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A new correction method for laser Doppler velocimetry (LDV) measurement volume effects on the 

time-averaged velocity statistics is proposed by considering the probability density function of streamwise 

fluctuating velocity and the streamwise cross-sectional area of the measurement volume. The proposed 

correction method is fundamentally different from previous correction methods using a laser intensity 

profile of LDV. We propose a simple equation to correct the measurement volume effects. By using the 

equation and calculating both measurement locations and volumes precisely, the correction for the 

measurement volume effects on time-averaged velocity statistics can be performed on the basis of LDV 

measurement data. By comparing with the correction method proposed by Durst et al. [J. Fluid Mech. 295, 

305 (1995)], the two correction methods provide almost the same results. In addition, the validity and 

applicability to high Reynolds numbers or low spatial resolution conditions of the two correction methods 

are confirmed. 
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1. Introduction 

Recently, high Reynolds number turbulent pipe flow experiments have been studied in several facilities 

(Superpipe [1], CICLoPE [2], and Hi-Reff [3]). The velocity measurements of turbulent pipe flow field 

have been conducted by Pitot tube [1,4], hot wire anemometry (HWA) [5–7], laser Doppler velocimetry 

(LDV) [8,9], and particle image velocimetry (PIV) [10]. In high Reynolds number experiments, the spatial 

resolution of a measurement device is crucial. Generally, the higher the Reynolds number in the experiment 

performed, the smaller the measurement volume required. As shown in previous studies, the spatial 

resolution of a measurement device influences the statistics, especially for the turbulence intensity (TI) 

[8,11,12]. Since minimizing a measurement volume has a physical limitation, the correction method for 

each measurement device should be studied to obtain reliable experimental data for high Reynolds numbers. 
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HWA is one of the most common flow velocity measurement techniques and has long been applied to 

high Reynolds number experiments. Therefore, the spatial resolution issue for HWA has been discussed by 

several researchers in terms of high Reynolds number experiments [13–15]. In principle, the velocity 

measured by HWA would be averaged within the sensing length. Therefore, the correction method for time 

series of velocity fluctuations based on the spectral consideration, etc. has been proposed [16,17]. In 

contrast, since LDV has rarely been applied to high Reynolds number experiments, the spatial resolution 

issue for LDV in terms of high Reynolds number experiments was less active than that for HWA. Moreover, 

since the measurement principle of LDV fundamentally differs from that of HWA, the same correction 

method with HWA could not be applied to LDV measurement data. To the best of our knowledge, only one 

correction method for LDV measurement volume effects has been proposed by Durst et al. [8]. The Durst 

correction method for TI profile uses the wall-normal length of measurement volume and the wall-normal 

derivatives of mean velocity and TI profiles. In application, Fischer et al. [9] used the Durst method to 

correct velocity statistics and discuss higher-order moments of measurement velocities using the 

experimental data at low Reynolds numbers (Reτ < 500). 

We have reported the friction factor and a few characteristics of the mean velocity profile up to Reτ = 

20000 in previous studies [3,18]. We are also interested in TI profiles, such as the Reynolds number 

dependence of inner peaks and outer logarithmic relations. However, it is impossible to accurately discuss 

such characteristics of the TI profiles at high Reynolds numbers because the TI profiles are significantly 

affected by spatial resolution. Therefore, the spatial resolution issues of LDV measurement should be 

clarified. There are two considerable aspects regarding correction methods. One is the Reynolds number 

effect. Although the Durst method has been applied to the several experimental data measured by LDV, 

they are performed under low Reynolds numbers; the validity for and applicability to the experimental data 

at high Reynolds numbers has not been confirmed. The other is the effect of inclined measurement volume 

against the wall. Since the LDV measurement angle in the present experiment conducted at Hi-Reff was 

inclined from the wall, the applicability of the correction method should be discussed. However, there is no 

method to guarantee the corrected value, even if the Durst method applies to the various ranges of Reynolds 

number experimental data. To validate and confirm the applicability of correction methods, alternative 

correction concepts and methods are strongly required. 

In this study, we propose a new correction method based on PDF and two-dimensional geometric 

considerations for the LDV measurement volume effects and apply it to data under high Reynolds numbers 

or low spatial resolution compared with the Durst method. The data were measured by LDV in high 

Reynolds number turbulent pipe flow up to Reτ = 10000. Further, we discuss the applicability to the 

inclination measurement volume setup. 
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2. Experimental conditions and data processing method 

2.1. Experimental facility and equipment 

Experiments were conducted using “Hi-Reff” [19] at Advanced Industrial Science and Technology. The 

pipe used was made of stainless steel and had a 100 mm inner diameter; the inner surface was polished, and 

it had a 0.8 μm average roughness. The inlet length was about 11 m, thus the ratio of the inlet length to the 

inner diameter was approximately 110, which was adequate to remove the effect of the inlet condition on 

the flow field at the test section. The maximum flow rate using the pipe was 300 m3/h, and the bulk Reynolds 

number was approximately 106 in the pipe. For more details of the experimental setup, refer to our previous 

study [3]. 

In this experiment, the working fluid was water. The LDV system (BSA Flow Software Version 4.10) 

produced by DANTEC was used for velocity measurement. The measurable velocity component was the 

streamwise direction. The wavelength of the laser λL was 514.5 nm; the laser beam diameter at an inducing 

collecting lens DL was 2.2 mm; the spacing of the laser beams at the collecting lens was 38.998 mm; the 

focal length of the collecting lens f was 160 mm. The measurement volume of the LDV system was an 

ellipsoidal body, the short axis length of the body was calculated as 4 λL f / πDL. In the experimental setup, 

the short and long axis lengths of the body were calculated as 47.6 and 524.9 μm, respectively. A three-

dimensional moving system, whose resolution was 1/160 mm/pulse, was used. 

 

2.2. Experimental condition 

The measurement path was set to 46 locations, where 46 locations were determined as almost equal 

spacing in logarithmic scale from the pipe wall to the center of the test section. To measure velocity profiles 

in the test section by different measurement volumes, especially in the wall-normal direction, velocity 

profile measurements were conducted in different measurement paths of the LDV moving system (Fig. 1) 

to discuss the LDV measurement volume effects. Table 1 shows the relation between the angle of 

measurement paths θpath and spatial resolution d+ at Reτ = 3200. In this study, d is the wall-normal length of 

the theoretical measurement volume. Three different measurement paths of 15°, 18°, and 20° against the 

vertical axis were employed to discuss the LDV measurement volume effect. They were called Cases 1–3 

for convenience. 

The experimental flow conditions were the following four Reynolds numbers: Reτ = 3200, 3900, 5800, 

and 10400 (1.4 × 105 ≦ Reb ≦ 5.2 × 105, Reτ = uτ R / ν, Reb = Ub 2R / ν, where Ub：cross-sectional 

averaged velocity, uτ：friction velocity, R：radius of the pipe, ν：kinematic viscosity). 
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Fig. 1. Schematic view of the measurement path for different volume sizes in the wall-normal 

direction. The red and blue lines indicate different measurement paths, which correspond to using 

different measurement volumes in the wall-normal direction, respectively. 

 

TABLE 1. Spatial resolution conditions. 

Case number Spatial resolution level θpath d+ at y+ = 15, Reτ = 3200 

Case 1 High ≈15° ≈5.3 

Case 2 Mid ≈18° ≈7.9 

Case 3 Low ≈20° ≈9.8 

 

3. Correction concept and procedure 

A correction method for the LDV measurement volume effect was reported by Durst et al. [8]; to the 

best of our knowledge, it is the only correction method. The validity of the Durst method has been confirmed 

by several experimental data at low Reynolds numbers, but its applicability has not been confirmed at high 

Reynolds numbers. Therefore, we proposed an alternative correction method based on the concept of PDF 

profiles of velocity fluctuations and the geometric considerations of measurement volumes. Our correction 

method is compared with that of Durst in high Reynolds number flow, and we realize that the TI is 

overestimated close to the wall due to the measurement volume effect. This overestimation improves when 

the measurement volume effect was corrected adequately. 

 

3.1. Effect of LDV measurement volume 

First, we considered the time series of the streamwise velocities measured via the LDV in the infinitely 

minimal measurement volume. If the tracer particles were sufficiently small and the measuring time was 

sufficiently long, the PDFs calculated using the time series of the streamwise velocities were close to the 

true PDFs of the streamwise velocities at an arbitrary measuring location, as expressed by Eq. (1). 
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𝑃T(𝑢; 𝒙) = lim
𝑇→∞

1

𝑇
∫ 𝑝1(𝑢; 𝒙, 𝑡)𝑑𝑡

𝑇

𝑡=0

, 
(1) 

 

where 𝑢 is the sample variable in the velocity space, 𝒙 = (𝑥, 𝑦, 𝑧), and 𝑝1 is defined by the delta function 

as Eq. (2). It is called a fine-grained PDF of velocity [20]. 

 

𝑝1(𝑢; 𝒙, 𝑡) ≡ 𝛿(𝑈(𝒙, 𝑡) − 𝑢), (2) 

 

where 𝑈 is an instantaneous random velocity fluctuation. Hereinafter, we define 𝑃T(𝑢; 𝒙) as the “true” 

PDF at point 𝒙. 

Next, we considered a situation of measuring streamwise velocity inside a finite volume of 𝑽. The 

shape of the finite volume was an ellipsoid; Fig. 2 (a) shows a schematic image of the three-dimensional 

LDV measurement volume when the tracer particle passed through it. The streamwise direction was x, and 

the particle (black solid circle) moved along the x-axis. The LDV could only measure the velocity of the 

tracer particle at the cross-section of the ellipsoid, which was a two-dimensional set of 𝑽  and was 

expressed as S. When the flow was fully developed, the velocity PDF was independent of streamwise 

position. Therefore, it was sufficient to analyze the velocity inside 𝑺 [Fig. 2 (b)]. A PDF of the streamwise 

velocity in volume 𝑽 was expressed by the summation of the true PDF at 𝒙 inside 𝑺 with multiplying a 

probability𝑃2(𝒙 ∈ 𝑺). 𝑃2(𝒙 ∈ 𝑺) is the probability when a tracer particle locates inside 𝑺. Then, the PDF 

measured by the LDV with a finite volume can be expressed by Eq. (3). Notably, 𝑃M(𝑢, 𝑺) was different 

from the true PDF and was a weighted average of 𝑃T(𝑢; 𝒙). 

 

𝑃M(𝑢; 𝑽) = 𝑃M(𝑢; 𝑺) = ∑ 𝑃T(𝑢; 𝒙)𝑃2(𝒙)

𝒙∈𝑺

 
(3) 

 

Since the tracer particles passed through 𝑺 uniformly, the probability 𝑃2(𝒙 ∈ 𝑺) should be equal to ∆𝑆/𝑆, 

where ∆𝑆 was a small area centered at 𝒙, as indicated by the red circle in Fig. 2 (b), and 𝑆 was the area 

of 𝑺, that is, S = |𝑺|. Accordingly, Eq. (3) is rewritten as follows: 

 

𝑃M(𝑢; 𝑽) = 𝑃M(𝑢; 𝑺) = lim
∆𝑆→0

∑ 𝑃T(𝑢; 𝒙)
∆𝑆

𝑆
𝒙∈𝑺

=
1

𝑆
∫ 𝑃T(𝑢; 𝒙)𝑑𝑆

𝑺

 

 

(4) 
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The PDF measured by LDV with the finite volume size 𝑽 could be written by an integral formula by Eq. 

(4). Therefore, this suggested that the measured PDF could be expressed as a cross-sectional surface average 

of the true PDFs. 

In the steady flow fields where the instantaneous streamwise velocity is sufficiently larger than other 

two velocity components, Eq. (4) is satisfied. The “true” PDFs are obtained to solve Eq. (4) as an inverse 

problem. In this study, we demonstrate that the measured PDFs are reconstructed using the true PDFs using 

Eq. (4). 

 

3.2. Simplification of Equation (4) for application to wall turbulence 

In the pipe flow, the statistical quantities did not change because of the homogeneity along the 

circumferential direction. Thus, the dimension of the integral in Eq. (4) could be reduced to one dimension 

as follows: 

 

𝑃M(𝑢; 𝑽) = 𝑃M(𝑢; 𝑺) = lim
∆𝑦→0

∑ 𝑃T(𝑢; 𝑦)
𝑙(𝑦, 𝑺)∆𝑦

𝑆

𝑦c+𝐷/2

𝑦=𝑦c−𝐷/2

=
1

𝑆
∫ 𝑃T(𝑢; 𝑦)𝑙(𝑦, 𝑺)𝑑𝑦

𝑦c+𝐷/2

𝑦c−𝐷/2

, 

 

(5) 

 

where 𝑦 is the wall-normal location, 𝑦c is the center of 𝑺, 𝐷 is the wall-normal length of 𝑺, and 𝑙 is 

the length of the spanwise or circumferential direction within 𝑺 at the wall-normal location of 𝑦 [Fig. 2 

(c)]. 

Several parameters in Eq. (5) were normalized by inner variables; Eq. (5) could be rewritten as Eq. (6). 

The schematic image is shown in Fig. 2 (d). Equation (6) describes a formula to obtain a streamwise velocity 

PDF: 𝑃M measured by the LDV with the finite size measurement volume. 

 

𝑃M(𝑢+; 𝑦c
+, 𝑑+) =

1

𝑆
∫ {𝑃T(𝑢+, 𝑦′+) × 𝑙(𝑦c

+, 𝑦′+)}𝑑𝑦′+
𝑦c

++
𝑑+

2

𝑦c
+−

𝑑+

2

 

 

(6) 

 

Figure 2 (d) shows the schematic illustration of the coordinate of the present measurement volume. The red 

line indicates a boundary of the measurement volume of the LDV system in the streamwise cross-section; 

the area enclosed by the red line is 𝑆 in Eq. (6); the black dot indicates a focal point of the LDV system 

that is equal to the measurement point of 𝑦c
+ ; the dashed line indicates the spanwise length 𝑙  of the 

measurement volume, which is a function of 𝑦c
+  and 𝑦′+ , where 𝑦′+  is a vertical location in the 

coordinate of 𝑦+. 
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Fig. 2. Schematic images of the LDV measurement volume. (a) Schematic image in three-

dimensional. (b) Schematic image sliced at cross-section. (c) Schematic image in two-dimensional. (d) 

Schematic illustration of the coordinate of the measurement volume. 

 

3.3. Prediction of the true PDF 

Since the true PDFs, 𝑃T, are required to represent the measured PDF, 𝑃M, at an arbitrary location in 

Eq. (6), the true PDFs should be appropriately predicted to solve Eq. (6). The true PDFs were expressed as 

Eq. (7), wherein the wall-normal distance was y+, mean velocity was U+, and root mean square (RMS) of 

the fluctuating velocity was 𝑢rms
+ . The 𝑃T in Eq. (6) was replaced by the reference PDF, 𝑃ref, in Eq. (7), 

as follows: 

 

𝑃T(𝑢+; 𝑦+) = 𝑃ref((𝑢+ − 𝑈+)/𝑢rms
+ ; 𝑦+)/𝑢rms

+ , (7) 

 

where 𝑃ref was normalized by the standard deviation because the integration of Eq. (7) should yield 1. 

From Eq. (7), predicting the true PDF profile is the same as predicting the reference PDF profiles. In 

the present study, we used the normalized PDFs. According to the evidence of DNS described in Appendix 

A, we confirmed that the normalized PDFs depend on the distance from the wall but are less dependent of 
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Reynolds number. Therefore, the reference PDFs were obtained in low Reynolds number flow by LDV 

with sufficient spatial resolution. There may be other methods to obtain the reference PDFs. Once the 

reference PDFs were determined, they were applied to the present correction method. 

 

3.4. Formulation for correction 

Although the LDV measurement volume effect was expressed by Eq. (6), the theoretical solution of 𝑃T 

from 𝑃M was difficult because the inverse problem was sensitive to the experimental noise. Therefore, we 

proposed an alternative procedure based on the discrete expression of Eq. (6) and discuss the effect of the 

measurement volume on the velocity statistics. 

Converting the integral expression of Eq. (6) to a discrete expression, we obtained Eqs. (8) and (9). 

Equation (8) indicates that the measured PDF was constructed via the summation of the product of the true 

PDF and tracer particle penetration ratio within the measurement volume at the discretized measurement 

locations. The finite size effect was equal to the penetration ratio. The penetration ratio is defined by Eq. 

(9), which indicated the ratio of the cross-sectional partial area at each discretized measurement location to 

the entire cross-sectional area of the measurement volume. 

 

𝑃M(𝑢+; 𝑦i
+) = ∑ 𝑃T(𝑢+; 𝑦j

+)

𝑛

𝑗=1

× 𝐹(𝑦i
+, 𝑦j

+) (8) 

 

𝐹(𝑦i
+, 𝑦j

+) = ∆𝑆(𝑦i
+, 𝑦j

+) ∑ ∆𝑆(𝑦i
+, 𝑦j

+)

𝑛

𝑗=1

⁄  (9) 

 

Figure 3 shows a schematic diagram of the above consideration of measurement volume effect 

described by Eqs. (8) and (9). The measurement volume centered at yi
+ includes four measurement subsets 

along with the measurement path. Here, 𝑃T(𝑢+, 𝑦j
+)indicates the true PDF of fluctuating velocity u+ at the 

wall-normal location 𝑦j
+. The subscripts i and j indicate the location of a measurement path. ΔS(yi

+, yj
+) is 

the streamwise cross-sectional partial area range (yj
+ + yj-1

+)/2 ≤ y+ < (yj+1
+ + yj

+)/2 where the focal point 

locates at yi
+, F(yi

+, yj
+) is the dominant ratio of ΔS(yi

+, yj
+) to the streamwise entire cross-sectional area of 

the measurement volume where the focal point locates at yi
+, and d is the wall-normal length of the entire 

measurement volume. The reason the measurement volume size 𝑑+ was not included in the left-hand side 

of Eq. (8) was that the measurement volume size already accounted for the calculation of the streamwise 

cross-sectional partial area. From Eq. (8), the PDF of the velocity measured by the LDV was expressed as 

the summation of the true PDFs with the penetration ratio under the practical experimental condition. 
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Fig. 3. Conceptual image of measurement volume at PDF calculation in Eq. (8) 

 

By applying the Eqs. (8) and (9) to all measurement locations, the relation among 𝑃T, 𝑃M, and the 

penetration ratio 𝐹 was derived as follows: 

 

(

𝐹1,1 ⋯ 𝐹1,n

⋮ ⋱ ⋮
𝐹n,1 ⋯ 𝐹n,n

) (
𝑃T(𝑢+; 𝑦1

+)
⋮

𝑃T(𝑢+; 𝑦n
+)

) = (
𝑃M(𝑢+; 𝑦1

+)
⋮

𝑃M(𝑢+; 𝑦n
+)

), (10) 

 

where subscripts i and j in penetration ratio Fi, j correspond to the wall-normal distances of yi and yj, 

respectively. Fi, j can be calculated from Eq. (9). Although Eq. (10) could be solved analytically as an inverse 

problem, the experimental uncertainties would affect the result, which would yield a quite different PDF 

profile from the expected one. Thus, we solved Eq. (10) numerically. The details are in the next subsection. 

 

3.5. Correction procedure 

In this subsection, we discuss the correction of the TI profile from the measured TI profile. Solving Eq. 

(10) numerically, we predicted the TI profile wherein the measurement volume effect was removed and 

called it the corrected TI profile. 

 

3.5.1. Preprocessing for measured PDF 

To obtain the PDF 𝑃M(𝑢i) in Eq. (8), we should measure the probability [𝑢i − Δ𝑢/2 ≤ 𝜂 < 𝑢i +

Δ𝑢/2] and divide it by Δ𝑢, where 𝜂 is a random variable in time (or in space). Because of the uncertainty 

in determining a proper bin size Δ𝑢, several Δ𝑢 values were tested to access whether the obtained PDF 

profile changed. We selected the smallest bin size that would not distort the PDF profile. The bin size was 

set to 0.3 𝜎 in this analysis, where 𝜎 was a standard deviation. The definition range was set to −9.6 𝜎 <

𝑢 < 9.6 𝜎. Here, the selection of the definition range is independent of the correction results, as long as it 
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includes the entire measurement velocity range. When the velocity fluctuation u was discretized by the bin 

size, it was expressed as 𝑢i = −9.6 𝜎 + (𝑖 − 1/2)Δ𝑢 with 𝑖 = 1,2,3, ⋯ ,63,64. In addition, the measured 

PDF 𝑃M(𝑢i) was expressed as follows: 

 

𝑃M(𝑢i) =
probability [𝑢i − Δ𝑢/2 ≤ 𝜂 < 𝑢i + Δ𝑢/2]

Δ𝑢
× 𝑔i ∑ 𝑔i

𝑛

𝑖=1

⁄  , (11) 

𝑔i = 1 |𝑢i|⁄  

 

where 𝑔i is the weight factor based on the frequency of the particles passing the measurement volume, 

namely, the inverse velocity. Nakao et al. [21] reported that the time-averaged statistics of velocities 

measured by LDV can be corrected by an inverse of each particle velocity as a penetration frequency. Since 

the term including 𝑔i means the correction term for the particle penetration frequency, the probability 

density of particle velocity can be calculated by a simple multiplication as Eq. (11). This velocity correction 

method only considered the tracer particles penetration ratio based on the frequency of the particle passing 

the measurement volume, namely, the inverse velocity. Usually, the passing time through the measurement 

volume, called the transit time, is recommended for the weight factor [22]. However, since the streamwise 

velocity component was dominant compared with others for the present flow field, the inverse velocity 

given in Eq. (11) was available. 

 

3.5.2. Reference PDF profiles 

As discussed in Section 3.3, in this study, the reference PDF profiles of fluctuating velocity in the 

streamwise direction were calculated by the high spatial resolution experimental data at Reτ < 4000, which 

had been obtained in our previous study [3]. The reference PDFs were obtained at 12 wall-normal locations 

y+ = 2.5, 5.5, 8.5, 12, 17, 25, 37.5, 57.5, 85, 120, 170, and 250. 

Figure 4 shows 𝑃ref  at y+ = 2.5, 8.5, 17, 37.5, 85, and 170. In the different Reynolds number 

experiments, the measurement points were not the same as those in Fig. 4. Then, the PDF at an arbitrary 

wall-normal location could be calculated by linear interpolation using two nearby reference PDFs. For 

example, the reference PDF at y+ =10 was calculated using the reference PDFs at y+ = 8.5 and 12. The 

validity of the use of reference PDF profiles that are independent of Reynolds number in the near-wall 

region was briefly discussed in Appendix A using DNS data [23,24]. 

 

3.5.3. Calculation of the measurement volume size, location, and inclination 

In the process of evaluating the measurement volume effects, the measurement volume size, focal point 

location, and inclination angle of the long axis of measurement volume to the wall need to be precisely 

calculated. For the calculation, we assumed that the deformation of the laser beam was negligible, the 

measurement volume located at the focal point as the origin even if the focal point was close to the wall, 



11 

 

and the measurement volume size was equal to the theoretical volume size. The wall-normal length of the 

measurement volume d was obtained from the accurate calculation of the laser refraction at the surface 

between a glass pipe wall and a working fluid. Figure 5 shows a typical measurement volume setting under 

the experiment condition. The wall-normal length of the measurement volume d is used later in the Durst 

correction method. 

 

 

Fig. 4. PDF profiles near-wall region measured at Reτ < 4000. The red, blue, green, cyan, magenta, 

and black lines indicate reference PDFs at y+ = 2.5, 8.5, 17, 37.5, 85, and 170, respectively. 

 

 

Fig. 5. Schematic image of measurement volume location. The dot indicates a focal point, the red 

ellipse indicates a measurement volume, the bold black line indicates the pipe wall, and the dashed lines 

indicate a maximum and a minimum distance from the wall. 
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3.5.4. Calculation of penetration ratio of tracer particles 

Calculation of the penetration ratio of tracer particles passing through the measurement volume was a 

crucial process in the entire correction procedure because the matrix of the penetration ratio was used in 

Eq. (10). Since the penetration ratio was calculated from Eq. (9), the streamwise cross-sectional area of the 

measurement volume was necessary. The location and inclination angle of the measurement volume were 

calculated in Section 3.5.3, and using this information, the penetration ratio of each measurement location 

within the measurement volume at the target wall-normal location could be calculated. Figure 6 shows a 

measurement volume centered at the point indicated by a black dot. The measurement area is divided into 

subsets between two adjacent dashed lines. Comparing with Fig. 3, the focal point is yi, and the red area in 

Fig. 6 indicates ΔS(yi, yi−2); then, the penetration ratio Fi,i−2 is calculated as ΔS(yi, yi−2)/S. 

 

 

Fig. 6. Example of measurement volume, pipe wall, and each measurement location for calculation 

of penetration ratio of tracer particles. The red ellipse and bold black line indicate the boundary of the 

theoretical measurement volume and wall, respectively. The black circles indicate measurement 

locations corresponding to the focal points of the LDV in the experiment. The dashed lines indicate an 

intermediate wall-normal position between two adjacent measurement locations. 

 

3.5.5. Correction procedure 

The true PDF, 𝑃T, defined in Eq. (7), the measured PDF, 𝑃M, defined in Eq. (11), and the penetration 

ratio, 𝐹i,j , as mentioned in Section 3.5.4, were inserted in Eq. (10). This relation expressed how the 

measured PDFs related to the true PDFs. The true PDFs can be replaced by the reference PDFs, as shown 

in Eq. (7), but the 𝑢rms
+  is not previously known. Therefore, in this study, 𝑢rms

+  in Eq. (7) was determined 

as follows. For simplicity, 𝑢rms
+  at 𝑦i is written as 𝑟𝑚𝑠(𝑦i) hereinafter. 

First, the initial RMS value 𝑟𝑚𝑠cor
0 (𝑦i) = 𝑟𝑚𝑠meas(𝑦𝑖) was inserted into Eq. (7), and the true PDF 

𝑃T
0(𝑦i) was obtained. Adopting 𝑃T

0(𝑦i) on the left-hand side of Eq. (10), the PDF 𝑃M,cal
0 (𝑦i) was derived. 
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By using 𝑃M,cal
0 (𝑦i) , 𝑟𝑚𝑠cal

0 (𝑦𝑖) was calculated; it was different from the measured value 𝑟𝑚𝑠meas(𝑦𝑖). 

Then, the loss function for the optimization process is defined as follows: 

 

𝐿n = ∑[𝑟𝑚𝑠cal
n (𝑦𝑖) − 𝑟𝑚𝑠meas(𝑦𝑖)]2

𝑁

𝑖=1

, (12) 

 

where 𝑁 is the total number of measurement locations in the experiment and the superscript 𝑛 means an 

iteration count. 𝐿n means the loss function at the iteration count of 𝑛. The expression of 𝐿n is used when 

focusing on a value of the loss function at a particular iteration count, whereas the expression of 𝐿 is used 

when focusing on the general value of the loss function. The input 𝑟𝑚𝑠cor
n (𝑦𝑖) (𝑛 = 1,2,3, ⋯) for Eq. (7) 

is calculated using the following: 

 

𝑟𝑚𝑠cor
n (𝑦i) = 𝑟𝑚𝑠cor

n−1(𝑦i) −
𝜕𝐿n-1

𝜕 𝑟𝑚𝑠cor
n−1(𝑦i)

× 𝛼, (13) 

 

where 𝑟𝑚𝑠cor
n   means the corrected TI value by the present optimization process, 𝛼  is a parameter to 

determine the weight for optimization, and it is 0.2 in the present analysis. When the loss function 𝐿n is 

smaller than 0.1, 𝑟𝑚𝑠cor
n  is expressed as 𝑢rms,cor

+  and the PDFs on the right-hand side of Eq. (10) are 

𝑃M,cal. Notably, 𝑃M,cal is not the same as 𝑃M, which represent the PDFs measured in the experiment. The 

threshold value 0.1 and parameter 𝛼 were determined by the 𝑛 dependence of the loss function 𝐿 and 

the value of TI profile, as described in Appendix B.  

 

4. Results and discussions 

4.1. PDF profile prediction by Eq. (8) 

In this subsection, the validity of the proposed correction method is confirmed. Figure 7 shows the PDF 

profiles at low Reynolds number contrasted between the measured result and the predicted one by Eq. (8). 

These partial PDF profiles correspond to each component on the right-hand side of Eq. (8). The summation 

of the color lines equals the red bold solid line. From the figure, the measured and predicted profiles 

overlapped. Thus, it was confirmed that the PDF profile of fluctuating velocity measured by LDV could be 

expressed by summing the reference PDF profiles with the weighing factors. From this result, the validity 

of Eq. (8) was confirmed. 
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Fig. 7. Comparison of the measured PDF and PDF predicted by Eq. (8) at Reτ = 3200 in case 3. The 

black dashed and red bold solid lines indicate the measured PDF profile 𝑃M and predicted PDF profile 

𝑃M,cal using Eq. (8) at y+ = 15, respectively. The other color lines indicate partial PDF profiles at each 

wall-normal location at y+ =11, 13, 15, 17, and 20, respectively. 

 

4.2. Correction results of TI profile 

4.2.1. Comparison with different spatial resolution conditions 

In this subsection, the TI profiles at Reτ = 3200 corrected by the proposed correction method are 

discussed. Figures 8 (a–c) show the TI profiles measured by LDV under Cases 1–3, respectively. In each 

figure, it is observed that the corrected TI values are equal to or lower than the measured ones. It can be 

seen that the lower the spatial resolution, the larger the measured TI values, especially near the wall. Since 

the TI values measured by LDV overestimate the true ones, the proposed correction method works well to 

diminish the measurement volume effect on the TI values measured by LDV. Figure 8 (d) shows a 

comparison between the corrected TI profiles under different spatial resolution conditions. Although the 

corrected TI profiles showed slight differences among each other, the corrected TI profiles based on the 

measured TI profiles under different spatial resolution conditions at the same Reynolds number overlapped 

and agreed with pipe DNS data by Ahn et al. [25]. We observed the difference depending on the spatial 

resolution in the near-wall region (y+ < 10). It was due to the uncertainties of the LDV measurement volume 

size and measurement location. From these results, the proposed correction method works well to correct 

the TI profile measured by LDV with the finite measurement volume and gives a reasonable correction 

result under the three cases. 
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Fig. 8. Comparison of the corrected and measured TI profiles at Reτ = 3200 with different spatial 

resolution. (a) Case 1; (b) Case 2; (c) Case 3; (d) Comparison of corrected profiles. The black solid 

circles indicate the measured TI profile 𝑢rms,meas
+ ; the red open circles, blue open squares, and green 

open triangles indicate the corrected TI profile 𝑢rms,cor
+  in Cases 1–3, respectively. The dashed line 

indicates pipe DNS data by Ahn, et al. [25] at Reτ = 3008. 

 

4.2.2. Comparison with Durst correction method 

In this subsection, the proposed correction method is compared with that of Durst et al. [8]. The latter 

one has only been confirmed at low Reynolds numbers; therefore, its applicability to high Reynolds 

numbers is worth discussing. Before the comparison of results, the Durst method is briefly explained. 

The LDV measurement volume effect was investigated by Durst et al. [8]. Their concept for the LDV 

measurement volume effect is based on the laser intensity profile within the LDV measurement volume, 

which means that an obtained velocity measured by LDV with a finite measurement volume is considered 

a volumetric average value within the measurement volume. Therefore, their correction process for the 

measurement volume effect is based on the volumetric integration within the measurement volume. The 

correction equations for the mean and RMS values are, respectively, described by Eqs. (14) and (15).  
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𝑈meas = 𝑈true +
𝑑2

32
(

𝑑2𝑈true

𝑑𝑦2
), (14) 

 

𝑢2̅̅ ̅
meas = 𝑢2̅̅ ̅

true +
𝑑2

32
[2 (

𝑑�̅�true

𝑑𝑦
)

2

+ (
𝑑2𝑢2̅̅ ̅

true

𝑑𝑦2
)], (15) 

 

where the subscripts “meas” and “true” indicate the measured data with the measurement volume of d and 

the true data with an infinitely small measurement volume, respectively. This correction method had been 

used by Fischer et al. [9]; they reported that this correction method could provide an appropriate result. 

In the correction procedure of the Durst method, we used the measured data for the second term on the 

right-hand side of Eqs. (14) and (15). In addition, the derivatives were calculated from the second-order 

accuracy. 

Figure 9 shows a comparison of the original TI profile measured by LDV, the corrected TI profiles by 

the Durst and proposed methods, pipe experimental data by Hultmark et al. [6] and Willert et al. [10], pipe 

DNS data by Ahn et al. [25] and Pirozzoli et al. [26], and channel DNS data by Yamamoto and Tsuji [23]. 

Figures 9 (a–c) show the results under different spatial resolution conditions listed in Table 1. From these 

figures, although both corrected profiles are slightly different, the trends of their near-wall profiles are 

almost the same and in agreement with the previous study data. Although the two correction methods are 

based on different fundamental concepts, they provide almost the same correction results. Therefore, the 

fundamental concept of each correction method is appropriate. 

 

4.2.3. Applicability to relatively high Reynolds numbers 

In this subsection, the applicability of both correction methods to relatively high Reynolds numbers up 

to Reτ = 10000 is discussed. Figures 9 (d–f) show the measured TI profile and two corrected TI profiles 

under 3 different Reynolds number conditions with high spatial resolution settings. From these figures, 

comparing the measured TI profile with the previous study data, we observed the spatial resolution effect. 

That is, the TI values increased in the near-wall region in the relatively high Reynolds number region. 

Although the corrected TI profiles are slightly different, the trends of their profiles are similar and in 

agreement with those of the previous study. At approximately y+ = 15, where the TI profile has an inner 

peak, both the proposed and Durst methods give consistent results, even at high Reynolds numbers up to 

Reτ = 10000, and inclined measurement volume condition in the comparison with the previous study. 

Furthermore, the corrected TI profiles were in good agreement with the previous experimental and 

numerical data even in the near-wall region (y+ < 10). For the applicability of the correction methods to the 

increased Reynolds numbers, both correction methods are likely to correct the TI profiles, as long as the 

LDV measurement volume size and location are properly determined. 
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Fig. 9. Comparison of TI profiles corrected by Durst and proposed methods. (a) Reτ = 3200 in Case 

1; (b) Reτ = 3200 in Case 2; (c) Reτ = 3200 in Case 3; (d) Reτ = 3900 in Case 1; (e) Reτ = 5800 in Case 1; 

(f) Reτ = 10400 in Case 1. The black solid circles indicate the measured TI profile, the red squares indicate 

the corrected TI profile by the Durst method, and the blue triangles indicate the corrected TI profile by 

the proposed method. The black and red dashed lines indicate pipe experimental data by Willert, et 

al.[10] at Reτ = 5358 and 11708 and Hultmark, et al.[6] at Reτ = 3334, 5411, and 10480. The blue, green, 

and light blue dashed lines indicate DNS data by Ahn et al. [25] at Reτ = 3008 (pipe), Pirozzoli et al. [26] 

at Reτ = 6000 (pipe), and Yamamoto and Tsuji [23] at Reτ = 4000 and 8000 (channel). 
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4.3. Discussions 

By comparing the corrected TI profiles, as shown in Fig. 9, we confirmed that the result from the Durst 

and present methods are comparable. In this subsection, we summarize the difference between the present 

and the Durst method. Further, their advantages and disadvantages are mentioned in terms of correction 

procedure and further applicability. 

The difference between the present and the Durst methods concerns the velocity detection frequency in 

the LDV measurement. The Durst method considered that the velocity detection frequency increases in the 

region where the laser intensity is relatively strong, and the time-averaged statistics can be calculated by 

the weighting average of the laser intensity in a general velocity field. In contrast, the present method 

considered a tracer particle penetration frequency using the measurement volume without laser intensity. 

Based on the geometric consideration, the time-averaged statistics can be calculated by the streamwise 

cross-sectional average of the time-averaged statistics in the infinitesimal measurement volume. 

For the correction procedure, since the Durst method can correct the profile using measured profile 

explicitly by Eqs. (14) and (15), it is easy to apply the Durst method. In contrast, the present correction 

procedure is more complex than the Durst method. Therefore, the complexity of the correction procedure 

is a disadvantage of the present method. 

For further application, the present method can be easily combined with other corrections, such as a 

bias of velocity measurement. A fringe distortion is an example of the bias of velocity measurement. In 

general, the fringe spacing constructed in the measurement volume should be constant within the 

measurement volume. However, under some conditions, the fringe spacing is distorted within the 

measurement volume. The present method can simultaneously correct the effects of fringe distortion and 

spatial resolution by incorporating the fringe distortion effects to the “true” PDF calculation step in the 

present correction procedure. This is an advantage of the present method. We are now summarizing another 

paper on the fringe distortion effect. 

As described above, there are several advantages and disadvantages to each correction. However, there 

is no significant difference in the corrected turbulence intensity profiles between the Durst and present 

methods. 

 

5. Conclusions 

A new correction method for LDV measurement volume effects on time-averaged velocity statistics 

was proposed. The proposed correction method is based on the geometric consideration of a measurement 

volume and the PDF of velocity fluctuation. The obtained results are summarized as follows. 

 The measurement volume effect on the PDF of the streamwise velocity is expressed by Eq. (4) from 

the consideration of the measurement volume geometry and the probability of particle penetration for 

the steady flow fields. 
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 The proposed correction method is performed for turbulent pipe flow data. In the correction procedure, 

the PDF profiles measured at low Reynolds numbers are used as the reference PDF profiles. The 

correction is conducted using the measured TI profile as an initial profile, and then the corrected TI 

profile is obtained by optimization. 

 The predicted PDF profile based on Eq. (8) agrees well with the measured PDF profile, which is 

affected by the measurement volume. From this result, the validity of the principle of the proposed 

correction method using PDF is confirmed. The corrected TI profiles based on the measured TI profile 

under different spatial resolution conditions at Reτ = 3200 collapsed with each other and agreed with 

DNS data; therefore, we confirmed the validity of applying the proposed correction method. 

We compared the corrected TI profiles by the proposed correction method with that of Durst et al. [8] 

and found that the results are almost identical, although they have different fundamental concepts. This 

conclusion means that both correction methods guarantee the validity of data correction. We also confirmed 

the validity of the proposed correction method for high Reynolds numbers of up to Reτ = 10000 and for the 

inclined measurement volume of LDV by comparison with the previous experimental and numerical studies. 
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Appendix A: Confirmation of Reynolds number dependence (Re-dependence) of near-wall PDFs 

normalized by its mean and standard deviation using channel DNS data 

In the proposed correction method, we used normalized PDFs measured at low Reynolds numbers as 

reference PDFs in the near-wall region at various Reynolds numbers. In this appendix, to confirm the 

validity of the prediction for reference PDF, a discussion of Re-dependence of the near-wall PDFs using 

channel DNS data of up to Reτ = 8000 by Yamamoto [24]. To evaluate the differences of PDFs among 

Reynolds numbers, Gram–Charlier series for Gaussian profile was used as reported by Tsuji et al. [27]. The 

series are indicated as Eqs. (A.1) and (A.2). 

 

𝑃y(𝑢) = 𝑐0𝜙(𝑢) +
𝑐1

1
𝜙′(𝑢) +

𝑐2

2
𝜙′′(𝑢) + ⋯ +

𝑐2

𝑛!
𝜙(n)(𝑢), (A.1) 

  

𝜙(n)(𝑢) = (−1)n𝐻n(𝑢)𝜙(𝑢), (A.2) 
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where 𝐻n(𝑥) is the Hermite function, and 𝜙(𝑥) is the Gaussian PDF. Figures A.1 (a) and (b) show the 

comparison of PDFs at different Reynolds numbers at the wall-normal distance of y+=5 and 15, respectively. 

From these figures, although the Re-dependence of PDF profiles slightly differs, their general tendencies 

are identical. Figures A.2 (a) and (b) show the Gram–Charlier series coefficients. From these figures, 

although the differences of coefficients are found to be relatively larger for coefficients more than the fifth 

order, it is considered that the Re-dependence of coefficients less than the fourth order is almost negligible. 

From the above comparisons, the Re-dependence of PDF profiles, especially in the near-wall region, is 

almost negligible for applying the proposed correction method at target Reynolds number range. 

 

 

Fig. A.1. Comparison of PDF profiles using DNS data. (a) PDFs at y+=5; (b) PDFs at y+=15. The red, 

blue, green, and black lines indicate PDF profiles at Reτ = 1000, 2000, 4000, and 8000, respectively. 

 

 

Fig. A.2. Comparison of Gram–Charlier series coefficient. (a) y+=5; (b) y+=15. The red, blue, green, 

and black lines indicate Gram–Charlier series coefficients at Reτ = 1000, 2000, 4000, and 8000, 

respectively. 
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Appendix B: Determination of optimization parameters 

In the proposed correction method, the optimization process using gradient descent was used. This 

appendix shows how the optimization parameter 𝛼 in Eq. (13) and a threshold value of the loss function 

expressed by Eq. (12) are determined. 

Figure B.1 (a) shows the iteration count 𝑛 dependence of the loss function 𝐿 for various 𝛼 values. 

Each loss function value decreases as the iteration count increases, which means that the calculated TI 

profile approaches the measured one. For the larger 𝛼 value, the larger decrease rate of 𝐿. Generally, a 

large decrease rate is preferred for optimization, but the rate of 𝛼  = 0.4 is overlarge. Therefore, we 

concluded that 𝛼 = 0.2 is a rational decrease rate for the present optimization process. 

Figure B.1 (b) shows a comparison of the measured TI profile with the calculated TI profiles in the 

optimization process at 𝑛 = 0, 3, 6, 9, and 12 in Case 3 at Reτ = 3200 [Fig. 8 (c)]. The black solid circles 

indicate the measured TI profile, each color line indicates the calculated TI profiles based on Eq. (10) at 𝑛 

= 0, 3, 6, 9, and 12, and the value of the loss function at each 𝑛 is given in the explanatory notes. From 

Fig. B.1 (b), by increasing the iteration count or decreasing the loss function value, the calculated TI profile 

approaches the measured profile. At 𝑛  =12 and 𝐿12  = 0.09, the calculated TI profile agrees with the 

measured TI profile. Figure B.1 (c) shows the 𝐿  dependence of the calculated TI profile. Although a 

smaller value of 𝐿 means that the calculated TI profile matches better with the measured one, the degree 

of agreement is almost identical at 𝐿 ≤ 0.1 from Fig. B.1 (c). Figure B.1 (d) shows the 𝐿 dependence of 

the corrected TI profile. From this figure, the corrected TI profiles at 𝐿 ≤ 0.05 had an irregular profile, 

which would come from overoptimization. Therefore, we concluded that 0.1 is a rational threshold value 

of 𝐿 to finish the optimization process and determine the corrected TI profile. 

From the above discussions, the parameter 𝛼 = 0.2 and the threshold of 𝐿 = 0.1 are suitable values 

for the optimization process described in Section 3.5.5. From Figs. B.1 (b–d), the present optimization 

process gives a rational corrected TI profile for the measurement volume effect. 
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   Fig. B.1. Parameter dependence of optimization process in Case 3 at Reτ = 3200. (a) Iteration count 

dependence of the loss function for various 𝛼; (b) Calculated TI profiles for various 𝑛 with 𝛼 = 0.2; 

(c) Calculated TI profiles for various 𝐿 with 𝛼 = 0.2; (d) Corrected TI profiles for various 𝐿 with 

𝛼 = 0.2. 
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