
Statistical mechanics of protein design
based on Bayesian learning

Tomoei Takahashi



Acknowledgment

This doctoral thesis is the result of my five years of research in Nagoya. I could not
have achieved these research results without the support of many people over the
past five years. Although it is impossible to cover them all, I would like to express
my gratitude in the following.

First and foremost, I would like to express my greatest appreciation to my ad-
visor, Prof. Kei Tokita. We exchanged many words, including small talk, during
discussions, seminars, and weekly lab meetings. In the process, I believe that I con-
sciously and unconsciously learned from him how to carry out research and how to
think. I believe that what I learned from Prof. Tokita will continue to be very
important in my life.

I am also very grateful to my co-researcher, Dr. George Chikenji, for his help.
It is thanks to Dr. Chikenji that my study has received some attention from people
who specialize in proteins.

I am also grateful Prof. Makoto Kikuchi, Motonori Ota, Osaka University and
Prof. Tomoyuki Obuchi, Kyoto University for giving me the opportunity to give
seminars and asking many useful comments and questions on my study.

I am also grateful Prof. Shogo Tanimura and Prof. Yasuyuki Nakamura of
the Many-Body Systems Science Unit, Prof. Yuki Sugiyama who retired from the
laboratory, and Dr. Yuki Izumida who moved to the University of Tokyo. I attended
the same seminar with all of them. I am very grateful for their advice in those
seminars and for their other administrative support.

I would also like to thank all of students that I met in the Many-Body Systems
Science Unit. My friends in the Tokita Lab were all excellent and very inspiring mem-
bers with their own different personalities. I really enjoyed many discussions with
them, which sometimes lasted into the early hours of the morning. The younger stu-
dents who accompanied me on my rambling talks and hobbies of mountain climbing
are also precious experience.

Finally, I am grateful for my parents for bring me up and watching over me. They
gave me the greatest possible support as I repeated a year in university, and selfishly
declared my intention to enter a doctoral program of graduate school. However, it
is also my father and mother who have made me the intellectually curious person I
am today. Thank you.

1



This work was financially supported by JST SPRING, Grant Number JPMJSP2125.

2



Abstract

The study of this doctoral thesis addressed the inverse protein folding problem called
protein design. In general, protein design has an essential significance for applying
drug design. In contrast, we have emphasized the fundamental scientific significance
of protein design. Statistical mechanical informatics, a fusion field of informatics and
statistical mechanics, is one of the most appropriate theories for the fundamental sci-
entific purpose: understanding the “design principle” of proteins. We have applied
Bayesian learning to protein design. That is the typical approach in statistical me-
chanical informatics. We obtained the posterior based on Anfinsen’s dogma and the
statistical mechanical hypothesis for evolution: “the amino acid sequences which have
lower free energy have remained through Darwinian evolution”, initially proposed by
us. We carried out two estimation methods for the posterior: the Markov chain
Monte Carlo (MCMC) method and the cavity method. The latter is a mean-field
approximation frequently used in statistical mechanical informatics but has rarely
been applied to life phenomena. As a result, on applying the 2D HP model, MCMC
successfully finds an amino acid sequence for which the target conformation has a
unique ground state. However, the performance was not as good for the 3D lattice
HP models compared to the 2D models. The performance of the 3D model improves
by using 20-letter lattice proteins. The cavity method yields results almost equiva-
lent to those 2D small HP model from MCMC with lower computational costs. We
carried out a “redesign” of lysozyme using the cavity method and achieved 65% of
all estimated residues that match the true residues with 2-letter level. However, this
result may not be very high. We added some brief analysis about the prior. We find
that at particular temperatures and chemical potentials, the evolutionarily selected
sequence’s free energy is lower than that of the random sequence. Thus, one of the
necessary conditions for the prior distribution is proved. Based on these results,
as the tentative solution for “what is the design principle of proteins?”, we propose
energy minimization of the target structure with the addition of chemical potential
as a candidate protein design principle. That is only valid for evolutionarily selected
temperatures and chemical potentials. We also discussed that it is more likely valid
for less frustrated structures.
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Chapter 1

Introduction

This chapter begins with a general description of proteins, followed by a de-

scription of the protein design problem and a discussion of its significance. We

also introduce the effectiveness of statistical mechanical informatics, the method

on which our research relies, for inverse problems in protein design and other

life phenomena. Finally, we describe the purpose and structure of this doctoral

thesis.

1.1 Protein

In this section, we begin with a general description of proteins, the phenomenon of
protein folding, the Anfinsen’s dogma, an important principle on which all statistical
mechanical studies of proteins rely, and a brief description of their structure. The
physical aspects of proteins are detailed in [1, Sasai 2008].

1.1.1 Proteins and its function

A protein is a complex three-dimensional (3D) structure formed by 20 types of amino
acids linked in a chain. There are about tens of thousands kinds of proteins in the
human body, and they express their functions through their unique 3D structures.
Proteins are the essential substances in living organisms, playing a central role in
almost all life phenomena, such as the transport of oxygen from the lungs to the
rest of the body, energy conversion from food, intracellular signal transduction, and
immune responses.

1.1.2 Protein folding

Proteins fold from an unfolded state without a specific structure into a specific 3D
structure. It is called protein folding. The folded state of a protein is called its native
state or in some cases, its native structure. As explained in the following subsections,
the native structure of a protein is determined by its amino acid sequence. Therefore,
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Chapter 1 Introduction

if we understand the folding process, we can predict the 3D structure of a protein
from the amino acid sequence alone. The problem of predicting the 3D structure
from the amino acid sequence is called protein 3D structure prediction. Protein
folding and protein structure prediction are crucial issues in structural biology.

1.1.3 Anfinsen’s dogma

The function of a protein is determined by its complex 3D structure. The confor-
mation is thermal equilibrium, which is determined by the pattern of the sequence
of 20 amino acids. It is called Anfinsen’s dogma. In the 1960s, Anfinsen denatured
ribonuclease, an enzyme that degrades RNA molecules, by adding urea and mercap-
toethanol, a compound used as a reducing agent that maintains protein activity. The
structure is denatured, and the ribonuclease spontaneously returns to its original 3D
structure when the added substances are removed [2, Anfinsen 1973]. It indicates
that the sequence of amino acids uniquely determines the 3D structure of a protein.

In modern times, It is now known that macromolecules called chaperone1 assist
in protein folding. It has been shown that the amino acid sequence alone does not
determine the conformation of all proteins. Nevertheless, the amino acid sequence
remains essential in determining conformation, and Anfinsen’s dogma is still funda-
mentally correct today. Therefore, as with many statistical machanics studies on
proteins, this study is based on the dogma.

1.1.4 The spatio scale and structure of proteins

In general, a protein is composed of 50 to 2000 amino acids. The spatial scale is
approximately on the order of 10−9 m (1 nm) to 10−8 m (10 nm).

A protein is a chain of amino acids, which are divided into two parts: one part
that is identical to other connected amino acids and one part that is different. The
same portion is called the main chain, and the different portion is called the side
chain. The diversity of side chains of linked amino acids determines the diversity
of amino acid sequences or protein structures. Twenty types of amino acids are the
types of side chains. The unit corresponding to one side chain is called an amino
acid residue (or simply a residue), which means the remnant of what was an amino
acid before it was bound.

1a protein whose function is to prevent proteins from forming intermediates that differ from
their final 3D structure when they fold or from aggregating with other proteins in the cell. The
original definition of a chaperone was given by John Ellis [3, Ellis 1987], who proposed the concept
of chaperone in the 1980s, when its function was first understood. However, it is now known that
proteins play an active role in various scenes throughout their lives, from synthesis to degradation.
However, we will not go into the relationship between proteins and molecular chaperones in this
study.

4



Chapter 1 Introduction

1.2 Protein design

1.2.1 What is protein design?

In principle, the native structure of a protein can be predicted from its amino acid
sequence. Then, the following engineering-oriented idea comes to mind. If we could
know the amino acid sequence that folds into a certain native structure, we could
create a protein with the desired function. In other words, a new problem of “design”
a protein. This is the theme of this doctoral thesis: protein design.

Amino acid  
sequence

3D structure 

3D structure  
prediction

Design

Figure 1.1: Conceptual diagram of protein design. The right represents the 3D
structure, and the left represents the amino acid sequence. Prediction of 3D structure
from amino acid sequence is 3D structure prediction, while prediction of amino acid
sequence from 3D structure prediction is protein design. Each ball represents an
amino acid.

Protein design is to predict the amino acid sequence that realizes the conforma-
tion of a protein from its conformation. Fig. 1.1 shows the conceptual diagram.

An inverse problem is a problem in which the input is estimated from the output.
Conversely, the problem of finding an output from an input is called a forward
problem. In the case of protein folding, information on the amino acid sequence can
be considered as input and information on the native structure as output. Therefore,
the statistical mechanics approach to protein design, such as our study, also has an
aspect of a statistical mechanics approach to inverse problems.

The protein design problem is defined in statistical mechanics as “the problem
of estimating an amino acid sequence that uniquely folds into a given structure as
the equilibrium state. In other words, if we can find an amino acid sequence with
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Chapter 1 Introduction

a given structure (hereafter called the target structure) as its ground state at low
temperatures, it is surely a solution to the protein design problem. Ideally, the
system’s temperature should be the cell’s physiological temperature. However, in
this study, we mainly use a very theoretical analysis called the lattice protein model,
in which the three-dimensional structure of a complex protein is represented by a
coarse-grained model such as the Ising model (described in detail in Chapter 2).
For this reason, we propose a design method at as low a temperature as possible to
ensure that the target structure is the only ground state of the system that is not
degenerate with other similar structures, if not at zero temperature.

The work on protein design from a statistical mechanics standpoint is summarized
in the review papers [4, 5, Coluzza 2017; Cocco et al. 2018]. More extensive protein
design methods, including computational ab initio methods, are summarized in [6–9,
Street and Mayo 1999; Lippow and Tidor 2007; Samish et al. 2011; Samish 2017]
for more details.

1.2.2 Significance of protein design studies

Protein design studies generally has two major significances. One is the engineering
and social significance of the application to macromolecular drug discovery. Even
if a protein structure prediction problem is solved, it is not enough to create a
new protein with the desired function. In order to create a protein with a desired
function, it is necessary to “design” the protein, i.e., design it. Specifically, if the
3D structure and the amino acid sequence on a protein surface are known to fit
the shape of the biosynthetic enzyme of a virus particle or a substance abnormally
produced in the body by some disease, which is the target of interaction, it can be
designed using protein design methods. If we can actually design antibodies against
various pathogens by computer, we can realize inexpensive and speedy development
of therapeutic drugs for intractable diseases that would require a large amount of
development cost using current methods. In fact, (artificial) protein design was
featured alongside the discovery of gravitational waves and AlpahaGo, the AI that
defeated mankind’s strongest Go player, in 2016 as one of the 10 biggest science news
stories selected annually by Science2.

Protein design has great social significance. However, it also has significance as a
basic science. It is, in general, to elucidate the relationship between protein structure
and sequence in the opposite direction to the analysis of protein folding. It is not
easy to discuss this significance in detail. However, suppose, for example, that one
assumes specific rules for the 3D protein structure, designs the protein under those
rules, and successfully designs the structure. From the result, we can understand that
the amino acid sequence has evolved to satisfy the assumed rule. Such knowledge is
difficult to obtain by forward analysis (analysis of protein folding problems). Thus,

2https://www.science.org/content/article/watch-breakthrough-year-2016
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Chapter 1 Introduction

protein design is essential as fundamental science.
That significance is not confined to protein design. Organisms are purposefully

designed by evolution. They behave like autonomous, flexible machines. That char-
acteristic not found in conventional physics is perhaps the most remarkable differ-
ence that distinguishes organisms from ordinary materials. One practical approach
to understanding the principles of operation and designing machines with complex
mechanisms is the constructive approach of “understanding by creating”. Protein
design is a way to understand proteins by creating them. It is precise because of this
approach that we can make the discoveries described above. The “understanding by
creation” approach is called synthetic biology.

1.2.3 The fundamental difficulty of protein design

Protein design aims to obtain an amino acid sequence that folds into the target struc-
ture as its “unique” ground state. Therefore, even if we can estimate the sequence to
minimize the energy of a given target structure, it does not mean that we ensure that
the target structure with the estimated sequence is the only ground state among all
possible structures.

Based on the problem, in order to obtain a solution to protein design problem, it
is necessary to check whether the estimated sequence folds into the target structure
each time one estimates a sequence. If the sequence folds into the target structure,
it is the correct sequence; otherwise, it is necessary to re-estimate the sequence and
perform the same check. One has to repeat the process until the sequence reliably
folds into the target structure. In other words, in principle, protein design involves
a dual optimization of sequence space and conformational space.

The almost infinite degrees of freedom of the protein conformation make this dual
optimization a difficult task. Furthermore, protein folding is a quantum many-body
dynamics with a complex Hamiltonian, so even today, it is impossible to perform the
folding simulation, even with a supercomputer. Moreover, it must be done multiple
times in the double loops. Thus, the protein design problem is, in principle, a more
computationally difficult problem involving protein structure prediction, which is the
forward problem of protein design.

However, widely used protein design packages, such as Rosetta 3, have suc-
ceeded in designing de novo proteins. Moreover, they are not performing the above-
mentioned double optimization but can design a protein by only sampling the se-
quence in many cases. Why is this? Thus, there is a large gap between the principle
problem of protein design and the actual protein design algorithms, and even today
we do not know any protein design“principle” that can explain this gap. There is a
possibility that important issues related to protein evolution are hidden here.

3We will describe Rosetta in detail in Chapter 2
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Chapter 1 Introduction

The most critical issue of this doctoral thesis is a fundamental scientific problem
that is not encountered in solving the forward problem but is encountered only in
the constructivist approach of “understanding by creating”. In this study, we aim to
solve this problem by proposing a statistical mechanics hypothesis of evolution based
on the prior distribution of protein design formulated by Bayesian learning, which
is an a priori probability distribution of the likelihood of the appearance of amino
acid sequences. The prior profile, which will be discussed in detail in Chapter 3 and
further chapters, is the basis of the research for this doctoral thesis.

1.3 Statistical mechanical informatics

What is the most effective approach to solve the above questions? The author be-
lieves that statistical mechanical informatics is one of the most effective approaches.
The formulation of the problem by Bayesian learning and its statistical mechanics
analysis used in this doctoral thesis can be regarded as the cornerstone method in
statistical mechanical informatics.

Statistical mechanical informatics4 is an interdisciplinary area of physics (sta-
tistical mechanics) and informatics that provides efficient methods and systematic
performance evaluation for problems such as error-correcting codes, combinatorial
optimization, machine learning, and high-dimensional statistics5 using statistical
mechanics of disordered systems such as spin glasses [10–13, Mézard et al 1987;
Nishimori 2001; Kabashima 2007; Mézard and Montanari 2009].

All of the objects mentioned above of statistical mechanical informatics are in
the form of inverse problems. In statistical mechanics, one starts from microscopic
states to obtain a thermodynamic macroscopic quantity such as entropy. However,
statistical mechanical informatics targets problems in the opposite direction, such
as estimation problems. One of the main objectives of statistical mechanical infor-
matics is said to be two-fold. The first is to develop a method for estimation by
the replica method6 systematically. The other is the proposal of efficient estimation
methods based on mean-field approximation methods, such as the cavity method,
which extends the Bethe approximation to three-body interactions and beyond. In
other words, statistical mechanical informatics is a theory with the character of a
constructivist approach, even though it has a physics aspect. That is compatible
with the constitutive nature of synthetic biology, as described in section 1.2.2, which

4This name is probably only used in Japan. In the West, it is called statistical mechanics of
information processing, etc. In this doctoral thesis, we use this terminology to unify the field of
statistical mechanics, which deals with informatics, into a single field.

5Statistics for the case where the number of dimensions of the data is larger than the number
of data points. For example, the number of genes in a single sample is larger than the number of
samples for gene expression data.

6An analytic method for obtaining double averages of random interactions and physical variables
for disordered systems.
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Chapter 1 Introduction

is “understanding by creating”. In other words, statistical mechanical informatics has
the potential to play a significant role in the constructivist approach to biological
phenomena such as protein design.

There are only a few examples of applying statistical mechanical informatics to
life phenomena. Some examples include the study of the phase diagram of protein
folding using the cavity method [14, Montanari et al. 2004], but no other notable
studies have been reported. However, many problems in life phenomena, such as
interaction networks between amino acids in proteins, chemical reaction networks
for intracellular signal transduction, and neural networks, involve the overall state
or typical behavior of networks of complex interactions between individual elements.
Therefore, the spin glass model on which statistical mechanical informatics relies is
well suited for life phenomena.

In fact, researchers have used spin glass theory to analyze the biological systems:
associative memory model of neural nets [15–17, Amit et al. 1985; Coolen 2001;
Hertz 2018](the study [Amit et al. 1985] can be regarded as the birth of statis-
tical mechanical informatics) and protein folding transition [18–21, Bryngelson and
Wolynes 1987; Garel and Orland 1988; Goldstein et al. 1992; Gutin and Shakhnovich
1993].

As described above, we have confirmed that statistical mechanical informatics has
an affinity with the constructivist approach to life and has been proven in analyzing
several important biological systems, although not in the context of constructivist
research. This study follows the methods of statistical mechanical informatics, i.e.,
Bayesian learning formulation and statistical mechanics analysis. Therefore, this
study is different from other studies in that it is close to fundamental scientific the-
oretical studies, although it is also one of the machine learning-based protein design
studies, especially those based on deep learning, which has been rapidly developing
in recent years.

1.4 The aim and structure of this doctoral thesis

1.4.1 What should be clarified?

As explained in Sec. 1.2.3, despite the fundamental difficulty that protein design
requires performing a dual optimization of conformational space and sequence space
over and over again, existing design methods do not do so and basically, only require
a single optimization of sequence space for a given structure (henceforth this one-
time computation of parameters (output to input) from the data is called ”inverse
computation” to distinguish it from the overall inference of the inverse problem itself).
Among protein researchers, the question “Why is it possible (or more precisely, why
are there so many such proteins) to design a protein even if one skips the inner
optimization (structure-space optimization)?” The question “Why is it possible to

9



Chapter 1 Introduction

design proteins even if inner optimization (structure-space optimization) is skipped
(precisely, are there many such proteins)?” However, is it not a nontrivial fact that,
despite the infinite number of degrees of freedom in protein structure, one can exclude
the possibility of inferring sequences that fold into other structures just by looking
at information on a given structure? Perhaps there is a hidden problem of protein
evolution behind this.

This problem is also relevant to inverse problems in general. Inverse problems
generally contain a forward problem. For example, backpropagation7 in deep learning
considers the neural network and its weights as parameters or inputs (note that it
is not the input layer or the data to be put into the input layer) and the estimation
results as outputs. Then, forward propagation from the input layer to the output
layer is a forward problem; adjusting the parameters in one set of forward and
backpropagation is the inverse calculation. In backpropagation, one has to repeat the
forward problem and inverse calculation many times. That is precisely an example
where the inverse problem contains the forward problem inside of it.

From an engineering point of view, this is a huge benefit because a significant
reduction in computational complexity allows for very efficient estimation. Moreover,
for problems that require multiple iterations of double optimization, the speedup is
not on the order of a few times. However, it can be tens or even hundreds of
times faster, depending on the problem. The enhancement of the corresponding
fundamental science is indispensable for significant progress in engineering, and this
acceleration is exactly the correct response. In addition, design methods based on
such fundamental problems may lead to “protein function design,” which researchers
have not yet achieved in protein design. Of course, this is too difficult and a big
challenge, but it is precisely at such times that we should go back to the principles
instead of thinking of complex algorithms and their combinations for engineering
purposes only.

1.4.2 The goal of this doctoral thesis

From the discussion so far, we consider the purpose of this doctoral thesis. It is to
consider the question, “Why are some proteins designable even if we skip the internal
optimization?” Then, in the spirit of synthetic biology, we propose a novel design
method by actually creating proteins (theoretically) and evaluating them quantita-
tively.

Note that this doctoral thesis also has a fundamental science aspect. However,
research with fundamental scientific significance is probably rarely seen in the field

7Backpropagation is an optimization algorithm that determines the error with the correct output
at the output layer of a neural network and updates the weights of synaptic connections from the
output layer to the input layer to output more accurate predictions based on this error. One repeats
forward and backpropagation until the error converges.
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Chapter 1 Introduction

of protein design or protein engineering, as it is called.

1.4.3 The structure of this doctoral thesis

This chapter is an introduction to the general framework, and in Chapter 2, we sum-
marize the previous studies. In Chapter 3, we formulate the protein design problem
using Bayesian learning and statistical mechanics, which is the theoretical framework
of this doctoral thesis research. This theory is the basis for all the following chap-
ters. In Chapters 4 and 5, we then run the protein design with a concrete algorithm
and evaluate its quantitative accuracy within the scope of computer simulations.
Chapter 4 presents the results of the Markov chain Monte Carlo (MCMC) method,
and Chapter 5 presents the results of the cavity method. Chapter 6 summarizes the
discussion of the theory and results up to that point. Chapter 7 is a summary.
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Chapter 2

A review of conventional protein
design studies

This chapter begins with a brief review of the general history of previous protein

design studies, including experiments, followed by a summary of previous stud-

ies by equilibrium statistical mechanics. After introducing each topic, a short

discussion of the author’s opinion on the fundamental scientific significance of

the findings is given. Protein design research by equilibrium statistical mechan-

ics relies on two “design criteria”: energy minimization and target probability

maximization. In particular, we will see that the latter is precisely the statistical

mechanics counterpart of the “double optimization” described in the previous

chapter. The description presented in this section is detailed in [22, Shiraki

2019].

2.1 General studies of protein design

2.1.1 Directed evolution: Empirical design

Protein design or protein engineering1 research began in the late 1980s. The dis-
covery of genetic recombination technology in the 1970s triggered the development
of experimental techniques that allowed DNA to be cut and joined at will. The
pioneering work in protein design was the proposal of the directed evolution method
by Frances Arnold and her colleagues, a method of artificially designing proteins
by evolving them in vitro using such genetic engineering techniques [23, 24, Chen
and Arnold 1992; Chen and Arnold 1993]. The directed evolution method was the
subject of the 2018 Nobel Prize in Chemistry.

1Protein engineering is a field of study that aims at mass production and functional modifica-
tion of proteins using genetic engineering methods. Therefore, the term“protein design” does not
necessarily mean exactly the same thing as “protein engineering,” but it is used here because the
history of protein design research began with protein engineering motivation, as explained below.
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Directed evolution follows Darwinian evolution and creates a protein with a de-
sired function by repeatedly evolving the protein through mutation and natural se-
lection by modifying the gene [25, Packer and Liu 2015]. Specifically, the protein
(enzyme) is produced by introducing random mutations to DNA into bacteria, se-
lecting only those enzymes that exhibit the desired reaction, and then repeating the
cycle of adding random mutations to the corresponding bacterial DNA to design a
protein that exhibits the desired reaction. It is a method of directly reproducing
Darwinian evolution in the laboratory.

Directional evolution has been successfully applied to drug development. For ex-
ample, based on directed evolution, the phage display method2 has been successfully
applied to developing antibody drugs. Phage is a virus that infects bacteria. When
a phage gene is mixed with another gene, the protein encoded by the gene is pre-
sented on the surface of the phage, and the phage surface protein is evolved like the
directed evolution method to design a phage surface protein that is specific for anti-
bodies [26, Parmley and Smith 1988]. It is the phage display method. Adalimumab,
approved by the U.S. Food and Drug Administration in 2002 as an excellent drug
for rheumatoid arthritis, is developed using such evolutionary engineering methods.

The fundamental scientific significance of the success of the empirical design,
which has been highly successful in engineering, is that it has confirmed that proteins
are products of Darwinian evolution. Of course, not all proteins have been designed
by directed evolution, so there is still a possibility that there is some framework of
evolutionary theory that goes beyond Darwinian evolution. However, the empirical
design has not revealed any new nontrivial facts about the relationship between
protein structure and sequence.

2.1.2 Ab initio design method: Theoretical design

In this section, we introduce Rosetta, a protein design package briefly mentioned in
Chapter 1, which was developed by David Baker et al. and is a computer algorithm
for computing the various interactions that act on proteins [27, Leman 2020]. How-
ever, Rosetta is not a package dedicated solely to protein design; it can also predict
conformation, protein-protein docking, and protein-ligand docking.

Rosetta predicts sequences directly without reference to structures in databases,
unlike earlier methods that used structure and sequence databases to find sequences
similar to the sequence for which the target structure is being designed. That makes
it possible to design artificial protein structures that do not exist in nature. Such
protein designs are called de novo designs. Baker and his group have designed a vast
protein design consisting of 60 units with a diameter of about 25 nm [28, Hsia et
al. 2016], and a dodecahedral conformation of about 40 nm in diameter [29, Bale et
al. 2016]. The group has confirmed that those conformations are stable under high

2Phage display methods were also eligible for the Nobel Prize in Chemistry in 2018.
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temperatures of 80◦C. They have also succeeded in creating not only proteins but
also mimetic viruses containing their coding RNA [30, Betterfield et al. 2017].

The outline of Rosetta’s methodology is as follows. First, the conformation of
the protein or other biopolymer to be designed, called the Pose, is identified. Next,
ResidueSelector determines amino acid residues, and TaskOperations optimizes side
chains. Then, Specific Movers change the structure of the Pose. Finally, the energy
of the sequence and structure designed by the above procedure is calculated. That
process is the one step of Rosetta’s protocol. One performs the Metropolis method
[31, Metropolis et al. 1953], a typical Markov-chain Monte Carlo (MCMC) method,
with the process after RedisueSeletor as one MC step (Fig. 2.1).

Figure 2.1: Schematic of Rosetta’s protocol, reprinted from [27, Leman et al. 2020].
a: The representation of the overall protocol. b: The representation of each energy
term.

The protein energy used in Rosetta is as follows:

E = EvdW + Ehbond + Eelec + Edisulf + Esolv + EBBtorsion + Erotamer + Eref . (2.1)

Each energy term of Eq. (2.1) is following:

• EvdW: Lennard-Jones for attractive or repulsive interaction

• Ehbond: Hydrogen bonding allows buried polar atoms

• Eelec: Electrostatic interaction between charges
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• Edisulf : Disulfide bonds between cysteines

• Esolv: Implicit solvation model penalizes buried polar atoms

• EBBtorsion: Backbone torsion preferences from main-chain potential

• Erotamer: Side-chain torsion angles from rotamer library

• Eref : Unfolded state reference energy for design

The eighth, average unfolded state reference energy, is the average energy of the
protein when it moves through thermal denaturation. The reference state is the
energy such that subtracting the energy in that state from the energy of the native
state yields an energy more specific to that native structure. The average unfolded
state reference energy is the average energy of the ensemble of denatured states [32,
Liu and Gong 2012].

Rosetta is a protein design package that is widely used around the world, with
many successes, as described above. However, as explained above, its algorithms are
rather complex and require specific protein knowledge to understand and use. Thus,
for all its engineering successes, Rosetta is not very insightful into questions such as
what exactly is essential in the structure-sequence relationship. However, the critical
point of Rosetta’s computational protocol is that it does not significantly change the
main chain structure. As explained in Chapter 1, this point is nontrivial considering
the existence of the inner conformational search, which is a fundamental difficulty of
protein design.

2.1.3 Design method using deep learning: AI-based design

In recent years, there have been many studies on protein design by deep learning [33,
Ding et al. 2022]. They are largely based on multilayer neural networks (MNN)
[34–36, Li et al. 2014; O’Connell et al. 2018; Wang et al. 2018], convolutional
neural networks (CNN) [37–40, Chen et al. 2019; Zhang et al. 2019; Qi and Zhang
2020; Huang et al. 2017], and graph neural networks (GNN) [41–46, Defferrard et
al. 2016; Kipf and Welling 2016; Velič ković et al. 2017; Ingraham et al. 2019; Jing
et al. 2020; Strokach et al. 2020]. At the current stage (January 2023), the most
accurate method is it ADesign, which is a GNN-based method using AlphaFold,
a deep learning method which predicts protein 3D conforamotions with very high
accuracy than conventional method [47, Jumper et al. 2021]. ADesign uses a large
database of more than 200 million protein 3D structures predicted by AlphaFold,
AlphaFold database3. ADesign has achieved an accuracy of more than 60%. The
“accuracy” here is the percentage of correctly predicted residues among the 20 amino
acid residues that make up a protein. Therefore, even with deep learning, there is

3https://alphafold.ebi.ac.uk/
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still much room for improvement. Using Rosetta, the accuracy of this “redesign” is
about 30%.

Above accuracy, the percentage of correctly predicted residues among the 20
amino acid residues that make up a protein is also used in Chapter 5 of this doctoral
thesis. It should be noted, however, that this accuracy measure for redesign is
different from the original criterion for the solution of the protein design problem,
which is the sequence as the ground state only for a given target structure. The
solution to the protein design problem is not necessarily unique. Rosetta’s redesign
accuracy is only 30%, but as discussed in section 2.1.2, Rosetta has successfully
designed many de novo protein structures.

These deep learning design methods use feature values4 such as the dihedral angle
of the native protein structure and the residue-residue distance. The more elements
of the input information, the higher the accuracy.

When one uses deep learning, it is not easy to discuss what deep learning pro-
tein design research implies about the principles of protein design because we do not
know why the learning converges to a good solution in deep learning. However, if
we consider deep learning as an AI that can make perfect predictions by capturing
some essential features in the relationship between input and output data, the infor-
mation on what features are used is essential from a fundamental scientific point of
view. However, it is evident that the dihedral angle and the residual period distance
are essential information for determining the structure of a protein. Deep learning
does not seem to have provided any significant insight into the structure-sequence
relationship at this stage. Therefore, there is still much room for elucidating “what is
essential in the relationship between structures and sequences?” using fundamental
scientific studies.

2.2 Statistical mechanical studies

Since the following sections are descriptions of equilibrium statistical mechanics stud-
ies that are intrinsically related to this study, we will exaplain each in more detail.
Note that most of the works presented below were done before the Rosetta and
deep learning methods discussed in this chapter and thus do not include most of the
fundamental scientific questions that the author has emphasized several times so far.

4A data element that is considered essential in the relationship between input and output and
that influences accuracy. For image recognition, it is the color of the pixels that make up the image
data; for speech recognition, it is the sound waveform; for natural language processing, it is the
frequent words in a sentence, etc.
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Figure 2.2: An example of 2D HP model with 16 residues . Each site is either H or
P, not distinguished here.

2.2.1 The lattice HP model

Proteins are too complex to be treated as they are, and statistical mechanics cannot
be applied to them. Therefore, some coarse-grained model is used, especially in
theoretical studies. Among these, the simplest and most often analyzed statistically
is the lattice HP model proposed by Lau and Dill [48, Lau and Dill 1989]. The
lattice HP model (from now on referred to as the HP model) is a Ising model-like
model in which the backbone chain of a protein is represented by a lattice-shaped
self-avoiding walk, where each lattice point represents an amino acid residue. As
the name suggests, the HP model simplifies the 20 amino acids into two types:
hydrophobic (hydrophobic) and hydrophilic (polar). Fig. 2.2 shows an example of
an HP model.

Compared to the complex realistic protein structures, the HP model may seem
overly simplistic. However, lattice models have been used to elucidate many problems
such as characterizing the free energy landscape of protein folding [?,49, Cieplak and
Banavar 2013; Shi et al. 2016], an explanation of the cold denaturation [50, Dijk et al.
2016], the effect of mutation of amino acid sequence for the native structure [51,52,
Holzgrafe et al. 2011; Shi et al. 2014], and the analysis of RNA folding energy
landscape [53, Chen and Dill 2000]. The minimal model such as the lattice model
is, therefore, still adequate for discussing why the natural protein design methods
succeed in designing proteins without the conformational search.

We here introduce the normal Hamiltonian of the HP model. We consider N
residues σ = {σ1, σ2, . . . , σN |∀i, σi = ±1} on a lattice position r = {r1, r2, . . . , rN},
where i = 1, 2, . . . , N σi = 1 indicates that the i-th residue is an H residue, and
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σi = −1 indicates that it is a P residue.
We assume the energy of the lattice protein is given by

H(r;σ) =
∑
i<j

U(σi, σj)∆(ri − rj), (2.2)

where U(σi, σj) denotes the interaction potential between the monomers i and j.
We moreover assume the simplest functional form of U : U(1, 1) = ϵ1, U(1,−1) =

U(−1, 1) = ϵ2, U(−1,−1) = ϵ3, using two types of interaction set, (ϵ1, ϵ2, ϵ3) =

(−1, 0, 0) and (−2.3,−1, 0). The definition of the contact energy ∆(ri − rj) is

∆(ri − rj) =

1 if ri and rj contact each other,

0 otherwise,
(2.3)

where contact between two residues is defined as the case where |ri − rj | = 1 but
|i − j| ̸= 1. In this model, therefore, the energy given by Eq. (2.2) of denatured
conformations is always higher than the energy of compact conformations.

2.2.2 The energy minimization method

Shakhnovich and Gutin proposed a simple design method, which is called energy
minimization [54, 55, Shakhnovich and Gutin Protein Eng. 1993; Shakhnovich and
Gutin PNAS 1993;]. As the name implies, it is a method for finding the amino acid
sequence that minimizes the energy of a folded protein.

n the studies of statistical mechianical protein design, a native structure R with
a sequence σ folds with a some kind of probability. The probability is the conditional
probability p(R|σ). Based on the Anfinsen’s dogma, the state in which the native
structure is realized as its equilibrium state, so p(R|σ) is expressed as a probability
distribution in statistical mechanics. Thus, let β the inverse temperature of a heat
bath, i.e., physiological temperature, p(R|σ) should be

p(R |σ) =
e−βH(R;σ)

Zβ(σ)
, (2.4)

Zβ(σ) =
∑
r

e−βH(r;σ). (2.5)

Shakhnovich and Gutin theoretically derived by a random energy model that the
energy of the native state of a protein is significantly lower than other denatured
states and that these denatured states are all similar and self-averaging, indepen-
dent from the sequence [21, Gutin and Shakhnovich 1993]. Therefore, Eq. (2.5) is
almost constant regardless of the sequence. Therefore, the sequence with the highest
probability Eq. (2.4) is the one with the lowest Hamiltonian H(R;σ).

However, this would lead to an obvious solution in which every residue is an
H-residue, regardless of its structure. Shakhnovich and Gutin, therefore, determined
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the ratio of H-residues and P-residues to be close to those of real proteins, and
minimized the energy by MCMC with the constraint that the number of contacts
between H-residues and P-residues is less than or equal to 1.

Shakhnovich and Gutin did not test the accuracy of the design in their research
[55, Shakhnovich and Gutin 1993]. They only compared the probability (2.4) of the
designed sequence and the random sequence that can have a non-degenerate ground
state. They also showed that the probability (2.4) of designed sequence is higher even
in the high-T region. However, another group (Deutsch and Kurosuky, we will review
their study next) has compared the design accuracy. According to their results, the
accuracy is about 50% even for small 2D HP models with N = 10 to 18 residues.
The design accuracy is the percentage of structures that achieve a non-degenerate
ground state out of all possible structures.

Thus, the design method of Shakhnovich and Gutin (from now on referred to as
the SG method), while theoretically suggestive, is not reliable from an engineering
standpoint. However, the SG method is qualitatively convincing because it can
generate sequences with a high probability of folding to a given structure, even
among sequences with no degeneracy. It means that we can confirm that Zβ(σ)

is almost constant regardless of the sequence, which is the assumption in the SG
method described above. It is what is meant by making a fundamental scientific
discovery through a synthetic biology approach, as explained in Chapter 1. Such a
result is difficult to achieve in a study such as protein folding simulation.

2.2.3 The MTP-based methods

2.2.3.1 Approximation of free energy

Deutsch and Kurosuky proposed a fundamentally different method from the SG
method. It is target probability maximization (MTP), which maximizes Eq.(2.4)
(from now on, called the target probability). In other words, this is maximum
likelihood estimation in mathematical statistics.

In maximum likelihood estimation, one estimates the parameter θ that maximizes
the probability p(D|θ) (called likelihood function) when the data D with probability
p(D|θ). That is, the estimated value of θ θ̂ is given by

θ̂ = arg max
θ

p(D|θ). (2.6)

Therefore, the MTP is a maximum likelihood estimation for Eq. (2.4). The maxi-
mum likelihood estimate σMTP is given by

σMTP = arg max
σ

p(R|σ). (2.7)

Taking the natural logarithm of both sides of Eq. (2.3), we obtain as follows:

− 1

β
log p(R|σ) = H(R;σ)− Fβ(σ), (2.8)
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where Fβ(σ) := (1/β) logZβ(σ). Deutsch and Kurosuky expanded this free energy to
the lowest order term in the cumulant expansion, i.e., the average energy: ⟨H(r;σ)⟩r,
and then minimized the right-hand side of Eq. (2.8). The average ⟨·⟩r means the
expectation value under

p(r |σ) =
e−βH(r;σ)

Zβ(σ)
. (2.9)

That is, Deutsch and Kurosky’s method computes H(R;σ) − ⟨H(r;σ)⟩r for each
sequence sample, and the sequence that maximizes it is the correct one. They used
simulated annealing to optimize the sequence space.

The design results were generally more than 60% for small 2D HP models with
N = 10 to 18 residues, where all lattice conformation patterns can be enumerated
so that one can computes ⟨H(r;σ)⟩r rigorously. For N = 12, the accuracy was
particularly good at about 90%. In addition, the method outperformed the SG
method in all cases.

The MTP criterion is plausible as a criterion for protein design. However, to
implement the MTP method, one has to calculate the partition function Zβ(σ)

(hereafter called the conformational partition function). This is a hopeless task
given the astronomical patterns of native protein structures. This difficulty is the
statistical mechanical counterpart of the difficulty of protein design described in the
previous section, the exhaustive conformational search inside the protein. Therefore,
all of the methods described below that rely on the MTP criterion need a long time
to design, and in addition, they have only been successful for HP models with a
maximum number of residues of N = 50.

2.2.3.2 Dual Monte Carlo method

Seno et al. proposed the dual Monte Carlo method, in which one optimizes not only
sequence space but also conformational space [56, Seno �et al. 1996]. However, it
is very difficult to carry out MCMC sampling in the conformational space of the
HP model. Seno et al. therefore performed inportance samling, which is one of the
weighted sampling for the conformational space. They also carried out simulated
annealing for the sequence space.

As a result, the dual MC method succeeded to obtain all non-degenerate ground
state for designable 456 conformations of 2D N = 16 HP model.

2.2.3.3 Multi sequence Monte Carlo method

In contrast to the above two studies, Irbakäck et al. proposed a method called the
multi sequence MC method, in which the sequence space is also MC sampled at
each MC step of the conformational space [57, 58, Irbäck et al. 1998; Irbäck et al.
1999]. The main feature of the multi sequence MC method is that it does not search
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for a solution from the total number of patterns in the sequence space of 2N , but
rather it samples the target structure according to some criteria. With this sequence
elimination step, they achieved a significant speed-up over other methods.

Their elimination method is as follows. Rather than dealing directly with Eq.
(2.4), they considered the joint distribution of the structures r and σ given below

p(r,σ) =
1

Z
exp[−g(σ)− βH(r;σ)], (2.10)

Z =
∑
σ

exp[−g(σ)]Zβ(σ). (2.11)

The function g(σ) is a controlling function for probability of σ. They assumed g(σ)
as follows:

g(σ) = −βH(R;σ). (2.12)

The definition (2.12) is a reasonable assumption: a sequence which likely to fold into
R is likely to appear. Then, the target probability p(R|σ) becomes

p(R|σ) = p(R;σ)

p(σ)
=

1

Zp(σ)
. (2.13)

Eq. (2.12) shows that maximizing p(R|σ) and minimizing p(σ) are equivalent.
Therefore, we can search the sequence space efficiently if we can eliminate large
p(σ) sequences. The p(σ) can be obtained by marginalizing Eq. (2.10),

p(σ) =
1

Z
exp[−g(σ)]Zβ(σ). (2.14)

However, since Eq.(2.14) contains Zβ(σ), the sequence elimination by p(σ) is compu-
tationally difficult. Therefore, Irbäck et al. also devised another sequence elimination
based on the Hamiltonian H(R;σ) and H(r;σ) of the target structure R and any
structure r sampled in the dual MC step of structure space and sequence space. If
a sequence σ makes any structure (other than R) lower or equal energy state than
tagerget structure as follows:

H(r;σ) ≤ H(R;σ), (2.15)

one eliminates such sequence satisfying Eq. (2.15). This elimination method can get
desired sequence. The advantage of the latter elimination method using Eq. (2.15)
is that Eq. (2.15) does not have Zβ(σ).

Irbäck et al. tested the design accuracy of N = 16 and N = 18 HP models using
the SG method (Energy minimization), the approximation of free energy Fβ(σ)

by Deutsch and Kurosky, the dual MC method by Seno et al. , and the multi
sequence MC method to compare the performance between these methods. The
details of the results are given in Table 2 of the original paper [58, Irbäck et al.
1999]. The summery of the result is as follows. For N = 16, the design accuracies
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are 87% (Energy minimization)，70% (Approximation of Fβ(σ))，100% (Dual MC),
and 100% (Multi sequence MC), respectively. The computation times are O(1)

(Energy minimization), O(1) (Approximation of Fβ(σ)), O(103) (Dual MC), and
O(10) (Multi sequence MC), respectively. These numbers represent the CPU seconds
(using DEC Alpha 200). The important point is the comparison with Dual MC.
Although the percentage of correct answers is the same for both Dual MC and Multi
sequence MC, the computation time for the latter is significantly reduced to 1/100
of the former.

2.2.3.4 Dynamical approach using the Boltzmann machine learning

The study by Iba et al. was the first in the world to apply the Boltzmann machine
learning method to protein design [59,60, Iba et al. 1998; Tokita et al. 2000]. They
proposed a method to minimize a cost function by converting the sequence variable
σi to the continuous value mi and adding a term that prevents mi from converging to
a non-integer value. Using p(R|m) with σ replaced by m (m := {m1,m2, · · · ,mN )
in the target probability, its cost function is given by

V (m) = − log p(R|m) +
λ

4

∑
i

(m2
i − 1)2, (2.16)

where λ is the controlling parameter of the penalty term. If one differentiates Eq.
(2.16) with respect tomi, the dynamical equation to get optimal sequence is obtained
as follows:

τ
dmi

dt
= − ∂V

∂mi
= fi(β,m)− λmi(m

2
i − 1), (2.17)

fi(β,m) := β
∑
j

∂U(mi,mj)

∂mi
[∆(Ri −Rj)− ⟨∆(ri − rj)⟩r]. (2.18)

In Eq. (2.17), t denotes the pseudo time and τ denotes the time constant that deter-
mine the scale of the dynamics. The fixed point of the dynamical system (2.17) cor-
responds to the design solution. In Eq. (2.18), ⟨∆(ri−rj)⟩r =

∑
r ∆(ri−rj)p(r|m).

Boltzmann machine is a machine that learns interactions to reproduce neural
firing patterns given as data. In this case, Eqs. (2.17) and (2.18) learn the continuous
amino acid sequence that best fits the target structure R given as data. Thus, this
method is a Boltzmann machine learning for protein design method. Iba et al. named
Eq. (2.16) the “design equation”.

We will not give a detailed explanation, but they tested the method on five
randomly selected conformations of a cubic HP model with N = 3 × 3 × 3, where
one can enumerate all conformational patterns. The success rate is the percentage
of the number of correct sequences generated by the simulation from several initial
sequences. They achieved a high percentage of 82% correct for one structure, but
at most 30% correct for the other four structures. However, they also obtained the

22



Chapter 2 A review of conventional protein design studies

percentage of correct answers per “unit” of time, which is calculated by dividing the
percentage of correct answers by the time required for a single conformational search
(⟨∆(ri−rj)⟩r =

∑
r ∆(ri−rj)p(r|m)). The rate of correct answers per time is about

ten times higher than the method by Deutsch and Kurosky.
This method was the first in the world to use machine learning methods in protein

design. By definition, the MTP-based methods can always find a solution if an
appropriate algorithm is used and a long time is spent on it. Therefore, the “number
of correct answers per time” is an important indicator in evaluating the performance
of algorithms. In Chapter 4, we also use the measure to test the performance our
method.

2.2.4 Other studies

After 2000, the competition for accuracy in protein design by proposing equilibrium
statistical mechanics algorithms for the HP model, as described in the previous
sections, has been slowing down. In particular, the momentum of research on MTP-
based methods declined. The reason may be that the computational complexity
of the partition function Zβ(σ) for the conformational space is so large that it is
completely impractical for realistic proteins. However, there are some important
studies, which are briefly summarized below.

Jiao et al. proposed a design method based on relative entropy minimization
between p(R|σ) and the probability of occurrence of a structure p(r|σ) [61,62, Wang
et al. 2004; Jiao et al. 2006]. Since relative entropy is (-1) times the Kullback-
Leibrer divergence, this means that this is a Boltzmann machine learning method5 In
other words, the general mathematical framework is the same as the design equation
method described above, but Jiao et al. do not make the amino acid residue variables
continuous. They used the HNP model in which the 20 amino acids are divided
into three classes, H (Hydrophobic), N (Neutral), and P (Polar), and defined the
percentage of correct answers as how well the three classes of HNP in the real protein
sequence are guessed. In other words, the accuracy of a classifier that classifies 20
amino acid residues into the three classes of HNP was measured. As a result, they
designed 20 proteins with a correct answer rate ranging from 40% to 55% [62, Jiao
et al. 2006]. Although it is difficult to discuss a correct comparison because such
a measure of design accuracy is not widely used and lacks a benchmark, it can be
said that the method still needs improvement because the accuracy is expected to
decrease as the number of amino acid types is increased.

Coluzza et al. proposed a design method by energy minimization with conditions

5the signs of relative entropy and Kullback - Leibrer divergence are often explained without
distinguishing between them, and indeed (In fact, what Jiao et al. call relative entropy is generally
regarded as the Kullback-Leibler divergence, so their study is not about maximizing relative entropy
but minimizing it.
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that ensure heterogeneity of sequence types [63, 64, Coluzza et al. 2003; Coluzza
2011]. A condition that ensures sequence type heterogeneity is the quantity obtained
by dividing the permutation of the total number of residues N by the product of
the permutations of the number of residues na, a = 1, 2, · · · , 20 for each amino acid
type:

Np =
N !

n1!n2! · · ·n20!
. (2.19)

Coluzza devised his own off-lattice model of proteins and used the Hamiltonian to
design a small realistic protein with about 50 to 70 residues, which approximately
reproduces the 3D structure. The model was found to approximately reproduce the
3D structure of the protein [64, Coluzza 2011].

Bianco et al. considered that water molecules around the protein and in the inner
pocket contribute to the stabilization of the native structure of the protein [65, 66,
Bianco et al. 2012; Bianco et al. 2015], they proposed a design method considering
those effects. They considered the enthalpy added to the Hamiltonian of the volume
change of the protein due to the entry of water molecules inside the protein during
folding. They then proposed a design method by enthalpy minimization that min-
imizes the expected value of the enthalpy described above for the configuration of
water molecules and by maximizing the enthalpy difference between the denatured
and native states [67, Bianco et al. 2017]. Although they did not carry out an
explicit test of their design method because the purpose of their study was not to
evaluate the accuracy of their design method, they did confirm that the designed
lattice proteins retain stability close to that of real proteins. Notably, their results
show that the stability of the protein is reduced when the segregation of hydrophilic
residues on the protein surface and hydrophobic residues in the inner core is too high.
They found that the region of temperature T and pressure P where the protein can
exist stably is narrowed under such conditions.

2.3 Summary

As the above reviews show, empirical, theoretical, and AI-based protein design have
been successful in designing many realistic proteins. In contrast, statistical me-
chanics studies have not succeeded in designing proteins of realistic sizes, even for
coarse-grained models such as the HP model. Therefore, the fundamental scientific
significance of protein design studies by statistical mechanics is increasing. That will
lead to the solution of significant problems such as the protein function design and
the design of intrinsically disordered proteins6 (IDP), considering that engineering
breakthroughs require the development of basic science.

6Intrinsically disordered proteins are proteins that do not have a specific conformation, which
has attracted much attention in recent years.
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In statistical mechanical protein design studies, it is clear from the previous
reviews that, from an engineering point of view, the energy minimization design
method has relatively low accuracy with a short computation time. In contrast,
the MTP-based design method has relatively high accuracy with long computation
time7.

However, if we classify which of the three methods introduced in section 2.2.4
relies on which design criterion, we can say that the first one, relative entropy min-
imization, is based on the MTP. The other two on energy minimization8. Thus,
the statistical mechanical protein design research is gradually returning to energy
minimization by SG from the MTP-based methods. The main reason is that the
MTP-based methods involve Zβ(σ), which requires a vast amount of computation.
However, not only such negative reasons, but also a positive reason may be that
energy minimization by SG is sufficient to some extent if the diversity of amino
acid residues is well secured or the effect of water molecules bound to the protein is
introduced explicitly.

However, there is no discussion in the work of Coluzza et al. and Bianco et al.
about why energy minimization produces good results. Therefore, it is still relevant
today to test statistical mechanics design methods on HP models in a way that
explains why, and to evaluate their accuracy more exhaustively. Such a study may
also explain why Rosetta is able to correctly design many protein structures, given
that Rosetta’s protocol is similar to the energy minimization.

7In the comparison of accuracy in the study by Irbäck et al. reviewed in 2.3.4, the design accuracy
is 87% for energy minimization and 70% for Fβ(σ) approximation, so the accuracy relationship
described here is reversed. This is because, unlike other MTP-based methods, Fβ(σ) is only an
approximation, and its accuracy is considered to be affected by the accuracy of Fβ(σ)

8Bianco et al.’s design method is based on energy minimization because it minimizes the expected
value of enthalpy but not the expected value in the configuration of the structure.
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Chapter 3

Bayesian formulation

In this chapter, we formulate the protein design problem by Bayesian learning.

Specifically, we examine what the three important probability distributions in

Bayesian learning, i.e., likelihood function, prior distribution, and posterior

distribution, are for protein design. In particular, we propose our own prior

distribution, a statistical mechanics hypothesis on the evolution of proteins.

The formulation presented in this chapter will be used in exactly the same way

in the subsequent chapters 4 and 5.

3.1 Bayesian learning

In this section, we explain Bayesian learning shortly. Bayesian learning is a theory
of machine learning based on Bayesian statistics. Although it is also called Bayesian
statistics or Bayesian machine learning, we use the term Bayesian learning in this
doctoral thesis.

Bayesian learning considers that data D is generated according to a conditional
probability distribution p(D|θ) under an observed parameter θ. It is called the
likelihood function. In addition, Bayesian learning assumes a prior probability dis-
tribution p(θ) for the parameter θ, unlike the usual frequentist statistics. It is called
the prior distribution, or more simply, prior. We can obtain p(θ|D), which is “the
probability of the parameter θ given the observed data D," from the following Bayes’
theorem. When θ is a continuous variable, Bayes’ theorem is given by

p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

. (3.1)

The left-hand side of Eq. (3.1), p(θ|D), is called the posterior distribution, or more
simply, posterior. Bayesian learning estimates the true parameters from this poste-
rior, or predicts unobserved data.
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3.2 Why do we use Bayesian learning?

The main reasons for using Bayesian learning instead of other machine learning
methods are as follows:

1. Easy to incorporate domain knowledge for each field.

2. It is similar to the cognitive and reasoning processes of living organisms.

3. Can naturally apply statistical mechanical informatics methods.

1. is because Bayesian learning allows humans to freely determine probability dis-
tributions for variables and parameters appearing in the problem in a patchwork
fashion. There does not have to be a single prior distribution, and multiple distri-
butions can be used to reflect existing knowledge or hypotheses, depending on the
data generation process.

Concerning 2. the free energy principle, for example, a hypothesis about the
brain’s perceptual and inferential processes, states that "the brain unconsciously
infers the data-generating process behind sensory input to minimize surprises from
environmental information [68, Friston et al. 2006]. That is exactly in line with the
Bayesian learning scheme described above. The process by which cells perceive and
correctly respond to information from the outside world is similar. In quantitative
studies, Bayesian inference has been used to decode information from noisy receptor
signals [69, Kobayashi 2010].

As for 3., in statistical mechanical informatics, it is a standard practice to formu-
late the problem using Bayesian statistics and perform statistical mechanics analysis.
This ease of application of statistical mechanical analysis is a great advantage when
considering the integration of physics and machine learning, as described in Chapter
1.

3.3 Bayesian learning for protein design

In the following, we will apply Bayesian learning to protein design. Since this for-
mulation is not dependent on any particular protein model, we will describe the case
with the HP model described in the previous section after explaining the model-
independent formulation for a specific protein.

The observed data correspond to the native structure R of a given protein whose
sequence is unknown, and the parameters correspond to the amino acid sequence σ

that realizes it. The structural data R is a set of coordinate variables that allow us
to identify the protein backbone structure. The amino acid sequence σ is a set of
variables representing each amino acid type. The target structure R is considered
to be realized by p(R|σ) given the amino acid sequence σ. If the prior of the amino
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acid sequence is p(σ), the probability of the sequence σ given the target structure
R as observed data, i.e. the posterior p(σ|R), can be expressed by the following
formula from Bayes’ theorem:

p(σ|R) =
p(R|σ)p(σ)∑
σ p(R|σ)p(σ)

. (3.2)

The next step is to obtain posterior p(R|σ) by assuming a likelihood function
p(R|σ) and a prior p(R|σ).

First, what is the form of the likelihood function p(R|σ)? Following the protein
design study by statistical mechanics introduced in the previous chapter, we consider
the following canonical distribution.

p(R |σ) =
e−βH(R,σ;µ)

Zβ,µ(σ)
, (3.3)

Zβ,µ(σ) =
∑
r

e−βH(r,σ;µ). (3.4)

As a Hamiltonian H(R,σ;µ), we consider one that consists of the following inter-
actions between amino acid residues and between amino acid residues and water
molecules surrounding the protein. The Hamiltonian of a protein with native struc-
ture r amino acid sequence σ is expressed as follows:

H(r,σ;µ) = Hrr(r,σ) + µHrw(σ). (3.5)

The first term represents the residue-residue interaction, and the second represents
the interaction between amino acid residues and water molecules. The parameterµ
is the chemical potential of water. The Hamiltonian is such that the larger µ is, the
more bound states with water and the smaller µ is, the less bound states with water.

This Hamiltonian is an energy function of the HP model Hamiltonian Eq. (2.2)
with the addition of the interaction with water. The solvation term was added
because the entropy related to the arrangement of water molecules bound to proteins
has been driving protein folding since the series of statistical protein design studies
introduced in the previous chapter, mainly in the late 1990s [70, Kinoshita 2009].
In addition to Eq. (3.5), a Hamiltonian that includes the effect of water on the
interaction between water molecules in bulk and on the surface of the protein has
been developed [65–67, Bianco et al. 2012; Bianco and Franzese 2015; Bianco et al.
2017]. In this study, however, we use a simpler Hamiltonian. We call the second
term in Eq. (3.5) the water effect, but the first term in (2.5) also reflects the water
effect since the hydrophobic interaction contains the effect of repulsion from water
in the first term. Therefore, Eq. (3.5) can be considered as double counting the
effect of water. However, recent studies have theoretically shown that the attraction
between hydrophobic residues which is independent of the hydrophobic effect, is more
effective for the stabilization than the hydrophobic effect in protein folding [71, Sumi
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and Imamura]. Therefore, we consider the first term in Eq. (3.5) to be an attraction
independent of the hydrophobic effect between amino acid residues.

In the case of the HP model, the Hamiltonian Eq. (3.5) becomes

H(r,σ;µ) = −
∑
i<j

σiσj∆(ri − rj)− µ
∑
i

(1− σi). (3.6)

Here, σi = 1 indicates that the i-th residue is an H-residue, and σi = 0 indicates
that it is a P-residue. Because σi is a P-residue, σi = 0, Eq. (3.6) is a modified
Hamiltonian of the original Hamiltonian of the lattice HP model by adding the
interaction between P-residues and water. In this study, for simplicity, it is assumed
that the residues interact with water molecules only in the P-residue.

The next step is the prior p(σ). The formulation of p(σ) is a highly non-trivial
problem compared to the likelihood p(R|σ). That is because, since the amino acid
sequence is determined from the base sequence written in DNA, the question is the
same as "What bias does the genetic information have in the genotypic space as a
result of (or in the process of) the evolution of life?

We consider the following hypothesis for this problem. That is, the amino acid
sequences that remain in nature, i.e., that have evolved, lower the following free
energy:

Fβ,µ(σ) = − 1

β
logZβ,µ(σ). (3.7)

This hypothesis is identical to that sequences (genes) have evolved with Eq. (3.6) as
a kind of fitness. The idea that the amino acid sequences that makeup proteins are
a special kind of evolution among all sequence patterns is shared by many protein
researchers. However, what is special about such sequences as opposed to random
sequences is still unknown. Our hypothesis answers this question by asserting that
such special sequences are those with low free energy (3.6). We propose a protein
design method based on this hypothesis in this study. In Section 6.2, we present an
analysis to verify this hypothesis.

We reflect the above hypothesis in the prior p(σ). Since the lower the free energy
Fβ,µ(σ) is higher the partition function Zβ,µ(σ) is high, we propose p(σ) as follows:

p(σ) =
Zβp,µp(σ)

Ξβp,µp

, (3.8)

Ξβp,µp =
∑
σ

∑
r

e−βpH(r;σ;µp). (3.9)

It is clear that Eq. (3.7) satisfies the normalization condition if summed over
∑

σ.
Eq. (3.9) is the partition function that sums over both conformational and sequence
space and is constant independent of conformation and sequence.
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Substituting Eq. (3.2) and Eq. (3.7) into the Eq. (3.1), we obtain the following
posterior:

p(σ|R) =
p(R|σ)p(σ)∑
σ p(R|σ)p(σ)

(3.10)

∝ e−βH(R,σ;µ)

Zβ,µ(σ)
·
Zβp,µp(σ)

Ξβp,µp

. (3.11)

If βp = β and µp = µ, then the denominator and numerator Zβ,µ(σ) in Eq. (3.10)
cancel each other out. The partition function Ξβp,µp does not depend on the sequence
σ, so it cancels with the one appearing in the normalization constant in Eq. (3.9).
Consequently, the following posterior distribution is obtained:

p(σ|R) =
e−βH(R,σ;µ)

Z(R;β, µ)
, (3.12)

Zβ,µ(R) =
∑
σ

e−βH(R,σ;µ). (3.13)

The new partition function Zβ,µ(R) is the sum of Boltzmann factors e−βH(R,σ;µ) for
all sequences, with structure fixed to the target structure. An important point in the
derivation of the posterior (3.12) is that the partition function Zβ,µ(σ) cancels and
does not appear in the results. It avoids the computational difficulties of the MTP-
based method introduced in the previous chapter. In other words, Eq. (3.8) not
only has the nontrivial claim that the native protein sequence is the lower one in Eq.
(3.7) but also has the extremely large engineering benefit of omitting the exhaustive
conformational search corresponding to the difficulty in the protein design problem.
We can perform some estimation methods to infer the sequence from the posterior
(3.12), such as MCMC. The computation of the partition function (3.13) is much
easier than Zβ,µ(σ).

The design method we propose is very similar to the SG method described in 2.2.2
in that it does not include the partition function Zβ,µ(σ), except for the Hamiltonian
form and the µ adjustment. This point is discussed in Chapter 6.

3.4 Parameters

Although the temperature should essentially be the same as the physiological tem-
perature, we set β to β = 10. We chose such a low temperature in order to ensure
the ground state as explained in 1.2.1.

The optimal value µ = µ∗ for the water chemical potential µ is determined by
design many times with different values in this study, and is the value that achieved
the most accurate design. In addition, µ∗ = µp. The criterion for the optimization
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of µ is not obvious. For example, minimizing the following free energy:

Fβ,µ(R) = − 1

β
logZβ,µ(R), (3.14)

is one promising candidate for this criterion. However, it is not clear whether mini-
mizing the free energy (3.14) maximizes the design accuracy. The free energy when
the normalization constant of Bayes’ theorem as in the free energy (3.14) is sometimes
referred to as Bayes free energy.
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Chapter 4

Sequence estimation by MCMC

We show the design results of our protein design method in this and the following

chapters. In this chapter, we use MCMC to estimate the amino acid sequence

and test it to relatively small 2D lattice proteins. The results shown in this

chapter have been published in the article [72, Takahashi et al. 2021].

4.1 Applying to the posterior

In the previous section, we obtained the posterior distribution p(σ|R). The final
step is to obtain an optimal HP sequence using Eq. (3.12). Nevertheless, the exact
calculation of Eq. (3.13) is difficult if the number of residues N is large. We thus
utilize one of the simplest MCMC methods, Gibbs sampling (GS) [73, S. Geman and
D. Geman 1984]. One obtains realized values of random variables from the condi-
tional probability distribution with random variables other than the random variable
of interest in GS. In this method, the sampling probability of σi of each Monte Carlo
step (MCS) is a conditional probability of σi given other random variables. We thus
obtain the following sampling probability. Accordingly, the sampling probability of
an H residue (σi = 1) or P residue (σi = 0) is given by

p(σi = ±1|R;σ\i) =
1

1 + e±β{∆Ei(R;σ)+µ} , (4.1)

where σ\i := {σ1, . . . , σi−1, σi+1, . . . , σN}, a vector of all random variables of residues
except for the i-th residue σi, and the double signs correspond. Let ∆Ei(R;σ) :=∑

j∈n(i) (U(1, σj)− U(0, σj)), where n(i) denotes the set of sites j that are the nearest
neighbors of i-th site except for those along the chain (j ̸= i− 1, i+1). The random
variables σ\i have fixed realizations in the denominator and the numerator of the
right-hand side of Eq. (3.12) at every MCS. Thus, the random variables that interact
with the i-th residue σi remain only on the right-hand side of Eq. (4.1), because those
fixed realizations, except for the residues that interact with σi, are canceled out in
Eq. (3.12). We decide whether each residue is H or P using the expectation ⟨σi⟩; that
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is, σi is H if ⟨σi⟩ > 0.5 and P otherwise. We also take the number of MCSs until the
estimated value does not change and let the burn-in be the leading 1/5 of all MCSs.
As mentioned in the previous chapter, the inverse temperature is set to β = 10 for
all conformations of all lattice models. On the other hand, we heuristically set the
chemical potential µ in order to design a unique ground state by repeating the design
experiment many times. The necessary and sufficient condition for successful design
is that the energy given by Eq. (2.2) of the target conformation and the sequence
designed corresponds to a unique ground state of all possible compact conformations.

4.2 Results

4.2.1 Enumerable conformations

First, we tested our design method with comparatively small lattice protein models,
for which all compact conformations were enumerable. We designed 2D N = 3× 3,
3 × 4, 4 × 4, 5 × 5, and 6 × 6 lattice models, and 3D N = 2 × 2 × 3 and 3 × 3 × 3

lattice models.
Native conformations are not necessarily maximally compact. This is because

proteins can have low energy if the hydrophobic core is compact enough [74, Yue
and Dill 1995]. Therefore, we designed non-maximally compact conformations of
2D N = 9, 12, and 16 used in the study by Irbäck and Troein [75, Irbäck and
Troein 2022] to compare the statistical property between maximally compact and
not maximally compact conformations. Following [75, Irbäck and Troein 2022], we
do not design approximately unfolded conformations without a core. The examples
of both N = 16 maximally compact and non-maximally compact conformations are
shown in Fig. 4.1.

The numbers of all conformations Nc including those that are not maximally
compact conformations and the numbers of all HP sequences Ns of these lattice
models are shown in Table 4.1.

The number of maximally compact conformations is the number of all compact
self-avoiding walks from which all kind of rotational, reflection, and head-tail sym-
metrical conformations have been eliminated. The total number of conformations
of these lattice models is enumerable; hence, one can confirm whether or not the
designed sequence folds into the target conformation as a unique ground state.

The number of sequences that fold into the target conformation as a unique
ground state differs among target conformations and is called designability. In gen-
eral, a conformation with higher designability is easier to design. This is because
high designability means a large solution space in sequence space.

Designability is a significant quantity that relates to the thermodynamic stability
of proteins; however, we do not address issues of designability in depth here. In order
to calculate the exact success rate (SR) of the overall conformation, one needs to
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Figure 4.1: Examples of N = 16 maximally compact conformation (left) and non-
maximally compact conformation (right). The maximally compact conformation has
nine contacts, whereas the non-maximally compact conformation has seven contacts.

select designable target conformations with designability greater than zero; however,
to enumerate the designabilities of each conformation, one would need to enumerate
the energy of every combination of conformations and sequences. This would require
vast computation time for models with comparatively large size, such as the 5 × 5,
6× 6, and 3× 3× 3 models (Table 4.1), even though they are compact. Therefore,
in this study, we carried out the enumeration of designabilities only for the N = 9,
N = 12, N = 16, and 2× 2× 3 lattice models.

For the models with N = 5×5, 6×6, and 3×3×3, the number of conformations
was too large. Thus, we randomly chose 100 target conformations and determined
the SR, that is, the number of successfully designed conformations (Table 5.1). For
the models with N = 6 × 6 and 3 × 3 × 3, we moreover identified the most highly
designable conformation (MHDC) (Figs. 4.2, 4.3, and 4.4), in which designabilities
were exactly enumerated [76, Li et al. 1996], to test whether our method could be
used to design the easiest instance.

The results of the application of our method are summarized in Table 5.1. All de-
signed sequences were classified into three types: good, medium, and bad sequences.
The good sequences had the target conformation as a unique ground state, medium
sequences had the target conformation as one of the degenerated ground states, and
bad sequences had ground state conformation(s) that did not include the target con-
formation. In the table, SR, N (g)

c , N (m)
c , and N

(b)
c , denote the percentage of good

sequences and the number of conformations that were designed with good, medium,
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Table 4.1: Number of conformations and HP sequences. N = 9, N = 12, and N = 16

involves compact 3× 3, 3× 4, and 4× 4 as their maximally compact conformations,
respectively. The numbers in brackets represent the numbes of maximally compact
conformations, respectively.

Size Nc Ns Conformations designed

N = 9 12 (8) 512 All
N = 12 52 (27) 4096 All
N = 16 518 (62) 65536 All
5× 5 1075 33554432 Random 100
6× 6 52667 68719476736 Random 100 and MHDC

2× 2× 3 69 4096 All
3× 3× 3 103346 134217728 Random 100 and MHDC

and bad sequences, respectively. We also calculated the average degeneracy, dav, for
all N (g)

c +N
(m)
c ground states. We repeated the calculations with various values of µ

and obtained the optimal value µ∗ that gave the maximum success rate. The values
of µ∗ for each lattice size are listed in Table 5.1. The values of the energy parameters
are also listed in Table 5.1. The energy parameters (ϵ1, ϵ2, ϵ3) = (−2.3,−1, 0) were
also used for a 3× 3× 3 lattice model in previous work [76, Li et al. 1996] in order
to avoid the degeneracy of ground states. We used the same energy parameters for
3D lattice models for the same reason. The total MCSs were set to 105 for all target
conformations listed in Table 5.1. The N = 9 and 2× 2× 3 lattices included several
non-designable conformations; we excluded such conformations when calculating SR.

According to the results shown in Table 5.1, the SRs were relatively high for
small 2D HP models, but they decreased as N increased. Nevertheless, in the case of
N = 16, the SR is higher than that for the smaller case, N = 12. The N = 16 case
has an extremely high percentage of non-maximally compact conformations than
the N = 12 one. Hence, this result shows that the proposed design method is more
efficient for non-maximally compact conformations.

The average degeneracy dav was low for 2D models. By contrast, the success rate
for 3D models

was low compared with that of 2D models. For 2 × 2 × 3, dav was low, but for
3× 3× 3, it was comparatively high. Thus, designed sequences did not appear to be
likely to fold into the target conformations for the 3×3×3 cubic lattice. In addition,
µ∗ increased as the number of residues increased for both the 2D and 3D lattices.

Nevertheless, to design the 3D lattice conformations of the HP model efficiently
is difficult because the logarithm of the number of types of the amino acid (alphabet
size) is smaller than the conformational entropy of a residue [77, Pande et al. 2020
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Table 4.2: Design results and the optimal chemical potential µ∗

Size N
(g)
c N

(m)
c N

(b)
c SR dav µ∗ (ϵ1, ϵ2, ϵ3)

N = 9 7 1 0 87.5 1.25 0.55

N = 12 29 11 0 72.5 1.475 0.6
N = 16 393 89 0 81.5 1.26 0.62 (−1, 0, 0)

5× 5 68 32 0 68 1.48 0.74

6× 6 63 37 0 63 1.58 0.8
2× 2× 3 17 30 1 35.4 2.94 1.7

(−2.3,−1, 0)
3× 3× 3 8 80 12 8 10.67 2.33

Sec.IV]. Therefore, for N = 2 × 2 × 3 and 3 × 3 × 3, design accuracy would be
low when using the HP model. We thus show the design results by increasing the
alphabet size for the 3D lattice cases in the next subsection.

Figure 4.2: Designed sequence of the MHDC of 6 × 6 HP model with (ϵ1, ϵ2, ϵ3) =

(−1, 0, 0), β = 10, and µ∗ = 0.8. The white and black balls denote H and P residues,
respectively (the same applies in the following figures.

Note that we did not enumerate designabilities of all conformations for the 5×5,
6×6, and 3×3×3 models; hence, there may have been non-designable conformations
among the 100 randomly chosen conformations. However, it is likely that this was
not the case for the 5 × 5 and 6 × 6 models, because the smaller N = 9 HP model
did not lead to any non-designable conformation. On the other hand, the fraction of
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Figure 4.3: Designed sequence of the MHDC 3× 3× 3 HP model with (ϵ1, ϵ2, ϵ3) =

(−2.3,−1, 0), β = 10, and µ∗ = 2.33.

non-designable conformations out of all conformations for the 2 × 2 × 3 model was
21/69; the fraction for the 3× 3× 3 model is expected to be less than that because
the fraction decreased as the size increased in the 2D cases. Thus, there may have
been a considerable number of non-designable conformations among the randomly
chosen 100 conformations for the 3× 3× 3 model; hence, the real success rate of the
3× 3× 3 model increased when non-designable conformations were excluded.

Concerning the MHDC of the 6 × 6 and 3 × 3 × 3 HP models, we obtained
a good sequence (Figs. 4.2, 4.3, and 4.4). This is the first example of design of
a 6 × 6 MHDC without enumerating all HP sequences [76]. For the MHDC of
the 3 × 3 × 3 HP model, we successfully designed a good sequence for the energy
parameters (ϵ1, ϵ2, ϵ3) = (−2.3,−1, 0) (Fig. 4.3) and (-1, 0, 0) (Fig. 4.4). We
executed 104 MCSs for these three cases. The results obtained here demonstrate the
features of general globular proteins, with H residues on the inside of the protein and
P residues on the surface exposed to the surrounding water molecules. We observed
four residues (surrounded by dotted black circles in Figs. 4.3 and 4.4) that were
different from each other, possibly owing to the presence or absence of H-P (P-H)
contact energies.

The larger µ∗ of the MHDC of 3×3×3 HP model with (ϵ1, ϵ2, ϵ3) = (−2.3,−1, 0)

compared with the case of (ϵ1, ϵ2, ϵ3) = (−1, 0, 0) could have been due to the lower
H-H interaction ϵ1 = −2.3, leading to a greater increase in the number of H-residues
than in the case of (ϵ1, ϵ2, ϵ3) = (−1, 0, 0). Therefore, one needs to increase µ∗ in
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Figure 4.4: Designed sequence of the MHDC of 3×3×3 HP model with (ϵ1, ϵ2, ϵ3) =

(−1, 0, 0), β = 10, and µ∗ = 1.0.

order for the surface residues to be P residues.

4.2.2 Results of 20-letter 3D lattice proteins

In the results shown in Table II, the SRs of 3D cases are quite low. As mentioned
above, this is because the logarithm of the alphabet size is smaller than the confor-
mational entropy of a residue in the case of 3D lattice models [77, Pande et al. 2020
Sec.IV].

Therefore, we show the design results of the 3D lattice conformations with in-
creasing alphabet size here. The 3D lattice target conformations designed here are
the same as those given in the previous subsection. The alphabet size is 20, and we

Table 4.3: Design results of small 3D compact lattice conformations with Miyazawa-
Jernigan matrix [78, Miyazawa and Jernigan 1985] and the optimal chemical potential
µ∗ with the results of HP model in Table. 4.2

Size Alphabet size N
(g)
c N

(m)
c N

(b)
c SR dav µ∗

2× 2× 3
20 (MJ) 16 18 14 33.3 1.60 1.1
2 (HP) 17 30 1 35.4 2.97 1.7

3× 3× 3
20 (MJ) 19 63 18 19 5.74 1.55
2 (HP) 8 80 12 8 10.67 2.33
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use the original Miyazawa-Jernigan (MJ) matrix [78, Miyazawa and Jernigan 1985
upper half of Table V] for the contact energy of all the pairs of amino acids. For
simplicity, we set all interactions between water molecules and polar amino acids
to be equal. The procedure of optimizing µ is identical to the case that of the
HP model. We assume that the amino acids Y, F, W, L, V. I, A, P, and M are
hydrophobic [79, Monera et al. 1995].

It is impossible to calculate the expectation value ⟨σi⟩ in the same way as the
HP model because the 20 types of amino acids cannot be represented using the Ising
variables. The optimal ⟨σi⟩, therefore, is given by the type sampled the most after
the burn-in period.

Table 4.3 depicts the obtained results. To obtain the precise results, one has
to calculate the designablities of all conformations using the MJ matrix. This is
computationally difficult because calculating the 20N energy patterns for all confor-
mations is necessary. Nevertheless, the designability of the 20-letter model correlates
with the designability of the 2-letter model [80, Li et al. 2002]. Hence, in the case
of N = 2 × 2 × 3, as given in Table II described in previous subsection, we ex-
cluded 21 non-designable conformations when we assumed the energy parameter
(ϵ1, ϵ2, ϵ3) = (−2.3,−1.0, 0) of the HP model.

According to results summarized in Table 4.3, for N = 2 × 2 × 3, the value of
SR of the 20-letter is a slightly less than the SR of the HP model. By contrast, in
the case of N = 3× 3× 3, SR of the 20-letter is more than twice as large as the SR
of the 2-letter. The ground state degeneracy typically breaks upon increasing the
alphabet size. We believe that an increase in SR for N = 3× 3× 3 is a result of the
aforementioned degeneracy breaking. The difference in the changing of SR between
the above two cases is, we consider, because of the presence or absence of the core
residue.

We discuss how the presence or absence of the core residue affects the above
difference. In Fig. 4.5, we represent the change in the number of contacts for the three
types, hydrophobic-hydrophobic, hydrophobic-polar (polar-hydrophobic), and polar-
polar contacts, when the energy parameter changes from (-2.3, -1, 0) (HP model) to
the MJ matrix. However, in the case of N = 2× 2× 3, the number of hydrophobic -
polar contacts almost vanishes while changing the energy parameter from (-2.3, -1,
0) (HP model) to the MJ matrix, as shown in Fig. 4.5. In. contrast, in the case of
N = 3 × 3 × 3, even though the number of polar-polar contacts also increases, the
balance among the distribution of the three types of contacts does not significantly
change. We consider that this difference in the distribution of the three types of
contacts shown in Fig. 4.5 is the reason for a difference in the change in SR between
the two cases. In the MJ matrix [78, Miyazawa and Jernigan 1985 upper half of Table
V], contact energy increases in the following order: of hydrophobic-hydrophobic,
hydrophobic-polar (polar-hydrophobic), and polar-polar contacts. Thus, using the
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Figure 4.5: The number of contacts for the three types, hydrophobic-hydrophobic
(h-h), hydrophobic-polar (polar-hydrophobic) (h-p, p-h), and polar-polar (p-p) con-
tacts, for the two types of energy parameters, the HP model with (ϵ1, ϵ2, ϵ3) =

(−2.3,−1, 0) and MJ. The value of each bar is an average of the number of contacts
for each type of all the designed conformations. The each error bar represents a
standard deviation. The total number of contacts is 9 for N = 2× 2× 3, and 28 for
3× 3× 3.

MJ matrix, a conformation with no hydrophobic-polar contacts rarely becomes a
ground state. The value of SR for N = 2 × 2 × 3 is almost constant because this
vanishing of the polar-polar contacts and the degeneracy breaking offset each other.

In addition, N (b)
c (the number of conformations designed by bad sequences) in-

crease upon increasing the alphabet size in the cases of both N = 2 × 2 × 3 and
3 × 3 × 3. The degeneracy breaking affects this result as well as increases N (g)

c .
Additionally, one of the reasons for an increase in N (b)

c is that the designabilities of
the 20-letter model are less than the designabilities of the 2-letter model for many
conformations [80, Li et al. 2002].

The average degeneracies dav of the two cases decrease with increasing the alpha-
bet size. Thus, this is an evidence of the degeneracy breaking.

4.2.3 Comparison to the dual MC method

In this subsection, using the lattice HP model, we present the results of a compari-
son between our Bayesian design method and a conventional method involving the
exhaustive conformational search. We choose the dual MC method described in Sec.
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2.2.3.
The dual MC method maximizes the target probability as given by Eq. (2.4);

hence, one can intuitively predict that the SR of the dual MC method is larger. The
dual MC method calculates Zβ(σ), which corresponds to the exhaustive conforma-
tional search; therefore, the calculation time becomes typically longer.

We compare the SR, calculation time (design time), and the SR per design time
(design efficiency). Using design methods based on the MTP criterion, one can solve
the design problem if design time is as long as possible. Therefore, comparing only
the SR is unreasonable if the design time is not limited. Therefore, in this study,
we compare the SR as well as the design efficiency. This viewpoint is especially
significant for real applications.

The enumerable conformations shown in Table 4.1 are the ones which were de-
signed for this comparison. Nevertheless, we did not design the 2D N = 6 × 6 and
the 3D N = 3×3×3 conformations except for the MHDC of 3×3×3, because their
sequence spaces are extremely large to be be designed using the dual MC method.
The design time of a conformation of N = 6 × 6 and 3 × 3 × 3 is about 10 – 30
days using a normal PC (1.2 GHz dual-core Intel Core m3 and 8 GB memory) by
our estimation. Note that we carried out the exact calculation of Zβ(σ) for the dual
MC method because all the target conformations are enumerable. Thus, we carried
out the MC sampling (simulated annealing) of the sequence spaces only (therefore,
we name this method the dual MC method for convenience).

The conditions for the design calculations are as follows. For our Bayesian
method, for each size, µ∗ is identical to the value in Table 5.1, and the number
of MCSs is set as low as possible to achieve the same SR as reported in Table 4.2.
For the simulated annealing of the dual MC method, the terminal temperature is
T = 0.1; hence, it equals the terminal temperature of our Bayesian method, β = 10.
The cooling schedule of T is not the linear function used in [56, Seno et al. 1996] but
is an inverse power function of the MC step because the latter function avoids getting
trapped into a metastable state in the amino acid sequence space as compared to
the linear function (we show the equation of this cooling schedule in the caption of
Table 4.4 below).

As shown in Table 4.4, for all the cases, the SRs of the dual MC method surpass
the SRs of the Bayesian method, especially for the 3D N = 2 × 2 × 3. On the
contrary, the DTs of the Bayesian method are all significantly less than the DTs of
the dual MC method: the former ones are of the order of 1/100 to 1/1000 of the
latter ones. Thus, each DE of the Bayesian method is about 100 or 1000 times each
DT in the of the dual MC method. Our Bayesian method is quite efficient compared
to the dual MC method. Furthermore, the DT of the MHDC of the 3D N = 3×3×3

using the Bayesian method is 0.9244s, but it is about 434600s (about five days) for
the dual MC method. It indicates that the DTs’ difference between the Bayesian
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Table 4.4: We carried out the exact calculations of Zβ(σ) for the dual MC method
because the target conformations are all enumerable. We designated the name the
dual MC method for the sake of convenience. For the dual MC method, the tem-
perature of k-th MC step is given by Tk = T0/(1 + αk2) where T0, k, Tk, and α > 0

denotes the initial temperature, MC step, temperature of a MC step k, and the
controlling parameter respectively. For all the lattice protein sizes, the initial tem-
perature is represented by T0 = 10, and α is the value of the above equation in which
we substitute the terminal temperature T = 0.1 for Tk and the MCSs for k. DT and
DE denote the design time and the design efficiency, respectively. The MCSs of the
Bayesian method are set as low as possible to achieve the same SR value as reported
in Table II as described in the main text. The last MCS, which is mentioned in
the last column of the dual MC method, denotes the average last MC step for all
conformations. All MCSs values for the dual MC method range from 500 to 70000.
These MCSs differ depending on the lattice protein size as well as the conformations
of the same size.

Bayesian method
Size SR (%) DT (s) DE (%/s) MCSs
N = 9 87.50 0.02615 3103 1000
N = 12 72.50 0.04356 1670 2000
N = 16 81.53 0.1422 5708 5000
5× 5 68.00 1.179 577.3 30000

2× 2× 3 35.42 0.2513 136.9 10000

Dual Monte Carlo method
Size SR (%) DT (s) DE (%/s) Last MCS
N = 9 100.0 1.043 96.12 492
N = 12 90.00 4.300 23.53 2509
N = 16 92.74 167.6 0.7182 17924
5× 5 92.00 477.5 0.2281 19842

2× 2× 3 85.41 40.77 6.407 10169
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method and the design methods that have Zβ(σ) increases as the number of residues
increases.

4.2.4 Large 2D conformations

Here, we chose 2D HP models with comparatively large size (N = 32, 50) models
studied by Irbäck et al. [57,58, Irbäck et al. 1998; Irbäck et al. 1999] described in Sec.
2.2.4., the multi sequence MC method. This confirmed that the designed sequence
was likely to fold into the target conformation with simulated tempering. For the
model with N = 32 (respectively 50), the parameters were set to µ∗ = 0.7 (0.85) and
the MCSs were 104 (105). The energy parameters were set to (ϵ1, ϵ2, ϵ3) = (−1, 0, 0)

in both cases. The simulation was executed by a normal PC with 1.2 GHz dual-core
Intel Core m3 and 8 GB memory, and the calculation time was approximately 0.5–1
s (11–12 s) for N = 32 (50). Thus, our method ran faster than those used in previous
studies. As a result, we successfully designed the same sequences reported by Irbäck
et al. [57,58, Irbäck et al. 1998; Irbäck et al. 1999] (Figs. 4.6 and 4.7). Our method
also demonstrates the features of globular proteins.

Figure 4.6: Designed sequence of the N = 32 2D HP model with (ϵ1, ϵ2, ϵ3) =

(−1, 0, 0), β = 10, and µ∗ = 0.7.
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Figure 4.7: Designed sequence of the N = 50 2D HP model with (ϵ1, ϵ2, ϵ3) =

(−1, 0, 0), β = 10, and µ∗ = 0.85.

4.2.5 Optimal µ∗ and number of surface residues

We represent the relation between the optimal µ∗ and the number of surface residues
Nsur in Fig. 4.8. We show only the results for (ϵ1, ϵ2, ϵ3) = (−1, 0, 0) because the
optimal µ∗ varies depending on the energy parameters for a given conformation. We
therefore plotted the results for all 2D models and the 3× 3× 3 MHDC model with
(ϵ1, ϵ2, ϵ3) = (−1, 0, 0) The residues that were bent 90 degrees inward (indicated by
a dashed black circle in Figs. 4.6 and 4.7) were not counted for Nsur because a water
molecule is unlikely to combine with such residues (see Fig. 4.8).

We observed noticeable linearity between µ∗ and Nsur. The outlier (µ∗, Nsur) =

(0.70, 20) was obtained in the 2D N = 32 case (Fig. 4.6), in which the target confor-
mation was not fully compact and the number of surface residues was much larger
than those of other target conformations tested. According to these results, the opti-
mal µ∗ can be estimated by the number of surface residues of a target conformation.

4.2.6 Probability of a P residue

Finally, in order to clarify why 3D models performed less well than 2D models, we
consider the probability PP that a residue is P for all residues of the 3×3×3 and 6×6

MHDC models (Figs. 4.9 and 4.10). We use p(σi = −1|R;σ\i) in Eq. (4.1) as PP.
Each PP in Figs. 4.9 and 4.10 is the average of 1/ (1 + exp [−β{∆Ei(R;σ) + µ}])
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Figure 4.8: Relation between µ∗ and number of surface residues, Nsur.

over the last 1/5 MCSs in both cases. In the case of the 3D 3 × 3 × 3 lattice, the
values of PP for residues 2, 16, 22, and 24 were not very high. These residues were
located in the center of each cube side. By contrast, all PP values greater than 0.5
were almost equal to 1 in the case of the 2D 6×6 lattice. Accordingly, it can be seen
that the clear division of all PP values into 1 or 0 is an index of successful design.
Thus, the 3D models are difficult instances for our design method.

4.3 Conclusion

On applying the 2D lattice HP model, our design method successfully finds an amino
acid sequence for which the target conformation has a unique ground state. However,
the performance was not as good for the 3D lattice HP models compared to the 2D
models. The performance of the 3D model improves on using a 20-letter lattice
proteins. Furthermore, we find a strong linearity between the chemical potential of
water and the number of surface residues, thereby revealing the relationship between
protein structure and the effect of water molecules. The advantage of our method is
that it greatly reduces computation time, because it does not require long calculations
for the partition function corresponding to an exhaustive conformational search.
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Figure 4.9: PP of each residue of 3 × 3 × 3 MHDC with (ϵ1, ϵ2, ϵ3) = (−2.3,−1, 0)

and µ = 2.33 (Fig. 4.3). The residue number starts from the center residue of the
front side of Fig. 4.3.
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Figure 4.10: PP of each residue of 6 × 6 MHDC with (ϵ1, ϵ2, ϵ3) = (−1, 0, 0) and
µ = 0.8 (Fig. 4.2). The residue number starts from the bottom left residue of Fig.
4.2.
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Chapter 5

Sequence estimation by the cavity
method

We show the design results obtained by using the cavity method, an analyti-

cal method frequently used in the filed of statistical mechanics for disordered

systems. The aim of this study is to check whether the cavity method yields

results equivalent to those from MCMC. In this chapter, in addition to the HP

model, we report the result for a realistic protein, lysozyme. The results shown

below except for the result for lysozyme have been published in [81, Takahashi

et al. 2022].

5.1 The cavity method

The cavity method is a method that extends the Bethe approximation [82, Bethe
1935] to other than two-body interactions. If the interaction network is a tree graph,
the cavity method is rigorous. The cavity method has been applied to analyze
stochastic models on random graphs that can be regarded locally as trees. In ad-
dition, there are a few applications to protein folding problems, such as the com-
putation of phase diagrams for lattice HP models [14, Montanari et al. 2004] and
the prediction of contact maps [83, Weigt et al. 2009]. However, to the best of our
knowledge, there are no studies of protein design using the cavity method.

5.2 Belief Propagation

The algorithm for marginalization of posterior probability derived by applying the
cavity method is belief propagation (BP). The BP was proposed in 1982 as an al-
gorithm to efficiently calculate the probability of an event occurring in the field of
Bayesian networks, a graphical model that describes causal relationships by prob-
abilities [84, Pearl 1982]. Although exact results can be obtained if the graph is a
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tree structure, it is known to give good approximations even if the graph is not a
tree [85, Pearl 1988].

5.3 Applying to the posterior

Then, we show that posterior (3.12) can be strictly divided into independent prob-
abilities for each sequence by the cavity method. This topic is novelty point of this
work compared with our previous study. Posterior (3.12) can be expressed as follows:

p(σ|R) =
1

Z(R;β, µ)

(∏
a

ψa(σa)
) N∏

i=1

ϕi(σi). (5.1)

In Eq. (5.1), let σa be the set of residues related to the a-th contact, and ψa(σa) be
a function of it. That is, if σa = {σi, σj}, ψa(σa) = exp(βσiσj). The factor ϕi(σi)
is defined by ϕi(σi) = exp[βµ(1 − σi)]. The contact graph of the lattice protein is
determined by the conformation R explicitly.

We aim to marginalize the posterior (5.1). Some isolated residues do not interact
with any other residues in a lattice protein. We illustrate an example the pair of 2D
lattice conformation and its contact graph in Fig. 5.1. For such isolated residues,
marginalization is easy. The summation of any other residues (not isolated) cancels
in the denominator and numerator of Eq. (5.1); hence the marginal posterior of Eq.
(5.1) is obtained as follows:

p(σi|R) =
eβµ(1−σi)∑
σi
eβµ(1−σi)

. (5.2)

For each residue σi in contact with other residues than the isolated one, if the
residue-residue interaction network is a tree, one can derive explicitly the recursion
formula of the belief propagation (BP), which is an algorithm to compute marginal
distributions.

The BP algorithm is derived by the expectation of Eq. (5.1) under the probability
distribution of the system excluding the residue σi: p\i(σ\σi

|R) (which is called
cavity distribution). We leave the details to the Appendix, only the results are given
below:

ν̃
(t)
a→i(σi) = Ca→i

∑
σj

eβσiσjν
(t)
j→a(σj), (5.3)

ν
(t+1)
i→a (σi) = Ci→ae

βµ(1−σi)
∏

b∈∂i\a

ν̃
(t)
b→i(σi). (5.4)

In Eqs. (5.3) and (5.4), let a and b be indices on contacts and i and j are indices
on residues. The symbol ∂i denotes the index set of contacts related to residue σi.
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Figure 5.1: (left): A lattice protein conformation of N = 4 × 4. The black line
represents the protein backborn structure. (right): The grey line represents edges of
the contact graph of its conformation. The colored residues are isolated residues.

ν̃
(t)
a→i(σi) is the belief from the a-th contact to the i-th residue, ν(t+1)

i→a (σi) is the belief
from the i-th residue to the a-th contact, and the upper right subscript is the number
of steps in the BP algorithm. The constants Ca→i and Ci→a are the normalizing
constants of each distribution function. If one properly defines ν(t=0)

i→a (σi) as the
initial condition and computes Eqs. (5.3) and (5.4) at each step for all combinations
(i, a) excluding the isolated residues, after sufficient iterations tmax, the following
belief:

ν
(t)
i (σi) = Ci

∏
a∈∂i

ν̃
(t−1)
a→i (σi), (5.5)

converges to the marginal distribution p(σi|R) =
∑

σ\σi
p(σ|R). In Eq. (5.5) where

Ci is the inverse of the normalization constant of ν(t)i (σi), we set the initial condition
as a uniform distribution ν(t=0)

i→a (σi = 1) = ν
(t=0)
i→a (σi = 0) = 1/2. If ν(t)i (σi = 1) > 1/2

residue σi is H and P otherwise. Because the above calculations are equivalent to
the Ising model of two-body interaction, they are strictly equivalent to the Bethe
approximation [86, Kabashima and Saad 1998].
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5.4 Hyper parameter optmization

The optimal hyperparameter, the chemical potential of water µ = µ∗, is the same
value obtained in previous chapter. The optimal chemical potential µ∗ was deter-
mined to be the value with the highest design accuracy by repeated computational
experiments.

This procedure does not mean that our design method needs to carry out MCMC
for determination of µ∗ before using the cavity method. Of course, the proposed
design method using the cavity method also can determine µ∗ in the same way. In
this study, as a primary goal, we investigate whether the cavity method can achieve
the same design accuracy as MCMC or not in the same conditions. Thus, we use
the same value of µ∗ obtained by MCMC.

The criterion of optimization of the hyper parameter µ is nontrivial. For instance,
the minimization of the Bethe free energy, corresponding to the maximization of the
marginal likelihood in the context of Bayesian learning, is one of promising candidates
for the criterion. However, whether or not the maximization of the marginal likeli-
hood maximizes the design accuracy is not clear. In this proposed design method,
the design criterion is the maximizer of posterior marginals (MPM) according to the
procedure described in the previous section. The hyper parameter µ was determined
to be the value with the highest design accuracy. Thus, in this study, the criterion
of optimization of the hyper parameter µ is the maximization of the design accuracy
under the MPM.

5.5 Results

5.5.1 2D small conformations

Here, we test the cavity method to 2D small lattice proteins which are almost equiv-
alent to Sec. 4.2. The difference is that in this section we do not use 3D HP model:
N = 2× 2× 3 and N = 3× 3× 3.

The reason is that the structures N = 2 × 2 × 3 and N = 3 × 3 × 3, for which
one can determine strict design success, are not typical examples of proteins because
the number of core residues relative to the number of surface residues is deficient
compared with natural proteins.

We summarize our design results in Table 5.1. Table 5.1 shows the sequences
generated using the cavity method and MCMC (shown in Chapter 4), where N (g)

c ,
N

(m)
c , and N

(b)
c are the number of structures that successfully obtained a good,

medium, and bad sequences, respectively. Therefore, the design success rate, SR is
the ratio of N (g)

c to the total number of structures Nc. The optimal value of chemical
potential µ∗ was determined as explained above, and the same value was used for
the cavity method and MCMC. The value µ∗ may differ for each conformation even
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Table 5.1: Comparison of the cavity method and MCMC design results. The hyper-
parameter µ∗ was calculated many times for each size in MCMC case, and the values
achieve the highest success rate, SR. The same values of µ∗ were used for the cavity
method.

Cavity method MCMC
Size N

(g)
c N

(m)
c N

(b)
c SR (%) N

(g)
c N

(m)
c N

(b)
c SR (%) µ∗

N = 9 7 1 0 87.5 7 1 0 87.5 0.55
N = 12 29 11 0 72.5 29 11 0 72.5 0.6
N = 16 393 89 0 81.5 393 89 0 81.5 0.62
5× 5 68 32 0 68 68 32 0 68 0.74
6× 6 62 38 0 62 63 37 0 63 0.8

if the size is the same, but we use the same µ∗ for the same size without considering
this issue. The total number of conformations designed is the same for the cavity
method and MCMC.

Table I shows that the cavity method and MCMC differ slightly in the percentage
of correct answers at 6× 6, otherwise, they perform precisely the same. This result
shows almost no difference between the cavity method and MCMC in design accuracy,
at least for small 2D lattice proteins. The conformations for the N (g)

c , N (m)
c , and

N
(b)
c are same in the cavity method and MCMC other than the case of N = 6 × 6.

In the case of N = 6 × 6, one conformation is designed successfully by the cavity
method but MCMC failed to design it, two conformations are designed successfully
by MCMC but the cavity method failed to design those two.

5.5.2 Large 2D conformations

Then, as well as Sec. 4.2.4, we show the results for the 2D N = 32 and N = 50

lattice conformation studied by [57, 58, Irbäck et al. 1998; Irbäck et al. 1999] to
compare the cavity method and MCMC.

As a result, using the cavity method, we designed those two with the same
sequence of [57, 58, Irbäck et al. 1998; Irbäck et al. 1999]. Fig. 5.2 shows those two
designed conformations. The white balls represent H-residues, and the black balls
represent P-residues.

5.5.3 Comparison of the calculation time

We also compare the calculation time of the cavity method and MCMC for the
N = 50 (right-hand side of Fig. 5.2) using a standard PC (Apple M1 MacBook Pro
with 8 GB memory). As a result, the calculation time of both cases is 5.282 seconds
by MCMC and 1.433 seconds by the cavity method (BP). In the case of BP, one can
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Figure 5.2: (left): Designed conformation of N = 23 with β = 10 and µ∗ = 0.7.
(right): Designed conformation of N = 50 with β = 10 and µ∗ = 0.85. The white
balls represent H-residues, and the black balls represent P-residues. Our present
design method succeeded to design these two with the identical sequences of con-
ventional studies [57, 58, 72, Irbäck et al. 1998; Irbäck et al. 1999; Takahashi et al.
2021]. Our current approach using the cavity method can be most efficient because
it skips internal conformational search due to the partition function Zβ(σ)(Zβ,µ(σ)),
and it uses the recursion of BP algorithm instead of MC sampling.

carry out the identical calculation for each residue. We, therefore, carried out the
parallel computation by four threads for BP, and the result was 0.506 seconds. The
cavity method is about three times faster than MCMC with no parallelization and
is about ten times faster with parallelization (four threads). Parallel computation is
one of the significant advantages of the cavity method.

As reported in Sec. 2.2.3, the multi sequence MC method can design 2D N = 18

HP model in O(10) CPU sec. by CPU specs in the late 1990s. Therefore, our
proposed method is about 100 times faster than the multi sequence MC method,
and even taking into account the evolution of CPU specifications over the past 30
years, our method is probably on the order of 10 times faster.

5.6 Redesign a real protein: Lysozyme

We also designed a real protein: lysozyme. The amino acid sequence of lysozyme is
of course known and is in the data base, Protein Data Bank (PDB). Thus, we check
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the overlap between our estimated sequence and PDB sequence. Thus, here we carry
out “redesign” of lysozyme. Lysozyme is an enzyme produced by animals. Lysozyme
is composed of relatively small number of amino acid residues (N = 129). Therefore,
lysozyme is the one of the most basic protein.

Figure 5.3: The graphics of the 3D structure of lysozyme from PDB.(PDBid: 7S2V)

We generate the contact network of lysozyme from Protein Data Bank1 (PDB),
a database for the 3D structural data of proteins and nucleic acids, and reflect it to
∆(ri − rj) of the model Hamiltonian. We assume that the lysozyme sequence has
only H or P residue. Thus, the hydrophobic residues: A, I, L, M, F, P, Q, Y, and V
(using 1 character representation) are all H residues. The hydrophilic residues: R,
N, D, C, Q, E, G, H, K, S, and T are all P residues [79, Monera et al. 1995] as well
as Sec 4.2.2.

The definition of the overlap between our estimated sequence and PDB sequence
is percentage of H/P correct residues of 129 residues. The optimal chemical potential
µ∗ is determined by design calculations until the highest overlap.

We use Cα - Cα distance for the distance between any pair of amino acid residues.
If a Cα - Cα distance is shorter than the threshold of contact, the two residues contact
to each other. We use four values of threshold in order to assess the difference of
effect of loops of contact network. We use 8, 7, 6, and 5Å for the contact threshold.
8Å is the most commonly used contact threshold.

Table. 5.2 shows the design result of lysozyme. The highest overlap is 0.651
(84/129) when the contact threshold is 8Å. This situation setting has not been bench-
marked with other methods, but this result of H/P overlap value 0.651 is not very

1https://www.rcsb.org/

53



Chapter 5 Sequence estimation by the cavity method

Table 5.2: The design result of lysozyme. The CT means the contact threshold.
CT (Å) H/P overlap µ∗

8 0.651 7.0
7 0.612 4.3
6 0.620 2.4
5 0.6047 0.55

high. This result means that the effect of the sparsity of the contact network is more
damaging for our design method than the loop effect. µ∗s increases as the contact
threshold increases.

5.7 The contact network of lysozyme

To see how loopy Lysozyme’s contact network can be, here is a graphic discussion of
how it looks. Fig. 5.4 through Fig. 5.7 illustrate how many loops the graph formed
by the contact network of lysozyme has. Each maps an entire 3D network of contacts
onto a 2D graph. They are, respectively, Fig. 5.4 when the CT is 8 Å, Fig. 5.5 when
the CT is 7 Å, Fig. 5.6 when the CT is 6 Å, and Fig. 5.7 when the CT is 5 Å. As can
be seen from these figures, there are many loops in the contact network when the CT
is 8 Å or 7 Å, which are commonly used. However, as the CT becomes smaller, the
number of loops decreases, and in the case of 5Å, the number of loops is extremely
small (only one loop). However, Table 5.2 shows that the redesign accuracy increases
as CT increases, i.e., as the number of loops increases. Thus, it can be seen that the
smaller CT has a stronger negative effect on design accuracy.

5.8 Conclusion

In this chapter, contrary to previous computational physics studies for protein de-
sign, we used the cavity method, an extension of the mean-field approximation that
becomes rigorous when the interaction network is a tree. We found that for small
2D lattice HP protein models, the design by the cavity method yields results al-
most equivalent to those from the Markov chain Monte Carlo method with lower
computational cost.

We also tested our design method by the cavity method against the redesign
of lysozyme, a real basic protein. The results showed a value of about 65% in the
classification accuracy of H or P instead of 20 different types. We also found that the
contact network of a natural protein contains many loops but that the small number
of contacts has a worse effect on design accuracy than loops.
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8Å

Figure 5.4: The 2D map of contact network of lysozyme when the CT is 8Å.

7Å

Figure 5.5: The 2D map of contact network of lysozyme when the CT is 7Å.
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6Å

Figure 5.6: The 2D map of contact network of lysozyme when the CT is 6Å.

5Å

Figure 5.7: The 2D map of contact network of lysozyme when the CT is 5Å.
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Chapter 6

Discussion

This chapter provides a more detailed discussion of the results from the previous

chapters. The following topics are some of the most important results of this

chapter: evaluation of the design methodology, validation of the prior (3.8),

and so on. In the verification of the prior (3.8), we report some analyses of the

necessary conditions for the prior (3.8) to hold. We also point out the possibility

that our method is a protein design method on the Nishimori-line, which is the

parameter region where the analytical expression of the internal energy in the

analytical theory of spin glass is obtained, and that our method is an example

of a Bayes optimal protein design method.

6.1 The weaknesses of our design method

First, we briefly discuss the performance evaluation of our proposed protein design
method. The three main weak points of our design method are as follows:

1. Only partial structures can be designed.

2. Only one solution.

3. Cannot systematically determine µ only from information on the target struc-
ture.

For the first one, we know that not all protein structures satisfy the condition
that the prior (3.8) holds, i.e., they can be designed by energy minimization. So the
next task is to investigate which structures satisfy this condition. Then, to give a
belief discussion, we compared the distributions of three types of interactions: H-
H, H-P(P-H), and P-P between structures that our method successfully designed
and structures that our method failed to design to clarify what the differences are
between structures that succeed and structures that fail in our design method. Fig.
6.1 shows the average number of the three types of interactions in successful and
failed structures for the design results with the 2D N = 6× 6× 6 cavity method.

57



Chapter 6 Discussion

H-H H-P(P-H) P-P

0

5

10

15

Average number of each type of contacs

N
um

be
r 

of
 c

on
ta

ct
s

Failed
Success

Figure 6.1: The average number of the three types of interactions in successful and
failed structures for the design results with the 2D N = 6 × 6 × 6 cavity method.
The each error bar is the standard deviation.

Fig. 6.1 shows that the general trend of the distribution is the same for both
structures. However, the failed structures have slightly more H-P contacts, and the
number of the other two interaction types is lower. Our design approach is very
close to the energy minimization proposed by Shakhnovich and Gutin, as discussed
in Sec. 6.2 below. Thus, under a given µ∗, we should obtain the minimum of the
Hamiltonian (2.2) or (3.6) (the second term in Eq. (3.6) is structure-independent, so
if the sequence σ is the same, the order of energies of all structure is the same whether
we use Eqs. (2.2) or (3.6)). Thus, the results in Fig. 6.1 indicate that the failed
structures have larger minimal frustration than those that succeed. According to the
above discussion, the condition that our design method succeeds is lower minimal
frustration.

For the second one we can solve the second problem by changing to simulated
annealing for MCMC rather than fixing the temperature to a low level from the
beginning. However, this is impossible because the cavity method only provides a
unique solution. Furthermore, since there are methods to break replica symmetry in
the cavity method [13, Mézard and Montanari 2009], it may be possible to output
a different sequence in such a case than the one by the replica symmetric cavity
method.

For the third weakness, as mentioned in Chapter 3, a solution is to find µ that
satisfies the extreme value condition of the free energy Fβ,µ(R). Of course, such µ

may not necessarily maximize the design accuracy as it is, but satisfying the extreme
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value condition of the free energy Fβ,µ(R) is statistically plausible and an interesting
theoretical direction.

The more fundamental problem is that the design criteria for protein design
methods that do not include the calculation of Zβ,µ(σ) are unclear. The design
criterion in our method is almost maximization over the posterior (3.12), maximum
a posteriori criterion (MAP criterion). The posterior (3.12) is valid for some proteins
but does not seem to be a perfectly universal design criterion for all proteins. Perhaps
there is a more general design criterion or minimization function that encompasses
the MAP criterion for the posterior (3.12).

At the final of this section, we give a belief discussion for why Rosetta works so
well. The design protocol of Rosetta is similar to our Bayesian method in the view-
point of energy minimization without the exhaustive conformational search. There-
fore, we consider Rosetta and our method identical, and the reason why Rosetta
works is the same as our method. Then, we can conclude that the reason why
Rosetta works is that many of the artificial protein structures designed by Rosetta
are less frustrating.

6.2 The relation between our Bayesian method
and the energy minimization method

Our proposed Bayesian design method omits the partition functionZβ,µ(σ) and min-
imizes the Hamiltonian (3.6). Therefore, this method is very similar to the Energy
minimization (SG method) by Shakhnovich and Gutin introduced in Sec. 2.2.2. It
is also similar to the method of Coluzza et al. introduced in Sec. 2.2.4.

The difference is the way of ensuring the diversity of amino acid types: SG
determines the ratio of H to P (which corresponds to the determination of the mag-
netization constraint in a spin system)as the hyperparameter. Coluzza et al. carry
out MCMC such that Eq. (2.19) is large. In contrast, our method introduces the
chemical potential µ of water, like an external magnetic field in a spin system, and
controls µ to ensure the number of P-residues from outside the protein.

Our method is expected to be more accurate than the SG method because it
captures the property of globular proteins: hydrophilic residues are distributed on
the surface and hydrophobic residues are distributed on the inside. In the method
proposed by Coluzza et al., the design criterion is to balance the tendency for the
interaction energy between amino acid residues to be low and the tendency for each
na(a = 1, 2, · · · , 20) to be large. This method systematically ensures the diversity
of amino acid types, but we do not know if the score function of real proteins follow
such a criterion. However, our method of controlling µ reflects that proteins actually
express their function by interacting with water molecules. In addition, the Hamil-
tonian (3.6) is a more realistic Hamiltonian [65–67, Bianco et al. 2012; Bianco and
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Franzese 2015; Bianco et al. 2017], and is a baseline Hamiltonian to these. Thus,
the Hamiltonian (3.6) may be a more realistic score function than Coluzza et al..
However, as shown in Sec. 4.2.2, our method results in a two-letter array when µ

is held constant. This suggests that we must find the optimal µ for each residue
type. Systematically finding the optimal µ for each residue type will probably be
mathematically complex.

6.3 Why does the cavity method work well?

The cavity method works well because the lattice protein contact graph has a graph
structure suited to the Bethe approximation. In the calculation of the Bethe ap-
proximation, one assumes that the fluctuations in the effect from the next-nearest
neighbor spin are negligible and are replaced by the average value. Thus, the fact
that the cavity method works well means that the assumption is likely to hold. In
other words, a possible reason why the cavity method works well is that the evolution
of the amino acid sequence is coevolved between residues in direct contact with each
other and that the effect on evolution from other residues makes little difference from
residue to residue.

6.4 Biological evidences of the prior

The prior (3.8) implies that sequences enriched in polar residues are likely to be
evolutionarily selected for relatively large β and µ values, owing to the effect of
the second term in the Hamiltonian (3.6). This implication is consistent with the
fact that organisms have many intrinsically disordered proteins (IDPs), which are
characterized by a high proportion of polar residues and lack of an ordered three-
dimensional structure; for example, Oates et al. estimated that the percentage of
disordered residues in the human proteome is between 37% and 50% [87, Oates et
al. 2012]. IDPs are important components of the cellular signaling machinery, al-
lowing the same polypeptide to undertake different interactions with different part-
ners [88, Wright and Dyson 2015]. In addition, recent studies have shown that IDPs
play an important role in formation of membraneless organelles, enabling internal
spatiotemporal control of complex biochemical reactions in a cell [89, Boeynaems et
al. 2018]. These observations suggest that the physical property of the prior (3.8) is
advantageous for cells to efficiently perform complex chemical reactions.

6.5 Verification of a necessary conditions for the prior

To verify totally the prior (3.8), the statistical mechanical hypothesis for protein
sequence evolution, one should survey protein sequence data base to generate the
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probability distribution p(σ), and proof p(σ) = Zβp,µp(σ)/Ξβp,µp . It is difficult to
carry out, but to get collateral evidence of the hypothesis is not very difficult.

Then, we check an important necessary condition of the prior (3.8). The necessary
condition of the hypothesis is that the free energy (3.6) of native amino acid sequences
σN is lower than the free energy of random sequences σR. To do this, using all
conformational patterns of 5 × 5 2D lattice proteins, we calculate Fβp,µp(σ

N ), and
change in it when mutations were added to the sequence σN . We use the good
sequences obtained in Sec. 5.6.1 of 5× 5 lattice proteins for the native sequence σN .
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Figure 6.2: Change of Fβp,µp(σ) with mutation in the case of βp = 10 and µp = µ∗ =

0.74

First, in the case of βp = 10 and µp = µ∗ = 0.74, the case of design calculation of
this study, we calculate free energy change with mutation. In the following results, we
use one 5× 5 square lattice conformation successfully designed (#812) and its good
sequences estimated by the cavity method. According to Fig.6.1, Fβp,µp(σ) increases
as the number of mutations of residues increases. The location of the mutation is
chosen each time randomly, but once a mutation, i.e., a spin-flip, has occurred, it is
not chosen. Therefore, the horizontal axis is the Hamming distance from the correct
sequence. The result of Fig.6.1 satisfies the necessary condition mentioned earlier.

Then, we investigate above behavior of Fβp,µp(σ) when βp and µp change. The
reason of this analysis is to clarify whether the necessary condition of the prior (3.8)
is valid only for some special parameter values or for arbitrary parameter values.

The results is shown in Fig.6.2. We see nine parameter patterns. The rightward
is lower temperature, and the upward µp is larger, i.e., the more hydrophilic the
arrangement. The middle value is the same as Fig. 6.1. Hence, the figure is the
same as Fig. 6.1. In the upper right parameter pattern, the value of Fβp,µp(σ)

is so small that the line almost disappears; Fig. 6.2 shows that, although subtle,
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Figure 6.3: Change of F (σ) with mutation in the case of βp = 10 and µp = µ∗ = 0.74

temperature appears to satisfy the necessary condition for a wider range of prior
than chemical potentials, but the low-temperature case satisfies it more strongly. For
chemical potentialsµp, if they are too large, i.e., too hydrophilic, they do not satisfy
the necessary condition of the prior (3.8) at all. According to above observation, it
is suggested that the necessary condition for prior is not satisfied for all parameter
regions, but only for certain parameter value combinations (βp, µp). We can conclude
from this that if prior (3.8) holds, it is likely to hold only for some special parameter
value (βp, µp).

6.6 The relation between our protein design method
and the Nishimori-line: Protein design
as a Bayes optimal error-correcting code

Here, we point out that the derivation of the posterior (3.12) has interesting theo-
retical implications. This derivation of the above is consistent with the fact that in
calculations for physical quantities of the spin glass ±J model, the partition function
for the spin configuration cancels out on the Nishimori line. The Nishimori line is
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the hypersurface in the parameter space [90, Nishimori 1980] and achieves the Bayes
optimality, an upper bound on accuracy in error-correcting codes [91–94, Ruján 1993;
Nishimori 1993; Sourlas 1994; Iba 1999]. Therefore, in other words, our method can
be called protein design on the Nishimori line. In addition, our method provides a
correspondence between protein design and error-correcting codes in terms of Bayes
optimal1. Thus, our design theory not only overcomes the computational bottleneck,
but also presents a surprising relationship between the “evolutionary problem", the
analytic theory of the spin glass model, and error-correcting code.

Error-correcting codes are a problem in which the receiver receives data contain-
ing noise in the sender’s message and estimates (decodes) the original message. This
problem was an essential theme in the early days of statistical mechanical informat-
ics, and spin glass theory has been applied [86,95–98, Sourlas 1989; Kabashima and
Saad 1998; Kabashima and Saad 1999; Kanter and Saad 1999, Kabashima et al.
2000]. The message from the sender, i.e., the true parameters, is regarded as the
correct amino acid sequence. Noise is added to the correct sequence to form the 3D
structure. If the receiver’s estimation of the sequence from the 3D structure data is
regarded as decoding, the protein design problem can be regarded as the same as
the error-correcting code problem (Fig. 6.4).

True sequence  
σ

Structure  
RNoisy channel 

q

Decording = Design σ'

Folding

Figure 6.4: The representation of protein design as error-correcting codes.

1An estimation method that minimizes the expected value by the likelihood function and prior
distribution of some loss function determined by the true and estimated parameters is called a Bayes
optimal method. For instance, the loss function is typically the square error.
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Summary and future works

This last chapter give the summery and the future works of our study. The

future works given below are wide-ranging. It includes both theoretical and

methodological studies.

7.1 Summary

The study of this doctoral thesis addressed the inverse protein folding problem called
protein design. We have emphasized the fundamental scientific importance of protein
design. Statistical mechanical informatics is, in the author’s opinion, one of the
most appropriate theories for the fundamental scientific purpose: understanding the
“design principle” of proteins.

We have applied Bayesian learning to protein design. The typical approach in
statistical mechanical informatics is the Bayesian learning formulation and statistical
mechanical analysis. We obtained the posterior (3.12) based on Anfinsen’s dogma
and the statistical mechanical hypothesis for evolution: “the amino acid sequences
which have lower free energy (3.7) have remained through Darwinian evolution”,
originally proposed by us.

We carried out two estimation method for the posterior: MCMC and the cavity
method. The latter is a kind of mean-field approximation frequently used in statis-
tical mechanical informatics. As a result, on applying the 2D HP model, MCMC
successfully finds an amino acid sequence for which the target conformation has a
unique ground state. However, the performance was not as good for the 3D lattice
HP models compared to the 2D models. The performance of the 3D model improves
on using a 20-letter lattice proteins. The cavity method yields results almost equiv-
alent to those, 2D small HP model from MCMC with lower computational cost. We
carried out “redesign” of lysozyme using the cavity method, and achieved 65% of all
estimated residues that match the true residues with 2-letter level. However, this
result may not be very high.
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We added some brief analysis about the prior. We find that at certain particu-
lar temperatures and chemical potentials, the positive sequence’s free energy (3.7)
is lower than that of the random sequences. It means that one of the necessary
conditions for the prior (3.8) is proved.

Based on these results, as the tentative solution for “what is the design principle of
proteins?”, we propose energy minimization of the target structure with the addition
of chemical potential as a candidate protein design principle. That is only valid for
evolutionarily selected temperatures and chemical potentials. We also discussed that
it is more likely valid for less frustrated structures.

7.2 Future works

7.2.1 Building statistical mechanical informatics of protein design

7.2.1.1 Two goals of statistical mechanical informatics

As explained in Chapter 1, the objectives of statistical mechanical informatics are
twofold: performance evaluation (theoretical analysis) and method proposal. The
study that proposed the statistical mechanics of compressed sensing, [99, Ganguli
and Sompolinsky 2010], used a replica method to identify parameter regions for
Bayesian optimal estimation, and the subsequent study proposed a specific method
for compressed sensing based on such an analysis. The subsequent study proposed
a specific compressed sensing method using the cavity method based on such an
analysis [100, Krzakala et al. 2012].

However, this study has only proposed a method. Therefore, we will now promote
the construction of a theory of statistical mechanics of protein design. We will
construct a statistical mechanics for random graph (contact network) spin glass,
assuming that the prior (3.8) holds. We also use a random chemical potential as
an external field. Random field spin glass is a random graph with a fully connected
system [101, Soares et al. 1994] and a random graph [102, Erichsen et al. 2021].
Therefore, based on these studies, we identify “parameter regions where the design
will be successful".

Also, the chemical potential µ of water probably corresponds to the pressure P .
Therefore, the parameter region in which the design described above will succeed
must be consistent with the work of Bianco et al., as presented at the end of Chapter
2. We will therefore discuss the consistency of our statistical mechanical informatics
theory with the findings of Bianco et al..
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7.2.1.2 The Nishimori-surface: a relation between evolution and Bayes
optimal

The Nishimori-line discussed in Sec. 6.6 and its relationship to Bayes optimal will
be further elaborated. First, we will confirm whether our design method is indeed
one of the Bayes optimal methods. Then, we find an equation satisfying the inverse
temperature and chemical potential (β, µ) that achieves the Bayes optimal, and draw
the Nishimori-“surface”.

7.2.2 Improving the design method

7.2.2.1 A priori decision of µ∗

One of the most significant weaknesses of our method is that µ cannot be determined
a priori; as discussed in Sec. 6.1, minimizing the Bayesian free energy Fβ,µ(R) is an
effective way to address this. Another approach is to incorporate the Hamiltonian
elements related to the structure and µ. It can also contribute to the determination
of the Nishimori-surface mentioned earlier. In addition, since the cavity method
can be calculated independently for each residue, the chemical potential mui, which
varies with the position of each residue, can in principle, be estimated. This could
be used to predict how the surrounding water molecules will be distributed from the
natural structure of the protein.

7.2.2.2 Applying the 1-step RSB cavity method

The 1-step RSB (Replica symmetry breaking) cavity method is a one-step Replica
symmetry breaking method for the usual cavity method, i.e., the replica symmetric
cavity method. Here, the replica is a pseudo system that appears in the replica
method, an analytical method that performs double averaging of thermal and ran-
dom variables. The replica symmetry assumption assumes that the value of the order
parameter between any two different replicas is constant. In the cavity method, it
is known that breaking the replica symmetry improves the accuracy when there are
loops or long-range interactions in the interaction network [13, Mézard and Mon-
tanari 2009]. Therefore, we will apply the 1-step RSB cavity method for realistic
proteins. At this time, we will also discuss the statistical significance of the results.

7.2.2.3 Graph neural network with Message passing

Belief propagation is an equivalent algorithm to the message passing algorithm. And
it has been recently reported that message passing improves the ability to learn
feature interactions between nodes in a graph neural network (GNN) [103, Rizvi t
al.]. Therefore, we will apply our method to the GNN-based protein design method.
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Appendix A

Derivation of the update rules of
belief propagation for lattice
proteins

We first consider the cavity distribution of the posterior (5.1) in the main text. Cavity
distribution is the joint probability distribution of the system without residues which
do not relate to σi. Its formula is given by

p\i(σ\σi
|R) =

∏
b/∈∂i ψb(σb)

∏
j ̸=i ϕj(σj)∑

σ\σi

∏
b/∈∂i ψb(σb)

∏
j ̸=i ϕj(σj)

, (A.1)

where ψb(σb) is given by ψb(σb) = exp(βσjσk) if σb = {σj , σk}. The factor ϕj(σj) is
defined by ϕj(σj) = exp[βµ(1−σj)]. Then, for all systems, the marginal distribution
p(σi|R) =

∑
σ\σi

p(σ|R) can be rigorously expressed using the cavity distribution
(A.1) as follows:

p(σi|R) =
⟨
∏

a∈∂i ψa(σa)ϕi(σi)⟩\σi∑
σ\σi

⟨
∏

a∈∂i ψa(σa)ϕi(σi)⟩\σi

, (A.2)

where ⟨·⟩\σi
means the expectation by the cavity distribution (A.1).

Proof. We separate the posterior (5.1) in the main text into the part that includes
a and the part that does not include σi,

p(σ|R) =

(∏
a∈∂i ψa(σa)

∏
i ̸=j ϕi(σi)

)(∏
b/∈∂i ψb(σb)

∏
j ̸=i ϕj(σj)

)
∑

σ

(∏
a∈∂i ψa(σa)

∏
i≠j ϕi(σi)

)(∏
b/∈∂i ψb(σb)

∏
j ̸=i ϕj(σj)

) . (A.3)

We divide the denominator and the numerator of right hand side of Eq. (A.3) by
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the constant
∑

σ\σi

∏
b/∈∂i ψb(σb)

∏
j ̸=i ϕj(σj). The numerator of (A.3) is then(∏

a∈∂i ψa(σa)
∏

i ̸=j ϕi(σi)
)(∏

b/∈∂i ψb(σb)
∏

j ̸=i ϕj(σj)
)

∑
σ\σi

∏
b/∈∂i ψb(σb)

∏
j ̸=i ϕj(σj)

=
∏
a∈∂i

ψa(σa)
∏
i ̸=j

ϕi(σi)p\i(σ\σi
|R),

and the dominator is calculated similarly. Hence,

p(σ|R) =

∏
a∈∂i ψa(σa)

∏
i ̸=j ϕi(σi)p\i(σ\σi

|R)∑
σ

∏
a∈∂i ψa(σa)

∏
i ̸=j ϕi(σi)p\i(σ\σi

|R)
.

Finally, by the marginalization p(σi|R) =
∑

σ\σi
p(σ|R), we obtain

p(σi|R) =

∑
σ\σi

∏
a∈∂i ψa(σa)

∏
i ̸=j ϕi(σi)p\i(σ\σi

|R)∑
σ

∏
a∈∂i ψa(σa)

∏
i ̸=j ϕi(σi)p\i(σ\σi

|R)

=

∑
σ\σi

∏
a∈∂i ψa(σa)

∏
i ̸=j ϕi(σi)p\i(σ\σi

|R)∑
σi

∑
σ\σi

∏
a∈∂i ψa(σa)

∏
i ̸=j ϕi(σi)p\i(σ\σi

|R)

=
⟨
∏

a∈∂i ψa(σa)ϕi(σi)⟩\σi∑
σ\σi

⟨
∏

a∈∂i ψa(σa)ϕi(σi)⟩\σi

.

■

We define following effective potential ψeff
i (σi) by the numerator of right hand

side of Eq. (A.2):

ψeff
i (σi) =

∑
σ\σi

(∏
a∈∂i

ψa(σa)
)
ϕi(σi)p\i(σ\σi

|R). (A.4)

Additionally, for a ∈ ∂i, we consider the system excluding ψa(σa), called a-cavity
system. We define the marginal distribution of σj which is included in σa under
a-cavity system by νj→a(σj). If the contact graph of given target conformation is
a tree, excluding any residue σi makes the contact graph divided into independent
part per residues related to the contact a.

Therefore, if the contact graph of given target conformation is a tree, we can
calculate (A.4) as follows:

ψeff
i (σi) = ϕi(σi)

∏
a∈∂i

( ∑
σa\σi

ψa(σa)
∑
σ\σa

p\i(σ\σi
|R)

)
= ϕi(σi)

∏
a∈∂i

( ∑
σa\σi

ψa(σa)
∏

j∈∂a\i

νj→a(σj)
)

= ϕi(σi)
∏
a∈∂i

(∑
σj

ψa(σa)νj→a(σj)
)
. (j ∈ ∂a\i) (A.5)
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In Eq. (A.5), we used
∑

σa\σi
=

∑
σj

and
∏

j∈∂a\i νj→a(σj) = νj→a(σj), because
each index set ∂a has only two indices in the lattice HP model.

Then, we consider the effective potential of a-cavity system ψeff
i→a(σi). ψ

eff
i→a(σi)

is obtained by excluding ψa(σa) from ψeff
i (σi). Hence we obtain ψeff

i→a(σi) as follows:

ψeff
i→a(σi) = ϕi(σi)

∏
b∈∂i\a

(∑
σk

ψb(σb)νk→b(σk)
)
. (k ∈ ∂b\i)

From the definition of νj→a(σi) explained above, νj→a(σi) is obtained by normaliza-
tion ψeff

i→a(σi). Therefore, let j = k, we obtain following expression:

νj→a(σi) =
ϕi(σi)

∏
b∈∂i\a

(∑
σj
ψb(σb)νj→b(σj)

)
∑

σi
ϕi(σi)

∏
b∈∂i\a

(∑
σj
ψb(σb)νj→b(σj)

) . (j ∈ ∂b\i)

Let ν̃a→i(σi) be the distribution function derived by normalization
∑

σj
ψa(σa)νj→a(σj),

the “belief” from a to σi. Then, we obtain following expression of two distribution
functions:

ν̃a→i(σi) = Ca→i

∑
σj

ψa(σa)νj→a(σj), (j ∈ ∂b\i)

νi→a(σi) = Ci→aϕi(σi)
∏

b∈∂i\a

ν̃b→i(σi),

where Ca→i and Ci→a are normalization constant of each distribution functions,
respectively. When ∂a = {i, j}, one can use ψa(σa) = eβσiσj . In addition, using
ϕi(σi) = exp[βµ(1− σi)], we obtain the update rules of BP: Eq. (5.3) and Eq. (5.4)
in the main text.
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