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This paper presents a theory of the position dependence of the statistical average 〈ε〉
of the energy dissipation rate ε per unit mass in the inertial sublayer of turbulent channel
flow. The theory gives 〈ε〉y/u3

τ ∼ 1/κε + Cp(y/h) + Cv (lτ /y) for small but finite ratios y/h
and lτ /y, at large but finite friction Reynolds number Reτ = h/lτ , where y is the distance
from the wall, h is the channel half-width, uτ and lτ are the friction velocity and length
respectively, and κε , Cp, and Cv are nondimensional constants. The theory agrees well with
the data of a series of direct numerical simulations of turbulent channel flow with Reτ up to
approximately 8000. The data suggest κε ≈ 0.44, which is distinctively different from the
widely accepted value (≈ 0.40 or so) for the von Kármán constant for the mean velocity in
the log-law region of wall-bounded flows.

DOI: 10.1103/PhysRevFluids.8.034606

I. INTRODUCTION

The statistical average 〈ε〉 of the local rate of dissipation ε of the kinetic energy per unit mass
in turbulent flows plays key roles in theories and modeling of turbulence, where the brackets
〈. . .〉 denote an appropriate average. In this paper, we consider the position dependence of 〈ε〉 in
statistically stationary turbulent channel flow (TCF) of an incompressible fluid.

To date, studies on TCF suggest that certain basic flow characteristics in TCF obey simple laws
in the limit of δh ≡ y/h → 0 and δν ≡ lτ /y → 0, where h is the channel half-width, y is the distance
from the wall, ν is the kinematic viscosity, and lτ is the friction length. For example, it has been
suggested that the streamwise mean flow velocity U in statistically stationary TCF at sufficiently
small δh and δν fits well to

dU +

dy+ = 1

κy+ , (1)

where we have used that U is time independent and depends on the position only through y, κ

is a nondimensional constant called the von Kármán constant, and the superscript “+” denotes
nondimensionalization using the friction length lτ and the friction velocity uτ , where lτ = ν/uτ .

It is natural to except that a similar scenario may be true for the local rate 〈ε〉 of dissipation, i.e.,
〈ε〉 obeys a simple law. In fact, recent direct numerical simulations (DNSs) [1–5] suggest that 〈ε〉 at
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sufficiently small δh and δν , fits well to

〈ε+〉 = 1

κεy+ , (2)

where κε is a nondimensional constant, and ε is dissipation due to the fluctuating part of the velocity
fields. If one assumes (i) the mean flow velocity U (y) obeys (1), (ii) the mean Reynolds shear stress
is given by −1 in wall units, and (iii) the mean turbulence energy production is balanced by the
dissipation rate (see, e.g., [6,7]), then one obtains not only (2) but also κ = κε. However, a close
inspection of the DNS data also suggests that although 〈ε〉 in DNS fits fairly well to (2), there are
some differences between the data and the theory at least in the following two senses: First, the y
dependence of 〈ε+〉 is not exactly in proportion to 1/y+, and second, the coefficient κε does not
exactly agree with κ in DNSs [3,5].

Such small but finite differences between the DNS and the theory are not surprising because of
the simple fact that the friction Reynolds number

Reτ ≡ uτ h

ν
= h

lτ
=

(
h

y

)
×

(
y

lτ

)
=

(
1

δh

)(
1

δν

)
(3)

must be finite in any DNS, so that δh and δν must be also finite, no matter how small they may
be. A theory such as (2), even if correct, is supposed to represent the statistics only in the limit of
δh → 0 and δν → 0. Hence, the existence alone of a small difference between the theory and DNS
or experimental data at any finite Reτ cannot invalidate the theory. At the same time, however, the
smallness of difference alone is insufficient to validate the theory.

To understand 〈ε〉 in the limit of δh → 0 and δν → 0, as well as 〈ε〉 at small but finite δh and δν ,
it is necessary to have a proper understanding of the influence of the finiteness, i.e., the small but
finite δh and δν at finite but large Reτ .

In this paper, we propose a theory to promote the understanding of the influence of small but
finite δh and δν on ε in the layer of y such that lτ � y � h, i.e., δh � 1, δν � 1. The theory is based
on the spirit of linear response theory (LRT) of turbulence [5,8–10], so that the influence of small
but finite δh and δν is regarded as a disturbance added to a certain state determined in the limit of
δh → 0 and δν → 0. Also, we compare the conjectures from the theory with the data of a series of
DNSs of TCF with Reτ up to approximately 8000. It is shown that the conjectures agree well with
the DNS results.

II. LINEAR RESPONSE THEORY OF 〈ε〉
We consider the TCF of an incompressible fluid that obeys the Naiver-Stokes (NS) equation and

the incompressibility condition. In this study, ũ = ũ(x, t ) is the fluid velocity, p̃ = p̃(x, t ) is the
pressure, and ρ is the fluid density. We assume that the TCF is under a constant mean pressure
gradient α ≡ −(1/ρ )∂〈p̃〉/∂x (> 0) in the x direction and bounded by two planes placed at y = 0
and y = 2h, the mean flow U is unidirectional and corresponds to the form U = (U (y), 0, 0) in
a Cartesian coordinate system x = (x1, x2, x3) = (x, y, z), and the fluctuating field u ≡ ũ − U =
(u1, u2, u3) = (u, v, w) is statistically homogeneous in the x (streamwise) and z (spanwise)
directions.

Under the assumptions of statistical stationarity and homogeneity in the x and z directions of the
TCF, the average of 〈ε〉 of the energy dissipation rate per unit mass due to the fluctuation part u of
velocity is independent of time, and it depends on the position vector x only through y. Then it is
natural to assume that in such a TCF 〈ε〉 is uniquely determined by the distance y from the wall, the
mean pressure gradient represented by the parameter α , the channel half-width h, and the kinematic
viscosity ν. Thus, we may write 〈ε〉 as

〈ε〉 = f (y, α , h, ν), (4)

where f is an appropriate function of only the four parameters y, α, h, and ν.
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To consider 〈ε〉 at small but finite δh and δν , it is convenient to introduce the change of variables
from the set (y, α, h, ν) to (y, uτ , δh, δν), where

u2
τ ≡ αh, δh ≡ y

h
= y+

Reτ

, δν ≡ ν

uτ y
= 1

y+ , (5)

and we have used (3). In terms of (y, uτ , δh, δν), one may write (4) without loss of generality as

〈ε〉 = F (y, uτ , δh, δν ), (6)

where F is an appropriate function of only the four parameters (y, uτ , δh, δν). We introduce here the
following assumption:

Assumption 1. In the limit ν → 0 for given finite nonzero y, h, and α, the dissipation rate 〈ε〉
given by (4) tends to a finite nonzero value, say 〈ε〉0, that is determined by only (y, h, α).

This assumption is similar to the well-known conjecture that in the limit ν → 0, the normalized
energy dissipation rate 〈ε〉 in homogeneous and isotropic turbulence (HIT) tends to a nonzero finite
constant, i.e., 〈ε〉
/u′3 → D for given u′ and 
, where u′ and 
 are the characteristic velocity and
length scales of the energy-containing eddies, respectively, and D is a nondimensional nonzero
constant independent of u′ and 
.
Assumption 1 implies that in the limit δν → 0, the function F defined by (6) for any given finite y,
uτ , and δh tends to a nonzero finite constant 〈ε〉0, where 〈ε〉0 is uniquely determined by y, uτ , and
δh; therefore, we may write

〈ε〉0 = 〈ε〉0(y, uτ , δh). (7)

Regarding the function 〈ε〉0(y, uτ , δh) in (7), we assume the following:
Assumption 2. In the limit δh → 0, for given finite nonzero y and uτ , the energy dissipation

rate 〈ε〉e given by (7) tends to a finite nonzero value, say 〈ε〉e, where 〈ε〉e is determined by only y
and uτ .

A simple dimensional consideration based on Assumption 2 yields that 〈ε〉e is given by

〈ε〉e = Ce
u3

τ

y
, (8)

where Ce is a nondimensional constant, which plays a role similar to D noted above. For later
convenience, we put κε = 1/Ce in the following:

If we write 〈ε〉 as

〈ε〉 = 〈ε〉e + �〈ε〉 + · · · , (9)

then Assumptions 1 and 2 imply that in the limit δh → 0 and δν → 0, we have �〈ε〉 → 0, where
�〈ε〉 depends on (y, α, h, ν) only through δh and δν , and represents the change of 〈ε〉 from 〈ε〉e due
to the small but finite δh = y/h and δν = lτ /y.

We consider here the dependence of �〈ε〉 on δh and δν from the viewpoint of the linear response
theory (LRT) for turbulence. Readers may refer to references such as [5,8–10], and references cited
therein for some details on the idea of LRT applied to turbulent flows. For the convenience of
readers, we start with a brief review of the idea in Sec. II A. The review is along the lines of the
references noted above, in particular that of [5,8,9].

A. General

In general, the LRT is based on the assumption of the existence of a certain kind of equilibrium
or basic state in a certain limit. Let 〈B〉 be the statistical average of observable B, and suppose that a
disturbance, say X, is added to a system that is in an equilibrium state in the absence of X. Then in
response to this disturbance X, 〈B〉 changes from 〈B〉e to

〈B〉 = 〈B〉e + �〈B〉, (10)
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where 〈B〉e is the average at the equilibrium state, and �〈B〉 denotes the change of 〈B〉 owing to X.
In the LRT, it is assumed that if X is small in an appropriate sense, then �〈B〉 can be approximated
to be linear in X, i.e.,

�〈B〉 ∼ �1〈B〉, (11)

where �1〈B〉 denotes the first-order term in X and “∼” denotes the equality with ignoring terms
higher order in X, i.e., �1〈B〉 can be written as

�1〈B〉 = cX. (12)

Here X is to be understood as a measure representing the disturbance in an appropriate sense, and
c is a coefficient determined by the nature of the equilibrium state, independently of X. Since �1〈B〉
given by (12) is linear in X, the use of the word “linear” in “linear response theory” is consistent
with (11) and (12). But one may proceed to include higher order terms, if necessary; see e.g., [5,8,9].

If the disturbance consists of Xm (m = 1, 2, 3, . . .), (12) is to be understood as

�1〈B〉 = �1〈B〉1 + �1〈B〉2 + · · · , (13)

where

�1〈B〉m ≡ cmXm (14)

is the effect by the “disturbance” Xm, and c1, c2, . . . are constants determined by the nature of the
equilibrium state independently of X1, X2, . . ..

In this study the influence of small but finite δh and δν is regarded as a disturbance added to a
certain state determined in the limit of δh → 0 and δν → 0.

B. Application to �〈ε〉
In order to apply the idea of the LRT for the estimate of �〈ε〉, it is instructive to recall that the

NS equation gives

〈uv〉 = −u2
τ + αy + ν

d

dy
U (15)

for turbulence that is statistically stationary and homogeneous in the x and z directions (see, e.g.,
[7]). Equation (15) implies that in the layer where the second and third terms on the right-hand
side are negligible, 〈uv〉 is almost constant (∼ −u2

τ ) independent of y. We call this layer the inertial
sublayer (ISL). A simple analysis suggests that the ISL may be identified as the layer satisfying
lτ � y � h, i.e., δh � 1, δν � 1.

The α term is associated with the mean pressure gradient α and is linear in α, while the ν term is
associated with the viscous force and is linear in ν. Equation (15) implies that (i) in the limit these
terms normalized by u2

τ tend to 0, 〈uv〉 tends to the value, say 〈uv〉e which is independent of the
terms, and (ii) the difference �〈uv〉 ≡ 〈uv〉 − 〈uv〉e may be understood as a perturbation by the two
terms, in the ISL.

These observations suggest to us to assume that (i) there are two kinds of forces in an appropriate
sense such that one is associated with the mean pressure gradient and is linear in α, and the other
is associated with the viscous force and is linear in ν, (ii) in the limit they tend to zero under
appropriate normalization, the turbulence statistics are at a state independent of the forces, and (iii)
if they are small but finite, then their effects are treated as disturbance added to the state.

By applying the idea of LRT outlined in Sec. II A, Kaneda et al. [8] proposed a theory for the
statistics 〈B〉 in the ISL, where B = ∂Z/∂y, and Z = uv, vv, or ww. In the application, they exploited
an analogy between the momentum flux 〈uv〉(∼ −u2

τ ) per unit mass in the ISL (lτ � y � h), and
the energy flux �(k)(∼ 〈ε〉) across the wave number k in the inertial subrange (ISR) of HIT that
may be identified as the range satisfying η � 1/k � L. Here, L and η are respectively the length
scales characterizing the energy containing range and energy dissipation range. Like 〈ε〉 and the
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eddy-scale r or equivalently the wave number k play key roles in Kolmogorov’s theory [11], uτ and
y play key roles in the proposed theory.

In the application of the LRT, it is assumed that in the ISR the statistics of B under consideration
are dominated by dynamics local in physical space as well as in scale, and the following:

Assumption (I). In the limit of δh → 0 and δν → 0, the statistics is at a certain kind of equilibrium
or basic state that is determined by only y and uτ .

This implies that 〈B〉 → 〈B〉e in the limit, where 〈B〉e is a function of only y and uτ .
As regards �1〈B〉1 in (13), the theory suggests to write it as

�1〈B〉 = �1〈B〉p + �1〈B〉ν, (16)

and to introduce the following Assumptions (II) and (III) (see [9]):
Assumption (II). �1〈B〉p and �1〈B〉ν are linear in α and ν, respectively, i.e., they can be written

in the form �1〈B〉p = cB
pα and �1〈B〉ν = cB

ν ν where the coefficients cB
p and cB

ν are independent of
α and ν.

Assumption (III). cB
p and cB

ν are determined by only y and uτ .
These assumptions are based on the assumption of locality in the sense that in the ISR the

statistics of B under consideration are dominated by dynamics local in physical space as well as
in scale. If the statistics under consideration could be affected significantly by nonlocal dynamics,
then it is unlikely that one-point statistics such as ∂〈vv〉/∂y are characterized by only the local
position y and the local statistics, in particular the flux 〈uv〉 (∼ −u2

τ in the ISL) near the position
under consideration. Note that the flux 〈uv〉 may be far from −u2

τ outside the ISL.
Assumptions (I)–(III) were shown by Kaneda et al. [8] to give estimates in good agreement with

the results of DNS for the case B = ∂Z/∂y, and Z = uv, vv, or ww. The discussions in [8] suggest
that Assumptions (I)–(III) may work well provided that the statistics of B are dominated by local
dynamics. (Note: The discussions on �〈B〉1 in [8] are not exactly the same as a those in [9], but
they are essentially the same in the sense that �〈B〉1 in both of them consist of two terms that are
respectively in proportion to α and ν, and the resulting expressions are the same. We have followed
here the line of [9]).

It is natural to assume that the statistics of ε is dominated by local small-scale dynamics. This
encourages us to try the application of Assumptions (I)–(III) to the case B = ε.

The application of Assumption (I) then gives

〈ε〉e = C′
e

u3
τ

y
, (17)

where C′
e is a nondimensional constant. Equation (17) is consistent with (8), as could be expected,

provided that C′
e = Ce.

The application of Assumptions (II) and (III) and a simple dimensional analysis give

�1〈ε〉p = cε
pα = cε

p

u2
τ

h
= Cp

u3
τ

y

( y

h

)
, (18)

�1〈ε〉ν = cε
νν = cε

νuτ lτ = Cν

u3
τ

y

(
lτ
y

)
, (19)

where Cp and Cν are nondimensional constants, and we have used α = u2
τ /h, and ν = uτ lτ . Equation

(16) for B = ε and (18) and (19) give

�〈ε〉 ∼ u3
τ

y

[
Cp

( y

h

)
+ Cν

(
lτ
y

)]
. (20)

This is equivalent to

�〈ε〉 ∼ u3
τ

y
[Cp(δh)ξ + Cν (δν )ζ ], (ξ = ζ = 1) (21)
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TABLE I. DNS parameters. Ub is the bulk velocity, Lx and Lz are respectively the fundamental periodicity
length in the x and z directions, �x, �y, and �z are the grid widths in the x, y, and z directions, respectively, T
is the simulation time interval after the initial transient period.

Ref. Run Reτ U +
b Lx/h Lz/h �x+ �y+ �z+ T +/Reτ

[5] R500 500 18.1 16.0 6.4 16.0 0.4–5.3 8.3 13.1
[5] R1000 1000 20.0 16.0 6.4 16.0 0.6–8.0 8.3 12.0
[5] R2000 2000 21.7 16.0 6.4 16.0 0.6–8.0 8.3 10.0
[5] R4000 3996 23.4 16.0 6.4 16.0 0.6–8.0 8.3 14.0
[5] R8000 7987 25.0 16.0 6.4 18.5 0.6–8.0 8.9 7.5
[12,13] R10000 10049 26.0 2π π 15.3 0.4–13.0 7.6 19.8

and implies that �〈ε〉 normalized by u3
τ /y is approximately linear in δh and δν for small but finite δh

and δν .
A naive idea based on these considerations suggests us to introduce, as a first step approximation,

the following assumption:
Assumption 3. For sufficiently small δh and δν , the correction �〈ε〉 in (9) due to small but finite

δh and δν can be approximated by (21).
Equations (8) and (9) and Assumption 3 give

〈ε〉 ∼ u3
τ

y

[
Ce + Cp

( y

h

)
+ Cν

(
lτ
y

)]
. (22)

In terms of wall units, (22) is equivalent to

y+〈ε+〉 ∼ Ce + Cp
y+

Reτ

+ Cν

1

y+ , (Ce = 1/κε ). (23)

As is clear from the above derivation, the estimates (22) and (23) are derived on the basis of
Assumptions 1 − 3. Assumption 3 is based on the assumption that �1〈B〉p and �1〈B〉ν in (16) for
B = ε are linear in α and ν, respectively [see Assumption (II)], and the coefficients cε

p and cε
ν are

determined by only y and uτ [see Assumption (III)]. Behind Assumptions (II) and (III) is the idea of
“locality” in the sense discussed after (13). In our view, Assumptions (I)–(III) are questionable if the
nonlocal dynamics could significantly affect the statistics 〈B〉. Note also that δh and δν are assumed
to be small in the derivation of (21). This implies that the applicability of (21) is questionable
unless δh and δν are sufficiently small. The validity of Assumptions 1 − 3 is not trivial. Hence, it is
desirable to test by experiments and/or DNS the conjectures (22) or (23) that are derived from the
assumptions.

III. DATA RESOURCES AND DETERMINATION OF THE CONSTANTS

In this study, we used the data from a series of DNSs of TCF [5] to both estimate the constants in
(23) and verify the theoretical conjectures presented above. Some key parameters of the DNSs are
listed in Table I. The parameters of the DNS run by Hoyas et al. [12] and by Oberlack et al. [13] are
also included in the list, where the run is named R10000.

In the comparison, we use the so-called pseudodissipation 〈εg〉 ≡ ν〈g2
i j〉, rather than the true

dissipation 〈ε〉 ≡ ν〈s2
i j〉 and omit the subscript g, so εg is written as ε for the sake of simplicity,

where gi j ≡ ∂ui/∂x j , si j ≡ (gi j + g ji )/2, i, j = 1, 2, 3 and the summation convention is used for
repeated indices. Pseudodissipation is commonly used in studies of TCF, and is known not to differ
much from the true dissipation in the inertial sublayer [5,14–17].

To apply the theory (23) to the estimate of 〈ε〉, we need to know the constants Ce, Cp, and Cν .
However, unfortunately, no theoretical derivation of the constants from the first principle, i.e., the
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FIG. 1. The streamwise premultiplied velocity-correlation spectrum profiles, kx (= 2π/λx, λx ) is the wave-
length is streamwise wavelength, Euu is the streamwise energy spectrum for u, (a) R1000 and (b) R8000.

NS equation, is known at present. Therefore, we evaluate them by applying a least fitting method
to the DNS data. Since the constants Ce, Cp, and Cν are supposed to be determined by the state at
δh, δν → 0, it is reasonable to use the data of DNS at a Reτ value that is as large as possible. The
friction Reynolds number is Reτ ≈ 10 049 in R10000. To the best of our knowledge, Reτ ≈ 10 049
is the highest Reτ so far achieved in DNS of TCF. However, as seen in Table I, the fundamental
periodicity length Lx in the streamwise direction in R10000 is 2πh, while Lx = 16h in R8000. In
order to avoid artificial effects on the statistics of 〈ε〉 due to the use of periodic boundary conditions,
it is presumably necessary in general that the length Lx is sufficiently large in an appropriate sense.
In this respect, it is worthwhile to recall that there is a second peak in the streamwise premultiplied
velocity-correlation spectrum at the wavelength λx ≈ 6h (see, e.g., [18–21]; see also Fig. 1(b),
where a peak is in fact observed at λx ≈ 6h in the premultiplied spectrum of R8000). This suggests
that it is desirable that the length Lx is sufficiently large as compared to λx ≈ 6h. In view of these
observations, we use in this study the data of R8000 (Lx = 16h) rather than those of R10000
(Lx = 2πh) for evaluating of the constants Ce, Cp, and Cν .

The fitting based on the data of R8000 in the range y+ ∈ [100, 1600] yields

Ce = 2.28, Cp = −1.19, Cν = 9.42. (24)

(Details of the selection of the fitting range are shown in the Appendix.) It is natural to assume
that 〈ε〉 in the inertial sublayer is larger for larger ν, for given y, uτ , and h. This implies Cν > 0.
Similarly, it is natural to assume that 〈ε〉 in the sublayer is smaller for larger h, for a given y, uτ , and
ν. This implies Cp < 0. The values in (24) are consistent with these conjectures. In the following
discussion, we assume Cν > 0 and Cp < 0.

IV. COMPARISON WITH DIRECT NUMERICAL SIMULATION

In the following, we examine the theoretical conjectures presented in Sec. II by comparing them
with the data of a series of DNSs of TCF listed in Table I. Figure 2(a) shows the value of y+〈ε+〉 as
a function of y+ in the range y+ ∈ [100, 0.2Reτ ]. The theoretical conjecture (23) agrees fairly well
with the DNS results for Reτ � 4000. The difference at smaller Reτ is not surprising in view of the
fact that the theory is for large Reτ .

Figure 2(b) shows y+〈ε+〉−[Cpy+/Reτ + Cν/y+]. Here, the curves overlap well to a constant in
an appropriate range of y+ and Reτ , as could be expected from (23). This supports (23) and suggests
that the coefficient Ce is close to 2.28 ≈ 1/0.44.
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FIG. 2. Comparison between the theoretical conjectures of LRT and DNS data, (a) y+〈ε+〉 vs y+,
where color solid lines show the value by (23) with the coefficients listed (24) for R8000. (b)
y+〈ε+〉−[Cpy+/Reτ + Cν/y+] vs y+, (c) DNS data by R1000, R2000, R4000, and R8000 for y+〈ε+〉 vs
y+/Re1/2

τ . The horizontal and vertical dashed lines show respectively y+〈ε+〉 = Ce(= 2.28), and y+/Re1/2
τ =

(−Cν/Cp)1/2(= 2.81). (d) Symbols: y+
m satisfying y+

m〈ε+〉|y+=y+
m

= 1/κ∗
ε for κ∗

ε = 0.40, 0.41, 0.42, 0.43, 0.442,
0.45 for R1000, R2000, R4000, and R8000. Solid lines show the values y+

m = GRe1/2
τ , where G is a constant

chosen by a least square fitting.

Recently, Abe and Antonia [3] proposed a theory of 〈ε〉 on the basis of matched asymptotic
expansions, as follows

y+〈ε+〉 = 1

κε

− d
y+

Reτ

, (25)

where κε and d are constant. They obtained 1/κε = 2.45 and d = 1.7 to fit the DNS data up
to Reτ = 5200. Figure 3(a) shows the value of y+〈ε+〉 as a function of y+ in the range y+ ∈
[30-0.2 Reτ ] [3], where the colored solid lines show the value by (25) with 1/κε = 2.45 and
d = 1.7. Equation (25) implies that the curves of [y+〈ε+〉 + dy+/Reτ ] vs y+ would overlap well
to a constant (∼ 1/κε = 2.45) at small enough y+/Reτ However, Fig. 3(b) suggests that the overlap
of the curves to the constant 2.45 is not as good as that shown in Fig. 2(b). Figure 3(b) suggests that
[y+〈ε+〉 + dy+/Reτ ] approaches to a constant in an appropriate range of y+ as Reτ → ∞, but the
constant is different from the fitting value of 2.45.
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FIG. 3. Comparison between the theoretical conjectures of Abe and Antonia (AA) [3] and DNS data, (a)
y+〈ε+〉 vs y+, (b) [y+〈ε+〉 + 1.7 y+/Reτ ] vs y+.

Equation (23) gives

y+〈ε+〉 − Ce ∼ Cp

y+

(
y+

√
Reτ

− ze

)(
y+

√
Reτ

+ ze

)
, ze ≡

√
Cν

−Cp
. (26)

This implies that if y+〈ε+〉 is plotted in the (y+/
√

Reτ , y+〈ε+〉) plane as a function of y+/
√

Reτ

then although the curves are generally different for different values of Reτ , all of them pass through
the common point (ze, Ce) in the plane, irrespective of Reτ . The plots in Fig. 2(c) are consistent
with this conjecture in the sense that the curves overlap fairly well at a point. The ordinate value of
the point provides an estimate Ce, that is free, i.e., independent from the least squares fitting method
used to derive the values in (24). As seen in Fig. 2(c), the point is not far from (2.28, 2.81), which
is obtained by substituting the values of Ce, Cp, and Cν in (24) into (Ce,

√
Cν/−Cp).

Figures 2(b) and 2(c) show that two independent methods, i.e., one using least squares fitting
and the other using plots of the DNS data in the (y+/

√
Reτ , y+〈ε+〉) plane, give a similar value

κε ≈ 0.44. This value is different from the widely accepted value (≈ 0.40 or so) for the von Kármán
constant κ from the arguments based on experiments [22–26] or theory [27,28].

The difference of κε from 0.40 or so can also be seen in Fig. 2(d), which shows the DNS values
of y+

m such that y+〈ε+〉 = 1/κ∗
ε at y+ = y+

m , for given κ∗
ε = 0.40, 0.41, 0.42, 0.43, 0.442, and 0.45

and R1000, R2000, R4000, and R8000. According to (26), if 1/κ∗
ε = Ce, i.e., if κε = κ∗

ε , then y+
m is

given by y+
m = ze

√
Reτ ∝ √

Reτ . This implies that if κε = κ∗
ε , then the curves y+

m = G
√

Reτ for
the given κ∗

ε fits well to the DNS data of y+
m , provided that the constant G is chosen appropriately.

The solid lines in Fig. 2(d) show the curves given by y+
m = G

√
Reτ for fixed κ∗

ε , in which G is
determined by least squares fitting of y+

m = G
√

Reτ to the DNS data for fixed values of κ∗
ε . Among

the six curves, the agreement between the DNS data and the curves is best for κ∗
ε = 0.442 (orange

line). In addition to Figs. 2(b) and 2(c), this provides another support for the conjecture that κε is
not far from 0.442, and is distinctively different from 0.40 or so. The constant G thus obtained for
κ∗

ε = 0.442 is ≈ 2.77, which is very close to ze ≈ 2.81 as could be expected.

V. DISCUSSION AND CONCLUSION

The relation (26) was derived from (23), i.e., (21) with ξ = ζ = 1. In this regard, it may be of
interest to note that a recent study of the influence of mean shear on velocity-gradient moments in
turbulent shear flow suggests that the effects of small but finite viscosity ν on the moments are fairly
well approximated by terms proportional to ν1/2 under appropriate normalization [5]. From this,
one might assume ξ = 1 and ζ = 1/2, instead of ξ = ζ = 1 in (21). However, ξ = 1 and ζ = 1/2
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would give y+
m ∝ Re1/3

τ , while the DNS results in Fig. 2(d) look to be in favor of y+
m ∝ Re1/2

τ , rather
than y+

m ∝ Re1/3
τ . This implies that the DNSs may favor the simple scalings ξ = 1 and ξ = 1 rather

than ξ = 1 and ζ = 1/2.
As noted in the Introduction, and as is well known, the simple relation κ = κε is derived

by assuming the local equilibrium, i.e., the balance between turbulent production and energy
dissipation rate 〈ε〉, and assuming the log law (1) for the mean velocity and 〈uv〉 ∼ −u2

τ . The
difference between κ and κε implies that at least one of these assumptions is questionable. The
theory presented in this study is free from the assumption of local equilibrium [6,7].

The present theory is unique in the sense that it is for 〈ε〉 not only in the limit of infinite Reτ but
also at high but finite Reτ , and is fully consistent with the existing data of the world’s largest DNS.
On the basis of these DNS data, the present theory suggests that κε given by (23) is approximately
0.44.
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APPENDIX

Let the fitting range of y be [ymin, ymax]. In order to set the range appropriately, we need take into
account the following:

(a) Equation (23) is assumed to be applicable only for the layer satisfying lτ /y � 1 and y/h �
1, not for the entire range of y. This implies that D1 and D2 must be “sufficiently large,” where D1

and D2 are defined as D1 = ymin/lτ = y+
min and D2 = h/ymax = Reτ /y+

max.
(b) There exist the so-called inner-scaling layer and buffer layer near the boundary wall. The

former is generally located at 0 < y+ < L+, where L+ is approximately 15 (e.g., the wall-normal
height of the peak value of the streamwise turbulent intensity).

FIG. 4. d (y+〈ε+〉)/dy+ vs y+.
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TABLE II. The effect of the fitting range on constant parameters.

Run D2 D3 D4 L+ y+
min y+

max Ce Cp Cν

R8000 5.0 5.3 20.0 15 80 1600 2.27 −1.14 11.6
R8000 5.0 6.7 16.0 15 100 1600 2.28 −1.19 9.42
R8000 5.0 8.0 13.3 15 120 1600 2.29 −1.24 7.16

The DNS data concerning (15) (see, e.g. [21]) suggest that unless y � L, the effect of the viscous
term is not negligible. This suggests that D3 need be sufficiently large for (23) to apply, where
D3 = y/ L = y+/ L+.

(c) To compare the y dependence of 〈ε〉 by DNS and that by (23), D4 needs to be sufficiently
large, where D4 = ymax/ymin. However, it is to be recalled that we have a trivial constraint

Reτ = h

lτ
= h

ymax
D2

× ymax

ymin
D4

× ymin

L
D3

× L

lτ
L+

= D2D4D3L
+. (27)

This constraint implies that there is a tradeoff between the constants D2, D3, and D4; i.e., under
any given finite Reτ , setting a large value of any of the constants is possible only by sacrificing the
largeness of at least one of the other constants.

It is not trivial how sufficiently large the constants D2, D3, and D4 must be for the conditions
noted in (a), (b), and (c) to be satisfied. However, it is observed in Fig. 2(a) that in the curve of
y+〈ε+〉 vs y+ in R8000, there is no inflection point in the y range approximately [100, 1600]; in
other words, the y dependence is not so complicated in the range. In practice, we therefore set
[y+

min, y+
max] = [100, 1600] for the fitting. This results in (24).

The choice y+
max = 1600 implies y+

max = Reτ /5 (D2 = 5), for Reτ = 8000. This choice of y+
max =

Reτ /5 is consistent with the understanding that the so-called outer layer is located approximately
y/h > 0.2, i.e., y+ > Reτ /5. The latter suggests that y+

max needs to be smaller than Reτ /5.
The choice of y+

min = 100 is consistent with the observation that d (y+〈ε+〉)/dy+ has a sharp peak
at y+ ≈ 50, as seen in Fig. 4, which suggests that the statistics of 〈ε+〉 at y+ ≈ 50 are dominated
by factors different from those in the range y+ > 50 or so. This suggests that y+

min needs to be
substantially larger than 50, i.e., D3 > 3.3, where L+ ≈ 15.

To get some idea on the sensitivity of the estimates of the constants Ce, Cp, and Cν to the choice
of the fitting range, we estimated the constants by selecting some values of the range other than that
of [y+

min, y+
max] = [100, 1600] noted above. The results of least-squares fitting of (23) to the DNS

data are shown in Table II. It is seen that Cp and Cν are somewhat sensitive to the choice of the fitting
range, but Ce is not so sensitive to that choice. The constants Ce, Cp, and Cν by least-squares fitting
of (23) in the range of [y+

min, y+
max] = [100, 2000] for R10000 is 2.27, −1.23, and 9.49, respectively.

Note that (27) implies that Reτ > 8040, if L+ = 15, D2 = 5, D3 = 6.7, and D4 > 16. Therefore, in
addition to R8000, the DNS data of at least Reτ ≈ 16 000 with large computational domains would
be required to discuss the confidence interval for the constants.
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