
VOL. E106-A NO. 3
MARCH 2023

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

514
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

PAPER Special Section on VLSI Design and CAD Algorithms

Dynamic Verification Framework of Approximate Computing
Circuits using Quality-Aware Coverage-Based Grey-Box Fuzzing

Yutaka MASUDA†a), Member, Yusei HONDA††, Nonmember, and Tohru ISHIHARA†, Member

SUMMARY Approximate computing (AC) has recently emerged as a
promising approach to the energy-efficient design of digital systems. For
realizing the practical AC design, we need to verify whether the designed
circuit can operate correctly under various operating conditions. Namely,
the verification needs to efficiently find fatal logic errors or timing errors
that violate the constraint of computational quality. This work focuses on
the verification where the computational results can be observed, the com-
putational quality can be calculated from computational results, and the
constraint of computational quality is given and defined as the constraint
which is set to the computational quality of designed AC circuit with given
workloads. Then, this paper proposes a novel dynamic verification frame-
work of the AC circuit. The key idea of the proposed framework is to
incorporate a quality assessment capability into the Coverage-based Grey-
box Fuzzing (CGF). CGF is one of the most promising techniques in the
research field of software security testing. By repeating (1) mutation of test
patterns, (2) execution of the program under test (PUT), and (3) aggregation
of coverage information and feedback to the next test pattern generation,
CGF can explore the verification space quickly and automatically. On the
other hand, CGF originally cannot consider the computational quality by
itself. For overcoming this quality unawareness inCGF, the proposed frame-
work additionally embeds the Design Under Verification (DUV) component
into the calculation part of computational quality. Thanks to the DUV in-
tegration, the proposed framework realizes the quality-aware feedback loop
in CGF and thus quickly enhances the verification coverage for test patterns
that violate the quality constraint. In this work, we quantitatively compared
the verification coverage of the approximate arithmetic circuits between the
proposed framework and the random test. In a case study of an approxi-
mate multiply-accumulate (MAC) unit, we experimentally confirmed that
the proposed framework achieved 3.85 to 10.36 times higher coverage than
the random test.
key words: approximate computing (AC), coverage-based grey-box fuzzing
(CGF), design under verification (DUV) integration, verification, computa-
tional quality

1. Introduction

Approximate computing (AC) has recently emerged as a
promising approach to the energy-efficient design of digi-
tal systems [1]–[7]. While the conventional systems require
exact and completely deterministic computation, AC allows
some loss of optimality in the computed result. This concept
is suitable for a wide range of applications such as digi-
tal signal and image processing, wireless communications,
and machine learning. By exploiting the inherent resilience

Manuscript received March 9, 2022.
Manuscript revised July 6, 2022.
Manuscript publicized September 2, 2022.
†The authors are with Graduate School of Informatics, Nagoya

University, Nagoya-shi, 464-0814 Japan.
††The author is with School of Informatics, Nagoya University,

Nagoya-shi, 464-0814 Japan.
a) E-mail: masuda@ertl.jp
DOI: 10.1587/transfun.2022VLP0002

of those applications, AC techniques substantially improve
energy efficiency (e.g. [1]).

After designing the AC circuit, we need to verify
whether the designed circuit can operate correctly under
various operating conditions. In this work, we assume the
verificationwhere the computational results can be observed,
the computational quality can be calculated from computa-
tional results with the given metric, and the constraint of
computational quality is given and defined as the constraint
which is set to the computational quality of designed AC
circuit with given workloads. For example, in the image
processing accelerator, which receives the input image and
outputs the processing image, the above assumptions mean
that the output image can be observed, the image quality
metric such as Peak Signal-to-Noise Ratio (PSNR) is given,
the image quality can be calculated for the output image, and
the quality of output image can be compared to the given
constraint, e.g., 30dB of PSNR. Under the above assump-
tions, this paper focuses on the verification of AC circuits
whose computational results can be observed and whose
computational quality can be calculated from computational
results.

Here, the fundamental assumption for the verification
is completely different between the conventional circuit and
the AC circuit. For example, in the conventional circuit, all
paths except for false paths should not cause logic and timing
errors. On the other hand, the AC circuit gives a constraint
in the computational quality and allows the occurrence of
errors as long as the circuit satisfies the target constraint.
Namely, in the verification of AC design, we need to find
fatal logic errors or timing errors that violate the constraint
of computational quality. Originating from the difference
of target errors in the verification, the verification technique
for the AC circuit is still immature compared with the AC
design methodology. Therefore, a novel quality verification
methodology for AC circuits is strongly desired.

Quality verification methodologies of the AC circuit
can be divided into static and dynamic approaches. As
a static approach, formal verification based techniques are
proposed in recent years [8]–[10]. These techniques solve
the satisfiability (SAT) problems and thus find a correction
of errors that violate quality constraints. On the other hand,
a dynamic verification technique prepares the test patterns
and gives them to the target circuit. After running the test
patterns on the circuit, we can obtain the computational re-
sults and judge whether the obtained results are acceptable or
not. Since the dynamic approach is straightforward [11] and

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

MASUDA et al.: DYNAMIC VERIFICATION FRAMEWORK OF AC CIRCUITS USING QUALITY-AWARE CGF
515

easy-to-handle, the dynamic verification through the simu-
lation is one of the most widely deployed approaches [12].
However, in the dynamic approach, how comprehensively
the verification is performed heavily depends on the input
test pattern. From this point of view, the efficient generation
of test patterns is crucially important.

Very recently, for improving the test coverage effi-
ciently, Coverage-based Grey-box Fuzzing (CGF) has been
actively developed in the research field of software secu-
rity testing [13]–[15]. CGF is one of the testing technique
called fuzzing [16]–[22]. CGF automatically generates and
executes test patterns that enhance verification coverage by
repeatedly executing (1) mutation of test patterns, (2) exe-
cution of the program under test (PUT), and (3) tabulating
code coverage and feeding back to the next test pattern gen-
eration. CGF improves the code coverage rapidly by keep-
ing the mutation and coverage aggregation lightweight [16].
This feature is quite attractive not only for software testing
but also for hardware verification [23]–[25].

This paper proposes a novel dynamic verification frame-
work of the AC circuit. The key idea of the proposed frame-
work is to incorporate a quality assessment capability into
the CGF. We found that CGF originally cannot consider the
computational quality by itself. In this case, the mutation
could not generate test patterns efficiently that violate the
constraint. For overcoming this quality unawareness in CGF,
the proposed framework additionally embeds the Design Un-
der Verification (DUV) component into the calculation part
of computational quality. Thanks to the integrated DUV
component, the proposed framework realizes the quality-
aware feedback loop in CGF and thus quickly enhances the
verification coverage for test patterns that violate the quality
constraint.

Figure 1 illustrates the expected coverage improvement
thanks to the proposed framework, i.e., a blue curve. As a
baseline, we plotted the random stimulus approach with an
orange curve, which is typically used in the dynamic ver-
ification domain [12]. When we start the verification, the
random test may improve the coverage steadily since a num-
ber of easy-to-activate paths are unexplored yet. Then, if
we continue to run the verification, the random test grad-
ually decelerates since the random approach suffers from
finding paths that rarely activate or scarcely affect the com-
putational quality. On the other hand, the proposed approach
incorporates the coverage-aware feedback loop into the test
pattern generation. Besides, we take into account the com-
putational quality with the integrated DUV component for
the AC verification. Thanks to the CGF and DUV integra-
tion, the proposed framework is expected to accelerate the
verification speed compared with the typical random testing.

The main contributions of this work include (1) the
novel verification framework of AC circuits using CGF and
(2) the quality-aware feedback component thanks to theDUV
integration. To the best of our knowledge, this is the first
work that proposes the dynamic verification framework for
AC circuits with CGF†. Moreover, for efficiently finding test
patterns that violate quality constraints, the proposed frame-

Fig. 1 Expected coverage improvement thanks to the proposed verification
framework.

work utilizes the DUV integration. Experimental results
show that the proposed framework achieves 3.85 to 10.36
times higher coverage than the random test.

The rest of this paper is organized as follows. Section 2
describes the assumed verification of AC design and CGF
and highlights the challenges for applying CGF to AC cir-
cuit verification. Section 3 proposes a quality verification
framework of AC circuits using the CGF and DUV integra-
tion. Section 4 compares the coverage between the proposed
framework and the random test. Then, this section discusses
the speed-up effects of coverage improvement thanks to the
proposed framework. Finally, the concluding remarks are
given in Sect. 5.

2. Assumption and Challenges

This section explains the assumed verification of AC circuit
andCGF and summarizes the challenges for applyingCGF to
the AC verification. Section 2.1 highlights the difference be-
tween the verification of the AC circuit and the conventional
circuit. Then, Sect. 2.1 introduces assumedCGF. Section 2.2
discusses the challenges of CGF for verifying the AC design.

2.1 Assumed Verification of AC Design and Fuzzing

First, let us introduce the fundamental difference of the ver-
ification concept between the conventional circuit and AC
circuit using Fig. 2. Remind that, we assume the dynamic
verification where the computational result can be observed,
the computational quality can be calculated from computa-
tional results with the given metric, and the constraint of
computational quality is given and defined as the constraint
which is set to the computational quality of designed AC
circuit with given workloads.

In Fig. 2, three input signals InA, InB, and InC are given
to the adder, and one output signal Y can be observed. Let us
suppose the values of three input signals are 1001(2), 0001(2),

†A preliminary version of this work is presented in [26].

516
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

Fig. 2 (a) In the conventional circuit, any error occurrence is prohibited.
(b) In the AC design, the error occurrence is allowed as long as the compu-
tational quality is acceptable.

Fig. 3 Assumed CGF for C-flavored HDL. CGF automatically searches
the target space by repeating (1) test pattern mutation, (2) PUT execution,
and (3) feedback to the next test pattern generation.

and 0(2). Also, in this example, the quality constraint is set
to the error of Y by less than 15%. In the conventional
design, any logic errors and timing errors cannot be allowed,
as shown in Fig. 2(a). Hence, the verification goal is to
find logic and timing errors as much as possible. On the
other hand, in the AC design, the error occurrence is allowed
as long as the circuit satisfies the quality constraint. For
example, in Fig. 2(b), Y has the error of 10% (= 1010(2)−1001(2)

1010(2)),
but this error is smaller than 15% and thus acceptable. From
the above, the AC verification aims to identify errors that
violate the quality constraint, which is totally different from
conventional verification.

Next, this section explains the assumed CGF using
Fig. 3. In CGF, the test target space is automatically searched
by repeating (1) test pattern mutation, (2) PUT execution,
and (3) coverage-wise feedback to the next test pattern gen-
eration [13]–[15]. As for the mutation, various strategies
are developed for exploring the target space efficiently, e.g.,
bit-flip, byte-flip, arithmetic operation, havoc, and random
operations in [13]. In the PUT execution, the activated paths
can be measured via the instrumentation codes, which are
inserted by the source code compile. When new paths are
activated in the PUT execution, CGF adds the current in-
put to the queue as an interesting seed for the mutation.
Thanks to the lightweight mutation and coverage feedback
loop, CGF improves the code coverage rapidly [16], which is
quite attractive for the verification. Here, sinceCGFhas been
actively developed in the research field of software security
testing [13]–[15], most of the CGF methodologies are de-
veloped for high-level languages like C language. Based on
this background, this work assumes to verify the AC design
starting from the C-flavored hardware description language
(HDL), e.g., SystemC, CUDA C, and OpenCL.

2.2 Challenges of CGF for Verifying the AC Design

As mentioned in the previous section, CGF measures the
code coverage through the PUT execution. When the cover-
age improves, the current input pattern is incorporated into
themutation. Therefore, the heart ofCGF lies in the coverage
assessment and feedback on test patterns. From this point
of view, if we apply CGF to the verification of AC circuits,
CGF needs to evaluate the code coverage of the AC circuit,
taking into account the computation quality. However, we
found that CGF originally cannot consider the computational
quality by itself, which will be explained using Listing 1 as
an example.

Listing 1 Code example of AC adder written in SystemC

1 int sc_main (int argc, char *argv[]) {
2 sc_signal<sc_uint<4>> InA, InB;
3 sc_signal<bool> InC;
4 sc_signal<sc_uint<5>> Y;
5 AC_Adder *AC_Adder1;
6 AC_Adder1 = new AC_Adder ("AC_Adder1");
7 (*AC_Adder1)(InA, InB, InC, Y);
8
9 return 0;
10 }

Listing 1 shows a code example of an AC adder written
in SystemC, where three input signals InA, InB, and InC,
and one output signal Y are used, similar to the example in
Fig. 2(b). Lines 2 to 4 are the input and output declaration.
Lines 5 to 7 correspond to the instantiation of the AC adder
module. For simplicity, the content of AC adder module is
omitted in the example. From Listing 1, we can see that the
HDL of pure AC adder does not include any mechanism to
evaluate howmuch calculation error occurs at output, e.g., Y.
If CGF fails to acquire the violation condition of quality con-
straint, the target coverage information cannot be corrected
appropriately. In this case, the mutation could not generate
test patterns efficiently that violate the constraint. On the
other hand, in the verification of AC circuit, we need to find
test patterns that violate the computational quality constraint
as discussed in Sect. 2.1. Therefore, for applying CGF to
the quality verification of AC circuits, the countermeasure
for evaluating the quality-aware code coverage is crucially
important.

3. Proposed Verification Framework

In this section, we propose a quality verification framework
for AC circuits using CGF. The key idea of the proposed
framework is to incorporate the quality assessment capability
into the CGF. The proposed framework embeds the DUV
component into the quality calculation part of HDL and thus
enables CGF to evaluate whether the quality constraint is
satisfied or not. Thanks to theDUV integration, the proposed
framework realizes the quality-aware feedback loop in CGF

MASUDA et al.: DYNAMIC VERIFICATION FRAMEWORK OF AC CIRCUITS USING QUALITY-AWARE CGF
517

Fig. 4 An overview of the proposed framework. The proposed framework
incorporates the quality assessment capability into the CGF via the Design
Under Verification (DUV) integration.

and thus quickly enhances the verification coverage for test
patterns that violate the quality constraint. Note that in
this paper, we focus on the test pattern-level coverage of
AC circuits, whose most fine-grained definition is given as
follows.

Cov =
N vio
detect

N vio
total

, (1)

where Cov is the test pattern-level coverage, N vio
total

is the
total number of test patterns that violate the constraint for the
computational quality, and N vio

detect
is the number of detected

test patterns that violate the constraint for the computational
quality in the verification, respectively. Note that for large-
scale circuits, deriving the coverage denominator (N vio

total
)

may not be feasible. One possible alternative approach is
to use more abstracted coverage metrics such as statement
coverage, branch coverage, or conditional coverage. For
example, if the verification items are defined based on the
hardware design specifications and operating scenarios, we
may be able to use assertion-based coverage, i.e., verification
items are described using assertions, and the coverage against
the assertion description is derived in the verification.

Figure 4 shows the overview of the proposed frame-
work. As inputs, the proposed framework receives the hard-
ware described in C-flavored HDL and the target compu-
tational quality. First, the proposed framework inserts the
DUV component into the received HDL. Next, the HDL
with the embedded DUV component is passed to the CGF.
In the CGF, PUT is performed, and then the coverage is
derived taking into account the target quality. Finally, the
proposed framework outputs the results of CGF, such as the
coverage and test patterns that violate the constraint.

Figure 5 shows the overview of proposed DUV inte-
gration. For the hardware description of AC circuits, the
proposed framework embeds the DUV with the following
three steps: insert the bridge between the test cases given
from CGF and the input test patterns for HDL (step 1), add
the evaluation mechanism of the computational quality, and
comparison part of the computational quality and its con-
straint (step 2), and integrate the classification component of
the test pattern based on the computational quality (step 3).
The following subsection further describes the DUV integra-
tion using an example. It should be noted that the proposed
DUV integration can be performed on AC circuits whose
computational results can be observed and whose computa-
tional quality can be calculated from computational results
according to the given quality metric.

Fig. 5 An overview of the proposed DUV integration. The proposed DUV
integration consists of three steps.

3.1 DUV Integration for CGF

This section explains the implementation and contribution of
DUV integration using an example of Listing 2, which adds
the DUV component to the pure AC adder, i.e., Listing 1.
Note that, in the example, the quality constraint is set to
the error of Y. In Listing 2, Lines 3 to 10 correspond to the
inserted bridge (step 1). Lines 15, 21 to 23, and 27 are added
for evaluating the computational quality and for comparing
the quality to its constraint (step 2). Lines 28 to 30 are the
classification component of the test pattern (step 3).

First, we explain the bridge part between the mutated
test cases and the input pattern to HDL (step 1). We high-
light that this bridge is the essential part for constructing the
feedback loop, as shown in Fig. 3. Let us see the example
of Listing 2. First, the bridge part saves the input character
string from CGF (Lines 3 and 4). Then, the stored string is
converted to an integer type (Lines 5 and 6). Note that in
Line 6, the integer value is normalized by 29. After that, in
Line 10, the test pattern to the adder is updated by referring
to the integer, e.g., using the pre-defined look-up table. Fi-
nally, the test pattern can be successfully given to the input
of adders in Line 25. In summary, thanks to the bridge, the
mutation by CGF can be reflected directly on the input test
patterns to HDL.

Listing 2 Code example of AC adder with DUV integration

1 int sc_main (int argc, char *argv[]) {
2
3 char buf[8];
4 if (read(0, buf, 8) < 1) { exit(1);}
5 int value = *(int*) &buf[0];
6 int input = value%(1<<9);
7 int a, b, c = 0;
8
9 //Update a, b, c referring to input.
10 TestPatternGenerate(input);
11

518
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

12 sc_signal<sc_uint<4>> InA, InB;
13 sc_signal<bool> InC;
14 sc_signal<sc_uint<5>> Y;
15 sc_signal<sc_uint<5>> EX_Y;
16
17 AC_Adder *AC_Adder1;
18 AC_Adder1 = new AC_Adder ("AC_Adder1");
19 (*AC_Adder1)(InA, InB, InC, Y);
20
21 EX_Adder *EX_Adder1;
22 EX_Adder1 = new EX_Adder ("EX_Adder1");
23 (*EX_Adder1)(InA, InB, InC, EX_Y);
24
25 InA.write(a); InB.write(b); InC.write(c);
26
27 if (|Y - EX_Y| > ERROR_TH){
28 if (input == 0){;}
29 else if (input == 1){;}
30 ...
31 }
32
33 return 0;
34 }

Next, the quality evaluation and test pattern classifica-
tion parts are discussed (steps 2 and 3). In this example, for
calculating the computational quality, the proposed frame-
work integrates the accurate circuit component (Lines 15
and 21 to 23). Then, the computational results in the AC
component are compared with the accurate result for deriv-
ing the error (Line 27). When the error exceeds the given
threshold value, the input test pattern is analyzed (Lines 28
to 30). More specifically, our framework inserts conditional
branches of the input test patterns for recognizing the exe-
cuted pattern. For example, in Listing 2, 512 (= 29) branches
could be enumerated at most. Since the CGF marks each
branch at the compile time and traces the executed branch in
PUT phase, the above branch description enables the CGF to
sum up the branch coverage that violates the computational
quality. From the above, thanks to the computational quality
evaluation and classification of test patterns, the proposed
framework realizes the quality-aware feedback loop in CGF
and thus the quality verification of AC circuit.

Here, another important consideration is that the
quality-aware CGF may reduce the verification time. Let
us explain the expectation with Fig. 6. As previously dis-
cussed with Sect. 2.1, the AC verification aims to identify
errors that violate the quality constraint. From this point of
view, the total number of errors we need to find could be dra-
matically reduced compared with the conventional circuit.
Furthermore, since the proposed DUVmechanism classifies
test patterns according to the computational quality, as ex-
emplified in lines 27 to 30 of Listing 2, CGF can perform
the mutation for test patterns that violate the constraint of
computational quality. Remind that CGF can utilize deter-
ministic mutations such as bit-flip and arithmetic operation
[13] that changes the test pattern locally and thus enables the
neighborhood exploration. In this case, CGF can efficiently
search the neighborhood of test patterns that violate the con-

Fig. 6 By focusing on errors that violate the computational quality, the
quality-aware CGF efficiently searches the neighborhood of test patterns
that violate the constraint, reducing the verification runtime.

straint. Based on the above consideration, we expect that
quality-aware CGF supported by the proposed DUV accel-
erates the dynamic verification. Section 4.3.2 discusses the
speed-up effect thanks to the quality-aware DUV integration.

4. Experimental Evaluation

This section evaluates the trade-off relationship of the pro-
posed framework between the verification runtime and cover-
age. Section 4.1 describes the evaluation setup. Section 4.2
shows that the proposed framework improves the verification
coverage compared with conventional random testing. Then,
Sect. 4.3 discusses the coverage improvement effect thanks
to the proposed framework.

4.1 Evaluation Setup

In this work, we design two approximate multiply-
accumulate (MAC) units, where the numbers of input bits
are 3 and 4, respectively. For both MAC units, the number
of accumulation clock cycles is set to 5. As the AC tech-
nique, we select the bit-width scaling, which is one of the
most popular approaches for the area and power reduction
[27]–[30]. Then, for the 3-bit MAC unit, we truncate the
least-significant bit (LSB) of inputs. Similarly, we truncate
the first and second LSBs of inputs for the 4-bit MAC unit.
This circuit was implemented with the SystemC language.
Next, we add the DUV component to the approximate MAC
units as explained in Sect. 3.1. In this work, we add a quality
constraint of the computational error in approximate MAC
result. Namely, we used the following equation to derive the
computational error.

error =
|Rac − Rex |

Rex
, (2)

where Rac represents the computational results of approxi-
mate MAC unit, and Rex is the golden results of exact MAC
unit. We prepared four constraints of 0.1, 0.2, 0.3, and 0.4 for
the error threshold, e.g., ERROR_TH in Listing 2. Note that
the above constraints are just an example, and the proposed
framework can cope with other settings in the same manner.

Then, for taking into account the quality-aware cover-
age, the branch insertion is performed, e.g., lines 27 to 29

MASUDA et al.: DYNAMIC VERIFICATION FRAMEWORK OF AC CIRCUITS USING QUALITY-AWARE CGF
519

Table 1 The denominator of verification coverage. We prepare 8 (= 2 × 4)
different settings for the experimental evaluation. Note that the numerator
of the coverage is the number of covered pairs in the verification, e.g., PUT
executions.

error = 0.1 error = 0.2 error = 0.3 error = 0.4
3 bit 11,421 11,260 8,436 4,751
4 bit 212,616 212,304 209,253 156,031

in Listing 2. Here, if we naively enumerate all the combi-
nations of test patterns, the number of branch descriptions
exponentially explodes with the number of input bits and
accumulation clock cycles. For example, for the 3-bit MAC
unit and the 4-bit MAC unit, when the number of accumu-
lation clock cycles is set to 5, the maximum numbers of
branch description are 2(3+3)×5 ' 109 and 2(4+4)×5 ' 1012,
respectively. For mitigating this issue, this paper focuses
on the compressed coverage metric, which is similar to the
multiplexer-aware coverage [23] or register-wise coverage
[25]. More specifically, as the coverage metric, we focus
on the pair of the accumulated result until the fourth clock
cycle and the input test pattern in the fifth clock cycle. For
example, in the 3-bit MAC unit, the multiplication result in
one clock cycle ranges from 0 to 49, and the accumulated
result until the fourth clock cycle ranges from 0 to 196. In
this case, the maximum number of combination pairs is less
than 197 × 64 (=2(3×2)) ' 104, which is much smaller than
2(3+3)×5. It should be noted that the compressed coverage
was prepared for the experimental evaluation as just an ex-
ample. For large-scale circuits, this coverage metric may not
be utilized since deriving the denominator of coverage may
be difficult, as previously explained in Sect. 3.

Table 1 shows the numbers of target pairs, i.e., the
denominator of verification coverage. For each set of the
approximate MAC unit and error constraint, we preliminary
evaluate whether each test pattern belonging to the pair vio-
lates the error constraint or not. If a test pattern included in
the pair violates the constraint, we add the pair to the target
pair, i.e., the denominator of verification coverage. Note that
the numerator of the coverage is the number of covered pairs
in the verification, e.g., PUT executions.

As the CGF tool, we select AFL 2.52b [13] and in-
corporate the AFL in the proposed design. By running the
PUT in CGF, the quality-aware branch coverage can be ob-
tained. As the initial test pattern for the CGF tool, we used
one American Standard Code for Information Interchange
(ASCII) character, which was randomly generated. Note
that other initial test patterns and CGF tools [14], [15] can be
similarly utilized in the proposed framework. As a compari-
son, we select a typical random approach and implement the
approach using the Mersenne Twister library of the C++ lan-
guage. Then, for both the proposed framework and random
approach, we performed 6-hours PUT execution. Note that
for each set of the approximateMACunit and error threshold,
we performed 6-hours verification. Consequently, the trade-
off relationships between the runtime and quality-aware cov-
erage are quantitatively evaluated. In this evaluation, we use
a computer machine equipped with Ubuntu 16.04 LTS and

AMD Ryzen Threadripper 3990X 64-Core Processor.

4.2 Evaluation Results

Figures 7 and 8 show the comparison results of the trade-off
relationship of the runtime and coverage between the ran-
dom test and the proposed framework. Note that Figs. 7 and
8 are the comparison results in the 3-bit and 4-bit approxi-
mate MAC units, respectively. In both figures, blue lines are
the trade-off relationship of the proposed framework, and
orange curves correspond to the random approach. From
Figs. 7 and 8, we can see that the proposed framework sig-
nificantly improves the coverage compared with the random
test. For example, if we focus on the runtime of 21,600
seconds in Fig. 7(a), the proposed framework achieves the
coverage of 69.79% while the coverage of random approach
reaches only 18.09%. In other words, at this runtime, the
proposed approach achieves 3.85 times higher coverage from
18.09% to 69.79% than the random test. Similarly, with the
approximate 4-bit MAC unit, the proposed framework accel-
erates the verification speed and achieves 7.46 to 10.36 times
higher coverage at the runtime of 21,600 seconds, as shown
in Fig. 8. From these results, we experimentally confirm that
the proposed framework achieves the significant coverage
enhancement.

Another important observation can be seen from the
comparison between Figs. 7 and 8. That is, the required
runtime enlarges as the bit width increases. For example,
in Figs. 7(d) and 8(d), for achieving the 20% coverage with
3-bit and 4-bit approximate MAC units, the proposed frame-
work requires 46.28 seconds and 3,345 seconds, respectively.
As summarized in Table 1, the number of target pairs sig-
nificantly increases with the bit width expansion. Due to
the target pair increase, the coverage improvement speed de-
grades. Recently, for improving the coverage or accelerating
the verification speed of CGF, various techniques, e.g., hy-
brid fuzzing [31] and importance sampling based fuzzing
[15], have been developed. Enhancing the intrinsic veri-
fication speed of the proposed framework using the above
techniques is one of our future works.

4.3 Discussion

The evaluation results in Sect. 4.2 showed that the proposed
framework achieved the significant coverage improvement.
Let us investigate the results in detail.

4.3.1 Effectiveness of CGF

As previously discussed in Sect. 1, CGF generates test pat-
terns for enhancing the code coverage via the mutation,
which is totally different from random testing. For examin-
ing the effectiveness of the test pattern generation by CGF in
more detail, we analyzed the trade-off relationship between
the number of PUT iterations and the coverage.

Figures 9 and 10 show the comparison results of trade-
off relationship between the number of PUT iterations and

520
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

Fig. 7 Trade-off comparison between the proposed and random approach in the approximate 3-bitMAC
unit. (a) error = 0.1, (b) error = 0.2, (c) error = 0.3, and (d) error = 0.4. The proposed framework
significantly improves the coverage compared with the random approach.

Fig. 8 Trade-off comparison between the proposed and random approach in the approximate 4-bitMAC
unit. (a) error = 0.1, (b) error = 0.2, (c) error = 0.3, and (d) error = 0.4. The proposed framework
significantly improves the coverage compared with the random approach.

Fig. 9 Comparison of trade-off relationship between the number of PUT
iterations and the coverage in the 3-bit approximateMAC unit. (a) Proposed
framework and (b) Random approach. Compared to the random approach,
the proposed framework improves the coverage with smaller number of
PUT iteration, which indicates the effectiveness of CGF.

Fig. 10 Comparison of trade-off relationship between the number of PUT
iterations and the coverage in the 4-bit approximateMAC unit. (a) Proposed
framework and (b) Random approach. Compared to the random approach,
the proposed framework improves the coverage with smaller number of
PUT iteration, which indicates the effectiveness of CGF.

the coverage for 3-bit and 4-bit approximate MAC units,
where Figs. 9(a) and 10(a) are the trade-off relationship of

the proposed framework, andFigs. 9(b) and 10(b) correspond
to the random approach. Note that we record the relation-
ship between the number of PUT iterations and verification
runtime, and thus obtain Figs. 9 and 10 from Figs. 7 and 8,
respectively. From both figures, we can see that the proposed
framework improves the coverage with a smaller number of
PUT iterations compared to the random testing. For exam-
ple, in Fig. 9(a) and (b), when the error constraint is set
to 0.4, the proposed framework achieves the 20% coverage
with 3.80 ×104 times PUT iterations whereas the random
testing requires 7.38 ×106 times. Namely, at this coverage
point, the proposed framework reduces the number of PUT
iterations by second orders of magnitudes compared to the
random approach. Such a significant reduction indicates that
the feedback loop for test pattern generation by CGF accel-
erates the verification. From the above, we experimentally
confirm that the proposed framework improves the coverage
quickly thanks to the efficient CGF.

4.3.2 Effectiveness of the DUV Integaration

Lastly, we investigate the effectiveness of DUV integration
in terms of the branch insertion strategy. As previously dis-
cussedwith Fig. 6 in Sect. 3.1, the required time consumption
for dynamic verification is expected to be reduced by focus-
ing on errors that violate the quality constraint. Based on
this expectation, we implement the DUV component, which
does not take into account the quality constraint, e.g., re-
move lines 26 and 30 in Listing 2. Then, we compared
the trade-off relationship between the runtime and cover-
age for discussing the effectiveness of quality-aware DUV

MASUDA et al.: DYNAMIC VERIFICATION FRAMEWORK OF AC CIRCUITS USING QUALITY-AWARE CGF
521

Fig. 11 Coverage improvement thanks to the quality-aware DUV integra-
tion. (a) 3-bit approximate MAC unit, and (b) 4-bit approximate MAC
unit.

integration. Note that the identical CGF is utilized in the
comparison. Figure 11 shows the comparison result where
the error constraint is set to 0.4. From Fig. 11, we can see
that the proposed framework achieves a better trade-off be-
tween the runtime and coverage. For example, in Fig. 11(a),
the proposed framework improves the coverage from 27.23%
to 95.74% by 3.51 times at the runtime of 21,600 seconds.
Similarly, in Fig. 11(b), the proposed framework improves
the coverage by 18.1 times at the runtime of 21,600 sec-
onds. These results indicate that the quality-aware feedback
in the CGF is well supported by the quality consideration
of the proposed DUV integration. From the above, we ex-
perimentally confirm that the proposed framework improves
the coverage efficiently thanks to the quality-aware CGF and
DUV integration.

5. Conclusion

This paper proposed the novel dynamic verification frame-
work of the AC circuit. The key idea of the proposed frame-
work is to incorporate the quality assessment capability into
the CGF via the DUV integration. Thanks to the integration
of DUV component, the proposed framework realizes the
quality-aware feedback loop in CGF and thus quickly en-
hances the verification coverage for test patterns that violate
the quality constraint. In this work, we quantitatively com-
pared the verification coverage of the approximate arithmetic
circuits between the proposed framework and the random
test. In a case study of the approximate MAC unit, we exper-
imentally confirmed that the proposed framework achieved
3.85 to 10.36 times higher coverage than the random test.

Acknowledgments

This workwas partially supported by JSPSKAKENHIGrant
Number JP20K19767 and JST, PRESTO Grant Number JP-
MJPR20M9, Japan.

References

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” Proc. ETS, pp.1–6, 2013.

[2] V.K. Chippa, S.T. Chakradhar, K. Roy, and A. Raghunathan, “Analy-
sis and characterization of inherent application resilience for approx-
imate computing,” Proc. DAC, pp.1–9, 2013.

[3] Q. Xu, T. Mytkowicz, and N.S. Kim, “Approximate computing: A
survey,” IEEE Des. Test, vol.33, no.1, pp.8–22, 2016.

[4] H. Esmaeilzadeh, A. Sampson, L. Ceze, andD. Burger, “Architecture
support for disciplined approximate programming,” Proc. ASPLOS,
pp.301–312, 2012.

[5] R. Hegde and N.R. Shanbhag, “Soft digital signal processing,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol.9, no.6, pp.813–
823, 2001.

[6] A.B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistribution
for graceful degradation under voltage overscaling,” Proc. ASP-DAC,
pp.825–831, 2010.

[7] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol.32, no.1, pp.124–137,
2013.

[8] S. Froehlich, D. Große, and R. Drechsler, “One method–all error-
metrics: A three-stage approach for error-metric evaluation in ap-
proximate computing,” Proc. DATE, pp.284–287, 2019.

[9] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler, “Pre-
cise error determination of approximated components in sequential
circuits with model checking,” Proc. DAC, pp.1–6, 2016.

[10] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan,
“MACACO: Modeling and analysis of circuits for approximate com-
puting,” Proc. ICCAD, pp.667–673, 2011.

[11] A. Bosio, S.D. Carlo, P. Girard, E. Sanchez, A. Savino, L. Sekanina,
M. Traiola, Z. Vasicek, and A. Virazel, “Design, verification, test and
in-field implications of approximate computing systems,” Proc. ETS,
pp.1–10, 2020.

[12] M. Zhou, W.N.N. Hung, X. Song, M. Gu, and J. Sun, “Temporal
coverage analysis for dynamic verification,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol.65, no.1, pp.66–70, 2018.

[13] M. Zalewski, “American Fuzzy Lop,” http://lcamtuf.coredump.cx/
afl/

[14] C. Lemieux and K. Sen, “FairFuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” Proc. ASE, pp.475–485,
2018.

[15] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware evolutionary fuzzing,” Proc. NDSS,
2017.

[16] V.J.M. Manés, H. Han, C. Han, S.K. Cha, M. Egele, E.J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A
survey,” IEEE Trans. Softw. Eng., Oct. 2019.

[17] H.M. Le, D. Große, N. Bruns, and R. Drechsler, “Detection of hard-
ware trojans in SystemC HLS designs via coverage-guided fuzzing,”
Proc. DATE, pp.602–605, 2019.

[18] B.P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Commun. ACM, vol.33, no.12, pp.32–
44, 1990.

[19] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T.
Holz, “REDQUEEN: Fuzzing with input-to-state correspondence,”
Proc. NDSS, 2019.

[20] A. Takanen, J.D. DeMott, and C. Miller, Fuzzing for Software Secu-
rity Testing and Quality Assurance, Artech House, 2008.

[21] J.E. Forrester and B.P. Miller, “An empirical study of the robustness
of Windows NT applications using random testing,” Proc. USEC,
Aug. 2000.

[22] P. Godefroid, M.Y. Levin, and D.A. Molnar, “Automated whitebox
fuzz testing,” Proc. NDSS, pp.151–166, 2008.

[23] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “RFUZZ:
Coverage-directed fuzz testing of RTL on FPGAs,” Proc. ICCAD,
pp.1–8, 2018.

[24] D. Ma, X. Zhang, K. Huang, Y. Jiang, W. Chang, and X. Jiao, “DE-
VoT: Dynamic delay modeling of functional units under voltage and
temperature variations,” IEEE Trans. Comput.-Aided Des. Integr.

http://dx.doi.org/10.1109/ets.2013.6569370
http://dx.doi.org/10.1109/ets.2013.6569370
http://dx.doi.org/10.1145/2463209.2488873
http://dx.doi.org/10.1145/2463209.2488873
http://dx.doi.org/10.1145/2463209.2488873
http://dx.doi.org/10.1109/mdat.2015.2505723
http://dx.doi.org/10.1109/mdat.2015.2505723
http://dx.doi.org/10.1145/2150976.2151008
http://dx.doi.org/10.1145/2150976.2151008
http://dx.doi.org/10.1145/2150976.2151008
http://dx.doi.org/10.1109/92.974895
http://dx.doi.org/10.1109/92.974895
http://dx.doi.org/10.1109/92.974895
http://dx.doi.org/10.1109/aspdac.2010.5419690
http://dx.doi.org/10.1109/aspdac.2010.5419690
http://dx.doi.org/10.1109/aspdac.2010.5419690
http://dx.doi.org/10.1109/tcad.2012.2217962
http://dx.doi.org/10.1109/tcad.2012.2217962
http://dx.doi.org/10.1109/tcad.2012.2217962
http://dx.doi.org/10.1109/tcad.2012.2217962
http://dx.doi.org/10.23919/date.2019.8715138
http://dx.doi.org/10.23919/date.2019.8715138
http://dx.doi.org/10.23919/date.2019.8715138
http://dx.doi.org/10.1145/2897937.2898069
http://dx.doi.org/10.1145/2897937.2898069
http://dx.doi.org/10.1145/2897937.2898069
http://dx.doi.org/10.1109/iccad.2011.6105401
http://dx.doi.org/10.1109/iccad.2011.6105401
http://dx.doi.org/10.1109/iccad.2011.6105401
http://dx.doi.org/10.1109/ets48528.2020.9131557
http://dx.doi.org/10.1109/ets48528.2020.9131557
http://dx.doi.org/10.1109/ets48528.2020.9131557
http://dx.doi.org/10.1109/ets48528.2020.9131557
http://dx.doi.org/10.1109/tcsii.2017.2746744
http://dx.doi.org/10.1109/tcsii.2017.2746744
http://dx.doi.org/10.1109/tcsii.2017.2746744
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://dx.doi.org/10.1145/3238147.3238176
http://dx.doi.org/10.1145/3238147.3238176
http://dx.doi.org/10.1145/3238147.3238176
http://dx.doi.org/10.14722/ndss.2017.23404
http://dx.doi.org/10.14722/ndss.2017.23404
http://dx.doi.org/10.14722/ndss.2017.23404
http://dx.doi.org/10.1109/tse.2019.2946563
http://dx.doi.org/10.1109/tse.2019.2946563
http://dx.doi.org/10.1109/tse.2019.2946563
http://dx.doi.org/10.23919/date.2019.8714927
http://dx.doi.org/10.23919/date.2019.8714927
http://dx.doi.org/10.23919/date.2019.8714927
http://dx.doi.org/10.1145/96267.96279
http://dx.doi.org/10.1145/96267.96279
http://dx.doi.org/10.1145/96267.96279
http://dx.doi.org/10.14722/ndss.2019.23371
http://dx.doi.org/10.14722/ndss.2019.23371
http://dx.doi.org/10.14722/ndss.2019.23371
http://dx.doi.org/10.1145/3240765.3240842
http://dx.doi.org/10.1145/3240765.3240842
http://dx.doi.org/10.1145/3240765.3240842
http://dx.doi.org/10.1109/tcad.2021.3076970
http://dx.doi.org/10.1109/tcad.2021.3076970
http://dx.doi.org/10.1109/tcad.2021.3076970

522
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.3 MARCH 2023

Circuits Syst., vol.41, no.4, pp.827–839, 2022.
[25] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “DifuzzRTL:

Differential fuzz testing to find CPU bugs,” Proc. S&P, pp.1286–
1303, 2021.

[26] K. Yoshisue, Y. Masuda, and T. Ishihara, “Dynamic verification
of approximate computing circuits using coverage-based grey-box
fuzzing,” Proc. IOLTS, 2021.

[27] J.Y.F. Tong, D. Nagle, and R.A. Rutenbar, “Reducing power by op-
timizing the necessary precision/range of floating-point arithmetic,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.8, no.3,
pp.273–286, 2000.

[28] K. Kunaparaju, S. Narasimhan, and S. Bhunia, “VaROT: Method-
ology for variation-tolerant DSP hardware design using post-silicon
truncation o operand width,” Proc. VLSID, pp.310–315, 2011.

[29] D. Kim, J. Kung, and S. Mukhopadhyay, “A power-aware digital
multilayer perceptron accelerator with on-chip training based on ap-
proximate computing,” IEEE Trans. Emerg. Topics Comput., vol.5,
no.2, pp.164–178, 2017.

[30] I. Tsiokanos, L. Mukhanov, and G. Karakonstantis, “Low-power
variation-aware cores based on dynamic data-dependent bitwidth
truncation,” Proc. DATE, pp.698–703, 2019.

[31] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical con-
colic execution engine tailored for hybrid fuzzing,” Proc. USENIX,
2018.

Yutaka Masuda received the B.E., M.E.,
and Ph.D. degrees in Information Systems En-
gineering from the Osaka University, Osaka,
Japan, in 2014, 2016, and 2019, respectively.
He is currently an Assistant Professor in Cen-
ter for Embedded Computing Systems, Gradu-
ate School of Informatics, Nagoya University.
His research interests include low-power circuit
design. He serves on the Technical Program
Committee of international conferences includ-
ing ASP-DAC. He is a member of IEEE, IEICE,

and IPSJ.

Yusei Honda is currently pursuing a B.E.
degree in School of Informatics at Nagoya Uni-
versity.

Tohru Ishihara received his Dr. Eng. de-
gree in computer science from Kyushu Univer-
sity in 2000. For the next three years, he was a
Research Associate in the University of Tokyo.
From 2003 to 2005, he was with Fujitsu Lab-
oratories of America as a Research Staff of an
Advanced CAD Technology Group. From 2005
to 2011, he was with Kyushu University and for
the next seven years he was with Kyoto Univer-
sity as an Associate Professor. In October 2018,
he joined Nagoya University where he is cur-

rently a Professor in the Department of Computing and Software Systems.
His research interests include low-power design methodologies and power
management techniques for embedded systems. Dr. Ishihara is a member
of the IEEE, ACM and IPSJ.

http://dx.doi.org/10.1109/tcad.2021.3076970
http://dx.doi.org/10.1109/tcad.2021.3076970
http://dx.doi.org/10.1109/sp40001.2021.00103
http://dx.doi.org/10.1109/sp40001.2021.00103
http://dx.doi.org/10.1109/sp40001.2021.00103
http://dx.doi.org/10.1109/iolts52814.2021.9486690
http://dx.doi.org/10.1109/iolts52814.2021.9486690
http://dx.doi.org/10.1109/iolts52814.2021.9486690
http://dx.doi.org/10.1109/92.845894
http://dx.doi.org/10.1109/92.845894
http://dx.doi.org/10.1109/92.845894
http://dx.doi.org/10.1109/92.845894
http://dx.doi.org/10.1109/vlsid.2011.58
http://dx.doi.org/10.1109/vlsid.2011.58
http://dx.doi.org/10.1109/vlsid.2011.58
http://dx.doi.org/10.1109/tetc.2017.2673548
http://dx.doi.org/10.1109/tetc.2017.2673548
http://dx.doi.org/10.1109/tetc.2017.2673548
http://dx.doi.org/10.1109/tetc.2017.2673548
http://dx.doi.org/10.23919/date.2019.8714942
http://dx.doi.org/10.23919/date.2019.8714942
http://dx.doi.org/10.23919/date.2019.8714942

