
NAGOYA UNIVERSITY

DOCTORAL THESIS

Effective Application of Artificial
Intelligence Technology in

Malware Detection and
Classification

Author:
GAO Yun

Graduate School of Informatics

January 11, 2023

https://en.nagoya-u.ac.jp/
http:/kou2n.github.io
https://www.i.nagoya-u.ac.jp/en/graduate-school-of-informatics/

i

NAGOYA UNIVERSITY

Abstract
Graduate School of Informatics

Doctor of Informatics

Effective Application of Artificial Intelligence Technology in Malware
Detection and Classification

by GAO Yun

Modern society relies more and more on computer system and network
technology, and the threat of malicious software is becoming more and more
serious. In the field of information security, malware detection has been a
key problem that academia and industry are committed to solving. With the
large-scale development of Artificial Intelligence (AI) technology, more and
more information security personnel try to learn the feature of malware and
normal software by machine learning, so that malware detection can get rid
of threat intelligence and expert knowledge, and can calmly deal with large-
scale malware attacks. This thesis proposes using different AI methods to
detect and classify malicious software.

Traditional Machine Learning We investigated the malware detection re-
sults based on LightGBM in static malware detection methods, and reduced
the false alarms by a custom log loss function, which controls the learning
process of model through installing coefficient α to a loss function of the false-
negative side and coefficient β to the false-positive side.

Graph Representation Learning We propose a Control-Flow Graph (CFG)-
and Graph Isomorphism Network (GIN)-based malware classification sys-
tem. The feature vectors of CFG basic blocks are generated using the large-
scale pre-trained language model MiniLM, which is beneficial for the GIN
to further learn and compress the CFG-based representation, and classified
with multi-layer perceptron.

Graph Contrastive Learning We propose a malware classification frame-
work based on Graph Contrastive Learning (GraphCL) with data augmen-
tation. According to my experimental evaluation, the unsupervised learn-
ing approach outperformed the self-supervised learning approach in Graph
Neural Networks based on malware classification.

This thesis has found that generally AI-based methods can effectively im-
prove the detection and classification results of large-scale malware, and with
the continuous improvement of AI technology, more and more AI technolo-
gies can be applied to the field of information security to help solve difficult
security problems.

HTTPS://EN.NAGOYA-U.AC.JP/
https://www.i.nagoya-u.ac.jp/en/graduate-school-of-informatics/

ii

Contents

Abstract i

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Background . 1
1.2 Problem . 2
1.3 Motivation . 2
1.4 Contribution . 3
1.5 Thesis Outline . 4

2 Related Work 5
2.1 Static Malware Analysis . 5
2.2 Dynamic Malware Analysis . 6
2.3 Malware Feature Extraction . 6

2.3.1 Surface Analysis Feature 7
2.3.2 Control-Flow Graph . 7
2.3.3 Network Traffic . 7

2.4 Large-scale Malware Detection and Classification 8
2.4.1 Supervised Learning . 8
2.4.2 Self-Supervised Learning 11

3 Custom Loss Function of GBDT for Malware Detection 12
3.1 Introduction . 12
3.2 Proposed GBDT-based Custom Logistic Loss Function 14

3.2.1 Evaluation Environment 14
3.2.2 Proposed Cost-sensitive Loss Function 14

3.3 Experiment Setup . 16
3.3.1 Datasets and Preprocessing 17
3.3.2 Features . 18
3.3.3 Models and Parameters 20
3.3.4 Evaluation Metric . 21
3.3.5 Experimental Results . 23

3.4 Discussion . 26
3.4.1 EMBER Dataset Results Analysis 27
3.4.2 FFRI Dataset Results Analysis 27
3.4.3 Hybrid Usage with Different Custom Models 28

3.5 Conclusion . 30

iii

4 Malware Control-Flow Graph Level Representation Learning 31
4.1 Introduction . 31
4.2 Proposed GIN-based Static PE Malware Detection System . . 33

4.2.1 Preliminary GNN Summary 33
4.2.2 Proposed System Architecture 33

4.3 Implementation Details . 37
4.3.1 Malware Geometric Dataset 37
4.3.2 Graph Feature Extraction Module 38
4.3.3 Graph Data Generation Module 39
4.3.4 Graph Classification Module 40

4.4 Experimental Evaluation . 41
4.4.1 Evaluation Metrics . 41
4.4.2 Evaluation Results . 41

4.5 Discussion . 43
4.6 Conclusion . 46

5 Graph Contrastive Learning for Malware Classification 47
5.1 Introduction . 47
5.2 Proposed Malware GraphCL with Data Augmentations 48

5.2.1 Raw Graph Generation 48
5.2.2 Data Augmentation for Graphs 49
5.2.3 Graph Contrastive Learning 51
5.2.4 Graph Classification . 51

5.3 Implementation Details . 52
5.3.1 Malware Geometric Multi-Class Dataset 52
5.3.2 Pre-trained Language Model MiniLM 53

5.4 Evaluation . 54
5.4.1 Evaluation Metric . 54
5.4.2 Evaluation Results . 55

5.5 Discussion . 56
5.6 Conclusion . 58

6 Conclusion 59

Bibliography 61

Acknowledgements 67

List of Publications 68

iv

List of Figures

2.1 Histogram-based decision tree algorithm. 10

3.1 Evaluation environment of proposed custom logistic loss func-
tion. 15

3.2 EMBER vs. FFRI AUC with logarithmic scale (α/β). 24
3.3 EMBER vs. FFRI TPR&FPR with logarithmic scale (α/β). . . . 25
3.4 EMBER vs. FFRI FN&FP with logarithmic scale (α/β). 26
3.5 EMBER vs. FFRI AUC with logarithmic scale (α/β). 28
3.6 EMBER vs. FFRI AUC heatmap. 29

4.1 Proposed GIN-based static PE malware detection system. . . . 34
4.2 t-SNE visualization of Baseline. 44
4.3 t-SNE visualization of Proposal. 45

5.1 Raw graph generation for proposal 49
5.2 Proposed malware graph contrastive learning framework for

graph representation generation 50
5.3 A simple framework for contrastive learning of visual repre-

sentations. 52
5.4 t-SNE visualization of Baseline 1 and Proposal 57

v

List of Tables

3.1 Our experimental datasets. 17
3.2 Feature groups of EMBER dataset. 18
3.3 Extracted feature groups of FFRI dataset. 20
3.4 Selected features of FFRI dataset. 21
3.5 EMBER LightGBM baseline parameters. 22
3.6 FFRI LightGBM baseline parameters. 22
3.7 Evaluation metrics. 23
3.8 Experimental results. 23
3.9 Combining Custom_AUC and Custom_FPR models to improve

countermeasure priority. 30

4.1 Malware family distribution of MGD-BINARY. 38
4.2 Graph statistics of MGD-BINARY. 38
4.3 Pre-trained MiniLM model details. 39
4.4 GIN model training parameters. 40
4.5 Experimental results. 42
4.6 Comparison of experimental results under different classifiers. 43
4.7 Additional experimental results. 43

5.1 Overview of data augmentation for graphs 50
5.2 Malware family distribution of MGD-MULTI 53
5.3 Graph statistics of MGD-MULTI 53
5.4 Pre-trained MiniLM model details 54
5.5 different augmentation combinations 55
5.6 Best combination with different ratio results 55
5.7 Comparison of different methods 56

1

Chapter 1

Introduction

1.1 Background

With the large-scale application of computer and network technology, the
harm of malicious software has become particularly prominent. Network
worms, ransomware, and other intrusion incidents are getting worse and
worse. Hacker groups often use scripts to generate a large number of mal-
ware variants to carry out large-scale network attacks, resulting in heavy
losses to all sectors of society.

According to the statistics of AV-TEST [1], From 2019 to 2020, more than
114 million malware reported by major security vendors were not recorded
by the latest threat intelligence. In the first quarter of 2022, the AV-TEST
systems have registered over 43 million newly-programmed samples. In to-
day’s network environment, malware attacks are complex and changeable.
Traditional rule-based signature matching not only requires extensive expert
knowledge to maintain the intelligence base, but is often helpless against
emerging malware variants.

It is a possible way to solve this problem by applying Artificial Intelli-
gence (AI) algorithm and detecting malware according to the behavior fea-
ture of malware. In fact, the application of machine learning to malware
detection has been proposed as early as 1995 [2]. However, the training
of a useful machine learning model needs to be supported by a sufficient
number of high-quality data. Because there was no concept of big data at
that time, there were few available samples of malware, so it is difficult for
the model to learn the corresponding features effectively. In recent years,
due to the rapid growth in the number of malware, researchers can col-
lect large-scale malware samples, which provides a good data support for
the training of machine learning and deep learning model. Besides statis-
tical machine learning models, the vigorous development of deep learning
algorithms such as Convolutional Neural Network (CNN), Recurrent Neu-
ral Network (RNN), and Graph Neural Network (GNN) also provides re-
searchers with more choices. Under this background, more and more se-
curity researchers have designed feature engineering for malware detection,
and applied various machine learning algorithms to detect malware, which
finally achieved very good results. It is worth mentioning that machine learn-
ing method does not depend on expert knowledge and threat intelligence,

Chapter 1. Introduction 2

and gives the evaluation result by learning the feature of malware, so it can
discriminate variant malware at low cost.

1.2 Problem

Although machine learning has achieved remarkable results in malware de-
tection and classification field, there are some problems due to the limitations
of machine learning itself, which leads to the fact that machine learning is not
widely used in industry.

First, the core problem is the robustness of machine learning model. Be-
cause machine learning is data-driven, the conclusions drawn on datasets
often deviate from the real world. The detection results with extremely high
accuracy are often caused by the model’s over-fitting of data. Once such a
model is put into production, it will become the target of black hat hackers’
attack. Therefore, how to improve the generalization of model robustness is
also a hot issue in academic circles.

Secondly, the interpretability problem of machine learning. As everyone
knows, many machine learning models are designed according to the end-
to-end model. Such a model is a black box for users and maintainers. People
can’t understand what decisions are made by the model, and what direction
to optimize it. This makes machine learning often fail to give people absolute
trust at the level of network security products.

Thirdly, the concept drift problem. As malware evolves over time, ma-
chine learning models trained through existing datasets may no longer be
applicable at some point in the future, and retraining models are often ac-
companied by huge costs. Therefore, how to make the model last under the
condition of low cost is also an urgent problem to be solved.

In addition, a challenging problem that arises in this domain is how to
reduce false alarms. In many real-life business scenarios, including network
security, false alarms are often more costly than missed alarms. If a malware
detection system daily generates many false alarms, it places great pressure
on incident-response staff. Their trust in the system eventually wanes, even
though actual incidents might be overwhelmed with false alarms, leading to
more and more serious false alarms.

1.3 Motivation

My research focuses on how to extract effective and interpretable malware
features, apply the best detection model according to different features, con-
tinuously improve the detection accuracy and reduce the false alarm rate.

Because the structure and logic of malware are very complex, it is difficult
to extract effective features. Traditional machine learning relies on feature
engineering, and different features have great influence on the results of ma-
chine learning models. In addition, most data sets suitable for mainstream

Chapter 1. Introduction 3

machine learning extract statistical characteristics of malware through sur-
face analysis. Although the extraction speed of this method is faster, it ig-
nores the structural information of rich call relationships in malware, such as
CFG and call graph. Deep learning method does not need feature engineer-
ing, and end-to-end training is possible, but the detection result is often not
as good as the traditional machine learning algorithm.

This research has the following values. First of all, starting with the cus-
tom loss function of machine learning algorithm, penalty parameters are
added to the loss function. In the training stage of the model, the penalty
for false alarm is increased, thus reducing the false alarm rate. Our custom
loss function method frees users and security responders from massive false
alarms. Secondly, by extracting the Control-Flow Graph (CFG) of malware,
we get rich structural information, which includes the direct calling relation-
ship of each malware basic block. Further using GNN, we get satisfactory
detection results. The CFG of malware has a clear call relationship, which is
itself natural graph data. With graph neural network, it can directly learn the
structural feature of malware and the relationship between different graph
nodes. Therefore, our malware detection model has good interpretability.
Furthermore, supervised learning requires a lot of accurate labeling data. Be-
cause the number of newly added malware is too large, and there are many
varieties of malware. It is unrealistic and inefficient to label all malicious soft-
ware. By applying self-supervised Graph Contrastive Learning (GraphCL),
this method can learn the graph structure feature by itself without labeling
malicious software, so as to realize the detection and classification of mali-
cious software. It has also achieved exciting results. Self-supervised learning
does not need to label malicious samples, which greatly reduces the work-
load of dataset making. In addition, malware from different families have
similar structural feature, and GNN is especially good at learning the graph
structure information of malware. Therefore, our GraphCL model can clas-
sify unseen malware samples into families well, thus improving the concept
drift problem to some extent.

1.4 Contribution

This thesis documents several key contributions made to the fields of mal-
ware detection and classification.

• First, we propose a custom log loss function that optimizes the malware
classification model and substantially reduces false alarms. In addition,
we propose a hybrid usage of different custom models to add addi-
tional priority to positive results that can reduce the workload of se-
curity response center persons. On a non-public dataset (FFRI dataset),
malware detection can be effectively performed even with a small num-
ber of features.

• Secondly, we propose a malware detection system based on GNN, and
kept the structure information of the samples extracted from CFG, and

Chapter 1. Introduction 4

generated the text features of each node by a pre-trained language model.
Furthermore, we created a special graph dataset for malware detection
that can be directly used on GNN. As a new feature extraction method
for malware, we compared the representation results of GNN with dif-
ferent dimensions under different classification models. The problem
of malware detection is transformed into the problem of graph classifi-
cation in the GNN field. The dimension of the feature vector extracted
by the Graph Isomorphism Network (GIN) is very low (from 32 to 256
dimensions). As compared to the latest feature extraction method of
the EMBER dataset (2381 dimensions), our model obtained very simi-
lar performance.

• Finally, we propose a malware classification framework based on graph
contrastive learning under self-supervised learning, and retain the struc-
tural information of the samples extracted from CFG, and embed the
text features of each node with a pre-trained language model. Further-
more, We create a special graph dataset for malware classification that
can be used directly on GNN. Our pre-trained model can effectively
perform a low-dimensional representation of malware with which a va-
riety of downstream tasks can be performed. We have achieved good
results on malware family classification tasks.

1.5 Thesis Outline

The remainder of this thesis has been organized into six chapters. This sec-
tion outlines the description of each chapter:

• In Chapter 2, show in detail the state-of-the-art related work to malware
detection and classification.

• In Chapter 3, introduce malware detection method using LightGBM-
based custom logistic loss function.

• In Chapter 4, describe malware detection by CFG level representation
learning with GIN.

• In Chapter 5, present self-supervised graph contrastive learning with
data augmentation for malware classification.

• In Chapter 6, expose our final conclusion with future work.

5

Chapter 2

Related Work

Over the past few years, malware detection has evolved due to the gradual
rising threat to large enterprises and government agencies posed by mal-
ware. Data mining and machine learning algorithms have been used exten-
sively for malware detection, which is the process of analyzing the content of
a program to determine whether it is malicious or benign. This chapter de-
scribes the related work in the field of malware detection and classification.

2.1 Static Malware Analysis

Malware is a blanket term for viruses, worms, trojans, and other harmful
computer programs used by black hat hackers to cause destruction and gain
access to sensitive information: “Malicious code is any code added, changed,
or removed from a software system in order to intentionally cause harm or
subvert the system’s intended function” [3]. The attacker’s goal is to execute
the malware in the user’s environment and collect credit card data, user-
names, passwords, and so on. Malware samples are analyzed to extract use-
ful features that can be utilized to detect them in the future.

In static malware analysis techniques, malware samples are extracted as
features without being executed. After static analysis, static features are ex-
tracted, including hashes, N-grams, opcodes, strings, and PE headers. I can
exploit such features to design malware detection software (antivirus soft-
ware, Intrusion Detection Systems, and so on.) [4]. During static malware
analysis, I need to reverse engineer the malware sample to understand its in-
ternal structure and program code. The detection of malware samples from
the code level requires converting executable malware files into assembly
language code. Some of the most widely used debuggers and disassemblers,
such as OllyDbg, IDA Pro, and WinDbg, are used to convert binary files into
assembly code [5], [6]. By analyzing the disassembly code, a file’s execution
flow, structure, or pattern of malicious activities can be identified and used
to detect new or existing malware variants. Studying assembly code to find
execution patterns and features is complicated and time consuming. In ad-
dition, code obfuscation and packing techniques increase the difficulty of the
analyst’s job. Malware developers use such obfuscation techniques as code
encryption, program instruction reordering, and dead code insertion tech-
niques to evade malware analysis [7], [8]. Although I can easily obtain the

Chapter 2. Related Work 6

disassembly code for unpacked malware, some must be unpacked first to get
the complete sample structure and disassembly code.

The features of malware classification are sometimes extracted using data
mining techniques. Data mining extracts new and meaningful information
from large datasets or databases that were previously unknown. In recent
years, new models and datasets have been created through data mining tech-
niques [9]. The mainstream approach to extract features from PE-formatted
malware under the Windows platform is surface analysis, such as using bi-
nary parsing tools like Library to Instrument Executable Formats (LIEF) to
extract malware features and save them in the JavaScript Object Notation
(JSON) file format. Researchers then need to extract features and convert
the feature vectors themselves. Surface analysis uses specialized PE-parsing
tools to extract features. Many other methods directly extract features from
PE files based on Natural Language Processing (NLP) and image-based tech-
niques. NLP-based feature extraction uses language models, such as N-gram
models, to extract sample features, and image-based feature extraction meth-
ods convert malware features into gray-scale images [10], and so on.

2.2 Dynamic Malware Analysis

In dynamic analysis, malware needs to be executed first, and its activity is
captured when the malware is running. The runtime behaviors include file
system operations, registry key changes, process execution, and network ac-
tivities [11]. Dynamic analysis is based on capturing the interaction between
malicious software and computer system to identify malicious software. To
prevent malicious software from damaging the host system, I need to capture
its behavior in a controllable virtual machine. I can use conventional virtual-
ization tools such as Virtual Box or VMware or automated malware analysis
systems like Cuckoo Sandbox. When malware runs in a monitored environ-
ment, various activities are observed, such as creating new files, deleting sys-
tem or user files, registry key changes, accessing URLs, API calls, download-
ing malware, or sending data to command and control systems. Depending
on these activities, files are detected as either benign or malicious. Dynamic
analysis techniques can analyze samples that are not detected correctly by
static analysis.

2.3 Malware Feature Extraction

Although the problem of malware detection involves a variety of file for-
mats and operating systems, in most cases, the same feature engineering and
methods are also applicable to malware on other system platforms. For ex-
ample, the feature extraction method applicable to windows system Portable
Executable (PE) files is also applicable to malicious PDF files and malware
on Linux or Android platforms. The following subsections will outline the
representative methods of malware feature extraction.

Chapter 2. Related Work 7

2.3.1 Surface Analysis Feature

LIEF[12], a widely used feature extraction method, which extracts multidi-
mensional features according to the related information of parsing the header
and section of the binary file, including file byte-code features, import table
information, entropy values of each part of the file, and so on. Those fea-
tures together form a feature vector as a portrait of the detected file. which
together form a feature vector as a portrait of the detected file. Based on this
feature extraction method, researchers mostly use some statistical machine
learning models, such as decision tree, support vector machine and ensem-
ble learning, to conduct supervised training, and finally achieve the purpose
of distinguishing benign software from malicious software.

2.3.2 Control-Flow Graph

The Control-Flow Graph (CFG) is a well-known graph-based program struc-
ture notation in the field of computer science. The program is separated with
branch instruction (including branch instruction for function call use) and
the separated blocks between branch instruction are called basic blocks. A
typical end of the basic block is connected to one basic block or a plurality of
basic blocks. Therefore, I can use the connecting notation of basic blocks to
express the program structure; this connection graph becomes the CFG. The
CFG is the basis of many compiler optimizations and static-analysis tools.

CFG is a well-known feature. Researchers convert binary software sam-
ples into assembly code through disassembly, and extract CFG from it, thus
turning it into a graph classification problem. In recent years, the vigorous
development of Graph Neural Network (GNN) has provided a new way of
thinking to solve such problems. Representative work [13] and [14] both use
graph neural network to analyze CFG, and the accuracy rate can reach more
than 95% in large-scale datasets.

2.3.3 Network Traffic

Discovering malware network behavior through network traffic is a new
malware detection technology in recent years, and some preliminary research
results have been obtained. Detecting malware through network traffic does
not require users to install detection programs on terminal devices, which
greatly reduces the computing resources of user terminal devices.

With the full popularity of HTTPS, in order to ensure the security and
privacy of communication, more and more network traffic is encrypted by
HTTPS. What method is used to detect malicious traffic in encrypted traffic
is very important, among which feature are the key of analysis. According
to the path of traffic generation, from source to destination, from data gen-
eration, encapsulation to traffic transmission, it involves many feature, such
as packet size, direction, protocol, traffic classification (service, application),
and so on.

Chapter 2. Related Work 8

2.4 Large-scale Malware Detection and Classifica-
tion

Static malware detection allows a sample to be classified as malicious or be-
nign without having to execute it. On the contrary, dynamic malware de-
tection is based on runtime behavior, including time-dependent system call
sequences [15]–[17].

Although static detection is usually uncertain [18], it is obviously superior
to dynamic detection, as dynamic detection identifies malicious files by exe-
cuting the sample. Since 1995, various static PE malware detection methods
based on machine learning have been proposed [2], [19]–[22].

2.4.1 Supervised Learning

Datasets Most researchers collect malicious and benign samples by them-
selves. Feature extraction is carried out by specific methods, and these fea-
tures are used to make data sets for machine learning. Without a unified fea-
ture extraction method and dataset segmentation, it was difficult to compare
different methods with other researchers in the security field. Furthermore,
due to the specificity of the security field, malware-related datasets are less
publicly available. In recent years, some malware detection datasets have
been accepted and widely used in academic research, such as the EMBER
dataset [23], the SOREL-20M dataset [24], and the BODMAS dataset [25].
Malware detection researchers tend to extract static features to construct de-
tection systems. In addition, most existing dataset formats are unsuitable for
data mining and machine learning algorithms. However, the original data
represented by the EMBER dataset does not require researchers to extract
features. This dataset directly provides feature vectors, which facilitates fur-
ther model construction. EMBER dataset also come with baseline algorithms,
which are the current state-of-the-art in malware detection. These baseline
algorithms have basically achieved detection rates of over 90%. Specifically,
EMBER’s LightGBM baseline at a 0.1% False Positive Rate (FPR), the detec-
tion rate exceeds 93%, and at a 1% FPR, the detection rate exceeds 98%.

Machine Learning-based Methods Schultz et al. represented PE files by
including such features as import functions, strings, and byte sequences [19].
Kolter et al. used techniques for byte-level N-grams and NLP, including Term
Frequency-Inverse Document Frequency (TF-IDF) weighting of strings, to
detect and classify malware [20]. Shafiq et al. proposed using just seven
features from PE headers, motivated by the fact that most malware samples
in their study typically exhibited those elements [26].

Decision Tree-based Methods The EMBER and SOREL-20M datasets both
use the Light Gradient Boosting Machine (LightGBM) model as the baseline,
which provides excellent malware detection results.

Chapter 2. Related Work 9

Decision Tree In machine learning, a decision tree is a predictive model
that represents a mapping between an object’s attributes and its values. Each
node in the tree represents an object, each forked path represents a possible
attribute value, and each leaf node corresponds to the value of the object
represented by the path from the root node to the leaf node.

Gradient Boosting The fundamental difference between boosting and
bagging is that the base model is not uniformly treated but is constantly
tested and filtered to select the "elite," which are then given more votes, while
the poor base models are given fewer votes. The final results are obtained by
combining all the votes. In most cases, the boosting results are less biased.
Boosting is a sequential process, where each subsequent model tries to cor-
rect the errors of the previous model. Therefore the succeeding models are
dependent on the earlier models, and I need to train the models in sequence
instead of parallel. Gradient Boosting implements boosting; the main idea is
that each time a model is built, it is in the direction of a gradient decrease in
the loss function of the previously built model.

Gradient Boosting Decision Trees A Gradient Boosting Decision Tree
(GBDT) is an important integration learning algorithm that was deemed to
be an algorithm with high generalization ability when it was first proposed.
GDBT is an iterative decision tree algorithm based on boosting integration
learning. Each iteration creates a new decision tree in the gradient of the
reduced residuals and as many iterations as it takes to generate a decision
tree.

Let {xi, yi}n
i=1 denote a sample dataset. The basic learner is h(x), where

xi =
(
x1i, x2i, . . . , xpi

)
. yiis the predicted label. L denotes the loss function.

The following are the steps of GBDT [27] [28]:
Step 1: The following is the initial constant value of model δ:

F0(x) = arg min
δ

N

∑
i=1

L (yi, δ) . (2.1)

Step 2: Calculate the value of the negative gradient of the loss function in
the current model and use it as an estimate of the residuals. For number of
iterations m = {1, 2, . . . , M},

y∗i = −
[

∂L (yi, F (xi))

∂F (xi)

]
F(x)−Fm−1(x)

, i = {1, 2, . . . , N}. (2.2)

Step 3: Fit the sample data and get initial model h(xi; θ). By using the
least square method, parameters θm of the model are obtained:

θm = arg min
θ,δ

N

∑
i=1

[y∗i − δh (xi; θ)]2 . (2.3)

Chapter 2. Related Work 10

Step 4: By minimizing the loss function, the current model weight is ex-
pressed:

δm = arg min
θ,δ

N

∑
i=1

L (yi, Fm−1(x) + δh (xi; θ)) . (2.4)

Step 5: The model is updated:

Fm(x) = Fm−1(x) + δmh (xi; θm) . (2.5)

This loop is executed until the specified number of iterations or conver-
gence conditions are met.

...

...

...

Convert Construct
Histogram

Fe
at

ur
es

Decison Tree

...

...

...

Data Data

Histogram() = Histogram() - Histogram()
Bins

Fe
at

ur
es

Fe
at

ur
es

Bin Data Float Data

FIGURE 2.1: Histogram-based decision tree algorithm.

LightGBM LightGBM was designed by Microsoft [29] using a GBDT
framework. The limitation of GBDT is that all the training data need to be tra-
versed multiple times per iteration. If all the training data are loaded into the
memory, the size of the training data will be limited. If not, repeatedly read-
ing and writing the training data will consume much time. LightGBM was
created to solve the inefficiency of GBDT when encountering large amounts
of data. In LightGBM, the histogram-based algorithm and the trees’ leaf-
wise growth strategy with a maximum depth limit are adopted to increase
the training speed and reduce memory consumption. The histogram-based
decision tree algorithm is shown in Fig. 2.1.

LightGBM proposes two novel techniques: Gradient-based One-Side Sam-
pling (GOSS) and Exclusive Feature Bundling (EFB). GOSS excludes a signif-
icant proportion of data instances with small gradients and only uses the rest
to estimate the information gain. EFB bundles mutually exclusive features
(i.e., they rarely take nonzero values simultaneously) such that it reduces the
number of features.

Deep Learning-based Methods Saxe et al. used histograms through byte-
entropy values as input features and multi-layer neural networks for clas-
sification [21]. Raff et al. showed that fully connected and recursive net-
works can be applied to malware detection problems [30]. They also used
the raw bytes of PE files and set up end-to-end deep learning networks [22].

Chapter 2. Related Work 11

Chen et al. proposed robust PDF malware classifiers with verifiable robust-
ness properties [31]. Coull et al. explored malware detection byte-based
deep neural network models to learn more about malware and examined
the learned features at multiple levels, from individual byte embeddings
to end-to-end analysis of the models [32]. Rudd proposed Auxiliary Loss
Optimization for Hypothesis Augmentation (ALOHA), which uses multiple
additional optimization objectives to enhance the model, including multi-
source malicious/benign loss, count loss on multi-source detections, and se-
mantic malware attribute tag loss [33].

Deep Graph Learning-based Methods Graph classification assigns a label
to each graph so that it can be mapped to the vector space. The graph kernel
is dominant in history. It uses the kernel function to measure the similar-
ity between graph pairs and uses certain mapping functions to map graphs
to the vector space. In the background of graph classification, GNNs usu-
ally use readout operations to obtain a compact representation at the graph
level. GNNs have attracted much attention and have demonstrated amazing
results in graph classification tasks.

The Dynamic Graph Convolutional Neural Network (DGCNN) [34] uses
K-Nearest Neighbors (KNN), builds a subgraph for each node based on the
node’s features, and then applies the graph convolution to the reconstructed
graph. The Graph Isomorphism Network (GIN) [35] presents a graph iso-
morphism network that adjusts the weight of the central node through learn-
ing, theoretically analyzes the expression ability, is superior to GNN struc-
tures such as the Graph Convolution Network (GCN), and achieves state-of-
the-art accuracy on multiple tasks.

2.4.2 Self-Supervised Learning

Unsupervised graph representation learning has already made good progress.
For example, graph2vec [36] uses the set of all rooted subgraphs around each
node as its vocabulary through a skip-gram training process.

Recently, contrastive learning has received much attention. It has also
been applied in the field of malware detection and classification. Infograph
[37] applies contrastive learning to graph learning, which is carried out in
an unsupervised manner by maximizing the mutual information between
graph-level and node-level representations. Yang presented a novel system
called CADE, which can detect drifting samples that deviate from existing
classes, and explained the detected drift [38]. EVOLIoT [39] is a novel ap-
proach that combats “concept drift" and the limitations of inter-family IoT
malware classification by detecting drifting IoT malware families and exam-
ining their diverse evolutionary trajectories. This robust and effective con-
trastive method learns and compares semantically meaningful representa-
tions of IoT malware binaries and codes without expensive target labels. I
proposed using self-supervised Graph Contrastive Learning with data aug-
mentation for malware classification[40], the details are in section 5.

12

Chapter 3

Custom Loss Function of GBDT for
Malware Detection

3.1 Introduction

The feverish development of machine learning and deep-learning-based ar-
tificial intelligence (AI) has resulted in such significant advances as image
recognition and text sentiment analysis. Many cybersecurity applications
have also been developed that use AI for security measures and protection
from attacks. Malware software damages a single computer, server, or com-
puter network. One malware and its variants can cause millions of dollars
in damage, i.e., WannaCry with remotely exploitable EternalBlue, caused
worldwide disasters, including the shutdown of the Japanese Honda Mo-
tor Company. Even though malware is becoming more sophisticated and
diverse to avoid malware detection schemes, such schemes remain an essen-
tial issue in cybersecurity, especially as more and more people worldwide
become dependent on computing systems.

Malware detection methods can be divided into static and dynamic mal-
ware detection [41]. Static methods classify samples as malicious or benign
without executing samples; dynamic methods detect malicious software ac-
cording to its runtime behavior. In theory, dynamic malware detection allows
for the direct observation of malware actions that are not easily obfuscated
and complicates reusing existing malware [42]. However, it is challenging to
collect datasets of malware behavior because malware can identify sandbox
environments and avoid executing its malicious actions. Moreover, dynamic
malware detection in a practical environment requires many sandboxes to
treat a plethora of doubtful samples, which increases detection costs. In con-
trast, while static malware detection is generally undecidable [18], massive
datasets can be created by aggregating binary files and identifying malware
before it is executed. Thus, this chapter proposes an idea for the static mal-
ware detection side since the field of malware detection is its main focus.
Many widely believe that machine learning techniques can improve malware
detection. As software technology advances and the internet evolves, thou-
sands of pieces of malware are created every day. Such a massive flood of
data poses a considerable challenge to malware analysts and Security Re-
sponse Centers (SOCs). Over the past several decades, machine learning has
played an important role in information security. A challenging problem that

Chapter 3. Custom Loss Function of GBDT for Malware Detection 13

arises in this domain is how to reduce false alarms. In many real-life busi-
ness scenarios, including network security, false alarms are often more costly
than missed alarms. If a malware detection system daily generates many
false alarms, it places great pressure on incident-response staff. Their trust
in the system eventually wanes, even though actual incidents might be over-
whelmed with false alarms, leading to more and more serious false alarms.
In machine learning evaluation metrics, false alarms are equivalent to False
Positives (FPs), which are caused by classification algorithms that incorrectly
identify benign samples as malicious ones. Our goal is to reduce FPs as much
as possible, even to zero. Malware detection is not a typical application of
conventional machine learning, which focuses more on the balance between
False Negatives (FNs) and FPs to achieve better Area Under the ROC Curve
(AUC) metrics for machine learning classification. Reducing FPs is vital be-
cause even one FP among million benign samples can cause a range of conse-
quences that might affect users. However, reducing FPs is complicated since
thousands of benign samples are produced in the real world every day.

To the best of my knowledge, no previous research has investigated cus-
tom loss functions for malware detection purposes. Most existing malware
detection research uses different feature engineering schemes and builds dif-
ferent machine learning models. My approach keeps the single-objective
optimization model and controls the optimization objectives by further cus-
tomizing the loss function, which can also achieve an improved model. I
reduced the model’s FP metric by customizing the loss function. Hence, I
must put forward high requirements for the machine learning model and
the optimization indicators during training and clearly focus on reducing
the model’s FPR. Therefore, during its training, I can reduce the FPR by cus-
tomizing the loss function to give different weights to the FP. This chapter is
an adapted version of the publication [43], [44] using GBDT with customized
log loss function.

The specific contributions of this chapter can be summarized as follows:

• On a non-public dataset (FFRI dataset), malware detection can be effec-
tively performed even with a small number of features.

• I propose a custom log loss function that optimizes the malware classi-
fication model and substantially reduces false alarms.

• I propose a hybrid usage of different custom models to add additional
priority to positive results that can reduce the workload of security re-
sponse center persons.

The remainder of this chapter is organized as follows. Section 3.2 reviews
my proposed custom loss function and its application to malware detection.
In Section 3.3, I discuss the corresponding experiments and evaluate their
feasibility. In Section 3.4, I briefly discuss the results of the further analysis of
different datasets and how to improve the SOC-response efficiency through
our work. Finally, I describe the conclusion and future work in Section 3.5.

Chapter 3. Custom Loss Function of GBDT for Malware Detection 14

3.2 Proposed GBDT-based Custom Logistic Loss
Function

3.2.1 Evaluation Environment

To evaluate our proposed custom log loss function, I constructed (for mal-
ware detection) different LightGBM-based cost-sensitive custom loss func-
tions on two datasets, FFRI and EMBER. The evaluation environment of the
proposed custom log loss function is shown in Fig. 3.1.

As shown in the figure, the preprocessing part of the two datasets I used
are slightly different, mainly because the FFRI dataset does not directly pro-
vide feature vectors. Therefore I extracted and selected some valid features,
while the EMBER dataset provides feature vectors directly, which can be eas-
ily used for subsequent experiments. Next I discuss the preprocessing details
in Section 3.3.1.

3.2.2 Proposed Cost-sensitive Loss Function

In general, detection and classification algorithms of machine learning are
only concerned with obtaining the highest accuracy rate. Regardless of the
form of the loss function, the algorithm’s prediction error formally consists of
two components, FP and FN, and the loss function can be defined as follows:

Loss = Loss(FN) + Loss(FP). (3.1)

From the viewpoint of the general mathematical formulation of the loss
function, the derivative optimization of the loss function is unbiased for FP
and FN. The classification algorithm’s concern is to make the value of FP +
FN as small as possible to achieve high classification accuracy. The tra-
ditional loss function does not consider any limitations on the respective
weight of FP and FN in error instances.

Cross-Entropy Loss Cross-Entropy (CE), or log loss, measures the perfor-
mance of a classification model whose output is a probability value between
0 and 1. The log loss increases as the predicted probability diverges from the
actual label.

A perfect model has a log loss of 0. I introduce a custom log loss starting
from the CE loss for binary classification:

CE(p, y) = −y log(p)− (1 − y) log(1 − p)

=

{
− log(p), if y = 1
− log(1 − p), if y = 0

(3.2)

In the above, y specifies the ground-truth class, and p ∈ [0, 1] is the
model’s estimated probability for the class with label y = 1. For notational

Chapter 3. Custom Loss Function of GBDT for Malware Detection 15

FFRI Dataset

Preprocessing

Feature
Selection

Dataset
Splitting

1
Features ... 156

Features

1
Features ... 27

Features

Testing

Malware Classification
Model

MaliciousBenign

Training LightGBM Custom Log
Loss Function

Test
100k

Train
375k

(A) FFRI

Feature
Vector

Dataset
Splitting

1
Features ... 2351

Features

Testing

Malware Classification
Model

MaliciousBenign

Training LightGBM Custom Log
Loss Function

Test
200k

Train
600k

EMBER Dataset

(B) EMBER

FIGURE 3.1: Evaluation environment of proposed custom lo-
gistic loss function.

Chapter 3. Custom Loss Function of GBDT for Malware Detection 16

convenience, I define pt:

pt =

{
p if y = 1
1 − p if y = 0 (3.3)

and rewrite CE(p, y) = − log (pt).

Cost-sensitive FN and FP Weighted Log Loss In malware detection, rela-
tive to the model’s accuracy, since missing alarms (FN) and false alarms (FP)
are more serious problems, we should be in the model training phase of false
alarms and omissions for appropriate punishment. Our goal is to minimize
the false alarm rate by penalizing the FN and FP that directly affect the FPR
metrics. Based on this idea, we introduce two weighting factors: α ∈ (0, 500)
for class 1 and β ∈ (0, 500) for class −1. We set their values as an arithmetic
progression between 0 and 500, with a common difference of 13. In practice,
α and β can be set as hyperparameters through cross-validation. For nota-
tional convenience, we analogously define γ to how we defined pt and write
the custom CE loss as

γ =

{
α if y = 1
β if y = 0 (3.4)

We write the CE loss as

CE (pt) = −γ log (pt) . (3.5)

Finally, our custom log loss function can be defined as

Lcustom_log_loss = −γ log(pt)

=

{
−α log(p), if y = 1
−β log(1 − p), if y = 0

(3.6)

I adopt this form in our experiments because it yields slightly improved
accuracy than the standard log loss function. I explore suitable α and β values
with the heuristic approach in one dataset. Then I validate the effectiveness
of the obtained alpha and beta with another dataset to determine whether
the custom log loss function with the accepted alpha and beta are effective
among the datasets.

3.3 Experiment Setup

This section details the specifics of our experiment and results. Our experi-
ments were conducted on a Manjaro 20.0.0 Lysia system (Linux kernel ver-
sion is 5.6.16-1). The hardware specification is AMD Ryzen 7 3700X CPU
and NVIDIA GeForce RTX 2070 SUPER GPU. The open-source libraries used
in the experiments are Python 3.7.6, Anaconda 4.8.4, LightGBM 2.2.3, and
Scikit-learn 0.22.2.

Chapter 3. Custom Loss Function of GBDT for Malware Detection 17

3.3.1 Datasets and Preprocessing

Datasets I used the FFRI dataset in our previous work [43]. In this study,
I added a new dataset, EMBER, to validate the algorithm’s effectiveness and
to compare the experimental results of different datasets. I used EMBER
dataset 2018 and FFRI dataset 2019 as our experimental datasets and show
their details in Table 3.1. I can directly use the EMBER dataset, but on the
FFRI dataset, I performed preprocessing to select useful features and to tune
the model parameters.

TABLE 3.1: Our experimental datasets.

Dataset Year Train Test Features Classes
EMBER 2018 600,000 200,000 2351 2

FFRI 2019 375,000 100,000 27 2

EMBER A cybersecurity company named Endgame1 released a large
open-source dataset called EMBER [23] in April 2018. EMBER collected over
1 million benign and malicious PE files. This dataset consists of JSON lines
files, where each line contains a single JSON object. Each object includes the
following fields: sha256, appeared, label, general, header, imports, exports,
section, histogram, byteentropy, and strings fields. The EMBER dataset can
be downloaded directly from GitHub2.

FFRI The FFRI Dataset 2019, which was provided by the MWS Research
Dataset [45], contains 250,000 malware samples and 250,000 cleanware sam-
ples: 500,000 pieces of data obtained from surface analysis. Each sample is a
JSON file containing nine fields: id, file_size, label, date, hashes, lief, peid,
trid, and strings. Each field contains multiple layers of JSON data. Since
the FFRI dataset cannot be used directly, the MWS community must be con-
tacted3.

Preprocessing

PE Parser Both datasets leverage the Library to Instrument Executable
Formats (LIEF) [12] as a PE parser. LIEF names are used for strings that
represent symbolic objects, such as characteristics and properties. LIEF can
efficiently extract all information directly from malicious and benign samples
and store it in a JSON Lines format file.

EMBER The EMBER team has open-sourced their source code, which
supports preprocessing, and the feature vectors are generated well. I do not

1https://www.endgame.com
2https://github.com/elastic/ember
3https://www.iwsec.org/mws/2019/about.html

Chapter 3. Custom Loss Function of GBDT for Malware Detection 18

go into the details of the methodology here; see the paper by the EMBER
team. The dataset is available in two versions, 1 and 2. Our study uses all the
features of version 1, which contains 2351 features. In the following subsec-
tion 3.3.2, I specifically discuss the features obtained from the EMBER dataset
after preprocessing.

FFRI First, I read the fields needed from the FFRI Dataset 2019 JSON
lines file and parsed the multi-layered JSON file structure layer by layer as
preprocessing. Second, the parsed results are stored in a CSV file. I extracted
156 features and the labels of each sample for our dataset. Finally, I selected
75% from the dataset as a training set for a total of 375,000 pieces of data, and
the test set used 50,000 bits of malware and 50,000 bits of cleanware, for a total
of 100,000 data. Since our experiments use the LightGBM framework, no
complex feature engineering is required. Numerical and categorical features
can be used directly, although they need to be declared. In the following
subsection 3.3.2, I discuss the features extracted from the FFRI dataset after
preprocessing.

3.3.2 Features

EMBER Here, I briefly describe the feature groups, which are divided into
two main categories: parsed features and format-agnostic features. Eight
groups are shown in Table 3.2.

TABLE 3.2: Feature groups of EMBER dataset.

Feature group Number of features
General file information (general) 10

Header information (header) 62
Imported functions (imports) 1,280
Exported functions (exports) 128
Section information (section) 255
Byte histogram (histogram) 256

Byte-entropy histogram (byteentropy) 256
String information (strings) 104

All 2,351

Parsed Features The dataset includes five groups of features extracted
from the parsed PE files. Each parsed feature type is described in more detail
below:

• General file information (general): This type includes the file size, the
virtual size, the number of imported and exported functions, whether
the file has been debugged, the thread-local storage, the resources, the
relocations, or signatures, and the number of symbols.

Chapter 3. Custom Loss Function of GBDT for Malware Detection 19

• Header information (header): From the COFF header, a timestamp, a
target machine, and a list of image characteristics are extracted. From
the optional header, I extracted the target subsystem, the DLL char-
acteristics, the file magic, the major/minor image versions, the linker
versions, the system versions, the subsystem versions, the code, the
headers, and the commit sizes.

• Imported functions (imports): Pairs of dynamic link libraries and cor-
responding functions are formed, such as library:function name pairs
(e.g., kernel32.dll:CreateFileMappingA).

• Exported functions (exports): The exported functions are listed.

• Section information (section): The entry point is the name of the sec-
tion. The information of the section’s properties includes the name, the
size, the entropy, the virtual size, and a list of strings representing its
characteristics.

Format-agnostic Features The dataset also includes three groups of format-
agnostic features: a raw byte histogram, a byte-entropy histogram based on
a previous work [21], and string extraction. These groups do not require that
PE files be parsed for extraction:

• Byte histogram (histogram): It contains 256 integer values that repre-
sent the count of each byte value in the file.

• Byte-entropy histogram (byteentropy): It approximates the joint dis-
tribution of the entropy and byte values.

• String information (strings): This dataset includes simple statistics in-
formation about printable strings. In particular, it reports the number
of strings, their average length, a histogram of the printable characters
in those strings, and the entropy of the characters in all the printable
strings. In addition, the number of occurrences of a path, the URL, the
registry key, and a short string MZ are also provided. Providing a sim-
ple statistical summary of the strings (instead of a list of the original
strings) mitigates the privacy issues that might exist for some benign
files.

FFRI In the FFRI dataset, eight groups of features are included with the
corresponding labels. Four groups of features are inappropriate: id, date,
hashes and trid. Finally, four groups are extracted from the FFRI datasets
shown in Table 3.3.

Extracted Features Since the values of three groups (id, date, hashes)
are unique, I did not use them in the experiment. I also discarded the trid
features because their content is the probability of the type to which the de-
tected file belongs, and the probability values of about five file types can be
observed for a typical exe file. However, since these five file type identifiers

Chapter 3. Custom Loss Function of GBDT for Malware Detection 20

TABLE 3.3: Extracted feature groups of FFRI dataset.

Feature group Number of features
File size information (file_size) 1
LIEF parsing information (lief) 32

PEiD parsing information (peid): 10
Raw string (strings): 100

All 143

are not uniform content, it is impossible to create a uniformly named feature
type for each sample. In addition, the probability values of the judgment re-
sults of many samples are low, and constituting a valid feature is impossible,
so I discarded the feature. I only used the file_size, lief, peid, and strings
groups in our experiments. The features of these groups can be divided into
numerical and category features:

• Numerical features: A numerical feature, which can be either continu-
ous or discrete, is generally expressed as a real value. In general, deci-
sion tree type algorithms do not require any preprocessing of numeric
features. As an example, in the lief.option_header.dll_characteristics
field, 50.8% of the values are 0, 13.6% are 34112, and 19.3% are 320.

• Categorical features: A categorical feature indicates that a data point
belongs to a certain class or has certain characteristics. LightGBM offers
good accuracy with integer-encoded categorical features. As an exam-
ple, in the peid.Anti-Debug field, 47% of the values are "no," 35% are
"yes," and 19% are "no (yes)."

Selected Features I used the information from fields file_size, lief, peid,
and strings as the features of our dataset and the label field as its label. I ex-
tracted 14 features from the lief field, including 11 numeric features and three
categorical features, as well as five categorical features from the peid field.
Furthermore, I extracted the first ten strings in the dataset, and the numbers
that follow represent the order of the strings. Among these ten strings, I used
seven features of high importance around the beginning because strings ex-
tracted around there are not too varied and are reasonable enough to be used
as features. Through extensive experiments and feature importance ranking,
I manually filtered a few of the most effective features to improve the model’s
training speed. The selected features of the FFRI dataset are shown in Table
3.4.

3.3.3 Models and Parameters

Our evaluation used two open-source libraries: Scikit-learn 4 version 0.22.2
and LightGBM 5 version 2.2.3. Microsoft open-sourced LightGBM in 2017.

4https://scikit-learn.org
5https://github.com/microsoft/LightGBM

Chapter 3. Custom Loss Function of GBDT for Malware Detection 21

TABLE 3.4: Selected features of FFRI dataset.

Feature names Feature types (count)
file_size

lief.header.characteristics
lief.header.pointerto_symbol_table

lief.header.time_date_stamp
lief.header.numberof_sections
lief.optional_header.imagebase
lief.optional_header.checksum numeric (12)

lief.optional_header.sizeof_initialized_data
lief.optional_header.minor_linker_version

lief.optional_header.dll_characteristics
lief.entrypoint
lief.virtual_size

lief.sections
lief.data_directories categorical (3)

lief.optional_header.subsystem
peid.PEiD
peid.DLL

peid.Packed categorical (5)
peid.mutex

peid.Anti-Debug
strings_9
strings_7
strings_5
strings_8 categorical (7)
strings_4

strings_10
strings_6

All numeric & categorical (27)

In the EMBER dataset, I used the default LightGBM parameters for training.
The EMBER model parameters are shown in Table 3.5. Using GridSearchCV
provided by the Scikit-learn library, it automatically tuned the parameters for
the FFRI dataset model and obtained the optimal parameters. The default
parameters have already obtained outstanding results. In order to get the
best results, we used GridSearchCV to automatically tuned the parameters,
although it was very time consuming. The FFRI model parameters are shown
in Table 3.6.

3.3.4 Evaluation Metric

• False Negative (FN) denotes a binary classification error in which a test
result incorrectly indicates a condition such as benign binary when the
actual sample is malware.

Chapter 3. Custom Loss Function of GBDT for Malware Detection 22

TABLE 3.5: EMBER LightGBM baseline parameters.

Parameter name Parameter value
boosting_type gbdt

objective binary
num_iterations 1000
learning_rate 0.05
num_leaves 2048
max_depth 15

min_data_in_leaf 50
feature_fraction 0.5

TABLE 3.6: FFRI LightGBM baseline parameters.

Parameter name Parameter value
num_iterations 1000
random_seed 42
boosting_type gbdt

objective binary
metric binary_logloss

learning_rate 0.1
num_leaves 123

colsample_bytree 0.8
subsample 0.9
max_depth 15
reg_alpha 0.1

reg_lambda 0.1
min_split_gain 0.01

min_child_weight 2
early_stopping_rounds 100

• False Positive (FP) is the opposite type of error where the test result in-
correctly fails to indicate the presence of a condition when it is present.

• True Positive Rate (TPR) indicates the proportion of all the positive
samples that are currently allocated to the true positive sample.

• False Positive Rate (FPR) indicates the proportion of true negative sam-
ples currently misclassified into the positive sample category out of the
total number of negative samples.

• Area Under the ROC Curve (AUC), is one of the most important for
measuring the performance of binary classification model. It is a per-
formance measurement for a classification problem at various thresh-
olds settings. The ROC Curve measures how accurately the model
can distinguish between two things. AUC measures the entire two-
dimensional area underneath the ROC curve. This score gives us a
good idea of how well the classifier will perform.

Chapter 3. Custom Loss Function of GBDT for Malware Detection 23

All evaluation metrics are shown in Table 3.7.

TABLE 3.7: Evaluation metrics.

Measure Description
TP Files correctly classified as malicious
TN Files correctly classified as benign
FP Files mistakenly classified as malicious
FN Files mistakenly classified as benign

TP Rate (TPR) TP
TP+FN

FP Rate (FPR) FP
FP+TN

AUC Area under ROC Curve

TABLE 3.8: Experimental results.

Dataset Model
Parameter Metrics

α β α / β FN FP TPR FPR AUC

EMBER SVM (LinearSVC) - - - 33469 45457 0.66531 0.45457 0.60537
Normal(BaseLine) 1 1 1 2833 1392 0.97167 0.01392 0.97887

Custom_FN_FP 404 430 0.9395 2803 1370 0.97197 0.01370 0.97913
Custom_TPR 222 1 222 184 60654 0.99816 0.60654 0.69581
Custom_FPR 1 248 0.0040 7042 333 0.92958 0.00333 0.96312
Custom_AUC 430 339 1.2684 2702 1462 0.97298 0.01462 0.97918

FFRI SVM (LinearSVC) - - - 16825 788 0.66350 0.01576 0.82387
Normal (BaseLine) 1 1 1 227 118 0.99546 0.00236 0.99655

Custom_FN_FP 404 417 0.9688 215 110 0.99570 0.00220 0.99675
Custom_TPR 443 1 443 80 343 0.99840 0.00686 0.99577
Custom_FPR 1 417 0.0024 479 34 0.99042 0.00068 0.99487
Custom_AUC 469 287 1.6341 181 129 0.99638 0.00258 0.99690

3.3.5 Experimental Results

Our experiment used two datasets, and when the values of α and β are 1, it is
our baseline model. To improve the description of our experimental results, I
calculated the ratio of α and β (α/β). Compared with the two dimensions of
alpha and beta, one-dimensional α/β produced better graphics for analysis.
I counted the FN, FP, TPR, FPR, and AUC values for validation. The best re-
sults for datasets EMBER and FFRI are shown in Table 4.5. The classification
threshold in the experiments is 0.5, which means that samples whose model
prediction probability exceeds 0.5 are malicious and those less than 0.5 are
benign.

I also separately trained the classification models using a traditional ma-
chine learning algorithm Linear Support Vector Classification (LinearSVC) to
facilitate a comparison with our method. I used the default parameters and
did no parameter tuning for a simple comparison. The Normal model (α=1
and β=1) is our main comparison baseline.

Chapter 3. Custom Loss Function of GBDT for Malware Detection 24

Finally, I got four optimal models on two datasets with our proposed
method: Custom_FN_FP, Custom_TPR, Custom_FPR, and Custom_AUC.
For FN and FP metrics, the model with the best results is Custom_FN_FP.
Similarly, the model Custom_AUC with the best AUC result. Through re-
peated experiments, let α and β take values from 0 to 500, respectively. I
found that with the EMBER dataset, when α=430 and β=339 (i.e., α/β=1.2684),
the model’s AUC is optimal. With the FFRI dataset, when α=469 and β=287
(i.e., α/β=1.6341), the model’s AUC is optimal. The custom log loss model
has a significant advantage for reducing the false alarm rates.

I usually consider the optimal model to be the one with the highest AUC
metric, although due to the specificity of the information security domain,
false positives are unacceptable. I discuss the optimal model further in Sec-
tion 3.4.

0.95

0.96

0.97

0.98

0.99

1.00

0.0010 3 10 2 10 1 100

/

AU
C

EMBER Model
FFRI Model
EMBER Custom Model (/ =1.2684)
FFRI Custom Model (/ =1.6341)

FIGURE 3.2: EMBER vs. FFRI AUC with logarithmic scale
(α/β).

AUC Metrics Result Figure 3.2 compares the two models in the same co-
ordinate system before scaling down the x-axis to obtain the optimal model.
The x-axis denotes parameter α/β, and the y-axis represents the AUC scores.
The AUC value of the EMBER model changes more with α/β than that of
the FFRI model, especially when the value of α/β is close to 10, which is the
point at which the AUC starts to drop sharply. In contrast, the overall change
of AUC with the FFRI dataset is smooth, and the AUC value of both models
is optimal when α/β ∈ [1, 2].

There is a significant gap in the overall AUC between the EMBER and
FFRI models, which might have been caused by the more effective features
extracted from the FFRI dataset and the long-term model parameter tuning.
In addition, the improvement of the FFRI model’s AUC is smooth, and that

Chapter 3. Custom Loss Function of GBDT for Malware Detection 25

of the EMBER model is great, showing that our method is more effective for
the EMBER dataset.

0.995

0.996

0.997

0.998

0.999

1.000

0.000 10 2 10 1 100 101 102

/

TP
R

EMBER_Custom_TPR
FFRI_Custom_TPR

(A) TPR with logarithmic scale (α/β).

10 2 10 1 100 101 102

/

0.0

0.1

0.2

0.3

0.4

0.5

0.6

FP
R

EMBER_Custom_FPR
FFRI_Custom_FPR

(B) FPR with logarithmic scale (α/β).

FIGURE 3.3: EMBER vs. FFRI TPR&FPR with logarithmic scale
(α/β).

TPR and FPR Metrics Result Figure 3.3 compares TPR and FPR with α/β
for the custom and normal models on the two datasets. The TPR results
improved with increasing α/β values on both datasets. The enhancement of
the custom model is much more significant in the EMBER dataset than in the
FFRI. The FPR value increases with greater α/β. For the EMBER dataset, the
FPR increases substantially when the value of α/β is close to 10; for the FFRI
dataset, the FPR increases less.

Chapter 3. Custom Loss Function of GBDT for Malware Detection 26

FN vs. FP Metrics Result Figure 3.4 compares FN and FP with α/β for
the custom and normal models on two datasets. Our custom model, Cus-
tom_FN_FP, is below the FN metric of the baseline model and the FP metric
on both datasets. On the other hand, custom model Custom_AUC has a
lower FN metric than the baseline model and a higher FP metric than the
baseline model.

10 1 100 101

/
0

1000

2000

3000

4000

5000

FN
&F

P Normal(BaseLine) FN=2833

Normal(BaseLine) FP=1392

Custom_FN
Custom_FP
Custom_FN_FP
Custom_AUC

(A) EMBER

10 1 100 101

/
0

100

200

300

400

500

FN
&F

P

Normal(BaseLine) FN=227)

Normal(BaseLine) FP=118)

Custom_FN
Custom_FP
Custom_FN_FP
Custom_AUC

(B) FFRI

FIGURE 3.4: EMBER vs. FFRI FN&FP with logarithmic scale
(α/β).

3.4 Discussion

From the experimental results of both datasets, the results on the FFRI dataset
are always better than the EMBER results. I believe this result reflects that
the features extracted by FFRI are more effective; another important reason

Chapter 3. Custom Loss Function of GBDT for Malware Detection 27

is the smaller data size of FFRI relative to EMBER. According to Figure 3.5,
the model has the highest AUC results when α/β ∈ [1, 2]. When α/β tends to
0, that is, where α is 1 and β is as large as possible within a certain range, the
model’s FPR metric is optimal. For the optimal configuration of alpha and
beta, an optimal classification model is the one with the highest aggregate
AUC metric.

However, in the field of information security, I believe that I can sacrifice
some model performance to minimize the false alarm rate. Therefore, for a
special case in the malware detection field, the model with the lowest FPR
is also the optimal model. When the lowest false alarm rate is studied, the
optimal configuration on the EMBER dataset is α = 1, β = 248. On the FFRI
dataset, the optimal configuration is α = 1, β = 417.

3.4.1 EMBER Dataset Results Analysis

AUC with Logarithmic Scale (α/β) Figure 3.5(A) compares AUC with α
and β for the custom and normal models on the EMBER datasets. The EM-
BER model’s AUC changes more with α/β than that of the FFRI model, es-
pecially when the value of α/β is close to 10, at which the AUC starts to drop
sharply.

AUC Heatmap with α and β Figure 3.6(A) compares the AUC heat map
with α and β for the custom and normal models on the EMBER dataset. I
used a heat map to highlight the effect of α and β on the model’s AUC. The
distribution of AUC (especially in the high AUC results) and the variation
trends are basically identical for both datasets, demonstrating the effective-
ness of our method on different datasets.

The AUC of the Custom_AUC model for the EMBER dataset is located in
the lower right region of the heat map. The model has the highest AUC on
the EMBER dataset when α=430 and β=339.

3.4.2 FFRI Dataset Results Analysis

AUC with Logarithmic Scale (α/β) Figure 3.5(B) compares the AUC with
α and β for the custom and normal models on the FFRI datasets. In contrast,
on the FFRI dataset the overall change of AUC is smooth, and the AUC value
of both models is optimal when α/β ∈ [1, 2].

AUC Heatmap with α and β Figure 3.6(B) compares the AUC heat map
with α and β for the custom and normal models on the FFRI dataset. The
AUC of the Custom_AUC model for the FFRI dataset is located in the lower
right region of the heat map. The model had the highest AUC when α=469
and β=287.

Chapter 3. Custom Loss Function of GBDT for Malware Detection 28

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 10 2 10 1 100 101 102

/

AU
C

Custom Model
Best Custom Model(/ =1.2684)

(A) EMBER AUC

0.995

0.996

0.997

0.998

0.999

1.000

0.000 10 2 10 1 100 101 102

/

AU
C

Custom Model
Best Custom Model (/ =1.6341)

(B) FFRI AUC

FIGURE 3.5: EMBER vs. FFRI AUC with logarithmic scale
(α/β).

3.4.3 Hybrid Usage with Different Custom Models

Both models yield different detection results. By utilizing these two models
to improve security operations, I can prioritize countermeasures for more
positive results. One huge problem in security operations is that many FP
results hide a few TP results and delay TP-incident countermeasures.

To achieve both quick countermeasures to actual TP results and to avoid
hasty FN results, I propose a hybrid usage of both the Custom_FPR and Cus-
tom_AUC models. The proposal prioritizes the positive results in them (Ta-
ble 3.9). If the Custom_FPR model gives a positive result, it may be a TP
result in high accuracy, and so that this result becomes the 1st prioritized se-
curity incident for the security responders. However, the Custom_FPR mod-
els create more FN results than the Custom_AUC models. A positive result

Chapter 3. Custom Loss Function of GBDT for Malware Detection 29

0.972 0.974 0.976 0.978 0.980

AUC

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

32
6

33
9

35
2

36
5

37
8

39
1

40
4

41
7

43
0

44
3

45
6

46
9

48
2

49
5

1
14
27
40
53
66
79
92

105
118
131
144
157
170
183
196
209
222
235
248
261
274
287
300
313
326
339
352
365
378
391
404
417
430
443
456
469
482
495

(A) EMBER

0.9960 0.9962 0.9964 0.9966 0.9968 0.9970

AUC

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

32
6

33
9

35
2

36
5

37
8

39
1

40
4

41
7

43
0

44
3

45
6

46
9

48
2

49
5

1
14
27
40
53
66
79
92

105
118
131
144
157
170
183
196
209
222
235
248
261
274
287
300
313
326
339
352
365
378
391
404
417
430
443
456
469
482
495

(B) FFRI

FIGURE 3.6: EMBER vs. FFRI AUC heatmap.

Chapter 3. Custom Loss Function of GBDT for Malware Detection 30

TABLE 3.9: Combining Custom_AUC and Custom_FPR mod-
els to improve countermeasure priority.

Custom_AUC model Custom_FPR model
1st Priority Positive/Negative Positive
2nd Priority Positive Negative
3rd Priority Negative Negative

in Custom_AUC models but a negative result in Custom_FPR models be-
comes a 2nd priority, a security-incident candidate. The remainder becomes
3rd priority candidates and might not contain TP results. As shown in Ta-
ble 3.8, even in the Custom_AUC model, there are 1462 pieces of FP data.
However, the Custom_FPR model contains 333 pieces pf FP data: 23% of the
Custom_AUC model. To initiate incident responses from the positive results
in the Custom_FPR model, I overlook 1129 FP pieces of data in the result of
the Custom_AUC model but not in the result of the Custom_FPR model.

Although the number of positives is small in our result, in the practical
operations of Security Operations Centers, the number of binary samples that
a classifier must recognize is very large, and so the number of positive sam-
ples increases and becomes comparatively large. SOC might require a few to
several tens of minutes until it initiates a counteraction to a positive binary
sample. Imagine an action to an actual positive sample has been delayed due
to responding to false-positive samples. In such cases, larger damages (e.g.,
further malware dissemination) will occur. Thus, I believe that the ability to
prioritize positive samples is very effective for practical SOC operation.

3.5 Conclusion

This study proposed a custom log loss function with α and β parameters to
the LightGBM algorithm to solve the malware detection problem. I extracted
27 valid features from a non-public FFRI dataset for malware detection. I val-
idated the effectiveness of our proposed method by separately and simulta-
neously evaluating it on FFRI and another public dataset, EMBER. Our result
shows that the custom log loss function can reduce FP more than the normal
log loss function. However, since the custom log loss function increased FN
more than the normal log loss function, I also proposed a hybrid usage of
the Custom_AUC and Custom_FPR models to prioritize the positive results.
Reducing the FPR by the custom log loss function will significantly lower
the priority given to false alarms, thus alleviating the pressure on security
responders. Although I can control the model to learn more difficult samples
by customizing the loss function, learning them is inherently difficult for the
model. It is difficult to achieve complete learning; it inevitably leads to a
certain number of FPs and FNs. Our proposed method penalizes FP and FN
in the training phase and can only make them as low as possible instead of
zero. I believe that the fundamental reason lies in the data themselves, the
size of the dataset, and the effectiveness of the extracted features.

31

Chapter 4

Malware Control-Flow Graph
Level Representation Learning

4.1 Introduction

With the progress of software technology and the development of the Inter-
net, thousands of malware are produced every day [46] due to the prolifer-
ation of tools for creating and disguising malware[47]. Such a large amount
of data creates great challenges for malware analysts and Security Opera-
tion Centers (SOCs). Traditional malware detection methods cannot quickly
and effectively detect a large number of newly created malware. Machine
learning is a promising method that can detect and classify large-scale newly
generated malicious software according to the features of samples [48]. Over
the past several decades, machine learning has played an important role in
the information security domain, but the difficult problem of how to reduce
false alarms remains.

The feature extraction method of Portable Executable (PE) files used in the
Endgame Malware Benchmark for Research (EMBER) dataset [23] is widely
used. In recent years, many publicly available datasets have focused on
malware detection, including the Sophos-ReversingLabs 20 Million dataset
(SOREL-20M) [24] and Blue Hexagon Open Dataset for Malware Analysis
(BODMAS) [25], both of which use the same feature extraction method. This
approach directly provides researchers with consistent feature vectors, al-
lowing individuals in the same field to compare their respective methods.
The datasets also come with baseline algorithms that are the current state-
of-the-art in malware detection, with a detection rate that has exceeded 90%.
These datasets all use the same feature extraction method.

Although this feature extraction method is very effective, there are still
some new challenges, such as the high dimension of feature vectors and the
inability to apply to Graph Neural Network (GNN). In addition, the inter-
pretability of current malware feature extraction methods is poor, so a new
detection method is needed to improve the interpretability of features and
models. I propose a new feature extraction method of PE files based on the
Control-Flow Graph (CFG) to solve these challenges. Information related to
software structure (such as the CFG) is seldom used and most methods ex-
tract statistical information as features based on surface analysis. In recent

Chapter 4. Malware Control-Flow Graph Level Representation Learning 32

years, GNNs have made significant progress [34]–[36] toward improved ma-
licious software detection. The difficulty lies in how to represent malware
in the form of graphics. The CFG is a natural graph structure and the graph
structure data of malware can be generated by extracting the CFG.

Our research motivation is to reduce false alarms by using a new feature
extraction method. In addition, the dataset obtained by traditional feature
extraction methods can only be learned with a machine learning model, but
cannot be applied to GNNs. Therefore, I try to detect malicious software by
building a graph dataset and use this dataset to train a GNN to further detect
and classify malware. Since there is no publicly available graph classification
dataset for malware detection, I embarked on creating such a dataset.

This chapter is an adapted version of the publication [49], [50] using a
Graph Isomorphism Network (GIN) for malware detection. As a supple-
ment to our previous research, I added samples of several malware fami-
lies to expand the dataset, used cross-validation to test the effectiveness of
our method, and further tested the validity of the GNN representation using
different classification models. In addition, I generated malware represen-
tations extracted by GNNs in different dimensions and tested the effects of
different dimensions on the classification model results.

Our contributions can be summarized as follows:

• I proposed a malware detection system based on GNNs.

• I kept the structure information of the samples extracted from CFG
and generated the text features of each node by a pre-trained language
model.

• I created a special graph dataset for malware detection that can be di-
rectly used on GNNs.

• As a new feature extraction method for malware, I compared the rep-
resentation results of GNNs with different dimensions under different
classification models.

• The problem of malware detection is transformed into the problem of
graph classification in the GNNs field. The dimension of the feature
vector extracted by the GIN is very low (from 32 to 256 dimensions). As
compared to the latest feature extraction method of the EMBER dataset
(2381 dimensions), our model obtained very similar performance.

The remainder of this chapter is organized as follows. Section 4.2 reviews
our proposed GIN-based static PE malware detection system and describe
its application to malware detection. In Section 4.3, I briefly discuss the im-
plementation details of our proposal. In Section4.4, I introduce the corre-
sponding experiments and evaluate their feasibility. In Section 4.5, I discuss
the limitations and advantages of our proposal. Finally, I describe our future
work in Section 4.6.

Chapter 4. Malware Control-Flow Graph Level Representation Learning 33

4.2 Proposed GIN-based Static PE Malware Detec-
tion System

Our proposed malware detection system can directly extract CFG-based graph
information of malware from PE files and then compress the CFG informa-
tion into the feature vector with GIN. Ultimately, the system classifies feature
vectors into malicious or benign ware with Multi-Layer Perceptron (MLP). I
elaborate the system in detail.

4.2.1 Preliminary GNN Summary

I start by summarizing some of the most common GNN models and, along
the way, introduce our notation. Let G = (V, E) denote a graph with node
feature vectors Xv for v ∈ V. N (v) is a set of nodes adjacent to v. On the
graph classification task: given a set of graphs {G1, . . . , GN} ⊆ G and their
labels {y1, . . . , yN} ⊆ Y , I aim to learn a representation vector hG that helps
predict the label of an entire graph, yG = g (hG).

GNNs follow the neighborhood aggregation strategy, which iteratively
updates the node representation by aggregating representations of its neigh-
bors. After k iterations of aggregation, the node representation captures the
structural information within its k − hop network neighborhood. Formally,
the k − th layer of a GNN is

a(k)v = AGGREGATE(k)
({

h(k−1)
u |u ∈ N (v)

})
(4.1)

h(k)v = COMBINE(k)
(

h(k−1)
v , a(k)v

)
, (4.2)

where h(k)v is the feature vector of node v at the k − th iteration/layer. For
a graph classification task, the READOUT function aggregates node features
from the final iteration (K) to obtain the representation hG of the entire graph:

hG = READOUT
({

h(K)v | v ∈ G
})

. (4.3)

K is the final iteration/layer.

4.2.2 Proposed System Architecture

The system consists of three parts: the Graph Feature Extraction (GFE) mod-
ule that extracts the CFG-based feature from the PE files, the Graph Data
Generation (GDG) module, and the Graph Classification (GC) module that
compresses node feature vectors with GIN and classifies them with MLP.
The overview of our proposed malware detection system is shown in Fig-
ure 4.1. I collected original PE files from public datasets as training samples
of the malware detection system, including malicious samples and benign
samples. These samples can generate a suitable malware dataset for GNNs
through the GFE and GDG modules. Finally, I use the GC module to ex-
tract graph-level representation through a GNN and use this representation

Chapter 4. Malware Control-Flow Graph Level Representation Learning 34

to train a binary classification MLP model to obtain malware detection re-
sults.

Malicious

BenignM
LP

Graph Feature Extraction

Graph Classification
Graph Isomorphism Network

Graph Data Generation
Graph Data with Feature VectorControl Flow Graph

Block1

Block2 Block3

Block4 Block5

Function Call Graph

Main

sub_0x401402 GetStartupInfoA

sub_0x403400 FindResourceA

Node Text Embedding

Pr
e-

tra
in

ed
 L

an
gu

ag
e

M
od

el

FindResourceA

GetStartupInfoA

Main
sub_0x401402

sub_0x403400

Readout(GINConvLayer3)

+

GINConvLayer1

GINConvLayer2

GINConvLayer3

FIGURE 4.1: Proposed GIN-based static PE malware detection
system.

Graph Feature Extraction Module The CFG is a well-known graph-based
program structure notation in the field of computer science. The program is
separated with branch instruction (including branch instruction for function
call use) and the separated blocks between branch instruction are called basic
blocks. A typical end of the basic block is connected to one basic block or
a plurality of basic blocks. Therefore, I can use the connecting notation of
basic blocks to express the program structure; this connection graph becomes
the CFG. The CFG is the basis of many compiler optimizations and static-
analysis tools.

The main function of the GFE module is to extract CFG information from
the original PE file samples, keep the structure information, and further trans-
form it into a Function Call Graph (FCG), as shown in the graph feature ex-
traction part of Figure 4.1. The difference between CFG and FCG is that the
CFG contains the assembly code of each basic block, while the FCG removes
the assembly code of each basic block from the CFG. In the FCG, only in-
formation including the starting address of the basic block, Application Pro-
gramming Interface (API) name, and function name are stored.

Static analysis is an important tool for malicious software detection. Specif-
ically, the CFG structure information shows all the paths that a program will
go through during the execution process. In addition, it graphically repre-
sents the possible flow of all basic blocks executed within a process and also
reflects the basic blocks that are actually executed during execution. Some
malicious software includes dead code (not executed from any execution
path) as an obfuscation, but this process can alleviate these obfuscations.

Our feature extraction module is mainly to extract CFG structural infor-
mation from the PE file. Because the CFG of a single sample contains a large

Chapter 4. Malware Control-Flow Graph Level Representation Learning 35

amount of information, the pre-processing is very time consuming. There-
fore, I only keep the structural relationship information of CFG, give each
block a unified name, and use this name to represent this block. The assem-
bly code in each block is not used as a feature. Each block in the CFG usually
has two kinds of content, namely, the system API and the internal functions
of the program. When a block is a system API, I directly use its name as the
name of the block. If it is an internal function, I use the offset address of the
function as the name of the block.

Graph Data Generation Module This module mainly uses the pre-trained
language model to embed the text of a CFG block node. The FCG generated
in the previous GFE module is a directed graph. Each node carries the cor-
responding text information and the relationship between each node has a
direction. In order to train GNNs, it is necessary to convert the text infor-
mation of each node into feature vectors of specific dimensions. Specifically,
this module embeds the text names corresponding to CFG blocks through a
large-scale pre-trained language model and generates graph structure data
with node feature vectors.

Node Text Embedding Microsoft has released a pre-trained language
model called MiniLM [51], which is based on the general method of reducing
a large-scale transformer pre-trained model to a small model. This method
is a kind of Deep Self-Attention Distillation (DSAD), which uses large-scale
data for pre-training. The generation model used by our GDG module is
called “all-MiniLM-L12-v2,” which has a 1-billion-sized training set and is
designed as a general model. The MiniLM model is a 12-layer transformer
with a 384-hidden size and 12 attention heads that contains about 33 M pa-
rameters. It maps sentences and paragraphs to a 384-dimensional dense vec-
tor space and can be used for various tasks, such as clustering or semantic
search. This model is the best in speed generation and performance among
all pre-trained models that can generate 384-dimensional representation.

Xv is the feature vector of MiniLM generated from the CFG node text.
Since the dimension of the generated feature vector is 384, the feature vector
corresponding to the node of the CFG can be expressed as Xv(384D).

Graph Data with Feature Vector In the previous step, I used the pre-
trained model to generate a 384-dimensional dense vector for each node of
the FCG. This vector is added to the corresponding nodes of the directed
graph, and the complete graph data with the feature vectors of the nodes is
generated.

I further initialize h0
v = Xv, where h0

v is the feature vector element of node
v, and sever it as input data for the GC module. For example, the Main
function as the first node of the graph, which corresponds to the text “Main,"
is converted into a 384-dimensional vector. It can be expressed as h0

1(384D).

Chapter 4. Malware Control-Flow Graph Level Representation Learning 36

Graph Classification Module This module mainly uses the GIN model to
represent PE files as graph-level representations with fixed length. MLP de-
tects malware by learning the graph-level representation of malicious and
benign samples.

The GIN model focuses on constructing the graph-level representation.
The node representation learned by the GIN can be directly used for tasks
such as node classification and link prediction. For the graph classification
task, the GIN can generate an embedding of the whole graph through the
READOUT function. I designed a 3-layer structure of the GIN, where each
layer is a GIN Convolutional (GINConv) layer. The GDG module generates
h0

v(384D) as the input of GINConv1 and the output is h1
v(64D).

According to the preliminary GNN summary introduced in Section 4.2.1,
I will introduce the specific operation in detail. The AGGREGATE func-
tion aggregates first-order neighborhood features, while the COMBINE func-
tion merges the features aggregated by neighbors with the current node fea-
tures to update the current node features. The READOUT function converts
all node features into graph-level features, mainly for graph classification.
Common settings of the AGGREGATE function are sum, mean, and max.
The sum function learns precise structural information, the mean is biased
towards learning distribution information, and the max is biased towards
learning representative element information. Because the injective condition
of the mean and max functions is not met and it cannot distinguish graphs
with some structures, the performance will be worse than that of sum; thus,
I chose the sum setting. COMBINE is a direct sum or projective operator.
If the AGGREGATE, COMBINE, and READOUT functions in the GNN are
injective, the GNN can be as powerful as the Weisfeiler-Lehman test [52].

The GIN combines AGGREGATE (Eq.4.1) and COMBINE (Eq.4.2) into
one step. I initialize h0

v = Xv and N (v) is a set of nodes adjacent to v. I make
ϵ as a learnable parameter or a fixed scalar. The initial value of ϵ, which is 0
by default. It is a hyperparameter we can tune, but probably not an essential
one. Then, the GIN updates the node representations as

h(k)v = MLP(k)

(
1 + ϵ(k)

)
· h(k−1)

v + ∑
u∈N (v)

h(k−1)
u

 . (4.4)

To keep the feature dimensionality to a minimum, instead of using the
GIN’s original READOUT function by concatenating the results of all itera-
tions/layers, I used only the output of the last layer. The final graph repre-
sentations are the 3rd iteration/layer of the GIN and can be expressed as hG.
The READOUT function uses the summation.

Theoretically, with the increase in GINConv layers, the receptive field for
each node embedding will gradually increase. Although our dataset is small,
the 3-layer GINConv has obtained very good detection results. The specific
structure, parameter information, and implementation details of the model
will be discussed in the next section.

Chapter 4. Malware Control-Flow Graph Level Representation Learning 37

MLP Classifier The MLP has a 64-dimensional input and 2-dimensional
output, with a total of three layers. The input layer has 64 dimensions, the
hidden layer also has 64 dimensions, and the final output layer has 2 dimen-
sions. In addition, the output of the hidden layer is batch normalized and the
activation function is the Rectified Linear Unit (ReLU).

4.3 Implementation Details

The details of the implementation are introduced in this section. To verify the
effectiveness of the proposed detection system, I used open-source libraries
to implement it 1.

4.3.1 Malware Geometric Dataset

The malware datasets used in our previous studies were provided by other
organizations, such as the EMBER and SOREL-20M datasets. These two
datasets directly extract 2381-dimensional feature vectors from the PE files
by surface analysis. Unfortunately, almost none of these datasets provide all
the original PE files, including malicious and benign samples. Some datasets
do not even provide the original PE files. Without benign samples, it is diffi-
cult to apply new feature extraction methods.

This prevents us from making improvements in the feature extraction
stage and I can only use a fixed feature vector to improve different machine
learning models. In addition, these datasets are not suitable for the GNNs
because the previous feature extraction methods did not consider the struc-
ture information of PE files. Therefore, I made a dataset suitable for GNNs,
which was named the Malware Geometric Binary Dataset (MGD-BINARY).

PE Files Source The benign PE file sample is obtained from the open-source
project DikeDataset 2 and the malicious sample is obtained from the BOD-
MAS malware dataset 3. Some PE files were selected to build our dataset.
The software types of all PE file samples used in our dataset are executable
files under an x86-architecture Windows platform using a no Dynamic Link
Library (DLL)-type.

Dataset Description The MGD-BINARY is mainly made for malware de-
tection, i.e., malware binary classification. I collected a total of 1000 samples,
including 500 malicious samples and 500 benign samples. From the BOD-
MAS dataset, I selected 8 families of malware. In order to keep a balance
between benign ware and malware, I selected a small sample from each of
the 8 families to build the dataset and finally selected a total of 500 malware.
The family distribution of malicious samples is shown in Table 4.1.

1Our code is available at: https://github.com/kouunn/MalGIN
2https://github.com/iosifache/DikeDataset
3https://github.com/whyisyoung/BODMAS

https://github.com/kouunn/MalGIN
https://github.com/iosifache/DikeDataset
https://github.com/whyisyoung/BODMAS

Chapter 4. Malware Control-Flow Graph Level Representation Learning 38

TABLE 4.1: Malware family distribution of MGD-BINARY.

Family Name Category Name Selected Count

sfone worm 62

upatre trojan 62

wabot backdoor 62

benjamin worm 62

musecador trojan 63

padodor backdoor 63

gandcrab ransomware 63

dinwod dropper 63

Total - 500

I preprocessed the PE files through the GFE module and GDG module to
get the MGD-BINARY. There are 1000 graph data and two kinds of manu-
ally labeled labels, among which the label of malicious samples is 1 and that
of benign samples is 0. The dimensions of the feature vector of the graph
node corresponding to each sample is 384. In addition, the average number
of nodes and edges in the sample is 3861.75 and 5494.82, respectively. The
statistical information is shown in Table 4.2.

TABLE 4.2: Graph statistics of MGD-BINARY.

Dataset # Graphs #Classes #Features Avg. #Nodes Avg. #Edges

MGD-BINARY 1000 2 384 3861.75 5494.82

Dataset Splitting Due to the small scale of our dataset, if the ratio of the
training set is too large, all evaluation metrics will approach 1 or equal 1,
which will make the experimental results unable to be compared intuitively.
For example, with 5-fold cross-validation, the ratios of the training set and
the test set are 80% and 20%, respectively. Therefore, I used random per-
mutations cross-validation (Shuffle & Split) to split our dataset and set the
number of shuffling and splitting iterations to 5. The training set and testing
set were set to 50% and 50%, respectively.

4.3.2 Graph Feature Extraction Module

Control Flow Graph The open-source angr4 library can extract the CFG
from a PE file. Angr is an open-source binary analysis platform for Python. It

4https://angr.io/

https://angr.io/

Chapter 4. Malware Control-Flow Graph Level Representation Learning 39

combines both static and dynamic symbolic ("concolic") analysis, providing
tools to solve a variety of tasks.

Function Call Graph Module Because it is difficult to extract FCG directly,
I can convert the extracted CFG into FCG. Each basic block in CFG contains
a lot of assembly code. Instead of using the assembly code in each block,
I extract the sub-function address and API call name corresponding to the
CFG basic block. By using the extracted address and name, the original CFG
is further converted into FCG.

4.3.3 Graph Data Generation Module

Pre-trained Language Model for Node Text Embedding SentenceTrans-
formers 5 is a Python framework for state-of-the-art sentence, text, and image
embeddings. The initial work is described in the Sentence-BERT (Sentence-
Bidirectional Encoder Representations from Transformers) [53] paper. I used
the MiniLM model provided by the SentenceTransformers library, which is
called “all-MiniLM-L6-v2.” The details of the pre-trained MiniLM model are
shown in Table 4.3.

TABLE 4.3: Pre-trained MiniLM model details.

Name all-MiniLM-L12-v2

Base Model microsoft/MiniLM-L12-H384-uncased

Max Sequence Length 256

Dimensions 384

Normalized Embeddings true

Size 120 MB

Pooling Mean Pooling

Training Data 1B+ training pairs

Node Embedding Generation When I input text with a sequence length of
less than 256 to the model, it will return a 384-dimensional sentence embed-
ding vector. Then, the node embedding information generated by MiniLM is
constructed into a directed graph with node attributes through the NetworkX
6 library.

5https://www.sbert.net/
6https://networkx.org/

https://www.sbert.net/
https://networkx.org/

Chapter 4. Malware Control-Flow Graph Level Representation Learning 40

4.3.4 Graph Classification Module

PyTorch Geometric (PyG) 7 is a library built upon PyTorch to easily write
and train GNNs for a wide range of applications related to structured data.
I used the PyG library version 2.0.2 to implement the malware detection ex-
periment.

Our proposed GIN network has three layers and the output of each layer
is 64 dimensions. The readout function sums the embedding of all nodes
and generates the final representation of the graph. Each layer of the model
is a GINConv layer, and the input and output dimensions of each GINConv
layer are slightly different. The GINConv layer is composed of two fully
connected layers. The output results of the first layer need to be normalized
and the ReLU activation function applied before entering the second layer.
GINConv uses the message passing mechanism to update the representation
of each node. GINConv1 has an input dimension of 384 and a final output
dimension of 64. GINConv2 and GINConv3 are identical, with both input
and output dimensions of 64. The output dimension of the readout function
is 64, so the final graph representation corresponding to each PE sample is a
vector with 64 dimensions.

I used most of the default parameters of the GIN model [35]. Only the
learning rate, batch size, and epochs were adjusted. The details of the GIN
model training parameters are shown in Table 4.4. I trained the GIN model
without excessive parameter tuning and set the learning rate at 0.0001 and
the number of training epochs at 100. In the process of learning, because
the default learning rate will cause the test set evaluation metrics curve to
fluctuate greatly, I set a smaller learning rate to make the learning process
smoother. To allow better generalization ability of the model, I set a larger
size of 256 as the batch size. After our test, when the learning rate is set to
be smaller and the number of epochs is improved, the result will improve
slightly.

TABLE 4.4: GIN model training parameters.

Name Setting

Loss Function Negative Log-likelihood Loss

Activation Function ReLU

Optimizer Adam

Learning Rate 0.0001

Graph Pooling Sum

MLP Dropout 0.5

Batch Size 128

Epochs 100

7https://www.pyg.org/

https://www.pyg.org/

Chapter 4. Malware Control-Flow Graph Level Representation Learning 41

4.4 Experimental Evaluation

In this section, I apply the GIN model and discuss the experimental results.

4.4.1 Evaluation Metrics

In order to evaluate the performance of the proposed models, I used the fol-
lowing evaluation metrics. The detail of metrics such as TP and TN are de-
scribed in Section 3.3.4

• Accuracy measures how often the model gets the prediction right. The
formula for categorical accuracy is:

Accuracy =
TP + TN

TP + TN + FP + FN
.

• Precision is defined as:

Precision =
TP

TP + FP
.

• Recall is defined as:
Recall =

TP
TP + FN

.

• F1-score is defined as the harmonic mean of the precision and recall:

F1-score = 2 × Precision × Recall
Precision + Recall

.

• Area Under the ROC Curve (AUC), is one of the most important for
measuring the performance of binary classification model. It is a per-
formance measurement for a classification problem at various thresh-
olds settings. The ROC Curve measures how accurately the model
can distinguish between two things. AUC measures the entire two-
dimensional area underneath the ROC curve. This score gives us a
good idea of how well the classifier will perform.

which is the part under the ROC curve, is calculated as the calculus value
of the ROC curve.

4.4.2 Evaluation Results

Our baseline method is LightGBM, which is an improved Gradient Boosting
Decision Tree (GBDT). It is the same as the baseline algorithm of the EMBER
[23] and SOREL-20M [24] datasets. The feature extraction method is version 2
of the EMBER dataset baseline algorithm. This method extracts 2381 features
from PE samples and then uses LightGBM as a classifier. Both methods have
been evaluated using MGD-BINARY. As shown in Table 4.5, I compared the

Chapter 4. Malware Control-Flow Graph Level Representation Learning 42

results of our proposal with the baseline. In our evaluation, different feature
extraction methods and classification methods are used for comparison in
the same dataset (MGD-BINARY).

TABLE 4.5: Experimental results.

Feature Extraction Method Classifier Accuracy F1-score AUC

EMBER V2 (2381D) LightGBM (Baseline) 0.99400 ± 0.00551 0.99388 ± 0.00546 0.99985 ± 0.00220

CFG + MiniLM +

GIN (3-layer, 32D) LightGBM 0.97560 ± 0.01098 0.97650 ± 0.01054 0.97539 ± 0.01121
GIN (3-layer, 64D) LightGBM 0.97840 ± 0.00662 0.97922 ± 0.00596 0.97808 ± 0.00683

GIN (3-layer, 128D) LightGBM 0.97980 ± 0.00325 0.98030 ± 0.00306 0.97975 ± 0.00334
GIN (3-layer, 256D) LightGBM 0.98040 ± 0.01148 0.98111 ± 0.01072 0.98021 ± 0.01171

CFG + MiniLM +

GIN (3-layer, 32D) MLP (2-layer, 32D) 0.96920 ± 0.00816 0.96971 ± 0.00813 0.96929 ± 0.00800
GIN (3-layer, 64D) MLP (2-layer, 64D) 0.98640 ± 0.00496 0.98671 ± 0.00498 0.98630 ± 0.00501

GIN (3-layer, 128D) MLP (2-layer, 128D) 0.98880 ± 0.00325 0.98908 ± 0.00311 0.98876 ± 0.00324
GIN (3-layer, 256D) MLP (2-layer, 256D) 0.98920 ± 0.00204 0.98946 ± 0.00195 0.98919 ± 0.00217

I evaluated the experimental results by Accuracy, F1-score, and AUC met-
rics. The Accuracy results show the baseline method is 0.99400± 0.00551 and
our proposal under 3-layer of GIN and 64 dimensions of hidden layers is
0.98640 ± 0.00496. The F1-score metrics are 0.99388 ± 0.00546 and 0.98671 ±
0.00498, respectively. The AUC metrics are 0.99985 ± 0.00220 and 0.98630 ±
0.00501, respectively. As shown in Table 4.5, when the dimension is 256, I
obtained the best result on the three metrics.

EMBER V2 + LightGBM is our baseline algorithm. From the results, as
compared to the current state of the art, it has achieved very good results.
First, the feature extraction method of EMBER V2 is very effective and, be-
cause the dimension is 2381, the high dimension better represents the fea-
tures of the original information. As everyone knows, the LightGBM algo-
rithm has excellent classification ability, which is also an important reason
for its good results. Our proposed feature extraction method, due to the dif-
ferent dimensions of the final feature vectors, ranges from 32D to 256D and
there are four cases. It can be seen that whether LightGBM or MLP is used
as the classifier, the result will improve with the increase in feature vector
dimensions. In addition, our proposed feature extraction method is based
on GNNs. Under the same conditions, the results of LightGBM are not as
good as those of MLP. Therefore, I conclude that LightGBM may be more ef-
fective for feature vectors based on statistics, rather than feature vectors with
structural information extracted by GNNs. On the contrary, MLP is better at
dealing with feature vectors with structural information extracted by GNNs.
It should be noted that, when the feature vector dimension is low, for exam-
ple, when the vector dimension is 32D, LightGBM is still superior to MLP.

I use the malware representation generated by the GIN model as a fea-
ture vector and use different types of machine learning algorithms to train the
classifier. The evaluation results are shown in Table 4.6. Unexpectedly, the re-
sults of other classifiers are not as good as the MLP. The results of LightGBM
are still stronger than most machine learning algorithms. The worst results
were obtained from Random Forest. The Accuracy metrics for C-Support
Vector Classification and Logistic Regression were similar. Logistic Regres-
sion was better in the F1-score, while C-Support Vector Classification was
better in the AUC metric. The result changes largely between classification

Chapter 4. Malware Control-Flow Graph Level Representation Learning 43

TABLE 4.6: Comparison of experimental results under different
classifiers.

Feature Extraction Method Classifier Accuracy F1-score AUC

EMBER V2 (2381D) LightGBM (Baseline) 0.99400 ± 0.00551 0.99388 ± 0.00546 0.99985 ± 0.00220

CFG + MiniLM + GIN (3-layer, 256D) Random Forest 0.93520 ± 0.001177 0.93865 ± 0.01094 0.93462 ± 0.01195

CFG + MiniLM + GIN (3-layer, 256D) C-Support Vector Classification 0.97440 ± 0.01530 0.97475 ± 0.01533 0.97476 ± 0.01450

CFG + MiniLM + GIN (3-layer, 256D) Logistic Regression 0.97440 ± 0.00320 0.97518 ± 0.00299 0.97417 ± 0.00352

CFG + MiniLM + GIN (3-layer, 256D) LightGBM 0.98040 ± 0.01148 0.98111 ± 0.01072 0.98021 ± 0.01171

CFG + MiniLM + GIN (3-layer, 256D) MLP (2-layer, 256D) 0.98920 ± 0.00204 0.98946 ± 0.00195 0.98919 ± 0.00217

methods, so I estimated that the classification method tuned for prior char-
acteristics is not suitable for GIN-based feature extraction. I estimated that
there is a large tuning space on both the GIN side and the classification side,
so I hope that many researchers challenge the research in this area.

TABLE 4.7: Additional experimental results.

Feature Extraction Method Classifier Accuracy F1-score AUC

CFG + MiniLM +

GIN (4-layers, 32D) MLP (2-layer, 32D) 0.97200 ± 0.00912 0.97304 ± 0.00851 0.97182 ± 0.00932
GIN (4-layers, 64D) MLP (2-layer, 64D) 0.98880 ± 0.00449 0.98914 ± 0.00430 0.98871 ± 0.00451
GIN (4-layers, 128D) MLP (2-layer, 128D) 0.98920 ± 0.00240 0.98945 ± 0.00244 0.98918 ± 0.00253
GIN (4-layers, 256D) MLP (2-layer, 256D) 0.99080 ± 0.00204 0.99104 ± 0.00190 0.99072 ± 0.00211

CFG + MiniLM +

GIN (5-layers, 32D) MLP (2-layer, 32D) 0.96920 ± 0.01197 0.96954 ± 0.01240 0.96953 ± 0.01127
GIN (5-layers, 64D) MLP (2-layer, 64D) 0.98560 ± 0.00196 0.98598 ± 0.00183 0.98551 ± 0.00197
GIN (5-layers, 128D) MLP (2-layer, 128D) 0.98920 ± 0.00483 0.98953 ± 0.00455 0.98911 ± 0.00497
GIN (5-layers, 256D) MLP (2-layer, 256D) 0.99160 ± 0.00427 0.99189 ± 0.00396 0.99148 ± 0.00455

In addition, I verified the performance of the GIN model classification
results under different layer numbers and hidden layer dimensions of the
GINConv layer. The evaluation results are shown in Table 4.7. With the in-
crease of the GIN model layers and hidden layer dimensions, I found that the
results improve. This proves the effectiveness of extracting sample features
based on CFG and using GNNs to detect malware.

4.5 Discussion

In this section, I discuss the limitations of our method and show the advan-
tages of our proposal by t-Distributed Stochastic Neighbor Embedding (t-
SNE) visualization technology. In addition, I summarize the main factors of
our approach to improve performance.

I currently face the following primary limitations. First, MGD-BINARY
has fewer samples; thus, the model cannot learn more samples. Benign sam-
ples involve copyright issues. Most public malware datasets do not directly
provide the original PE files of benign samples, so it is difficult for us to col-
lect large-scale benign samples. Second, the process of extracting CFG from
samples is very time consuming, which greatly increases the time cost of
building large-scale graph datasets.

I visualized the feature vectors of the baseline and our proposal using t-
SNE technology. As shown in Figure 4.2 and Figure 4.3 , I visualized the
training set and test set of the two methods, respectively. Whether it is the

Chapter 4. Malware Control-Flow Graph Level Representation Learning 44

40 30 20 10 0 10 20 30

30

20

10

0

10

20

30 Benign
Malware

(A) EMBER V2 (2381D) Training Set

20 10 0 10 20 30
40

30

20

10

0

10

20

30

40
Benign
Malware

(B) EMBER V2 (2381D) Test Set

FIGURE 4.2: t-SNE visualization of Baseline.

training set or the test set, the benign samples in our proposal are more com-
pactly clustered and distant from the malware, while the benign samples and
malware in the baseline are more dispersed. The more compact distribution
of benign samples allows the model to learn better; when there are additional

Chapter 4. Malware Control-Flow Graph Level Representation Learning 45

15 10 5 0 5 10 15 20

30

20

10

0

10

20
Benign
Malware

(A) CFG + MiniLM+ GIN (64D) Training Set

30 20 10 0 10 20 30

20

10

0

10

20

30 Benign
Malware

(B) CFG + MiniLM+ GIN (64D) Test Set

FIGURE 4.3: t-SNE visualization of Proposal.

malicious samples in the training set, the model can better distinguish and
learn, thus improving the effectiveness of the malware detection.

Regarding the main factors for improving the detection performance, I

Chapter 4. Malware Control-Flow Graph Level Representation Learning 46

find the following three points: First, extracting CFG from a PE file can ef-
fectively extract the function call relationship and program structure infor-
mation. Second, by using a MiniLM pre-trained language model, the node
information of the CFG can be effectively represented by fixed-length feature
vectors. Finally, due to the superiority of the GNN itself, each node can fully
learn the information of its neighbors through the message passing mecha-
nism and finally obtain low dimensional graph-level representation, making
it easier for the downstream detection and classification tasks to achieve good
results.

4.6 Conclusion

This chapter proposed a new method of extracting malware features based
on the GNN and investigated the performance of malware detection under
different classification models. I extracted the CFG from PE files and then
completed the construction of a graph dataset through GFE, GDG, and GC
modules. Finally, I used the MLP model to detect malware. In addition, I also
investigated the effects of other classification models, such as LightGBM and
Random Forest. Based on our experimental results, MLP had the best per-
formance. CFG is a directed graph. The advantages of graph data are that
each node has a different feature and it contains the call structure informa-
tion of PE samples. Through the GFE and GDG modules, I created a dataset
suitable for GNNs and named it MGD-BINARY. By adjusting the GIN model
in the GC module, I can generate malware representations with different di-
mensions. Compared with the traditional feature extraction methods, the
dimensions of our feature representation are compressed lower. The advan-
tage of the GIN model lies in compressing the high-dimensional features of
each node in the graph into the low-dimensional space and constructing the
representation of the whole graph with low dimensions for each graph sam-
ple. The GIN-based malware detection model has great potential with the
increase of layers and hidden dimensions. In future work, I plan to further
expand the dataset, especially by adding more benign samples. I will also
seek to raise the graph extraction speed of PE files and further improve the
evaluation results of the model.

47

Chapter 5

Graph Contrastive Learning for
Malware Classification

5.1 Introduction

Fueled by the progress of software technology and the internet’s develop-
ment, thousands of malware are created every day due to the proliferation of
malware creation and obfuscation tools. Such a massive flood of data poses a
considerable challenge to malware analysts and Security Operation Centers
(SOCs). Traditional malware detection methods cannot continue to quickly
and effectively detect such a massive amount of newly created malware. In
past decades, machine learning has played an important role in information
security, especially in malware detection and classification tasks. It is also a
promising method to detect and classify large-scale newly created malware
using the features of samples.

In the field of static malware detection, the feature extraction method of
Portable Executable (PE) files used in the Endgame Malware Benchmark for
Research (EMBER) dataset [23] has been widely applied. This feature ex-
traction method directly provides consistent feature vectors to researchers,
allowing individuals in the same field to compare their respective proposed
methods. The information related to software structure, such as the Control-
Flow Graph (CFG), is rarely extracted, and most methods are based on sur-
face analysis for extracting statistical information as features. In addition, in
most malware detection and classification scenarios, the model is supervised
for end-to-end training.

Supervised learning requires manual labeling of a large amount of data,
and the model effect depends on the quality of the labels. Therefore, the
future research trend, which is exploring unsupervised learning methods,
is critical for malware detection and classification. In recent years, Graph
Neural Networks (GNN) have made remarkable progress. I can exploit their
powerful representation ability to better represent malware and improve the
effectiveness of its detection and classification. However, one remaining dif-
ficulty is how to represent malware in graphical form. Since CFG is a natural
graph structure, I can generate the graph structure data of malware by ex-
tracting CFG. Therefore, I seek to classify malware by constructing a graph
dataset and using unsupervised learning. Since no publicly available graph

Chapter 5. Graph Contrastive Learning for Malware Classification 48

classification dataset exists for malware classification, I started by creating
such a dataset.

Our contributions can be summarized as follows:

• I propose a malware classification framework based on graph contrastive
learning under unsupervised learning.

• I retain the structural information of the samples extracted from CFG
and embed the text features of each node with a pre-trained language
model.

• I create a special graph dataset for malware classification that can be
used directly on GNNs.

• Our pre-trained model can effectively perform a low-dimensional rep-
resentation of malware with which a variety of downstream tasks can
be performed. I have achieved good results on malware family classifi-
cation tasks.

The remainder of this chapter is organized as follows. Section 5.2 intro-
duces the principles of our proposed data augmented GraphCL-based static
malware PE classification system and its application to malware classifica-
tion. In Section 5.3, I briefly discuss the implementation details of our pro-
posal. In Section 5.4, I describe the corresponding experiments and evaluate
their feasibility as well as the advantages of our proposal. In Section 5.5, I dis-
cuss the current limitations of our proposal. Finally, I discuss our conclusion
and describe future work in Section 5.6.

5.2 Proposed Malware GraphCL with Data Aug-
mentations

Our proposal is a data augmented GraphCL-based static malware PE clas-
sification framework, which can obtain a graph-level representation from
malware. I directly extract malware CFG from PE files and through graph
contrastive learning obtain a representation of the malware with a vector no-
tation. Finally, malware representations can be performed downstream for
various tasks. Graph-level representation shows good performance on mal-
ware classification tasks. Next, I scrutinize the framework.

5.2.1 Raw Graph Generation

To train the GNNs, I need to produce graph datasets, and the main task of
this module is to convert PE files into raw graphs. The overview of raw graph
generation is shown in Figure 5.1. This raw graph generation is basically the
same as that of Figure 4.1 introduced in Section 4.2.2. The difference is that
the current method additionally uses assembly codes in basic blocks as the
features of graph nodes.

Chapter 5. Graph Contrastive Learning for Malware Classification 49

Graph Notation of PE File

PE File

Generating PE File Feature with Graph Notation

Pr
e-

tra
in

ed

La
ng

ua
ge

 M
od

el
M

in
iL

M

push \t ebp \n ... jle \t 0x41b031
push ebp
mov ebp, esp
push ecx
mov eax, dword ptr [ebp + 0xc]
push edi
test eax, eax
mov dword ptr [ebp - 4], 0xffffffff
jle 0x41b031

......

......

Basic Block1

Basic Block2

Basic Block4

............

Basic Block3

Basic Block5

Assembly Code1

Assembly Code2

Assembly Code3

Assembly Code4

Assembly Code5

......

FIGURE 5.1: Raw graph generation for proposal

CFG Structure and Disassembly Code First, the CFG information is ex-
tracted from the original PE file samples, the structure information of the
basic blocks is retained, and the disassembly code of each basic block is ex-
tracted. Each basic block of CFG has a corresponding disassembly code, and
the relationship between each basic block is directional. Disassembly codes
need to be transformed into feature vectors of specific dimensions to train
GNNs. Since the malware CFG is usually a very large graph, extracting the
CFG is very time consuming. Since the disassembly code in each basic block
of CFG contains rich semantic information, I need to completely exploit that
information and suitably embed it, for example, using a large pre-trained
language model.

Pre-trained Language Model MiniLM MiniLM is a method released by
Microsoft, which based on reducing large-scale transformer pre-trained mod-
els into smaller models [51]. This Deep Self-Attention Distillation (DSAD)
method uses large-scale data for pre-training. The model I use is called “all-
MiniLM-L12-v2,” which has a 1-billion-sized training set and is designed as
a general-purpose model. MiniLM model is a 12-layer transformer with a
384 hidden size and 12 attention heads that contain about 33 M parameters.
It maps sentences and paragraphs to a 384-dimensional dense vector space
and can be used for tasks like clustering or semantic search. This model is the
fastest generation of related studies and still provides good quality. In this
step, a 384-dimensional dense vector is generated for each CFG node using
the pre-trained model. This vector is added to the corresponding nodes of
the directed graph to generate complete graph data with node feature vec-
tors. These directed graphs are used as our raw graph data.

5.2.2 Data Augmentation for Graphs

I used the following four data augmentation methods. As shown in Figure
5.2, our proposal uses two of them. The best combination is explored in Sec-
tion 5.

Node Dropping Randomly discard some parts of the vertex and its connec-
tions. The missing parts of the vertices do not affect the semantic meaning

Chapter 5. Graph Contrastive Learning for Malware Classification 50

Drop Node

Remove Edge Add Edge

Graph-level representation

Final representation

Malware Graph Contrastive Learning Framework

Node Feature

Augmentation2

Augmentation1

Projection Head

Projection Head

Maximize Agreement
NT-Xent Loss

Shared GIN-Based Encoder

Node Dropping

Edge Perturbation

Graph Notation of PE File

FIGURE 5.2: Proposed malware graph contrastive learning
framework for graph representation generation

of the graph, and so the learned representation is consistent under the dis-
turbance of nodes. The dropping probability of each node follows a default
Bernoulli distribution (or any other distribution).

Edge Perturbation Randomly add or remove a certain ratio of edges so that
the learned representation is consistent under edge perturbation. The prior
information of the representation is that adding or removing some edges
does not affect the semantics of the graph. The adding or removing prob-
ability of each edge also follows a default Bernoulli distribution. I only used
Edge Removing in this evaluation.

Attribute Masking The attribute information of some nodes is randomly
removed, which urges the model to use other information to reconstruct the
masked node attributes. The masking probability of each node feature di-
mension follows a default uniform distribution. I only used simple Feature
Masking.

Subgraph Sampling Use random walk subgraph sampling [54] to extract
subgraphs from the original graph. The basic assumption is that a graph’s
semantic information can be preserved in its local structure.

Table 5.1 overviews the data augmentation for graphs. The default aug-
mentation (dropping, perturbation, masking) ratio is set to 0.1, and the walk
length is set to 10.

TABLE 5.1: Overview of data augmentation for graphs

Data Augmentation Type Default Setting
Node Dropping Nodes, edges Bernoulli distribution (ratio = 0.1)

Edge Perturbation Edges Bernoulli distribution (ratio = 0.1)
Attribute Masking Nodes Uniform distribution (ratio = 0.1)

Subgraph Sampling Nodes, edges Random Walk (length = 10)

Chapter 5. Graph Contrastive Learning for Malware Classification 51

5.2.3 Graph Contrastive Learning

Motivated by recent developments in graph contrastive learning, I propose a
graph contrastive learning framework for malware classification. As shown
in Figure 5.2, in graph contrastive learning, pre-training is performed by
maximizing the agreement between two augmented views of the same graph
by contrastive loss in the potential space. The framework consists of the fol-
lowing four main components:

Graph Data Augmentation Throughout the GraphCL framework, given
graph data G, two related augmented graphs, Ĝi, Ĝj, are generated as posi-
tive sample pairs by data augmentation.

GIN-based Encoder GIN-based encoder f (·) is used to generate graph-
level vector representation. There are three layers in the GIN-based encoder,
and the hidden layer has 64 dimensions. Through the readout function, the
embedding of all the nodes is summed to obtain initial graph representation
hi, hj for augmented graphs Ĝi, Ĝj. Graph contrastive learning does not apply
any constraint to the GIN-based encoder.

Projection Head Nonlinear transformation g(·), called a projection head,
maps the augmented representations to another latent space. Contrastive
loss is computed in the latent space, and zi, zj are obtained by applying a
two-layer perceptron (MLP).

Contrastive Loss Function Contrastive loss function L(·) is defined to max-
imize agreement between positive pairs zi, zj and negative pairs. As illus-
trated in Figure 5.3, A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are sampled from
the same family of augmentations (t ∼ T and t′ ∼ T) and applied to each
data example to obtain two correlated views. Here I exploit the normalized
temperature-scale cross-entropy loss (NT-Xent) [55][56].

After training is completed, I throw away the projection head g(·) and use
encoder f (·) and obtain a graph-level final representation of zG for down-
stream tasks.

5.2.4 Graph Classification

By pre-training with GraphCL, I can obtain a valid graph representation zG.
To further verify the effectiveness of our method, different classification mod-
els can be chosen for the process, such as random forest, logistic regression,
SVM, and so on. I chose C-Support Vector Classification (SVC) as the algo-
rithm to validate our pre-trained model’s effectiveness.

Chapter 5. Graph Contrastive Learning for Malware Classification 52

representation

Maximize Agreement

FIGURE 5.3: A simple framework for contrastive learning of
visual representations.

5.3 Implementation Details

I verified the effectiveness of our proposed contrastive learning framework
by implementing it with open-source libraries. The implementation details
are introduced in this section.

5.3.1 Malware Geometric Multi-Class Dataset

PE Files Source The PE file sample was obtained from the BODMAS Mal-
ware Dataset [25]. The software types of all the PE file samples used in
our dataset are executable files under an x86-architecture Windows platform
without any Dynamic Link Library (DLL) type.

Dataset Description From the BODMAS dataset, I selected eight families
of malware and took 500 samples from each family, for a total of 4000 sam-
ples in our dataset. Our dataset is named MGD-MULTI. The malware family
distribution information is shown in Table 5.2.

Due to the difficulty of collecting benign samples and the imbalanced data
problem, I did not include white samples in our multi-class dataset. In Sec-
tion 4.3, the MGD-BINARY has been introduced. It contained benign sam-
ples. I used almost the same GIN model to represent the PE samples, with
a slightly different operation of the READOUT layer this time compared to
the GIN model in our previous work, giving the final representation a higher
vector dimensionality. Based on our previous research [49], I believe that the
GIN model can effectively distinguish benign samples from malicious ones.
In future work, I will add benign samples to our dataset.

Chapter 5. Graph Contrastive Learning for Malware Classification 53

TABLE 5.2: Malware family distribution of MGD-MULTI

Family Name Category Name Origin Count Selected Count Graph Data Size
sfone worm 4729 500 3.2 GB

upatre trojan 3901 500 879.4MB
wabot backdoor 3673 500 4.1 GB

benjamin worm 1071 500 263.1MB
musecador trojan 1054 500 1.5 GB

padodor backdoor 655 500 2.9 GB
gandcrab ransomware 617 500 6.6 GB
dinwod dropper 509 500 3.3 GB

Total - 16209 4000 22.7 GB

Among the different types of malware, I chose families that are more com-
mon and have a relatively large number in BODMAS. Due to some limita-
tions of the CFG extraction tool for the PE files I used, many samples couldn’t
be recognized, causing extraction failure. In addition, for large PE file sam-
ples, the process of extracting CFG is very time-consuming. Since the extrac-
tion of some samples will fail, I selected a family with more than 500 samples
in BODMAS and relatively small original PE files. I further improved the
efficiency by only selecting successful samples whose total extraction time is
less than 20 seconds in which the total extraction time includes the time of
the feature vectors generated by the pre-trained language model. I finally
got our MGD-MULTI whose extracted graph data statistical information is
shown in Table 5.3.

TABLE 5.3: Graph statistics of MGD-MULTI

Dataset # Graphs #Classes #Features Avg. #Nodes Avg. #Edges
MGD-MULTI 4000 8 384 3861.75 5494.82

Dataset Splitting I split 4000 pieces of data in MGD-MULTI into training,
validation, and testing sets of 50%, 20%, and 30%, respectively. Since the
results of the validation set and the test are similar, only the test set results
are shown.

5.3.2 Pre-trained Language Model MiniLM

SentenceTransformers is a python framework for state-of-the-art sentence,
text, and image embeddings. The initial work was described in a paper
from the Sentence-Bidirectional Encoder Representations from Transformers
(Sentence-BERT) [57]. I used the MiniLM model provided by the Sentence-
Transformers library with the model name, all-MiniLM-L6-v2. The model
details are shown in Table 5.4.

Chapter 5. Graph Contrastive Learning for Malware Classification 54

TABLE 5.4: Pre-trained MiniLM model details

Name all-MiniLM-L12-v2
Base Model microsoft/MiniLM-L12-H384-uncased

Max Sequence Length 256
Dimensions 384

Normalized Embeddings true
Size 120 MB

Pooling Mean Pooling
Training Data 1B+ training pairs

GraphCL Model PyGCL [58] is a PyTorch-based open-source Graph Con-
trastive Learning (GCL) library, which features modularized GCL compo-
nents from published papers, standardized evaluation, and experiment man-
agement. The batch_size of all the experiments is 128, and the optimizer is
Adam with a learning rate of 0.0001.

5.4 Evaluation

In this section, I apply the GraphCL model and discuss the experiment re-
sults and limitations of our method.

5.4.1 Evaluation Metric

I used the following evaluation metrics to assess the performance of our pro-
posed models:

• The Micro-averaged F1 score is defined as the harmonic mean of the
precision and recall:

MicroF1-score = 2 × Micro-Precision × Micro-Recall
Micro-Precision + Micro-Recall

Micro-Precision is the sum of all true positives divided by the sum of
all true positives and false positives. Micro-Recall is the sum of true
positives for all classes divided by actual positives.

• The Macro-averaged F1 score is defined as the mean of the class-wise/label-
wise F1-scores:

MacroF1-score =
1
N

i=0

∑
N

F1-scorei

where i is the class/label index and N is the number of classes/labels.
F1-score is defined as the harmonic mean of the precision and recall.

Chapter 5. Graph Contrastive Learning for Malware Classification 55

5.4.2 Evaluation Results

Next, I apply the GraphCL model and discuss the experiment results of our
method.

Different Data Augmentation Combination Results I selected five differ-
ent data augmentation methods: Identical (I), Edge Removing (ER), Node
Dropping (ND), Feature Masking (FM), and Random Walk Subgraph (RWS).
To compare the different data augmentation approaches on the GraphCL
model, I used both data augmentation approaches for the input graph itself
(Identical + Identical) as the GraphCL model baseline. I also tried different
combinations of data augmentation, such as ER and ND, FM and ND, FM
and ER, RWS and ER, RWS and ND, and RWS and FM. The experimental
results are shown in Table 5.5. The best two data augmentation combina-
tions were RWS and FM. I obtained the best Micro-F1 (0.9958) and Macro-F1
(0.9959).

TABLE 5.5: different augmentation combinations

Method (+SVC) Augmentation1 Micro-F1 Macro-F1
GraphCL I + I 0.9883 0.9883
GraphCL ER + ND 0.9925 0.9924
GraphCL FM + ND 0.9942 0.9942
GraphCL FM + ER 0.9942 0.9942
GraphCL RWS2+ ER 0.9950 0.9949
GraphCL RWS + ND 0.9950 0.9949
GraphCL RWS + FM 0.9958 0.9959

1 Default ratio setting is 0.1.
2 RWS uses a default walk length setting of 10.

Best Combination with Different Ratio Results In the previous set of ex-
periments, I found that the best data augmentation combination is RWS +
FM. Based on this combination, I also investigated the results on different ra-
tios on the FM side, and the FM results on different ratios are shown in Table
5.6.

TABLE 5.6: Best combination with different ratio results

Method (+SVC) Augmentation (Ratio) Micro F1 Macro F1
GraphCL RWS1+ FM (0.1) 0.9958 0.9959
GraphCL RWS + FM (0.2) 0.9967 0.9967
GraphCL RWS + FM (0.3) 0.9975 0.9976
GraphCL RWS + FM (0.4) 0.9958 0.9958
GraphCL RWS + FM (0.5) 0.9942 0.9941

1 RWS uses a default walk length setting of 10.

Chapter 5. Graph Contrastive Learning for Malware Classification 56

Comparison of Different Methods All of our previous studies focused on
supervised learning. This study is a graph contrastive learning method in an
unsupervised setting.

Baseline 1 is a direct graph-level encoding of an input graph using GIN as
an encoder, and then the embedding effect is evaluated using SVC. Baseline 2
is data augmentation using the input graph itself. Baseline 3 is our proposal
described in Chapter 4. Train a GIN model under supervised setting, with a
two-layer MLP directly connected after the readout layer.

A comparison of different methods is shown in Table 5.7. GraphCL with
a setting of RWS + FM (0.3) achieved the best classification results.

TABLE 5.7: Comparison of different methods

Name Method Type Micro-F1 Macro-F1
Baseline 1 GIN-Encoder + SVC U1 0.9617 0.9620
Baseline 2 GraphCL (I + I) + SVC U 0.9883 0.9883
Baseline 3 GIN + MLP (Previous work [49]) S2 0.9958 0.9957
Proposal GraphCL (RWS + FM_0.3) + SVC U 0.9975 0.9976

1 U denotes unsupervised learning.
2 S denotes supervised learning.

I used t-SNE technology to visualize the embedding of Baseline 1 and
our proposed method. As shown in Figure 5.4, the method of Baseline 1
has already clustered some categories, such as the malware of the “padodor"
family, but it cannot cluster the “gandcrab" family well. On the other hand,
our comparative learning model proposal can better cluster different cate-
gories in the eight classes, and a large distance between different categories
is maintained.

5.5 Discussion

GraphCL (I + I) is a combination of two Identical, and the effect is equiva-
lent to turning a training set of N samples into 2N samples. The same data
model is learned twice for the same data, so the obtained result naturally
outperforms GIN-Encoder. The RWS + FM method is most effective because
neither method changes the structural information of the original graph. The
RWS method samples a subgraph that is smaller than the structure of the
original graph, but still retains most of the original graph’s structure. For the
FM method, the original graph structure is not changed at all, but the values
of some dimensions of the node feature vectors are masked, which makes the
node features more robust. On the contrary, the other two methods (ER and
ND) change the original graph structure more, so the results are lowered.

Because of the relatively large graph structure I extracted from the PE file
and the high dimensionality of the nodes in each graph (384 dimensions),
our result still leads to a slow training of the GraphCL model even though
the dataset size is not too large, only 4000 pieces of data.

Chapter 5. Graph Contrastive Learning for Malware Classification 57

75 50 25 0 25 50 75
80

60

40

20

0

20

40

60

80

sfone
upatre

wabot
benjamin

musecador
padodor

gandcrab
dinwod

(A) Baseline 1:
GIN-Encoder + SVC

60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80

sfone
upatre

wabot
benjamin

musecador
padodor

gandcrab
dinwod

(B) Proposal:
GraphCL (RWS+FM_0.3)

FIGURE 5.4: t-SNE visualization of Baseline 1 and Proposal

The training stage requires around ten minutes with NVIDIA GeForce
RTX 3090. If we use more memory and faster GPU devices, we can further
increase the batch size, and the model can get better generalization. At the
same time, the training time can be further shortened and the scale of data
set can be further expanded. I desire a better way to generate node features,

Chapter 5. Graph Contrastive Learning for Malware Classification 58

such as a lower dimensional in a method that retains its effectiveness.

5.6 Conclusion

I proposed the unsupervised learning of different families of malware us-
ing graph contrastive learning and the multi-classification of learned vectors
using SVC and obtained good results. I extracted the CFG of the malware,
embedded the disassembly code in a basic block through a large pre-trained
language model MiniLM, and obtained a directed graph with node features.
The advantage of a directed graph is that it contains the call structure infor-
mation of the sample in addition to the features of each node. I also pro-
duced a multi-classification dataset: MDG-MULTI. Unsupervised GraphCL-
based malware classification methods have surpassed graph-based super-
vised learning methods, such as the Graph Isomorphism Network (GIN) for
graph classification. In future work, I will shift our focus to unsupervised
learning.

59

Chapter 6

Conclusion

This thesis set out to apply AI technology for malware detection and classi-
fication. Improve the main problems in this field, such as robustness, inter-
pretability and concept drift of malware machine learning models. How to
reduce false alarms is also a special problem. In order to solve these prob-
lems, I mainly made detailed investigations in three aspects.

Reduce False Alarms This study proposed a custom log loss function with
α and β parameters for the LightGBM algorithm to solve the malware detec-
tion problem. I extracted 27 valid features from a non-public FFRI dataset
for malware detection. I validated the effectiveness of our proposed method
by separately and simultaneously evaluating it on FFRI and another public
dataset, EMBER. Our result shows that the custom log loss function can re-
duce FP more than the normal log loss function. However, since the custom
log loss function increased FN more than the normal log loss function, I also
proposed a hybrid usage of the Custom_AUC and Custom_FPR models to
prioritize the positive results. Reducing the FPR by the custom log loss func-
tion will significantly lower the priority given to false alarms, thus alleviat-
ing the pressure on security responders. Although I can control the model to
learn more difficult samples by customizing the loss function, learning them
is inherently difficult for the model. It is difficult to achieve complete learn-
ing; it inevitably leads to a certain number of FPs and FNs. Our proposed
method penalizes FP and FN in the training phase and can only make them
as low as possible instead of zero. I believe that the fundamental reason lies
in the data themselves, the size of the dataset, and the effectiveness of the
extracted features.

Interpretability This study proposed a new method of extracting malware
features based on the GNN and investigated the performance of malware
detection under different classification models. I extracted the CFG from PE
files and then completed the construction of a graph dataset through GFE,
GDG, and GC modules. Finally, I used the MLP model to detect malware. In
addition, I also investigated the effects of other classification models, such as
LightGBM and Random Forest. Based on our experimental results, MLP had
the best performance. CFG is a directed graph. The advantages of graph data
are that each node has a different feature and it contains the call structure in-
formation of PE samples. Through the GFE and GDG modules, I created a

Chapter 6. Conclusion 60

dataset suitable for GNNs and named it MGD-BINARY. By adjusting the GIN
model in the GC module, I can generate malware representations with differ-
ent dimensions. Compared with the traditional feature extraction methods,
the dimensions of our feature representation are compressed lower. The ad-
vantage of the GIN model lies in compressing the high-dimensional features
of each node in the graph into the low-dimensional space and constructing
the representation of the whole graph with low dimensions for each graph
sample. The GIN-based malware detection model has great potential with
the increase of layers and hidden dimensions. In future work, I plan to fur-
ther expand the dataset, especially by adding more benign samples. I will
also seek to raise the graph extraction speed of PE files and further improve
the evaluation results of the model.

Self-supervised Graph Contrastive Learning This study proposed the self-
supervised learning of different families of malware using graph contrastive
learning and the multi-classification of learned vectors using SVC and ob-
tained good results. I extracted the CFG of the malware, embedded the dis-
assembly code in a basic block through a large pre-trained language model
MiniLM, and obtained a directed graph with node features. The advantage of
a directed graph is that it contains the call structure information of the sample
in addition to the features of each node. I also produced a multi-classification
dataset: MDG-MULTI. Unsupervised GraphCL-based malware classification
methods have surpassed graph-based supervised learning methods, such as
the Graph Isomorphism Network for graph classification. In future work, I
will shift our focus to unsupervised learning.

The first research has identified custom loss function can significantly re-
duce the false alarm rate of the model while maintaining a high detection
rate. I can artificially control the balance between the detection rate and false
alarm rate of the model. The second major finding was that compared with
the traditional statistical features of malware, graph representation learning
based on CFG features can better learn the structural features of malware,
and relying on powerful graph neural network, excellent detection results
can be determined. One of the more significant findings to emerge from this
study is that compared with the supervised multi-class classification model,
self-supervised graph contrastive learning can achieve better results with a
small number of samples and no need to label the family information of mal-
ware training data.

61

Bibliography

[1] A. Test, Malware Statistics & Trends Report | AV-TEST, 2022. [Online].
Available: https://www.av-test.org/en/news/facts-analyses-on-
the-threat-scenario-the-av-test-security-report-2019-2020/.

[2] J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M. Chess, G. Tesauro,
and S. R. White, “Biologically Inspired Defenses Against Computer
Viruses,” in Proc. 4th International Joint Conference on Artificial Intelli-
gence(IJCAI 1995), pp. 985–996, 1995. [Online]. Available: https://www.
ijcai.org/Proceedings/95-1/Papers/127.pdf.

[3] G. McGraw and J. G. Morrisett, “Attacking malicious code: A report
to the infosec research council,” IEEE Softw., vol. 17, no. 5, pp. 33–41,
2000. DOI: 10.1109/52.877857.

[4] M. Christodorescu, S. Jha, J. Kinder, S. Katzenbeisser, and H. Veith,
“Software transformations to improve malware detection,” J. Comput.
Virol., vol. 3, no. 4, pp. 253–265, 2007. DOI: 10.1007/s11416-007-0059-
8.

[5] E. Raff, R. Zak, R. Cox, et al., “An investigation of byte n-gram features
for malware classification,” J. Comput. Virol. Hacking Tech., vol. 14, no. 1,
pp. 1–20, 2018. DOI: 10.1007/s11416-016-0283-1.

[6] Y. Nagano and R. Uda, “Static Analysis with Paragraph Vector for Mal-
ware Detection,” in Proc. 11th International Conference on Ubiquitous In-
formation Management and Communication (IMCOM 2017), pp. 80–86,
2017. DOI: 10.1145/3022227.3022306.

[7] Y. Oyama, “Trends of anti-analysis operations of malwares observed in
API call logs,” J. Comput. Virol. Hacking Tech., vol. 14, no. 1, pp. 69–85,
2018. DOI: 10.1007/s11416-017-0290-x.

[8] S. S. Chakkaravarthy, S. Dhamodaran, and V. Vijayakumar, “A Survey
on Malware Analysis and Mitigation Techniques,” Comput. Sci. Rev.,
vol. 32, pp. 1–23, 2019. DOI: 10.1016/j.cosrev.2019.01.002.

[9] A. Souri and R. Hosseini, “A State-of-the-art Survey of Malware Detec-
tion Approaches using Data Mining Techniques,” Hum. centric Comput.
Inf. Sci., vol. 8, no. 1, pp. 1–22, 2018. DOI: 10.1186/s13673-018-0125-x.

[10] M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang, and F.
Iqbal, “Malware Classification with Deep Convolutional Neural Net-
works,” in Proc. 9th IEEE International Conference on New Technologies,
Mobility and Security (NTMS 2018), pp. 1–5, 2018. DOI: 10.1109/NTMS.
2018.8328749.

https://www.av-test.org/en/news/facts-analyses-on-the-threat-scenario-the-av-test-security-report-2019-2020/
https://www.av-test.org/en/news/facts-analyses-on-the-threat-scenario-the-av-test-security-report-2019-2020/
https://www.ijcai.org/Proceedings/95-1/Papers/127.pdf
https://www.ijcai.org/Proceedings/95-1/Papers/127.pdf
https://doi.org/10.1109/52.877857
https://doi.org/10.1007/s11416-007-0059-8
https://doi.org/10.1007/s11416-007-0059-8
https://doi.org/10.1007/s11416-016-0283-1
https://doi.org/10.1145/3022227.3022306
https://doi.org/10.1007/s11416-017-0290-x
https://doi.org/10.1016/j.cosrev.2019.01.002
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.1109/NTMS.2018.8328749
https://doi.org/10.1109/NTMS.2018.8328749

Bibliography 62

[11] J. Singh and J. Singh, “A survey on machine learning-based malware
detection in executable files,” J. Syst. Archit., vol. 112, p. 101 861, 2021.
DOI: 10.1016/j.sysarc.2020.101861. [Online]. Available: https:
//doi.org/10.1016/j.sysarc.2020.101861.

[12] R. Thomas, Lief - library to instrument executable formats, https://lief.quarkslab.com/,
2017.

[13] J. Yan, G. Yan, and D. Jin, “Classifying malware represented as control
flow graphs using deep graph convolutional neural network,” in Proc
.49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2019), IEEE, pp. 52–63, 2019. DOI: 10.1109/DSN.
2019.00020.

[14] X. Ling, L. Wu, W. Deng, et al., “Malgraph: Hierarchical graph neural
networks for robust windows malware detection,” in Proc. Conference
on Computer Communications (INFOCOM 2022), IEEE, pp. 1998–2007,
2022. DOI: 10.1109/INFOCOM48880.2022.9796786.

[15] B. Athiwaratkun and J. W. Stokes, “Malware classification with LSTM
and GRU language models and a character-level CNN,” in Proc. 42nd
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP 2017), pp. 2482–2486, 2017. DOI: 10 . 1109 / ICASSP . 2017 .
7952603.

[16] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware
classification using random projections and neural networks,” in Proc.
38th IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP 2013), pp. 3422–3426, 2013. DOI: 10.1109/ICASSP.2013.
6638293.

[17] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
“Malware classification with recurrent networks,” in Proc. 40th IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP
2015), pp. 1916–1920, 2015. DOI: 10.1109/ICASSP.2015.7178304.

[18] F. Cohen, “Computer viruses: Theory and experiments,” Comput. Se-
cur., vol. 6, no. 1, pp. 22–35, 1987. DOI: 10.1016/0167-4048(87)90122-
2.

[19] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data Mining Meth-
ods for Detection of New Malicious Executables,” in Proc. 22nd IEEE
Symposium on Security and Privacy (SSP 2001), pp. 38–49, 2001. DOI:
10.1109/SECPRI.2001.924286.

[20] J. Z. Kolter and M. A. Maloof, “Learning to Detect and Classify Ma-
licious Executables in the Wild,” J. Mach. Learn. Res., vol. 7, pp. 2721–
2744, 2006. [Online]. Available: http://jmlr.org/papers/v7/kolter06a.
html.

[21] J. Saxe and K. Berlin, “Deep Neural Network Based Malware Detection
Using Two Dimensional Binary Program Features,” in Proc. 10th IEEE
International Conference on Malicious and Unwanted Software (MALWARE
2015), pp. 11–20, 2015. DOI: 10.1109/MALWARE.2015.7413680.

https://doi.org/10.1016/j.sysarc.2020.101861
https://doi.org/10.1016/j.sysarc.2020.101861
https://doi.org/10.1016/j.sysarc.2020.101861
https://doi.org/10.1109/DSN.2019.00020
https://doi.org/10.1109/DSN.2019.00020
https://doi.org/10.1109/INFOCOM48880.2022.9796786
https://doi.org/10.1109/ICASSP.2017.7952603
https://doi.org/10.1109/ICASSP.2017.7952603
https://doi.org/10.1109/ICASSP.2013.6638293
https://doi.org/10.1109/ICASSP.2013.6638293
https://doi.org/10.1109/ICASSP.2015.7178304
https://doi.org/10.1016/0167-4048(87)90122-2
https://doi.org/10.1016/0167-4048(87)90122-2
https://doi.org/10.1109/SECPRI.2001.924286
http://jmlr.org/papers/v7/kolter06a.html
http://jmlr.org/papers/v7/kolter06a.html
https://doi.org/10.1109/MALWARE.2015.7413680

Bibliography 63

[22] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K.
Nicholas, “Malware detection by eating a whole EXE,” in Proc. 32nd
AAAI Conference on Artificial Intelligence Workshop (AAAIW 2018), ser. AAAI
Technical Report, vol. WS-18, pp. 268–276, 2018. [Online]. Available:
https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16422.

[23] H. S. Anderson and P. Roth, “EMBER: an open dataset for training
static PE malware machine learning models,” CoRR, vol. abs/1804.04637,
2018. arXiv: 1804.04637. [Online]. Available: http://arxiv.org/abs/
1804.04637.

[24] R. E. Harang and E. M. Rudd, “SOREL-20M: A large scale benchmark
dataset for malicious PE detection,” CoRR, vol. abs/2012.07634, 2020.
arXiv: 2012 . 07634. [Online]. Available: https : / / arxiv . org / abs /
2012.07634.

[25] L. Yang, A. Ciptadi, I. Laziuk, A. Ahmadzadeh, and G. Wang, “BOD-
MAS: an open dataset for learning based temporal analysis of PE mal-
ware,” in Proc. IEEE 42nd Security and Privacy Workshops (SPW 2021),
pp. 78–84, 2021. DOI: 10.1109/SPW53761.2021.00020.

[26] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, “A Framework
for Efficient Mining of Structural Information to Detect Zero-Day Mali-
cious Portable Executables,” nexGIN RC Technical Report, TR-nexGINRC-
2009-21, 2009. [Online]. Available: http://nexginrc.org/Publications/
pub_files/tr21-zubair.pdf.

[27] Z. E. Xu, G. Huang, K. Q. Weinberger, and A. X. Zheng, “Gradient
Boosted Feature Selection,” in Proc. 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2014), pp. 522–
531, 2014. DOI: 10.1145/2623330.2623635.

[28] E. Tuv, A. Borisov, G. C. Runger, and K. Torkkola, “Feature Selection
with Ensembles, Artificial Variables, and Redundancy Elimination,”
J. Mach. Learn. Res., vol. 10, pp. 1341–1366, 2009. [Online]. Available:
https://dl.acm.org/citation.cfm?id=1755828.

[29] G. Ke, Q. Meng, T. Finley, et al., “Lightgbm: A highly efficient gradient
boosting decision tree,” in Proc. 31st Annual Conference on Neural Infor-
mation Processing Systems (NIPS 2017), pp. 3146–3154, 2017. [Online].
Available: https://proceedings.neurips.cc/paper/2017/hash/
6449f44a102fde848669bdd9eb6b76fa-Abstract.html.

[30] E. Raff, J. Sylvester, and C. Nicholas, “Learning the PE header, malware
detection with minimal domain knowledge,” in Proc. 10th ACM Work-
shop on Artificial Intelligence and Security (AISec@CCS 2017), pp. 121–132,
2017. DOI: 10.1145/3128572.3140442.

[31] Y. Chen, S. Wang, D. She, and S. Jana, “On Training Robust PDF Mal-
ware Classifiers,” in Proc. 29th USENIX Security Symposium (USENIX
Security 2020), pp. 2343–2360, 2020. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity20/presentation/chen-
yizheng.

https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16422
https://arxiv.org/abs/1804.04637
http://arxiv.org/abs/1804.04637
http://arxiv.org/abs/1804.04637
https://arxiv.org/abs/2012.07634
https://arxiv.org/abs/2012.07634
https://arxiv.org/abs/2012.07634
https://doi.org/10.1109/SPW53761.2021.00020
http://nexginrc.org/Publications/pub_files/tr21-zubair.pdf
http://nexginrc.org/Publications/pub_files/tr21-zubair.pdf
https://doi.org/10.1145/2623330.2623635
https://dl.acm.org/citation.cfm?id=1755828
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://doi.org/10.1145/3128572.3140442
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-yizheng
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-yizheng
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-yizheng

Bibliography 64

[32] S. E. Coull and C. Gardner, “Activation Analysis of a Byte-Based Deep
Neural Network for Malware Classification,” in 40th IEEE Security and
Privacy Workshops (SPW 2019), pp. 21–27, 2019. DOI: 10 . 1109 / SPW .
2019.00017.

[33] E. M. Rudd, F. N. Ducau, C. Wild, K. Berlin, and R. E. Harang, “ALOHA:
auxiliary loss optimization for hypothesis augmentation,” in Proc. 28th
USENIX Security Symposium (USENIX Security 2019), pp. 303–320, 2019.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity19/
presentation/rudd.

[34] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon,
“Dynamic graph CNN for learning on point clouds,” ACM Trans. Graph.,
vol. 38, no. 5, 146:1–146:12, 2019. DOI: 10.1145/3326362.

[35] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” In Proc. 7th International Conference on Learning Rep-
resentations (ICLR 2019), OpenReview.net, 2019. [Online]. Available: https:
//openreview.net/forum?id=ryGs6iA5Km.

[36] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and
S. Jaiswal, “graph2vec: Learning Distributed Representations of Graphs,”
CoRR, vol. abs/1707.05005, 2017. [Online]. Available: http://arxiv.
org/abs/1707.05005.

[37] F. Sun, J. Hoffmann, V. Verma, and J. Tang, “Infograph: Unsupervised
and semi-supervised graph-level representation learning via mutual
information maximization,” in Proc. 8th International Conference on Learn-
ing Representations (ICLR 2020), pp. 1–16, 2020.

[38] L. Yang, W. Guo, Q. Hao, et al., “CADE: Detecting and Explaining Con-
cept Drift Samples for Security Applications,” in Proc. 30th USENIX
Security Symposium (USENIX Security 2021), pp. 2327–2344, 2021. [On-
line]. Available: https://www.usenix.org/conference/usenixsecurity21/
presentation/yang-limin.

[39] M. Dib, S. Torabi, E. Bou-Harb, N. Bouguila, and C. Assi, “Evoliot: A
self-supervised contrastive learning framework for detecting and char-
acterizing evolving iot malware variants,” in Proc. ASIA CCS ’22: ACM
Asia Conference on Computer and Communications Security, pp. 452–466,
2022.

[40] Y. Gao, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Unsupervised
Graph Contrastive Learning with Data Augmentation for Malware Clas-
sification,” in Proc. 16th International Conference on Emerging Security In-
formation, Systems and Technologies (SECURWARE 2022), IARIA, 2022,
pp. 41–47, ISBN: 978-1-68558-007-0. [Online]. Available: https://www.
thinkmind.org/articles/securware_2022_1_70_30034.pdf.

[41] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM Comput. Surv.,
vol. 44, no. 2, 6:1–6:42, 2012. DOI: 10.1145/2089125.2089126. [Online].
Available: https://doi.org/10.1145/2089125.2089126.

https://doi.org/10.1109/SPW.2019.00017
https://doi.org/10.1109/SPW.2019.00017
https://www.usenix.org/conference/usenixsecurity19/presentation/rudd
https://www.usenix.org/conference/usenixsecurity19/presentation/rudd
https://doi.org/10.1145/3326362
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
http://arxiv.org/abs/1707.05005
http://arxiv.org/abs/1707.05005
https://www.usenix.org/conference/usenixsecurity21/presentation/yang-limin
https://www.usenix.org/conference/usenixsecurity21/presentation/yang-limin
https://www.thinkmind.org/articles/securware_2022_1_70_30034.pdf
https://www.thinkmind.org/articles/securware_2022_1_70_30034.pdf
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1145/2089125.2089126

Bibliography 65

[42] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for mal-
ware detection,” in Proc. 23rd Annual Computer Security Applications
Conference (ACSAC 2007), IEEE Computer Society, pp. 421–430, 2007.
DOI: 10.1109/ACSAC.2007.21. [Online]. Available: https://doi.org/
10.1109/ACSAC.2007.21.

[43] Y. Gao, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Malware De-
tection Using Gradient Boosting Decision Trees with Customized Log
Loss Function,” in Proc. 35th International Conference on Information Net-
working (ICOIN 2021), IEEE, 2021, pp. 273–278. DOI: 10.1109/ICOIN50884.
2021.9333999.

[44] Y. Gao, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Malware De-
tection Using LightGBM With a Custom Logistic Loss Function,” IEEE
Access, vol. 10, pp. 47 792–47 804, 2022. DOI: 10.1109/ACCESS.2022.
3171912.

[45] M. Terada, M. Akiyama, T. Matsuki, M. Hatada, and Y. Shinoda, “MWS
Datasets for Anti-Malware Research -Contribution to the community
and its challenges- (in Japanese),” IPSJ SIG Technical Report, vol. 2020-
IFAT-139, no. 8, pp. 1–6, 2020.

[46] A. Test, Malware Statistics & Trends Report | AV-TEST, 2022. [Online].
Available: https://www.av-test.org/en/statistics/malware/.

[47] Y. Gao, Z. Lu, and Y. Luo, “Survey on malware anti-analysis,” in Proc.
IEEE 5th International Conference on Intelligent Control and Information
Processing, pp. 270–275, 2014. DOI: 10.1109/ICICIP.2014.7010353.

[48] J. Zhang, “Machine Learning With Feature Selection Using Principal
Component Analysis for Malware Detection: A Case Study,” CoRR,
vol. abs/1902.03639, 2019. arXiv: 1902.03639. [Online]. Available: http:
//arxiv.org/abs/1902.03639.

[49] Y. Gao, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Malware Detec-
tion using Attributed CFG Generated by Pre-trained Language Model
with Graph Isomorphism Network,” in Proc. 46th IEEE Annual Comput-
ers, Software, and Applications Conferenc (COMPSAC 2022), IEEE, 2022,
pp. 1495–1501. DOI: 10.1109/COMPSAC54236.2022.00237.

[50] Y. Gao, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Malware De-
tection by Control-Flow Graph Level Representation Learning With
Graph Isomorphism Network,” IEEE Access, vol. 10, pp. 111 830–111 841,
2022. DOI: 10.1109/ACCESS.2022.3215267.

[51] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm:
Deep self-attention distillation for task-agnostic compression of pre-
trained transformers,” in Proc. 34th Advances in Neural Information Pro-
cessing Systems (NeurIPS 2020), vol. 33, pp. 5776–5788, 2020. [Online].
Available: https://proceedings.neurips.cc/paper/2020/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.1109/ICOIN50884.2021.9333999
https://doi.org/10.1109/ICOIN50884.2021.9333999
https://doi.org/10.1109/ACCESS.2022.3171912
https://doi.org/10.1109/ACCESS.2022.3171912
https://www.av-test.org/en/statistics/malware/
https://doi.org/10.1109/ICICIP.2014.7010353
https://arxiv.org/abs/1902.03639
http://arxiv.org/abs/1902.03639
http://arxiv.org/abs/1902.03639
https://doi.org/10.1109/COMPSAC54236.2022.00237
https://doi.org/10.1109/ACCESS.2022.3215267
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Bibliography 66

[52] M. Togninalli, M. E. Ghisu, F. Llinares-López, B. Rieck, and K. M. Borg-
wardt, “Wasserstein weisfeiler-lehman graph kernels,” in Proc. 33rd
Advances in Neural Information Processing Systems (NeurIPS 2019), vol. 32,
pp. 6436–6446, 2019. [Online]. Available: https://proceedings.neurips.
cc/paper/2019/hash/73fed7fd472e502d8908794430511f4d-Abstract.
html.

[53] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings us-
ing siamese bert-networks,” in Proc. 9th International Joint Conference on
Natural Language Processing (IJCNLP 2019), pp. 3980–3990, 2019. DOI:
10.18653/v1/D19-1410.

[54] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 855–864, 2016.

[55] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” CoRR, vol. abs/1807.03748, pp. 1–13,
2018.

[56] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph con-
trastive learning with augmentations,” CoRR, vol. abs/2010.13902, pp. 1–
12, 2020.

[57] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks,” CoRR, vol. abs/1908.10084, pp. 1–11,
2019.

[58] Y. Zhu, Y. Xu, Q. Liu, and S. Wu, “An empirical study of graph con-
trastive learning,” CoRR, vol. abs/2109.01116, pp. 1–25, 2021. arXiv:
2109.01116. [Online]. Available: https://arxiv.org/abs/2109.01116.

https://proceedings.neurips.cc/paper/2019/hash/73fed7fd472e502d8908794430511f4d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/73fed7fd472e502d8908794430511f4d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/73fed7fd472e502d8908794430511f4d-Abstract.html
https://doi.org/10.18653/v1/D19-1410
https://arxiv.org/abs/2109.01116
https://arxiv.org/abs/2109.01116

67

Acknowledgements
First and foremost I am extremely grateful to my supervisors, Prof. Hajime
Shimada, Prof. Yukiko Yamaguchi and Prof. Hirokazu Hasegawa for their
invaluable advice, continuous support, and patience during my PhD study.
I would also like to thank Prof. Tutomu Murase for his support on my study
and daily life. Their immense knowledge and plentiful experience have en-
couraged me in all the time of my academic research and daily life. Besides
my supervisors, I would like to thank the examiners of my thesis, Prof. Yuichi
Kaji and Prof. Takahiro Katagiri for examining this thesis.

I would also like to express my sincere gratitude to the “Interdisciplinary
Frontier Next-Generation Researcher Program of the Tokai Higher Education
and Research System.”, for providing me the opportunity to pursue a higher
academic degree.

I would like to thank all my friends, especially Dr. Jiquan Xie and Zhen-
guo Hu. It is their kind help and support that have made my study and life
in the Japan a wonderful time.

Finally, I would like to express my gratitude to my parents. Without
their tremendous understanding and encouragement in the past few years,
it would be impossible for me to complete my study.

68

List of Publications

Journals Articles

[1] Y. Gao, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Malware De-
tection Using LightGBM With a Custom Logistic Loss Function,” IEEE
Access, vol. 10, pp. 47 792–47 804, 2022. DOI: 10.1109/ACCESS.2022.
3171912.

[2] Y. Gao, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Malware De-
tection by Control-Flow Graph Level Representation Learning With
Graph Isomorphism Network,” IEEE Access, vol. 10, pp. 111 830–111 841,
2022. DOI: 10.1109/ACCESS.2022.3215267.

International Conference Proceedings

[1] Y. Gao, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Unsupervised
Graph Contrastive Learning with Data Augmentation for Malware Clas-
sification,” in Proc. 16th International Conference on Emerging Security In-
formation, Systems and Technologies (SECURWARE 2022), IARIA, 2022,
pp. 41–47, ISBN: 978-1-68558-007-0. [Online]. Available: https://www.
thinkmind.org/articles/securware_2022_1_70_30034.pdf.

[2] Y. Gao, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Malware Detec-
tion using Attributed CFG Generated by Pre-trained Language Model
with Graph Isomorphism Network,” in Proc. 46th IEEE Annual Comput-
ers, Software, and Applications Conferenc (COMPSAC 2022), IEEE, 2022,
pp. 1495–1501. DOI: 10.1109/COMPSAC54236.2022.00237.

[3] Y. Gao, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Malware De-
tection Using Gradient Boosting Decision Trees with Customized Log
Loss Function,” in Proc. 35th International Conference on Information Net-
working (ICOIN 2021), IEEE, 2021, pp. 273–278. DOI: 10.1109/ICOIN50884.
2021.9333999.

Domestic Conference Proceedings

[1] Y. Gao, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Gradient Boost-
ing Decision Tree Ensemble Learning for Malware Binary Classifica-
tion,” in Proc. Computer Security Symposium (CCS 2020), 2020, pp. 589–
595. [Online]. Available: https://cir.nii.ac.jp/crid/1050292572111463552?
lang=en.

https://doi.org/10.1109/ACCESS.2022.3171912
https://doi.org/10.1109/ACCESS.2022.3171912
https://doi.org/10.1109/ACCESS.2022.3215267
https://www.thinkmind.org/articles/securware_2022_1_70_30034.pdf
https://www.thinkmind.org/articles/securware_2022_1_70_30034.pdf
https://doi.org/10.1109/COMPSAC54236.2022.00237
https://doi.org/10.1109/ICOIN50884.2021.9333999
https://doi.org/10.1109/ICOIN50884.2021.9333999
https://cir.nii.ac.jp/crid/1050292572111463552?lang=en
https://cir.nii.ac.jp/crid/1050292572111463552?lang=en

	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Problem
	Motivation
	Contribution
	Thesis Outline

	Related Work
	Static Malware Analysis
	Dynamic Malware Analysis
	Malware Feature Extraction
	Surface Analysis Feature
	Control-Flow Graph
	Network Traffic

	Large-scale Malware Detection and Classification
	Supervised Learning
	Self-Supervised Learning

	Custom Loss Function of GBDT for Malware Detection
	Introduction
	Proposed GBDT-based Custom Logistic Loss Function
	Evaluation Environment
	Proposed Cost-sensitive Loss Function

	Experiment Setup
	Datasets and Preprocessing
	Features
	Models and Parameters
	Evaluation Metric
	Experimental Results

	Discussion
	EMBER Dataset Results Analysis
	FFRI Dataset Results Analysis
	Hybrid Usage with Different Custom Models

	Conclusion

	Malware Control-Flow Graph Level Representation Learning
	Introduction
	Proposed GIN-based Static PE Malware Detection System
	Preliminary GNN Summary
	Proposed System Architecture

	Implementation Details
	Malware Geometric Dataset
	Graph Feature Extraction Module
	Graph Data Generation Module
	Graph Classification Module

	Experimental Evaluation
	Evaluation Metrics
	Evaluation Results

	Discussion
	Conclusion

	Graph Contrastive Learning for Malware Classification
	Introduction
	Proposed Malware GraphCL with Data Augmentations
	Raw Graph Generation
	Data Augmentation for Graphs
	Graph Contrastive Learning
	Graph Classification

	Implementation Details
	Malware Geometric Multi-Class Dataset
	Pre-trained Language Model MiniLM

	Evaluation
	Evaluation Metric
	Evaluation Results

	Discussion
	Conclusion

	Conclusion
	Bibliography
	Acknowledgements
	List of Publications

