

Detecting context-dependent defects and

measuring review quality for software reviews

Michiyo Wakimoto

The names of companies and products are trademarks or registered trademarks of their

respective companies.

i

Abstract

This thesis focuses on two issues preventing software reviews from providing the

expected effect. The first issue is low review quality, which results in that software

review materials include overlooked defects. The second issue is context-dependent

defects, which could not be considered as defects and turn out to be defects in the

subsequent software development activities.

For the first issue, this thesis proposes a metric, the number of questions and

discussions, which identifies concerns in software reviews. First, I defined an effective

question, which identifies concerns. Then, I defined detailed software review processes

(identifying, sharing, and recording processes), which capture how concerns identified

by effective questions were shared and defects were documented. I conducted a case

study with 25 projects in industry to investigate the impact of the number of effective

questions, which identified concerns, on the number of detected defects in subsequent

testing. The results of a multiple regression analysis showed that the number of effective

questions predicted the number of defects in subsequent testing at the significance level

of 0.05.

For the second issue (context-dependent issue), this thesis conducted a case study

to investigate which type of defects could be regarded as context-dependent defects.

Specifically, I analyzed defects that required significant correction effort in a simulation

control software system development. The results of the case study showed that the

defects were ambiguity defects (context-dependent defects) injected by

misunderstandings and inconsistencies among stakeholders during interpreting

requirements and specifying design documents. The ambiguities of the specifications are

ii

found in the definitions of distance, time (time zone), and calculation accuracy. These

cause inconsistencies among the implementations and errors in the control simulation

execution results. Based on the analysis, I propose a low-effort defect prevention

approach clearly defining the units to avoid such ambiguities. I evaluated the approach

and estimated the expected effort reduction in the target control simulation software

system development.

Additionally, this thesis proposes a software review method to detect context-

dependent defects by generalizing the ambiguity defects identified in the simulation

control software system case study. The proposed method can help reviewers detect

omissions or ambiguities in requirements caused by design context. Some software

requirements are omitted or ambiguous depending on the design context, although these

requirements would not necessarily be regarded as omitted or ambiguous when viewed

as requirements alone. The design context sometimes causes inconsistencies among

implementations that realize the same requirement. The proposed method defines goal-

oriented check items for design review using a goal tree obtained by goal-oriented

requirements analysis. Reviewers use the goal-oriented check items to detect

inconsistent implementations that realize the same requirement. This thesis also

evaluates the proposed method through a case study. The results of the case study

showed that the proposed method defined five goal-oriented check items and that

reviewers detected 24 context-dependent defects with goal-oriented check items. The

results also showed that the sum of the estimated additional effort to define goal-oriented

check items and perform design reviews with goal-oriented check items was 19.6

person-hours. Furthermore, the results showed that an engineer with general skills and

knowledge of software development but without system-specific skills and knowledge

could define a goal tree and the corresponding goal-oriented check items.

iii

iv

Contents

1. Introduction 1

2. A Metric for Questions and Discussions Identifying Concerns in Software

Reviews 5

2.1 Introduction ·· 5

2.2 Effective Questions in Software Reviews ··································· 7

2.2.1 Definition ·· 7

2.2.2 Defect Category and Effective Questions in Software Review Process ···· 12

2.2.3 Literature Review ··· 17

2.3 Case Study ·· 21

2.3.1 Goal ··· 21

2.3.2 Projects ··· 22

2.3.3 Metrics and Procedure ·· 23

2.3.4 Results ·· 26

2.4 Discussion ··· 27

2.4.1 RQ: Does the Number of Effective Questions in a Software Review Affect

the Quality of Subsequent Testing? ··· 27

2.4.2 Implications for Practitioners ·· 28

2.4.3 Threats to Validity ·· 29

2.5 Conclusions ··· 29

3. An Analysis on a Case Study of Requirements Ambiguities 31

3.1 Introduction ··· 31

v

3.2 Case Study ·· 32

3.2.1 Target System ·· 32

3.2.2 Defects Cause Analysis ··· 34

3.2.3 Defects Analysis ··· 38

3.3 A Prevention Approach for Focusing Essential Data ····················· 39

3.3.1 Overview·· 39

3.3.2 Identifying Essential Data ·· 40

3.3.3 Critical Requirements Definition ·· 40

3.3.4 Estimated Effort Reduction ··· 41

3.4 Conclusions ··· 42

4. Goal-Oriented Software Design Reviews 43

4.1 Introduction ··· 43

4.2 Related Research ··· 45

4.3 Proposed Method ··· 46

4.3.1 Prerequisite ··· 46

4.3.2 Procedure ··· 47

4.3.3 Example of A Goal Tree and Check Items ····································· 49

4.4 Case Study ·· 53

4.4.1 Goal ··· 53

4.4.2 System Context ·· 53

4.4.3 Metrics ·· 55

4.4.4 Evaluation and Procedure ··· 56

4.5 Results ··· 58

4.5.1 Results of Evaluation 1 ·· 58

4.5.2 Results of Evaluation 2 ·· 59

4.5.3 Results of Evaluation 3 ·· 61

4.6 Discussion ··· 62

vi

4.6.1 Evaluation Results ·· 62

4.6.2 Threats to Validity ·· 64

4.7 Conclusions ··· 66

5. Conclusions 68

Acknowledgment 71

References 72

List of Publications 83

vii

viii

List of Figures

Figure 2.1 Class diagram of concern, question, and defect. 8

Figure 2.2 Flowchart to categorize effective questions and distinguish between true and

false-positive defects identified and specified by effective questions. 10

Figure 2.3 An example of an effective question, which shows true or false-positive

defects from an effective question. 12

Figure 2.4 Defect categories in identifying, sharing, and recording process. 15

Figure 2.5 An example for the process and categories which shows the categorization of

effective questions according to the flowchart in Figure 2.1 and the process in

Figure 2.3. 16

Figure 3.1 Data flow and user interfaces of system Sb-A. 32

Figure 3.2 Ambiguity and misunderstanding of units of distance. 35

Figure 3.3 Time standard inconsistency among the subsystems. 36

Figure 3.4 Insufficient accuracy. 37

Figure 3.5 Procedure of the proposed approach. 39

Figure 4.1 An example of a goal tree. Red circles represent pruned subgoals. 47

Figure 4.2 Architecture of an example system. 49

Figure 4.3 A goal tree for the example system. 50

Figure 4.4 Architecture of System Sc-A. 54

https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851272
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851273
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851273
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851275
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851276
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851276
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851276
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851277
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851278
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851279
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851280
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851281
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851282
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851283
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851284
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851285

ix

Figure 4.5 The goal tree and goal-oriented check items for System Sc-A. 59

https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1_変更履歴なし_EN連携なし.docx#_Toc123851286

x

List of Tables

Table 2.1 Definitions of terms. 9

Table 2.2 Defect processes in previous studies. 18

Table 2.3 Definitions and percentages of false-positive defects. 20

Table 2.4 Measured metrics for project management. 24

Table 2.5 Derived metrics for the analysis. 25

Table 2.6 Distribution of the measured metrics. 26

Table 2.7 Distribution of the independent and dependent variables. 26

Table 2.8 Results of the multiple regression analysis. 26

Table 3.1 Summary of the target system and development project. 33

Table 3.2 Number of defects injected in processes. 33

Table 3.3 Examples of critical requirement definitions. 40

Table 3.4 Estimated effort. 41

Table 4.1 Overview of an example system. 49

Table 4.2 Overview of system Sc-A. 54

Table 4.3 Metrics for the evaluation. 55

Table 4.4 Results for Evaluation 2. 60

https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843173
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843174
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843175
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843176
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843177
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843180
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843181
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843182
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843183
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843184
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843185

xi

Table 4.5 Number of defects for goal-oriented check items for Subsystem 1a. 60

Table 4.6 Number of defects for goal-oriented check items for Subsystem 2a. 60

Table 4.7 Results for Evaluation 3. 61

Table 4.8 Number of defects for goal-oriented check items for Subsystem 1b. 62

Table 4.9 Number of defects for goal-oriented check items for Subsystem 2b. 62

https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843186
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843187
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843188
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843189
https://ritsumei365-my.sharepoint.com/personal/gr0285fv_ed_ritsumei_ac_jp/Documents/名古屋/00_博士論文/博士論文_20230105_1.docx#_Toc123843190

1. Introduction

1

1. Introduction

As software products have become an essential part of everyday life, defects in released

software are becoming a more serious issue. To prevent such defects in released software,

software development teams should detect and correct as many defects as possible

within the software development process. Software development processes comprise

several operations to deliver a product, which includes: requirements analysis (eliciting

requirements), software architectural design (developing top-level structure,

organization of the software, and identifying components), coding (writing source code),

testing (evaluating the program and fixing detected defects), and maintenance

(modifying existing software while preserving its integrity) [1], [2]. Software defects

should be detected and corrected within the injected software development process or

the process after the injection as earlier as possible because detecting and correcting

software defects earlier can reduce correction efforts [3], [4]. A previous survey of 169

large software projects reported that changes in the maintenance process were roughly

100 times more costly than in the specification process [3], [5].

Software review is a static analysis technique aimed at early defect detection [6-

11]. It is also one of the most effective evaluation quality assurance techniques [12-15].

Reviewers manually check materials (documents and source code) in this development

activity to ensure no defects remain [16]. Specifically, reviewers point out and discuss

potential defects, the authors and reviewers verify whether the identified defects are true

defects, and decide which ones require action, including correction.

Early defect detection in software review reduces defect correction effort compared

to defect detection techniques available after the coding process (e.g., source code

1. Introduction

2

analysis, runtime checking, and testing). Software review can be performed on

intermediate artifacts before the coding process. Fagan and Davis reported that while

defects detected in software reviews formed 82% of all defects detected in entire

development processes, software reviews consumed approximately 15% of development

resources, thereby reducing defect correction efforts by more than 25% [6], [17].

Guided reviews provide one approach to enhance effectiveness in software reviews.

Guided reviews help reviewers comprehensively detect severe defects, including

omissions or ambiguities, by providing detailed instructions, procedures, and hints.

Many studies have reported on the effectiveness of guided reviews [9], [11], [18-25].

Typical guided review techniques are checklist-based reading (CBR) [6], perspective-

based reading (PBR) [21], defect-based reading (DBR) [20], usage-based reading (UBR)

[22], and traceability-based reading [26]. CBR is a reading technique in which reviewers

use a list of questions to help understand what defects to examine [23]. PBR [18], [27],

[28] is a scenario-based reading (SBR) [20] that defines the perspectives of the

stakeholders and assigns the perspectives to reviewers. DBR is an SBR that focuses on

detecting specific types of defects [20], [23]. UBR prioritizes the use cases and detects

the most critical defects in target materials along with prioritized use cases [23], [26].

Software review cannot always provide the expected effect. Although several

software review metrics, including the number of detected defects and the effort to

perform the review, have been proposed to judge whether reviews provide the expected

effect, these metrics are insufficient to capture review quality. For example, although

testing can evaluate target program quality by the number of failed and passed test cases

from the test results, such clear metrics from software review results have not been

proposed. Furthermore, existing models and techniques, which use existing review

metrics, including the fault-prone module prediction [29] and the capture-recapture

model [30-32], have been insufficient to capture review quality.

1. Introduction

3

Some definitions or descriptions can be ambiguous depending on the decisions in

subsequent development processes, although the definitions or descriptions would not

necessarily be ambiguous without the decisions. Guided reviews do not refer to such

ambiguities nor assume that reviewers detect such ambiguity defects with the guides.

One example of ambiguity defects is the incident involving the Mars rover. The Mars

Climate Orbiter lost communication just before arriving on Mars in 1999 [33].

According to the report, the lost communication was caused by a misunderstanding

between the pound-force second and newton-second units among developers, which

should have been detected during software requirements analysis reviews and software

architectural design reviews. Nevertheless, it was not detected during the reviews and

subsequent testing because the developers interpreted the same terminology differently.

This thesis focuses on two issues preventing software reviews from providing the

expected effect. First, software review materials include overlooked defects when

software reviews cannot detect defects sufficiently (low review quality). One reason for

insufficient software reviews is that the discussions, questions, and answers during

software reviews missed the point. Another reason is that the review time to detect

appropriate defects is insufficient. Capturing such insufficient software reviews is

difficult using existing software review metrics, including the number of detected

defects and effort to perform the review. Second, context-dependent defects which are

not considered as defects during reviews but turn out to be defects in subsequent software

development activities. Although these requirements are not necessarily ambiguous

when viewed as requirements alone, some are ambiguous depending on the design

context. Hence, ambiguities in requirements may be identified as two or more different

implementations realize the same requirement. Consequently, each implementation can

be adequately implemented for the requirement, but the implementations are not always

consistent with one another.

For the first issue (low review quality), this thesis proposes a new metric to assess

whether software reviews are performed properly. Reviewers can evaluate software

1. Introduction

4

review quality more precisely, using the proposed metric and the existing software

review metrics. The proposed metric can also help a project manager (review leader)

identify an insufficient software review, which has two benefits: first, it reveals that the

project manager should plan additional software reviews with expert reviewers. Second,

it highlights the need for more resources to conduct subsequent testing.

For the second issue (context-dependent defects), this thesis first conducts a case

study to analyze context-dependent defects that require significant correction effort. The

results of the case study found focusing on essential data definitions could have

prevented a kind of context-dependent defects in the case study. Subsequently, by

generalizing the focus on the essential data to the goals of the software, a software review

method is proposed to detect context-dependent defects, referring to the goals of the

software identified in the requirements. The proposed method selectively detects

ambiguity defects requiring significant correction efforts among many ambiguity defects.

This thesis is structured as follows: Section 2 describes the new metric to assess

whether software reviews are appropriately performed. Section 3 conducts the case study

to analyze omissions or ambiguities in requirements depending on the design context.

Section 3 also proposes an approach to prevent omission or ambiguity defects. The

proposed method generalized from the approach for the case study is described in

Section 4. Section 5 summarizes the thesis.

2. A Metric for Questions and Discussions Identifying Concerns in Software

Reviews

5

2. A Metric for Questions and

Discussions Identifying

Concerns in Software Reviews

2.1 Introduction

In software reviews, reviewers not only detect defects but also ensure that the software

review material is free of concerns about potential defects by asking questions and

engaging in discussions, because the concerns may cause defects [34], [35]. A study

which analyzed utterances during software reviews [36] reported that 60–70% of the

conversations consisted of “informing” and “clarification.” Other studies [37], [38]

reported that reviewers spend 38% of the review time verifying, justifying, or rejecting

potential defects and concerns. A study on code review effectiveness [39] reported that

code review comments included questions, and these questions helped reviewers detect

defects. In the case where a concern identified by a question is applicable to the software

review material during the subsequent discussion, the concern and applicable locations

are specified as a defect. On the other hand, in the case where a concern is not applicable

to the software review material, it is discarded or recorded as a false-positive defect. For

example, in a code review, a concern may be identified by the question, “Is it intentional

that one of the parameters passed to the function is not used?” Then, the subsequent

answers and discussions enable the reviewers and authors to find that the source code

statements using the parameter passed to the function are omitted. In this case, the

concern “the implementation using the parameter passed to the function may be omitted”

2.1 Introduction

6

identified by the question and the discussion reveals a defect: “the implementation using

the parameter passed to the function is omitted.” On the other hand, if the parameter

passed to the function is designed for compatibility with older versions and is not used

intentionally, the concern is not applicable and will not identify a defect. Although this

kind of question and discussion may lead to defect detections, its effectiveness and the

detailed process have yet to be investigated.

Concerns identified by questions and discussions cannot be directly extracted from

defects in a defect list after software reviews because the defects include defects directly

detected by reviewers and defects found by examining concerns. Furthermore, some

concerns are discarded or recorded as false-positive defects if they are not applicable to

the software review materials. Although some studies have used objective indicators

such as the number of detected defects to assess whether software reviews are performed

properly [31], [32], [40], such metrics only include the number of defects directly

detected by reviewers and defects found by concerns, which are applicable to the

software review material.

The number of questions identifying concerns can be an indicator of effective

software reviews. Some studies have demonstrated that the number of questions

identifying concerns is an indicator of effective software reviews. One study evaluated

the percentage of interrogative sentences in each review comment as a metric for code

review quality [41]. Another study defined a new metric, Issue Density, to estimate the

code review quality [39]. However, neither study evaluated the relationship between the

quality of review and the quality in subsequent testing.

This section proposes a metric, the number of effective questions which identify

concerns in software reviews. First, I defined effective questions and the processes by

which effective questions are recognized and recorded as defects as well as the

categories for true and false-positive defects. Then, I surveyed previous studies

according to the defined process and defect categories to investigate whether defects are

2. A Metric for Questions and Discussions Identifying Concerns in Software

Reviews

7

distinguished defects directly detected from those found by concerns according to the

defined processes and categories. Furthermore, I implemented a case study, which

involved 25 projects in industry, to investigate the effectiveness of effective questions

in software reviews. The metrics in the case study include the number of effective

questions that identify concerns, number of defects detected, and number of defects

detected in subsequent testing. I performed multiple regression analysis for these metrics

to evaluate the effectiveness of questions and discussions in software reviews. The

research question is formulated as the following.

RQ: Does the number of effective questions in a software review affect the quality of

subsequent testing?

2.2 Effective Questions in Software Reviews

2.2.1 Definition

I define effective questions to distinguish between questions, which identify concerns

about potential defects from those that clarify and understand the software review

material, because questions and subsequent discussions in software reviews cover

diverse topics such as exchanging opinions on defects, evaluating the value, clarifying

solutions, and rejecting hypotheses [37], [38]. Software reviews can be categorized as

synchronous, such as a face-to-face meeting, or asynchronous, such as sending and

receiving defect descriptions via a review support tool [42-44]. In synchronous reviews,

reviewers share potential defects and ask effective questions in a review meeting. In

asynchronous reviews, reviewers share potential defects and ask effective questions

using review support tools. Figure 2.1 shows the relationships among concern, question,

and defect. Table 2.1 shows the definitions of the terms.

2.2 Effective Questions in Software Reviews

8

Figure 2.1 Class diagram of concern, question, and defect.

2. A Metric for Questions and Discussions Identifying Concerns in Software

Reviews

9

Table 2.1 Definitions of terms.

A set of questions (U) consists of a set of effective questions (Diq) and a set of non-

effective questions (N). I assume that a defect can be specified with a concern and its

locations in the software review material. The discussions following the effective

questions (Diq) verify the concern and determine the locations applicable to the concern.

Thus, if a concern identified by an effective question is judged to apply to the software

review material through discussions, the locations of concern can be determined. On the

other hand, if a concern is not judged to apply to the software review material through

discussions, no location is determined. Thus, the concern does not lead to specifying

Category and term Description

Reviewer A reviewer is a person who checks materials (documents and source
code) manually in a software review, asks questions, or points out
potential defects.

Concern A concern is a potential cause of a defect. If the concern applies to the
review material, the defect will be identified with its location. In
software reviews, reviewers ensure that the software review material is
free of concerns about potential defects by asking questions and
engaging in discussions, because the concerns may cause defects.

Question Effective
question

An effective question is a question clarifying whether the concern
applies to the review materials. If a reviewer asks an effective
question, the other reviewers verify the concern and try to determine
the locations applicable to the concern.

Non-
effective
question

A non-effective question is a question without any concern.

Defect Potential
defect

A potential defect is a defect identified and pointed out by a reviewer
without effective questions. The other reviewers verify the potential
defect to judge whether it is a true defect or a false-positive defect.

True defect A true defect is a defect that was judged to require action, including
correction. A true defect can be found by an effective question or a
potential defect.

False-
positive
defect

A false-positive defect is an incorrect defect (mistakenly regarded as a
defect) or is a concern identified by an effective question and not
applying to any part of the review materials.

2.2 Effective Questions in Software Reviews

10

(finding) a defect. Namely, a set of effective questions (Diq) consists of a set of effective

questions identifying concerns with locations that apply to the concerns (Diql) and a set

of effective questions without applicable locations that apply to the concerns (Diqn).

Figure 2.2 shows the flowchart for categorizing effective questions and determining true

or false-positive defects identified and specified by effective questions. The first and

second branches categorize effective questions. As indicated by the second branch in

Figure 2.2, if reviewers do not attempt to find the applicable locations for the concern

identified by the question, then it is considered to be a non-effective question. An

example of a non-effective question without a concern is “What time does this review

Figure 2.2 Flowchart to categorize effective questions and distinguish between true and

false-positive defects identified and specified by effective questions.

No (N)

Yes (Diq)

Does the question include concern?

Reviewer asks a question.

Start

No (Diqn)

Yes (Diql)

Reviewer reports the concern and locations

identified by the effective question as the

defect.

Reviewer discards the concern or reports the

concern identified by the effective question as

the false-positive defect.

Can the locations of the concern be

determined?

End

Do the reviewers try to find

applicable locations to the concern

identified by the effective question?

Yes

No (N)

(U)

2. A Metric for Questions and Discussions Identifying Concerns in Software

Reviews

11

meeting end?” An example of a non-effective question for the reviewer’s self-

understanding is “Which chapter defines the glossary?”

Reviewers ask an effective question when they cannot specify locations for

concerns or when they are unable to expend effort to check and find locations of

concerns. Figure 2.3 shows an example of an effective question. An example is the

question (∈ U), “Does the interrupt program change the value of the global variable x?

If yes, the assigned value and reference value are not consistent.” This identifies a

concern that the global variable x can be overwritten by the interrupt program. If the

interrupt program, which changes the global variable x, can be executed during the

assignment and reference, the concern applies to the software review material (source

code A in Figure 2.3). The locations are where the interrupt program changes the value

of the global variable x or the omitted place (description), disabling the interrupt. Then,

the defect (∈ Dst) “The value of the global variable x may not be consistent because the

interrupt program can change the value, and disabling the interrupt programs is omitted.”

is detected by the effective question, identifying the concern applicable to locations (∈

Diql). In the case where a concern identified by an effective question applies to the

software review material, the defect is recorded as a true defect (∈ Drt). If a concern does

not apply to the software review material (source code B in Figure 2.3), the concern is

discarded or recorded as a false-positive defect (∈ Drf) detected by the effective question

identifying the concern without applicable locations (∈ Diqn), depending on the recording

policy.

The number of effective questions identifying concerns can be an indicator of

effective software reviews. Furthermore, reviewers are expected to directly detect

defects, and they then have confidence to ask effective questions. The proportion of the

number of effective questions to the number of directly detected defects should be

measured because available time and effort for the software reviews are limited. If the

proportion of the number of detected defects to the number of effective questions is

larger, time and effort for asking questions are likely to be limited.

2.2 Effective Questions in Software Reviews

12

Figure 2.3 An example of an effective question, which shows true or false-positive

defects from an effective question.

2.2.2 Defect Category and Effective Questions in Software

Review Process

Although reviewers present potential defects and ask effective questions in both

synchronous and asynchronous reviews, their processes differ.

In synchronous reviews, reviewers present potential defects verbally and ask

effective questions during a software review. According to Fagan, a software review

consists of overview, preparation, review, rework, and follow-up processes [6]. In the

software review process, a reviewer presents potential defects and asks effective

Reviewer

“Does the interrupt program

change the value of the

global variable x?”

“The value of the global variable

x can be overwritten by the

interrupt program.”

Concern

Effective question

“The value of the global variable x

may not be consistent because the

interrupt program can change the

value of the global variable x, and

disabling the interrupt programs is

omitted.”

Defect

“The value of the global variable x is

consistent because the interrupt

program does not change the value of

the global variable x.”

False-positive defect
Main program

int x, y, z;

int main(void){

x = func1();

y = func2();

x += (x + y) / 2;

func3(x, y);

}

Source code B

Interrupt program

void interrupt(){

z++;

if(z == 60){

z = 0;

}

}

Source code A

Interrupt program

void interrupt(){

x++;

if(x == 60){

x = 0;

}

}

Main program

int x, y, z;

int main(void){

x = func1();

y = func2();

x += (x + y) / 2;

func3(x, y);

}

Check

The interrupt program changes the value of the global variable x.

The interrupt program does not change the value of the global

variable x.

Check

Report

Report

or

discard

Ask

2. A Metric for Questions and Discussions Identifying Concerns in Software

Reviews

13

questions. Then, the authors respond. If necessary, the potential defects and concerns

identified by the effective questions are further discussed [6], [45].

In asynchronous reviews (non-meeting-based approaches [44]), a reviewer denotes

potential defects and effective questions, which are sent to the authors and other

reviewers via a review support tool. After the authors answer the effective questions, the

authors and reviewers discuss the concerns identified by the effective questions and

answers using the tool. In asynchronous patch reviews, a fix proposal (a code patch) may

be sent with a potential defect [46], [47].

Both synchronous and asynchronous reviews include the following identifying,

sharing, and recording processes.

- Identifying

A reviewer checks the material and identifies potential defects. It is assumed that

the reviewer thinks that the potential defects are true defects, as the reviewer does

not want to share false-positive defects in software reviews. If the reviewer has a

concern, they prepare effective questions, which will be asked in the sharing

process. In asynchronous reviews, the reviewer inputs the potential defects and

effective questions into the review support tool.

- Sharing

Each potential defect identified by the reviewers is shared, and whether it is a true

or false-positive defect is evaluated. The authors and other reviewers answer the

effective questions and discuss identified concerns to find applicable locations and

ensure that no defect remains. Each potential defect or concern identified by

effective questions is subsequently categorized as either a true defect or a false-

positive defect.

- Recording

2.2 Effective Questions in Software Reviews

14

In synchronous reviews, the true defects judged in the sharing process are recorded.

In some reviews, defects judged to be false positives in the sharing process are

recorded, whereas in other reviews, they are discarded. In asynchronous reviews,

potential defects and effective questions are already recorded in the identification

process. Hence, potential defects and effective questions are categorized into true

or false-positive defects. In addition, the defect descriptions may be updated,

depending on the discussions in the sharing process.

Figure 2.4 overviews the process to categorize potential defects and effective

questions in the sharing process and how true and false-positive defects are recorded in

the recording process. For synchronous reviews, reviewers identify potential defects

(Did) and effective questions (Diq) in the identification process. Potential defects and

effective questions are treated as the same type because both are identified by reviewers

when checking the software review material. For synchronous reviews, reviewers

explain potential defects and effective questions verbally. For asynchronous reviews,

reviewers submit potential defects and effective questions in text. In the sharing process,

the reviewers present Did and ask Diq, and then the authors and the other reviewers

examine defects (Did) and concerns identified the by Diq. Finally, based on their

discussion, the defects and concerns are categorized into true defects (Dst) and false-

positive defects (Dsf). In the sharing process, new potential defects and effective

questions may be found. In this case, they are added to Did and Diq. In the recording

process, each defect in Dst is recorded as true defects (Drt). Depending on the recording

policy, some defects in false-positive defects (Dsf) are recorded as false-positive defects

(Drf). After the recording process, defects in true defects (Drt) are corrected.

For asynchronous reviews, reviewers identify potential defects (Did) and effective

questions (Diq). Then, they input Did and Diq into a review support tool. In the sharing

process, the reviewers send Did and Diq to the authors and other reviewers. After the

authors and other reviewers understand Did and Diq, they answer the effective questions

2. A Metric for Questions and Discussions Identifying Concerns in Software

Reviews

15

(Diq) and discuss the concerns identified by Diq. In addition, they examine and judge

whether the potential defects (Did) are true defects.

Finally, the authors and the reviewers categorize Did and Diq into true defects (Dst)

and false-positive defects (Dsf) based on the discussions. Effective questions (Diq) are

categorized into effective questions identifying concerns with applicable locations (Diql)

and effective questions identifying concerns without applicable locations (Diqn)

depending on whether the concerns are applicable or not. In the recording process, true

defects (Dst) are labeled or categorized as true defects (Drt). False-positive defects (Dsf)

are labeled or categorized as false-positive defects Drf. Some of the defects in the false-

positive defects (Dsf) may be discarded in the recording process. After the recording

process, true defects (Drt) are corrected. In the case where a code patch is attached to the

true defects (Drt), the patches are merged.

Figure 2.4 Defect categories in identifying, sharing, and recording process.

Potential defects

Did

True defects

Dst

True defects

Drt

False-positive

defects Dsf

Effective

questions

Diq

Identifying Sharing Recording

False-positive

defects Drf

2.2 Effective Questions in Software Reviews

16

Figure 2.5 shows an example for the process and categories. In Figure 2.5, if the

locations of concern are found through discussion, the author (reviewee) who knows the

design intention answers, “The implementation using the parameter passed to the

function is omitted.” On the other hand, if the locations of concern are not found through

discussion, the author (reviewee) answers, “The parameter is designed for compatibility

with older versions and is not used in the function intentionally.”

Figure 2.5 An example for the process and categories which shows the categorization of

effective questions according to the flowchart in Figure 2.2 and the process in Figure

2.4.

Reviewer

[Diq] “Is it intentional that one of the

parameters passed to the function is not used?”

Discussion with reviewers and the

author (reviewee)

“The implementation using the

parameter passed to the function may

be omitted.”

[Diql] “The implementation

using the parameter passed

to the function is omitted.”

Concern

[Dst] “One of the

implementations using the

parameter passed to the

function is omitted.”

[Diqn] “The parameter is

designed for compatibility

with older versions and is

not used in the function

intentionally.”

If locations which apply to the

concerns are found

If locations which apply to the

concerns are not found

[Drt] “One of the

implementations using the

parameter passed to the

function is omitted.”

Recorded as false-positive

[Drf] or discarded

[Dsf] “One of the parameters

passed to the function is not

used because the parameter

is intentionally designed for

compatibility with older

versions.”

Identifying Sharing Recording

2. A Metric for Questions and Discussions Identifying Concerns in Software

Reviews

17

2.2.3 Literature Review

I conducted a literature review to identify articles that describe concerns raised by

effective questions, subsequent discussions, and categorization of true and false-positive

defects according to the applicable concerns. Many studies categorized true defects [48-

50], but few studies categorized false-positive defects. Previous studies referring to

software reviews in which false-positive defects were detected [16], [45], [50], [51] did

not refer to the categories or details of false-positive defects. Articles [16], [52] excluded

false-positive defects prior to defect analysis. Moreover, one study described that

analysis and retrospect of software reviews used information of true defects as inputs

[53]. Only the article [54] referred to the use of a question list. However, it did not

describe the concerns identified by the questions.

I investigated which processes and categories defined in Subsections 2.2.1 and 2.2.2

are referred to when true defects and false-positive defects are judged and recorded.

Table 2.2 shows the result. The arrow (->) means the right side arises from the left side.

True defects and false-positive defects were judged and recorded in different processes.

Three articles [54-56] referred to defects in Did -> Dst. These articles described that the

participants of the software reviews discussed whether the presented defects were true

defects or not, and they categorized defects as true defects. One article [57] referred to

defects categorized as Did -> Dsf. It described that the participants in the software reviews

discussed whether the presented defects were false-positive or not prior to deciding they

were false-positive defects. One article [58] referred to defects categorized as Did -> Dst,

Dsf. The participants of the software reviews discussed whether the presented defects

were false-positive defects or not, and they found both true and false-positive defects.

One article [55] referred to defects categorized as Dst and Dsf. Another article [54]

referred to defects categorized as Did -> Drf. One article [50] referred to defects

categorized as Drf.

2.2 Effective Questions in Software Reviews

18

Table 2.2 Defect processes in previous studies.

Categories Text referring the defect categories in the previous studies

Did -> Dst To support decision making, discussants can also vote by rating any potential defect
as true defect [54]
Collated defects: the number of defects merged from individual findings to be
discussed during the meeting. True defects: the number of defects for which
consensus was reached during the meeting in considering them as true defects [55].
We used the information from the repair form and interviews with the author to
classify each issue as a true defect (if the author was required to make an execution
affecting change to resolve it) [56].

Did -> Dsf False positives are items reported by subjects as defects, when in fact no defect
exists [57].

Did ->
Dst, Dsf

In addition to the instructions from the preparation phase, the instructions in the
meeting phase were:
use the individual inspection record and decide which are faults and which are false
positives [58].

Dst True defects: the number of defects for which consensus was reached during the
meeting in considering them as true defects [55].

Dsf Removed false positives: the number of defects for which consensus was reached
during the meeting in considering them as not true defects, thus as false positives
[55].

Did -> Drf In the Discrimination stage, discussion takes place asynchronously as in a
discussion forum. When a consensus has been reached, the moderator can mark
potential defects as false positives, thus removing them from the list that will go to
the author for rework [54].

Drf False positives were issues that were identified in the meeting but that were
discovered not to be defects either during the meeting or after. The decision
whether a defect was a false positive was done by the code review team [50].

I investigated the definitions of false-positive defects to survey the categories for

false-positive defects. Table 2.3 shows the definitions of false-positive defects,

percentages of false-positive defects, and definitions of true defects for each article. No

article categorized false-positive defects into incorrectly detected defects and concerns

that are not applicable to the software review material. Eighteen articles described the

definitions of both true and false-positive defects. No article described effective

questions. One article [54] presented the format of a question list in a software review,

but it did not refer to concerns identified by the questions in the question list.

2. A Metric for Questions and Discussions Identifying Concerns in Software

Reviews

19

Table 2.3 shows that not only the definitions of false positives but also those of true

defects were inconsistent among the articles. Table 2.3 also shows the percentages of

false-positive defects to the sum of true and false-positive defects. The percentages

varied from 20% to 80%. More than half of the articles did not indicate the percentages

or refer to the false-positive defects. Ten articles referred to categorizing detected defects

into true and false-positive defects but did not report the percentages of the false-positive

defects. Eight articles reported the percentages of detected false-positive defects.

The results of the literature review showed that no article referred to questions and

concerns that were categorized into true or false-positive defects. Additionally, no

literature categorized true defects into defects directly detected and shared by a reviewer

or those found by concerns identified by effective questions and subsequent discussions.

Therefore, I investigated whether the number of questions identifying concerns leads to

an indicator of effective software reviews and helps a project manager identify an

insufficient software review.

2.2 Effective Questions in Software Reviews

20

Table 2.3 Definitions and percentages of false-positive defects.

Arti
cle

Definitions of false-positive defects Percentages
of false-
positive
defects

Definitions of true defects

 [16] False positives (issues raised as defects that are
not actual defects)
False positives, the number of invalid defects
recorded by the group

22% Defects, the total number of distinct, valid
defects detected by a group

 [45] False positives (issues raised as defects that are
not actual defects)

22% Actual defects

 [50] False positives were issues that were identified
in the meeting but that were discovered not to
be defects either during the meeting or after

22% If the code review team finds an issue and
agrees that it is a deviation from quality, the
issue is counted as a defect

 [51] False positives (no real usability problems) 43.10% Real usability problem

 [52] False positives (reported defects that were not
considered to be actual defects)

- Actual defects

 [54] False positives (non-true defects)
False positives (defects erroneously reported as
such by inspectors)

46% True defects

 [55] For which consensus was reached during the
meeting in considering them as not true defects,
thus as false positives

- True defects: the number of defects for
which consensus was reached during the
meeting in considering them as true defects

 [56] False positive (any issue which required no
action)

20% True defect (if the author was required to
make an execution affecting change to
resolve it), soft maintenance issue (any
other issue which the author fixed)

 [57] False positives are items reported by subjects as
defects, when in fact no defect exists

- Defects

 [59] A false positive is a description which is not a
true defect, i.e., does not require rework

- A true defect is a description of a positively
identified defect which requires rework; it
causes the program to fail, and violates the
given specifications and design

 [60] False positives (erroneously identified defects)
False positives are the non-true defects—
defects that require no repair

42.62% True defects

 [61] It classifies too many consistent designs as
inconsistent (false positives)

- True positive

 [62] False positive (FA)—defects that do not exist
but were wrongly identified

- True defects (TR)—defects that actually
exist and have been successfully detected

2. A Metric for Questions and Discussions Identifying Concerns in Software

Reviews

21

 [63] False defect estimations, known as false
positive

- The number of true defect estimations,
known as true positive

 [64] False positive rate: the percentage of issues
reported by an inspector that turn out not to
represent real quality problems in the artifact

80% Defect detection rate: the percentage of
known defects in a given software artifact
that are found during the inspection

 [65] False positives (not identified from preparation) - True defects
Net defects

 [66] A false positive—an obviously wrong
statement of the document.

- True defect

 [67] False positive—items pointed by the subjects
that do not correspond to a defect of the RD
RD: the Requirements Document

- Defects—items that really are defects of the
RD
RD: the Requirements Document

2.3 Case Study

2.3.1 Goal

This evaluation investigated whether the number of effective questions in software

reviews could predict software quality. Specifically, the metric defect detection rate in

testing (Q) was used as the quality of the software, where Q = [number of defects

detected in testing]/[lines of source code]. The evaluation examined whether the number

of effective questions could predict the defect detection rate in testing Q by performing

multiple regression analysis because multiple parameters may affect Q. The independent

variables of the multiple regression analysis include the number of effective questions

in the software reviews. This evaluation assumes that effective software reviews

decrease the number of defects detected in testing because effective design and code

reviews reduce defects overlooked in the software reviews. Consequently, defects

detected in subsequent testing are reduced.

2.3 Case Study

22

2.3.2 Projects

The data for the evaluation were collected from a Japanese software development

Company Sa. The standard software development process in Company Sa is based on

the waterfall model and follows the process areas Organizational Process Definition

(OPD) and Integrated Project Management (IPM) defined in CMMI-DEV V.1.3 [68].

The standard process also defines software measurements and metrics. In each software

development project in Company Sa, the standard development processes require that

detected defects and review logs including review comments in software reviews should

be recorded in a defect list and that the detected defects in testing should be recorded,

too.

The standard software development process of Company Sa requires that each

project performs design and source code reviews. The software reviews are performed

in a synchronous (face-to-face meeting) or asynchronous (adding detected defects to

defect lists on a defect tracking server) manner. The standard process of Company Sa

also requires that each reviewer complete review training and have detailed knowledge

on the product domain to participate in a software review.

The evaluation used metrics collected in 25 projects of Company Sa. First, I

selected 33 completed projects between April 2010 and March 2016 in Company Sa.

Second, for each of the 33 projects, I checked that the metrics did not have missing

values for review metrics, review logs, and defect metrics in testing. Eight projects were

excluded due to the missing values. Finally, I measured the number of effective

questions categorized as false-positive defects from the review logs of the remaining 25

projects. The reviewers of the case study categorized the effective questions into true

defects or false-positive defects. If the reviewers categorized the effective questions into

true defects, they were recorded as true defects in the defect list. A quality assurance

team in company Sa verified the categorizations.

2. A Metric for Questions and Discussions Identifying Concerns in Software

Reviews

23

The 25 projects were for the development of embedded systems software, including

safety-critical systems software, specifically, communication control systems software,

engine control systems software, and browsing systems software. The development

types were new development from scratch, enhancement of the same product, and reuse

from another product. The number of project members varied from 3 to 20. The number

of years of software development experience of the project members varied from 1 to 25

years. The lines of source code varied from 3000 to 1,100,000 lines written in C, C++,

or Java.

2.3.3 Metrics and Procedure

Table 2.4 shows the metrics, excluding the number of effective questions categorized as

false-positive defects, collected for project management defined by the standard

development process. The product size (SZ) was used to assess the project progress

management defined in the standard software development process. In Table 2.4, SZ is

equal to the lines of code developed in the project without reusing code. In the

development of enhanced or evolved development projects reusing an existing code base,

SZ is equal to the sum of the lines of newly developed code (nLOC), lines of changed

code from the code base (cLOC), and lines of reused code (rLOC) with a coefficient.

The standard development process determines the coefficient according to the project

attributes, such as the product domain and development types, to assess effort

consumption to the product size in the project management. The number of effective

questions categorized as false-positive defects (NOQf), not the number of effective

questions, was measured because the effective questions categorized as true defects and

rNOD would be double-counted. The metric of NOQf was measured from the review

logs. The standard development process defines that review logs should include

questions, which affect the quality of the product because some of the products in

Company Sa are embedded in safety-critical systems. Consequently, the review logs

could be used as a part of accountability for safety, if needed.

2.3 Case Study

24

Table 2.5 shows the derived metrics from the metrics shown in Table 2.4 for this

evaluation. The dependent variable was Q, which measured the software quality in the

standard software development process, because it was an indicator of the software

quality in Company Sa. The independent variables included the proportion of rLOC to

the total lines of code (p1), and proportion of the number of true defects detected in

software reviews (rNOD) to SZ (p2). These independent variables were used in the

project management and were defined in the standard software development process.

The denominator of p1 was nLOC + cLOC + rLOC. The standard software development

process included metric p1 because it was an indicator to estimate the productivity and

had a higher correlation with the number of detected defects in the past developments.

The standard software development process included metric p2 because it was used as

an evaluation criterion to measure the effectiveness of software reviews. The remaining

Table 2.4 Measured metrics for project management.

Name Description

Lines of code

New (nLOC)
Lines of code newly developed, excluding headers and
comments

Changed (cLOC)
Lines of code changed from the code base or reused source
code, excluding headers and comments

Reused (rLOC)
Lines of code reused from the code base or another product,
excluding headers and comments

Product size (SZ)

Product size for assessing development effort consumption in
the project management defined by the standard development
process. SZ = nLOC + cLOC + rLOC × coefficient (where the
coefficient is determined by the project attributes)

Number of
defects and
questions in
reviewed

True defects (rNOD)
Sum of the number of defects detected in software architecture
design, software detailed design, and code reviews

Effective questions
categorized as false-
positive defects (NOQf)

Sum of the number of effective questions subsequently
categorized as false-positive defects detected in software
architecture design, software detailed design, and code reviews

Number of defects detected in the test
(tNOD)

Sum of numbers of defects detected in the unit test, software
integration test, and software qualification test

2. A Metric for Questions and Discussions Identifying Concerns in Software

Reviews

25

independent variables, proportion of NOQf to SZ (p3), and the proportion of NOQf to

the sum of rNOD and NOQf (p4) were measured. If NOQf was large (large p3), true

defects were likely to be overlooked in the software reviews because the discussions and

concerns may have missed the point. If the proportion of NOQf to the sum of rNOD and

NOQf was large (large p4), true defects were likely to be overlooked. The review time

to detect the true defects was insufficient when the value of p4 was large and the review

time was a constraint. For metric p3, I normalized NOQf by SZ because they largely

depended on SZ as well as the independent variable p2. For metric p4, as described in

Subsection 2.2 , I normalized NOQf by the sum of rNOD and NOQf because rNOD

may affect NOQf in the software reviews. Specifically, the sum of rNOD and NOQf was

likely to be limited due to available time and effort for the software reviews.

In the multiple regression analysis, I selected significant independent variables

using the stepwise method. The evaluation investigated whether metrics of NOQf (p3

and p4) could predict the metric of the number of detected defects in testing (Q).

Table 2.5 Derived metrics for the analysis.

 Name Description

Q Proportion of the number of defects detected in testing to the
product size

tNOD/SZ

p1 Proportion of the reused lines of code to the lines of code rLOC/(nLOC + cLOC + rLOC)

p2 Proportion of the number of true defects to the product size rNOD/SZ

p3 Proportion of the number of effective questions categorized as
false-positive defects to the product size

NOQf/SZ

p4 Proportion of the number of effective questions categorized as
false-positive defects to the sum of the number of defects and
effective questions categorized as false-positive defects

NOQf/(rNOD + NOQf)

2.3 Case Study

26

2.3.4 Results

Table 2.6 shows the distribution of the measured metrics. Table 2.7 shows the

distribution of the dependent and independent variables. Table 2.8 shows the results of

the multiple regression analysis. Metrics p1, p3, and p4 contained significant coefficients.

The variance inflation factor (VIF) values indicated that there was no multicollinearity

among the variables. The adjusted R2 of the model was 0.45 (p = 0.0013).

Table 2.6 Distribution of the measured metrics.

 SZ rNOD NOQf tNOD

max 110,5000 1871 384 711

min 1330 32 0 3

median 144,390 589 99 171

Table 2.7 Distribution of the independent and dependent variables.

 Q p1 p2 p3 p4

max 6.50 0.97 46.29 7.90 0.29

min 0.54 0.00 0.55 0.00 0.00

median 2.61 0.75 12.03 1.42 0.17

Table 2.8 Results of the multiple regression analysis.

 Estimate (b) Std. Error t Value Pr(>|t|) VIF

p1 2.53 0.88 2.89 0.01 1.07

p3 0.42 0.15 2.91 0.01 1.38

p4 −9.68 3.69 −2.63 0.02 1.46

2. A Metric for Questions and Discussions Identifying Concerns in Software

Reviews

27

From the coefficients in Table 2.8, the model is expressed as

The metrics of NOQf (p3 and p4) affected Q. The proportion of NOQf to SZ (p3)

increased Q. The proportion of NOQf to the sum of rNOD and NOQf (p4) decreased Q.

Specifically, the metric p3 (ranging from 0.00 to 7.90) increased Q (ranging from 0.54

to 6.50). The coefficient of p3 was 0.42 (p = 0.01). The metric p4 (ranging from 0.00 to

0.29) decreased Q. The coefficient of p4 was −9.68 (p = 0.02). When the sum of the third

and fourth terms of the model was zero or larger, the accuracy of Q was larger than when

the sum was less than zero.

2.4 Discussion

2.4.1 RQ: Does the Number of Effective Questions in a

Software Review Affect the Quality of Subsequent Testing?

The results of the case study indicated that the answer to RQ is yes. In the case study, p3

(the proportion of NOQf to SZ) positively affected Q (tNOD to SZ). I did not assume

that p4 (the proportion of NOQf to the sum of rNOD and NOQf) negatively affected Q

(the proportion of the number of defects detected in subsequent testing (tNOD) to SZ).

Hence, I investigated the software review details. I found that the software review

materials contained a small number of defects. Almost all defects were detected in the

software reviews. The number of defects detected in subsequent testing was small.

Furthermore, the reviewers took a shorter time to detect almost all the defects, indicating

that reviewers had enough time to ask additional effective questions to ensure that they

did not overlook the remaining defects. In the discussion with the reviewers, they

indicated that the potential true defects were shared before they asked effective questions

and discussed them in higher quality projects. This suggests that sharing potential true

defects has a higher priority than asking the effective questions and subsequent

Q = 1.71 + 2.53p1 + 0.42p3 − 9.68p4

2.4 Discussion

28

discussions due to the limited review time. Facilitating effective questions and

discussions after sharing potential true defects directly detected by reviewers may

improve the software review effectiveness. Furthermore, the results may imply that

effective questions and discussions trigger the Phantom Inspector effect [69].

The case study suggests that NOQf and rNOD can be used as a metric to measure

the effectiveness (quality) of software reviews because metrics p3 and p4 affected Q. The

metric can help a project manager identify an insufficient software review. It reveals that

the project manager should plan additional software reviews with expert reviewers

and/or more resources for subsequent testing.

2.4.2 Implications for Practitioners

The number of effective questions categorized as false-positive defects can be used as a

metric to measure the software quality required by process models. The reviewers

commented that the proposed metric can meet the requirements in process areas

QPM.SP.1.4 in the CMMI [68] and MAN.6.BP4 in the Automotive SPICE [70]. The

proposed method has a high usability from two perspectives. First, it can be used in

various types of reviews, including code reviews with support tools. Second, it can

objectively determine whether a question is effective, and the number of effective

questions categorized as false-positive defects can be measured easily. Moreover, the

proposed method is efficient even for cost-sensitive software development because

categorizing effective questions and measuring the number of them can be performed in

a short time.

In an iterative development process including agile development [71], [72], the

proposed method can predict the product quality in each iteration. Although design

reviews might not be implicitly performed in some iterative development processes, the

essence of the proposed method can be applied for architectural and implementation

discussions or comments in code reviews.

2. A Metric for Questions and Discussions Identifying Concerns in Software

Reviews

29

2.4.3 Threats to Validity

In the case study, the criterion for distinguishing effective questions from other questions

may be biased. However, the reviewers in the case study selected effective questions

based on whether or not the question identified a concern. Furthermore, after the

reviewers selected the effective questions, an assessor in the quality assurance

department verified that each effective question identified a concern.

In the case study, the variance of difficulties for projects may affect Q. However,

the standard development process should mitigate such variance. For projects with

technical challenges such as deploying novel technologies, prior development and

verification were conducted. For projects whose members did not have sufficient domain

knowledge on the product, additional developers and reviewers with sufficient domain

knowledge were invited to the software reviews.

Identifying effective questions is potentially difficult. However, in this case study,

the reviewers asked questions and categorized effective questions. Furthermore,

identifying effective questions has previously been reported. One study [39] showed that

some of the review comments could be categorized as questions, and about half of the

approximately 470 questions helped reviewers detect defects.

2.5 Conclusions

This section proposed a review metric measuring the number of effective questions

which identifies concerns about potential defects. Effective questions and subsequent

discussions lead to defect detections if concerns identified by the effective questions and

discussions are applicable to review materials, whereas concerns that are not applicable

are discarded or recorded as false-positive defects. I performed a literature review to

investigate whether previous studies referred to such effective questions and concerns.

2.5 Conclusions

30

The results of the literature review showed that no article referred to questions and

concerns that were categorized into true or false-positive defects. Additionally, no

literature categorized true defects into defects directly detected and shared by a reviewer

or those found by concerns identified by effective questions and subsequent discussions.

I conducted a case study to investigate the effectiveness of the metric. The case

study measured the number of questions, which ensures that the authors and reviewers

do not overlook defects in terms of the concerns identified by the questions. The case

study evaluated the impact of the number of effective questions on the number of defects

in subsequent testing by multiple regression analysis. The independent variables were

the proportion of reused lines of code, proportion of true defects detected in software

reviews to the product size, proportion of effective questions categorized as false-

positive defects in software reviews to the product size, and proportion of effective

questions categorized as false-positive defects to the sum of true defects and effective

questions categorized as false-positive defects. The dependent variable was the

proportion of the defects detected in testing to the product size. The evaluation used

metrics collected in 25 projects in a company. As the proportion of the number of

effective questions categorized as false-positive defects to the sum of the number of true

defects and effective questions categorized as false-positive defects (ranging from 0.00

to 0.29) increased, the proportion of the number of defects detected in testing to the

product size decreased (ranging from 0.54 to 6.50) (b = −9.68, p = 0.02). Additionally,

as the proportion of the number of effective questions categorized as false-positive

defects to the product size (ranging from 0.00 to 7.90) slightly increased, the proportion

of the number of defects detected in testing to the product size increased (b = 0.42, p =

0.01).

3. An Analysis on a Case Study of Requirements Ambiguities

31

3. An Analysis on a Case Study

of Requirements Ambiguities

3.1 Introduction

Software defects from requirements and specification ambiguities are harder to identify

compared to other types of defects. Defects from ambiguities cause misunderstandings

because each developer interprets the requirements and creates incorrect materials.

Hence, the subsequent software development activities proceed under incorrect

assumptions. In this situation, because checklists used in software reviews and test cases

are created under incorrect assumptions, misunderstandings may not be discovered

during software reviews and testing.

One approach that reduces such ambiguity defects is guided software reviews.

Value-based review [73], a guided review technique, reduces effort for tailoring review

scenarios. Value-based reviews aim at detecting high-priority defects efficiently

decreased risk of overlooking. Priority is determined by artifact priority and defect

criticality. However, in the situations in the Mars Climate Orbiter lost communication

just before arriving on Mars in 1999 [33], determining the appropriate artifact priority

and defect criticality are rather difficult.

I conducted a case study that analyzes defects that required significant correction

effort during a commercial control simulation software development. The case study

also analyzed the causes of the defects. Based on the results of the case study, this section

proposes a goal-oriented approach for specifying requirements. I conducted a simple

3.2 Case Study

32

evaluation for the efficiency of the approach in the case study by estimating its expected

effort reduction.

3.2 Case Study

3.2.1 Target System

The target software system is the control simulation software developed by Company

Sb. Figure 3.1 shows the data flow and user interfaces of the system Sb-A. System Sb-

A consists of several subsystems including control simulator subsystem and data

creation subsystem. System Sb-A receives parameters from the operator as parameters

for simulation. System Sb-A calculates simulation results from predefined simulation

scenarios and given parameters. Finally, system Sb-A stores the simulation results to the

simulation logs.

Simulation result screen

Logs

Parameter input screen

Parameters

…

Param A

Param B

Param CSimulation

Scenarios

Param A

Param B

Param C

…

Operator

Figure 3.1 Data flow and user interfaces of system Sb-A.

3. An Analysis on a Case Study of Requirements Ambiguities

33

Table 3.1 summarizes target system Sb-A and development project P. This project

involved a development team of ten developers. They had enough knowledge of OS and

programming languages, but none had experience related to developing control

simulations. The development period was nine months. Target processes are the

processes from software design to software integration testing. The requirements were

defined by other members than the ten developers.

Table 3.1 Summary of the target system and development project.

Type of software Control simulation software

Development period Nine months

Developers Ten software developers in Company Sb

Size
(the number of lines of code)

220K lines

OS Windows

Programming languages C++ and C#

Target processes From software design to software integration testing

Table 3.2 Number of defects injected in processes.

Injected process Number of defects Percentage

Software requirements analysis 29 24.2%

Software architectural design 52 43.3%

Software detailed design 12 10.0%

Coding 15 12.5%

Others 12 10.0%

Total 120 100.0%

3.2 Case Study

34

Table 3.2 shows the number of defects injected in software development processes.

The defects in Table 3.2 are detected in the system testing. During system testing, 120

defects were detected. Of these, 29 were injected in software requirements analysis

process and 52 in software architectural design process.

3.2.2 Defects Cause Analysis

I analyzed defects that required large correction effort and were injected in software

requirements analysis and software architectural design processes. The results of the

analysis revealed that there were three defects causes in requirements ambiguities and

inconsistent understanding among the developers. All three were categorized as

definitions of the important terms. The details of each situation are described below:

1) Ambiguity and misunderstanding of units of distance

This is attributed to the fact that the architectural design developers were unaware that

multiple interpretations existed for the unit “mile.” Figure 3.2 shows this defect. As

described in Figure 3.2, one nautical mile is 1852.00 meters. One (international) mile

is 1609.344 meters.

(a) Incident

The distance value displayed on the screen differed from the expected one.

(b) Cause

The defect was due to the misinterpretation of the unit “mile.” The

requirements defined clearly that “the unit used is ‘nautical mile.’” However,

the software design developers were unaware of multiple interpretations of

“mile” and assumed “nautical mile” could be expressed as “mile.” Therefore,

3. An Analysis on a Case Study of Requirements Ambiguities

35

the units differed between requirements and design, causing a significant defect,

which was identified during system testing.

2) Undefined time standard

This defect resulted from an undefined time standard in software design because of

the absence of the definition in software requirements.

(a) Incident

In system Sb-A, the displayed time in screens in some subsystems were

inconsistent and different from the expected one. Figure 3.3 shows this defect.

(b) Cause

System Sb-A consisted of multiple subsystems. Requirements for each

subsystem had its own separate requirements specification document. The

majority of the requirements specifications stated the time standard was

5Distance

Speed

Param B

Param C

48.28

…

Miles

10Time Min

Kilo Meters / Hour

1 Nautical Mile = 1852 Meters

1 (International) Mile = 1609.344 Meters

5 Miles / 10 Min

↓

NAUTICAL MILE : 55.56 Kilo Meters / Hour

(International) MILE : 48.28 Kilo Meters / Hour

Incorrect result

Parameter input screen

Simulation result screen

Simulation

Scenarios

Operator

Figure 3.2 Ambiguity and misunderstanding of units of distance.

3.2 Case Study

36

Coordinated Universal Time (UTC), but some specifications did not have a

clear definition of the time standard. As a result, the architectural design

developers who worked on the specification without a clear definition of the

time standard assumed Japan Standard Time (JST). Each subsystem were

developed by a different architectural design developer and the developers did

not have opportunities to communicate. Consequently, they did not realize the

time standard inconsistency among the subsystems.

3) Inconsistent definitions of significant digits

This defect resulted from not defining the number of significant digits after the

decimal point for the values dealt in system Sb-A. Figure 3.4 shows insufficient

Subsystem 1 01 Jan 2019 02:00:00

01 Jan 2019 11:00:00

01 Jan 2019 02:00:00

Current time

JSTSubsystem 2

Subsystem 3

UTC

Simulation result screen

UTC

Figure 3.3 Time standard inconsistency among the subsystems.

3. An Analysis on a Case Study of Requirements Ambiguities

37

accuracy in some of the simulation results. In Figure 3.4, results 1, 2, and 3 were

calculated by different subsystems.

(a) Incident

For the system input parameters, after the fifth decimal point, it was not treated

as a significant digit.

(b) Cause

Each subsystem had its own separate requirements specification document, and

the number of significant digits varied between four or six. Architectural design

developers defined the significant digits according to the requirements

specification for the subsystems. Therefore, the developers assigned to the

subsystems where the requirement specification defined significant digits as

four digits assumed that there was no need to deal with the values more than

four digits after the decimal point.

12.123456Param. A

Result 1

Result 2

Result 3

Trac

12.123456

12.1234

12.123456

…

Insufficient accuracy

Parameter input screen

Simulation result screen

Simulation

Scenarios

Operator

Figure 3.4 Insufficient accuracy.

3.2 Case Study

38

3.2.3 Defects Analysis

The three defects shown in the previous subsection are caused by requirement ambiguity

and misunderstandings and inconsistencies among the developers. In this subsection, I

analyze the root cause of such defects. Below are the factors that lead to

misunderstandings and inconsistencies.

1) Communicating Tacit Knowledge

One of the failure factors of project P was tacit knowledge was not shared properly

among the developers. The developers started the software development without

opportunities to share information and knowledge required by the control simulation

software system development.

When including tacit knowledge into the glossary, not only the description of the

keywords that cause frequent defects, but also additional content, including the

background information, is necessary [74]. In project P, a glossary was organized.

However, project P was the first control simulation software system development for the

developers. Hence, the developers were unfamiliar with the terminologies not included

in the glossary because they were tacit knowledge.

2) Using Experts

To be effective, the software review process must include experts. In project P, the lack

of experts was identified as a risk factor from the beginning of the project. As a

countermeasure, the project leader assigned expert E as an advisor. Although expert E

had plenty of knowledge in control simulation software system field, he was not a full-

time member of project P and was assigned to another project. Because the project leader

could not secure expert E, his knowledge was not shared and utilized in project P.

3. An Analysis on a Case Study of Requirements Ambiguities

39

3) Sharing information

Sharing defect information among developers can effectively increase the number of

similar defects detection and increase the opportunities for defect prevention. The

defects detected during the software reviews and testing processes can be shared and

among the project members; however, there was no opportunity to share defect

information which was not found as a defect.

3.3 A Prevention Approach for Focusing

Essential Data

3.3.1 Overview

Under cost constraints, an approach for detecting all defects detected in project P is

difficult to realize. It will also cost to list all background information and common

knowledge required during requirements analysis or to involve an expert in all projects.

To prevent injecting critical requirements defects that require large correction effort, I

propose an approach for preventing such defects as the three significant defects detected

in project P. Figure 3.5 shows the procedure of the proposed approach. The procedure

(1) Enumerate input and output data and parameters D

(2) Identify essential data D’ from D by using goal-oriented approach

(3) Specify critical requirements defining the essential data D’

Figure 3.5 Procedure of the proposed approach.

3.3 A Prevention Approach for Focusing Essential Data

40

consists of (1) enumerating the input and output data D for the target system T, (2)

identifying essential data D’, and (3) specifying critical requirements for the essential

data D’. Essential data D’ can be found by a goal-oriented approach [75].

3.3.2 Identifying Essential Data

The approach first enumerates a set of input and output data D of target system T. Then,

the approach identifies a set of essential data D’ from the set D along with the goal-

oriented approach. The goal-oriented approach focuses on the goal of the target system

T. For example, the goal of the system Sb-A is to obtain simulation results from given

parameters. Therefore, essential data D’ are the input parameters for simulation

scenarios and the results of the simulation. Essential data D’ included distance and time

because incorrect parameters lead to incorrect simulation results.

3.3.3 Critical Requirements Definition

The approach identifies and specifies critical requirements of the target system T. The

critical requirements define the set of essential data D’. For system Sb-A, the critical

requirements definition include distance unit for distance parameters, time standard for

time parameters, and calculation accuracy for simulation results. Table 3.3 shows an

example of critical requirement definitions.

Table 3.3 Examples of critical requirement definitions.

Critical requirement Definition Supplemental definition

Distance unit Nautical mile 1 nautical mile = 1,852 meters.
Please note that there are multiple
interpretation of mile.

Time standard Coordinated Universal
Time (UTC)

UTC = JST – 9
Japan Standard time (JST) must be
converted to UTC.

Significant digits Six digits after the
decimal points

If there are more than seven digits after
the decimal point, round the seventh
digit after the decimal point.

3. An Analysis on a Case Study of Requirements Ambiguities

41

3.3.4 Estimated Effort Reduction

I conducted a simple evaluation for the proposed approach. The evaluation first

enumerated a set of input and output data D of system Sb-A and identified a set of

essential data D’. The evaluation identified critical requirements for D’ and estimated

effort for specifying the critical requirements based on the estimation by the project

leader with development experience of the product domain.

The results of the evaluation showed that there are 52 critical requirements for

essential data D’. If each of critical requirements had a clear definition, at least three

defects described in the previous subsection could have been avoided. Simply adding

definitions and notes may significantly reduce the likelihood of the defect injections.

The evaluation estimated effort for specifying 52 critical requirements and compared

effort for correcting the three defects. Table 3.4 shows the results of the estimation. It

took 36 person-hours correcting the three defects. On the other hand, it took seven

person-hours to identify essential data D' from D, and 8.7 person-hours to specify critical

requirements defining the essential data D'. The total was 15.7 person-hours, and the

proposed approach improved 20.3 person-hours. The results indicated that a 43.5%

effort improvement can be achieved by the proposed approach compared to the case

without clear requirements definitions.

Table 3.4 Estimated effort.

Task Effort

Correcting the three defects 36 person-hours

Identifying the essential data and critical requirements 7 person-hours

Defining the critical requirements 8.7 person-hours

Improved effort 20.3 person-hours

3.4 Conclusions

42

3.4 Conclusions

This section conducted a case study in a simulation control software system for analysis

on defects that required significant correction effort to investigate context-dependent

issues. The results of the case study indicated that defects that required correction effort

were ambiguity defects injected by misunderstandings and inconsistencies among

stakeholders during interpreting requirements and specifying design documents. In the

target system, ambiguities are found in the definitions of distance, time (time zone), and

calculation accuracy. These cause inconsistencies among the implementations and

incorrect simulation results of the control simulation software systems.

Based on the analysis, as a low-effort defect prevention approach, I propose an

approach for identifying essential data and specifying critical requirements for the

essential data. Ambiguities of the critical requirements potentially lead to defect

injections that may require significant correction effort when detected in later

development processes. In addition, I conducted a simple evaluation for the proposed

approach. The results of the evaluation showed that the essential data for the control

simulation software system in the case study were distance, time, and simulation result

(accuracy). The evaluation estimates the effort for defect corrections in the case study

and the effort for specifying the definitions of the essential data in the case study. The

results of the evaluation indicated that the proposed approach could achieve 43.5% effort

reduction.

4. Goal-Oriented Software Design Reviews

43

4. Goal-Oriented Software

Design Reviews

4.1 Introduction

Inappropriate requirements can consume substantial rework effort in subsequent

development activities. In particular, as described in Section 3, omissions and

ambiguities in requirements may lead to extensive changes and corrections in the

subsequent development activities. The causes of requirement omissions include

missing functionality, missing performance, missing interface, and missing environment

[19]. Ambiguity enables multiple interpretations of the requirements document [76].

Various approaches and methods to reduce omissions and ambiguities in requirements

have been proposed. Software review is one such static analysis technique for the early

detection of defects, including omissions and ambiguities, and does not require program

execution [6], [77]. PBR [18] is designed to reduce omissions and ambiguities in

requirements through multiple perspectives. The perspectives provide reviewers guides

for finding defects from the viewpoint of stakeholders such as project managers, users,

and testers. Goal-oriented requirements analysis [78] prevents missing requirements and

facilitates requirements decomposition [79], [80]. Requirements decomposition

increases the requirements coverage by defining goals at various levels of abstraction

[79].

This section refers to omissions or ambiguities in requirements caused by design

context as context-dependent requirement issues (CDRIs). A CDRI occurs when two or

more different implementations realize the same requirement because the requirements

4.1 Introduction

44

are defined before the implementations are defined. For example, the requirement “The

data are exchanged with files. The fields in the file must be separated by a line break”

can be realized by two implementations: one implementation for writing a data file and

another implementation for reading the data file. If the two implementations are realized

on the same operating system, no CDRI occurs because the line-break characters are the

same between the implementations. However, a CDRI occurs if the two implementations

are realized on different operating systems and do not consider the line-break characters

for the other operating system. Specifically, if the implementation for writing a file is

realized with UNIX (LF for a line-break character) and the implementation for reading

the file is realized with Windows (CR and LF for a line-break character), the fields will

not be separated properly despite each of the two implementations realize the

requirement accurately. In this case, the design context is the line-break characters for

the operating systems.

Feasibility or impact analysis which can help reviewers find such design contexts

during the requirement process, requires extensive effort because the analyses check all

implementations: not only two or more implementations which realize the same

requirement, but also a single implementation. Identifying two or more implementations

which are supported by a single requirement and checking consistencies among them in

the design review can help detect inconsistencies caused by CDRIs.

To the best of our knowledge, no specific approach or method to detect CDRIs or

context-dependent requirement (CDR) defects caused by CDRIs has been proposed.

This section proposes a design review method to identify such inconsistencies among

implementations realizing the same requirement by using a goal tree obtained by goal-

oriented requirements analysis. The proposed method defines check items to find

inconsistencies in the implementations, where the check items are created from the goal

tree. This section also evaluates the proposed method through a case study with two

criteria. First, the evaluation investigates whether the check items for design review can

be defined from the goal tree and then whether the check items can detect CDR defects.

4. Goal-Oriented Software Design Reviews

45

Second, the evaluation investigates whether the proposed method reduces the estimated

rework effort to correct defects.

4.2 Related Research

Guided reviews are one approach to detecting defects caused by omissions or

ambiguities in requirements. As described in Section 1, many studies have reported on

the effectiveness of guided reviews. However, these reading techniques do not require

that guides including checklists and scenarios verify inconsistencies among different

implementations for the same requirement.

Goal-oriented requirements analysis [78], [81] is one of the methods to reduce

omissions or ambiguities in requirements. Goal-oriented requirements analysis defines

software requirements by clarifying the structured goals of the software. Goal-oriented

requirements analysis also clarifies the background and necessities for requirements,

facilitates requirements analysis discussions, and enhances the validation and tracking

of changes to the requirements. Many goal-oriented requirements analysis methods have

been studied, including the KAOS method [82-86], the i* framework [87-91], and the

NFR framework [92-95]. However, detecting omissions or ambiguities in requirements

caused by the design context determined in the design process is difficult because goal-

oriented requirements analysis is performed during the requirements processes.

Traceability between requirements and design elements can verify that the

requirements have been implemented as design elements in the design document [96-

101]. Traceability studies have strongly focused on requirements traceability, with the

objective of studying how to describe and follow requirements in both the forward and

backward directions [97], [100]. Traceability is an effective guide to detect CDRIs;

however, it is unclear whether traceability can examine consistencies among

implementations. Although two methods [102], [103] check consistencies between

4.3 Proposed Method

46

requirements and design documents, both of them check consistencies between different

types of UML documents. Thus, they cannot always detect inconsistencies among the

implementations in the same UML document.

Change impact analysis identifies where the changes affect [104-106], estimates

the effort for implementing a change request [107], [108], and predicts necessary

regression tests according to the set of changes [109]. However, change impact analysis

cannot always detect inconsistencies among implementations. Automotive-SPICE [70]

recommends analyzing the operational (execution) environment, including platforms, to

analyze the feasibility of the requirements. Such operational environment analysis can

detect implementation inconsistencies. However, it does not explicitly refer to detecting

inconsistencies among implementations.

4.3 Proposed Method

4.3.1 Prerequisite

In the proposed method, reviewers attempt to detect inconsistencies among design

implementations and ensure that the implementations satisfy the goal using goal-

oriented check items. This section refers to the inconsistencies as CDR defects. CDR

defects are caused by CDRIs. The proposed method defines goal-oriented check items

taking a goal tree as input. The goal tree provides traceability links from high-level

strategic objectives to low-level technical requirements [79]. The proposed method adds

goal-oriented check items to the leaf nodes of the goal tree, which is created by goal-

oriented requirements analysis. The goal tree consists of the top goal and subgoals. The

top goal is the root node of the goal tree. The root node has a label describing the

objective or state that the system should achieve. The top goal is decomposed into one

or more subgoals (child nodes) because, without the decomposition, a goal tree may not

provide technical requirements. The goal-oriented check items defined from the

4. Goal-Oriented Software Design Reviews

47

subgoals that do not satisfy the desired requirement cannot detect inconsistencies among

context-dependent implementations. Thus, the decomposition should be performed

carefully. The goal-oriented requirements analysis [84], [93] categorizes goals into three

categories: functional requirements, non-functional requirements, and external

constraints. Thus, the top goal and subgoals for the proposed method can be categorized

into three categories. The node has a label describing the purpose or the status required

to achieve the parent goal (parent node). Subgoals are recursively decomposed into sub-

subgoals. The label description is a prescriptive statement of intent that the system

should satisfy [82].

4.3.2 Procedure

(a) Identify the goal tree (top goal and subgoals). If goal-oriented

requirements analysis has created a goal tree in advance (e.g., requirements

analysis), the goal tree is reused. If the goal tree does not exist, the analyst

G

G1

● G2

C1.1.1.1

● G1.1.2

C1.1.1.2

C1.1.1.3

C1.2.1

C1.2.1

G1.1

G1.2

G1.1.1

Figure 4.1 An example of a goal tree. Red circles represent pruned subgoals.

4.3 Proposed Method

48

describes the goal of the system as the label of the top goal G. The analyst then

decomposes the top goal G into subgoals G1, G2,…, Gm. The analyst creates a

simple label for each subgoal and adds the subgoals as child nodes of the top goal.

The analyst decomposes the subgoals (G1, G2, …, Gm) into sub-subgoals (G1.1,

G1.2, G1.3, …, G2.1, G2.2, …, Gm.1, G m.2, …) and continues decomposing the

subgoals until the subgoals are complete, consistent, and minimal.

(b) Prune unnecessary subgoal nodes. The analyst selects and prunes

unnecessary subgoal nodes, which do not need to be broken down further for

consideration, such as duplicated subgoals. After pruning, each leaf node of the

goal tree is marked as a leaf subgoal node.

(c) Define goal-oriented check items. Goal-oriented check items verify

whether the design implementations are consistent and satisfy the corresponding

subgoal. Goal-oriented check items are determined by two or more

implementations that realize the same subgoal. The analyst defines one or more

goal-oriented check items for each of the leaf subgoal nodes except pruned

subgoals. The analyst then adds goal-oriented check items as child nodes of the

leaf subgoal nodes. Figure 4.1 shows an example goal tree. Goal nodes and goal-

oriented check-item nodes are labeled with symbols G and C, respectively. The

pruned subgoals are indicated by red circles, as shown in G1.1.2 and G2.

(d) Perform goal-oriented software design review. Reviewers use the goal-

oriented check items to attempt to detect inconsistencies among implementations

realizing the same requirement.

4. Goal-Oriented Software Design Reviews

49

4.3.3 Example of A Goal Tree and Check Items

1) Overview of an Example System

This subsection presents a goal tree and the corresponding goal-oriented check items for

an example system. Figure 4.2 shows an overview of the example system. The design

implementations for the same subgoal can differ among the three units because the units

had different developers.

Sensor unit

Control unit

Heating unit

Water temperature

sensor

Water level sensor

Electric water

heater

Software Hardware

Water temperature

Water level

Voltage

Water temperature data

Water level data

Control heating

Control keeping warm

Figure 4.2 Architecture of an example system.

Table 4.1 Overview of an example system.

Name Electric kettle

Goal The electric kettle heats water and keeps the water temperature
constant.

Architecture and
developers

The system consists of a sensor unit, control unit, and heating unit.
Each unit was developed by different developers (no developer
developed two or more units).

4.3 Proposed Method

50

2) Procedure

Figure 4.3 shows the goal tree and goal-oriented check items. The procedure is detailed

as follows.

G： The electric kettle heats water and keeps the water temperature constant.

G1: The electric kettle can heat the water if the water temperature is less than the threshold and
the water level is greater than or equal to the minimum level.

C1.1.1: Is the voltage control method during heating specified? If one or more descriptions are
specified, are they consistent?

G3: The electric kettle cannot heat the water or keep the water temperature constant if the
water level is less than the minimum level.

G1.2: The electric kettle can measure the water temperature periodically.

C1.2.1: Is the water temperature measurement period specified? If one or more descriptions are
specified, are they consistent?

C1.2.2: Is the unit system of the water temperature specified? If one or more descriptions are
specified, are they consistent?

G2.1: The electric kettle can keep the water temperature constant using electricity.

C2.1.1: Is the voltage control for keeping the water temperature constant specified? If one or more
descriptions are specified, are they consistent?

● G2.2: The electric kettle can measure the water temperature periodically.

G3.1: The electric kettle can measure the water level periodically.

G3.2: The electric kettle cannot heat the water or keep the water temperature
constant if the water level is less than the minimum level.

C3.1.1: Is the water level measurement period specified? If one or more descriptions are specified,
are they consistent?

C3.1.2: Is the unit system of the water level specified? If one or more descriptions are specified, are
they consistent?

C3.2.1: Is the procedure to stop heating or to stop keeping the water temperature constant specified?
If one or more descriptions are specified, are they consistent?

G1.1: The electric kettle can heat the water with electricity.

● G1.3: The electric kettle can measure the water level periodically.

● G2.3: The electric kettle can measure the water level periodically.

G2: The electric kettle can keep the water temperature constant if the water temperature is
greater than or equal to the threshold and the water level is greater than or equal to the
minimum level.

Figure 4.3 A goal tree for the example system.

4. Goal-Oriented Software Design Reviews

51

Step (1). The analyst identifies the goal tree. The identified goal tree consists of the

following:

Top goal G: The electric kettle heats water and keeps the water temperature

constant.

The analyst decomposes the top goal G into the following subgoals:

G1: The electric kettle can heat the water if the water temperature is less than the

threshold and the water level is greater than or equal to the minimum level.

G2: The electric kettle can keep the water temperature constant if the water

temperature is greater than or equal to the threshold and the water level is greater

than or equal to the minimum level.

G3: The electric kettle cannot heat the water or keep the water temperature constant

if the water level is less than the minimum level.

The analyst decomposes subgoal G1 into the following subgoals:

G1.1: The electric kettle can heat the water with electricity.

G1.2: The electric kettle can measure the water temperature periodically.

G1.3: The electric kettle can measure the water level periodically.

The analyst decomposes subgoal G2 into the following subgoals:

G2.1: The electric kettle can keep the water temperature constant using electricity.

G2.2: The electric kettle can measure the water temperature periodically.

G2.3: The electric kettle can measure the water level periodically.

The analyst decomposes subgoal G3 into the following subgoals:

G3.1: The electric kettle can measure the water level periodically.

G3.2: The electric kettle cannot heat the water or keep the water temperature constant

if the water level is less than the minimum level.

4.3 Proposed Method

52

Step (2). The analyst prunes unnecessary subgoal node G2.2 because G2.2 duplicates

G1.2. The analyst also prunes unnecessary subgoal nodes G1.3 and G2.3 because G1.3

and G2.3 duplicate G3.1. The reason for keeping G3.1 instead of G1.3 or G2.3 is because

G3 is the goal referring to the water level.

Step (3). The analyst defines goal-oriented check items as child nodes of the subgoals.

The analyst defines the following goal-oriented check items from G1.1:

C1.1.1: Is the voltage control method during heating specified? If one or more

descriptions are specified, are they consistent?

The analyst defines the following goal-oriented check items from G1.2:

C1.2.1: Is the water temperature measurement period specified? If one or more

descriptions are specified, are they consistent?

C1.2.2: Is the unit system of the water temperature specified? If one or more

descriptions are specified, are they consistent?

The analyst defines the following goal-oriented check item from G2.1:

C2.1.1: Is the voltage control for keeping the water temperature constant specified? If

one or more descriptions are specified, are they consistent?

The analyst defines the following goal-oriented check items from G3.1:

C3.1.1: Is the water level measurement period specified? If one or more descriptions

are specified, are they consistent?

C3.1.2: Is the unit system of the water level specified? If one or more descriptions are

specified, are they consistent?

The analyst defines the following goal-oriented check item from G3.2:

4. Goal-Oriented Software Design Reviews

53

C3.2.1: Is the procedure to stop heating or to stop keeping the water temperature

constant specified? If one or more descriptions are specified, are they

consistent?

Step (4). The reviewer performs goal-oriented software design review using the goal-

oriented check items. For example, in G1.2, the developers of the sensor unit considered

and defined the water temperature in Fahrenheit, whereas the developers of the control

unit considered and defined the temperature in Celsius. The reviewer can detect this

inconsistency between the definitions and implementation with goal-oriented check item

C1.2.2.

4.4 Case Study

4.4.1 Goal

The goal of the case study is to investigate the effectiveness and efficiency of the

proposed method. The case study was conducted with a commercial software system.

An overview of the commercial software system is described in Subsection 4.4.2 . The

case study evaluated whether the proposed method could define goal-oriented check

items, whether the proposed method could detect CDR defects, and whether detecting

CDR defects in design reviews contributed to a reduction of the rework effort for

correcting the defects.

4.4.2 System Context

I selected the subsystems of System Sc-A developed in a Japanese software development

Company Sc for this case study. System Sc-A was a communication network control

system. Table 4.2 and Figure 4.4 shows the details. The development period was from

April 2017 to March 2019. System Sc-A consisted of 12 subsystems. Each subsystem

was developed from scratch. The number of developers for each subsystem varied from

4.4 Case Study

54

three to seven. The number of years of software development experience of the

developers varied from 2 to 25 years. The lines of source code of the subsystems varied

from 3100 to 8400 lines in C language.

The standard software development process was based on the waterfall model and

followed the process areas Organizational Process Definition (OPD) and Integrated

Project Management (IPM) defined in CMMI-DEV V.1.3 [68]. The standard process

Figure 4.4 Architecture of System Sc-A.

Table 4.2 Overview of system Sc-A.

Name Communication network control system

Goal The system controls emergency communication for human safety. The
system enables every terminal in the network to communicate with other
terminals in the network.

Architecture System Sc-A consisted of monitoring control unit, communication
control unit, and data transmission unit.

The monitoring control unit reused another software whose reliability
was proved in another system in operation. No severe defects had not
been found in the original software.

4. Goal-Oriented Software Design Reviews

55

also defined software measurements and metrics. For each software development, the

standard process required that the defects detected in software reviews should be

recorded in a defect list and that the defects detected in testing should also be recorded.

The standard software development process required that each project perform design

reviews (standard design reviews), record the design review logs (meeting minutes), and

use the standard design review checklists. The standard software development process

of Company Sc also required that each reviewer complete the software review training

and have detailed knowledge of the system domain to participate in the software review.

4.4.3 Metrics

The metrics cH, grH, gwH, grD, srD, and gtD (Table 4.3) were measured for this

evaluation in addition to the metrics in the standard software development process of

Table 4.3 Metrics for the evaluation.

 Name Description

cH

Effort to define goal-oriented
check items

Person-hours to identify a goal tree and define
goal-oriented check items

grH

Effort for goal-oriented software
design reviews

Person-hours to perform design reviews with the
goal-oriented check items

gwH

Estimated additional rework effort

Difference between the sum of the estimated effort
(person-hours) for investigating, fixing, and
regression testing and the sum of the effort for
fixing defects detected in the goal-oriented
software design reviews

grD

Number of CDR defects detected
in goal-oriented software design
reviews

Number of CDR defects detected in design
reviews with goal-oriented check items

srD

Number of CDR defects detected
in standard design reviews

Number of CDR defects among defects detected
in the standard design reviews

gtD

Number of CDR defects detected
in subsequent testing

Number of CDR defects, which were overlooked
in design reviews and detected in subsequent
software testing

4.4 Case Study

56

Company Sc. These metrics are defined in Table 4.3. The metrics cH and grH are efforts

for the preparation of the proposed method; metrics grD, srD, and gtD are the number

of detected defects. Note that the metric gwH was the estimated additional rework effort

(person-hours) that would be needed if the CDR defects detected in the proposed method

were overlooked in goal-oriented software design reviews and detected and corrected in

subsequent software testing. The metric gwH was analogously estimated according to

the reviewers’ related experiences and verified by the analyst.

4.4.4 Evaluation and Procedure

I selected four subsystems from the 12 subsystems of System Sc-A. I selected two

subsystems 1a and 2a from the four subsystems for Evaluations 1 and 2. For Evaluation

3, from the remaining subsystems, I selected subsystem 1b with a goal similar to that of

subsystem 1a. Similarly, I selected subsystem 2b with a goal similar to that of subsystem

2a.

1) Evaluation 1: Can an Analyst Define Goal-Oriented Check Items Using

the Proposed Method?

Evaluation 1 evaluated whether an analyst (engineer) could identify a goal tree and

define the corresponding goal-oriented check items. Following the steps in Subsection

4.3.2 , the analyst identified goal trees and defined goal-oriented check items for

subsystems 1a and 2a. The analyst is a quality assurance engineer and one of the authors.

2) Evaluation 2: Can the Proposed Method Detect CDR Defects and

Reduce the Defect Correction Effort?

Evaluation 2 consisted of the following evaluations:

Evaluation 2.1: Can reviewers detect CDR defects in goal-oriented software

design reviews?

Evaluation 2.2: Can the proposed method reduce the estimated additional rework

effort to correct CDR defects?

4. Goal-Oriented Software Design Reviews

57

Evaluation 2.1 measured the number of CDR defects detected in goal-oriented

software design reviews (grD). In addition, Evaluation 2.1 measured the number of CDR

defects detected in subsequent testing (gtD) because overlooked CDR defects in goal-

oriented software design reviews could be detected in subsequent software testing.

Evaluation 2.2 measured the effort to define goal-oriented check items (cH), the effort

for goal-oriented software design reviews (grH), and the estimated additional rework

effort (gwH) to investigate whether the proposed method required less effort than the

standard design reviews and the subsequent testing defined by the standard process.

Specifically, Evaluation 2.1 deemed that the proposed method was feasible if CDR

defects were detected in goal-oriented software design reviews (grD > 0) and the number

of CDR defects detected in subsequent testing (gtD) was sufficiently small. In

Evaluation 2.2, if the sum of the effort to define goal-oriented check items and the effort

for goal-oriented software design reviews was smaller than the estimated additional

rework effort (cH + grH < gwH), the proposed method was efficient.

Reviewers performed goal-oriented software design reviews for subsystems 1a and

2a using the goal-oriented check items defined in Evaluation 1. The goal-oriented

software design reviews were performed in addition to the standard design reviews.

After the goal-oriented software design reviews, the subsequent development activities,

including software testing, were performed according to the standard software

development process. The analyst measured and recorded the metrics in Table 4.3

(excluding srD). The analyst then categorized the CDR defects detected in goal-oriented

software design reviews and the subsequent testing into defect groups corresponding to

goal-oriented check items defined in Evaluation 1.

3) Evaluation 3: Are CDR Defects Detected in Other Similar Subsystems?

Evaluation 3 measured the number of CDR defects detected in the standard design

reviews (srD) and subsequent testing (gtD) for subsystems 1b and 2b to investigate the

applicability of the proposed method in other subsystems. Specifically, Evaluation 3

4.5 Results

58

measured srD to investigate whether the standard design reviews detected CDR defects

and gtD to investigate whether the standard design reviews overlooked CDR defects.

Evaluation 3 deemed that CDR defects existed in design documents for subsystems

1b and 2b if CDR defects were detected in the standard design reviews and/or subsequent

testing (srD + gtD > 0). If CDR defects were present and the proposed method was

carried out, goal-oriented software design reviews could possibly detect CDR defects. If

CDR defects were detected in the standard design reviews and the number of detected

CDR defects in the subsequent testing was sufficiently small (srD > 0 and srD >> gtD),

the standard design reviews were considered to be able to detect most of CDR defects.

If CDR defects were not detected in the standard design reviews or in subsequent testing

(srD = gtD = 0), CDR defects were not considered to have been injected in the design

documents.

Reviewers performed the standard design reviews for subsystems 1b and 2b. After

the standard design reviews, the subsequent development activities, including software

testing, were performed according to the standard software development process. The

analyst categorized the CDR defects detected in the standard design reviews and

subsequent testing into defect groups corresponding to the goal-oriented check items

defined in Evaluation 1.

4.5 Results

4.5.1 Results of Evaluation 1

Figure 4.5 shows the goal tree and the goal-oriented check items which the analyst

identified and defined. In Figure 4.5, subgoals G1 and G2 were realized by subsystems

1a and 2a, respectively. Notably, subgoals G2.1.2 and G2.2 were not broken down

4. Goal-Oriented Software Design Reviews

59

further because these subgoals were realized by the reused software whose reliability

was already proven in another system in operation with the same design contexts.

4.5.2 Results of Evaluation 2

As shown in Table 4.4, the value of grD was six for subsystem 1a and eighteen for

subsystem 2a. For subsystem 1a, the sum of cH and grH was 8.3 and the value of gwH

was 42.0. The sum of cH and grH was 19.6% of the value of gwH. For subsystem 2a,

the sum of cH and grH was 9.0 and the value of gwH was 54.0. The sum of cH and grH

was 16.7% of the value of gwH.

G： The system enables every terminal in the network to communicate with other terminals in the network.

G1: The communication network control system can provide communication with any terminal or repeater.

C1.1.1: Is the communication protocol version compatible with the other device?

G2: The communication network control system can minimize downtime in case of system failure.

G1.2: The communication network control system can communicate with the other device.

C1.2.1: Is the physical interface to the other device specified? If one or more descriptions are
specified, are they consistent?

C1.2.2: Is the logical interface to the other device specified? If one or more descriptions are
specified, are they consistent?

C2.1.1.1: Is the monitoring procedure specified? If one or more descriptions are
specified, are they consistent?

G1.1: The communication network control system can communicate using the specified protocol.

C2.1.1.2: Is the monitoring timing specified? If one or more descriptions are specified,
are they consistent?

● G2.1.2: The communication network control system can notify the system administrator in case
of system failure.

● G2.2: The communication network control system can recover automatically in case of system failure.

G2.1.1: The communication network control system can self-monitor the system status.

G2.1: The communication network control system can self-monitor and notify the system administrator in
case of system failure.

Figure 4.5 The goal tree and goal-oriented check items for System Sc-A.

4.5 Results

60

Table 4.5 shows the goal-oriented check items and the number of defects

categorized as the defect groups which could be detected with the goal-oriented check

items for subsystem 1a. For subsystem 1a, the reviewer detected four defects for C1.1.1

Table 4.4 Results for Evaluation 2.

Subsystem cH grH gwH grD gtD

1a 1.0 7.3 42.0 6 0

2a 1.0 8.0 54.0 18 0

Table 4.5 Number of defects for goal-oriented check items for Subsystem 1a.

 Goal-oriented check item grD gtD

C1.1.1 Is the communication protocol version compatible
with the other device?

4 0

C1.2.1 Is the physical interface to the other device
specified? If one or more descriptions are
specified, are they consistent?

0 0

C1.2.2 Is the logical interface to the other device
specified? If one or more descriptions are
specified, are they consistent?

2 0

 Total 6 0

Table 4.6 Number of defects for goal-oriented check items for Subsystem 2a.

 Goal-oriented check item grD gtD

C2.1.1.1 Is the monitoring method specified? If one or
more descriptions are specified, are they
consistent?

13 0

C2.1.1.2 Is the monitoring timing specified? If one or more
descriptions are specified, are they consistent?

5 0

 Total 18 0

4. Goal-Oriented Software Design Reviews

61

and two defects for C1.2.2. No CDR defect was detected in subsequent software testing

for subsystem 1a.

Table 4.6 shows the goal-oriented check items and the number of defects in defect

groups corresponding to the goal-oriented check items for subsystem 2a. For subsystem

2a, the reviewer detected thirteen defects for C2.1.1.1 and five defects for C2.1.1.2. No

CDR defects were detected in subsequent software testing for subsystem 2a.

4.5.3 Results of Evaluation 3

As shown in Table 4.7, the value of srD was two for subsystem 1b and five for subsystem

2b. Table 4.7 also shows that the value of gtD was one for subsystem 1b and two for

subsystem 2b. Table 4.8 shows the goal-oriented check items for subsystem 1b and the

number of detected defects for the check items. For subsystem 1b, the reviewer detected

two CDR defects for C1.2.1 in the standard design reviews. Subsequent testing detected

one CDR defect for C1.1.1.

Table 4.9 shows the goal-oriented check items for subsystem 2b and the number of

detected defects for the check items. For subsystem 2b, the reviewer detected two CDR

defects for C2.1.1.1 and three CDR defects for C2.1.1.2 in the standard design reviews.

Subsequent software testing detected one CDR defect for C2.1.1.1 and one CDR defect

for C2.1.1.2.

Table 4.7 Results for Evaluation 3.

Subsystem srD gtD

1b 2 1

2b 5 2

4.6 Discussion

62

4.6 Discussion

4.6.1 Evaluation Results

In Evaluation 1, a quality assurance engineer defined both a goal tree and the

corresponding goal-oriented check items without additional explanations for System Sc-

A. This indicated that the proposed method does not require a domain expert as an

Table 4.8 Number of defects for goal-oriented check items for Subsystem 1b.

 Goal-oriented check item srD gtD

C1.1.1 Is the communication protocol version
compatible with the other device?

0 1

C1.2.1 Is the physical interface to the other device
specified? If one or more descriptions are
specified, are they consistent?

2 0

C1.2.2 Is the logical interface to the other device
specified? If one or more descriptions are
specified, are they consistent?

0 0

Total 2 1

Table 4.9 Number of defects for goal-oriented check items for Subsystem 2b.

 Goal-oriented check item srD gtD

C2.1.1.1 Is the monitoring method specified? If one or
more descriptions are specified, are they
consistent?

2 1

C2.1.1.2 Is the monitoring timing specified? If one or
more descriptions are specified, are they
consistent?

3 1

 Total 5 2

4. Goal-Oriented Software Design Reviews

63

analyst. In discussion, another engineer of the case study said, “Although the quality

assurance engineer is not a member of the development team, the engineer could define

the goal tree and the corresponding goal-oriented check items. For future development,

I suppose that engineers with software quality assurance skills can define them.”

Evaluation 2.1 showed that the reviewers could perform goal-oriented software

design reviews and detect CDR defects. In addition, Evaluation 2.2 showed that the

estimated additional rework effort for the detected defects in subsequent testing was

reduced by the defects detected in the goal-oriented software design reviews. The case

study results showed that the CDR defects were detected by goal-oriented software

design reviews in both subsystems 1a and 2a. In subsequent activities, including testing,

releasing, operating, and maintenance, no CDR defect was detected.

Evaluation 3 suggests that non-expert reviewers can detect CDR defects in goal-

oriented software design reviews. For example, in subsystem 2b, a defect was detected

in the design review: “The definition of a port-level monitoring method for a certain

device is omitted.” The defect could have been detected by goal-oriented check item

C2.1.1.1: “Is the monitoring procedure specified? If one or more descriptions are

specified, are they consistent?” Thus, even if the reviewers are not experts in the system,

they might have noticed an omission in the definition of the monitoring procedure.

The results of the case study suggest that the proposed method can potentially detect

CDR defects. In the case study, CDR defects were detected with goal-oriented check

items. An example of a detected CDR defect is “Some devices could not communicate

with other devices because of incompatible communication protocol versions.” This

defect was detected with the goal-oriented check item C1.1.1: “Is the communication

protocol version compatible between the devices?” In the requirement definition activity,

the requirement explicitly specified the communication protocol name but did not

specify the version of the communication protocol.

4.6 Discussion

64

Sharing a goal tree before goal-oriented software design reviews can reduce the

effort for goal-oriented software design reviews. In a discussion with an engineer of the

case study, the engineer pointed out that sharing and discussing a goal tree in advance

facilitates understanding the corresponding goal-oriented check items and prevents

engineers from misunderstanding the specification. He also mentioned that sharing and

discussing a goal tree ensure that all reviewers reach a consensus on the specifications

before starting the design reviews.

4.6.2 Threats to Validity

1) Internal Validity

Defining a goal tree and the corresponding goal-oriented check items may require

expert-level skills and knowledge in the domain, and personnel overhead. In the case

study, the quality assurance engineer who was responsible for the verification of System

Sc-A defined the goal tree and the corresponding goal-oriented check items. The

engineer had general quality-assurance skills but did not have system-specific skills and

knowledge and was not a member of the development team. Thus, an engineer with

general skills and knowledge of software development and the target system can define

a goal tree and the corresponding goal-oriented check items. In addition, the case study

showed that the personnel overhead for the proposed method would be small. In the case

study, the engineer took 1 hour to identify the goal tree and define the goal-oriented

check items for each subsystem 1a and 2a.

If the goal-oriented check items and the check items in the checklist defined in the

standard software development process of Company Sc overlap, the effectiveness of

goal-oriented software design reviews will be insufficient. If each goal-oriented check

item is included in the standard checklist, reviewers can detect all CDR defects with the

standard checklist in standard design reviews. In this case study, the standard design

review checklist did not include any goal-oriented check items because the standard

design review check items were more general and comprehensive; they were intended

4. Goal-Oriented Software Design Reviews

65

for use in the development of various software in the communication network domain,

whereas the goal-oriented check items were system-specific.

2) External Validity

If the target system has various goals, such as in the case of a customer relationship

management (CRM) system or enterprise resource planning (ERP) system, the

effectiveness of the proposed method might be limited. In this case study, the top goal

could be easily identified and defined because the communication system had a simple

goal tree. By contrast, the goal tree may be more complex in other systems such as CRM

and ERP systems. However, goal-oriented requirements analysis methods are not limited

by the types of systems. Once a goal tree has been defined, goal-oriented software design

reviews can be performed.

A larger number of subgoals may require a larger effort to define goal-oriented

check items and perform goal-oriented software design reviews. An engineer who

participated in the case study stated that the subgoals needed to be prioritized in case of

a larger number of subgoals. Although the proposed method does not consider the

priorities of subgoals, the proposed method can easily incorporate subgoal priority via

decision-making methods such as an analytic hierarchy process (AHP) [110].

In an iterative development process including agile development process [71], [72],

[111], [112], design and source code are updated in each iteration. Thus, CDR defects

are potentially injected in each iteration. Although design reviews might not be explicitly

performed in some iterative development processes, CDR defects are detected in

activities such as architectural discussion, testing, and implementation of the test and

product codes. The rework effort can be reduced if CDR defects are detected using the

essence of the proposed method for architectural discussion, testing, and implementation

of the test and product codes. For example, potential CDR defects can be identified in

end-of-iteration reviews, one of the recommended practices for constant feedback on

technical decisions and customer requirements in agile development process [71], [113].

4.7 Conclusions

66

Specifically, when a context-dependent requirement is implemented in two or more

iterations, the implementation can be inconsistent in the iterations. The potential

inconsistencies (potential CDR defects) in subsequent iterations can be identified in the

end-of-iteration review of the first iteration, in which the context-dependent requirement

is implemented. Further work is required to establish the viability of the proposed

method to iterative development processes including agile development process.

To generalize the results of the case study, further evaluations in other systems are

needed. Because of the limited analysis effort, I carried out lightweight evaluations for

other systems developed in Company Sc. The results of the lightweight evaluations

showed that context-dependent ambiguous requirements injected CDR defects and that

the CDR defects were overlooked in design reviews and detected in subsequent testing.

The CDR defects include inconsistencies among the unit of distance, the notations of

time, and the significant digits of numbers. In the lightweight evaluation, I identified the

subgoal “The speed of the moving object can be calculated from the distance moved and

the elapsed time.” I also defined the goal-oriented check item “Are the measurement

methods of the distance moved and the elapsed time correct?” These results imply that

the proposed method can be applied to other systems.

4.7 Conclusions

This section proposed a method to detect CDR defects by design reviews using a goal

tree created via goal-oriented requirements analysis based on the analysis on the case

study of the simulation control software system. CDR defects are caused by

inconsistencies among design implementations, which are supported by the same

requirement (the same subgoal). First, the proposed method creates a goal tree of the

target software via goal-oriented requirements analysis. Second, the proposed method

defines goal-oriented check items to detect inconsistencies among implementations that

4. Goal-Oriented Software Design Reviews

67

realize the same requirement and examine whether the goal and subgoals are satisfied.

Third, reviewers perform goal-oriented software design reviews with the goal-oriented

check items.

To evaluate the effectiveness of the proposed method, I conducted a case study.

The case study evaluated whether the goal-oriented check items could detect CDR

defects. The case study also evaluated whether the effort to create a goal tree, define the

goal-oriented check items, and perform goal-oriented software design reviews was

smaller than the estimated rework effort if the detected defects were overlooked in

design review and corrected in subsequent testing. The estimated saved rework effort

was calculated as the difference between the sum of the estimated effort for investigating,

fixing, and regression testing and the sum of the effort for fixing defects detected in goal-

oriented software design reviews assuming that the defect was overlooked in the goal-

oriented software design review and detected in subsequent testing. The results of the

case study showed that the proposed method detected CDR defects and that other CDR

defects were not detected in subsequent testing. The results also showed that the

estimated savings in additional rework effort for defects detected by the proposed

method was larger than the sum of the effort for preparing and performing the proposed

method. Furthermore, the case study investigated whether CDR defects were detected

by design reviews without the proposed method and subsequent testing in other

subsystems sharing the same goal tree of the target subsystems. The results showed that

CDR defects were detected in the other subsystems.

5. Conclusions

68

5. Conclusions

Software review is a visual software-artifact evaluation technique to detect anomalies,

defects, errors, or deviations from specifications or standards; however, the software

review cannot always provide the expected effect. This thesis focuses on two issues

preventing software reviews from providing the expected effect. The first issue is low

review quality. This results in that software review materials include overlooked defects

because software reviews could not detect defects sufficiently. The second issue is

context-dependent defects which could not be considered as defects in the review time

and turn out to be defects in the subsequent software development activities. For example,

some requirements are omitted or ambiguous depending on the design context, although

these requirements would not necessarily be omitted or ambiguous when viewed as

requirements alone.

For the first issue (low review quality issue), this thesis proposed a new metric to

assess whether software reviews were performed properly. Reviewers can evaluate the

software review quality more precisely by the proposed metric in addition to the existing

common software review metrics. Previous studies reported that reviewers asked

questions and engaged in discussions during software reviews and that the concerns

identified by the questions and discussions helped detect defects. Although such

concerns about potential defects lead to finding defects, review metrics such as the

number of defects detected do not always reflect the questions and discussions because

concerns which are not applicable to the software review material are excluded from the

number of defects. This thesis proposed a metric, the number of questions and

discussions, which identifies concerns in software reviews. First, I defined an effective

question, which identifies concerns. Then, I defined detailed software review processes

(identifying, sharing, and recording processes), which capture how concerns identified

5. Conclusions

69

by effective questions are shared and defects are documented. I conducted a case study

with 25 projects in industry to investigate the impact of the number of effective questions,

which identified concerns, on the number of detected defects in subsequent testing. The

results of a multiple regression analysis showed that the number of effective questions

predicted the number of defects in subsequent testing at the significance level of 0.05.

For the second issue, this thesis conducted a case study to analyze context-dependent

defects. Specifically, I analyzed defects that required significant correction effort in a

simulation control software system. The context-dependent defects were ambiguity

defects injected by misunderstandings and inconsistencies among stakeholders during

interpreting requirements and specifying design documents. The ambiguities of the

specifications were found in the definitions of distance, time (time zone), and calculation

accuracy. These caused non-conformance in the implementations and errors in the

control simulation execution results. Based on the analysis, I proposed a low-effort

defect prevention approach defining the units to avoid such ambiguities and estimated

the expected effort reduction by the definitions in the target control simulation software

development. The results of the evaluation indicated that the proposed approach could

achieve 43.5% effort reduction.

Additionally, this thesis proposed a method for detecting inconsistent

implementations caused by context-dependent requirement omissions and ambiguities

in design reviews. The proposed method could reduce rework efforts for such omissions

or ambiguities in requirements caused by design context. Existing detection and analysis

methods did not limit evaluation of software review materials to implementations of

context-dependent design. The proposed method defines goal-oriented check items for

design review using a goal tree obtained by goal-oriented requirements analysis.

Reviewers use the goal-oriented check items to detect inconsistent implementations that

realize the same requirement. This thesis also evaluated the proposed method through a

case study. The results of the case study showed that the proposed method defined five

goal-oriented check items and that reviewers detected 24 context-dependent defects with

5. Conclusions

70

goal-oriented check items. The results also showed that the sum of the estimated

additional effort to define goal-oriented check items and perform design reviews with

goal-oriented check items was 19.6 person-hours. Furthermore, the results showed that

an engineer with general skills and knowledge of software development but without

system-specific skills and knowledge could define a goal tree and the corresponding

goal-oriented check items.

Future works include (semi-)automatic categorization for review comments to

categorize effective questions that identify concerns for the proposed metric. Sentiment

analysis is widely used in natural language processing research [114], [115]. Recent

studies have shown that sentiment analysis can categorize review comments from certain

perspectives. For example, the sentiment of a comment (i.e., whether or not a comment

is formulated in a positive or negative tone) may relate to comment usefulness [34], a

model algorithm founded to identify review comments expressing negative sentiments

[116], and the emotionality of the comment reflecting conventional metrics such as

typing duration and typing speed [117]. Applying these studies to review comments may

categorize effective questions that identify concerns. Future works also include

increasing case studies for generalizing the results of the case study for the proposed

method.

71

Acknowledgment

I am profoundly indebted to my adviser, Associate Professor Shuji Morisaki, for his

guidance, understanding, generosity, and most importantly, sincerity, during my studies

at Nagoya University. His mentorship, uncompromising stance toward research and

encouragement throughout this work helped me grow as a researcher and make personal

progress. I am also very grateful to Professor Hiroyuki Seki and Professor Yuichi Kaji

for their understanding and generosity. I wish to sincerely express my respect and

appreciation for their insightful comments and advice on my studies.

I would also like to express my special thanks to the company members I work with

for sharing their datasets and some ideas with me. They also provided valuable

comments and insights during my studies. Their helpful comments and cooperation were

encouraging, and the fulfilling discussions helped me develop new ideas concerning my

studies. Outside the work environment, I wish to acknowledge and thank my excellent

friends, who have always been cheerful and supportive. Last but not least, I thank my

family for their steady and warm support, encouragement, and understanding of me.

72

References

[1] L. Nderu, “Framework for an effective formal technical review in software quality

assurance,” Master of Science in Software Engineering, Jomo Kenyatta University,

2011.

[2] P. Bourque and R. E. Fairley, “Guide to the software engineering body of knowledge

(SWEBOK (R)): Version 3.0,” 2014. [Online]. Available: http://www.swebok.org/

[3] S. Thomke and T. Fujimoto, “Front-loading problem-solving: implications for

development performance and capability,” in PICMET '99: Portland International

Conference on Management of Engineering and Technology, Portland, OR, USA,

1999.

[4] J. D. Blackburn, G. Hoedemaker, and L. N. Van Wassenhove, “Concurrent software

engineering: prospects and pitfalls,” IEEE Transactions on Engineering

Management, vol. 43, no. 2, pp. 179-188, 1996.

[5] B. W. Boehm, “Software engineering economics,” IEEE Transactions on Software

Engineering, vol. SE-10, no. 1, pp. 4-21, 1984.

[6] M. E. Fagan, “Design and code inspections to reduce errors in program development,”

IBM Systems Journal, vol. 15, no. 3, pp. 182-211, 1976.

[7] IEEE standard for software reviews and audits, IEEE Std 1028-2008, 2008.

[8] B. Boehm and V. R. Basili, “Top 10 list [software development],” IEEE Computer,

vol. 34, no. 1, pp. 135-137, 2001.

[9] B. P. De Souza, R. C. Motta, D. De O. Costa, and G. H. Travassos, “An IoT-based

scenario description inspection technique,” in Proceedings of the XVIII Brazilian

Symposium on Software Quality, Fortaleza, Brazil, 2019, pp. 20-29.

[10] T. Gilb and D. Graham, Software inspection. Boston, Masachusetts, USA: Addison-

Wesley Reading, 1993.

[11] M. Ciolkowski, O. Laitenberger, and S. Biffl, “Software reviews: The state of the

practice,” IEEE Software, vol. 20, no. 6, pp. 46-51, 2003.

73

[12] J. Tian, Software quality engineering: testing, quality assurance, and quantifiable

improvement. Hoboken, NJ, USA: John Wiley & Sons, 2005.

[13] D. L. Parnas and M. Lawford, “The role of inspection in software quality assurance,”

IEEE Transactions on Software Engineering, vol. 29, no. 8, pp. 674-676, 2003.

[14] A. S. Olalekan and A. Osofisan, “Empirical study of factors affecting the

effectiveness of software inspection: A preliminary report,” European Journal of

Scientific Research, vol. 19, pp. 614-627, 2008.

[15] V. Suma and T. R. G. Nair, “Four-step approach model of inspection (FAMI) for

effective defect management in software development,” InterJRI Science and

Technology, vol. 3, no. 1, pp. 29-41, 2012.

[16] A. A. Porter and P. M. Johnson, “Assessing software review meetings: Results of a

comparative analysis of two experimental studies,” IEEE Transactions on Software

Engineering, vol. 23, no. 3, pp. 129-145, 1997.

[17] A. M. Davis, 201 principles of software development. Washington, DC, USA: IEEE

Computer Society, 1995.

[18] V. R. Basili et al., “The empirical investigation of perspective-based reading,”

Empirical Software Engineering, vol. 1, no. 2, pp. 133-164, 1996.

[19] A. Porter and L. Votta, “Comparing detection methods for software requirements

inspections: A replication using professional subjects,” Empirical Software

Engineering, vol. 3, no. 4, pp. 355-379, 1998.

[20] A. A. Porter, L. G. Votta, and V. R. Basili, “Comparing detection methods for

software requirements inspections: A replicated experiment,” IEEE Transactions

on Software Engineering, vol. 21, no. 6, pp. 563-575, 1995.

[21] F. Shull, I. Rus, and V. Basili, “How perspective-based reading can improve

requirements inspections,” IEEE Computer, vol. 33, no. 7, pp. 73-79, 2000.

[22] T. Thelin, P. Runeson, and B. Regnell, “Usage-based reading—an experiment to

guide reviewers with use cases,” Information and Software Technology, vol. 43, no.

15, pp. 925-938, 2001.

[23] T. Thelin, P. Runeson, and C. Wohlin, “An experimental comparison of usage-

based and checklist-based reading,” IEEE Transactions on Software Engineering,

vol. 29, no. 8, pp. 687-704, 2003.

74

[24] S. A. Ebad, “Inspection reading techniques applied to software artifacts-a

systematic review,” Computer Systems Science and Engineering, vol. 32, no. 3, pp.

213-226, 2017.

[25] B. P. De Souza, R. C. Motta, and G. H. Travassos, “The first version of

SCENARIotCHECK,” in Proceedings of the XXXIII Brazilian Symposium on

Software Engineering, Salvador, Brazil, 2019.

[26] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili, “Detecting defects in object-

oriented designs: using reading techniques to increase software quality,” ACM

SIGPLAN Notices, vol. 34, no. 10, pp. 47-56, 1999.

[27] O. Laitenberger, “Cost-effective detection of software defects through perspective-

based Inspections,” Empirical Software Engineering, vol. 6, no. 1, pp. 81-84, 2001.

[28] F. Shull, “Developing techniques for using software documents: A series of

empirical studies,” Ph.D. thesis, in Department of Computer Science, Univ. of

Maryland, College Park, MD, USA, 1998.

[29] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented

metrics on open source software for fault prediction,” IEEE Transactions on

Software engineering, vol. 31, no. 10, pp. 897-910, 2005.

[30] S. G. Eickt, C. R. Loader, M. D. Long, L. G. Votta, and S. V. Wiel, “Estimating

software fault content before coding,” in International Conference on Software

Engineering, Melbourne, Australia, 1992, pp. 59-65.

[31] P. Runeson and C. Wohlin, “An experimental evaluation of an experience-based

capture-recapture method in software code inspections,” Empirical Software

Engineering, vol. 3, no. 4, pp. 381-406, 1998.

[32] L. C. Briand, K. El Emam, B. Frelmut, and O. Laitenberger, “Quantitative

evaluation of capture-recapture models to control software inspections,” in

Proceedings The Eighth International Symposium on Software Reliability

Engineering, Albuquerque, NM, USA, 1997, pp. 234-244.

[33] NASA, Mars Climate Orbiter mishap investigation board phase I report.

Washington, DC, USA, 1999.

[34] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code reviews: An

empirical study at Microsoft,” in 2015 IEEE/ACM 12th Working Conference on

Mining Software Repositories, Florence, Italy, 2015, pp. 146-156.

75

[35] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Communicative intention in

code review questions,” in 2018 IEEE International Conference on Software

Maintenance and Evolution (ICSME), Madrid, Spain, 2018, pp. 519-523.

[36] G. Huet, S. J. Culley, C. A. McMahon, and C. Fortin, “Making sense of engineering

design review activities,” Artificial Intelligence for Engineering Design, Analysis

and Manufacturing, vol. 21, no. 3, pp. 243-266, 2007.

[37] P. N. Robillard, P. d’Astous, F. Détienne, and W. Visser, “An empirical method

based on protocol analysis to analyze technical review meetings,” in Proceedings

of the 1998 conference of the Centre for Advanced Studies on Collaborative

research, Toronto, Ontario, Canada, 1998, pp. 1-12.

[38] P. d'Astous, F. Détienne, W. Visser, and P. Robillard, “On the use of functional and

interactional approaches for the analysis of technical review meetings,” in

Proceedings of the 12th Annual Workshop of the Psychology of Programming

Interest Group, Cosenza, Italy, 2000, pp. 155-170.

[39] M. Hasan, A. Iqbal, M. R. U. Islam, A. J. M. I. Rahman, and A. Bosu, “Using a

balanced scorecard to identify opportunities to improve code review effectiveness:

an industrial experience report,” Empirical Software Engineering, vol. 26, no. 6,

pp. 129-163, 2021.

[40] N. H. Taba and S. H. Ow, “A web-based model for inspection inconsistencies

resolution: a new approach with two case studies,” Malaysian Journal of Computer

Science, vol. 32, no. 1, pp. 1-17, 2019.

[41] M. M. Rahman, C. K. Roy, and R. G. Kula, “Predicting usefulness of code review

comments using textual features and developer experience,” in 2017 IEEE/ACM

14th International Conference on Mining Software Repositories (MSR), Buenos

Aires, Argentina, 2017, pp. 215-226.

[42] L. G. Votta, “Does every inspection need a meeting?” ACM SIGSOFT Software

Engineering Notes, vol. 18, no. 5, pp. 107-114, 1993.

[43] P. Murphy and J. Miller, “A process for asynchronous software inspection,” in

Proceedings Eighth IEEE International Workshop on Software Technology and

Engineering Practice incorporating Computer Aided Software Engineering,

London, UK, 1997, pp. 96-104.

[44] O. Laitenberger and J.-M. DeBaud, “An encompassing life cycle centric survey of

software inspection,” Journal of Systems and Software, vol. 50, no. 1, pp. 5-31,

2000.

76

[45] P. M. Johnson and D. Tjahjono, “Does every inspection really need a meeting?,”

Empirical Software Engineering, vol. 3, no. 1, pp. 9-35, 1998.

[46] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for pull-

requests in GitHub: What can we learn from code review and bug assignment?,”

Information and Software Technology, vol. 74, pp. 204-218, 2016.

[47] P. Thongtanunam and A. E. Hassan, “Review dynamics and their impact on

software quality,” IEEE Transactions on Software Engineering, pp. 2698-2712,

2020.

[48] R. Chillarege et al., “Orthogonal defect classification-a concept for in-process

measurements,” IEEE Transactions on Software Engineering, vol. 18, no. 11, pp.

943-956, 1992.

[49] IBM, Orthogonal defect classification v 5.2 for software design and code. Armonk,

NY, USA, 2013.

[50] M. V. Mantyla and C. Lassenius, “What types of defects are really discovered in

code reviews?” IEEE Transactions on Software Engineering, vol. 35, no. 3, pp.

430-448, 2009.

[51] A. Fernandez, S. Abrahao, and E. Insfran, “Empirical validation of a usability

inspection method for model-driven Web development,” Journal of Systems and

Software, vol. 86, no. 1, pp. 161-186, 2013.

[52] B. Regnell, P. Runeson, and T. Thelin, “Are the perspectives really different?–

further experimentation on scenario-based reading of requirements,” Empirical

Software Engineering, vol. 5, no. 4, pp. 331-356, 2000.

[53] M. Ciolkowski, O. Laitenberger, and S. Biffl, “Software reviews, the state of the

practice,” IEEE Software, vol. 20, no. 6, pp. 46-51, 2003.

[54] F. Lanubile and T. Mallardo, “An empirical study of web-based inspection

meetings,” in 2003 International Symposium on Empirical Software Engineering,

Rome, Italy, 2003, pp. 244-251.

[55] F. Calefato, F. Lanubile, and T. Mallardo, “A controlled experiment on the effects

of synchronicity in remote inspection meetings,” in First International Symposium

on Empirical Software Engineering and Measurement (ESEM 2007), Madrid,

Spain, 2007, pp. 473-475.

77

[56] A. Porter, H. Siy, A. Mockus, and L. Votta, “Understanding the sources of variation

in software inspections,” ACM Transactions on Software Engineering and

Methodology, vol. 7, no. 1, pp. 41-79, 1998.

[57] F. Macdonald and J. Miller, “A comparison of tool-based and paper-based software

inspection,” Empirical Software Engineering, vol. 3, no. 3, pp. 233-253, 1998.

[58] T. Thelin, P. Runeson, C. Wohlin, T. Olsson, and C. Andersson, “Evaluation of

usage-based reading—conclusions after three experiments,” Empirical Software

Engineering, vol. 9, pp. 77-110, 2004.

[59] L. P. W. Land, B. Tan, and L. Bin, “Investigating training effects on software

reviews: a controlled experiment,” in 2005 International Symposium on Empirical

Software Engineering, Noosa Heads, Australia, 2005, pp. 356-366.

[60] G. Sabaliauskaite, S. Kusumoto, and K. Inoue, “Assessing defect detection

performance of interacting teams in object-oriented design inspection,”

Information and Software Technology, vol. 46, no. 13, pp. 875-886, 2004.

[61] L. Briand, D. Falessi, S. Nejati, M. Sabetzadeh, and T. Yue, “Traceability and

SysML design slices to support safety inspections,” ACM Transactions on Software

Engineering and Methodology, vol. 23, no. 1, pp. 1-43, 2014.

[62] Y. Wong and D. Wilson, “An empirical investigation of the important relationship

between software review meetings process and outcomes,” in IASTED

International Conference on Software Engineering, Innsbruck, Austria, 2004, pp.

422-427.

[63] B. Soltanifar, A. Erdem, and A. Bener, “Predicting defectiveness of software

patches,” in Proceedings of the 10th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement, Ciudad Real, Spain, 2016, pp.

1-10.

[64] J. Carver, F. Shull, and V. Basili, “Can observational techniques help novices

overcome the software inspection learning curve? An empirical investigation,”

Empirical Software Engineering, vol. 11, no. 4, pp. 523-539, 2006.

[65] L. P. W. Land, “Software group reviews and the impact of procedural roles on

defect detection performance,” Empirical Software Engineering, vol. 7, no. 1, pp.

77-79, 2002.

[66] K. Sandahl, O. Blomkvist, J. Karlsson, C. Krysander, M. Lindvall, and N. Ohlsson,

“An extended replication of an experiment for assessing methods for software

78

requirements inspections,” Empirical Software Engineering, vol. 3, no. 4, pp. 327-

354, 1998.

[67] Ö. Albayrak and J. C. Carver, “Investigation of individual factors impacting the

effectiveness of requirements inspections: a replicated experiment,” Empirical

Software Engineering, vol. 19, no. 1, pp. 241-266, 2014.

[68] Software Engineering Institute, Carnegie Mellon University, CMMI for

development, version 1.3, 2010.

[69] M. E. Fagan, “Advances in software inspections,” IEEE Transactions on Software

Engineering, no. 7, pp. 744-751, 1986.

[70] VDA QMC Working Group 13, Automotive SIG, Automotive SPICE process

assessment and reference model version 3.1, 2017.

[71] J. Highsmith and A. Cockburn, “Agile software development: the business of

innovation,” Computer, vol. 34, no. 9, pp. 120-127, 2001.

[72] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, “New directions on

agile methods: a comparative analysis,” in 25th International Conference on

Software Engineering, 2003, Portland, OR, USA, 2003.

[73] K. Lee and B. Boehm, “Empirical results from an experiment on value-based review

(VBR) processes,” in 2005 International Symposium on Empirical Software

Engineering, Noosa Heads, QLD, Australia, 2005.

[74] F. Shull et al., “Replicating software engineering experiments: Addressing the tacit

knowledge problem,” in Proceedings International Symposium on Empirical

Software Engineering, 2002, pp. 7-16.

[75] A. Dardenne, A. Van Lamsweerde, and S. Fickas, “Goal-directed requirements

acquisition,” Science of computer programming, vol. 20, no. 1-2, pp. 3-50, 1993.

[76] D. M. Berry and E. Kamsties, “Ambiguity in requirements specification.” in

Perspectives on software requirements: Kluwer Academic Publishers, 2004, pp. 7-

44.

[77] B. Dhanalaxmi, G. A. Naidu, and K. Anuradha, “A fault prediction approach based

on the probabilistic model for improvising software inspection,” Indian Journal of

Science and Technology, vol. 9, no. 45, 2016.

79

[78] A. Van Lamsweerde and E. Letier, “Integrating obstacles in goal-driven

requirements engineering,” in Proceedings of the 20th international conference on

Software engineering, Kyoto, Japan, 1998, pp. 53-62.

[79] A. Van Lamsweerde, “Goal-oriented requirements engineering: A guided tour,” in

Proceedings Fifth IEEE International Symposium on Requirements Engineering,

Toronto, ON, Canada, 2001, pp. 249-262.

[80] A. Lapouchnian, Goal-oriented requirements engineering: An overview of the

current research. Toronto, Ontario, Canada, 2005.

[81] A. I. Anton, “Goal-based requirements analysis,” in Proceedings of the Second

International Conference on Requirements Engineering, Colorado Springs, CO,

USA, 1996, pp. 136-144.

[82] A. Van Lamsweerde, Requirements engineering: from system goals to UML models

to software specifications. New York, NY, USA: Wiley, 2009.

[83] A. Van Lamsweerde, “Elaborating security requirements by construction of

intentional anti-models,” in 26th International Conference on Software

Engineering, Edinburgh, UK, 2004, pp. 148-157.

[84] A. Van Lamsweerde, R. Darimont, and P. Massonet, “Goal-directed elaboration of

requirements for a meeting scheduler: Problems and lessons learnt,” in Proceedings

of 1995 IEEE International Symposium on Requirements Engineering, York,

England, 1995, pp. 194-203.

[85] S. Tueno, R. Laleau, A. Mammar, and M. Frappier, “Integrating domain modeling

within a formal requirements engineering method.” in Implicit and Explicit

Semantics Integration in Proof-Based Developments of Discrete Systems: Springer

Singapore, 2021, pp. 39-58.

[86] C. Kartiko, A. C. Wardhana, and W. A. Saputra, “Requirements engineering of

village innovation application using goal-oriented requirements engineering

(GORE),” Jurnal Infotel, vol. 13, no. 2, pp. 38-46, 2021.

[87] X. Franch, L. López, C. Cares, and D. Colomer, “The i* framework for goal-

oriented modeling.” in Domain-specific conceptual modeling. New York, NY,

USA: Springer, 2016, pp. 485-506.

[88] E. S. Yu, “Towards modelling and reasoning support for early-phase requirements

engineering,” in Proceedings of ISRE '97: 3rd IEEE International Symposium on

Requirements Engineering, Annapolis, MD, USA, 1997, pp. 226-235.

80

[89] E. S. Yu, “Modeling organizations for information systems requirements

engineering,” in [1993] Proceedings of the IEEE International Symposium on

Requirements Engineering, San Diego, CA, USA, 1993.

[90] Y. Wang, T. Li, Q. Zhou, and J. Du, “Toward practical adoption of i* framework:

An automatic two-level layout approach,” Requirements Engineering, vol. 26, no.

3, pp. 301-323, 2021.

[91] A. S. Vingerhoets, S. Heng, and Y. Wautelet, “Using i* and UML for blockchain

oriented software engineering: Strengths, weaknesses, lacks and complementarity,”

Complex Systems Informatics and Modeling Quarterly, no. 26, pp. 26-45, 2021.

[92] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using nonfunctional

requirements: A process-oriented approach,” IEEE Transactions on software

engineering, vol. 18, no. 6, pp. 483-497, 1992.

[93] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-functional requirements in

software engineering. Berlin, Germany: Springer Science & Business Media, 2012.

[94] J. Mylopoulos, L. Chung, and E. Yu, “From object-oriented to goal-oriented

requirements analysis,” Communications of the ACM, vol. 42, no. 1, pp. 31-37,

1999.

[95] S. S. Paradkar, “A framework for modeling non-functional requirements for

business-critical systems,” International Journal of Innovative Research in

Computer Science & Technology, vol. 9, no. 1, pp. 15-19, 2021.

[96] J. Cleland-Huang, O. Gotel, and A. Zisman, Software and systems traceability. New

York, NY, USA: Springer, 2012.

[97] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the requirements traceability

problem,” in Proceedings of IEEE International Conference on Requirements

Engineering, Colorado Springs, CO, USA, 1994.

[98] G. Spanoudakis and A. Zisman, “Software traceability: A roadmap.” in Handbook

Of Software Engineering And Knowledge Engineering. Singapore: World

Scientific, 2005, pp. 395-428.

[99] R. Torkar, T. Gorschek, R. Feldt, M. Svahnberg, U. A. Raja, and K. Kamran,

“Requirements traceability: A systematic review and industry case study,”

International Journal of Software Engineering and Knowledge Engineering, vol.

22, no. 03, pp. 385-433, 2012.

81

[100] S. Nair, J. L. De La Vara, and S. Sen, “A review of traceability research at the

requirements engineering conference,” in 2013 21st IEEE International

Requirements Engineering Conference (RE), Rio de Janeiro, Brazil, 2013.

[101] J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. Cleland-Huang, “Traceability

transformed: generating more accurate links with pre-trained BERT models,” in

ICSE '21: Proceedings of the 43rd International Conference on Software

Engineering, Madrid, Spain, 2021.

[102] A. Zisman and A. Kozlenkov, “Knowledge base approach to consistency

management of UML specifications,” in Proceedings 16th Annual International

Conference on Automated Software Engineering (ASE 2001), San Diego, CA, USA,

2001.

[103] A. Kozlenkov and A. Zisman, “Are their design specifications consistent with our

requirements?,” in Proceedings IEEE Joint International Conference on

Requirements Engineering, Essen, Germany, 2002.

[104] J. Hassine, J. Rilling, and J. Hewitt, “Change impact analysis for requirement

evolution using use case maps,” in Eighth International Workshop on Principles of

Software Evolution (IWPSE'05), Lisbon, Portugal, 2005.

[105] S. Lehnert, A review of software change impact analysis. Ilmenau, Germany:

Ilmenau University of Technology, 2011.

[106] T. Jalaja, T. Adilakshmi, and P. Abhishek, “Automation of change impact analysis

for Python applications.” in Smart Computing Techniques and Applications. New

York, NY, USA: Springer, 2021, pp. 259-267.

[107] S. B. Robert Arnold, Software change impact analysis. Los Alamitos, CA, USA:

Wiley-IEEE Computer Society Publications Tutorial Series, 1996.

[108] Bohner, “Impact analysis in the software change process: A year 2000 perspective,”

in Proceedings of International Conference on Software Maintenance ICSM-96,

Monterey, CA, USA, 1996.

[109] B. G. Ryder and F. Tip, “Change impact analysis for object-oriented programs,”

in PASTE '01: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on

Program analysis for software tools and engineering, Snowbird, Utah, USA, 2001,

pp. 46–53.

[110] T. L. Saaty, The analytic hierarchy process: Planning setting priorities, resource

allocation. New York, NY, USA: McGraw-Hill, 1980.

82

[111] A. Lopez Lorca, R. Burrows, and L. Sterling, “Teaching motivational models in

agile requirements engineering,” in 2018 IEEE 8th International Workshop on

Requirements Engineering Education and Training (REET), Banff, AB, Canada,

2018.

[112] N. Potter and M. Sakry, “Implementing SCRUM (agile) and CMMI together,” The

Process Group-Post newsletter, vol. 16, no. 2, pp. 1-6, 2009.

[113] E. Rubin and H. Rubin, “Supporting agile software development through active

documentation,” Requirements Engineering, vol. 16, no. 2, pp. 117-132, 2010.

[114] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. J. Passonneau, “Sentiment

analysis of Twitter data,” in Proceedings of the workshop on language in social

media (LSM 2011), Portland, OR, USA, 2011, pp. 30-38.

[115] R. Feldman, “Techniques and applications for sentiment analysis,”

Communications of the ACM, vol. 56, no. 4, pp. 82-89, 2013.

[116] T. Ahmed, A. Bosu, A. Iqbal, and S. Rahimi, “SentiCR: A customized sentiment

analysis tool for code review interactions,” in ASE 2017: Proceedings of the 32nd

IEEE/ACM International Conference on Automated Software Engineering, Urbana,

IL, USA, 2017, pp. 106-111.

[117] H. Vrzakova, A. Begel, L. Mehtätalo, and R. Bednarik, “Affect recognition in code

review: An in-situ biometric study of reviewer’s affect,” Journal of Systems and

Software, vol. 159, no. 110434, pp. 1-12, 2020.

83

List of Publications

Research Achievements Related To The Dissertation

I. Journal Papers

1 M. Wakimoto and S. Morisaki, “Goal-oriented software design reviews,” IEEE

Access, vol. 10, pp. 32584-32594, 2022.

2 M. Wakimoto and S. Morisaki, “A metric for questions and discussions

identifying concerns in software reviews,” Software, vol. 1, no. 3, pp. 364-380,

2022.

II. International Conference

1 M. Wakimoto, S. Morisaki, and S. Yamamoto, “A case study of requirements

ambiguities and goal-oriented focused requirements specification,” 8th

International Congress on Advanced Applied Informatics (IIAI-AAI 2019), pp.

908-913.

