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Abstract

As one of the most promising technologies in the field of computer vision and ar-

tificial intelligence, face recognition has been widely considered by academia and

industry for many years. At present, face recognition under constrained environment

has achieved promising results, and many products with face recognition technol-

ogy are widely used in our daily life. However, surveillance face recognition is

still a challenging problem, especially for unconstrained surveillance scenes. Dif-

ferent from constrained face recognition, where a user is expected to cooperate with

the machine to complete the recognition, unconscious surveillance face recognition

expects unconstrained scenarios without cooperative users, which can suffer from

extremely low quality for each frame, e.g., various occlusions, changing illumina-

tions, dramatic pose variations, especially when a large part of the face is covered

by wearing masks, for example, during the COVID-19 pandemic. On the contrary,

abundant temporal and multi-view information usually exists between surveillance

video frames, which may bring potential to boost accuracy in unconstrained surveil-

lance face recognition.

The main objective of this thesis is to improve the robustness of unconscious face

recognition for video surveillance quantitatively and qualitatively. Despite the suc-

cess of deep learning models under constrained face recognition scenarios, the deep

features still demonstrate imperfect invariance to wearing a mask, where the whole

face image is not available for description. However, a surveillance video provides

us with abundant complementary information across frames compared with a single

image. Therefore, this thesis focuses on face recognition with masked faces and fea-

ture aggregation-based face recognition between multiple fames. Two methods are

proposed. Firstly, a masked face recognition method with mask transfer and self-

attention, and secondly, a content-aware contribution estimation feature aggregation

for surveillance face recognition.

The first research work presented in this thesis proposes a method used for mitigating

the negative effects of mask defects on face recognition. Firstly, a low-cost, accurate
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method of masked face synthesis, i.e., mask transfer, is proposed for data augmenta-

tion. Secondly, an Attention-aware Masked face recognition Network (AMaskNet)

model is proposed to improve the performance of masked face recognition, which

includes two modules: a feature extractor and a contribution estimator. Therein,

the contribution estimator is employed to learn the contribution of the feature el-

ements, thus achieving refined feature representation by simple matrix multiplica-

tions. Meanwhile, the end-to-end training strategy is utilized to optimize the entire

model. Finally, a mask-aware similarity Matching Strategy (MS) is adopted to im-

prove the performance in the inference stage. Experiments show that the proposed

method consistently outperforms comparative methods on three masked face recog-

nition datasets: RMFRD, COX, and Public-IvS. Meanwhile, qualitative analysis ex-

periments using CAM indicate that the contribution learned by AMaskNet is more

conducive to masked face recognition.

The second research work presented in this thesis proposes a content-aware fea-

ture aggregation scheme to aggregate complementary information between different

frames. The difficulties in video-based face recognition, such as dramatic pose vari-

ations and low quality, can be alleviated by leveraging the rich complementary infor-

mation between the frames. However, limited by the mini-batch training strategy, the

current deep learning methods only utilizes the frames in each batch during training,

which ignore the content of the entire video. Therefore, firstly, a two-branch structure

is designed as the Content-aware feature Aggregation Network (CAN). Secondly, a

content-aware training strategy using a content bank is proposed, which alleviates the

limitation of minibatch samples by using the content of the entire video or several

images belonging to the same identity and thus can estimate the global contribution.

Comparative studies on benchmark datasets: IJB-C, YouTube Face (YTF), PaSC

and COX, confirm that the proposed approach outperforms comparative methods.

Meanwhile, qualitative analysis on Multi-PIE dataset indicates that the contribution

learned by the CAN is reasonable and beneficial to video face recognition.

Based on the above research topics, an unconscious access control of a laboratory

gate was implementated by setting surveillance cameras and using the trained models
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to analyze and verify the feasibility of the proposed methods in practical application

scenarios.

In summary, this thesis presents methods towards robust face recognition for video

surveillance. Specifically, the prototype also shows good recognition performance

for the face with masks caused, for example, by the COVID-19 pandimic. Firstly,

Chapter 1 provides introduction, background, research topics and main contributions

of this research. Then, Chapter 2 introduces the researches related to this thesis.

Furthermore, the proposed methods for masked face recognition and content-aware

feature aggregation-based video face recognition are described in detail in Chapter

3 and Chapter 4, respectively. Besides, Chapter 5 concludes the thesis by summa-

rizing the research contributions and providing possible research directions in the

future. Finally, a prototype of unconscious face recognition in surveillance scenes is

intorduced in the Appendix.
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Chapter 1

Introduction

With the development of artificial intelligence and computer vision, face recognition

has been widely considered by academia and industry. At present, face recognition

has achieved promising results, and many products with face recognition technology

are widely used in our daily life. However, most current face recognition products

assume constrained scenarios with cooperative users, that is, the users need to co-

operate with the machine to complete the recognition, and the face image should

not contain extreme occlusion, pose, expression, illumination, and so on, as shown

in Figure 1.1(a). Face recognition under unconstrained scenarios with uncooperative

users for video surveillance, that is, unconscious surveillance face recognition, is still

a very challenging problem, as shown in Figure 1.1(b). Different from constrained

and cooperative face recognition, the unconscious surveillance face recognition can

suffer from extremely low quality for each frame, e.g., various occlusion, chang-

ing illumination, dramatic pose, especially when a large part of the face is covered

by wearing a mask, for example, during the COVID-19 pandemic. On the con-

trary, abundant temporal and multi-view information usually exists between surveil-

lance video frames, which may bring potential to boost performance in unconscious

surveillance face recognition. This thesis intensively studies the robust unconscious

face recognition for video surveillance.

1



2 Chapter 1. Introduction

(a) Constrained and cooperative
face recognition [12].

(b) Unconscious surveillance face recogni-
tion [13].

Figure 1.1: Example comparisons of constrained and cooperative face recognition
and unconscious surveillance face recognition in real-world application scenarios.

(Best viewed in color)

In this chapter, Section 1.1 explains the background of this thesis, including the

history and breakthrough methods of traditional face recognition and deep learning-

based face recognition, and the challenges of current face recognition. Then, the

description of the research of this thesis followed by the important aspects consid-

ered in developing the method, are introduced in Section 1.2. Furthermore, general

descriptions of the research overview and proposed solutions are explained in Sec-

tion 1.3. Lastly, the structure of this thesis is presented in Section 1.4.

1.1 Background

With the development of human society, a variety of science and technology has

developed rapidly, especially information technology. Today, information products

play a vital role in our life, bringing convenience and rapidity to human life. For

example, people can pay online, work remotely, perform online social networking,

and so on. However, while information products are convenient for human life,

there is also an important problem, that is, security. How to confirm the identity

information of users quickly and accurately, has become a widespread concern in

academia and industry.
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In the past years, passwords have been the most popular authentication mechanism,

that is, through the matching of username and password for identity authentication

[1]. However, this type of authentication mechanism has drawbacks. First, pass-

words are easy to be stolen. Once the password is stolen, individuals or units will

suffer huge losses. Secondly, password setting often requires a combination of var-

ious characters, which is highly complex, making it difficult for users to remem-

ber. Especially in today’s information society, almost everyone will have various

accounts, and each account requires a unique password. If these passwords are set

consistently, the security will be reduced, but if the settings are inconsistent, it of-

ten brings memory problems, such as often confusing passwords or forgetting pass-

words. Therefore, it is necessary to find a more convenient, fast, user-friendly, and

safe authentication method.

With the development of password authentication, biometric authentication has been

widely studied and applied because of its uniqueness, measurability, and lifetime

invariance. Biometric identification technology mainly uses the humans’ physical or

behavioral traits, such as fingerprints, palm veins, iris, face, gait, DNA, voice, and so

on [14].

Among these biometric authentication technologies, face recognition has unique ad-

vantages over the others especially during the COVID-19 pandemic. First, compared

with fingerprint recognition, the face features are relatively complex and less repro-

ducible. Secondly, compared with iris recognition and DNA recognition, face image

is easier to collect and can be quickly recognized, even if users do not cooperate at

a long distance. Meanwhile, we can obtain the user’s tag by image recognition and

semantic segmentation, such as identity, race, age, gender, emotion, behavior, and

so on [3]. Finally, compared with other biometrics, face recognition is non-contact,

highly efficient, user friendly, and so forth, which can eliminate the psychological

barriers of users and be easily accepted by them.

Face recognition is a long-standing research topic integrating artificial intelligence,

machine learning, video image processing, and other technologies, especially in the
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Figure 1.2: Development history of face recognition. (Best viewed in color)

field of computer vision. In the past several decades, face recognition has expe-

rienced four climaxes, and its development history is shown in Figure 1.2. Face

recognition based on deep learning has achieved a remarkable progress and dramat-

ically improved the state-of-the-art performance. Meanwile, the progress of face

recognition in academia has also promoted its application in real-world scenes. So

far, face recognition is a mature technology in the field of computer vision and can

be widely used in people’s lives, as shown in Figure 1.3. However, with the com-

mercial and practical use of the face recognition, many of the ideal assumptions of

academic research are being broken, and more and more challenging problems are

emerging in real-world applications. Real-world face recognition needs to pursue

the ultimate performance under unconstrained scenarios with uncooperative users,

for example, financial authentication and watch-list surveillance, demanding the ac-

curacy of matching at very low alarm rates, such as TAR@FAR=10−8 1. Therefore,

face recognition in a real-world application is still a huge challenge even with large-

scale training datasets, many well-designed loss functions, and deep learning tech-

nology. Thus, in recent years, face recognition has still been a hot research topic,

and attracts many researchers to study its challenging problems. Meanwhile, many

excellent achievements are published in top journals (TPAMI, TIP, PR) and top con-

ferences (CVPR, ICCV, ECCV) in the computer vision community every year.

In this section, the history and breakthrough methods of conventional face recog-

nition and deep learning-based face recognition are described in Section 1.1.1 and

1The true accept rate when the false accept rate equals 10−8.
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Figure 1.3: Examples of face recognition application scenarios. (Best viewed in
color)

Section 1.1.2, respectively. Then, the challenges of current face recognition are dis-

cussed.

1.1.1 Conventional face recognition

Conventional face recognition methods have attempted to recognize faces using one-

or two-layer representation learning, such as distribution of the dictionary atoms,

filtering responses, or histogram of the feature codes, which can be summed up as

face recognition based on shallow representation. They have developed in three-

stages, as follows:

(1) Stage 1: Methods based on geometric feature

The earliest research work on face recognition can be traced back at least to the re-

search in psychology in the 1950s. Bledsoe et al. [15] built the first semi-automatic

face recognition system at that time. At that time, the focus of face recognition

research was mainly to extract the geometric features of the face, such as the dis-

tance and ratio between the facial feature points, and the two-dimensional topolog-

ical structure composed of some feature points on the face, such as the points of

the nose and eyes, the corners of the mouth and the eyes, and so on. After that,

Kanade [16] developed the first complete face recognition system using computers

for his Ph.D dissertation at Kyoto University in 1973, which opened up the research

path in the face recognition research community. His thesis described a computer

program which performed a complex image processing task, which was to find the
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same person in a set of images taken by a TV camera. Generally speaking, the face

recognition research at this stage was basically based on the geometric structure of

the face and belongs to the primary face recognition.

(2) Stage 2: Methods based on subspace analysis

From 1991 to 1997, in the short period of six years, the research of face recognition

reached the second climax, and many representative face recognition algorithms ap-

peared. Firstly, Turk and Pentland [17] proposed the famous Eigenface algorithm,

and then many eigenface related face recognition technologies were proposed. In

1993, Brunelli and Poggio [18] showed that the template matching-based method

was superior to the features-based methods through experiments. The conclusion of

this work basically stopped the research of pure face recognition methods based on

structural features and made appearance-based face recognition the mainstream tech-

nology. In 1997, Belhumeur et al. [19] proposed the fisher face recognition method

to derive the minimum intra-class distance and the maximum inter-class distance,

where PCA and LDA were used to reduce and transform the face features. Based on

this idea, many researchers have proposed subspace discriminant model, direct LDA

discriminant method, and enhancement model.

These methods became the mainstream of face recognition in that period, and even

now, they are still one of the mainstream face recognition methods. During this pe-

riod, the Counterdrug Technology Transfer Program (CTTP) of the U.S. Department

of Defense launched another important work as a face recognition technology project

called FERET [20]. The main purpose of this project was to promote the research and

application of face recognition algorithms, and ultimately provide a reliable practi-

cal Automatic Face Recognition (AFR). This project was mainly composed of three

parts: The first one was to fund several face recognition studies, which enabled many

researchers to have sufficient funding to carry out face recognition research and en-

able them to quickly join the research field; The second one was to create the FERET

face image database [20], which provided a standard platform for the verification of

face recognition algorithms; The third one was to organize FERET face recognition
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performance evaluation, which provided a standard for face recognition testing. This

project had greatly promoted the development of face recognition technology. Mean-

while, the project also pointed out the next research direction of face recognition, that

is, face recognition in non-ideal environments such as complex lighting, multi-pose,

and complex expression. In conclusion, the research of face recognition became in-

creasingly popular following the idea of the historical Eigenface approaches [17] in

the early 1990s, which dominated the face recognition community in the late 1990s

and in the early 2000s. But, a well-known problem is that these theoretically plau-

sible holistic approaches cannot tackle the uncontrolled facial changes that deviate

from their previous assumptions.

(3) Stage 3: Methods based on local feature

During this period, the main contributions of face recognition technology were the

proposal of the 3-Dimensional Morphable Model (3DMM) and the use of Local Bi-

nary Pattern (LBP) features. In 1997, Wiskott et al. [21] proposed a face recognition

approach based on elastic matching, where a system was used to recognize faces

from a single image in a large dataset including one image per person. Based on

the Gabor wavelet transform, the face was represented by a marker map. The elastic

graph matching process was used to extract the image graphs of new faces, which can

be compared by a simple similarity function. This method has derived a series of face

recognition algorithms, which has played a certain role in promoting the develop-

ment of face recognition. In 1999, Blanz and Vetter et al. [22] proposed the 3DMM,

which opened the journey of researchers for face recognition under multi-pose and

complex lighting conditions. Blanz found through experiments that 3D modeling of

a human face using 3DMM achieved a good recognition rate on CMU-PIE [23] and

FERET databases. In 2001, Viola and Jones proposed a simple face detector, called

V-J face detection [24]. They used rectangle feature and AdaBoost algorithm to re-

alize it. The speed of this method in calibrating the front face could reach more than

1,000 frames per second, which basically achieved real-time processing. This work

was published in at ICCV that year. The idea of this work provides a good founda-

tion for back-end face recognition and points out a new way for the development of
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face recognition. In the same year, Shashua et al. [25] proposed a face recognition

technology based on quotient image, which greatly promoted the development of il-

lumination invariant face recognition. In 2006, Ahonen et al. applied LBP features

to face recognition [26]. Since then, various extensions [27, 28] based on LBP fea-

tures have achieved robust performance in pose invariant face recognition, greatly

promoting the development of face recognition. To summarize, in the early 2010s,

learning-based local descriptors were widely used in the face recognition commu-

nity [29, 30, 31], where local filters were built for better distinctive features and

the encoding codebook was learned for better compactive features. However, these

methods are still considered as shallow representations, which have an unavoidable

limitation on robustness of complex non-linear facial appearance changes.

1.1.2 Deep learning-based face recognition

The previous three-stage face recognition methods can be summed up as face recog-

nition based on shallow representation, which attempt to recognize face by one- or

two-layer representation. However, the face features of those methods are all based

on manual design, and their robustness to non-linear changes in face appearance and

external conditions is inevitably limited. Good results can be achieved under limited

conditions, but the effect is still not ideal under non-limited conditions. For example,

in the Labeled Faces in the Wild (LFW) dataset [32] proposed in 2008, the human

recognition rate was 97.5%, but the best algorithm at that time could not reach this

recognition rate.

But all that changed in the year of 2012, after AlexNet [33] won the ImageNet com-

petition and showed a large performance gap with the second-place using deep learn-

ing [33], which opened a new milestone in computer vision. Deep learning methods,

such as Convolutional Neural Network (CNN), use cascaded multi-layer processing

units for face feature extraction. They learn multi-level representation corresponding

to different abstraction levels, which is more consistent with people’s understanding
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Figure 1.4: Hierarchical architecture of face feature extraction using deep learning-
based methods. (Best viewed in color)

of images, as shown in Figure 1.4. The pixels are spliced into a hierarchical struc-

ture of facial representation. The model based on deep learning is composed of

multi-layer simulated neurons, which convolute and pool inputs. In this process, the

receptive field of simulated neurons expands in size to integrate low-level primary el-

ements into various facial attributes, and finally forward the extracted features to one

or more fully connected layers at the top of the network. The output is a compressed

feature vector representing the face. This kind of deep learning representation is

widely used for face recognition, and has achieved good performance. Inspired by

this work, most of research focus has shifted to deep-learning-based methods, and

the performance was dramatically improved. After that, researchers proposed vari-

ous network structures and loss functions, which greatly improved the performance

of face recognition.

In 2014, Facebook proposed the Deepface [34] model, which introduced the deep

learning technology into face recognition for the first time and obtained a high accu-

racy rate on the challenging and famous LFW dataset. For the first time, it achieved

performance close to human recognition under unconstrained conditions (human:
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97.53% [35] vs. Deepface [34]: 97.35%). Deepface [34] can be considered as the

foundation work of CNN applied to face recognition, which opened a new path for

the development of face recognition. In the same year, the Chinese University of

Hong Kong (CUHK) proposed DeepID [35], which took an approach of face im-

age segmentation to divide the face image into multiple image blocks and send the

segmented image to the deep network for training. This method improved the perfor-

mance of unrestricted face recognition to a new level. Since then, face recognition

has entered the era of face recognition based on deep learning. Most of the research

focus has turned to the methods based on deep learning. In 2015, Google proposed

FaceNet [36], trained on a massive face dataset with more than 200 million faces

collected by themselves and used the triple loss function in the training. Finally, it

achieved 99.65% accuracy on the LFW dataset, which greatly exceeded the recog-

nition accuracy of human eyes. In only five years, the face recognition accuracy has

increased to more than 99.80% on the LFW dataset, which is nearly perfect.

In the academic community, face recognition has been a long-standing research topic

in top journals (TPAMI, TIP, PR) and top conferences (CVPR, ICCV, ECCV) in

computer vision community. At present, due to the excellent performance of deep

neural network models [37, 38, 39, 40], sophisticated design of loss functions [1,

41, 42], and large-scale training datasets, e.g., MS-Celeb-1M [43], DeepGlit [44],

Glint360K [45], and WebFace260M [46], face recognition has made good progress,

and under certain conditions, ideal recognition results can be obtained.

In summary, deep learning technology has changed the research field of face recogni-

tion in almost all aspects such as algorithms, datasets, and even evaluation protocols,

and has brought it to a new climax since 2012.

1.1.3 Is face recognition really a solved problem?

With the development of academic research, face recognition has also been widely

used in industry, and more and more products using face recognition technology have

entered people’s daily life, especially since the COVID-19 pandimic. For example,



1.1. Background 11

travelers can register necessary data through face recognition at a terminal of Narita

Airport near Tokyo [47], as shown in Figure 1.3(a); Alipay introduces facial recogni-

tion for payments in China [48], as shown in Figure 1.3(b); Fujitsu delivers cashless

and hygienic retail experience for masked shoppers using multi-factor face and palm

biometric authentication technology [49], as shown in Figure 1.3(c).

One may argue that the most advanced face recognition algorithm, especially with

the help of deep learning and large-scale datasets, has reached sufficient maturity and

application readiness level, which is proved by its almost saturated performance on

large-scale public benchmark challenge, such as MegaFace [50]. Therefore, the face

recognition problem should be considered as been tackled, and the remaining work

is mainly concentrated in the system production engineering.

However, most current face recognition products need to be under constrained sce-

narios with cooperative users, that is, the users are expected to cooperate with the

machine to complete the recognition and the face images cannot include extreme oc-

clusion, pose, expression, illumination, and so on. For example, the user’s face must

be kept at a certain distance from the camera and face front to the camera. What

is more, the user needs to remove the mask with the risk of spreading the virus un-

der the COVID-19 pandemic, as shown in Figure 1.3(a). If the user’s face cannot

be placed in the proper position specified by a face box on the screen or is not fac-

ing the camera, face payment often fails, as shown in Figure 1.3(b). However, In

most real-world applications of face recognition, face images can also come from

diverse sources, e.g, surveillance cameras, mobile phone cameras, and have diverse

different qualities, e.g, different expressions, posture changes, blur, occlusion. Al-

though remarkable progress for constrained face recognition has been achieved with

deep learning and large-scale datasets [1, 41], unconstrained face recognition is still

a challenging problem. For example, Cheng et al. [13] have verified that the accu-

racies on TinyFace [51] and QUML-SurFace [13] are about 25% lower than that on

MegaFace [50] or LFW [32] datasets. Therefore, unconstrained and uncooperative

face recognition under the surveillance scenario is still difficult.
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1.2 Unconscious Face Recognition for Video Surveil-

lance

With the rapid development of video surveillance technology, the number of installed

cameras for video surveillance is increasing in public places. In video surveillance,

capture conditions typically range from semi-controlled situation with one person

in the scene, e.g., terminals at airports and passport inspection lanes, to uncontrolled

cluttered and free-flow scenes, e.g., subway stations and airport baggage claim areas.

Due to the absence of uncontrolled conditions and user cooperation, face recognition

in Video Surveillance (VS) is a less obtrusive technique, which has received more

and more attentions.

Although remarkable progress has been achieved in face recognition technology due

to the emergence of large-scale datasets, deep learning-based methods [33, 37, 39,

52] and various effective loss functions, e.g. SphereFace [1] or ArcFace [41], most

of them are designed for still face recognition. When extending from the still to the

video scenario in video surveillance, many approaches tend to ignore the peculiar-

ities of videos compared to still images. However, unconscious surveillance face

recognition is evidently more challenging. Images in standard still face recognition

datasets are usually captured under good conditions or even framed by professional

photographers, e.g., LFW [32] dataset. Different from still face recognition, video

face recognition suffers from extremely low quality in each frame, e.g., various oc-

clusion, changing illumination, dramatic pose variations, especially when a large part

of the face is covered by masks, for example due to the COVID-19 pandemic. On

the contrary, abundant temporal and multi-view information usually exists between

surveillance video frames, which may bring potential to boost accuracy in uncon-

strained surveillance face recognition. Hence, it is necessary to design a method to

overcome challenges for effective and robust unconscious face recognition for video

surveillance.
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Figure 1.5: Deep face recognition system with face detection, alignment, anti-
spoofing. (Best viewed in color)

The research presented in this thesis aims to contribute to the robust unconscious face

recognition for video surveillance, which can be deployed on productions with high

performance and efficient computation. Unconscious face recognition, also known as

unconstrained and uncooperated face recognition, refers to a face recognition model

that does not require constrained scenarios with cooperative users, that is, the users

are not expected to cooperate with the machines to complete the recognition and the

face recognition model does not need to be installed in a fixed scene.

The description of face recognition is introduced below.

Face recognition systems can be mainly divided into four modules: face detection,

face alignment, face anti-spoofing recognition, and face recognition, as shown in

Figure 1.5. Firstly, the face detection is applied to detect the face bounding box. Sec-

ondly, the detected face images are aligned to the normalized canonical coordinates.

Thirdly, the face anti-spoofing recognizer is used to recognize whether the detected

face is live or spoofed. Finally, the face recognition module is implemented with

these aligned face images. Among them, the face recognition module is the most

important module, which is the bottleneck for the current research on unconscious

surveillance face recognition to move towards practical applications. Therefore, this

thesis focuses on the face recognition module.

Furthermore, face recognition can be subdivided into face identification and face ver-

ification. In both cases, one set of known subjects is initially enrolled in the system
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Figure 1.6: Comparison of closed-set and open-set face recognition. [1] (Best
viewed in color)

(gallery), whereas a new subject (probe) is presented. Meanwhile, face verification

calculates one-to-one similarity between the gallery and the probe to determine if two

images belong to the same subject, while face identification calculates one-to-many

similarity to determine the specific identity of the probe’s face.

Depending on the test protocol, face recognition can be evaluated in either a closed-

set or an open-set setting, as shown in Figure 1.6. For closed-set protocols, all test

identities are predefined in the training set, which is natural to classify test face

images based on given identities. In this scenario, face verification is equivalent to

identifying a pair of faces respectively (see the left side of the Figure 1.6). Therefore,

closed-set face recognition can be well solved as a classification problem, where

features are expected to be separable. Meanwhile, for the open-set protocol, the test
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identities are usually disjoint between the test set and the training set, which makes

face recognition more challenging but closer to real-world applications. Since it is

not possible to classify faces into known identities in the training set, we need to

map faces to a distinct feature space. In this scenario, face identification can be

considered as performing face verification between the probe face and each identity

in the gallery (see the right side of the Figure 1.6). Open-set face recognition is

essentially a metric learning problem, where the key is to learn differentiated large

edge features.

In most real-world face recognition scenes, it is difficult to obtain user’s face image

for training. However, the open-set face recognition only needs each user to submit a

photo to the gallery. The face photos collected on site will be matched with the pho-

tos in the gallery. If it is the person with the highest similarity, then the recognition is

correct. This thesis focuses on the open-set face recognition for video surveillance.

The open-set face recognition model is a feature extractor, which is used to extract

the features of the probe image and the gallery images, and then uses the matching

method to calculate the similarity. It can be described as follows:

M
(
F (P (Ii)) , F

(
P
(
I j

)))
, (1.1)

where P(·) is a face processor to handle intra-class variations before training and

testing, e.g., illuminations, occlusions, poses, and expressions, Ii and I j represent two

face images, respectively, M(·) indicates the face matching algorithm and outputs the

similarity scores of face features to identify the specific identity of faces, e.g., cosine

similarity for matching. F(·) is a face extractor to extract the discrimination identity

features. The feature extractor is trained as a classification task using margin-based

loss functions during the training, e.g., Arcface Loss, and is used to extract features

of faces when testing.

Unlike object classification, the test identities are usually disjoint with the training

data in face recognition, which makes the learned classifier unusable to recognize

the test faces. Therefore, the face matching algorithm is an essential part of face
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recognition. In these steps, the core step is to obtain a feature extractor, which is

expected to have a maximum within-class distance that is smaller than the minimum

interclass distance under a suitably chosen metric space.

As explained in the previous descriptions, the main objective of this thesis is to im-

prove the performance of unconscious surveillance face recognition. This research

focuses on the most challenging module of face recognition. Several aspects that are

of major concern in developing methods for realizing unconscious surveillance face

recognition are described in the next subsections.

1.3 Research Overview

As described in the previous section, face recognition has been extensively studied

since the 1960s, and increasingly deployed in social applications within the last sev-

eral years. Compared with fingerprints, iris, gait, and other biometric recognition

technologies, face recognition is non-contact, highly efficient, user friendly, and so

forth, and thus has been widely applied in access control and security authentication

in public places, especially since the COVID-19 pandemic.

However, as described in the previous section, the current face recognition method

has poor scalability to real-world surveillance face recognition due to face mask and

low-quality images. Typical real-world face images are captured in unconstrained

wide-field surveillance video and images, which may be one of the most impor-

tant face recognition application fields in practice. Specifically, face recognition in

unconstrained surveillance images is far from satisfactory, especially in large-scale

dataset situations. Different from identifying high-quality Web celebrity images with

limited noise, unconscious surveillance face recognition remains extremely challeng-

ing and open. This is because the surveillance video data are characterized by low-

quality images with heavy noise, subject to poor imaging conditions giving rise to

unconstrained pose, expression, occlusion, illumination, and background clutter.
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The main objective of this study is to improve the performance of unconscious

surveillance face recognition under unconstrained and uncooperative scenes. This

thesis mainly focuses on the following two research topics:

[1]. Masked face recognition. Face masks bring a new challenge to existing

commercial face recognition techniques, especially under the COVID-19 pan-

demic. Since face recognition becomes more difficult when a large part of

the face is covered by a mask, it is essential to study the effect of wearing

face masks on the behavior of face recognition systems and design mitigation

techniques to offset the inevitable performance loss.

[2]. Feature aggregation in video face recognition. Different from still face

recognition, video face recognition often suffers from low quality, dramatic

pose variations, occlusion, and so on. On the contrary, abundant temporal and

multi-view information usually exists in the video, which may bring potential

to boost accuracy in video face recognition.

Figure 1.7 shows the relationship between the problems and the proposed solutions

discussed in this thesis. In this section, Research Topic 1 is firstly introduced in

Section 1.3.1 , and then, Research Topic 2 is introduced in Section 1.3.2.

1.3.1 Research Topic 1: Proposal of a masked face recognition

approach with mask transfer and self-attention

The COVID-19 pandemic has caused a global impact: The World Health Organiza-

tion (WHO) and the U.S. Centers for Disease Control and Prevention (CDC) have

suggested everyone should wear a mask in a public setting especially when other

social distancing measures are difficult to maintain [53]. Face recognition is non-

contact, highly efficient, user friendly, and so forth, and thus has been widely applied

in access control and security authentication in public places. However, masks bring
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Figure 1.7: Core of the research for developing the robust unconscious face recog-
nition for video surveillance under the COVID-19 pandemic in this thesis. (Best

viewed in color)

a new challenge to existing commercial face recognition techniques. Face recog-

nition becomes more difficult when a large part of the face is covered by a mask.

Therefore, it is essential to study the effect of masks on the behavior of face recog-

nition systems and design mitigation techniques to offset the inevitable performance

loss.

Deep-learning-based approaches predominate in the task of face recognition due to

the emergence of advanced CNN, well-designed loss functions [1, 54, 55], and large-

scale datasets [41, 56]. Despite the success of deep learning models under general

face recognition scenarios, the deep features still demonstrate imperfect invariance to

face masks, where the whole face image cannot be used for the description. There-

fore, face masks trigger a significant research challenge: Firstly, it is necessary to

collect a large-scale training dataset, which includes faces with different types of

masks. In order to collect such a large-scale training dataset, on the one hand, it is

time consuming and incurs higher labour cost, and on the other hand, maintaining

the diversity of data in such datasets is a slow process. Therefore, a low-cost, con-

venient face data augmentation method is needed as a matter of urgency. Secondly,
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it is essential to mitigate the performance loss from the perspective of model design

according to the characteristics of masks.

Some methods of simulating a masked face [57, 58, 59, 60] have been proposed

for face data augmentation. However, since these methods only utilize affine trans-

formation, the added masks often look unnatural. Furthermore, they ignore pose

and illumination consistency, thus leading to biased masked face augmentation. Re-

cently, Generative Adversarial Network (GAN) has become a powerful technique for

data augmentation [61]. However, GAN-based methods suffer from mode collapse

deeply, which usually manifests that the images generated by the generator tend to

be highly similar amongst them, even though their corresponding latent vectors are

very different. In addition, GAN-based methods are generally slow and difficult to

run online in recognition. On the contrary, the method proposed in this thesis can

quickly collect various types of mask images and can transfer them to the face image

in run-time for the mask-aware similarity matching strategy in the inference stage.

Based on the above research questions, as Research Topic 1, the effect of wearing

a mask on face recognition is qualitatively and quantitatively analyzed, and then

a method for mitigating the negative effects of mask defects on face recognition

is proposed. Firstly, a low-cost, accurate method of mask transfer is proposed for

masked face synthesis by considering pose and illumination consistency. Secondly,

the Attention-aware Masked face recognition Network (AMaskNet) model is de-

signed to improve the performance of masked face recognition. This model includes

two modules, a feature extractor, and a contribution estimator, wherein the latter is

employed to learn the contribution of each spatial region which is then combined

with the feature to improve its representation capability. An end-to-end training

strategy is adopted to optimize the whole network. Finally, a mask-aware simi-

larity matching strategy is proposed to improve the performance in the inference

stage. The experiments show that the proposed method consistently outperforms

on three masked face recognition datasets: RMFRD [6], COX [5], and Public-IvS

[62]. Meanwhile, qualitative analysis experiments using Class Activation Mapping
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(CAM) [7] indicates that the contribution learned by the AMaskNet is beneficial to

masked face recognition. The main contributions are summarized as:

[1]. A low-cost, accurate mask transfer method for masked face data augmentation

is proposed by considering pose and illumination consistency. This method

can add a mask from any face image with a mask to any face image without a

mask.

[2]. Qualitative and quantitative experiments are conducted to analyze the effect of

wearing face masks on the behavior of face recognition systems.

[3]. AMaskNet is proposed to improve the performance of masked face recogni-

tion.

[4]. A mask-aware similarity matching strategy is proposed for the inference stage,

which can be applied to any face recognition scene in which one image with a

face mask and the other without a face mask are present.

1.3.2 Research Topic 2: Proposal of a content-aware contribu-

tion estimation for feature aggregation in video face recog-

nition

Although considerable progress has been achieved in still face recognition owning

to the emergence of effective deep learning-based approaches [41, 42, 55, 56, 63,

64, 65, 66, 67], well-designed loss functions, and large-scale datasets, video face

recognition remains as a significant research challenge. Different from still face

recognition, video face recognition often suffers from low quality, dramatic pose

variations, occlusion, and so on. On the other hand, abundant temporal and multi-

view information usually exists in the video, which may bring potential to boost

accuracy in video face recognition.
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To efficiently use more discriminative information in the video, aggregation-based

methods [1, 68, 69, 70, 71, 72] have been widely adopted and impressive perfor-

mance is gained in video face recognition. The basic idea of the aggregation ap-

proach is to extract frame-level features at each frame, and then to aggregate them

across all frames to form a video-level feature. The most commonly used aggregation

technique is average pooling [73], where features of all frames are simply combined

with equal importance. However, low-quality frames would deteriorate the quality

of features, resulting in degraded performance of face recognition. Another aggre-

gation method is max pooling [74], which only uses the best quality frame feature

as video feature. However, the discriminative information contained in low-quality

frames is ignored which could be complementary to high-quality frames.

Recent advance has witnessed deep learning network as an adaptive weighting scheme

to aggregate all frame-level features together to form a compact and discriminative

video-level feature. However, limited by the mini-batch training strategy, the quality

prediction in the above methods only utilize video frames in each batch during train-

ing, which ignore the content of the entire video as well as all frames corresponding

to the subject, thus leading to a biased face quality estimation.

Therefore, it is essential to study video face recognition and design mitigation tech-

niques to alleviate the difficulties by leveraging the rich complementary information

between the frames.

Based on the above research questions, as Research Topic 2, a novelty feature ag-

gregation method is proposed for video-based face recognition by considering the

content of the entire video. Firstly, a Content-aware feature Aggregation Network

(CAN) is designed to learn the contribution for each frame in a video, in which

the features coming from multiple frames are adaptively aggregated into a compact

video-level feature. The network is composed of two branches; one is a feature

extractor to extract face feature from a single frame and the other is a contribution

estimator to estimate the image contribution. The video feature is then aggregated by

the features and contributions of all frames in a video clip. Secondly, a content-aware
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training strategy using a content bank is proposed, where not only the samples in each

mini-batch but also the content of the entire video clip are considered, thus achieves

a global contribution estimation scheme. In addition, in order to reduce the influence

of the long tail problem in the training corpus, i.e., DeepGlint [44] and Glint360K

[45] datasets, a balanced batch selection strategy is further carefully designed. The

qualitative analysis on the Multi-PIE [11] dataset shows that the contribution learned

by the CAN is reasonable in that it is closely related to image quality, and the quan-

titative experiments on benchmark datasets indicate that the proposed CAN achieves

significant perfomance. The main contributions are summarized as:

[1]. CAN is proposed to learn the contribution of each frame in a video, and the

features from multiple frames are adaptively aggregated into a compact video-

level feature based on their contributions.

[2]. A content-aware training strategy is proposed to achieve a global contribution

estimation scheme by leveraging the content of the entire video clip using a

content bank.

[3]. A balanced batch selection strategy is carefully designed to reduce the negative

impact of the long-tail dataset on performance.

1.4 Thesis Structure

This thesis consists of five chapters and an appendix. The concepts and relationships

between these chapters are visualized in Figure 1.8.

Chapter 1 has discussed the background of the research and described the overall

problems as well as the proposed solutions in this thesis. Chapter 2 provides the re-

lated technologies to the research topics of this thesis, and then reviews the existing

studies which are related to this thesis. Chapter 3 describes the first research topic of

this thesis in detail: Masked face recognition with mask transfer and self-attention.

Chapter 4 presents the second research topic: Content-aware contribution estimation
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for feature aggregation for surveillance video face recognition, Finally, Chapter 5

concludes this thesis by summarizing the research contributions and provides pos-

sible research directions in the future. The appendix introduces the developed pro-

totype for access control of a laboratory gate using the proposed research works to

analyze and verify the feasibility of the proposed methods in practical application

scenarios.
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Figure 1.8: Overview of the chapters of this thesis. (Best viewed in color)



Chapter 2

Related Research

In this Chapter, firstly, technologies related to the research topics of this thesis are

presented, and then related works to the solutions of the research topics are reviewed.

As described in Chapter 1, the success of current face recognition can be mainly cred-

ited to three important reasons: effective deep learning networks, well-designed loss

functions, and large-scale datasets. Deep learning has reshaped not only face recog-

nition algorithms, but also face datasets, and even evaluation protocols. Therefore,

Section 2.1 presents deep learning related technologies applied to face recognition,

including network architecture, attention mechanisms, and training loss. Section 2.2

describes the training and testing datasets used for face recognition. Section 2.3

discusses the protocols of training and testing in this thesis. Section 2.4 introduces

related works to the solutions of Research Topic 1, and Section 2.5 introduces related

works to the solutions of Research Topic 2.

2.1 Deep Learning Related Technologies

Since 2014, deep learning technology has reshaped the research landscape of face

recognition in almost all aspects such as training/testing datasets, algorithm design,

application scenarios, and even algorithm evaluation. The success of deep learning

25
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Figure 2.1: Network architectures commonly used in deep face recognition. (Best
viewed in color)

for face recognition in recent years can be mainly credited to the following three im-

portant reasons: effective neural networks, well-designed loss functions, and large-

scale datasets. Firstly, many effective neural network models (e.g., ResNet [37] and

SENet [38]) have achieved good results for face recognition. Secondly, many well-

designed loss functions are proposed to improve the generalization and discrimina-

tive ability of face representation. For example, triplet loss aims to minimize the dis-

tances of positive pairs and maximize the distances of negative pairs, and center loss

is proposed to reduce the intra-class variations by minimizing the distances within

each class. Recently, many margin-based loss functions are proposed by introduc-

ing the angular constraints into the cross-entropy loss function. To further increase

the feature margin between different classes for enhanced discriminability, CosFace

[55] and ArcFace [41] introduce a margin item based on the aforementioned meth-

ods. Moreover, CurricularFace [63] and MV-Arc-Softmax [75] are used to introduce

the mining-based strategies to emphasize the misclassified samples.

In this section, the network architectures commonly used in deep face recognition

are firstly introduced in Section 2.1.1. Then the attention mechanism is described

in Section 2.1.2, which is used in research solutions in Chapter 3 and Chapter 4.

Finally, many well-designed loss functions are discussed in Section 2.1.3.

2.1.1 Network architectures

Network architectures commonly used in deep face recognition have always fol-

lowed the architecture of deep object classification and they have rapidly developed
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from AlexNet [33]. Here, the most influential deep object recognition and deep face

recognition architectures following AlexNet are introduced as in Figure 2.1. The

top row shows the mainstream architectures of CNN in object classification, and the

bottom row shows famous face recognition models that adopt the main trend CNN.

The rectangles with the same color indicate algorithms using the same CNN, where

we can easily see that the CNN of deep face recognition have always followed the

architecture of object classification and has developed rapidly from AlexNet.

AlexNet has achieved outstanding performance in the ImageNet Large-Scale Visual

Recognition Competition (ILSVRC) in 2012, significantly exceeding the state-of-

the-art results. Consisting of five convolutional layers and three fully connected lay-

ers, AlexNet also integrates various techniques such as data augmentation, dropout,

Rectified Linear Units (ReLUs), and so forth. After that, ReLU has been widely

regarded as the most important component that makes deep learning possible.

Then, in 2014, a standard network architecture was proposed by VGGNet [39] that

used many small 3 × 3 convolution filters and doubled the number of convolutional

neural feature maps after 2 × 2 pooling, which increased the depth of the CNN to 16

to 19 layers, further enhancing the flexibility of learning asymptotic nonlinear maps

through deep architectures.

Next, in 2015, an “inception module” containing a hybrid feature map and two ad-

ditional intermediate softmax monitoring signals was proposed by GoogleNet [40]

that performed multiple convolution in parallel on different receptive fields (5 × 5,

3 × 3, and 1 × 1) and incorporate multi-resolution information by concatenating all

feature maps.

More impressively, in 2016, ResNet [37] suggested that a layer learns the remaining

mapping with reference to the layer inputs F(x) = H(x) − x to ease the training of

very deep CNN (up to 152 layers), instead of directly learning the required underly-

ing mapping H(x). The original mapping is recast to F(x)+ x, which can be achieved

through “shortcut connections”. In 2017, a “Squeeze-and-Excitation (SE)” module

was proposed and obtained the champion of ILSVRC, which adaptively recalibrated
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Figure 2.2: Architecture of Alexnet, VGGNet, GoogleNet, ResNet, and SENet. [2]
(Best viewed in color)

the channel characteristic response by explicitly modeling the interdependence be-

tween channels. These blocks can integrate with modern architectures, e.g., ResNet

[37] and ShuffleNet [76], and improve their feature representation capabilities.

With the development of architectures and the cutting edge of training strategies,

e.g., Batch Normalization (BN), training became more controllable and the network

became deeper. In terms of object classification, following these architectures, the

networks in deep face recognition are gradually developing, and the performance of

face recognition is also improving.

The mainstream architectures of these deep face recognition methods are shown

in Figure 2.2. In 2014, DeepFace [34] was the first proposed deep learning-based

face recognition method, which adopted a 9 layers CNN with multiple locally con-

nected layers and has achieved 97.35% accuracy on the LFW dataset. Then, in 2015,

FaceNet [36] using GoogleNet and trained by a large private dataset, achieved a good
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performance of 99.63%, which employed roughly aligned non-matching/matching

patches of triplets generated by the strategy of online triplet mining method and em-

ploys a triplet loss function. At exactly the same time, VGGFace [74] proposed

a method to collect large-scale datasets from the Internet and then trained the pro-

posed VGGNet using this dataset. Then, the pretrained model was fine-tuned through

a triple loss function, which is similar to FaceNet [36]. Finally, the accuracy of

VGGFace reached 98.95%. In 2017, SphereFace [1] proposed an Angular softmax

(A-softmax) loss and trained a 64-layer ResNet to extract the discriminative face fea-

tures with angular margins, which has improved the LFW result to 99.42%. At the

end of 2017, VGGFace2 [77] was proposed as a new large-scale face dataset, which

contains large variations in age, ethnicity, pose, lighting, and occupation. Cao et al.

[77] achieved good performance on the IJB-A/B dataset [8] by pre-training SENet

[38] firstly using the MS-Celeb-1M dataset [43], and then fine-tuning the model with

the VGGFace2 dataset.

2.1.2 Attention mechanism

An attention mechanism is used to mimic human attention, which can concentrate

on important information [78, 79]. It makes the neural network focus on important

areas of its feature representations. In general, the implementation process of the at-

tention mechanism is divided into two steps: the first step is to calculate the attention

distribution on the input information, and the other step is to calculate the context

vector according to the attention distribution, as shown in Figure 2.3.

When calculating the attention distribution, neural networks first encode source data

features as K, called the key, which can be represented in various representations

depending on specific tasks and neural architectures. For example, K can be a fea-

ture of a specific area of an image. In addition, it is often necessary to introduce a

task-related representation vector q. For example, depending on the particular task, q

can also be in the form of a matrix [79] or two vectors [78]. The neural network then
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Figure 2.3: Attention mechanism in deep learning. [3] (Best viewed in color)

computes the correlation between the query and the key through the fractional func-

tion f (also known as the energy function) to obtain an energy score e that reflects

the importance of the query relative to the key when deciding on the next output:

e = f (q,K), (2.1)

Here, the score function f is the core part of the attention model because it defines

how keys and queries are matched and combined.

The attention has been widely used in deep neural networks because of it’s advan-

tages, such as sequence-based models, image classification, image localization, and

image super-resolution. Residual attention network [80] was proposed as a powerful

encoder-decoder style model. A Squeeze-and-Excitation (SE) module was proposed

to focus on calculating inter-channel relationships and improve classification perfor-

mance with a more compact module [38]. Woo et al. [3] extended the SE module

and proposed an efficient combination of channel and spatial attention.

In recent years, attention mechanisms have been used in video face recognition. A

meta-attention-based aggregation scheme is employed, to fine-grain the weights in

an adaptive manner along each feature dimension among all frames to handle the

features on a dimensional level. Rao et al. [81] used an attention-aware deep rein-

forcement learning approach to discard confounding and misleading frames and find

the focus of attention in video footage of faces.
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2.1.3 Training loss

As described in Section 1.2.1, face recognition is an open-set recognition task for

most applications, so we cannot expect to include candidate faces during the train-

ing phase, which makes face recognition a “zero-shot” learning task. Fortunately,

since all faces have similar shapes and textures, representations learned from a small

subset of faces can generalize well to others. Currently, publicly available train-

ing database for academic research has only about 10K to 1M subjects. Therefore,

academia is devoted to designing effective loss functions and adopting effective ar-

chitectures to make deep face features more discriminative with training datasets. In

this section, research works on different loss functions that have greatly improved

deep face recognition methods are reviewed.

Originally, cross-entropy-based softmax loss was firstly adopted for feature learn-

ing in face recognition methods, e.g., DeepID [35] and Deepface [34], inheriting

from the object classification network, e.g., AlexNet [33], VGGNet [39]. After that,

researchers found that the cross-entropy-based softmax losses are not sufficient by

itself for learning discriminative face features, and then more and more researchers

started to explore novel loss functions for improving the generalization ability, which

has become the hottest research direction in the deep face recognition research com-

munity. Before 2017, Euclidean distance-based losses played an important role, but

since 2017, margin-based losses as well as weight and feature normalization be-

came popular, as illustrated in Figure 2.4. It is noteworthy that, although some loss

functions share the similar basic idea, later proposed losses are often designed for fa-

cilitating the training procedure by sample selection or easier parameters. Therefore,

many well-designed loss functions are presented in this section.

2.1.3.1 Euclidean-distance-based loss

Euclidean-distance-based loss embeds images into Euclidean space using a metric

learning approach, in which inter-variance is enlarged and intra-variance is reduced.
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Figure 2.4: Development of training loss functions for deep face recognition. Soft-
max loss, Euclidean-distance-based loss, and margin-based loss are represented by

yellow, red, and blue rectangles, respectively. (Best viewed in color)

Here, triplet loss and contrastive loss are commonly used as the Euclidean-distance-

based loss functions. The contrastive loss pushes apart negative pairs and pulls to-

gether positive pairs using face image pairs, which can be define as follows:

L = yi j max
(
0,
∥∥∥∥ f (xi) − f

(
x j

)∥∥∥∥
2
− ε+
)
+
(
1 − yi j

)
max
(
0, ε− −

∥∥∥∥ f (xi) − f
(
x j

)∥∥∥∥
2

)
,

(2.2)

where, yi j = 1 means the positive sample pairs and yi j = 0 means the negative sample

pairs, which can be define as follows:

yi j =


0 xi and x j are from different identities

1 xi and x j from the same identity
(2.3)

f (·) is a face feature extractor, ϵ− and ϵ+ control the distance of the positive and

negative sample pairs, respectively. DeepID2 [35] combined the face verification

(contrastive loss) and identification (softmax loss) supervisory signals to extract a

discriminative face representation, and Joint Bayesian (JB) was used to obtain a

robust face embedding space. DeepID2+ [82] added supervision to early convo-

lutional layers and increased the dimension of hidden representations by extending

from DeepID2 [83], DeepID3 [84] further adopted GoogleNet and VGGNet to their

work. Nevertheless, the most serious problem of the contrastive based loss is that the
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margin parameter is usually hard to set.

Contrary to the contrastive-based loss that considers the absolute distances of the

positive and negative sample pairs, the triplet loss is another idea that considers their

relative distances. It was first used by FaceNet [36] proposed by Google, which is

widely used in face recognition. The triplet loss first builds face triplets, and then

maximizes the distance between a negative sample from a different identity and an

anchor, and minimizes the distance between a positive sample from the same identity

and the anchor. The triplet loss of FaceNet is defined as follows:

∥∥∥∥ f
(
xa

i
)
− f
(
xp

i

)∥∥∥∥2
2
+ α < −

∥∥∥ f
(
xa

i
)
− f
(
xn

i
)∥∥∥2

2
, (2.4)

where, xn
i and xp

i are negative and positive samples, respectively, xa
i is the anchor,

and α is a margin. f (·) is a feature extractor for embedding a face image into a face

feature space. Inspired by FaceNet [36], Triplet Similarity Embedding (TSE) [85]

and Triplet Probabilistic Embedding (TPE) [85] construct triplet loss by learning

a linear projection W. Meanwhile, some methods optimize deep face recogniton

models using both softmax loss and triplet loss [86, 87]. They first pretrain face

recognition networks using softmax loss, and then fine-tune it using triplet loss.

However, due to the difficulty of selecting effective training samples, the triplet loss

and contrastive loss occasionally encounter training instability, and some researchers

started to explore some simple alternatives. Center loss [42] and its variants [88, 89]

are good options for reducing intra-variance. Center loss learns the center of each

class and penalizes the distance between the deep face feature and its corresponding

class center, which is defined as follows:

LC =
1
2

m∑
i=1

∥∥∥ f (xi) −Cyi

∥∥∥2
2
, (2.5)

where f (xi) represents the extracted feature of sample xi belonging to the yi-th class.

Cyi represents the yi-th class center of the face feature. To handle long-tail data,

range loss [90] is a variant of center loss used to minimize the mean harmonic of



34 Chapter 2. Related Research

the k largest ranges in a category and maximize the shortest inter-class distance in

a batch. Wu et al. [88] proposed a kind of center-invariant loss that penalizes the

difference between each center of the class. Deng et al. [91] chose the farthest

within-class sample and the nearest between-class sample to calculate the marginal

loss. However, the center loss and its variants are affected by the diversity and ban-

lance of training data for each identity, and GPU memory consumes significant size

at the classification layer.

2.1.3.2 Margin-based loss

Since 2015, researchers have gradually begun to deeply understand the loss in face

recognition. In 2017, researchers have found that samples should be separated more

strictly to avoid misclassifying the hard samples. Then, the margin-based loss [1]

was proposed to make learned face features potentially separable with a larger mar-

gin distance. The decision boundary of the softmax loss is defined as:

(W1 −W2) x + b1 − b2 = 0, (2.6)

where x denotes the extracted features, Wi and bi are learned weights and bias of the

softmax loss, respectively. Liu et al. [54] firstly proposed the large margin softmax

(L-Softmax) loss [54] by reformulating the original softmax loss. When constraining

b1 = b2 = 0, the decision boundaries for class 1 and class 2 can be defined as:

∥x∥ (∥W1∥ cos (mθ1) − ∥W2∥ cos (θ2)) = 0, (2.7)

and

∥x∥ (∥W1∥ ∥W2∥ cos (θ1) − cos (mθ2)) = 0, (2.8)

respectively, where θi is the angle between Wi, and x and m are positive integers in-

troducing angular margins. Because of the non-monotonicity of the cosine function,

a piece-wise function is used in L-softmax to guarantee the monotonicity. The loss
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Figure 2.5: Geometry distribution of A-Softmax loss. [1] (Best viewed in color)

function can be defined as follows:

Li = − log
 e∥wyi∥∥xi∥φ(θyi)

e∥wyi∥∥xi∥φ(θyi)+Σ j,yi∥wyi∥∥xi∥ cos(θ j)

 , (2.9)

where φ(θ) = (−1)k cos(mθ) − 2k, θ ∈
[

kπ
m ,

(k+1)π
m

]
. To facilitate and ensure the model

convergence, the L-Softmax loss is always combined with softmax loss since it the

L-Softmax [54] is difficult to converge if training directly. So, the loss function is

changed into fyi =
λ∥wyi∥∥xi∥ cos(θyi)+∥wyi∥∥xi∥φ(θyi)

1+λ , where λ is a dynamic hyper-parameter.

Then, Liu et al. [1] proposed A-softmax loss to further normalize the weight W by L2

norm based on the L-softmax, so that the normalized vector will lie on a hypersphere

manifold with an angular margin, as shown in Figure 2.5.

To solve the optimization difficulty of A-Softmax [1] and L-Softmax [54] during

training, which combine the angular margin and a multiplicative manner, CosFace

[55] and ArcFace [41], respectively introduced an additive cosine/angular margin

cos (θ) + m and cos (θ + m). Here, they are able to converge without the softmax

supervision without tricky hyper-parameters λ and are more clear. The decision

boundaries of the binary classification case are defined as in Table 2.1.

Based on large margin, AdaptiveFace [92] and FairLoss [93] are further proposed

to address the problem of unbalanced data by adaptively adjusting the margins for

different classes. Compared to the Euclidean-distance-based loss, the margin-based
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Table 2.1: Decision boundaries for class 1 of binary classification case.

Loss Functions Decision Boundaries
Softmax (W1 −W2) x + b1 − b2 = 0

L-Softmax [54] ∥x∥ (∥W1∥ cos (mθ1) − ∥W2∥ cos (θ2)) > 0
A-Softmax [1] ∥x∥ (cos (mθ1) − cos (θ2)) == 0
CosFace [55] ∥x∥ (cos (mθ1) − m − cos (θ2)) == 0
ArcFace [41] ∥x∥ (cos (θ1 + m) − cos (θ2)) == 0

Figure 2.6: Rank-1 identification results on 1:1M MegaFace benchmark. (a) The
effect of the label flips in training dataset on performance. (b) The effect of the

outliers in training dataset on performance. [4]

loss explicitly adds the discriminative constraints on a hypershpere manifold, which

intrinsically matches the prior that a human face lies on a manifold. The recent work

Variational Prototype Learning (VPL) [94] first analyzes the limitations of previ-

ous methods, which employ sample-to-prototype comparisons during training with-

out considering sample-to-sample comparisons, and then introduces the sample-to-

sample comparisons into the classification framework for face recognition. Anchor-

Face discusses the necessity of the optimization under the Anchor FAR (i.e. Anchor

Optimization) for practical face recognition from a new perspective, and introduces

a pair of loss functions to reduce the gap of the training and evaluation for FR. How-

ever, Wang et al. [4] verified that cosine/angular-margin-based loss can attain better

preformance on a clean training dataset, but is liable to noise, and even becomes

worse than the center loss and the softmax loss in the high-noise region, as illus-

trated in Figure 2.6.
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Figure 2.7: Evolution of face recognition datasets. Red rectangles shows face train-
ing datasets, and other color rectangles shows face testing datasets with different

scenes and task. (Best viewed in color)

2.2 Face Datasets

In the past several decades, many face datasets have been built from single source

to diverse sources, from small-scale to large-scale, and from lab-controlled scene to

real-world unconstrained scene, as illustrated in Figure 2.7. Prior to 2007, early re-

searches in face recognition focused on small-scale and controlled datasets. In 2007,

LFW [32] dataset was constructed which marks the beginning of face recognition

under unconstrained scene. As the performance of face recognition on some simple

datasets tend to saturate, more and more complex face datasets are continuously con-

structed to facilitate the face recognition research. Since that, more testing datasets

with different scenes and tasks are built. In 2014, CASIA-Webface [95] was the

public face training dataset, and is widely used in face recognition community, and

then large-scale face training datasets begun to be a hot research topic. It is no ex-

aggeration to say that the development process of face datasets have largely led the

direction of face recognition research.

However, publicly available training datasets are mostly celebrity images collected

from the Internet, which is far different from images captured in the real-world with

diverse scenes. In this section, the development of major face training and testing

datasets are reviewed.
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2.2.1 Training datasets

The prerequisite for effective deep face recognition is a sufficiently large-scale train-

ing dataset. Zhou et al. [87] showed that large amounts of training dataset with deep

learning can improve the performance of face recognition. The results of Megaface

Challenge [50] also showed that premier deep face recognition methods were typi-

cally trained on training datasets larger than 20K subjects and 0.5M images. Early

research works of deep face recognition were usually trained on private training

datasets. Deepface [34] was trained on a private large-scale training dataset with

4M images of 4K subjects; FaceNet [36] was trained on 200M images of 3M sub-

jects; DeepID serial models [35] were trained on a private large-scale training dataset

with 0.2M images of 10K subjects. Although they reported making ground-breaking

progresses, we cannot compare their models or accurately reproduce them since they

are trained on private datasets.

To overcome this problem, CASIA-Webface [95], which contains 0.5M images of

10K celebrities downloaded from the Internet, was the first public large-scale training

face dataset. It is widely used in the face recognition community, and then large-

scale face training datasets became a hot research topic. Due to its moderate size

and ease of use, it has become an excellent resource for fair comparison of academic

deep learning models. Nevertheless, its relatively small-scale training dataset and

the number of subjects may not fully utilize the potential ability of many advanced

deep learning approaches. Currently, there are more training datasets that provide

publicly available large-scale training datasets, as shown in Table 2.2. Especially

some datasets are composed of more than 1M images, such as MS-Celeb-1M [43],

VGGface2 [77], DeepGlit [44], MegaFace [50], Glint360K [45], and WebFace260M

[46].

The unconscious surveillance face recognition task is obviously under-studied in

comparison to general face recognition task, which can be seen from Table 2.2. For

example, there are 17M celebrity face images from 360K subjects in the Glint360K

[45] collected from the Internet, while the largest commonly used video surveillance
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Table 2.2: Commonly used publicly available face recognition datasets for training.

Dataset Published Celebrity/ commonalty Still/ Video # photos/video # subjects #of photos per subject
CASIA-WebFace [95] 2014 Celebrity Still 0.5M 10K 47

CelebFaces [35] 2015 Celebrity Still 0.2M 10K 20
VGGFace [74] 2015 Celebrity Still 2.6M 2.6K 1,000

MS-Celeb-1M [43] 2016 Celebrity Still 10M/3.8M 100K/85K 100/44
MegaFace [50] [50] 2016 Commonalty Still 4.7M 672K 7

VGGFace2 [77] 2017 Celebrity Still 3.31M 9K 87
UMDFaces-Still [96] 2017 Celebrity Still 0.3M 8K 45

UMDFaces-Videos [97] 2017 Celebrity Video 2.6M 2.6K 1,000
UCCS [98] 2017 Commonalty Video 0.1M 1.7K 59

QMUL-SurFace [13] 2019 Commonalty Video 0.22M 5.3K 41
Glint360K [45] 2020 Celebrity Still 17M 360K 47

WebFace260M [46] 2021 Celebrity Still 260M 4M 6.5

dataset only has 0.22M from 5.3K subjects in the QMUL-SurFace [13]. This is

because still celebrity face images are easier to collect. On the contrary, since data

acquisition is greatly limited due to largely restricted data access, it is not feasible

to build a large-scale real-world surveillance face image dataset that can be used for

training.

2.2.2 Testing datasets

An overview of representative face recognition testing datasets are summarized in

Table 2.3. Specifically, early datasets focus on small-scale controlled face recogni-

tion scenarios with limited number of images and subjects [19]. The early datasets

provides neither adequate inter-variation or diversity for training, nor are effective

for solid evaluation. In 2007, the most influential testing dataset LFW [32] was pro-

posed and begun to shift the research community towards recognizing unconstrained

faces by providing celebrity face images from the Internet and a standard proto-

col for evaluation. After that, LFW has greatly promoted the interest and progress

of face recognition. This trend towards large datasets is amplified by the creation

of even larger face recognition benchmark dataset such as CASIA-WebFace [95],

CelebFaces [35], VGGFace2 [77], MS-Celeb-1M [43], and MegaFace [50]. So far,

it seems to have solved the problem of the availability of large-scale training and

testing benchmark datasets collecting Web celebrity facial images.
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Table 2.3: Commonly used public available face recognition datasets for testing.

Datasets Published Celebrity/ commonalty Surveillance #photos/video #subjects
Yale [99] 2001 Cooperative No 10 5,760

CMU [100] 2002 Cooperative No 68 41,368
Multi-PIE [11] 2010 Cooperative No 337 750,000
Morph [101] 2006 Celeb(Web) No 13,618 55,134

LFW [32] 2007 Celeb(Web) No 5,749 13,233
YouTube Face [10] 2011 Celeb(Web) No 3,425 1,595

FaceScrub [102] 2014 Celeb(Web) No 530 100,000
IJB-A [8] 2015 Celeb(Web) No 500 5,712

VGGFace [74] 2015 Celeb(Web) No 2,622 2.6M
UMDFaces [96] 2016 Celeb(Web) No 8,277 367,888

CFP 2016 Celeb(Web) No 500 7,000
UMDFaces [96] 2016 Celeb(Web) No 8,277 367,888

IJB-B [103] 2017 Celeb(Web) No 1,845 11,754
MegaFace2 [50] 2017 Non-Celeb No 672,057 4,753,320

FERET [20] 1996 Cooperative No 1,199 14,126
FRGC [104] 2004 Cooperative No 466+ 50,000+

CAS-PEAL [105] 2008 Cooperative No 1,040 99,594
PaSC [9] 2013 Cooperative No 293 9,376

SCface [106] 2011 Cooperative Yes 130 4,160
COX [5] 2015 Cooperative Yes 1,000 1,000

UCCS [98] 2017 Uncooperative Yes 1,732 14,016+
QMUL-SurvFace [13] 2018 Uncooperative Yes 15,573 463,507

With those large benchmark challenges, the performance of face recognition in high-

quality face images has achieved an unprecedented level using deep learning, e.g.,

the performance of face recognition has achieved 99.83% on LFW for face verifica-

tion and 99.81% on MegaFace [50] for face identification. Nevertheless, this does

not scale to real-world surveillance facial images captured in unconstrained envi-

ronments and uncooperative users. This is due to two reasons: the first one is that

existing face recognition challenges have different degrees of bias of data selection

(less motion blur, near-frontal pose, and better illumination). The other one is that

deep learning methods are often domain-specific for open-set protocols, i.e., only

generalize well to face images similar to the training dataset. What is more, there is

a big difference in facial images between the celebrity face image collected from the

Internet and the real-world surveillance face image in-the-wild, as shown in Figure

1.5.

Since 1996, research on surveillance face recognition has not made much progress,

when the well-known FERET challenge [20] was launched. However, it has not been
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studied enough and a very few number of benchmark datasets are available. One of

the main hurdles is the difficulty of building large-scale real-world surveillance face

recognition datasets due to the limited feasibility for such face images. In most

cases, only simulated surveillance face images are collected, and the image settings

are carefully controlled. Thus, it provides a high face image quality than that can be

obtained from local surveillance video.

The UCCS face challenge [98] introduced a notable recent study, which is a large-

scale surveillance face benchmark in the public domain. The face images in the chal-

lege are not collected based on subjects’ cooperation (unconstrained), since they are

captured from a long-range distance. These faces images include blur, various poses,

and occlusions. This dataset represents a real-world surveillance face recognition

scenario in comparison to FERET. Nevertheless, the images in the dataset were cap-

tured from a single camera view with high-resolution, so providing obviously more

facial details with less viewing angle variations. What is more, the dataset is small in

size, particularly in term of the face identity numbers (1,732), statistically limited for

evaluating a surveillance face recognition challenge. In 2018, the QMUL-SurvFace

benchmark [13] addressed the limitations of the UCCS dataset by building the largest

scale natively surveillance face recognition challenge (the QMUL-SurvFace bench-

mark), which contains 463,507 face images of 15,573 different identities captured

from a diverse source of the real-world public spaces.

2.3 Training and Testing protocols

In the past three decades, as face recognition technology moved from laboratories to

the real world, not only have face datasets show a clear tendency, e.g., from single-

source to diverse-sources, from small-scale to large-scale, and from lab-controlled

to real-world unconstrained scene, but also face training and testing protocols have

changed dramatically, e.g., from closed-set face recognition to open-set face recog-

nition, from small-scale (10K) to large-scale (10M). In this section, major training

and testing protocols are discussed.
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2.3.1 Training protocols

According to whether the testing identities are disjoint from the training dataset,

face recognition can be divided to the closed-set and open-set protocols, as shown in

Figure 1.6.

Closed-set face recognition. In this case, as described in Section 1.2.1, since all

testing identities are pre-defined in the training dataset, it is natural to classify testing

face images to the given identities. Hence, closed-set face recognition can be well

solved as a classification problem, in which features are anticipated to be separable.

The closed-set face recognition protocol is mostly used by the early-stage (before

2010) face recognition studies on FERET [20] and AR [107], and only suitable for

some small-scale real-world applications.

Open-set face recognition. In this case, the testing identities do not overlap with

the training dataset, which makes face recognition more challenging and close to

real-world application scenarios. Since it is impossible to classify test face images

to known identities in the training dataset, open-set face recognition actually learns

a feature extractor to extract the facial features, and then use it for matching. Since

human faces exhibit similar within-subject variations, deep models can show tran-

scendent generalization ability when trained with a sufficiently large set of generic

subjects, in which the key is to learn discriminative large-margin deep face features.

Almost all major face recognition benchmarks, e.g, PaSC [9], IJB-A/B/C [8], LFW

[32], and Megaface [50], need testing models to be trained under the open-set evalu-

ation protocol.

2.3.2 Testing protocols

To evaluate whether deep models can address the different problems of face recogni-

tion in a real-world application, many testing datasets are built to evaluate the models

in different tasks, i.e., face verification and face recognition. In both tasks, a set of

known identities is firstly enrolled in the system’s gallery, and during testing, a new
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subject as a probe is presented. Face verification calculates one-to-one similarity

between the gallery and the probe to determine if two images belong to the same

subject, while face recognition calculates one-to-many similarity to determine the

specific identity of the probe’s face. Face verification and face recognition will be

discussed in the following part, respectively.

Face verification is relevant to re-identification, access control systems, and appli-

cation independent evaluations of face recognition algorithms, which is a way of

allowing a robot and a computer to confirm that a person is who they claim to be.

For example, let us take an example of a user sitting at home. The user wishes to

apply for a visa for an upcoming holidays. The user picks up the phone or opens

a laptop PC, and then logs into the government visa service. The user then scans

the passport with a device-embedded camera to prove his/her identity, then scans the

face. Face verification technology can confirm that the user’s physical face matches

the face in an ID document and that he/she is real and are completing this applica-

tion. It is typically measured using estimated average accuracy (ACC) and Receiver

Operating Characteristics (ROC). Given a threshold (independent variable), ROC

analysis measures the True Acceptance Rate (TAR) and the False Acceptance Rate

(FAR). TAR is the fraction of genuine comparisons that correctly exceed the thresh-

old, while FAR is the fraction of impostor comparisons that incorrectly exceed the

threshold. ACC is a simplified metric introduced by LFW [32] that represents the

percentage of correct classification. With the development of deep face recognition,

the degree of security is required more and more strictly by testing datasets to match

the fact that customers concern more about the TAR when FAR is kept in a very low

rate in most security certification scenario. The PaSC dataset [9] evaluates the TAR

at a FAR of 10−2; the IJBA dataset [8] increases it to TAR@FAR=10−3; the Megaface

dataset [50] focuses on TAR@FAR=10−6; especially, in the Ms-Celeb-1M challenge

3 [43], TAR@FAR=10−9 is required.

Meanwhile, face identification (also named face recognition) is relevant to user-

driven searches to verify the identity of an individual, which can be widely used

in security applications, such as controlling access through gates, doors, or other
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physical barriers. It is also used in real-world applications for authentication and

identification purposes. For example, let us take an example of a user walking

across a shopping mall, or sitting in a seat at a stadium. Face recognition, com-

bined with Closed Circuit TeleVision (CCTV), is scanning the crowds and matching

faces against a suspected criminals or a known database. A user may not know if

or when face identification is being carried out on him/her. Rank-N is a commonly

used metric in this scenario. It is based on the percentage of probe searches returning

the probe’s gallery mate within the top N rank ordered results, e.g., the rank-1 and

rank-5 recognition rates are adpoted for evaluation.

2.4 Masked Face Recognition

In this section, related works of Research Topic 1 are reviewed, which include meth-

ods for simulating masked face images and masked face recognition methods.

2.4.1 Simulating masked face images

Recently, some methods of simulated masked face image have been proposed [57,

58, 59, 60]. MaskTheFace [57] used a Dlib-based [108] face landmark detector

to identify the face tilt and six key features of the face necessary for applying a

mask. MaskedFace-Net [59] defined a mask-to-face deformable model and applied

homographic transformation for mapping mask pixels over the targeted facial areas.

Firstly, feature-based cascade classifiers are used to detect a region of interest in

the facial image, with which a key-point detector is used to automatically detect 68

landmarks representing the facial structure. Besides, an image of a conventional face

mask is selected as a reference image for the mapping where twelve key points are

manually annotated for delineating the mask area. Finally, a homographic transfor-

mation is applied to map mask pixels over the targeted facial areas relying on the

defined point-to-point correspondence of landmarks between mask image and face

image.
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However, since these methods only utilize affine transformation, the added masks

often look unnatural. Furthermore, they ignore pose and illumination consistency

thus leading to biased masked face augmentation. Recently, Generative Adversar-

ial Network (GAN) has become a powerful technique used for data augmentation

[61]. However, GAN-based methods suffer from mode collapse deeply, which usu-

ally manifests that the images generated by the generator tend to be highly similar

amongst them, even though their corresponding latent vectors are very different. In

addition, GAN-based methods are generally slow and difficult to run online in recog-

nition. On the contrary, the method proposed in this thesis can quickly collect vari-

ous types of mask images and can transfer them to the face image in run-time for the

mask-aware similarity matching strategy in the inference stage.

2.4.2 Occluded face recognition

Many different deep-learning-based approaches have been proposed to solve the oc-

clusion problem. In 2014, Sun et al. found that the features learned by DeepID2+

[82] show certain robustness to image corruption in face verification tasks, and the

combination of DeepID2+ features extracted from 25 face patches may further im-

prove the robustness. Daniel et al. [109] used the augmented training data with

synthetic occluded faces to tackle the occlusion problem.

Recently, Masked face recognition has attracted much attention during the COVID-

19 pandemic. Anwar et al. [57] proposed an open-source tool, named MaskTheFace,

to create masked face dataset from a face dataset with extended feature support, and

then used this dataset to re-train existing face recognition engines to improve their

accuracy. Hariri and Walid [110] developed a reliable method based on occlusion

removal and deep learning-based features to address the problem of the masked face

recognition process. The first step is to remove the masked face areas. Next, three

pre-trained deep CNN namely; VGG-16 [39], AlexNet [33], and ResNet-50 [37],

are used to extract deep features from the obtained regions (mostly eyes and fore-

head regions). The Bag-of-Features (BoF) paradigm is then applied to the feature
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maps of the last convolutional layer to quantize them and obtain a slight represen-

tation compared to the fully connected layer of a classical CNN. Finally, a Multi-

layer Perceptron is applied for the classification process. Mundial et al. [111] used

a supervised learning approach for masked face recognition together with in-depth

neural network-based facial features. First, a CNN model was trained to generate an

embedding of features of an image. Then they focused on a dataset which helps in

building a classifier for masked face, which consists of three images of a person, two

masked face images, and one without a face mask. In the end, the Support Vector

Machine (SVM) is used for classification.

The covered facial areas contain many salient features that make it useful for face

recognition, such as the nasal region [112], but the extracted features of the covered

facial areas are damaged due to occlusions caused by the mask. Therefore, compared

with uncovered facial areas such as the eye region, intuitively speaking, the mask

area does not contain much discriminative information useful in recognizing a face,

which gives us the hint that more attention should be paid to the uncovered region

in feature extraction. Recently, attention mechanisms have been introduced to video

face recognition systems [81], where an attention mechanism is adopted to mimic

human perception to focus on important information.

2.5 Video Face Recognition

In this section, related works of Research Topic 2 are reviewed, which include gen-

eral video face recognition and feature aggregation for face recognition.

2.5.1 General video face recognition

Video Face Recognition (VFR) has the disadvantages of being in low resolution and

includes dramatic pose variations compared with still face recognition. Meanwhile,
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it also has the advantages of complementary information in consecutive frames. Ex-

isting works on VFR can be categorized into two main categories: one is to exploit

complementary information contained in multiple video frames, while the other one

is to extract higher quality features from each frame.

With frame sequence as input, person-specific facial dynamics can be extracted from

continuous video frames using robust face trackers [113]. Aggregation-based meth-

ods [1, 69, 71, 72, 113, 114] aim to obtain a compact and discriminative feature ag-

gregated by all frame-level features in a video using an adaptive weighting scheme.

Meanwihle, key frame selection methods [115, 116, 117] attempt to gain only a sub-

set of best-quality frames from video clips using frame quality evaluation for efficient

face recognition.

Recent Deep Learning (DL) methods, such as A-softmax [1] , CosFace [55], and

ArcFace [41], introduce margin into the softmax loss to extract more discriminative

face features. To solve the blurring problem in video caused by the relative motion

between the cameras and the subjects, deblur-based methods [113] deblur a blurred

image by estimating a blur kernel, and then extract the features. Data uncertainty

modeling is another strategy for unconstrained face recognition [118, 119, 120], es-

pecially for noisy images. In these works, data uncertainty learning is applied to

capture both the feature (mean) and the uncertainty (variance), simultaneously. In-

spired by these works, in this thesis, an Attention-aware Masked face recognition

Network (AMaskNet) is proposed for masked face recognition, which puts more

weight to useful features while (in relative terms) ignoring those corrupted by the

face mask by learning a contribution matrix.

2.5.2 Feature aggregation for face recognition

A video provides us with abundant complementary information across frames com-

pared with a still image. Therefore, aggregation of information across frames to

obtain more valuable and effective video-level features is a crucial issue for robust

recognition against variations. Neural Aggregation Network (NAN) [72] proposed
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two attention blocks to adaptively weight the frames. Discriminative Aggregation

Network (DAN) [121] proposed a network to aggregate raw video frames directly

instead of the features obtained by complex processing. Quality Aware Network

(QAN) [122] automatically estimated the quality score for each sample in a set by a

quality estimator, and weighted all frames by the predicted quality scores. Region-

based Quality Estimation Network (QAN+) [114] further extended the idea of QAN

into local regions, which used an ingenious training mechanism to extract the com-

plementary region-based information between different frames. COmpact Second-

Order Network (COSONet) [123] proposed a second-order network to extract fea-

tures from faces with large variations and a mixture loss function to encourage the

discrimination and simultaneously regularizes the feature. Multicolumn Network

(MN) [71] took entire images in a set as input, and learned to compute a set-level

fix-sized feature representation.

Each component of the feature vector may encode different subsets of facial features,

thus bias could be caused when we emphasize or suppress all components simultane-

ously. To alleviate this problem, a meta attention-based aggregation scheme is used

in [113], to adaptively fine-grain the weights along each feature dimension among

all frames so as to handle the feature on dimension level. Similarly, component-wise

feature aggregation scheme is used in C-FAN [69] for video face recognition, where

the quality value for each feature component is separately learned. C-FAN automati-

cally learns to suppress features with low-quality scores, while retaining salient face

features with high-quality scores.

As a summary, the aim of feature aggregation methods is to automatically learn the

weights from frame level or feature component level, and the quality criterion is

used therein to represent the importance of each single frame or each feature com-

ponent. Therefore, these methods are usually called as quality-based feature aggre-

gation methods.

However, limited by the mini-batch training strategy, the existing quality-based fea-

ture aggregation methods fail to globally consider the relation among frames in a
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video clip or all samples of one identity during training, thus lead to bias or inaccu-

racy in quality estimation. This motivates us to seek a better solution in this thesis,

especially to investigate valuable information in the low-quality images.
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Chapter 3

Masked Face Recognition with Mask

Transfer and Self-Attention

This chapter is dedicated to the Research Topic 1. As discussed in Chapter 1,

face masks bring a new challenge to face recognition systems especially during the

COVID-19 pandemic, when it is essential to analyze and mitigate the effect of wear-

ing face masks. Therefore, in this chapter, a method used for mitigating the negative

effects of mask defects on face recognition is proposed.

Firstly, a low-cost, accurate method of masked face synthesis, i.e., mask transfer, is

proposed for data augmentation. Secondly, an Attention-aware Masked face recog-

nition Network (AMaskNet) is proposed to improve the performance of masked face

recognition, which includes two modules: a feature extractor and a contribution es-

timator. Therein, the contribution estimator is employed to learn the contribution of

the feature elements, thus achieving refined feature representation by simple matrix

multiplications. Meanwhile, the end-to-end training strategy is taken to optimize the

entire model. Finally, a mask-aware similarity Matching Strategy (MS) is adopted

to improve the performance in the inference stage. Experiments show that the pro-

posed method consistently outperforms on three masked face recognition datasets:

51
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RMFRD [6], COX [5], and Public-IvS [62]. Meanwhile, a qualitative analysis exper-

iments using CAM [7] indicates that the contribution learned by AMaskNet is more

conducive to masked face recognition.

This chapter is structured as follows: Section 3.1 introduces this research topic, in-

cluding background, motivation, and contributions. Then, Section 3.2 describes the

proposed method of mask transfer, AMaskNet, and mask-aware similarity Matching

Strategy (MS). Section 3.3 presents the experimental results, discussions are given

in Section 3.4, and the summary is presented in Section 3.5.

3.1 Introduction

As discussed in Chapter 1, the COVID-19 pandemic has caused a global impact: the

World Health Organization (WHO) and the U.S. Centers for Disease Control and

Prevention (CDC) have suggested everyone should wear a mask in a public setting

especially when other social distancing measures are difficult to maintain [53]. Face

recognition is non-contact, highly efficient, user friendly, and so forth, and thus has

been widely applied in access control and security authentication in public places.

However, face masks bring a new challenge to existing commercial face recognition

techniques. Face recognition becomes more difficult when a large part of the face

is covered by a mask. Therefore, it is essential to study the effect of masks on the

behavior of face recognition systems and design mitigation techniques to offset the

inevitable performance loss.

Deep-learning-based approaches predominate in the task of face recognition due

to the emergence of advanced Convolution Neural Network (CNN), well-designed

loss functions [1, 54, 55], and large-scale datasets [41, 56]. Despite the success of

deep learning models under general face recognition scenarios, the deep features still

demonstrate imperfect invariance to face masks, where the whole face image cannot

be used for the description. Therefore, face masks trigger a significant research chal-

lenge: Firstly, it is necessary to collect a large-scale training dataset, which includes
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faces with different types of masks. In order to collect such a large-scale training

dataset, on the one hand, it is time consuming and incurs higher labour cost, and

on the other hand, maintaining the diversity of data in such datasets is a slow pro-

cess. Therefore, a low-cost, convenient face data augmentation method is needed as

a matter of urgency. Secondly, it is essential to mitigate the performance loss from

the perspective of model design according to the characteristics of masks.

Some methods of simulating a masked face [57, 58, 59, 60] have been proposed for

face data augmentation. MaskTheFace [57] used a Dlib-based [108] face landmark

detector to identify facial tilt and six key features of the face necessary for applying

a mask. MaskedFace-Net [59] defined a mask-to-face deformable model and ap-

plied homographic transformation to map mask pixels over the targeted facial areas.

However, since these methods only utilize affine transformation, the added masks of-

ten look unnatural. Furthermore, they ignore pose and illumination consistency thus

leading to biased masked face augmentation. Recently, Generative Adversarial Net-

work (GAN) has become a powerful technique for data augmentation [61]. However,

GAN-based methods suffer from mode collapse deeply, which usually manifests that

the images generated by the generator tend to be highly similar amongst them, even

though their corresponding latent vectors are very different. In addition, GAN-based

methods are generally slow and difficult to run online in recognition. On the contrary,

the method proposed in this thesis can quickly collect various types of mask images

and can transfer them to the face image in run-time for the mask-aware similarity

matching strategy in the inference stage.

Numerous approaches have been proposed to tackle the problem regarding occlu-

sion which is a common problem in computer vision [5, 109]. Wearing a mask is

considered the most difficult facial occlusion challenge since it covers most of the

face including the mouth and nose. Anwar et al. [57] developed an open-source

tool (MaskTheFace) to create a large dataset of masked faces, and then re-trained

existing face recognition systems to improve their accuracies. To reduce the neg-

ative influence of masks, Hariri [110] directly discarded the masked region when

extracting deep features. Mundial et al. [111] used a supervised arning approach and
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an in-depth neural network to recognize masked faces and extract individual facial

features, with which an Support Vector Machine (SVM) classifier was established

for classification purposes.

The covered facial areas contain many salient features useful for face recognition,

such as the nasal region [112], but the extracted features of the covered facial areas

are damaged due to occlusions caused by the mask. Therefore, compared with un-

covered facial areas such as the eye region, intuitively speaking, the mask area does

not contain much discriminative information useful in recognizing a face, which

gives us the hint that more attention should be paid to the uncovered region in fea-

ture extraction. Recently, attention mechanisms have been introduced to video face

recognition systems [81], where an attention mechanism is adopted to mimic human

perception to focus on important information.

As Research Topic 1 of this thesis, qualitative and quantitative analysis on the ef-

fect of wearing a mask on face recognition is performed here, and then a method

for mitigating the negative effects of mask defects on face recognition is proposed.

Firstly, a low-cost, accurate method of mask transfer is proposed for masked face

synthesis by considering pose and illumination consistency. Secondly, an Attention-

aware Masked face recognition Network (AMaskNet) is proposed to improve the

performance of masked face recognition, which lends more weight to useful features

while (in relative terms) ignoring these corrupted by the face mask by learning a

contribution matrix. The AMaskNet includes two modules: a feature extractor and

a contribution estimator, wherein the latter is employed to learn the contribution of

each spatial region which is then combined with the feature to improve its represen-

tation capability. An end-to-end training strategy is adopted to optimize the whole

network. Finally, a mask-aware similarity matching strategy is proposed to improve

the performance in the inference stage. Experiments show that the proposed method

consistently outperforms on three masked face recognition datasets: RMFRD [6],

COX [5], and Public-IvS [62]. Meanwhile, qualitative analysis experiments using

CAM [7] indicate that the contribution learned by the AMaskNet is beneficial to

masked face recognition. Indeed, AMaskNet can localize the salient facial areas and
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extract more discriminative features from a non-masked face image and can alleviate

the performance degradation of the non-masked scene.

In summary, the main contributions are summarized as:

[1]. A low-cost, accurate mask transfer method for masked face data augmentation

is proposed by considering pose and illumination consistency. This method

can add a mask from any face image with a mask to any face image without a

mask.

[2]. Qualitative and quantitative experiments are conducted to analyze the effect of

wearing face masks on the behavior of face recognition systems.

[3]. AMaskNet is proposed to improve the performance of masked face recogni-

tion.

[4]. A mask-aware similarity matching strategy is proposed for the inference stage,

which can be applied to any face recognition scene in which one image with a

face mask and the other without a face mask are present.

3.2 Proposed Method

In this section, the mask transfer method for masked face synthesis is firstly de-

scribed in two steps: construction of a mask gallery and the generation of synthetic

masked face images (Figure 3.1(a) and Figure 3.2), and introduction of the proposed

AMaskNet. As shown in Figure 3.1(b), AMaskNet incorporates a feature extrac-

tor and a contribution estimator, and the latter further consists of two sub-modules: a

self-spatial contribution estimator and a self-channel contribution estimator. The two

sub-modules are used to learn the spatial contribution and channel contribution, re-

spectively, and the refined features are obtained by combining the two contributions.

Moreover, the entire network is optimized through an end-to-end training procedure.
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Figure 3.1: Architecture of the proposed masked face recognition method, which
includes mask transfer, attention-aware masked face recognition (AMaskNet), and

a mask-aware similarity matching strategy for inference. (Best viewed in color)

Finally, a mask-aware similarity matching strategy is introduced for inference pur-

poses, as illustrated in Figure 3.1(c).

3.2.1 Mask Transfer (MT)

To generate the synthetic masked face image, a gallery of different masks should

be firstly constructed. Given a non-masked face image and one mask from the

gallery, the masked face image is obtained by transferring the mask, including pre-

processing, transfer, and post-processing, as illustrated in Figure 3.2. Details are

expained below.

3.2.1.1 Collection of mask gallery

The construction of the mask gallery is aimed at obtaining a face image set covering

versatile masks, such as different mask colors, shapes, and textures. Since for one

mask type, only one face image with this mask is sufficent, it is easy to build this
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Figure 3.2: Flowchart of Mask Transfer (MT). The masked face is a photo randomly
selected from the mask gallery.

dataset through collection from Websites. Generally, any face image with a mask

is qualified for the collection. However, to improve the quality of synthetic masked

face images, frontal view face images are preferable.

3.2.1.2 Mask transfer for masked face synthesis

Pre-processing. Dlib [108] is used to detect 68 landmark points in both masked and

non-masked face images. With these landmarks, a Triangulated Irregular Network

[124] is established and the facial area is thus divided into multiple triangular regions.

Meanwhile, the grab-cut method [125] is employed to segment mask areas from

masked face images.

Transfer. Transfer mask from masked face images to non-masked ones should be

implemented based on the geometric relationship bettween the two faces. For each

triangular piece in the Triangulated Irregular Network, the affine transformation be-

tween the two images is calculated, and the mask region contained in this piece is

transformed directly to a non-masked image. The whole mask will be transferred

after all triangular pieces have been transformed.

Post-processing. Directly transferring the mask usually leads to inconsistency of

illumination in the target image due to the lighting and contrast difference of the two

images. For this problem, two post-processing steps are performed after the mask is

transferred to the target image: (1) Alpha-matting is utilized to make the boundary

more natural in terms of the transition across the boundary; (2) histogram specifi-

cation is adopted to make the transferred mask region more illumination-consistent
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Figure 3.3: Architecture of the proposed AMaskNet. (Best viewed in color)

with the original non-masked face image. More specifically, the gray-scale distri-

bution of the mask region is adjusted according to the gray-scale histogram of the

original non-masked image.

3.2.2 Attention-aware Masked face recognition Network (AMaskNet)

The network architecture consists of two modules: a feature extractor and a contribu-

tion estimator, as illustrated in Figure 3.3. A conventional face recognition scheme,

e.g. ResNet34 [41], may be used for feature extraction, yielding a feature vector

as the initial face representation (Figure 3.3(a)). As mentioned previously, the area

covered by a face mask does not provide much subject-related information, so the

extracted features are less discriminative. For this problem, contribution estimators

are designed to learn a contribution matrix to assign more weight to useful features
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while (in relative terms) ignoring those corrupted by the face mask. The contribu-

tion estimators as an attention scheme is implemented via a branch structure, which

includes both spatial (Figure 3.3(b)) and channel components (Figure 3.3(c)).

3.2.2.1 Feature extractor

A conventional face recognition scheme (e.g., ResNet) can be used as a backbone for

extraction of features, which is used as the baseline model. Recently, ArcFace [41]

has achieved state-of-the-art performance and has been widely used in many papers.

Here, ArcFace34 is adopted as the backbone, where BN-Conv-BN-PReLU-Conv-

BN module is used as the residual bottleneck and all the convolution kernel size in

residual bottlenecks have a size of 3 × 3. Then, the output feature of all models is

fixed to 512-dimensions by a fully connected layer.

3.2.2.2 Attention-aware contribution estimator

The contribution estimators cover both spatial- and channel-wise measurements.

Figure 3.3(b) shows the details of the spatial contribution estimator, and Figure 3.3(c)

shows the details of the channel contribution estimator. They adaptively aggregate

the feature maps in both channel and spatial domains to learn the inter-channel rela-

tionship and interspatial relationship matrices. The two matrices are then multiplied

with the initial feature representation to produce refined face features. To ensure that

the estimated contribution has practical physical significance, the sigmoid function

is used instead of the ReLU [33] to map the output onto the interval (0,1), which

is used as a contribution coefficient for weighting features. An end-to-end training

strategy is adopted to optimize the entire network. After training, the trained feature

extractor is applied to extract the feature of gallery images and the feature of probe

image, and then carry out face matching to obtain the result of face recognition.
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Spatial contribution estimator. In order to estimate the contribution for each com-

ponent of the feature map, a branch architecture is added to the backbone of the fea-

ture extractor model as the spatial contribution estimator, as shown in Figure 3.3(b).

In this process, a contribution matrix is learnt which can assign greater weights to

useful features while (in relative terms) ignoring those corrupted by the face mask.

The contribution matrix and feature map have the same width and height. The struc-

ture of the spatial contribution estimator may have different complexities, ranging

from one to several convolution layers. A more complex network may result in a

better ability to learn, albeit at the cost of the extra computational effort and the risk

of overfitting.

Channel contribution estimator. Akin to the spatial contribution estimator, a branch

architecture is further added as the channel contribution estimator, in an attempt to

estimate the contribution for each channel of the feature map, as shown in Figure

3.3(c). In this module, a contribution matrix will be learnt to put more attention

on useful channels. Similarly, different structures of various complexity may be

adopted.

3.2.2.3 Feature aggregator

Let the feature extracted by the feature extractor be FI ∈ RC∗H∗W , the spatial and

channel contribution matrices be CS ∈ RC∗H∗W and CC ∈ RC respectively, the final

feature is derived as:

FC = CC ⊗ (CS ⊕ FI) , (3.1)

where ⊗ respresent matrix multiplication, and ⊕ represents element-wise multiplica-

tion.

3.2.2.4 Training strategy

In model training, the ArcFace loss [41] is used to penalize identification errors. The

bias is fixed as b j = 0, logit is transformed as WT
j FR =

∥∥∥WT
j

∥∥∥ ∥∥∥FR

∥∥∥ cos θ j, where
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θ j is the angle between the weight W j and the refined feature FR. The individual

weight is fixed as
∥∥∥W j

∥∥∥ = 1 by L2 normalization. The refined feature is fixed as ∥FR∥

by L2 normalization and is re-scaled to s. This normalization makes the prediction

probability only depend on the angle between the feature and the weight. So, the

loss is formulated as:

Lid = −
1
N

N∑
i=1

log
es cos(θyi+m)

es cos(θyi+m) +
∑N

j=1, j,yi
es cos θ j

, (3.2)

Here, m is the additive angular margin penalty between FR and Wyi to enhance the

intra-class compactness and inter-class discrepancy simultaneously.

3.2.3 Mask-aware similarity Matching Strategy (MS)

In a real-world application, a given pair of two face photos for matching usually show

different styles, that is, the identity or mug-shot photos coming from the gallery are

front portrait images without a mask, while the probe images captured in the real-

world may be with a mask. Obtaining effective features by focusing more on the non-

masked facial region is helpful in such a situation. However, it still cannot eliminate

the loss of accuracy caused by the presence of the mask. One straightforward method

is to extract features only from upper facial regions when comparing two images with

and without masks, but some important information will be neglected, e.g., shape

information contained in the mask region. To solve this problem, a mask-aware

similarity Matching Strategy (MS) is proposed, as illustrated in Figure 3.1(c). This

involves transfer of the mask from the masked face image to a non-masked image,

thus mitigating the difference caused by the mask without loss of spatial information.

This method is applicable to any face recognition scene in which one image with a

mask and the other without a mask is presented, which is especially useful for a 1:1

face verification scene.
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3.3 Experiments

In this section, several benchmark datasets and several baseline models are firstly

introduced. Then, qualitative and quantitative analyses are undertaken to attain more

insight into how face masks affect the performance of face recognition. Finally,

the proposed mitigating models are compared with state-of-the-art public models to

confirm the effectiveness of the proposed method.

3.3.1 Datasets and protocol

3.3.1.1 Training datasets

The DeepGlint dataset [44] is used as the training corpus. It includes cleaned MS-

Celeb-1M [41] and the celebrity Asia [44] datasets, summaring up to a total of 6.6M

celebrity images of 172K celebrities therein.

Due to the lack of a large volume of masked face photos to train the model, data

augmentation is used for synthesizing masked face images by using the proposed

mask-transfer technique. For each training image in DeepGlint, one mask image is

randomly selected from the mask gallery and the mask is transferred to this training

image. With this manner, the amount of training data is doubled, resulting in around

13M photos.

3.3.1.2 Testing dataset

Several commonly used benchmark datasets, such as RMFRD [6], COX [5], and

Public-IvS [62], are used for testing. Details of each dataset are as follow.

COX dataset [5] comprises 1K still images and 3K videos of 1K identities. The

video footage is captured using three cameras (Cam1, Cam2, Cam3) set at different

locations while the subjects walk in a large gymnasium to simulate a surveillance
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Figure 3.4: Some pairs of face image from the COX dataset [5] and the synthesized
COX-mask dataset.

Figure 3.5: Some pairs of face image from the Public-IvS and the synthesized
Public-IvS-mask dataset (ID image vs. Spot image).

scenario, as shown in Figure 3.4. A proposed Video-to-Still (V2S) protocol proposed

by the author is adopted for performance evaluation, where the true acceptance rate

(TAR@FAR = 10−4) is used for the 1:1 verification.

Public-IvS dataset [62] designed for Identity photo versus Spot photo (IvS) face

recognition, contains 1,262 identities and 5,503 images, as shown in Figure 3.4. The

true acceptance rate (TAR @ FAR = 10−5) for the 1:1 verification protocol is adopted

to evaluate its performance.

To analyze the effectiveness of the proposed method on masked face recognition, the

following four test conditions are designed to add masks to face photos given the test
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image pair in COX and Public-IvS datasets, as shown in Figure 3.4 and Figure 3.5:

[1]. Wo/Wo: Original test images without face masks are used.

[2]. W/W: Different masks are added to both images in a pair to simulate a scene

where both gallery and probe images are of masked faces.

[3]. Wo/W: The recognition scene where gallery images do not contain masked

faces, but probe images do. To simulate this condition, a mask is added to

COX video frames (Public-IvS spot image) while keeping the COX still im-

ages (Public-IvS ID image) unchanged.

[4]. Wo/W+MS: To improve the accuracy of Wo/W, the mask of the COX video

frames (Public-IvS spot image) is transferred to COX still images (Public-IvS

ID image), i.e., the same masks are guaranteed to appear in each image pair.

RMFRD dataset [6] is crawled from the Internet, including 5K pictures of 525 peo-

ple wearing masks, and 90K images of the same 525 subjects without masks, which

is mainly devoted to evaluate the existing face recognition system on masked im-

ages during the COVID-19 pandemic. Some sample images are illustrated in Figure

3.6. The COX and private-IvS datasets are masked by the proposed mask transfer

method, which is convenient to analyze the impact of masks on the performance of

the model. However, to evaluate the performance of the proposed model on the real-

world masked face recognition, experiments are conducted on the RMFRD dataset

and compared with other state-of-the-art methods.

3.3.2 Face recognition model and implementation

3.3.2.1 Face recognition model

The ArcFace model [41], which is the state-of-the-art against several face recog-

nition benchmarks such as LFW [32] and YTF [10], is selected for comparisons.



3.3. Experiments 65

Figure 3.6: Some pairs of face image from the RMFRD dataset [6]: Face images
without a mask (up) and with a mask (down).

Since ArcFace introduced additive angular margin loss to enhance the discrimina-

tive power of the face recognition model, it is robust to the condition of wearing a

mask. Four publicly available models, MobileFaceNet (ArcFaceM), LResNet34E-

IR (ArcFace34), LResNet50E-IR (ArcFace50), and LResNet100E-IR (ArcFace100)

are adopted 1. As introduced previously, the ResNet34 is selected in the proposed

method as the backbone for feature extraction, with which the DeepGlint dataset [44]

without mask data augmentation is used to construct a baseline model to study the

effect of face masks. To mitigate the negative effects of mask, two variants based

on ResNet34 are established including data augmentation and the proposed attention

scheme, as follows:

[1]. R34-Baseline. A ResNet-34 model is trained with the original DeepGlint

dataset, to quantify the loss of accuracy that the mask may induce.

[2]. R34-Mask. A ResNet-34 model is trained by only mask dataset augmented

from the DeepGlint dataset using the proposed masked face synthesis. This

model can significantly improve the performance of masked-face recognition,

but will degrade the performance of non-masked face recognition.

[3]. R34-AMaskNet. This is the proposed AMaskNet model trained with combi-

nation of the mask augmented DeepGlint and the original DeepGlint dataset,

1Downloaded from https://github.com/deepinsight/insightface/tree/master/mod
el zoo (Accessed 2023-01-26).

https://github.com/deepinsight/insightface/tree/master/model_zoo
https://github.com/deepinsight/insightface/tree/master/model_zoo
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which is expected to improve the performance of masked-face recognition

while reducing the loss of accuracy inherent to non-masked face recognition.

3.3.2.2 Implementation

The ArcFace loss [41] is used to train the model, where the feature scale s is set to

64 and the arccos margin m is set to 0.5. In training, stochastic gradient descent is

adopted with momentum and weight decay values of 0.9 and 0.0005, respectively.

The training begins with a learning rate 0.1 for seven epochs, which is then decreased

every five epochs by a factor of 10. A total of 25 epochs are taken for the training

with the augmented DeepGlint dataset, and 760 images are used in each mini-batch.

3.3.3 Effectiveness of the proposed method

3.3.3.1 Effectiveness of the proposed mask transfer for masked face synthesis

Figure 3.7 illustrates some mask transfer examples. Figure 3.7(a) and Figure 3.7(b)

show the mask gallery of the traditional method and the proposed method. The

proposed method is simply a face image with a mask, which is easy to obtain and

does not need manual annotation. It is low-cost, rapid, and convenient for model

development. Figure 3.7(c) and Figure 3.7(d) compare, respectively, the synthesized

masked face images of the traditional method and the proposed method. From the

results, we can observed that the proposed mask transfer method is effective and can

maintain consistency of illumination.

3.3.3.2 Effectiveness of the proposed AMaskNet

Results on COX dataset. Figure 3.8 shows the result of the proposed AMaskNet on

the COX dataset. We can see that by re-training the R34-Baseline using a masked

augmented dataset, the R34-Mask model achieves a significant improvement on
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Figure 3.7: Comparation of the MaskedFace-Net [7] and the proposed method.
MaskedFace-Net requires manually labeling several key points on the mask bound-
ary (a), while the proposed method automatically extracted the mask region from
masked face image (b). Exemplar results when adding a mask are shown in (c) and

(d) respectively.

Figure 3.8: Results on the COX dataset with 1:1 verification protocol at
TAR@FAR=10−4. From the leftmost to the right are the results of Cam1, Cam2,

Cam3, respectively.
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Figure 3.9: Results on the Public-IvS dataset with 1:1 verification protocol at
TAR@FAR=10−5.

masked face images, e.g., 28.9 percent improvement in Wo/W on Cam1 of COX.

However, this method is likely to cause performance degradation in terms of gen-

eral face recognition, e.g., 1.6 percent decline in the case of Wo/Wo for the Cam1 of

COX. The comparison between R34-AMaskNet and R34-Mask shows that AMaskNet

is able to improve the performance, especially for masked face recognition, e.g., 1.1

percent improvement in the case of W/W on the Cam2 of COX, which indicates

that the proposed contribution estimator can learn an effective contribution matrix

and automatically assign higher weights to the feature map activated by the non-

masked facial parts and lower weights to those that are activated by masked facial

parts. Meanwhile, the performance of R34-AMaskNet undergoes no significant de-

cline and may even be slightly improved in the case of Wo/Wo. This is because

COX is a low-quality video face recognition dataset with dramatic illumination and

motion blur. However, AMaskNet can localize the salient facial areas and put more

weight to discriminative features, thus improving the performance of wearing masks

while minimizing the effect of general face recognition on existing face recognition

systems.

Results on Public-IvS dataset. Figure 3.9 shows the results on Public-IvS. We can

obtain a similar conclusion to the COX. Here, Wo/Wo: no mask, original test images

are used. W/W: different masks are added to both images in a pair. Wo/W: the

recognition scene where ID images do not contain masked faces, but spot images do.

Although R34-Mask can improve the performance of masks in the case of Wo/W or
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Table 3.1: Results on the COX dataset with 1:1 verification protocol at
TAR@FAR=10−4.

Model
Cam1 Cam2 Cam3
× ✓ × ✓ × ✓

ArcFaceM 33.3 41.4 29.6 40.9 41.1 55.8
ArcFace34 51.8 56.9 47.2 49.8 47.5 49.8
ArcFace50 55.8 59.8 47.5 50.7 62.5 68.2

ArcFace100 66.6 71.0 57.5 65.4 72.7 81.0
R34-Baseline 64.9 73.1 59.2 68.4 74.4 83.2

R34-Mask 93.8 92.9 90.7 92.2 94.3 98.6
R34-AMaskNet 93.5 93.0 92.0 92.7 94.1 98.5

✓means using the proposed mask-aware similarity matching strategy (Wo/W+MS), while × means
not applicable (Wo/W).

W/W, it will degrade the performance in the case of Wo/Wo. On the contrary, the

R34-AMaskNet improves masked face recognition performance with a slight cost in

terms of performance decrease in general face recognition.

3.3.3.3 Effectiveness of the proposed mask-aware similarity Matching Strat-

egy (MS)

Results on COX dataset. Table 3.1 shows the recognition result of without and with

mask transfer on the Wo/W conditions (Wo/W vs. Wo/W+MS), where one contains

a mask, while the other does not. In addition to R34-Mask and R34-AMaskNet

models, the performance of the models is greatly improved after using the proposed

mask-aware similarity matching strategy, e.g., an 11.3 percent improvement for Arc-

FaceM on the Cam2 of COX between images treated without mask-transfer to those

with mask-transfer (because there is no mask strategy used therewith). Meanwhile,

for R34-Mask and R34-AMaskNet, although the data augmentation strategy has

been adopted, it is still improved in most cases, e.g., a 0.7 percent improvement

for the R34-AMaskNet on the Cam2 of COX between images treated without mask-

transfer to those with mask-transfer.
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Table 3.2: Results on the Public-IvS dataset with 1:1 verification protocol at
TAR@FAR=10−5.

Model
Public-IvS
× ✓

ArcFaceM 23.4 60.3
ArcFace34 23.4 60.3
ArcFace50 53.8 65.3
ArcFace100 67.5 75.7

R34-Baseline 59.7 70.8
R34-Mask 93.9 94.3

R34-AMaskNet 95.4 95.2

✓means using the proposed mask-aware similarity matching strategy (Wo/W+MS), while × means
not applicable (Wo/W).

Results on Public-IvS dataset. Table 3.2 shows the comparison between without

mask transfer (Wo/W) and with mask transfer (Wo/W+MS) on the Wo/W (one is

with mask, while the other is without mask) in Table 3.2 shows that the recognition

performance is improved by using the mask-aware similarity matching strategy, es-

pecially for the general face recognition model, e.g., 0.4 percent improvement for

the R34-Mask, compared to 14 percent improvement for ArcFaceM on the Public-

IvS dataset from without mask transfer to with mask transfer. The result shows that

transferring the mask from masked image to non-masked image in the face pairs can

mitigate the difference caused by the mask without loss of spatial information in the

inference stage.

3.3.4 Comparison of state-of-the-art methods on RWMFD dataset

To further verify the effectiveness of the proposed method on real mask data, the

proposed method is compared with public models and other literature models on the

RMFRD dataset [6]. The results are shown in Table 3.3, where those of literature

methods are taken from corresponding papers. The R34-AMaskNet outperforms

the R34-Baseline with an improvement of up to 12.5 percent. Meanwhile, R34-

AMaskNet outperforms the other methods by a significant margin, which indicates
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Table 3.3: Results on the RWMFD dataset.

Method Accuracy
J. Luttrel et al.[126] 85.7
Hariri et al. [127] 84.6

Almabdy et al. [57] 87.0
Walid Hariri. [110] 91.3

ArcFaceM 34.6
ArcFace34 43.2
ArcFace50 49.3

ArcFace100 61.7
R34-Baseline 81.9

R34-Mask 92.5
R34-AMaskNet 94.3

the proposed method is efficient when applied to a real masked face recognition

scenario.

3.4 Discussion and Analysis

This section firstly provides a discussion about the the effect of masked faces on

the behavior of face recognition model, which is important for design mitigation

techniques to offset the inevitable performance loss. Then, qualitative analysis ex-

periments using Class Activation Map (CAM) [7] are used to explore the role of

contribution learning by the proposed AMaskNet for masked face recognition.

3.4.1 Effect of mask on performance

Four publicly available models are evaluated under three test conditions, i.e., Wo/Wo,

W/W, and Wo/W, to study the effect of masked faces on the recognition accuracy.

Effect on the COX dataset. As shown in Figure 3.10, compared to a scene without

a mask, the recognition accuracy is largely decreased when a mask is present. For

example, for Cam1 of the COX dataset, ArcFace50 decreases from 95.2% on Wo/Wo
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Figure 3.10: Results on COX dataset with a 1:1 verification protocol at
TAR@FAR=10−4.

Figure 3.11: Results on Public-IvS dataset with 1:1 verification protocol at
TAR@FAR=10−5.

to 55.8% on Wo/W, resulting in 39.4 percent loss of accuracy. This magnitude of

decrease in accuracy affects all camera scenes of the COX dataset. Moreover, the

poorer the model performance, the greater the loss of accuracy, e.g. 52.2 and 31.0

percent losses in ArcFaceM and ArcFace100, respectively, from Wo/Wo to Wo/W.

It is noteworthy that having one image with a mask while the other image without a

mask has a greater adverse effect on the performance than both having masks, e.g.

the loss of accuracy of ArcFaceM from Wo/Wo to Wo/W is 52.2 percent, but only

40.0 percent from Wo/Wo to W/W.

Effect on the Public-IvS dataset. The recognition results on Public-IvS are shown

in Figure 3.11. Again, similar findings as for the COX dataset are obtained. The

recognition accuracy is largely decreased when a mask is present. For example, Ar-

cFace50 decreases from 95.7 percent on Wo/Wo to 53.8 percent on Wo/W, resulting
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Figure 3.12: Distribution comparison of similarity scores on public models. Here,
“Wo” means without wearing a mask, and “W” means wearing a mask.

in a 41.9 percentage point loss of accuracy.

Effect of the similarity distributions. To understand the reason of performance im-

provment, the similarity score distributions of genuine and imposter pairs in Wo/Wo

and Wo/W test conditions are analyzed, with the result on Public-IvS dataset shown

in Figure 3.12. The choice of False Acceptance Rate (FAR) determines the score

threshold, and then affects the results of True Acceptance Rate (TAR). In compari-

son with the Wo/Wo condition, the scores of genuine pairs strongly transfer towards

the imposters when one image is with a mask (Wo/Wo vs. Wo/W). That means, the

scores of genuine pairs become smaller and are nearer to imposter pairs due to the

influence of masks, which will cause the TAR to become smaller at the same FAR,

making them less recognizable leading to performance degradation.
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Figure 3.13: Distribution comparison of similarity scores.

3.4.2 Qualitative analysis

The distributions of similarity score. The matching score distributions of gen-

uine and imposter pairs in Wo/Wo and Wo/W test conditions are presented in Figure

3.13. We can see from the Figure 3.13(a) that in the baseline model, the genuine

scores significantly shift towards the imposter scores when the image is with a mask.

Meanwhile, we can see from the Figure 3.13(b) that in R34-AMaskNet, the shift

of similarity scores is largely mitigated. In comparison with the Wo/Wo condition,

the scores of genuine pairs of the baseline model shift towards the imposter coun-

terparts when one image is of a masked face (Wo/Wo vs. Wo/W), implying that the

scores of genuine pairs decrease and are closer to those of imposter pairs due to the

influence of masks, which makes them less recognizable. With the R34-AMaskNet,

however, the score distribution of the genuine pairs shifts only slightly toward im-

poster ones, which clearly confirms that a stronger recognition capability is obtained

in R34-AMaskNet.

Contribution estimation. Some samples are randomly selected from the testing

dataset for visual analysis. Figure 3.14 qualitatively shows the contribution esti-

mation result using CAM [7] for the purpose of intuitive understanding. Figure

3.14(a) shows images wearing a mask and its visualization results on R34-Baseline

and R34-AMaskNet, respectively. Figure 3.14(b) shows images without wearing a

mask and visualization results on R34-Baseline and R34-AMaskNet, respectively.

From the first line to the third line are the original images, the attention results of
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Figure 3.14: Visualization of attention result with CAM [7]. We can see that the
model with the contribution module can be successfully able to localize the dis-

criminative regions for face recognition.

R34-Baseline, and R34-AMaskNet, respectively. The maps highlight the discrim-

inative image regions used for face recognition. We can see from this result that

R34-AMaskNet can focus on the non-masked regions and exclude the background

for most samples, suggesting that discriminative regions for face recognition are ob-

tained. Even in images without a mask, this attention scheme can also localize the

facial area and eliminate background interference. This is why the model performs

slightly better under Wo/Wo conditions.

3.5 Summary

In this chapter, an effective method was proposed with which to mitigate the effect of

mask defects in face recognition. Firstly, a low-cost, accurate method of masked face

synthesis was proposed for use in data augmentation and a mask-aware similarity

matching strategy was developed, which is low-cost, rapid, and convenient for model

development. Secondly, AMaskNet was proposed to improve the performance of

masked face recognition, which includes two modules: a feature extractor and a

contribution estimator, where the latter is adopted to learn the contribution matrix,

thus outputting refined features by successive matrix multiplication. This method

can learn an effective contribution matrix and automatically assign higher weights to

the feature map activated by the non-masked facial parts and lower weights to those
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that are activated by masked facial parts. Finally, a mask-aware similarity method

was proposed for use in the inference stage to mitigate the difference caused by the

mask without loss of spatial information. Both qualitative and quantitative analysis

results showed that the proposed model can mitigate the effects of mask defects

in face recognition. While the method is designed for masked face recognition, it

can also be applied in other computer vision tasks, especially for other face-related

applications such as facial attribute recognition.



Chapter 4

Content-Aware Contribution

Estimation for Feature Aggregation

This chapter is dedicated to the Research Topic 2. As discussed in Chapter 1, the

difficulties in video-based face recognition, such as dramatic pose variations and low

quality, can be alleviated by leveraging the rich complementary information between

frames. However, limited by the mini-batch training strategy, the current deep learn-

ing methods only utilize the frames in each batch during training, ignoring the con-

tent of the entire video. In this chapter, a content-aware feature aggregation scheme

is proposed, that aggregates complementary information between different frames.

Firstly, a two-branch structure is designed as the Content-aware feature Aggregation

Network (CAN). Secondly, a content-aware training strategy using a content bank is

proposed, which alleviates the limitation of mini-batch samples by using the content

of the entire video or several images belonging to the same identity and thus esti-

mates the global contribution. Comparative studies on benchmark datasets, such as

COX [5], IJB-C [8], PaSC [9], and YTF [10], confirm that the proposed approach

exceeds state-of-the-art performance. Meanwhile, qualitative analysis on the Multi-

PIE dataset [11] indicates that the contribution learned by the CAN is reasonable and

beneficial to video face recognition.

77
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This chapter is structured as follows: Section 4.1 introduces this research topic, in-

cluding background, motivation, and contributions. Then Section 4.2 describes the

proposed CAN framework and the contribution-aware training strategy. Section 4.3

presents the experimental results and discussions, and Section 4.4 summarizes this

chapter.

4.1 Introduction

As discussed in Chapter 1, video face recognition has received increasing interests

in both academia and industry, and has been widely used in applications such as

security authentication and video surveillance. Although considerable progress has

been achieved in still face recognition owning to the emergence of effective deep

learning-based approaches [41, 42, 55, 56, 63, 64, 65, 66, 67], well-designed loss

functions, and large-scale datasets, video face recognition remains as a significant

research challenge. Different from still face recognition, video face recognition often

suffers from low quality, dramatic pose variations, occlusion, and so on. On the other

hand, abundant temporal and multi-view information usually exists in the video,

which may bring potential to boost accuracy in video face recognition.

To efficiently use more discriminative information in the video, aggregation-based

methods [1, 68, 69, 70, 71, 72] have been widely adopted and impressive perfor-

mance is gained in video face recognition. The basic idea of the aggregation ap-

proach is to extract frame-level features at each frame, and then to aggregate them

across all frames to form a video-level feature. The most commonly used aggregation

technique is average pooling [73], where features of all frames are simply combined

with equal importance. However, low-quality frames would deteriorate the quality

of features, resulting in degraded performance of face recognition. Another aggre-

gation method is max pooling [74], which only uses the best quality frame feature

as video feature. However, the discriminative information contained in low-quality

frames is ignored which could be complementary to high-quality frames.
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Recent advance has witnessed deep learning network as an adaptive weighting scheme

to aggregate all frame-level features together to form a compact and discriminative

video-level feature. Neural Aggregation Network (NAN) was proposed in [72] for

feature combination. It has two modules: one is the CNN feature embedding mod-

ule to extract the feature representation of each face frame, the other is the neural

aggregation module to aggregate the video-level feature from face video using two

attention blocks. Quality Aggregation Network (QAN) [1] adopted a two branches

scheme, where one branch is used to extract face feature of each image and the other

branch is adopted to predict the quality score of each image. Then, the final set-level

features are obtained by aggregating the features and the quality scores of all im-

ages in a set. C-FAN [69] was proposed to learn the quality score of each feature

component by adding an aggregation module to the base network, and then to gain

the video-level face feature in a video using a single vector aggregated from deep

feature vectors. However, limited by the mini-batch training strategy, the quality

prediction in the above methods only utilize video frames in each batch during train-

ing, which ignore the content of the entire video as well as all frames corresponding

to the subject, thus leading to a biased face quality estimation.

As Research Topic 2 of this thesis, a novelty feature aggregation method is proposed

here for video-based face recognition by considering the content of the entire video.

Firstly, a Content-aware feature Aggregation Network (CAN) is designed to learn the

contribution for each frame in a video, in which the features coming from multiple

frames are adaptively aggregated into a compact video-level feature. The network is

composed of two branches; one is a feature extractor to extract face feature from a

single frame and the other branch is a contribution estimator to estimate the image

contribution. The video feature is then aggregated by the features and contributions

of all frames in a video clip. Secondly, a content-aware training strategy using a

content bank is proposed, where not only the samples in each mini-batch but also

the content of the entire video clip are considered, thus achieves a global contribu-

tion estimation scheme. In addition, in order to reduce the influence of the long tail

problem in the training corpus, i.e., DeepGlint [44] and Glint360K [45] datasets, a
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balanced batch selection strategy is further carefully designed. The qualitative anal-

ysis on the Multi-PIE [11] dataset shows that the contribution learned by the CAN

is reasonable in that it is closely related to image quality, and the quantitative exper-

iments on benchmark datasets indicate that the proposed CAN achieves significant

performance. The main contribution are summarized as follows:

[1]. CAN is proposed to learn the contribution of each frame in a video, and the

features from multiple frames are adaptively aggregated into a compact video-

level feature based on their contributions.

[2]. A content-aware training strategy is proposed to achieve a global contribution

estimation scheme by leveraging the content of the entire video clip using a

content bank.

[3]. A balanced batch selection strategy is carefully designed to reduce the negative

impact of the long-tail dataset on performance.

4.2 The Proposed Approach

In this section, the proposed Content-aware feature Aggregation Network (CAN) is

described, which incorporates feature extractor network and contribution estimator

network to obtain, respectively, the feature and the contribution of a single frame.

Then, the content-aware training strategy is introduced, where not only the samples

in each mini-batch but also the content of the entire video is considered.

4.2.1 Content-aware feature Aggregation Network (CAN)

The CAN architecture consists of three modules: feature extractor, contribution es-

timator, and feature aggregator, as illustrated in Figure 4.1. The input of the CAN is

a video clip or several images belonging to the same identity. The feature extractor

is a base model, which is used to extract each frame feature of the video clip. The
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Figure 4.1: Architecture of the proposed Content-aware feature Aggregation Net-
work (CAN). (Best viewed in color)

contribution estimator is added to the base model using several convolution layers

and one-node fully connected layer, which is used to estimate the contribution of

each frame to their video clip. The feature aggregator is used to aggregate the contri-

bution scores and features of all frames in the video clip. The final video-like feature

is thus directly obtained by the feature aggregator. The content bank is maintained to

memorize the global features. Here, video-level identity loss and content-aware loss

are used to supervise the training. Details of each component are introduced below.

Feature extractor: Most popular deep neural networks (e.g., ResNet34 in ArcFace

[41]) can be adopted as a backbone to extract the feature from each frame [128, 129].

Once built, the extractor is kept fixed during the training of the CAN network.
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Contribution estimator: A new branch is adopted as the contribution estimator by

connecting the feature extractor, aiming to obtain the contribution of each single

frame, which is then used as the weight later in feature aggregation stage. The struc-

ture may have different complexity, ranging from one-node fully connected layer to

one or several convolution layers. More complex network may bring higher learning

ability, but certainly with the cost of extra computation and the risk of over-fitting.

Feature aggregator: Let us define V = {I1, I2, . . . , Im} as a video clip, with Ii indi-

cating the i-th frame. Let F(·) and C(·), respectively, denote the feature extractor and

contribution estimator, which output the feature vector fi and attribution value ci for

each frame, i.e., fi = F(Ii) and ci = C(Ii). The final face representation of a video is

thus directly obtained by a weighted average of the features of the video frames, as

follows:

FV = ∅ ( f1, f2, . . . fm) =
∑m

i=1 ci ∗ fi∑m
i=1 ci

, (4.1)

Optionally, the frame feature with the highest contribution value may be used as the

video feature, i.e., feature selection scheme.

4.2.2 Content-aware training

Two kinds of losses are proposed to train the model; one is video-level identity loss,

while the other is content-aware contribution loss. With the former loss, the ground-

truth of contribution or quality value of each frame is not necessary during train-

ing, which largely reduces the cost of building training data. With the latter loss,

a content-aware features memory bank is introduced to store more information (be-

yond the information in each training batch as in traditional method) during training

stage, in order to increase accuracy. Details of each loss are introduced below.

Video-level identity loss. Video-level feature is firstly obtained by the contribution

weighted aggregation of the features of all frames in a video clip, and an ArcFace

[41]-like loss is chosen to penalize video-level identification error. In such case, no
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Figure 4.2: Contribution estimation with the proposed content-aware Contribution
Loss (CL). (Best viewed in color)

contribution or quality value of each frame is provided as ground-truth for supervi-

sion, so, the training can be seemed as unsupervised. The video-level identity loss is

defined as:

LID = −
1
N

N∑
i=1

log
es cos(θyi+m)

es cos(θ ji+m) +
∑n

j=1, j,yi
es cos θ j

, (4.2)

where θ is the angle between a video-level feature and the corresponding weight, N

is the number of video clips in a mini-batch, m is a marginal factor, and s is a scale

factor.

Content-aware Contribution Loss (CL). Given traditional DL model training strat-

egy where the calculation is limited to mini-batch samples, contribution prediction is

achieved only based on the video frames in each mini-batch, while ignoring content

information in the entire video or even the whole corpus, as illustrated in Figure 4.2.
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Figure 4.2(a) shows the feature space and contribution value of the samples belong-

ing to a subject. The nearer a sample is to the identity center, the higher (better)

the contribution (quality). Figure 4.2(b) shows the feature space and contributions

of mini-batch samples. The ID center represents the feature space center of all face

images of a subject. During training, face recognition is regarded as a classification

task, that is, a subject is trained as a class. Therefore, the ID center is the feature

space center of a class for classification tasks. The samples close to the mini-batch

center are assigned higher contribution value even they are far from the ID center.

However, the samples close to the ID center but far from the mini-batch center are

assigned a low contribution value, such as the estimated contribution value of the

sample represented by the pentagram, thus leading to a biased face contribution es-

timation. Figure 4.2(c) shows the contribution estimation result under the CL loss,

where the samples far from the identity center are assigned lower contribution values

even when they are close to the mini-batch center. Meanwhile, the samples close to

the ID center are assigned higher contribution values even when they are close to the

mini-batch center, such as the estimated contribution value of the sample represented

by the pentagram.

To alleviate the above limitations, a renewed global representation is always kept for

each identity using a memory bank, and to force the local representation calculated

from each mini-batch to be close to the global representation. The global represen-

tation is obtained from the entire video (or the whole corpus), thus content informa-

tion is introduced to the mini-batch based training. Let B =
{
Fg1 , Fg2 , . . . , Fgi

}
be

the memory bank, with Fgi representing the global representation feature of the i-th

class. The content-aware loss can thus be defined as follows:

LC =

n∑
i=0

∥∥∥Fvi − Fgi

∥∥∥ = n∑
i=0

∥∥∥∥∥∥
∑m

j=0 c j ∗ f j∑m
j=0 c j

− Fgi

∥∥∥∥∥∥ , (4.3)

where Fvi is the video-level feature as introduced in Eq. 4.1, Fgi is the global video-

level feature of identity which is obtained by simply averaging all the video-level

features belonging to the i-th class. Fgi is updated by calculating the average of the

features of the same class in the mini-batch on each iteration. If the mini-batch does
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not include the set features of some classes, their corresponding global features will

not be updated.

The gradients of LC with respect to Fvi and Fgi are given by:

∂LC

∂FV
=

1
n

(
Fvi − Fgi

)
, (4.4)

∆Fgi =

∑n
i=1 δ (yi = j) ·

(
Fgi − Fvi

)
ε +
∑n

i=1 δ (yi = j)
, (4.5)

where δ is Kronecker’s Delta function, and ε is a small positive number to avoid zero

denominator, which is set to 10−5.

Combination of the two losses. Finally, the video-level identity loss and contribu-

tion loss are combined to jointly train the model, as follows:

L = LID + λLC, (4.6)

where λ is adopted for balancing the two loss functions.

4.3 Experiment and Discussions

In this section, the proposed method is evaluated through comparison with state-

of-the-art approaches to confirm its effectiveness. Firstly, several commonly used

benchmark datasets are introduced. Then, the implementation details of the pro-

posed method are presented. To gain more insight into the behavior of the proposed

method, ablation study and qualitative analysis are presented.
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4.3.1 Datasets

Both feature extractor and the contribution estimator are trained on DeepGlint [41]

and Glint360k [45] datasets, while the accuracy is evaluated on three benchmarks,

i.e., COX [5], IJB-C [8], PaSC [9], and YTF [10]. In addition, the Multi-PIE dataset

[11] is used for qualitative illustration of the effect of contribution estimation.

DeepGlint dataset [44] includes cleaned MsCeleb1M [41] and Asian celebrity [44]

datasets with a total of 6.6M celebrity images of 172K identities. Therefore, it is

adopted for the analysis of the proposed method and ablation studies with a relatively

small dataset for training.

Glint360K dataset [45] is a widely adopted large-scale dataset for training a face

recognition model, which includes more than 17M images from 360K identities

merged from clean Celeb-500K [130] and MS1M-Retinaface [41] datasets. There-

fore, it is adopted for the verification of the effectiveness of the proposed method

with large-scale datasets for training, to compare with state-of-the-art methods.

COX dataset [5] contains 1K identities, including 1 still image and 3 videos for

each identity; a total of 1K still images and 3K videos with natural variations in pose,

expression, lighting, blur, and face resolution. Most of the videos have more than 100

frames each identity and especially videos from Cam3 mostly have 170 frames. The

videos captured each identity walking in a large gym to simulate the surveillance

scenario from three cameras (Cam1, Cam2, Cam3) at different locations. Three

standard matching protocols were also proposed by the author for face identification

testing, i.e., Video-to-Still (V2S), as shown in Figure 4.3.

IJB-C dataset [8] includes 3,531 identities, a total of 31,334 (21,294 face and 10,040

non-face) still images, averaging to 6 images per subject, and 117,542 frames from

11,779 full-motion videos, averaging to 33 frames per subject and 3 videos per sub-

ject, which is an extension of the IJB-B [103] dataset. All subjects in the dataset are

ensured to appear in at least two still images and one video. In the 1:1 verification,

there are 23,124 templates with 15,639K impostor pairs and 19,557 genuine pairs.
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Figure 4.3: Sample images from the COX dataset [5].

The verification protocol of IJB-C contains more impostor pairs, thus the True Ac-

cept Rates (TAR) at lower False Accept Rates (FAR) is used in here, as shown in

Figure 4.4.

PaSC dataset [9] contains 265 identities and 2,802 videos. Half of its videos are

captured by controlled camera (denoted as PaSC-C), while the rest are captured by

hand-held camera (denoted as PaSC-H), and each identity is asked to perform some

predefined actions. Therefore, the face photos cover serious video-type noises and

large pose variations. In total, there are 334,879 and 328,967 frames of video in

the 1,401 control and 1,401 hand-held videos, respectively. The evaluation in this

chapter on PaSC totally follows the predefined face verification protocol, as shown

in Figure 4.5. Note that pose, distance to camera and sensor were varied within

sessions, while locations were varied between sessions.
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Figure 4.4: Sample images from the IJB-C dataset [8].

Figure 4.5: Sample images from the PaSC dataset [9] from four sessions.

YTF dataset [10] contains videos downloaded from YouTube, which includes 3,425

videos of 1,595 identities with an average of 2.15 videos of each subject. This dataset

is designed for studying the problem of unconstrained face recognition in videos.

The average length of a video clip is 181.3 frames, of which the longest clip is 6,070

frames and the shortest clip duration is 48 frames, as shown in Figure 4.6.
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Figure 4.6: Sample images from the YTF dataset [10] downloaded from YouTube,
which is designed for studying the problem of unconstrained face recognition in

videos.

Figure 4.7: Sample images from the Multi-PIE dataset [11].

Multi-PIE dataset [11] contains face images of 337 identities with comprehensive

variety in illumination, expression and pose, by carefully designing the configura-

tion of 15 cameras and 18 flashes. Thirteen cameras were located at head height,

spaced at 15° intervals, and two additional cameras were located above the subject,

simulating a typical surveillance view. One image without any flash illumination, 18

images with each flash firing individually, and then another image without any flash.

Therefore, it is very suitable to confirm the correlation of contribution estimation

with image quality, as shown in Figure 4.7.
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4.3.2 Implementation details

In this section, firstly, Data augmentation (DA) is introduced. Then, the balance

strategy (BS) is discussed. Finally, training parameters are described.

Data Augmentation (DA). Blur is imposed to the Deepglint and Glint360K datasets

to simulate video-like training data, where one-dimensional local averaging of neigh-

boring pixels is applied to generate motion blur, while a Gaussian kernel is adopted

to simulate the out-of-focus blur. Besides this, the images are split into 5×5 blocks

and some blocks are randomly replaced with a black mask for synthesizing occlu-

sion data. Illumination variance is achieved by simply adjusting the brightness of the

training images.

Balance Strategy (BS). Long tail distribution of the training data; the fact that a

small number of entities appear frequently while most of others remain relatively

rare, usually poses great impact on the feature learning process and feature extrac-

tion ability. To solve this problem, two strategies are designed in this chapter. One

straightforward strategy is to remove the very head and tail identies. More specifi-

cally, subjects with more than 500 or less than 10 samples are removed. Given that

there are sufficent number of identities remaining, this strategy brings some improve-

ment on the accuracy. The second strategy is to select samples for each mini-batch

in training based on identities but not individual images. In image based mini-batch

solution, identities with more samples will have a higher probability to be selected.

However, in identities based solution. n identities are randomly selected from the

identity list and then m images are obtained for each identity to generate the mini-

batch of n*m samples, thus avoiding the bias to head subjects.

Training parameters. The ResNet50 (R50) and ResNet100 (R100) models are pre-

built as the feature extractor of a small model and a large model, respectively. After

that, the feature extractor is fixed and the contribution estimator is then trained on the

same dataset with the above data augmentation scheme. Stochastic Gradient Descent

(SGD) [131] is used with momentum and weight decay value being 0.9 and 0.005.
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Table 4.1: Results on the IJB-C dataset with 1:1 verification protocol
(TAR@FAR=10−3, 10−4, 10−5). “CAN” means the proposed content-aware fea-

ture aggregation Network.

Method 10−5 10−4 10−3

Multicolumn [71] 77.10 86.20 92.70
ArcFace [41] 87.28 92.13 95.55

PFE [119] 89.64 93.25 95.49
DUL [118] 87.22 92.43 95.38

GroupFace [56] 94.53 96.26 -
VPL [56] - 96.76 -

R100, CAN, DeepGlint 95.44 96.88 97.87
R100, CAN, Glint360k 96.29 97.62 98.52

The value of λ is set to 0.1, and the size of mini-batch is set to 100 including 20

randomly selected subjects and 5 images per subject.

4.3.3 Evaluation through comparison with state-of-the-art meth-

ods

Following the standard evaluation protocols, the proposed model is compared with

the state-of-the-art methods on several benchmarks, i.e., IJB-C, PaSC, YTF, and

COX.

Evaluation on the IJB-C dataset. The commonly used criterion of true accep-

tance rate at different false acceptance rate (TAR@FAR=10−3, 10−4, 10−5) is used

for the evaluation on the IJB-C dataset. The proposed method is compared with

several state-of-the-art face recognition methods including both feature aggregation

and non-aggregation methods. The results are shown in Table 4.1. For the purpose

of fair comparison, both DeepGlint and Glint360k datasets are used for training.

We can clearly see from the results that the proposed model outperforms the non-

aggregation methods with a large margin, i.e., 8.12% and 9.01% better than ArcFace

at FAR=10−5 trained on DeepGlint and Glint360k datasets, respectively.
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Table 4.2: Results on the PaSC dataset with 1:1 verification protocol (
TAR@FAR=10−2) and YTF dataset (Accuracy(%)). “PaSC-C” means videos cap-
tured by controlled camera. “PaSC-H” means videos captured by hand held camera.

“CAN” means the proposed content-aware feature aggregation Network.

Method PaSC-C PaSC-H YTF
NAN [72] — — 95.72

QAN [122] — — 96.17
DAN [121] 92.00 80.30 94.28
ADRL [81] 95.67 93.78 96.52

TBE-CNN [132] 96.20 95.80 94.96
COSONet [123] 97.40 96.00 —

C-FAN [69] — — 96.50
R100, CAN, DeepGlint 97.67 96.83 97.18
R100, CAN, Glint360k 98.46 97.62 97.53

Evaluation on the PaSC dataset. The proposed method is further evaluated on

surveillance scenes, by using the PaSC dataset. The results are shown in Table 4.2.

Similar to that in the IJB-C dataset, the proposed method again behaves consistently

better than the literature methods. The video content in PaSC, especially in the hand-

held case, suffers from more severe conditions due to camera shaking, pose, blur, etc.

Therefore, most of the face images in each video clip are of low quality. The simple

average method, such as average pooling aggregation, assigns equal weights to each

frame. In this way, the low quality frames with improper features would degrade

the performance of the final recognition. On the contrary, the proposed contribution

estimator obtains a contribution value closely related to image quality, thus depress-

ing the low quality frames and strengthening the contribution of high quality frames.

The proposed CAN outperforms ADRL aggregation by 2.79% at FAR=10−2 in con-

trolled scenes, while this superiority increases to 3.84% at FAR=10−2 in hand-held

scenes, which implies the robustness of the proposed method to deteriorated image

quality.

Evaluation on the YTF dataset. The YTF dataset is a widly used benchmark video

face dataset, which is designed for analyzing the problem of unconstrained video

face recognition. The result of a 10-fold cross-validation is calculated on the YTF

dataset as in Table 4.2. Compared with other aggregation methods, no video face
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Table 4.3: Rank-1 Identification Rates (%) under the V2S setting for different meth-
ods on the COX dataset. “CAN” is the proposed content-aware feature aggregation

Network.

Model V2S 1 V2S 2 V2S 3
PSCL [5] 38.60 ± 1.39 33.20 ± 1.77 53.26 ± 0.80

LERM [133] 45.71 ± 2.05 42.80 ± 1.86 58.37 ± 3.31
VGG Face [74] 88.36 ± 1.02 80.46 ± 0.76 90.93 ± 1.02

TBE-CNN [132] 93.57 ± 0.65 93.69 ± 0.51 98.96 ± 0.17
R100, CAN, DeepGlint 96.14 ± 0.49 94.69 ± 0.25 99.68 ± 0.09
R100, CAN, Glint360k 98.21 ± 0.28 95.18 ± 0.19 99.86 ± 0.07

datasets was used in training the proposed contribution estimator. However, bet-

ter performance was still achieved, which confirms the superiority of the proposed

method among these state-of-the-arts, i.e., 1.03% better than C-FAN.

Evaluation on the COX dataset. The Rank-1 identification rates on COX is listed

in Table 4.3. Again, the proposed method outperforms literature methods. Especially

on Cam1 and Cam2, more than 4% improvement is achieved.

4.3.4 Ablation studies

In this section, ablation studies are conducted to understand the contribution of each

component of the proposed method, ranging from the model structure and the loss to

the implementation such as data augmentation and balance strategy. ResNet50 with

DeepGlint dataset is adopted for the studies with the relatively small data set for

training. TAR@FAR on PaSC dataset is used here for the comparison. The results

are shown in Table 4.4.

Model structure. Three contribution estimators of different complexity are firstly

compared: (1) Baseline, where only feature extractor is adopted and the features

from all frames are aggregated by average pooling, (2) FC1 (Model A), which is a

simplified contribution estimator where only a one-node fully connected module is
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Table 4.4: Ablation study on PaSC dataset with 1:1 verification protocol
(TAR@FAR=10−2). “Conv” is the Convolution Module. “CS” is the Content-aware
Strategy. “DA” is the Data Augmentation. “BS” is the Balance Strategy. “PaSC-C”
is the videos captured by the control-held camera. “PaSC-H” is the videos captured

by the hand-held camera.

Model Conv CS DA BS PaSC-C PaSC-H
Baseline — — — — 93.43 80.34

A — ✓ ✓ ✓ 93.41 84.18
B ✓ ✓ ✓ ✓ 97.41 97.05
C ✓ — ✓ ✓ 95.79 94.03
D ✓ ✓ — ✓ 93.39 89.16
E ✓ ✓ ✓ — 96.15 93.89

used, (3) Conv+FC1 (Model B), which is the proposed solution comprising a convo-

lution module and a one-node fully connected module. We can see that introducing

the contribution estimator evidently boosts the recognition accuracy. This is more

obvious in the hand-held case, e.g., 4% improvement on hand-held data. As men-

tioned earlier, the images in the hand-held PaSC suffer severe quality degradation,

thus it is even crucial to select the most informative and discriminative frames for

correct recognition. However, since the structure of one node FC is too simple, thus

the learning capability may be not sufficient. By adding additional convolution lay-

ers, the learning capability is enhanced and much bigger improvement can be further

obtained, e.g., 12.87% improvement on hand-held data.

Content-aware Strategy (CS): Different learning strategies are compared, i.e., with

or without CS (Model B or Model C). It is obvious that CS brings further benefits to

the accuracy, especially in the hand-held case, i.e., 3.02% improvement in compari-

son without using this strategy. This result once again confirms the effectiveness of

the proposed contribution estimation scheme in aggregating low quality video frames

for recognition.

Data Augmentation (DA). Data augmentation plays an important role in the pro-

posed video face recognition solution. The photos in the DeepGlint dataset, which
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are usually captured under good conditions or even captured by professional pho-

tographers, are much different from the surveillance scenario, e.g., the photos are

usually in high resolution and are not blured. The feature extractor and estimator

built on DeepGlint thus cannot behave well on the PaSC video data. By introducing

data augmentation to the training corpus, the data becomes more consistent with the

video scene, and better accuracy can be achieved (Model B or Model D). This can

be confirmed by the result, where 4.02% and 7.89% improvement are obtained for

controled and hand-held cases, respectively.

Balance Strategy (BS). As introduced in Section 4.1, the long tail problem still

exists in the DeepGlint corpus. Therefore, the balance strategy may contribute to the

accuracy without any surprise. The balance strategy itself may not be a part of the

proposed content-aware feature aggregation algorithm, but, it is a helpful training

scheme toward better accuracy. Compared with Model B and Model E, it is obvious

that BS brings further benefits to the accuracy, i.e., 3.16% improvement for PaSC-H

in comparison to not taking this strategy.

4.3.5 Qualitative analysis

The result of contribution estimation on Multi-PIE dataset [11] is qualitatively illus-

trated in Figure 4.8 and Figure 4.9.

Figure 4.8(a) shows samples of a subject across varied pose, illumination, and corre-

sponding contributions predicted by the proposed contribution estimator. From left

to right, faces with different poses are represented, spaced in 15 degree intervals.

We can clearly see that the estimated contribution value is closely related to face

pose and illumination from Figure 4.8(a). For example, the frontal face image with

normal light shows high contribution. With the increase of pose and the decrease of

illumination, the contribution value decreases, and the images in extreme illumina-

tion condition and large pose tend to obtain very low scores, which indicates positive

correlation between the contribution estimation value and the image quality.
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Figure 4.8: The contribution distribution across varied pose, illumination and oc-
clusion on the Multil-PIE dataset. (Best viewed in color)
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Figure 4.9: Contribution distribution on different motion blur and out of focus blur
on the Multil-PIE dataset, where the left is an artificially adding motion and out of
focus blur to the face image to simulate the different types of blur and the right is the
corresponding predicted contribution of the contribution estimator. (Best viewed in

color)

To conduct qualitative analysis on the effectiveness of the contribution estimator on

occlusion, an occlusion is artificially added to the face image to simulate different

occlusions. Figure 4.8(b) shows samples of a subject with varied occlusion and

corresponding contributions predicted by the proposed contribution estimator. We

can be see that by adding occlusion to the original images, the contribution gradually

decreases, which prove the effectiveness of the contribution estimation for occluded

situations.

To further conduct qualitative analysis on the effectiveness on blur, motion and out

of focus blur are artificially added to the face image to simulate the different types of

blur. The results are shown in Figure 4.9. We can see that by adding more blur into

the original images, contribution gradually decreases, which proves the effectiveness

of contribution estimation for blured image.
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4.4 Summary

In this chapter, a new feature aggregation method was proposed for video-based

face recognition by considering the content of the entire video, i.e., a content-aware

feature aggregation scheme to aggregate complementary information between dif-

ferent frames in the video. Several innovative ideas were presented including: (1) a

two-branch DL network for content-aware feature aggregation, (2) a content-aware

training strategy for global contribution estimation by utilizing the content of the en-

tire video clip using a content bank, (3) a balanced batch selection strategy for better

accuracy by reducing the negative impact of the long-tail training dataset. While the

proposed approach is aimed for video face recognition, it can also be applied to other

computer vision tasks, especially for object recognition tasks in video.



Chapter 5

Conclusion

This chapter provides the conclusion of this thesis. The overall summary is intro-

duced in Section 5.1. Section 5.2 discusses remaining challenges in the field of face

recognition and potential future research directions. Section 5.3 provides some clos-

ing remarks to conclude the thesis.

5.1 Summary

The research presented in this thesis aimed to achieve robut face recognition for

video surveillance. At present, face recognition under constrained environment has

achieved promising results, and many products with face recognition technology

are widely used in our daily life. However, surveillance face recognition is still

a challenging problem, especially for unconstrained surveillance scenes. Different

from constrained face recognition, unconstrained surveillance face recognition suf-

fers from extremely low quality of each frame, e.g., various occlusions, changing

illuminations, dramatic pose variations, especially when a large part of the face is

covered by wearing a face mask, for example, during the COVID-19 pandemic. On

the contrary, abundant temporal and multi-view information usually exists between
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surveillance video frames, which may bring potential to boost accuracy in uncon-

strained surveillance face recognition. Therefore, this requires us to improve the

performance of unconstrained surveillance face recognition from each frame and be-

tween multiple frames. This thesis intensively studied two issues of face recognition

under unconstrained surveillance scenes and proposed two approaches with sufficient

experiments and comparative analysis.

The first research topic described in this thesis proposed a method used for mitigating

the negative effects of mask defects on face recognition. Firstly, a low-cost, accurate

method of masked face synthesis, i.e., mask transfer, was proposed for data augmen-

tation. Secondly, an Attention-aware Masked face recognition Network (AMaskNet)

was proposed to improve the performance of masked face recognition, which in-

cludes two modules: a feature extractor and a contribution estimator. Therein, the

contribution estimator was employed to learn the contribution of the feature ele-

ments, thus achieving refined feature representation by simple matrix multiplica-

tions. Meanwhile, the end-to-end training strategy was utilized to optimize the en-

tire model. Finally, a mask-aware similarity Matching Strategy (MS) was adopted to

improve the performance in the inference stage. Experiments showed that the pro-

posed method consistently outperformed comparative methods on three masked face

recognition datasets: RMFRD, COX, and Public-IvS. Meanwhile, qualitative anal-

ysis experiments using CAM indicated that the contribution learned by AMaskNet

was more conducive to masked face recognition. The proposed solution was submit-

ted to the National Institute of Standards and Technology’s (NIST) Face Recognition

Vendor Test in 2021, and achieved the third place in the World and the top ranking

among the Japanese vendors for the mask-wearing category.

The second research topic described in this thesis proposed a content-aware fea-

ture aggregation scheme to aggregate complementary information between different

frames. The difficulties in video-based face recognition, such as dramatic pose vari-

ations and low quality, can be alleviated by leveraging the rich complementary infor-

mation between the frames. However, limited by the mini-batch training strategy, the

current deep learning methods only utilizes the frames in each batch during training,
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which ignore the content of the entire video. Therefore, firstly, a two-branch structure

was designed as the Content-aware feature Aggregation Network (CAN). Secondly,

a content-aware training strategy using a content bank was proposed, which alleviate

the limitation of minibatch samples by using the content of the entire video or several

images belonging to the same identity and thus could achieve global contribution es-

timation. Comparative studies on benchmark datasets: IJB-C, YouTube Face (YTF),

PaSC, and COX, confirmed that the proposed approach could outperform compar-

ative methods. Meanwhile, qualitative analysis on the Multi-PIE dataset indicated

that the contribution learned by the CAN was reasonable and beneficial to video face

recognition.

Based on the above research topics, a prototype of unconscious face recognition in

surveillance scenes was designed to analyze and verify the feasibility of the proposed

methods in practical application scenarios. They have also been applied to many

practical products and services of Fujitsu.

5.2 Remaining Challenges and Future Directions

Thanks to the publication of large-scale labeled face recognition datasets and the

rapid development of deep learning technology, face recognition has continuously

achieved significant results on testing datasets. The target has changed from a con-

strained scene to an actual video surveillance scene where the scenario is completely

unconstrained with uncooperative users. However, with the practical and commercial

applications of face recognition, many of the ideal assumptions of academic research

are being broken, and more and more real-world problems are emerging. Therefore,

when results for a testing dataset saturates, some newer datasets that are more chal-

lenging and closer to the actual scenario will appear. The remaining challenges and

possible future directions are as follows:

[1]. Pursuit of extreme performance and efficiency. Many killer-applications,

e.g., financial authentication and watch-list surveillance, demand the accuracy
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of matching at very low alarm rates, such as FAR=10−8. Even with deep learn-

ing and massive training data, this is still a huge challenge. At the same time,

the deployment of deep face recognition applied to mobile devices pursues

the smallest size feature representation with extreme high accuracy using deep

learning. Exploring this extreme face recognition performance beyond human

imagination is of great significance to both industry and academia. After the

algorithm has surpassed humans, it is also exciting to continuously improve

the performance limit of the algorithm.

[2]. Across different application scenarios. In real-world applications, it is hard

to collect and label sufficiant number of samples for countless real-world sce-

narios. A promising solution is firstly learning a general model and then trans-

ferring it to real-world application-specific scenarios. Although deep domain

adaptation [134] has recently been applied to reduce algorithmic bias on dif-

ferent scenarios [135], a general solution for transferring face recognition is

still an open problem.

[3]. Privacy-preservation issues of face recognition. Nowdays, privacy concerns

are becoming increasingly prominent with the leakage of biological data. Fa-

cial images can predict not only demographic information such as age, eth-

nicity or gender, but even genetic information [136]. More recently, pioneer-

ing works such as the Semi-Adversarial network [137, 138, 139, 140] have

explored generating recognizable biometric templates that can hide some pri-

vate information from facial images. Further research into the principles of

visual cryptography, signal mixing, and image perturbation to protect stored

user privacy, such as face templates, is essential to address public concerns

about privacy.

[4]. Multi-modal fusion problems. Face recognition by itself is inadequate to

cover all the cases in biometric authentication tasks, such as matching faces

before and after surgery, and biometric recognition of crowded people. Face

recognition is also sensitive to occlusion, blur, pose, etc. Moreover, in many
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video frames, some faces can even be not visible, for example, due to oc-

clusion. Intuitively, it will be beneficial to combine all biometric features to

make full use of them to obtain satisfactory results. However, these infor-

mation sources can correspond to different biometrics, e.g., combination of

face and palm vein for identification, sensors, e.g., combination of 3D and

2D cameras, feature extraction and feature matching techniques. Performing

information fusion at the decision-level, rank-level, score-level, feature-level,

and data-level is beneficial for facial biometric authentication applications.

In the future, with the development of face recognition technology, face recognition

application scenarios will gradually change from semi-cooperative to completely un-

constrained and non-cooperative surveillance scenarios. It will not only greatly im-

prove access control, financial security, retail transactions, speed up transport check-

ins, and even overhaul national security processes. In the future, face recognition

combined with other biometrics will achieve an even more super-smart society ac-

cording to its specific application field. Let us take the retail industry as an example.

Face recognition will help the retail industry establish feasible relationships with

customers. The main application of face recognition in the retail industry is self-

service shopping. Without a cashier, customers can fill the shopping cart and pay by

verifying the face ID connected to their E-wallets. Another application is emotion

analysis. Store managers can use artificial intelligence and face recognition to cap-

ture customers’ emotions about products, find the most attractive or least attractive

products, and set their product portfolio correctly. Similarly, retail managers can

identify loyal customers and offer them rewards, because facial recognition cameras

can accurately detect ordinary shoppers or loyal customers.

However, with the wide application of face recognition in our daily life, more and

more people begin to worry about the ethical issues of face recognition, such as,

privacy-preservation and biases. In the future, on the one hand, more and more pri-

vacy preservation technologies will be used to protect users’ privacy from anyone,

even users and developers, such as, visual cryptography, signal mixing, and image
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perturbation. On the other hand, many effective strategies to avoid bias will be pro-

posed and used for face recognition, for example, building a more representative

large-scale dataset that consists of a large demographically balanced set of faces and

developing more advanced debiasing methods that treats all people equally, whether

black or white, men or women.



Appendix A

Prototype of Unconscious Surveillance Face Recogni-

tion

The main objective of this thesis is to improve the robustness of unconscious face

recognition for video surveillance. Despite the success of deep learning models un-

der constrained face recognition scenarios, the deep features still demonstrate imper-

fect invariance to wearing a mask, where the whole face image can not be provided

for description. However, the surveillance video provides us with abundant comple-

mentary information across frames compared with a single image. Therefore, this

thesis focused on masked face recognition and feature aggregation-based face recog-

nition between multi-fames. Based on these researches and the trained models, I

developed a prototype of unconscious surveillance face recognition for access con-

trol of a laboratory gate to analyze and verify the feasibility of the proposed methods

in practical application scenarios. The prototype recognizes an unconscious labora-

tory member and opens the door when he/she walks toward the gate.

The process of the prototype is shown schematically in Figure A.1. As Step 1, two

surveillance cameras are installed on the inside and outside of the laboratory entrance

to collect face images of the subject without any cooperation, and send them to the

server. As Step 2, the process of face detection, face tracking, face alignment, feature

extraction, and face matching is completed in the server using the face images cap-

tured by the surveillance cameras. The core module is the feature extraction, which
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A.1. The process of the prototype

A.2. Sample images of surveillance cameras.

is mainly composed of two parts: The masked face recognition model described in

Chapter 3 is used to extract the frame-level face features of each frame, and then the

content-aware contribution estimation for feature aggregation method in Chapter 4 is

used to extract the video-level face features. As Step 3, the result of face matching in

the previous step is sent to the access control system in the form of Wiegand signal,

which is the most common communication method used by access control devices

[141]

To evaluate the prototype’s performance, 211 video clips were collected and labeled

manually. The gallery included 89 identities. The criteria for a “correct recognition”

of each clip is that the target identity is at the first rank in the result compared with

all identities and the similarity score is larger than a given threshold. Note that if

the similarity score of the second rank identity is also larger than the threshold, the

recognition is considered as failed (False Positive; FP). The threshold is set to when

the second rank FP is 0. As shown in Figure A.3, the performance of the prototype

can reach 91.9% when FP is set to 0.
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A.3. Experimental results of the prototype system. Here, the Top-1 correct indicates
that the first rank is the target identity and the score is larger than a threshold. Top-2
FP (false positive) incicates that the second rank is larger than a threshold. Imposter

FP incicatess that the score of the 1st rank is larger than the threshold.

In order to avoid false recognition, the FP of this prototype is set to 0, which is

the highest level. However, even with highest FP, the performance of the prototype

still reached 91.9%. The system has been running steadily and continuously for

more than one year, and its recognition results are directly used for the laboratory

attendance. Although the performance of the prototype has not reached 100%, the

8.1% of the user who are rejected are mainly from the path-2 of the inside laboratory

camera and the path-2 of the outside laboratory camera. In practice, if a user walks

to the door, the access control does not open automatically, the user only needs to

look at the camera to perform face recognition, and then the gate will be opened

automatically by the access control system.

The proposed models in this thesis have been successfully applied to different Fujitsu

products, but we cannot use user’s face data due to privacy-preservation issues. So

this prototype is build to analyze and verify the feasibility of the proposed methods in
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practical application scenarios. However, in order to ensure the privacy of face data

of laboratory members, we will add a privacy-preservation algorithm to this proto-

type in the future. In addition, we will also evaluate the face expression recognition

on this prototype.
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