will show C̃ is self-dual by contradiction.
Assume C̃ is not self-dual, i,e„ C̃ ⊋ C̃∗, and, we take an element x0 ∈ C̃ \
Clo (C∗). Then, C ′∗ := C̃∗ + {x0} satisfies C ⊋ C ′ because C∗ ⊊ C ′∗. Hence,
C ′ ∈ B and X̃ ≺ (C ′, C ′∗) hold. However, this contradicts to the maximality
of X̃. As a result, C̃ is self-dual.

4.4.4 Proof of Theorem 4.2.5

Proof of theorem 4.2.5. [STEP1] (i) ⇒ (ii).
Let {Ci}ni 1 be an exact hierarchy of pre-dual cones with C ⊃ Ci ⊃ C∗. By

fixing an element ρi ∈ Ci \ Ci+1, define cones Li as the self-dual modification
of C ′

i

C ′
i := (C∗

i + {ρi})∗ . (4.40)

Let us show the pre-duality of C ′
i. Take any two elements x′, y′ ∈ C ′∗

i . Because
of (4.40), the elements x′, y′ is written as x′ = x + ρi, y′ = y + ρi, where
x, y ∈ C∗

i . Pre-duality of Ci implies that 〈x, y〉 ≥ 0. Also, the definition
of dual implies 〈x, ρi〉 ≥ 0 and 〈y, ρi〉 ≥ 0. Because 〈ρi, ρi〉 = ||ρi|| > 0,
〈x′, y′〉 ≥ 0 holds, which implies that C ′∗

i ⊂ (C ′∗
i )

∗ = C ′
i. Hence, C ′

i is a
pre-dual cone, and Theorem 4.2.2 guarantees the existence of a SDM C̃i
satisfying C ′

i ⊃ C̃ ′
i ⊃ C ′∗

i . Also, the definition (4.40) implies the inclusion
relation C∗

i ⊂ C ′∗
i , and therefore, we obtain the inclusion relation

Ci ⊃ C ′
i ⊃ C̃ ′

i ⊃ C ′∗
i ⊃ C∗

i . (4.41)

Now, we show the independence of {C̃ ′
i}, i.e., we show C̃ ′

i 6⊂ C̃ ′
j and

C̃ ′
i 6⊃ C̃ ′

j for any i > j. We remark that any two elements a, b in a self-dual
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cone satisfies 〈a, b〉 ≥ 0. Because ρi belongs to Ci \ Ci+1, ρi 6∈ Ci+1 ⊃ Cj ⊃ C̃ ′
j

holds, which implies C̃ ′
i 6⊂ C̃ ′

j. The opposite side C̃ ′
i 6⊃ C̃ ′

j is shown by
contradiction. Assume that C̃ ′

i ⊃ C̃ ′
j, and therefore, Proposition 2.1.8 implies

C̃ ′
i ⊂ C̃ ′

j. This contradicts to C̃ ′
i 6⊂ C̃ ′

j. As a result, we obtain C̃ ′
i 6⊃ C̃ ′

j.

[STEP2] (ii) ⇒ (i).
Let {C̃i}ni=1 be an independent family of self-dual cones with C ⊃ C̃i ⊃ C∗.

Now, we define a cone Ci as

Ci :=
∑
j≥i

C̃j. (4.42)

The choice of Ci implies the inclusion relation Ci ⊃ C̃i, i.e., C̃i is a self-dual
modification of Ci. Also, because of the inclusion relation C ⊃ C̃i ⊃ C∗,
the choice of Ci implies the inclusion relation C ⊃ Ci ⊃ C∗. Moreover, the
independence of C̃i implies the inclusion relation

Ci =
∑
j≥i

C̃j ⊋
∑
j≥i+1

C̃j = Ci+1, (4.43)

which implies that {Ci}i=1 is an exact hierarchy of pre-dual cones.

4.4.5 Proof of Proposition 4.3.2

For the proof of Proposition 4.3.2, we give the following lemmas.

Lemma 4.4.2. For given HA and HB, the relation

NPMr(P) ⊂ SEP(A;B)∗ (4.44)

holds for 0 ≤ r ≤ (
√
d− 1)/2.

Proof of lemma 4.4.2. The aim of this proof is showing that any element
x ∈ NPMr(P) satisfies x ∈ SEP∗(A;B), i.e., the element x satisfies Trxy ≥ 0

for any y ∈ SEP(A;B). Take an arbitrary element x ∈ NPMr(P). Then, the
element x is written as

x = N(r; {Ek}) := −rE1 + (1 + r)E2 +
1

2

d2∑
k=3

Ek, (4.45)

68



Chapter 4. Self-duality and Existence of PSESs

{Ek} ∈ P and r > 0. Here, we remark that any Ek is a maximaly entangled
state. Therefore, any separable pure state y satisfies the following inequality:

Trxy =Tr y

(
−rE1 + (1 + r)E2 +

1

2

d2∑
j=3

Ej

)

=Tr y

(
−
(
r +

1

2

)
E1 +

(
r +

1

2

)
E2 +

1

2
I

)
(a)

≥ Tr y

(
−
(
r +

1

2

)
E1 +

1

2
I

)
(b)

≥ −
r
√
d
−

1

2
√
d
+

1

2

(c)

≥ −
√
d− 1

2
√
d

−
1

2
√
d
+

1

2
= 0. (4.46)

The inequality (a) is shown by the inequalities Tr yE1 ≤ 1 and Tr yE2 ≥ 0.
The inequality (b) is shown by the fact that the inequality Trσρ ≤ (1/

√
d)

holds for any separable pure state σ and any maximally entangled state ρ [39,
Eq. (8.7)]. The inequality (c) is shown by the assumption 0 ≤ r ≤ (

√
d−1)/2.

Therefore, Trxy ≥ 0 holds, which implies that x ∈ SEP(A;B)∗.

Lemma 4.4.3. For given HA and HB, define the dimension d = dim(HA) dim(HB).
Then, any two elements x, y ∈ NPMr(P) satisfy Trxy ≥ 0 if the parameter
r satisfies

0 ≤ r ≤
√
2d− 2

4
. (4.47)

Proof of lemma 4.4.3. Take two arbitrary elements x, y ∈ NPMr(P). By the
definition (4.14), the two elements x, y are written as

x = −rE1 + (1 + r)E2 +
1

2

d2∑
k=3

Ek,

y = −rE ′
1 + (1 + r)E ′

2 +
1

2

d2∑
l=3

E ′
l,

(4.48)

where {Ek}, {E ′
l} ∈ P . Then, the following inequality holds:

Trxy

=Tr

(
−rE1 + (1 + r)E2 +

1

2

d2∑
k=3

Ek

)(
−rE ′

1 + (1 + r)E ′
2 +

1

2

d2∑
l=3

E ′
l

)
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=Tr

(
−rE1 + (1 + r)E2 +

1

2
(I − E1 − E2)

)
(
−rE ′

1 + (1 + r)E ′
2 +

1

2
(I − E ′

1 − E ′
2)

)
=Tr

(
−
(
r +

1

2

)
E1 +

(
r +

1

2

)
E2 +

1

2
I

)
(
−
(
r +

1

2

)
E ′

1 +

(
r +

1

2

)
E ′

2 +
1

2
I

)
=Tr

((
r +

1

2

)2

E1E
′
1 −

(
r +

1

2

)2

E1E
′
2 −

1

2

(
r +

1

2

)
E1 −

(
r +

1

2

)2

E2E
′
1

+

(
r +

1

2

)2

E2E
′
2 +

1

2

(
r +

1

2

)
E2 −

1

2

(
r +

1

2

)
E ′

1 +
1

2

(
r +

1

2

)
E ′

2 +
1

4
d

)
(a)

≥ −
(
r +

1

2

)2

− 1

2

(
r +

1

2

)
−
(
r +

1

2

)2

+

(
r +

1

2

)2

+
1

2

(
r +

1

2

)
− 1

2

(
r +

1

2

)
+

1

2

(
r +

1

2

)
+

1

4
d

=− 2

(
r +

1

2

)2

+
1

4
d

(b)

≥ −2

(√
2d− 2

4
+

1

2

)2

+
1

4
d

=− 2

(√
2d

4

)2

+
1

4
d = −4d

16
+

1

4
d = 0. (4.49)

The inequality (a) is shown by E1E
′
1 ≥ 0, E1E

′
2 ≤ 1 and so on. The inequality

(b) is shown by the assumption (4.47) of lemma 4.4.3. The inequality (4.49)
is the desired inequality.

Proof of Proposition 4.3.2. We remark the following inequality:
√
2d− 2

4n
≤

√
2d− 2

4
≤

2
√
d− 2

4
=

√
d− 1

2
. (4.50)

Therefore, we apply lemma 4.4.2 and lemma 4.4.3 to Cr(P) with r ≤ r0(A;B).
First, we show pre-duality of Cr(P) for r ≤ r0(A;B), i.e., any two elements

x, y ∈ C∗
r (P) satisfy Trxy ≥ 0. Take two elements x, y ∈ C∗

r (P), and we need
to show Trxy ≥ 0. Because of the definition 4.16, the elements x, y are
written as x = x1 + x2 ,y = y1 + y2 for x1, y1 ∈ C(0)∗

r (P), x2, y2 ∈ NPMr(P).
By lemma 4.4.3, the inequality Trx2y2 ≥ 0 holds. Because SES(A;B) ⊃
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C(0)
r (P) holds, C(0)∗

r (P) is pre-dual, and therefore, the inequality Trx1y1 ≥ 0

holds. Because C(0)∗
r (P) ⊂ NPMr(P) holds, the inequalities Trx1y2 ≥ 0 and

Tr y1x2 ≥ 0 hold. As a result, we obtain Trxy ≥ 0, which implies that C∗
r (P)

is pre-dual.
Next, we show the exact inclusion relation Cr2(P) ⊊ Cr1(P), which is

shown by NPMr2(P) ⊊ NPMr1(P) holds. Finally, Cr(P) satisfies (2.32) be-
cause of the definition (4.16) and lemma 4.4.2.

4.4.6 Proof of Proposition 4.3.3

For the proof of Proposition 4.3.3, we define a function Fmax by fidelity
F (ρ, σ) of two states ρ, σ as

Fmax(ρ) : = max
σ∈ME(A;B)

F (ρ, σ)
(a)
= max

σ∈ME(A;B)
Tr ρσ. (4.51)

The equality (a) holds because any maximally entangled state is pure. Also,
we remark the relation between trace norm and fidelity. The following in-
equality holds for any state ρ, σ ∈ SES(A;B):

‖ρ− σ‖1 ≤ 2
√
1− F (ρ, σ). (4.52)

In order to show Proposition 4.3.3, we give the following lemma.

Lemma 4.4.4. When a state ρ ∈ SES and a parameter r satisfy the inequal-
ity

Fmax(ρ) ≤
1

2r + 1
, (4.53)

we have

ρ ∈ C(0)∗
r (P). (4.54)

Proof of lemma 4.4.4. We choose a state ρ ∈ SES and a parameter r to
satisfy the inequality (4.53). In the following, we show ρ ∈ C(0)∗

r (P).
Any element of C(0)

r (P) = SES(A;B) + NPMr(P) is written as σ +

N(λ; {Ek}) with σ ∈ SES(A;B) and N(λ; {Ek}) ∈ NPMr(P) given in (4.45).
As ρ ∈ SES(A;B), we have

Tr ρσ ≥ 0. (4.55)
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Since the element N(λ; {Ek}) ∈ NPMr(P) is written as the following
form by {Ek} ∈ (P) and 0 ≤ λ ≤ r

N(λ; {Ek}) = −λE1 + (1 + λ)E2 +
1

2

d2∑
k=3

Ek,

we obtain the following inequality by using (4.53);

Tr ρN(λ; {Ek})

=Tr ρ

(
−λE1 + (1 + λ)E2 +

1

2
(I − E1 − E2)

)
=Tr ρ

(
−
(
λ+

1

2

)
E1 +

(
λ+

1

2

)
E2 +

1

2
I

)
(a)

≥ Tr

(
−
(
λ+

1

2

)
ρE1 +

1

2
ρI

)
(b)

≥ −
(
λ+

1

2

)
1

2r + 1
+

1

2

(c)

≥ −
(
r +

1

2

)
1

2r + 1
+

1

2
= 0. (4.56)

The inequality (a) is shown by Tr ρE2 ≥ 0. The inequality (b) holds because
E1 is a maximally entangled state and because the equations (4.51), (4.53)
hold. The inequality (c) is shown by λ ≤ r. Therefore, combining (4.55) and
(4.56), we obtain

Tr ρ(σ +N(λ; {Ek})) ≥ 0, (4.57)

which implies the relation ρ ∈ C(0)∗
r (P).

By using Lemma 4.4.4, we prove Proposition 4.3.3.

Proof of Proposition 4.3.3. [OUTLINE] First, as STEP1, we simplify the
minimization of D(C̃r(A;B)). Next, as STEP2, we estimate the simplified
minimization. Finally, as STEP3, combining STEP1 and STEP2, we derive
(4.19).

[STEP1] Simplification of the minimization.
Because the inclusion relations

C̃r(P) ⊃ C∗
r (P) ⊃ C(0)∗

r (P) (4.58)

hold, the following inequality holds for any σ ∈ ME(A;B):

D(C̃r(P)‖σ) = min
ρ∈C̃r(P)

‖ρ− σ‖1 ≤ min
ρ∈C(0)∗

r (P)

‖ρ− σ‖1. (4.59)
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[STEP2] Estimation of the minimization.
Given an arbitrary maximally entangled state σ, take an element ρ0 ∈

SES(A;B) satisfying the following equality:

F (ρ0, σ) =
1

2r + 1
. (4.60)

lemma 4.4.4 implies the relation ρ0 ∈ C(0)∗
r (P). Then, we obtain the following

inequality:

min
ρ∈C(0)∗

r (P)

‖ρ− σ‖1 ≤ ‖ρ0 − σ‖1

(a)

≤2
√

1− F (ρ0, σ) = 2

√
1−

1

2r + 1
= 2

√
2r

2r + 1
. (4.61)

The inequality (a) is shown by the inequality (4.52).

[STEP3] Combination of STEP1 and STEP2.
Because σ is an arbitrary element in ME(A;B), the following inequality

holds:

D(C̃r(P)) = max
σ∈ME(A;B)

D(C̃r(P)‖σ)

(a)

≤ max
σ∈ME(A;B)

min
ρ∈C(0)∗

r (P)

‖ρ− σ‖1
(b)

≤ 2

√
2r

2r + 1
. (4.62)

The inequality (a) is shown by (4.59). The inequality (b) holds because the
inequality (4.61) holds for any σ ∈ ME(A;B). Hence, we obtain (4.19).

4.4.7 Proof of inequality (4.33)

Here, we show the inequality (4.33). In other words, we show the following
Proposition.

Proposition 4.4.5. Let ϵ > 0 and 0 < r ≤ r0(A;B) be parameters satisfying
ϵ = 2

√
(2r)/(2r + 1), and let ρ1, ρ2 be states satisfying (4.32). Then, the

following inequality holds;

Tr ρ1ρ2 ≥
ϵ2(ϵ2 + 8)

32
. (4.63)
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Proof of Proposition 4.4.5. The equation ϵ = 2
√

(2r)/(2r + 1) is reduced as
follows:

ϵ =2
√
(2r)/(2r + 1)

ϵ2/4 =2r/(2r + 1)

ϵ2/4 =1− 1/(2r + 1)

1/(2r + 1) =(4− ϵ2)/4

r =ϵ2/(2(4− ϵ2)). (4.64)

Then, (4.64) implies the following equation:

Tr ρ1ρ2
(a)

≥
2r(r + 1)

(2r + 1)2
=

2ϵ2

2(4− ϵ2)
·
ϵ2 + (2(4− ϵ2)

2(4− ϵ2)
·

(
4− ϵ2

4

)2

=
ϵ2(ϵ2 + 8)

32
.

(4.65)

Here, we remark that the inequality (a) is (4.32).
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Chapter 5

Conclusion

5.1 Summary

This thesis has investigated the diversity of entanglement structures in gen-
eral probabilistic theories. In Chapter 2, we have introduced positive cones
and GPTs. Also, we have introduced ESs and its non-uniqueness, and we
have given important examples of ESs (in Appendix A.1). In Chapter 3 and
Chapter 4, this thesis has addressed the following five themes.

A. Characterization of Dual-Operator-Valued Measurement

B. Non-Simulability of Beyond Quantum Measurement

C. Entanglement Structures with Group Symmetry

D. Self-Dual Modification

E. Existence of PSES and Difference from the SES

In Chapter 3, we have discussed state discrimination tasks in ESs, and
have investigated Theme A and B. We have classified DOVMs and have
characterized the classes by the performance for discrimination tasks (The-
orem 3.2.5 and Theorem 3.2.6). Besides the results, as an application of
Theorem 3.2.6, this thesis has given a derivation of the SES from ESs with a
inclusion relation (Theorem 3.2.7). Also, as an application of Theorem 3.2.5,
this thesis has discussed simulability of BQ measurement (Theme B), and
this thesis has shown non-simulability of BQ measurement (Theorem 3.2.11).
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In Chapter 4, we have discussed ESs with self-duality and group sym-
metry. As a result of Theme C, we have shown that an ES with symmetric
cone is uniquely determined as the SES (Theorem 4.1.4). Also, we have re-
vealed that an ES with global unitary symmetry is limited to the SES (Theo-
rem 4.1.5). Next, this thesis has given a general theory about self-duality for
the investigation of ESs with self-duality. We have shown that any pre-dual
cone can be modified to a self-dual cone (Theorem 4.2.2) and that an exact
hierarchy of pre-dual cones corresponds to an independent family of self-dual
cones (Theorem 4.2.5). Applying this general theory, we have shown that
infinite existence of ϵ-PSESs for any ϵ > 0 (Theorem 4.3.4). Moreover, as
the operational difference between the SES and PSESs, we have shown that
there exist ϵ-PSESs with non-orthogonal perfect discrimination for any ϵ > 0

(Theorem 4.3.5).
In this way, we have investigated the diversity of ESs, i.e., possible struc-

ture of quantum composite systems in GPTs. This thesis has clarified that
there are several types of ESs and some of them are similar to the SES but
different from the SES.

5.2 Open Problems

Finally, we enumerate open problems in this thesis.
In Theme A, as Theorem 3.2.7, we have given a characterization of the

SES by the condition ErrC(ρ1; ρ2) = 1 − 1
2
‖ρ1 − ρ2‖1 when we impose an

additional condition C ⊂ SES(A;B). No counterexample is known when we
relax the condition C ⊂ SES(A;B). Therefore, it is an open problem whether
the condition ErrC(ρ1; ρ2) = 1 − 1

2
‖ρ1 − ρ2‖1 characterizes the SES without

the assumption of the condition C ⊂ SES(A;B).
In Theme B, as Theorem 3.2.11, we have shown the non-simulability of

BQ measurement. The proof of Theorem 3.2.11 depends on the extraordi-
nary performance of BQ measurement. Similarly, it is considered that AQ
measurement might be non-simulable because AQ measurement also has an
extraordinary performance. This is an open problem.

In Theme C, as Theorem 4.1.6, we have shown that a GU(A;B)-symmetric
ES is uniquely determined as the SES. However, GU(A;B)-symmetry is not
derived reasonably from local structures. On the other hand, the symmetry
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of the local unitary group LU(A;B), defined as

LU(A;B) := {g ∈ GL(T (HA ⊗HB)) | g(·) := (U †
A ⊗ U †

B)(·)(UA ⊗ UB)

UA,UB are unitary matrices on HA,HB},
(5.1)

is naturally derived from local structures. Therefore, an important problem
is variety of entanglement structures with LU(A;B)-symmetry. Here, we give
the following two important examples:

(EI) Γ(SES(A;B)) (where Γ is the partial transposition map that trans-
poses Bob’s system)

(EII) C∗
r (P) (where P is an LU(A;B)-symetric subset of MEOP(A;B))

These two examples satisfy two of three conditions, LU(A;B)-symmetry,
self-duality, and ϵ-undistinguishablity. On the other hand, no known exam-
ple satisfies the above three conditions except for SES(A;B). Therefore, it
remains open whether there exists a model that satisfies these three condi-
tions and that is different from SES.

In Theme D, as Theorem 4.2.2, we have shown the existence of a self-
dual modification. However, because our proof depends on Zorn’s Lemma,
we have not given a self-dual cone explicitly. Also, the reference [9] does not
give constructive self-dual cones. It is an open problem to give a self-dual
modification by an explicit form.

In Theme E, as Theorem 4.3.5, we have shown that some types of PSESs
have an extraordinary performance for discrimination tasks. This result
implies the possibility that orthogonal discrimination can characterize the
standard entanglement structure rather than self-duality. In other words,
we propose the following conjecture as a considerable statement, which is a
future work.

Conjecture 5.2.1. If a model of the quantum composite system C is not
equivalent to the SES, C has a pair of two non-orthogonal states discriminated
perfectly by a measurement in C.
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Appendix A

Examples of Models of GPTs

A.1 Examples of ESs with Important Proper-
ties

In this section, we give ESs that are counterexamples for some important
mathematical properties. In Section A.1.1, we show that the model SEP(A;B)

is a typical example that does not satisfy entropy preserving spectrality. In
Section A.1.2, we give an ES that satisfies 1-symmetry but does not satisfy
2-symmetry.

A.1.1 Counterexample of Entropy Preserving Spectral-
ity

First, we define entropy preserving spectrality.

Definition A.1.1 (entropy preserving spectrality [A2]). Given a state ρ, we
say that ρ has entropy non-preserving spectral decompositions if there exist
two decompositions of ρ over pairs of perfectly distinguishable pure state {ρi}
and {σj} as

ρ =
∑
i

piρi =
∑
j

qjσj (A.1)

satisfying the relation

−
∑
i

pi log pi 6= −
∑
j

qj log qj. (A.2)
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where (pi) and (qj) are probability vectors.
We then say that an ES C satisfies entropy preserving spectrality if any

state ρ ∈ S(C, I) does not have entropy non-preserving spectral decomposi-
tions.

From the viewpoint of physics, entropy preserving spectrality means the
consistency with thermodynamics. The SES satisfies Definition A.1.1. On
the other hand, there exists an ES that does not satisfy Definition A.1.1.
The ES is constructed as follows.

At first, Theorem 3.1.3 shows that the following two separable states are
perfectly distinguishable in SEP(A;B):

ρ1 =

[
1 0

0 0

]
⊗

[
1 0

0 0

]
, (A.3)

ρ2 =
1

2

[
1 1

1 1

]
⊗

1

2

[
1 1

1 1

]
. (A.4)

Also, the reference [29] gives the following measurement {e1, e2} that dis-
criminate {ρ1, ρ2} perfectly:

e1(ρ) = Tr


1

2


2 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 2

 ρ
 , (A.5)

e2(ρ) = Tr


1

2


0 0 0 1

0 2 1 0

0 1 2 0

1 0 0 0

 ρ
 . (A.6)

Next, we extend SEP(A;B) slightly. Consider the following density matrices
with unit rank:

σ1 =
1

6


3

√
3

√
3

√
3√

3 1 1 1√
3 1 1 1√
3 1 1 1

 , (A.7)

σ2 =
1

6


3 −

√
3 −

√
3 −

√
3

−
√
3 1 1 1

−
√
3 1 1 1

−
√
3 1 1 1

 . (A.8)
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Because σ1 and σ2 are not separable, σ1, σ2 6∈ SEP(A;B). Then consider the
following ES C:

C := Hul (SEP(A;B) ∪ {σ1, σ2}) . (A.9)

We remark that ρi and σj are pure because they are rank 1 matrices.
Because the inclusion relation SEP(A;B) ⊂ C ⊂ SES(A;B), the inclusion

relation M(SES(A;B), I) ⊂ M(C, I) ⊂ M(SEP(A;B), I) holds. In partic-
ular, because ej given in in Eqs. (A.5) and (A.6) satisfies ej(σi) ≥ 0 for all
i, j, the measurement {e1, e2} belongs to M(C, I). Because the two states
σ1, σ2 are orthogonal quantum states, they are perfectly distinguished by a
measurement in M(SES(A;B), I). Therefore, the states σ1, σ2 are perfectly

distinguishable in C. This implies that the state ρ :=
1

3
ρ1 +

2

3
ρ2 can be de-

composed into perfectly distinguishable pure states in two different ways, as
follows:

ρ =
1

3
ρ1 +

2

3
ρ2, (A.10)

=
3 +

√
3

6
σ1 +

3−
√
3

6
σ2 , (A.11)

which clearly possess two different values of entropy.

A.1.2 Example of 1-Symmetry and not 2-Symmetry

Next, we give an example of ES that satisfies 1-symmetry but does not satisfy
2-symmetry. First, we define k-symmetry.

Definition A.1.2 (k-symmetry). We say that a model C is k-symmetric
if there exists a transformation f ∈ T (C, u) such that ρi = f(σi), for i =
1, · · · , k, for any pair of k-tuples of perfectly distinguishable pure states {ρi}ki=1

and {σi}ki=1.

Now we show the difference between strong symmetry and weak symmetry
by giving the following counterexample.

Theorem A.1.3. SEP(A;B) is 1-symmetric but not 2-symmetric.

In order to show this theorem, we apply the following lemma [7, Theorem
3].
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Lemma A.1.4. For the linear map f from LH(HA⊗HB) → LH(HA⊗HB),
the following are equivalent:

(i) f ∈ T (SEP(A;B)).

(ii) f(Ext(L+
H(HA))⊗ Ext(L+

H(HB))) = Ext(L+
H(HA))⊗ Ext(L+

H(HB)).

(iii) f(X ⊗ Y ) = fA(X) ⊗ fB(Y ), or dimHA = dimHB and f(X ⊗ Y ) =

fB(Y ) ⊗ fA(X), where fA(X) = UAXU
†
A or UAX

⊤U †
A and fB(Y ) =

VBY V
†
B or VBY ⊤V †

B.

Proof of Theorem A.1.3. Since F(SEP(A;B)) contains all local unitary maps,
SEP(A;B) clearly satisfies 1-symmetry.

Now, we show that SEP(A;B) is not 2-symmetric by giving a counterex-
ample. Take the following four separable pure states:

ρ1 = ρA1 ⊗ ρB1 =

[
1 0

0 0

]
⊗

[
1 0

0 0

]
, (A.12)

ρ2 =
1

2

[
1 1

1 1

]
⊗ 1

2

[
1 1

1 1

]
, (A.13)

σ1 =

[
1 0

0 0

]
⊗

[
1 0

0 0

]
, (A.14)

σ2 =

[
0 0

0 1

]
⊗

[
0 0

0 1

]
. (A.15)

By direct inspection, we can verify that the two dichotomies {ρ1, ρ2} and
{σ1, σ2} both satisfy condition (3.7) and thus, by Theorem 3.1.3, both contain
perfectly distinguishable pure states in SEP(A;B).

Assume that there is a map f ∈ T (SEP(A;B)) where σ1 = f(ρ1) and
σ2 = f(ρ2). From Lemma A.1.4, the following equality should hold:

Tr{σ1σ2} = Tr{fA(ρA1 )fA(ρA2 )⊗ fB(ρ
B
1 )fB(ρ

B
2 )}

= Tr{ρA1 ρA2 ⊗ ρB1 ρ
B
2 }

= Tr{ρ1ρ2}.
(A.16)

However, now we have

Tr{ρ1ρ2} =
1

4
, Tr{σ1σ2} = 0. (A.17)

This contradicts (A.16). Thus SEP(A;B) is 1-symmetric but not 2-symmetric.
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A.2 Example of General Models with Non-Simulable
Measurements

In this section, we address a general model of GPTs that is not an ES. As
mentioned in Section 3.2.3, general models sometimes contain non-simulable
measurements, and here, we give an example of such models, called shrunk
Bloch sphere.

Let us consider the set LH(H) with dimH = 2. For a parameter p ∈ (0, 1),
we define a cone Cp as

Cp :=
{
pρ+

1− p

2
I

∣∣∣∣ ρ ∈ L+
H(H)

}
, (A.18)

and we consider the model (LH(H),Tr, Cp, I). Now, we show that the model
contains a non-simulable measurement as follows.

First, we see that for any orthonormal basis P⃗ = (P1, P2) on LH(H), a
measurement M (P⃗ ) := {M(P⃗ ), I −M(P⃗ )} defined as

M(P⃗ ) := −1− p

2p
P1 +

1 + p

2p
P2 (A.19)

belongs to M(Cp, I). The relation M (P⃗ ) ∈ M(Cp, I) is shown by the in-
equalities TrσM(P⃗ ) ≥ 0 and Trσp

(
I −M(P⃗ )

)
≥ 0 for any σp ∈ S(Cp, I)

written as σp = pσ + 1−p
2
I with σ ∈ L+

H(H), which are shown as follows:

TrσM(P⃗ ) = Tr

(
pσ +

1− p

2
I

)(
−1− p

2p
P1 +

1 + p

2p
P2

)
(A.20)

=− (1− p)

2
TrσP1 +

(1− p)

2
TrσP2 −

(1− p)2

4p
+

(1 + p)(1− p)

4p
(A.21)

(a)

≥ − (1− p)

2
− (1− p)2

4p
+

(1 + p)(1− p)

4p
= 0. (A.22)

The inequality (a) is shown by the inequalities TrσP1 ≤ 1 and TrσP2 ≥ 0.
Here, we remark that the equality of (a) is attained with σp = ρ1 := pP1 +
1−p
2
I, which implies the equations Tr ρ1M(P⃗ ) = 0 and Tr ρ1

(
I −M(P⃗ )

)
=

1. The other inequality Trσp

(
I −M(P⃗ )

)
≥ 0 is shown similarly, and the

state σp = ρ2 := pP2 +
1−p
2
I satisfies the equations Tr ρ2M(P⃗ ) = 1 and

Tr ρ2

(
I −M(P⃗ )

)
= 0. In this way, the measurement M (P⃗ ) belongs to
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M(Cp, I), and moreover, the measurement M (P⃗ ) discriminates two states
ρ1 and ρ2. Besides, the two states ρ1 and ρ2 satisfy the inequality Tr ρ1ρ2 > 0

by their constructions. In other words, the measurement M (P⃗ ) discriminates
two non-orthogonal states.

Similarly to the discussion in Section 3.2.3, because the measurement
M (P⃗ ) discriminates two non-orthogonal states any POVM N = {N1, N2}
with N1, N2 ∈ L+

H(H⊗n) never satisfies the relation

M(P⃗ )ρ = N1ρ
⊗n ∀ρ ∈ D(M (P⃗ )) ∩ D(N ) (A.23)

for any natural number n. In other words, the measurement M (P⃗ ) is not
n-simulable for any natural number n.

In this way, the model (LH(H),Tr, Cp, I) contains a non-simulable mea-
surement even though the model is not an ES.
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