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Abstract
Our Universe has rich hierarchical structures spanning many orders of magnitude.
The seeds of such hierarchical structures are called primordial perturbations. Pre-
cise measurements such as Cosmic microwave background (CMB) and large-scale
structure (LSS) surveys have been achieved to measure the amplitude of primordial
perturbations on larger scales than 1 Mpc. They have also allowed us to reveal their
several statistical features on large scales, which are surprisingly consistent with the
prediction from the simple inflation scenario. On the other hand, measurements of
the smaller-scale perturbations have not succeeded well due to, e.g., their nonlinear
effects associated with the structure formation. Several indirect probes have been
provided for evaluating the amplitude of the perturbations on small scales. So far,
we have obtained the robust upper limit through the CMB spectral distortion mea-
surement by the COBE/FIRAS. However, other methods are highly demanded to
measure the amplitude.

This thesis proposes a new method to probe the primordial small-scale pertur-
bations focusing on the small-mass dark matter (DM) halos. As the LSS surveys
give information on large scales, measuring small-mass DM halos would lead us
to investigate small-scale perturbations. We show that a measurement of free-free
emission signals is a good probe to the small-mass DM halos and, subsequently,
primordial small-scale perturbation in terms of the spectral index and the running
parameters. Although the signal from DM halos is smaller than the 10% level of the
observed signals mainly composed of the galactic origin, we find that the free-free
emission signal from DM halos is modified by ∼ 20% even in the two-parameter
sets, which is consistent with the recent Planck result. The measurement of the cos-
mological free-free signals has the potential to provide more stringent constraints
on the primordial small-scale perturbations while carefully removing the Galactic
free-free emission is required through the multifrequency radio observation or the
cross-correlation study with, e.g., the galaxy surveys or 21-cm intensity map.

This thesis also focuses on the small-mass DM halos formed at higher redshift
from excess power of primordial perturbations, which are called ultracompact mini-
halos (UCMHs). Several previous works already suggested the constraint tighter
than one of COBE/FIRAS through the non-detection of energetic signals from DM
annihilation inside UCMHs, which, however, depends on the nature of DM. Then
this thesis discusses the 21-cm signal and the astrophysical effects associated with
UCMHs as DM model-independent methods. Our study of the 21-cm signal indi-
cates that the upcoming 21-cm observation of the Square Kilometre Array provides
the constraint on the amplitude of primordial small-scale perturbation tighter than
of the COBE/FIRAS through non-detection of the UCMH signals. In the other study,
we test the effect of first-generation stars formed in UCMHs on the cosmic reioniza-
tion history using the Planck CMB observation data. As a result, we find that the
Planck observation data of CMB E-mode polarization is unfavorable to the ionizing
effect in the high-redshift epoch. Therefore, we obtain the constraint on the ampli-
tude of the primordial small-scale perturbations tighter than the existing ones.

Among the several observational missions in the future, the precise study of pri-
mordial small-scale perturbations will be one of the main topics. The theoretical
work to predict observables regarding small-scale perturbation will attract more at-
tention.
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Chapter 1

Introduction

Our universe has rich hierarchical structures that span more than 15 orders of mag-
nitude, from Earth-like planets (∼ 107m) to galaxy clusters (∼ 1022m). The seeds
of such hierarchical structures are called primordial scalar perturbations. Thanks
to the advancement of cosmological observations, the understanding of the seeds
has greatly improved. In particular, the precise measurement of Cosmic microwave
background (CMB) by the Planck mission has been achieved to measure the pri-
mordial curvature perturbations with surprising accuracy through the observation
of the CMB anisotropies. The observation result tells us several statistical features
of the perturbation, such as the variance and the scale invariance. Besides, combin-
ing the detailed galaxy surveys, it is confirmed that these statistical features appear
on larger scales than 1 Mpc. Also, the surprising agreement of the prediction from
the simple inflation mechanism with these observed features strongly supports the
inflationary scenario. Then what is going on on smaller scales?

In this chapter, we begin with a brief introduction to inflationary cosmology.
After that, we introduce the primordial perturbations on large and small scales. We
also introduce their current limit. Lastly, we clarify their standpoint in this thesis.

1.1 Inflationary cosmology on global scales

First of all, in cosmology, there is an underlying assumption, so-called cosmologi-
cal principle indicating the homogeneity and isotropy of the Universe on quite large
scales, (& 1Gpc). Combining this principle and general relativity, one can describe
the evolution of the Universe with only one time-dependent parameter, the scale fac-
tor. Actually, in 1929, the expansion of the Universe, i.e., Hubble law, is confirmed
through observations of Cepheid variables [2]. The principle was also confirmed
in 1965 through the accidental discovery of the CMB by A. Penzias and R. Wil-
son [3]. Such expanding Universe can be expressed so-called Friedmann-Robertson-
Walker (FRW) metric, which describes the evolution of the Universe only through
the time evolution of the scale factor. Then the evolution of the Universe is controlled
by the Einstein equations.

1.2 Cosmological perturbations on local scales

Let us move on to the cosmology on local scales(. 1Gpc). Although the cosmological
principle is quite potent on larger scales, one can easily verify that the Universe is
not isotropic locally through, e.g., numerous galaxies surrounding us. Furthermore,
in 1989 the COsmic Background Explorer (COBE) discovered the CMB temperature
anisotropy on small scales [4]. To explain these anisotropies and inhomogeneities,
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one needs to study perturbations in the Universe. Then the cosmological perturba-
tion theory is quite advantageous, allowing us to solve the time evolution of pertur-
bations. Many studies have developed the theory and the application to the struc-
ture formation and CMB fluctuations. Especially the advance of the theory for CMB
temperature fluctuations is remarkable in qualitative and quantitative aspects. In
1967, R.K. Sachs and A.M. Wolfe estimated CMB temperature fluctuations induced
by gravitational potentials through the gravitational redshift effect, which is called
Sachs-Wolfe effects [5]. In 1968, J. Silk succeeded in finding that the CMB fluctua-
tion is exponentially suppressed on small scales (. 1Mpc) due to the diffusion of
photons gradually decoupling with baryons, which is called Silk damping [6]. In
1995, W. Hu and N. Sugiyama provided an analytic approach to estimate CMB fluc-
tuations quite accurately [7]. Thanks to these pioneering works, the community
of CMB measurements became able to predict CMB temperature fluctuations pre-
cisely from primordial perturbations. Inversely, by comparing this prediction with
the observed data, one can research the amplitude or features of the primordial per-
turbation. The latest CMB observational data by the Planck satellite reveals that the
amplitude of the primordial power spectrum is about 10−9, and the shape is almost
scale-invariant [1]. Then where do such primordial perturbations come from?

1.3 Primordial perturbations from inflation era

In standard cosmology, it is believed that primordial scalar perturbations originate
from quantum fluctuations of the scalar field, which drives inflation, an acceler-
ated expansion that occurred in the very early stage of the Universe. The benefits
of introducing an inflationary scenario are not only resolving the problems of the
conventional big bang cosmology, e.g., the Horizon problem, the flatness problem,
and the monopole problem but also generating initial seeds of the “design" of the
late-time Universe.

There are countless amounts of models to derive inflation. Among them, the
most simple inflationary scenario must be based on the slow-roll inflation by a sin-
gle scalar field called inflaton [8]. This scenario anticipates the statistical features
for the primordial scalar perturbations, which are almost scale-invariant, adiabatic,
and Gaussian. The high sensitivity of the Planck satellite made it possible to observe
CMB anisotropies precisely and investigate the statistical features of the primordial
power spectrum. Surprisingly, the observed features in the Planck measurement cor-
respond to the theoretical prediction by the single field slow-roll inflation [9]. Com-
bining the large-scale structures (LSS) surveys and the Lyman-α observations by,
e.g., the Sloan Digital Sky Survey (SDSS) with the Planck result, it is confirmed that
primordial power spectrum has the statistical features on large scales, k . 1Mpc.
Then, how about the features on scales smaller than 1Mpc?

1.3.1 Primordial small-scale perturbations

The small-scale perturbations would also originate from the quantum fluctuation
of inflaton. Primordial perturbations in different scales would be created at differ-
ent periods during inflation. Therefore, exploring the smaller-scale perturbations
is also crucial for understanding the detailed inflationary mechanism. The statisti-
cal features verified on large scales may not be valid on small scales. The slow-roll
approximation could break at some moment, like ultra slow-roll inflation. Investi-
gations of primordial small-scale perturbations are one of the primary topics among
the several observational missions in cosmology.
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1.4 Probes to explore primordial small-scale perturbations

It would be challenging to investigate small-scale primordial perturbations because
they are strongly affected by dissipation through the Silk damping mechanism or
nonlinear effects associated with the evolution of the Universe. Therefore, it is hard
to observe these perturbations directly. However, several ways to indirectly probe
the primordial small-scale perturbation have been provided so far. We give a brief
review of the indirect probes below. We discuss the detail in Chapter 3.

1.4.1 CMB spectral distortion

In this context, CMB spectral distortion would be the most robust probes [10]–[12].
Although the small-scale perturbations are smoothed out due to the Silk damping,
as mentioned before, the energy dissipated in the process of the Silk damping flows
into CMB and creates the distortions from the blackbody spectrum in the CMB en-
ergy spectrum [13]–[15]. Hence, measurements of the CMB distortion allow us to
understand the small-scale perturbations more [14], [16]–[19]. In fact, from the mea-
surements of CMB distortion by COBE/FIRAS [20], the constraint on the ampli-
tude of the primordial power spectrum, Aζ . 10−5 for the wave number range,
k ≈ 1 − 104 Mpc−1 was suggested in Ref. [16]. Furthermore, they also mention that
in the next-generation CMB measurements like Primordial Inflation Explorer (PIXIE)1

[29], [30], which will allow us to know the CMB distortion very precisely, e.g., at
levels of µ ∼ 10−8. If no distortion with µ > 2 × 10−8 is discovered, the constraint
would improve in order of Pζ . 10−8, which immediately rule out many inflation-
ary models enhancing small-scale perturbations at k ' 10− 104Mpc−1. On the other
hand, it must be more interesting if µ-distortion is detected. That would suggest that
the inflation mechanism diverges from the slow-rolling at some moment. The blue-
shaded region in Fig. 1.1 shows the constraint through the measurements of CMB
spectral distortion.

1.4.2 Primordial black hole

A primordial black hole (PBH) is a black hole that could have been formed in the
early Universe. Although several formation scenarios have been proposed, the orig-
inal and most extensively discussed is the formation through a gravitational col-
lapse of an over-dense region in the radiation-dominated (RD) Universe after infla-
tion [33], [34].

When an overdense region with somehow highly enhanced primordial scalar
perturbations enters the horizon scale, the gravitational collapse of this region will
happen to form a PBH. The resultant mass of the formed PBH corresponds to the
horizon mass at the horizon-crossing epoch of the overdense region. As a result, the
PBH mass range can span very widely. Therefore, studies of the abundance of PBHs
in the broad mass range lead us to explore the primordial scalar perturbations in
various small scales. The current status for the investigation of the PBH abundance
is as follows.

For small-mass PBHs, the abundance can be constrained by the effects of their
evaporation. As first pointed out by Hawking [35], a black hole emits many kinds

1The PIXIE project was not selected and stopped now. There are other plans of ground-, balloon-
, and space-based CMB distortion detectors such as e.g., APSERa [21], COSMO,OLIMPO [22], [23],
BISOU [24], PRISM [25], PRISTINE [26], SuperPIXIE [27] and Voyage2050 [28]. However, all of these
projects has not been funded yet.
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FIGURE 1.1: Constraint on the primordial power spectrum on wide
scales. The blue-shaded region represents current constraints and
forecast constraints (95%CL) on the primordial power spectrum (see
Ref. [31] for more detail) through measurements of the CMB distor-
tion especially, µ-distortion. The black-shaded region shows current
and forecast constraints through the gravitational wave (GW). The
orange-shaded region shows current constraints from previous re-
search on primordial black hole (PBH) abundance. This figure is

adapted from Chluba et al. [32].

of particles with the thermal spectrum. As a result, PBHs with a mass smaller
than 1015 g have evaporated by the present epoch. The abundance constraint on
evaporated PBHs is obtained by investigating the effect of their evaporation on big
bang nucleosynthesis [36], the CMB spectrum distortion [37], the recombination and
reionization processes [38], [39], and the diffuse gamma-ray background [40]–[42].

For nonevaporated PBHs, the robust constraint is provided by gravitational lens-
ing observations [43]–[45]. The black hole merger rate evaluated from the recent
detection of gravitational wave (GW) events also limits their abundance [46], [47].
Recently several works focused on the gas accreting on massive PBHs. Because of
the release of the gravitational energy during accretion, the gas becomes hot and
emits x-ray and UV photons [48]–[50]. Resultantly the surrounding gas around a
PBH is heated and ionized. Studying the cosmological effects of such heating and
reionization provides the constraint on stellar mass PBHs with the recent CMB mea-
surement [48]–[51]. Also, several works suggest that future 21-cm observations can
probe these PBH heating and ionizing processes and strongly constrain the massive
PBH abundance [52], [53].

These constraints are summarized in Fig. 1.2 and can be converted to the limit
on the primordial power spectrum as shown in the orange-shaded region in Fig. 1.1.
Note that since the PBH must be a rare object due to its nature as dark matter (DM),
measurements of the PBH abundance are not powerful for getting information on
primordial perturbations. We will discuss the detail in Sec. 3.2.

1.4.3 Galaxies and small-mass halos

So far, we have greatly archived to obtain the primordial power spectrum on large
scales from the measurements of large-scale structures. In the same way, one could
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FIGURE 1.2: Compilation of constraints on the PBH fraction concern-
ing DM as a function of the PBH mass, with a monochromatic mass
function. The plotted constraints come from: the effects of PBH evap-
oration [36], [38] (red); nondetection of microlensing events by sev-
eral projects [43], [54]–[58] (blue); PBH accretion signatures on the
CMB [59] (orange); dynamical constraints [60], [61](green); power
spectrum from the Lyα forest [62] (cyan); PBH merger rates from
gravitational waves [63]–[65] (purple). The dotted brown line corre-
sponds to predictions from the 21-cm power spectrum and 21-cm for-
est with SKA sensitivities [66], [67]. This figure is taken from Ref. [68].

obtain information about the smaller-scale perturbations through measurements for
smaller objects like galaxies or small-mass halos.

One of the potent observables would be the UV Luminosity Function (LF) of
high redshift galaxies. The UV galaxy LF contains a wealth of information on the
physics of cosmological structure formation at small scales. Recently Ref. [69] pro-
posed a unique approach using high-redshift UV galaxy LF data to probe small-scale
perturbations. As another clue for exploring primordial small-scale perturbations,
small-mass DM halos would be also important. In Ref. [70], we studied the free-free
emission from DM halos in the standard ΛCDM cosmology. We explain the detail in
Chapter 4.

1.4.4 Ultracompact minihalos

Ultracompact minihalos (UCMHs) are gravitational objects formed by denser re-
gions induced by the excess power of primordial small-scale perturbations [71]. The
formation mechanism seems similar to the one of PBHs. However, in the UCMH
case, the density perturbation does not collapse immediately after the horizon entry.
From the perturbative Boltzmann equations, it is known that perturbations of DM
fluid would evolve gravitationally in the matter-dominated (MD) epoch and also
the radiation-dominated (RD) epoch. Therefore, with an enhanced power in pri-
mordial perturbations at some scales, the perturbations would reach the threshold
to collapse earlier than the ones on other scales through gravitational evolution. The
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resultant early-formed DM halos are so-called UCMHs. Although there is no smok-
ing gun observed events to confirm the existence of UCMHs2, they can be a sig-
nificant cosmological probe of primordial perturbation, especially in smaller scales,
k & 1Mpc−1.

For example, through the gravitational growth in the RD epoch, it would be
possible to form UCMHs at an early era like z ∼ 1000 as long as the initial density
contrast is large enough. That is an original idea of the UCMH formation process.
Ref. [71] theoretically points out that UCMHs have a more compact profile with
a larger central density than typical DM halos through the radial infalling in high
redshift. After that, Refs. [72], [73] performed the cosmological simulation of the
UCMH formation for the spike-type power spectrum on small scales. They revealed
that the excess power of small-scale primordial scalar perturbation actually leads to
the form of UCMHs, which have a DM density profile steeper than standard DM
halos.

Through the steepness of their density profile, the energetic emission from DM
self-annihilation inside UCMHs has been studied well. With the present gamma-ray
and CMB observations, the abundance of UCMHs is significantly constrained [72]–
[78]. Accordingly, primordial perturbations as the seed of UCMHs are also con-
strainted [74]–[76].

1.5 Aim of this thesis

Under the history mentioned above, we deeply study the primordial small-scale
perturbation in this thesis. There are mainly two aims of this thesis,

1. To summarize the present status of observational constraint on the primordial
small-scale perturbations in detail,

2. To show our new directions to approach the small-scale perturbations.

Although we briefly review their several probes and the references which would
most gather attention in each context, we revisit these probes more qualitatively
through the observational aspect of the present constraint in Chapter. 3. For exam-
ple, although measuring CMB distortion would be the most robust way to explore
them, there are no funded projects for CMB distortion right now. Investigations of
PBHs have proceeded well, which gives the weak constraint for the amplitude of pri-
mordial small-scale perturbations from their no-detection. Also, UCMHs have been
studied well through their energetic emission from DM annihilation inside UCMHs.
However, these works highly depend on the nature of DM. Then we focus on small-
mass DM halos and UCMHs and propose three ideas to approach the primordial
small-scale perturbations.

First, we suggest that measurements of free-free emission from the DM halos
could be a powerful probe for the perturbations. As the LSS distribution indi-
cates the large-scale matter density perturbations, measurements for smaller objects
would provide information about the smaller-scale matter density perturbations.
The matter density perturbations can be converted to primordial ones by consider-
ing their relation and evolution, i.e., the transfer function. Although our predicting
signal for the free-free emission is smaller than the observed signal, we find that

2The James Webb Telescope (JWST) launched in 2022 by NASA, has reported that they detected
candidates of high-redshift galaxies more than expected in the standard theory. That might suggest
the existence of UCMHs.



1.6. Structure of this thesis 7

the free-free emission signal is significantly sensitive to the primordial small-scale
perturbations.

Second, we present that measurements of 21-cm line emission/absorption back-
ground induced by UCMHs can give information on the perturbations. Depend-
ing on the mass of UCMH, it can host abundant neutral hydrogen gas regardless
of the nature of DM. We show that the upcoming 21-cm observation can provide a
stringent limit on the abundance of UCMHs and the amplitude of the primordial
perturbations.

Third, we suggest that measurements of astrophysical effects that occurred in
UCMHs, e.g., the formation of first-generation stars, would be powerful probes for
the perturbations. UCMHs could host first-generation stars like the halos formed in
the standard structure formation scenario. Such stars would emit abundant ionizing
photons during their main sequence, which boosts the cosmic reionization process
in higher redshifts. We discuss their effects on the global cosmic reionization history
with Planck’ s CMB anisotropy observation data.

1.6 Structure of this thesis

The rest parts of this thesis are organized as follows. In Chapter 2, we explain the
primordial perturbations, how the perturbations evolve, and how the perturbations
relate to the observables in the Universe through the cosmological linear pertur-
bation theory and the formation formalism of the gravitationally collapsed objects.
In Chapter 3, we revisit the probes to explore primordial small-scale perturbations
while adding qualitative and quantitative discussion. In the second half of this the-
sis, we propose three new directions to probe primordial small-scale perturbations.
In Chapter 4, we show that measurements of the free-free emission from the DM ha-
los are potent to investigate primordial small-scale perturbations. In Chapter 5, we
explain our second direction related to the 21cm-line emission anisotropy induced
by the UCMHs. In Chapter 6, we discuss the potential of measuring the astrophys-
ical effect in UCMHs for exploring primordial small-scale perturbations. Lastly, in
Chapter 7, we conclude this thesis.
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Chapter 2

Cosmological Perturbations and
Structure Formation

Although the Universe is globally homogeneous and isotropic, it is trivially known
that there locally exists inhomogeneous structures consisting of countless gravita-
tional collapsed objects through the observation of, e.g., local environment such as
the solar system, Milky Galaxy, and so on. Recent cosmological observations like
CMB show that these inhomogeneities are in order of 10−5. Thus linear perturba-
tions theory around a homogeneous background is effective for their analysis.

It is also noted that the observed inhomogeneities have specific features compat-
ible with the simple inflation mechanism. In the inflationary scenario, the quantum
fluctuations of inflaton can produce primordial fluctuations.

This chapter presents the famous calculation of the primordial fluctuation spec-
tra generated by quantum fluctuations during inflation, especially slow-roll single-
field inflation. We first briefly review the fundamental aspects of cosmological per-
turbation theory. After that, we give a qualitative summary of the basic mech-
anism by which inflation converts microscopic quantum fluctuations into macro-
scopic seeds for cosmological structure formation.

2.1 Cosmological perturbations

In this section, we present the calculation in cosmological linear perturbation the-
ory with the primordial fluctuations originating from quantum fluctuations during
inflation. Firstly, we introduce the cosmological linear perturbation theory and in-
flaton scalar field as the matter sector. Secondly, we derive the feature of the seeds
with the belief that the quantum fluctuations of inflaton create the seeds. Lastly, we
demonstrate the feature corresponds to the observed one.

Here, the perturbation of X is defined as

δX(t, x) ≡ X(t, x)− X̄(t). (2.1)

Note that the background value depends only on time (not on spatial coordinates)
as the background metric, FRW metric, indicates,

ds2 = −dt2 + a2(t)
[

dr2

1 − Kr2 + r2(dθ + sin2 θdφ)

]
, (2.2)

where a(t) is the scale factor as a function of cosmic time t, and K represents the
spatial curvature.
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In the cosmological linear perturbation theory, one of the main topics considered
here is to solve the Einstein equation,

Gµ
ν + Λδ

µ
ν = 8πGTµ

ν, (2.3)

expanding at the linear order and to understand these consequences. Since we know
that the perturbations are tiny, δX � X̄, this expanding Einstein Equations at lin-
ear order in perturbations approximates the full non-linear solution with very high
accuracy.

Before moving to the linear order calculation of the Einstein equation, let me
briefly introduce and calculate the Einstein equation at the background level.

2.2 Background level

The Einstein equation at the background level can be written by

Ḡµ
ν + Λδ

µ
ν = 8πGT̄µ

ν. (2.4)

Let me separate Eq. (2.4) into the left-hand side (Geometric side) and the right-hand
side (Matter side) and consider them in order.

2.2.1 Background level - Geometric side -

The metric of the Universe at the background level is the so-called FRW metric, as
mentioned in Eq. (2.2). Even if the spatial curvature exists initially in the inflation
epoch, it will disappear due to the exponential expansion. Therefore, we will neglect
the curvature parameter K hereafter.

With the use of conformal time instead of cosmic time and Cartesian coordinates
for the space, the FRW metric ḡµν can be written by

ḡ00 = −a2, ḡ0i = ḡi0 = 0, ḡij = a2γij. (2.5)

Then the connection coefficients, so-called Christoffel symbols, are given by

Γ̄0
00 = H, Γ̄0

0i = Γ̄0
i0 = Γ̄i

00 = 0, Γ̄0
ij = γijH,

Γ̄i
0j = Γ̄i

j0 = δi
jH, Γ̄i

jk =
1
2

γil(γlk,j + γjl,k − γjk,l).
(2.6)

From the above Christoffel coefficients, the Ricci tensor at the background level
is given by

a2R̄0
0 = −3H′, (2.7)

a2R̄0
i = 0, (2.8)

a2R̄i
j = δi

j
(
2H2 +H′) , (2.9)

and subsequently the background Ricci scalar is written by

R̄ =
6
a2

(
H2 +H′) . (2.10)
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Therefore, the background Einstein tensor is written by

a2Ḡ0
0 = −3H2, (2.11)

a2Ḡi
0 = a2Ḡ0

i = 0, (2.12)

a2Ḡi
j = δi

j
(
H2 + 2H′) . (2.13)

2.2.2 Background level - Matter side -

Let me move on to the matter side. Since our interesting epoch is inflation, inflaton φ
would play the role of the dominant component as "matter." In that case, the action
is given by

S =
∫

d4x
√
−g
[

1
2

R − 1
2

gµν∂µφ∂νφ − V(φ)

]
≡ SEH + Sφ. (2.14)

The action of Eq. (2.14) is the sum of SEH which is the Einstein-Hilbert action and Sφ

which is action of the scalar field, φ with a canonical kinetic term.
The stress-energy tensor at the background level for φ is estimated by φ̄ like

T̄(φ)
µν ≡ − 2√−g

δS̄φ

δḡµν
= ∂µφ̄∂νφ̄ − ḡµν

(
1
2

∂λφ̄∂λφ̄ + V(φ̄)

)
, (2.15)

where δX/δY denotes the functional derivative of X by Y.
Let us decompose the scalar field φ into the background and perturbative com-

ponent,

φ(t, x) = φ̄(t) + δφ(t, x). (2.16)

Then the background component of Eq. (2.15) reads,

T̄0(φ)
0 = − 1

2a2 φ̄′2 − V(φ̄) = −ρ̄φ, (2.17)

T̄i(φ)
0 = T̄0

i = 0, (2.18)

T̄i(φ)
j = δ

i(φ)
j

[
1

2a2 φ̄′2 − V(φ̄)

]
= δi

j p̄φ. (2.19)

Here we link each components of Tµ (φ)
ν to the energy and pressure density of φ̄. We

explain the general discussion of the stress-energy tensor in the Appendix A.

2.2.3 Consequences at background level

Combining Eqs. (2.11) to (2.13) and Eqs. (2.17) to (2.19), one can obtain following two
equations,

H2 =
8πG

3

(
φ̄′2

2
+ a2V,φ

)
+

Λa2

3
=

ρ̄φ

3Mpl
+

Λa2

3
, (2.20)

H2 + 2H′ − Λa2 =
φ̄′2

2
− a2V(φ̄). (2.21)
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The first equation is often called Hubble equation in the inflationary epoch. The sec-
ond equation can be rewritten by

H′ =
1

6Mpl

(
ρ̄φ + 3p̄φ

)
+

Λa2

3
, (2.22)

with a pressure density of φ, p̄φ = φ̄′ 2/2 − a2V(φ). This is the equation describing
the evolution of the Hubble parameter.

2.3 Time evolution of φ̄ and slow-roll condition

Let us here also show the time evolution of φ here. With the inflaton’s action Sφ, the
equation of motion for φ is given by

δSφ

δφ
=

1√−g
∂µ

(√
−g∂µφ

)
+ Vφ = 0, (2.23)

where Vφ denotes dV/dφ. In the background spacetime, Eq. (2.23) reads

φ̄′′ + 2Hφ̄′ + a2Vφ = 0, (2.24)

thus with respect to cosmic time t, one can obtain

φ̈ + 3Hφ̇ + V,φ = 0. (2.25)

This equation equals the one of point mass which one-dimensionally moves in some
potential while receiving friction proportional to the velocity. Thus if Vφ is too small,
the value of the inflaton’s scalar field would change very slowly during the expo-
nential expansion of the Universe. Then the friction term represented in the second
term of Eq. (2.25) would be larger than the acceleration term in the first term, which
reads,

˙̄φ ' − 1
3H

Vφ. (2.26)

The requirements for this approximation in Eq. (2.26) are following two conditions,

˙̄φ2 � 2V(φ), | ¨̄φ| � 3H| ˙̄φ|, (2.27)

which are often called slow-roll conditions. Adopting this slow-roll condition to Eqs. (2.20)
and (2.22), one can approximately obtain,

H2 ' 8πG
3

V, (2.28)

and

Ḣ = −4πGφ̇2. (2.29)

Here we neglect the cosmological constant term. Combining Eqs. (2.28) and (2.29)
read

Ḣ
H2 ' −3φ̇2

2V
� 1. (2.30)
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The second time derivative of φ in the slow-roll approximation is given by

φ̈ ' − φ̇

3H
Vφφ −

φ̇2

2V
Vφ, (2.31)

from the time derivative of Eq. (2.25). Through Eqs. (2.30) and (2.31), one can rewrit-
ten the slow-roll condition as

ε � 1 η � 1, (2.32)

introducing two slow-roll parameters,

ε =
1

16πG

(
Vφ

V

)2

, η =
1

8πG
Vφφ

V
. (2.33)

2.4 Linear level

Then let us turn next to the discussion of the Einstein equation at the linear pertur-
bation level. In the linear perturbation theory, some difficulties will be accompanied
by the fact that the split into background and perturbations defined by Eq. (2.1) is
not unique but depends on the choice of coordinates, which is so-called the gauge
choice. We begin with the introduction of the gauge problem.

2.4.1 Gauge choice

When one considers the perturbation theory, there is one problem that one needs to
take into account properly, which is Gauge choice. That is because the definition of
perturbations represented in Eq. (2.1) is not unique, but depends on the choice of the
coordinates of perturbed spacetime.

There are mainly two routes to avoid this problem. The first is to choose some
gauge and drop two non-physical degrees of freedom. The second one is to discuss
with only use of variables which do not depend on the gauge choice.

We want to discuss the gauge invariant physical quantities while we would like
to drop the degrees for easier calculations. To do that, we first begin with calcula-
tions without the gauge fix and find the gauge invariant quantities. After that, we
set the conformal Newtonian gauge to make the calculation more painless.

2.4.2 Scalar, Vector and Tensor perturbations

Thanks to a great deal of symmetry possessed by the homogeneous and isotropic
background spacetime, one can decompose the metric and the stress-energy pertur-
bations into a scalar, vector, and tensor components independently. That is called
the SVT decomposition and is easily described in Fourier space. In Fourier space,
the variable X(t, x) is expressed by

Xk(t) =
∫

d3xX(t, x)e−ik·x. (2.34)

Here the variable X shows for instance, δφ, δgµν, and so on. Note that perturbations
of the different Fourier modes do not mix due to translation invariance. We see this
proof in Appendix ??. Then we consider rotations around a Fourier mode. Under
rotation of the coordinate system around the wavevector by an angle ψ, the ampli-
tude of perturbations would change in different ways corresponding to their helicity
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m as

Xk → eimφXk. (2.35)

The helicity values for scalar, vector, and tensor perturbations are different, like 0,
±1, and ±2, respectively, which indicates that one can independently calculate each
type of perturbation’s evolution. This SVT decomposition makes the study of cos-
mological perturbations extremely simplified. Note that this decomposition holds
only in the linear order, not the higher-order perturbation theory. The scalar-induced
GW is one example of the mixing of different types of perturbations. In this case, the
gauge issue would be more problematic (see Refs. [79], [80] for the detail).

Upon understanding these general remarks, let us now move on to the linear
perturbation theory around the homogeneous and isotropic FRW Universe.

2.4.3 Inhomogeneous Universe

The Einstein equation expanding in linear order is written by

δGµ
ν = 8πGδTµ

ν. (2.36)

With the above general statements, we find gauge invariant variables on the left-
hand side and right-hand side of Eq. (2.36).

2.4.4 Gauge transformation - Metric perturbations -

Let us consider the left-hand side of Eq. (2.36), which is about the metric side in
linear order. In general, the spacetime metric can be written by

gµν = ḡµν + hµν, (2.37)

where ḡµν represents the homogeneous and isotropic background component(called
background spacetime), and hµν shows the other inhomogeneous but still an isotropic
component, called perturbed spacetime. In the cosmological literature, the spatially-
flat FRLW metric is often adopted for the back ground spacetime,

ḡµν = a(τ)2


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (2.38)

and whose line element can be written by

ds2 = a2(τ)
(
−dτ2 + δijdxidxj

)
. (2.39)

On the other hand, the metric of the perturbed spacetime, hµν is given by

hµν = 2a(τ)2


−A B1 B2 B3

B1
B2
B3 Cij

 , (2.40)



2.4. Linear level 15

in the most general form. Then the line element of the Universe can be written by

ds2 = a2(τ)
[
−(1 + 2A)dτ2 − 2Bidτdxi +

(
δij + 2Cij

)
dxidxj

]
. (2.41)

In real space, thanks to the SVT decomposition, the hµν metric perturbations are
decomposed like

Bi ≡ ∂iB(S) − B(V)
i , where ∂iSi = 0, (2.42)

and

Cij ≡ δijD + ∂ijE(S) + 2∂(iE
(V)
j) + E(T)

ij , where ∂iE(V)
i = 0,

(
E(T)

)i

i
= ∂iE(T)

ij = 0.

(2.43)

Here we define that

Bi ≡ γijBj, Ci
j ≡ γikCkj, Ci

j ≡ γjkCik, Cij ≡ γikγjlCkl . (2.44)

Since we are interested in scalar perturbations in this thesis, the component of scalar
type in metric would be given by

g(S)µν = a(τ)2
(

−(1 + 2A) ∂jB(S)

∂iB(S) (1 + 2D)δij + 2∂i∂jE(S)c

)
, (2.45)

and

(gµν)(S) ' 1
a(τ)2

(
−1 + 2A ∂jB(S)

∂iB(S) (1 − 2D)δij − 2∂i∂jE(S)

)
. (2.46)

Here the determinant of this metric is given by√
−g ' −a8 − 2a8

(
A + 3D +∇2E(S)

)
. (2.47)

Scalar fluctuations will change under a change in the coordinate choice. Let us con-
sider the gauge transformation like

xµ → x̃µ = xµ + ξµ where ξµ = (α,+∂iβ). (2.48)

Now we assume |ξµ| � 1. Under this transformation, the metric would be trans-
formed as

gµν(x) → g̃µν(x̃) =
∂xα

∂x̃µ

∂xβ

∂x̃ν
gαβ(x). (2.49)

Note that this transformation corresponds to the invariance of the line elements ds2

under the coordinates transformation. Using Eq. (2.49), one can derive the functional
derivative of the metric gµν at the same spacetime x. In linear approximation, it is
given by

g̃µv(x)− gµν(x) = g̃µν(x̃)− gµν(x)− ∂αgµν(x)ξα

= −gµα(x)∂νξα − gνα(x)∂νξα − ∂αgµν(x)ξα (2.50)
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The R.H.S of Eq. (2.50) represents the Lie derivative of gµν along the −ξµ. Beneath
this coordinate transformation, the scalar metric perturbations alter as

A → A −Hα − α′,

B(S) → B(S) − α + β′,
D → D −Hα,

E(S) → E(S) − β.

(2.51)

2.4.5 Gauge transformation - Matter perturbations -

Then let us turn next to the right-hand side of Eq. (2.36), which is about the matter
side in linear order. The stress-energy tensor for the scalar field, φ, is given by (2.15).
Following the decomposition of the scalar field, φ of Eq. (2.16), the perturbative com-
ponent in linear order with the metric represented by Eq. (2.41) reads,

δT0(φ)
0 = − φ̄′

a2

(
δφ′ − φ̄′A

)
− dV

dφ
δφ

δT0(φ)
i = − φ̄′

a2 ∂iδφ

δTi(φ)
0 =

φ̄′

a2 γij
(

∂jδφ − φ̄′∂jB(S)
)

δTi(φ)
j = δi

j

[
φ̄′

a2

(
δφ′ − φ̄′A

)
− dV

dφ
δφ

]
(2.52)

In the same way as Eqs. (2.17) to (2.19), one can find linear perturbative components
of the energy density ρ̄φ, the pressure density p̄φ, the velocity vφi, and the anisotropic
stress σij of φ as

δρφ =
φ̄′

a2

(
δφ′ − φ̄′A

)
+

dV
dφ

δφ.

vφi ≡ ∂ivφ = −∂iδφ

φ̄′ + ∂iB(S),

δpφ =
~φ′

a2

(
δφ′ − φ̄′A

)
− dV

dφ
δφ,

(σφ)
i
j = 0.

(2.53)

We explain these correspondence in Appendix A.
Also these matter perturbations are gauge dependent except for (σφ)i

j. Then
these perturbations would be transformed as

δφ → δφ − φ̄′α,
δρ → δρ − ρ̄′α,
vφ → vφ + β′,
δp → δp − p̄′α.

(2.54)

2.4.6 Gauge invariant quantities

Using the gauge transformations represented in Eqs. Eqs. (2.51) and (2.54), one can
readily find the combination to cancel out the gauge dependence, which is called
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gauge invariant quantities. The examples are as follows:

Φ ≡ A − (B(S) + E(S)′)′ −H(B(S) + E(S)′), (2.55)

Ψ ≡ D −H(B(S) + E(S)′), (2.56)

δφ(GI) ≡ δφ − φ̄′
(

B(S) + E(S)′
)

, (2.57)

δ(GI) ≡ δ − ρ̄′

ρ̄

(
B(S) + E(S)′

)
= δ + 3H (1 + w)

(
B(S) + E(S)′

)
, (2.58)

v(Gl)
φ ≡ v(S)φ + E(S)′ , (2.59)

and

δp(Gl) ≡ δp − p̄′
(

B(S) + E(S)′
)
= δp + 3H ρ̄c2

s(1 + w)
(

B(S) + E(S)′
)

, (2.60)

where w ≡ p/w is so-called equation of state parameter, and cs ≡ ∂p/∂ρ denotes
the sound speed.

Among them, one of the most commonly used gauge-invariant quantities is the
curvature perturbation on uniform-density hypersurfaces,

ζ ≡ D − H
ρ̄′

δρ. (2.61)

In a gauge defined by spatially flat hypersurfaces, D = 0, the perturbations ζ is
the dimensionless density perturbation δρ/3(ρ̄ + p̄). Employing suitable transfer
functions to describe the evolution of the fluctuations in sub-horizon scales, CMB,
and large-scale structure (LSS) observations can be related to the primordial value
of ζ. During the slow-roll inflationary epoch, we have approximately

δρφ ≈ dV
dφ

δφ ≈ −3Hφ′δφ. (2.62)

Considering ρ̄′ = 3Hφ̄′ 2, one would approximately have

ζ ≈ D − H
φ̄′ δφ. (2.63)

Also, the comoving curvature perturbation and entropy perturbation are the sig-
nificant gauge-invariant quantities defined by

R ≡ D − H
ρ̄ + p̄

δq, (2.64)

and

Γ ≡ δp(GI) − c2
s ρ̄δ(GI)

p̄
, (2.65)

respectively, where δq is the scalar part of the 3-momentum density defined by T0
i ≡

∂iδq. During inflation, δq is expressed as Eq. (2.52). Then the comoving curvature
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perturbation is given by

R = D − H
φ̄′ δφ. (2.66)

Geometrically, R is helpful to measure the spatial curvature on comoving surfaces.
Note that ζ and R are equal during slow-roll inflation as seen in Eqs. (2.63) and (2.66).
Furthermore, ζ and R would match on superhorizon scales, which we explain in
Appendix B. The correlation functions of ζ and R are therefore equal at horizon
crossing.

2.4.7 Consequences at linear order

As mentioned before, we employ the conformal Newtonian gauge from here, and
thus we set to A = Φ, D = Ψ, and B(S) = E(S) = 0 hereafter. Under the conformal
Newtonian gauge, the scalar components of the metric represented in Eqs. (2.45)
and (2.46) would be written by

g(S)µν = a(τ)2
(

−(1 + 2Φ) 0
0 (1 + 2Ψ)δij

)
, (2.67)

and

(gµν)(S) ' 1
a(τ)2

(
−1 + 2Φ 0

0 (1 − 2Ψ)δij

)
. (2.68)

Then the scalar components of the Ricci tensor in linear order would be given by

a2(δR0
0)

(S) = −6H ′Φ − ∆Φ − 3H Φ′ + 3Ψ′′ + 3H Ψ′,

a2(δR0
i)
(S) = −2H ∇iΦ + 2∇iΨ′,

a2(δRi
0)

(S) = 2H γij∇jΦ − 2γij∇jΨ′,

a2(δRi
j)
(S) =

[
−2
(
2H 2 +H ′)Φ −H Φ′ + 3H Ψ′] δi

j

−∇i∇jΦ + γi
jΨ

′′ + 2H γi
jΨ

′ −∇i∇jΨ − γi
j∆Ψ.

(2.69)

The linear-order Ricci scalar δR would be given by

δR = −(6H2Φ + 6ΦH′ + 3H(Φ′ − 3Ψ′)− 3Ψ′′ +∇2Φ + 2∇2Ψ). (2.70)

Combining these calculations for the metric side and matter side represented
in Eqs. (2.15), (2.69) and (2.70) gives us the consequence of the Einstein equation
expanding in linear order, that is

(00) : ∇2Ψ − 3HΨ′ − (H′ + 2H2)Φ = 4πG
(

φ̄′δφ′ + a2 dV
dφ

δφ

)
, (2.71)

(0i) : Ψ′ −HΦ = −4πGφ̄′δφ, (2.72)

(ii) : Ψ′′ − 1
3
∇2(Φ + Ψ) +H(2Ψ′ − Φ′) = −4πG

(
φ̄′δφ′ − a2 dV

dφ
δφ

)
, (2.73)

(ij) : Φ + Ψ = 0. (2.74)
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Here the head number like (µν) in Eqs. (2.71) to (2.74) represents the corresponding
component of the Einstein equation. Integrating Eqs. (2.71) to (2.74), one can obtain
gauge invariant equations for Φ as follows:

∆Φ − 3H Φ′ −
(
H ′ + 2H 2)Φ = 4πG

[
~φ′δφ(GI)′ + a2 dV

dφ
δφ(GI)

]
,

Φ′ +H Φ = 4πGφ̄′δφ(GI),

Φ′′ + 3H Φ′ +
(
H ′ + 2H 2)Φ = 4πG

[
~φ′δφ(GI)′ − a2 dV

dφ
δφ(GI)

]
.

(2.75)

Furthermore, combining these equations in Eq. (2.75) reads the so-called Bardeen
equation,

Φ′′ + 2
(

H − φ̄′′

~φ′

)
Φ′ − ∆Φ + 2

(
H ′ −H

φ̄′′

φ̄′

)
Φ = 0. (2.76)

Eq. (2.76) is one of the main consequences of the Einstein equation expanding in
linear order.

2.5 Initial condition of perturbations

As we mentioned in Chapter 1, it is believed that these perturbations discussed
above originate from the quantum fluctuations of inflaton. Let us investigate the
perturbation of the inflaton in more detail. Then we discuss the comoving curvature
perturbation R defined in Eq. (2.64) instead of δφ for their quantization explained in
the next section. In the conformal Newtonian gauge without the anisotropic stress
tensor, one can obtain

R = Φ +
H
φ̄′ δφ. (2.77)

Substituting Eq. (2.77) to Eq. (2.76) and utilizing the Einstein equations in ?? lead us
the equation of motion of R,

R′′ + 2
z′

z
R′ − ∆R = 0, (2.78)

where z ≡ aφ̄′

H . Eq. (2.78) can be rewritten by

∂

∂τ

(
z2R′)− z2∆R = 0. (2.79)

In the Fourier mode, Eq. (2.79) reads

∂

∂τ

(
z2R′

k
)
+ z2k2Rk = 0, (2.80)

and the solution of the superhorizon mode (k → 0) would be

Rk → C1 + C2

∫
dτ

1
z2 , (2.81)

with the integration constant C1 and C2. The second term in Eq. (2.81) represents
the decaying mode because z would increase exponentially in the inflation epoch.
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Therefore, the first term in Eq. (2.81) is the effective solution, which indicates that
the value of R would be conserved on superhorizon scales. This behavior of R is
favorable for cosmologists. We do not need to follow the entire evolution of R from
the beginning (e.g., inflation) to some redshift in which we are interested. Instead,
we only need to follow the evolution from when the perturbation enters the horizon
to the redshift. However, for one condition, the information fo the amplitude of R
at the horizon entry, that is C1 in Eq. (2.81) is required.

Then where does the "primordial" perturbation come from? The inflation sce-
nario would provide an answer to the question. The key point is quantum fluctu-
ations. In order to consider the "quantum" fluctuation, one needs to quantize the
field considered here. From the equation of motion represented in Eq. (2.79), the
quadratic action form of R can be inferred as

S2 =
1
2

∫
dτdx3

(
z2R′2 − z2∂i∂

iR
)

. (2.82)

Since R is not a canonical field as seen in Eq. (2.82), it is difficult to quantize R itself.

2.5.1 Mukhanov-Sasaki variable

In order to quantize the classical scalar field represented in Eq. (2.82), we need to
change of the variable R to make the scalar field canonicalize. Let us get straight to
the point. We introduce a new variable U ≡ zR, so-called Mukhanov-Sasaki variable.
Then the quadratic action of Eq. (2.82) becomes

S2 =
1
2

∫
dτdx3

(
U ′2 − ∂i∂

iU − 2
z′

z
UU ′ +

z′2

z2 U
2
)

. (2.83)

Employing the following relation,

− ∂

∂τ

(
z′U 2

z

)
= −2

z′

z
UU ′ +

z′2

z2 U
2 − z′′

z
U 2, (2.84)

and integrating by parts while dropping the surface term read the new canonicalized
expression for quadratic action with respect to U as

S2 =
1
2

∫
dτdx3

(
U ′2 − ∂i∂

iU +
z′′

z
U 2
)

. (2.85)

As seen in Eq. (2.85), the quadratic action for U has canonical kinetic term rather than
the one of R represented in Eq. (2.82), which means that the variable U is appropriate
field to be quantized.

From Eq. (2.78) and the relation of U = zR, the equation of motion of U is given
by

U ′′ − ∆U − z′′

z
U = 0, (2.86)

which is often called the Mukhanov-Sasaki equation. Considering the last term in
Eq. (2.86) as the mass term like z′′/z ∼ m2, Eq. (2.86) becomes the equation of motion
for a single scalar field.
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2.5.2 Quantum fluctuation of the inflation scalar field

Now we are ready to quantize the action. Quantizing the classical scalar field rep-
resented in Eq. (2.85) would lead us to obtain the primordial perturbations so that
C1 represented in Eq. (2.81). Before calculating, we should note that the action in
Eq. (2.85) seems the same as the action for the single scalar field with the Minkowski
spacetime except for the time-dependent mass term, m2 = −z′′/z. First, let us define
the momentum conjugate of U as

Π ≡ ∂L
∂U ′ = U ′. (2.87)

Here we introduce the quantum operators from the classical fields U and Π. The
canonical commutation relations are as follows.

[Û (τ, x), Π̂(τ, y)] = iδ3(x − y), [Û (τ, x), Û (τ, y)] = 0, [Π̂(τ, x), Π̂(τ, y)] = 0
(2.88)

Let us expand the operator Û by the plane wave as

Û (τ, x) =
∫ d3k

(2π)3

[
uk(τ)âkeik·x + u∗

k (τ)â†
ke−ik·x

]
, (2.89)

where k = |k|, uk(τ) is the mode function, and â†
k and âk represent the creation and

annihilation operators respectively. The field of U breaks the time-translational sym-
metry by the time-dependent mass term. Therefore, uk(τ) has the time-dependence,
and the integral element, d3k/(2π)3, has only the spatial parity symmetry rather
than the Lorentz-invariance.

The mode function obeys the classical equation of motion for uk,

u′′
k +

(
k2 − z′′

z

)
uk = 0. (2.90)

Equation (2.90) does not include the first derivative term for uk. Then the wron-
skian of uk and u∗

k is constant timewise, and we can normalize the mode function
alternatively through the value of the wronskian. Here we define the commutation
relations for the annihilation operator âk and the creation operator â†

k in the Fourier
space as [

âk1 , â†
k2

]
= (2π)3δ (k1 − k2) , [âk1 , âk2 ] =

[
â†

k1
â†

k2

]
= 0. (2.91)

To make uk and u∗
k being compatible with this definition, we set the normalization

condition for the wronskian as

uku∗′
k − u∗

k u′
k = i. (2.92)

After that, with the definition of the vacuum state,

âk|0〉 = 〈0|â†
k = 0, (2.93)

One can proceed with the quantization in the standard way. During the inflation
epoch, even if there exist classical perturbations before the inflation, they would
decay due to the exponential expansion. Therefore, it is believed that observable
fluctuations in our Universe originate from quantum vacuum fluctuations.
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Next, let us derive the solution of Eq. (2.90) in the slow-roll inflation approxi-
mation as mentioned in Sec. 2.3. Remind that in the approximation, the equation of
motion of φ̄ becomes

φ̄′ ' − a2

3H
dV
dφ

, (2.94)

and this condition is expressed by

φ̄′2 � 2a2V(φ), |φ̄′′ −Hφ̄′| � 3H|φ̄′|. (2.95)

Hubble parameter and the relevant parameters also become easier forms as

H2 ' 8πGa2

3
V, (2.96)

φ̄′2 ' 2a2V
3

ε, H ′ ' H 2(1 − ε), φ̄′′ ' H φ̄′(1 + ε − η). (2.97)

Thus the derivative of slow-roll parameters in linear order can be written by

ε′ ' 2H ε(2ε − η), η′ ' H
(
2εη − ξ2) . (2.98)

Using Eqs. (2.96) to (2.98), the derivative of z = aφ̄′/H and the second derivative in
the slow-roll approximation can be obtained as

z′ ' H (1 + 2ε − η)z, z′′ ' H 2(2 + 5ε − 3η)z. (2.99)

Here the second equation in Eq. (2.97) can be integrated because ε is constant in liner
order as

(1 − ε)τ ' − 1
H , (2.100)

where we assume that the inflation last forever and set τ = 0 to t → ∞. Then the
term of z′′/z can be written by

z′′

z
' 2 + 5ε − 3η

(1 − ε)2τ2 ' 2 + 9ε − 3η

τ2 . (2.101)

Here let us define a variable v satisfying

z′′

z
=

v2 − 1/4
τ2 . (2.102)

Concerning the slow-roll parameters with the use of Eq. (2.101), v is written by

v ' 3
2
+ 3ε − η, (2.103)

in linear order. Using the expression of v in Eq. (2.103), Eq. (2.90) can be rewritten by

d2uk

dτ2 +

[
k2 −

(
v2 − 1

4

)
1
τ2

]
uk = 0. (2.104)
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Changing the variable as uk =
√
−τFk in Eq. (2.104) reads the Bessel derivative

function, and the solution is given by

uk(τ) =

√
π

4k

√
−kτ

[
αk H(1)

v (−kτ) + βk H(2)
v (−kτ)

]
, (2.105)

where αk and βk are integration constants, and H(1)
v and H(1)

v are the Hankel func-
tions. Considering the feature of Hankel function, the normalization related to the
wronskian in Eq. (2.92) can be given by

|αk|2 − |βk|2 = 1. (2.106)

In order to determine the dynamics considered here, αk and βk must be specified.
It is known that the general curved spacetime has the ambiguity of the choice of a
vacuum state. In the standard inflation scenario, one can elude this ambiguity by
requiring that the vacuum state |0 is an eigenstate of the Hamiltonian in the far past,
called Bunch-Davies vacuum.

In the limit of k → ∞ (τ < 0), the Hankel functions represented in Eq. (2.105) are
approximately expressed by

H(1)
v (−kτ) →

√
− 2

πkτ
exp

[
−i
(

kτ +
π

4
+

πv
2

)]
H(2)

v (−kτ) →
√
− 2

πkτ
exp

[
i
(

kτ +
π

4
+

πv
2

)]
.

(2.107)

In this limit, the equation of motion of uk in Eq. (2.90) would be

u′′
k + k2uk = 0, (2.108)

and one might get the solution as

uk(τ) =
e−ikτ

√
2k

. (2.109)

This choice characterizes the Bunch-Davis vacuum. In order to satisfy that the solution
in Eq. (2.105) approximates to the solution represented in Eq. (2.109) in the limit
−kτ → ∞, the integration coefficients, αk and βk should be chosen as

αk = exp
[

iπ
2

(
v +

1
2

)]
, βk = 0. (2.110)

Then the solution of the mode function uk with Bunch-Davis vacuum is given by

uk(τ) =

√
π

4k
eiπ(v+1/2)/2

√
−kτH(1)

v (−kτ). (2.111)

On the other hand, for long-wave modes, −kτ → 0, the equation of motion of uk
in Eq. (2.90) would be given by

u′′
k − z′′

z
uk = 0, (2.112)
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and the solution becomes

uk = C(k)z(τ), (2.113)

where C(k) is the integration constant. Here we neglected the decaying mode of
uk ∝ z(τ)

∫ τ dτ′

z2(τ′)
. In the long-wave mode, the Hankel function is approximated by

H(1)
v (x) →

√
2
π

e−iπ/22v−3/2 Γ(v)
Γ(3/2)

x−v. (2.114)

Then the solution of Eq. (2.113) is approximately given by

uk →
1√
2k

eiπ(v−1/2)/22v−3/2 Γ(v)
Γ(3/2)

(−kτ)1/2−v. (2.115)

One can obtain the expression of

uk '
1√
2k

eiπ(1+3ε−η)/2[1 − (3γ + 3 ln 2 − 5)ε + (γ + ln 2 − 2)η]
(

k
H

)−1−3ε+η

,

(2.116)

as the linear order solution through the expansion of Eq. (2.115) in terms of slow-roll
parameters.

2.6 Primordial power spectrum of scalar perturbations

In order to link to the observables, we need the statistics for quantum perturbations.
The two-point functions of the scalar perturbations in the vacuum state are defined
by

〈
0
∣∣ÛkÛk′

∣∣ 0
〉

:= (2π)3δ3 (k + k′) 2π2

k3 PU (k), (2.117)

where PU is the dimensionless power spectrum of the U , and Ûk is the Fourier mode
of Û as

Ûk(τ) =
∫

d3xe−ik·xÛ (x, τ) = uk(τ)âk + u∗
k (τ)â†

−k. (2.118)

Considering the relation between U and the curvature perturbation ζ like U = −zζ,
the power spectrum of ζ would be given by

Pζ(k, τ) = PU (k, τ)/z2, (2.119)

where Pζ is defined by

〈
0
∣∣ζ̂k ζ̂k′

∣∣ 0
〉

:= (2π)3δ3 (k + k′) 2π2

k3 Pζ(k), (2.120)

and often called primordial power spectrum.
For the long-wave modes, the primordial power spectrum would be

Pζ(k, τ) =
4π

m2
Plε

(
H
2π

)2 ( k
H

)2η−6ε

(2.121)
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through the mode function uk represented in Eq. (2.116). Here we assume that the
expression of the power spectrum of the classical curvature perturbations is given by
the quantum one represented in Eq. (2.121). Also, remind that ζ and R would match
on superhorizon scales. Therefore, the expression of Pζ represented in Eq. (2.121)
equals the power spectrum for R until the modes’ horizon reentry. We explain more
in detail in Appendix B.

Although the power spectrum of the scalar mode is scale-invariant in the de Sit-
ter limit and called the Harrison-Zeld́ovich spectrum, the derived power spectrum,
including a small change of the Hubble parameter, slightly depends on scales. We
introduce the spectral index and the running for primordial power spectrum as

ns − 1 :=
d lnPζ

d ln k
, and rs :=

dns

d ln k
. (2.122)

At the horizon crossing, we approximately get

d ln k ' H dt. (2.123)

Therefore in this slow-roll inflation case, the spectral index and the running at the
leading order are given by

ns = 1 − 6ε + 2η, and rns = 16εη − 24ε2 − 2ξ2. (2.124)

So far, we have discussed the primordial perturbations only aiming at the scalar
type, which is the target of this thesis. We here skip the discussion for the vector-
and tensor-type perturbations because they are beyond our scope.

2.7 Observational implications from the Planck 2018 data

Finally, let us briefly summarize the observational implications for primordial per-
turbations, especially by the Planck satellite [1]. The primary observables related
to primordial perturbations are the amplitude of the power spectrum of the curva-
ture perturbation Aζ , the spectral index of the power spectrum ns, and the tensor-to-
scalar ratio r. From the Planck measurements, especially combining Planck TT,TE,EE+lowE
+lensing data, these parameters are known to be

ns = 0.9649 ± 0.0042 (68%CL),

109ACMB
ζ = 2.100 ± 0.030 (68%CL),

r < 0.11,

(2.125)

where they are quoted 68% confidence limits on ns and ACMB
ζ , and 95% upper bounds

on r. It is noted that the scale of k = 0.05Mpc−1 is adopted as a pivot scale in the
Planck data analysis, and this result is obtained assuming the ΛCDM model without
the running of the spectral index ns. When the analysis is extended to include the
running, defined by

rns ≡ dns/d ln k, (2.126)
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as a free parameter, the result for ns and r would slightly change like

ns = 0.9647 ± 0.0044 (68%CL),
rns = −0.0085 ± 0.0073 (68%CL),

r < 0.16.
(2.127)

We should also note the recent result by the BICEP/Keck [81]. The authors
have reported that if we add the observational data of the Baryon Acoustic Oscil-
lation (BAO) and the BICEP/Keck data for the Planck data, the constraint on the
tensor-to-ratio is tightened to

r < 0.036, (2.128)

by setting the pivot scale as k = 0.05Mpc−1.
The blue-shaded region in Fig. 2.1 shows the constraints in the r vs. ns plane

for the Planck 2018 baseline analysis adding BAO data and the BICEP/Keck data
through the end of the 2018 season (thick:1σ-, thin:2σ-region). The green contour
represents the allowed parameter region obtained from the Planck baseline analysis.
The chaotic inflation models expressed by the power-law type potential of φ are
known to predict a relatively large tensor-to-scalar ratio when assuming that the e-
fold number N ≡

∫ tf
t Hdt is in the range of [50, 60], where tf is the cosmic time at the

end of inflation. That conflicts with the contour from the Planck+BICEP/Keck+BAO
analysis, as seen in Fig. 2.1. The purple contour represents the prediction of the
natural inflation [82], [83]. Also, the concave potential means the potential satisfying
V ′′(φ) < 0, and the convex potential means the one of V ′′(φ) > 0.

2.8 Evolution of cosmological perturbations

So far, we have discussed the creation and evolution of cosmological perturbations
during inflation. To summarize, we have gotten the following gist as the conse-
quences:

1. Cosmological perturbations would originate from the quantum fluctuations of
inflaton.

2. Although there are several kinds of perturbations coming from the quantum
fluctuations, the curvature perturbations ζ and R are beneficial to express the
subsequent evolution of the Universe due to that they are conserved on super-
horizon scales.

On local scales, k & 1Gpc−1, we know that the Universe is not isotropic through mea-
surements of CMB and LSS. One of the support for inflation is that such anisotropy
and inhomogeneity are explainable from the quantum fluctuations of inflaton. In
this section, we link the primordial perturbations and the observations of CMB and
LSS. Especially the connection between primordial perturbations and LSS relates to
our works as we introduce in Chapter 3. We should stress that observables are CMB
and LSS rather than the amplitude of primordial power spectrum Aζ , the spectral
index ns, and the tensor-to-scalar ratio r. It is essential to make this relation clear as
as to approach the inflationary mechanism.

To connect them, we have following two things to do:

(1) Relate ζ to Q which is the quantity actually measured by experiments
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FIGURE 2.1: Current constraints on the the tensor-to scalar ration r
and the spectral index of the power spectrum of the curvature per-
turbation ns at the the pivot scale k = 0.002Mpc−1 from CMB mea-
surements of Planck, BAO and BICEP/Keck. Figure is adapted from

Ref. [81].
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(2) Consider the time evolution of Q after the horizon entry.

2.9 CMB anisotropy

In the CMB anisotropy case, the quantity Q corresponds to CMB temperature fluc-
tuation ∆Tγ, or the CMB E-mode/B-mode polarization. Here we give a brief review
of the physics of CMB temperature fluctuations. See Ref. [84] for more details.

2.9.1 CMB Temperature

Figure 2.2 represents an all-sky map of the CMB temperature fluctuation ∆Tγ mea-
sured by the Planck mission. Concretely, they plot the difference from the average
CMB temperature T̄γ = 2.725K.

FIGURE 2.2: The anisotropies of the CMB temperature as observed by
Planck.

This map is expressed through the harmonic expansion like

Θ(n̂) ≡ ∆Tγ(n̂)
T̄γ

= ∑
`m

a`mY`m(n̂), (2.129)

where n̂ is the unit vector for the direction in sky, Y`m is the standard spherical har-
monics on a 2 − D sphere, and a`m is the coefficient which represents the multipole
moments of the CMB temperature fluctuations and can be written by

a`m =
∫

dΩY∗
`m(n̂)Θ(n̂). (2.130)

The angular power spectrum is calculated by this multipole moments a`m like

CTT
` =

1
2`+ 1 ∑

m
〈a∗`ma`m〉 , or 〈a∗`ma`′m′〉 = CTT

` δ``′δmm′ , (2.131)

where the subscription of T means the CMB temperature. The angular power spec-
trum is a statistically vital quantity describing key features of the Universe on behalf
of millions of pixels in the CMB map.

CMB temperature fluctuations are mostly created by ζ as the observed tensor-to-
scalar ratio limit indicates, while vector- and tensor-perturbations can theoretically
create the fluctuations. The relation between ζ and ∆Tγ and their linear evolution
are expressed by the transfer function ∆T`(k). Then the coefficient a`m can be written
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by

a`m = 4π(−i)`
∫ d3k

(2π)3 ∆T`(k)ζkY`m(k̂). (2.132)

From Eqs. (2.131) and (2.132), one can obtain

CTT
` = 4π

∫
dlogk Pζ(k)︸ ︷︷ ︸

Inflation

∆T`(k)∆T`(k)︸ ︷︷ ︸
Anisotropies

, (2.133)

where we have used the identity for the standard spherical harmonics as

`

∑
m=−`

Y`m(k̂)Y`m

(
k̂′
)
=

2`+ 1
4π

P`
(

k̂ · k̂′
)

. (2.134)

Generally, the transfer functions ∆T`(k) have to be computed numerically using
Boltzmann-codes such as CMBFAST [85] or CAMB [86].

2.10 Large-scale structures

In the LSS case, the quantity Q corresponds to the number fluctuation ∆n of DM
halos or galaxies. Here we briefly review the physics and the statistical interpretation
of LSS. The big difference between this case and the CMB anisotropy case is focusing
on non-linear objects formed by a gravitational collapse rather than perturbations.
Therefore, we must carefully consider the effects of subhorizon evolution.

2.10.1 The linear evolution of Dark Matter perturbations

Density fluctuations of cosmic fluid would evolve under the competition between
influences of gravity and pressure, and the growth rate is often expressed by D(a).
For example, during the RD epoch, the immense pressure from radiation prevents
the growth of fluctuations. Then DM density fluctuations only grow logarithmically,
D(a) ∝ ln a. During the MD epoch, the background pressure would be negligible if
one neglects the baryonic pressure. Then DM density contrasts evolve more rapidly,
D(a) ∝ a. Under the simplifying assumption to neglect the evolution in the RD
epoch, one may derive the following transfer function approximately,

Tδ(k) ≈
{

1 k < keq(
keq/k

)2 k > keq
, (2.135)

where keq is the wavenumber corresponding to the horizon scale at the matter-
radiation equality epoch. It is noted that this transfer function expresses the linear
evolution of matter density perturbation so that

Tδ(k) ≡
δk(z = 0)
δk(z)D(z)

. (2.136)

This approximate transfer function in Eq. (2.135) is beneficial for an intuitive under-
standing of the matter power spectrum, which would be a kind of double power
law function. However, it is not accurate enough for most calculations. Several pi-
oneering works provided the fitting functions for the matter transfer function. For
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example, Bardeen, Bond, Kaiser, et al. [87] provided the famous fitting function,

Tδ(q) =
ln(1 + 2.34q)

2.34q

[
1 + 3.89q + (1.61q)2 + (5.46q)3 + (6.71q)4

]−1/4
, (2.137)

where q = k/ΓhMpc−1, and Γ is the apparent shape parameter generalized by
Ref. [88] for applying to the general cosmological model with Ωm,0 6= 0,

Γ ≡ Ωm,0h exp
(
−Ωb,0 −

√
2hΩb,0/Ωm,0

)
. (2.138)

Weinberg [89] also provided the well-known fitting function as

Tδ(k) =
45
2

Ω2
m,0H2

0

Ωr,0k2

(
−

7
2
+ γE + ln

(
4
√

Ωr,0k
√

3Ωm,0H0

))
, (2.139)

where γE ' 0.577 is the Euler-Mascheroni constant. It must be noted that this func-
tion is valid at

√
Ωr,0k/Ωm,0H0 � 1 so that k � 10−2Mpc−1 in the realistic case

(Ωm,0 ∼ 0.3). Figure 2.3 shows the comparison of these fitting functions in the Ein-
stein – de Sitter Universe (Ωm,0 = 1) and the realistic Universe (Ωm,0 = 0.31). One
may obtain a more accurate fitting function in, e.g., Ref. [90] and the exact trans-
fer functions would be computed numerically with CMBFAST [85] or CAMB [86].
We stress that the above fitting functions are only for the evolution of matter density
fluctuations δ. The complete transformation between ζ and δ at some redshift would
be given by

δk(a) =
2
5

k2

Ωm,0H2
0

ζkTδ

(√
Ωr,0k

H0Ωm,0

)
a. (2.140)

Also, we remind that our purpose here is to obtain the inflationary spectrum Pζ

from the power spectrum of the DM halo/galaxy number fluctuations rather than
the matter density perturbation.

2.10.2 Galaxy Bias and DM Halo Bias

Except for the gravitational lensing method, one cannot observe the DM directly.
What we actually observe would be luminous baryonic matter. In the context of
LSS, the following relation between the DM distribution and the galaxy distribution
has proven helpful,

δgal = bgalδ, so that, Pδgal = b2
galPδ, (2.141)

where δgal is the fluctuation of the galaxy number density, bgal is called the linear
galaxy bias parameter, and Pδgal is the galaxy power spectrum defined by

〈δgal(k)δgal(k′)〉 = (2π)3δ3(k + k′)Pδgal(k). (2.142)

The linear galaxy bias bgal can be obtained by measuring the galaxy power spectrum
and the bispectrum. From the above discussion, one can relate the Pδg as observables
and the inflationary spectrum Pζ . As it can probe small scales, it would complement
the CMB observations.

In the same way, the DM halo bias can be introduced, which is helpful in con-
necting the DM halo distribution with the DM distribution. Introducing the number
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FIGURE 2.3: Comparison between the fitting functions for the mat-
ter transfer function provided by Ref. [87] and by Ref. [89]. The
solid lines show the functions in the case of Einstein – de Sitter Uni-
verse. The dashed lines show the functions in the realistic case

(Ωm,0 = 0.31).

density fluctuation of DM halos δhalo, one might obtain the following relation,

δhalo = bhaloδ, so that, Pδhalo = b2
haloPδ, (2.143)

where bhalo is called the linear halo bias parameter, and Pδhalo is the halo power spec-
trum defined by

〈δhalo(k)δhalo(k′)〉 = (2π)3δ3(k + k′)Pδhalo(k). (2.144)

Theoretically, the value of the halo bias can be predicted for each halo formation
model. Before finishing this chapter, we briefly review two famous halo formation
models; the Press-Schechter model and the Peak theory model.

2.10.3 Press-Schechter Halo Formalism

In 1974, William H. Press and Paul Schechter published a paper describing a math-
ematical model to predict the number of gravitationally collapsed objects such as
galaxies and DM halos [91]. Press and Schechter focused on the fact that the frac-
tion of mass in collapsed objects heavier than some mass M is related to the fraction
of volume in which the smoothed density fluctuations are larger than some critical
density fluctuation δcrit.

According to this formalism, the probability of forming a collapsed object heavier
than M is expressed by

P>δcrit(M) = 2
∫ ∞

δcrit

dδMP(δM), (2.145)
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where P(δM) is not the matter power spectrum but the probability function of the
amplitude of the perturbation δM in the Lagrangian coordinate,

P(δM) =
1√

2πS(M)
exp

(
−

δ2
M

2S(M)

)
, (2.146)

with the variance S(M) of δM. Therefore, the probability of forming a collapsed
object with a mass ranging from M to M + dM is estimated by

β(M) = P>δcrit(M)− P>δcrit(M + dM). (2.147)

Since the matter distributes homogeneously in the Lagrangian coordinates, the num-
ber density of the collapsed objects with a mass ranging from M to M + dM is given
by

nPS(M)MdM = ρ̄mβ(M), (2.148)

where nPS(M) is the Press-Schechter mass function and ρ̄m is the mean energy den-
sity of matter. Taking the factor 2 which is naturally derived from the extended
Press-Schechter theory (often called excursion set formalism) into account [92], [93],
the Press-Schechter mass function is given by

nPS(M) =

√
2
π

ρ̄m

M2

∣∣∣∣d lnS1/2(M)

d ln M

∣∣∣∣ δcrit

S1/2(M)
exp

(
− δcrit

2

2S(M)

)
. (2.149)

Applying the critical density contrast for the linear threshold for collapse, δc = 1.686,
to the δcrit in Eq. (2.149), the Press-Schechter halo mass function is given by

nhalo(M) =

√
2
π

ρ̄m

M2

∣∣∣∣d lnS1/2(M)

d ln M

∣∣∣∣ δc

S1/2(M)
exp

(
− δc

2

2S(M)

)
. (2.150)

The linear halo bias in the Press-Schechter formalism has been well studied. The
famous and basic expression is given by [94],

bhalo = 1 +
ν2 − 1

δc
, (2.151)

where ν ≡ δc/S1/2(M).

2.10.4 Peak-Theory Halo Formalism

Another famous halo formalism would be of the peak theory [87]. According to the
peak theory, the high peak in some random Gaussian field g(x) would typically take
the spherically symmetric profile like

ĝ(r) = µ0

[
1

1 − γ2
1

(
ψ0(r) +

1
3

R2
1∆ψ0(r)

)
− k2

1
1

γ1
(
1 − γ2

1

) σ0

σ2

(
γ2

1ψ0(r) +
1
3

R2
1∆ψ0(r)

)]
,

(2.152)

with two random variables, µ0 and k2
1, representing the peak height and width, re-

spectively, and four statistical parameters, σn, ψn, γn, and Rn. The definitions of
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these two random variables are

µ0 = g|r=0 , (2.153)

and

k2
1 = − ∆g|r=0 /µ0. (2.154)

Also the four statistical parameters are defined as

σ2
n =

∫ dk
k

k2nPg(k), (2.155)

ψn(r) =
1
σ2

n

∫ dk
k

k2n sin(kr)
kr

Pg(k), (2.156)

γn =
σ2

n
σn−1σn+1

, (2.157)

Rn =

√
3σn

σn+1
, for odd n, (2.158)

and determined by the power spectrum of the Gaussian field g,

Pg(k) =
k3

2π2

∫
d3xe−ik·x

〈
g
(x

2

)
g
(
−x

2

)〉
. (2.159)

Here hat denotes typical-profile-related quantities, and ∆ means the Laplacian. The
radius center is the point where satisfying ∇g = 0|r=0. The comoving number
density of such peaks is also statistically expected as

n(µ0,k1)
pk dµ0 dk1 =

2 · 33/2

(2π)3/2 µ0k1
σ2

2

σ0σ3
1

f
(

µ0k2
1

σ2

)
P(1)

1

(
µ0

σ0
,

µ0k2
1

σ2

)
dµ0 dk1, (2.160)

with

f (ξ) =
1
2

ξ
(
ξ2 − 3

) (
erf

[
1
2

√
5
2

ξ

]
+ erf

[√
5
2

ξ

])

+

√
2

5π

{(
8
5
+

31
4

ξ2
)

exp
[
−5

8
ξ2
]
+

(
−8

5
+

1
2

ξ2
)

exp
[
−5

2
ξ2
]}

,

(2.161)

and

P(n)
1 (ν, ξ) =

1
2π
√

1 − γ2
n

exp
[
−1

2

(
ν2 +

(ξ − γ1ν)2

1 − γ2
n

)]
, (2.162)

where erf(x) is the error function defined by erf(z) = 2√
π

∫ z
0 e−t2

dt. Hence when fo-
cusing on the collapsed objects formed by the high-peak perturbations, e.g., sourced
by the excess power of primordial perturbations, one can precisely predict the num-
ber density using peak theory. Note that this theory is based on the assumption that
the perturbation follows the Gaussian distribution.
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The linear halo bias in the peak-theory formalism is given by [95]

bhalo = 1 +
ν2 + g1

δc
, (2.163)

where

gk =
(−1)k

k!
(γ1ν)k

G1 (γ1ν)

∂kG1(y)
∂yk

∣∣∣∣∣
y=γ1ν

. (2.164)

G1(y) is the function related to the functions of f (ξ) and P(1)
1 (ν, ξ) in Eq. (2.160),

G1(y) =
∫ ∞

0
dx

f (x)

2π
√

1 − γ2
1

exp
[
− (x − y)2

2(1 − γ2
1)

]
(2.165)

.
Lastly, let us show an example applying to monochromatic perturbations for

some Gaussian random field δX so that

PX(k) = AXksδ (k − ks) , (2.166)

where AX is the amplitude of the power spectrum, ks represents the monochromatic
mode, and δ(x) is the Delta function. In this monochromatic case, the peak theory
would be significantly simplified. For instance, the variances are calculated as σ2

n →
AXk2n

s , and all γ parameters becomes unity, γ1,2,3,... → 1. In this case, taking ν =
µ0/

√
AX into account, one might get

P(1)
1

(
ν, ν

k2
1

k2
s

)
→ ks

2ν
e−

1
2 ν2

δ (k1 − ks) . (2.167)

Note that the independent parameter becomes effectively only µ0 (or ν).
Then the number density of high peaks can be obtained by

n(µ0)
pk dµ0 =

∫
n(µ0,k1)

pk dk1dµ0 →
(

3
2π

)3/2

k3
s f (ν)

1√
2πAX

e−
1
2 ν2

dµ0. (2.168)

Subsequently, let us apply this estimation to collapsed objects such as halos coming
from the density contrast peaks higher than the linear collapse threshold δc. Then
the halo number density would be given through δX → δmat as

nmono
halo (a) =

33/2k3
s

(2π)2

∫ ∞

δc/S1/2
mat(a)

f (ν)e−ν2/2dν, (2.169)

where δmat shows the matter density constrast, and Smat(a) is the variance of δmat.
We also exhibit the differential number density for the coming discussion in Chap-
ter 5,

dnmono
halo
da

=
k3

s
a

h

(
δc

S1/2
mat(a)

)
, (2.170)
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where

h(ν) ≡ 33/2ν

(2π)2 e−ν2/2 f (ν). (2.171)

In the end, the linear halo bias in the monochromatic case is given by

bmono
halo = 1 +

ν2

δc
(2.172)

due to g1 → 0.
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Chapter 3

Primordial Small-Scale
Perturbations

The precise measurements of small-scale perturbations will be one of the main top-
ics among the several observational missions in the future. It would be challenging
to investigate primordial perturbations on small scales because they are strongly af-
fected by dissipation, called Silk damping, and nonlinear effects associated with the
gravitational evolution of our Universe. Considering and predicting observables re-
lated to small-scale perturbations are essential from the theoretical aspect. In this
chapter, we give a review of the current status of exploring small-scale perturba-
tions, especially focusing on four topics: CMB spectral distortion, PBHs, galaxies,
and small-mass DM halos, and UCMHs, although we already mentioned briefly in
Chapter 1.

3.1 CMB spectral distortion

Among methods to explore primordial small-scale perturbations, measuring CMB
distortion would be most robust [10]–[12]. That is because the physics underlying
the production of CMB distortions is well understood compared to other methods.
Creations of the distortion can be derived analytically using secondary (or higher)
perturbation theory. Additionally, measurements of CMB distortion have unique
merit when connecting with primordial small-scale perturbations. The first one is
that the CMB distortion is less sensitive to unknown Non-Gaussianity because the
extent of the distortion is determined by the total energy stored in density perturba-
tions. The second is that the CMB distortion produced by the dissipation of acoustic
modes induced by the primordial power spectrum over a wide range of scales, for
example, 50Mpc−1 . k . 104Mpc−1 for µ-distortion. Therefore, one could obtain
deeper insight into the overall shape of the primordial power spectrum through
CMB distortion measurements rather than PBH and UCMH measurements. Here
we show the physics related to the CMB spectral distortion induced by primordial
perturbation and the current limits obtained by the COBE/FIRAS mission. We refer
Ref. [16] for this review. We also mention the future experiment to measure the CMB
distortion.

3.1.1 Physics underlying the CMB distortion

The effective energy release rate caused by the damping of acoustic modes is deter-
mined by

1
ργ

dQac

dz
=

4τ̇ 〈Sac〉
H(1 + z)

, (3.1)
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where 〈Sac〉 shows the source function, τ̇ = σTnec ≈ 4.4 × 10−21(1 + z)3sec−1 is the
Thomson scattering rate, and H is the Hubble expansion rate. Defining the visibility
function for the spectral distortion by

Jbb(z) = exp
(
−
[
z/zµ

]5/2
)

, (3.2)

with zµ ≈ 1.98 × 106, the weighted total energy released in the µ- and y-era would
be written by

∆ργ

ργ

∣∣∣∣
µ

=
∫ ∞

zµ,y

Jbb(z)
ργ

dQac

dz
dz,

∆ργ

ργ

∣∣∣∣
y
=
∫ zµ,y

0

1
ργ

dQac

dz
dz,

(3.3)

where zµ,y ≈ 5 × 104 [96]. During the very early epoch, such as z � zµ, the thermal-
ization process is very efficient, so all the released energy will be used to increment
the entropy in the Universe. In this case, only the average temperature of the CMB
would rise, and CMB spectral distortions would not occur. On the other hand, in
the epoch at z < zµ, the thermalization process becomes less efficient, and released
energy leads to CMB spectral distortions. Sunyaev and Zeldovich [97] provided the
simple expressions,

µ ≈ 1.4
∆ργ

ργ

∣∣∣∣
µ

, (3.4)

y ≈ 1
4

∆ργ

ργ

∣∣∣∣
y

. (3.5)

These expressions can be used practically to predict residual distortion at high fre-
quencies. However, the numerical calculation would be needed on the other fre-
quency ranges. In Refs, the authors developed the cosmological thermalization code,
named COSMOTHERM, which can solve the coupled photon – electron Boltzmann
equation for a small CMB spectral distortion. This code allows us to compute the
shape of the spectral distortions caused by energy release from several sources: dis-
sipation of acoustic waves, decaying relic particles, and quasi-instantaneous heating.

Therefore, once the source function, 〈Sac〉, for the dissipation of the primordial
small-scale perturbations is known, the resulting spectral distortion can be obtained
by calculating the weighted energy release in the µ- and y-era.

Since we are mainly interested in CMB distortions caused by the dissipation of
acoustic waves much earlier than the cosmological recombination epoch, one can
adopt the tight coupling approximation when computing the source term as [15]

〈Sac〉 ≈
αν

τ′ ∂ηk−2
D

∫
dlogk k2Pζ(k)2 sin2 (krs) e−2k2/k2

D , (3.6)

where

αν =

(
1 +

4Rν

15

)−2

≈ 0.81, (3.7)
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with the contribution of the energy density of massless neutrinos ρν to the one of
radiation ργ,

Rν =
ρν

(ργ + ρν)
≈ 0.41. (3.8)

rs denotes the sound horizon with the conformal time η calculated by

rs ≈ csη ≈ 2.7 × 105(1 + z)−1Mpc, (3.9)

with the sound speed of the tightly-coupled baryon photon fluid,

cs =
1√

3(1 + R)
, (3.10)

and the baryon ratio,

R =
3ρb

4ργ
≈ 673(1 + z)−1, (3.11)

where ρb is the baryon energy density. In Eq. (3.6), τ′ = aσTne ≈ 4.5 × 10−7(1 +
z)2Mpc−1 is the derivative Thomson scattering rate with respect to η, and kD is the
damping scale estimated by

kD ≈ 4.0 × 10−6(1 + z)3/2Mpc−1, (3.12)

with

∂ηk−2
D =

c2
s

2τ′

[
R2

1 + R
+

16
15

]
≈ 8

45τ′ ≈ 3.9 × 105(1 + z)−2Mpc. (3.13)

In the limit of R � 1, the effective energy release rate in Eq. (3.3) is therefore given
by

1
ργ

dQac

dz
≈ 32αvc

45τ′H

∫
dlogk k2Pζ(k)2 sin2 (krs) e−2k2/k2

D

≈ 9.4a
∫ k2 dlogk

k2
D

Pζ(k)2 sin2 (krs) e−2k2/k2
D ,

(3.14)

which indicates that energy release happens when k ∼ kD. Considering the ratio
between the damping scale and the horizon scale as

kD

kh

∣∣∣∣
kh=aH

≈ 2(1 + z)1/2, (3.15)

the dissipation of the acoustic mode induced by the primordial perturbations would
occur well inside the horizon, for instance 50Mpc−1 . k . 104Mpc−1 for µ-distortion
and k . 50Mpc−1 for y-distortion.
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3.1.2 Relation with Primordial Power Spectrum

Of course, the released energy depends on the primordial power spectrum, Pζ . In
this context, the shape of Pζ is often parameterized by

Pζ(k) = PCMB
ζ (k) + ∆Pζ(k), (3.16)

where ∆Pζ represents the deviation of the primordial power spectrum from the fidu-
cial form [98],

PCMB
ζ (k) = ACMB

ζ (k/k0)
ns−1+ 1

2 rns ln(k/k0) , (3.17)

with the adopted/derived parameters, k0 = 0.05, ACMB
ζ = 2.1 × 10−9, ns = 0.9641,

and rns = −0.0045 from the Planck CMB observation, which are summarized in
Eq. (2.127).

With the simplifying assumption that we can neglect rs, Ref. [15] provided the
useful expressions for the total µ- and y-distortion from the fiducial power spectrum,

µCMB
ac ≈ 5.54 × 10−4ACMB

ζ exp
(

9.92n1.23
s

)
,

yCMB
ac ≈ 2.85 × 10−2ACMB

ζ exp
(

4.32n1.53
s

)
,

(3.18)

with numerical perturbative calculations by COSMOTHERM.
Similarly, one can predict the CMB spectral distortion induced by the excess

of the primordial power spectrum ∆Pζ in Eq. (3.16) utilizing above equations and
the COSMOTHERM. As one example, let us estimate them for the monochromatic
power spectrum case,

∆Pζ = Aζδ (logk − logk∗) . (3.19)

Inserting Eq. (3.19) to Eq. (3.14), one can obtain the effective energy release rate for
this monochromatic excess as

1
ργ

dQac(z)
dz

≈ 18.8aAζ

(
k∗
kD

)2

sin2 (k∗rs) e−2k2
∗/k2

D . (3.20)

This expression suggests that a single k-mode’s power will be released, taking the
cosmological time at the redshift. The redshift where the energy is most released is

zpeak ≈ 4.5 × 105

(
k∗

103Mpc−1

)2/3

, (3.21)

but while rapidly oscillating due to the sine part of the transfer function. Since the
oscillation period is much shorter than the energy release time scale, one can take
the time averaging for the sine term, which yields

1
ργ

dQac

dz
≈ 9.4aAζ

(
k∗
kD

)2

e−2k2
∗/k2

D . (3.22)
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Then using Eqs. (3.4) and (3.5), one can analytically obtain the approximated expres-
sions of µ- and y-distortion at high frequencies as

µmono ≈ 2.2Aζ

exp

(
− k∗

5400Mpc−1

)
− exp

−
(

k∗
31.6Mpc−1

)2
 , (3.23)

and

ymono ≈ 0.4Aζ exp

−
(

k∗
31.6Mpc−1

)2
 . (3.24)

It should be noted that these expressions are valid only for k∗ & 5Mpc−1. On larger
scales, the numerical calculations implemented by COSMOTHERM might be pow-
erful.

3.1.3 Limits from the COBE/FIRAS observation

Among the existing observational limits of the CMB distortion, the COBE/FIRAS
limit would be the most powerful [20],

µ . 9 × 10−5, (3.25)

y . 1.5 × 10−5, (3.26)

which are 2σ upper limits. These constraints can impose a strong upper bound on
the amplitude of the primordial power spectrum. Figure 3.1 shows the resulting
limits with the assumption of the step-like primordial power spectrum as

Pζ =

ACMB
ζ

(
k
k0

)ns−1
k ≤ ks,

(ACMB
ζ +Aδ

ζ)
(

k
k0

)ns−1
k > ks.

(3.27)

The blue-shaded region shows the limit from the y-distortion measurement, and
the yellow-shaded region represents the one from the µ-distortion measurement by
COBE/FIRAS. The limits from the µ-distortion measurement are most stringent in
the range of k < 103Mpc−1. That is because the thermalization process becomes very
efficient at smaller scales. As seen in Fig. 3.1, the limits obtained by the y-distortion
measurement by COBE/FIRAS are weaker than the one of µ-distortion.

Figure 3.1 also displays the constraint foreseeing by the PIXIE-like measure-
ments. In the PIXIE-like measurement, the following 2σ detection limits are ex-
pected [29],

µPIXIE ' 2 × 10−8, (3.28)

yPIXIE ' 4 × 10−9. (3.29)

Then the limit on the total amplitude of the power spectrum would be much im-
proved, like the light blue region in Fig. 3.1. The difference of line styles in Fig. 3.1
represents the difference in the value of the spectral index ns. The bending feature
in the PIXIE limit curve of ns = 1, 1.05, 1.1 comes from the fact that the value of
µ(k > ks) itself already exceeds µPIXIE in Eq. (3.28).
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However, unfortunately, the PIXIE project was not selected(funded) and is stop-
ping now. Therefore, the current most robust limit from the CMB distortion is the
one of the µ-distortion measurement by COBE/FIRAS represented by a yellow re-
gion surrounded by the dash-dot line (ns ∼ 0.95) in Fig. 3.1. Although there are
other future projects proposed to measure the µ- and y-distortion in the CMB spec-
trum such as PRISM [25], PRISTINE [26], SuperPIXIE [27] and Voyage2050 [28], they
have not been selected yet.

FIGURE 3.1: Limits on the total amplitude of the primordial power
spectrum with a step-like excess in k > ks. This figure is adapted

from Chluba et al. [32].

3.2 Primordial black hole

PBHs are theoretically suggested as produced due to strongly amplified primordial
perturbations. An overdense region with largely enhanced primordial perturbations
would gravitationally collapse after entering the horizon, forming PBH [99], [100].
Since the 2010s, PBH has been gathering attention for two main reasons. One rea-
son is that the first direct detection of GWs by the LIGO/Virgo collaboration sheds
light on the possibility that the observed massive black holes might be of primordial
origin [101]. The other one originates from their possibility as a main component
of DM which has been still opened in a light mass region ∼ 10−10M�. Therefore,
studying the PBH abundance gives us insights into not only the primordial density
fluctuations on small scales but also DM. We do not explain the details of PBHs as
DM, which is beyond our scope in this thesis. However, Carr, Kohri, Sendouda, et
al. [102] might be useful for studying them. Here we discuss the PBH abundance
concerning the primordial perturbation on small scales. We refer to Ref. [103] for
this discussion.

3.2.1 Abundance of PBHs

So far, the abundance of PBHs has been investigated in various ways. The Press
– Schechter formalism, as explained in Sec. 2.10.3, would supply the simplest way.
This formalism allows us to estimate the abundance of collapsed objects (PBHs in
this case) by the probability that the locally averaged value of the random density
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contrast field exceeds a given critical value. Carr [34] firstly evaluated the critical
value to form PBH in terms of the density contrast as δc,PBH ∼ w = 1/3 in the
RD epoch, where w = p/ρ denotes an equation of state parameter with the pres-
sure p and the energy density ρ of the cosmic fluid. Subsequently, Refs. [104]–[106]
estimated this value more accurately in various analytic or numerical approaches.
However, these results do not match well, suggesting the difficulty of predicting
PBH abundance with the Press – Schechter formalism and the necessity to take into
account the detailed local profile of overdensities.

Recently, several works proposed the compaction function with the peak theory as
a better indicator for the PBH formation [107], [108]. In a spherically symmetric case,
the compaction function C is defined by the difference between the Misner – Sharp
mass MMS,

MMS = 4π
∫ R

0
ρR′ 2 dR′, (3.30)

and the mass Mbg enclosed in the background Universe within the areal radius R,

MF =
4π

3
ρ̄R3, (3.31)

as

C =
MMS − MF

4πM2
PlR

, (3.32)

on a comoving slice, where ρ̄ is the background energy density, and MPl denotes the
reduced Planck mass. It should be noted that this compaction function represents
the average value of the density contrast δρ = (ρ − ρ̄)/ρ̄ when the mode reentries
the horizon RH = 1 as

C = (RH)2 ×
(

4π
∫ R

0
δR′ 2 dR′

)
/
(

4π

3
R3
)

. (3.33)

Let us define the curvature perturbation ζ via the spatial metric as

ds2
3 = a2(t)e2ζ(t,x)γ̃ij dxi dxj, (3.34)

where det γ̃ = 1. The comoving density contrast relates to ζ as

δ = −4(1 + w)

5 + 3w
1

a2H2 e−5ζ/2∆eζ/2 RD
= −8

9
1

a2H2 e−5ζ/2∆eζ/2, (3.35)

where we put w = 1/3 in the second equality. Considering the expression of the
areal radius, R(r) = aeζr, one can obtain the simple form of the compaction function,

C(r) = 2
3

[
1 −

(
1 + rζ ′

)2
]

. (3.36)

This expression would be conserved on superhorizon scales due to the feature of ζ
as mentioned in Chapter 2. One of the criteria regarding C for the PBH formation
would be whether the innermost maximum value of C at some radius rm exceeds
some threshold or not. However Refs. [106], [109] suggested that the threshold value
in terms of C(rm) slightly changes depending on the peak profile. The more univer-
sal and profile-independent indicator would be the averaged compaction function
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which is defined by

Cm =

(
4π
∫ R(rm)

0
C(r)R̃2(r)dR̃(r)

)
/
(

4π

3
R3 (rm)

)
. (3.37)

Refs. [106], [109] suggested the universal threshold value as C th
m = 2/5, in this case.

Figure 3.2 shows the limit on the primordial power spectrum by the nondetec-
tion of PBHs through several ways. We take this figure from Ref. [110]. In Fig. 3.2,
the green dashed line shows the limit from measurements of FRB lensing [111]. The
green dash-dot line shows the one from caustic-crossing stars [112], and the yellow
solid and dashed lines represent limits obtained by measurements of known pul-
sars and SKA pulsars respectively [113]. The pink dot and dashed line show the
constraint from the measurement of the merger rate by LIGO [101] and the stochas-
tic GW background [114] respectively. The current observational constraints are
merged, and the most stringent bound is shown in solid blue. The solid grey line
comes from the limitation that the density of PBHs cannot exceed that of DM.

FIGURE 3.2: Limits on the amplitude of the primordial power spec-
trum from exploring PBHs in several ways: measurements of FRB
lensing (FRB) [111], caustic-crossing stars (microcaustic) [112], pulsar
timing (known pulsars and SKA pulsars) [113], the merger rate from
LIGO [101], and the stochastic GW background [114]. The current
observational constraints are merged, and the most stringent bound
is shown in solid blue. The solid grey line comes from the limita-
tion that the density of PBHs cannot exceed that of DM. This figure is

taken from Ref. [110].

Before finishing the discussion of PBHs, we should stress that the limit on pri-
mordial power spectrum obtained by the nondetection of PBHs is much weaker than
other constraints like the CMB distortion measurements, as seen in Fig. 3.2. That is
because PBH must be a rare object formed by a large-amplitude perturbation by
chance from the request that the PBH energy density cannot exceed that of DM.
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3.3 Galaxies and small-mass DM halo

As the galaxy clusters distribution indicates the large-scale matter density pertur-
bations, measurements for smaller objects like galaxies or small-mass halos would
provide information about the smaller-scale perturbations.

3.3.1 UV Luminosity function of high redshift galaxies

One of the powerful observables would be the UV Luminosity Function (LF) of high
redshift galaxies. Recently Ref. [69] presented new measurements of the matter
power spectrum on small scales, 0.5Mpc−1 < k < 10Mpc−1, at ∼ 30% precision
level, using high-redshift UV galaxy LF data from the Hubble Space Telescope. The
UV galaxy LF captures the abundance of galaxies as a function of their luminosity
at different epochs. Therefore it contains a wealth of information on the physics of
cosmological structure formation at small scales.

Let us briefly give a review of the connection between the UV galaxy LF and the
small-scale perturbation (see Ref. [69] for detail). The UV galaxy LF is defined as the
comoving number density of galaxies per unit magnitude of luminosity,

ΦUV = dngal /dMUV, (3.38)

where MUV denotes the absolute UV magnitude of the galaxies. For simplicity, let
us assume that one halo hosts one central galaxy. In that case, UV galaxy LF can be
written by

ΦUV =
dnhalo

dMhalo
× dMhalo

dMUV
, (3.39)

where dnhalo/dMhalo represents the halo mass function like the one of Press-Schechter
formalism represented in Eq. (2.150), and dMhalo/dMUV is the relation between halo
mass and the UV magnitude of the galaxies residing inside the halo. Here we adopt
a double-power law,

f∗ =
Ṁ∗

Ṁhalo
=

ε∗(
Mhalo

Mc

)α∗
+
(

Mhalo
Mc

)β∗
, (3.40)

to relate mass accretion rates of star and halo, where α∗ ≤ 0 and β∗ ≥ 0 control
the slope of the faint and bright end of the UV galaxy LF respectively, ε∗ ≥ 0 reg-
ulates the star-formation efficiency, and Mc ≥ 0 denotes the peak mass of the star-
formation rate. These four are free parameters to be fitted by observational data.
The relation between the star mass accretion rate Ṁ∗ and the UV luminosity LUV is
given by [115], [116]

Ṁ∗ = κUVLUV, (3.41)

where κUV = 1.15 × 10−28M�serg−1yr−1 [117]. The luminosity can be converted to
MUV via their relation [118],

log10

(
LUV

erg s−1

)
= 0.4 (51.63 − MUV) . (3.42)
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For the halo mass accretion rate Ṁh, we adopt the extended Press-Schechter formal-
ism. Then one can obtain Ṁh by determining cosmological parameters.

Combining the above ingredients, one can obtain the UV galaxy LF as a function
of cosmological and astrophysical parameters. Therefore, one can explore such pa-
rameters regarding the small-scale physics through a statistical analysis like Markov
chain Monte Carlo (MCMC) with cosmological observations like CMB and the mea-
surements of UV LF of high redshift galaxies by, e.g., Hubble Space Telescope (HST) [119],
[120].

Figure 3.3 shows the result for measurements of the matter power spectrum at
z = 0. The two black data points are the joint analysis results between the Planck
observation and the UV galaxy LF data from HST [121]. The blue, green, and pur-
ple data points represent the results obtained by Planck 2018 TT, EE, and φφ data,
respectively [1]. The pink data point represents the result from observation data of
Dark Energy Survey (DES) cosmic shear [122]. The orange and yellow data points
show the ones of SDSS galaxy clustering [123] and SDSS Lyman-α [124] data, respec-
tively. The black line is the prediction within ΛCDM, using the best-fit values from
Planck 2018 [1].

FIGURE 3.3: Measurements of the matter power spectrum at z = 0.
The two black data points are the results obtained by the joint analy-
sis between the Planck observation and the UV galaxy LF data from
HST [121]. The blue, green, and purple data points represent the re-
sults obtained by Planck 2018 TT, EE, and φφ data, respectively [1].
The pink data point represents the result from observation data of
Dark Energy Survey (DES) cosmic shear [122]. The orange and yel-
low data points show the ones of SDSS galaxy clustering [123] and
SDSS Lyman-α [124] data, respectively. The black line is the predic-
tion within ΛCDM, using the best-fit values from Planck 2018 [1]. All
uncertainties in this figure are at 68% CL. This figure is adapted from

Ref. [121].

In Fig. 3.3, one can find that the matter power spectrum is consistent with the
theoretical spectrum predicted in a standard ΛCDM cosmology up to k ∼ 10Mpc−1,
where other large-scale observation have not reached yet.
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3.3.2 Free-free emission from DM halos

The measurements of free-free emission signals from DM halos also provide infor-
mation about the smaller-scale perturbations.

When a charged particle is deflected by another charged particle, especially an
electron by a proton in an ionized gas hosted by DM halos in this thesis, electro-
magnetic radiation would be produced due to the deceleration. In this process, the
moving charged particle loses kinetic energy, which is converted into photons fol-
lowing the energy conservation law. This radiation is often created by the transition
of electrons from one free state to another free state. Here the word “free" means that
another particle, like protons, does not bind the electron. Therefore, this emission is
called free-free emission1. One feature of free-free emission is that the spectrum is
continuous and flat.

As we will see the detail in Chapter 4, the dominant contribution to free-free
emission from DM halos comes from relatively small-mass halos. Therefore, if we
measure it accurately, we can know the abundance of small-mass halos and thus get
an insight into the primordial small-scale perturbations through, e.g., investigations
of ns on small scales like UV galaxy LF measurements.

3.4 Ultracompact minihalos

UCMHs are beyond standard structures, which might be formed earlier than the
standard DM halos by the excess power of primordial perturbations on small scales.
In general, the primordial perturbations induce density fluctuations which grow
gravitationally even in the RD epoch. Through the growth, the overdense region on
small scales finally collapses into the nonlinear structures called UCMHs in higher
redshifts than the standard hierarchical structure formation due to the scale-invariant
primordial perturbations [71]. For instance, the overdensity regions with the large
density contrast, δ > 10−3, at the horizon entry can form UCMHs around z ∼ 1000,
which is much before the standard structure formation history.

In order to consider the linear growth of DM density fluctuations, the Meśzáros
equation [125] is useful,

d2δ

dy2 +
2 + 3y

2y(y + 1)
dδ

dy
− 3

2y(y + 1)
δ = 0. (3.43)

Here y ≡ a/aeq, and aeq shows the scale factor at the matter-radiation equality.
This equation describes the linear growth of DM density perturbations on subhori-
zon scales, assuming that we can neglect the baryon and photon density perturba-
tion. One can obtain the physical solution for the Meśzáros equation in Eq. (3.43) by
matching the linear growth rate in RD, δ ∝ log(0.44a/aH), with the scale factor at
the horizon entry of a given mode. This physical solution would be [126]

δ ∝

[
log

(
k

0.12hMpc−1

)
− log

(√
1 + y + 1√
1 + y − 1

)](
y +

2
3

)
+ 2
√

1 + y, (3.44)

1More broadly speaking, radiation created by a deceleration of a charged particle is called
bremsstrahlung. Bremsstrahlung includes not only free-free emission but also synchrotron radiation,
cyclotron radiation, and the emission of electrons and positrons during beta decay. Also, free-free
emission is produced by the thermal motion of electrons; thus, this is one kind of thermal emission.
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which can be a convenient prescription for the linear growth rate of the DM density
perturbation during the MD and RD epochs. The criteria for forming UCMHs are
given by whether the linearly evolved density field has a peak larger than the linear
density threshold for collapse, δc = 1.686, in the same way as the standard DM halo
formation.

Since UCMHs could be formed by the radial infalling in high redshifts, UCMHs
are assumed to have a more compact profile with a larger central density than typ-
ical DM halos in the standard hierarchical structure formation. Ricotti and Gould
[71] firstly suggested that UCMHs has a strongly steep profile, ρ ∝ r−9/4 by the
analytical work of Ref. [127]. This compactness greatly boosts the observational sig-
nals, and UCMHs had therefore attracted attention in the astrophysical and cos-
mological context. However, this unusual compactness, ρ ∝ r−9/4, is theoretically
derived in an idealized picture including spherical symmetry, radial motion, and
self-similarity. In fact, it had not been reproduced in N-body simulations from re-
alistic conditions [128]–[130], although it can be reproduced from carefully tuned
self-similar initial conditions2 [131], [132].

The first cosmological simulation of the UCMH formation has been done by
Ref. [133]. They revealed that a large amplitude on small scales actually leads to
early structure formation, and the resultant DM halos are compact. Recent numerical
simulations by Delos, Erickcek, Bailey, et al. [72], [73] showed that UCMHs originat-
ing from the spike-type spectrum on small scales have the Moore profile, ρ ∝ r−3/2,
rather than the conventional profile, ρ ∝ r−4/9, at the inner cusp region [134]. This
profile is still steeper than the Navarro-Frenk-White (NFW) profile which represents
the density profile of the standard DM halo expected in the N-body simulation [135],

ρ(r) =
ρs

(r/rs) (1 + r/rs)
2 , (3.45)

where ρs is the scale density, and rs shows the scale radius. Hereafter in this thesis,
we define UCMH as a collapsed object originating from the spike-type spectrum on
small scales and having the Moore-type density profile inside.

3.4.1 Abundance of UCMHs

In our assumption, we posit the presence of a spike-type power spectrum on a spe-
cific small scale in addition to the almost scale-invariant spectrum with an ampli-
tude of ACMB

ζ ∼ 2.1 × 10−9 as measured by Planck CMB observations. For the sake
of simplicity, we employ the Dirac delta function to represent this additional spike-
type power spectrum as,

Padd
ζ (k) = Aadd

ζ ksδ(k − ks), (3.46)

where Aadd
ζ is the amplitude of the additional power spectrum, and ks is the wave

number corresponding to the spike center.
In the spike-type power spectrum case, the initial mass of UCMHs Mi are related

to the spike-wave number ks as

Mi ∼ 4 × 104 M� ×
(

ks

103 Mpc−1

)−3

. (3.47)

2In reality, a Gaussian random field spreads in the Universe. The self-similarity would be ruled out
by its appearance in the field.
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The number density of UCMHs can be calculated by utilizing the peak theory as
outlined in Sec. 2.10.4, which is formulated for the case of a monochromatic power
spectrum. This is because UCMHs are expected to form at the locations of density
fluctuation peaks, as dictated by the peak-type power spectrum outlined in Eq. (3.46)
in this scenario. Following the peak theory, the UCMH number density can be ob-
tained by

n(Mi, z) =
33/2k3

s
(2π)2

∫ ∞

δc/S1/2
mat,0(Mi)D(z)

e−ν2/2 f (ν)dν, (3.48)

where Smat,0 is the present mass variance of the matter density fluctuation, and f (ν)
is the function represented in Eq. (2.161). It is worth noting that the expression for
the number density in Eq. (3.48) does not take into account any merger effects of
UCMHs, which have been neglected in this thesis.

With regards to the relation between the additional spike-type power spectrum,
as outlined in Eq. (3.46), and the present mass variance, Smat,0, it is important to
understand that Smat,0 is calculated from the power spectrum of the primordial cur-
vature perturbations, Pζ(k), via

Smat,0(M)

=
∫

d log k
4
25

k4

Ω2
m,0H4

0
Pζ(k)C2

ΛT2
δ (k)W̃

2
k (kR(M))

≡ C2
Λ Amat,0(M),

(3.49)

where W̃k(x) is the Fourier function of the window function, R(M) is the comoving
scale enclosing the mass M in the background matter density ρm,0, Tδ(k) is the trans-
fer function for the matter density fluctuations during the MD epoch as shown in
Sec. 2.10.1, and CΛ ≈ 0.79 is the correction factor for the growth rate during the late-
time Λ dominated epoch, which is estimated by the growth factor in the epoch [136].
In the second line of Eq. (3.49), we have introduced the new mass variance parame-
ter, Amat,0. By utilizing this parameter, it is possible to estimate the mass variance at
an alternative redshift in the MD epoch by Amat, 0/(1 + z)2.

Given our interest in the mass variance Amat,0(Mi), the dominant contribution to
the mass variance in Eq. (3.49) is expected to come from the additional power spec-
trum, Padd

ζ (ks). By utilizing the pointwise window function for the W̃k, as originally
proposed in the peak theory [87], Pζ(k)W̃k2(kR) in Eq. (3.49) attains its maximum
value at ks. Therefore, Eq. (3.49) can be approximately written as

Amat,0(Mi) ≈
4
25

k4

Ω2
m,0H4

0
Padd

ζ (k)T2(k)

∣∣∣∣∣
k=ks

. (3.50)

It can be inferred from Eq. (3.50) that the abundance of UCMHs is linked to the
properties of the additional spike-type power spectrum, specifically Aadd

ζ and ks.
However, it is important to note that this approximation is only valid when the mass
variance contributed by the additional spike-type spectrum is significantly greater
than the one stemming from the almost scale-invariant spectrum, with an amplitude
of ACMB

ζ ' 2 × 10−9. Figure 3.4 illustrates the present mass variance parameter
estimated by the almost scale-invariant spectrum. To satisfy the aforementioned
condition, the value of the mass variance parameter from the additional spike-type
spectrum must be larger than ACMB

mat,0, as depicted in Fig. 3.4, for each initial UCMH
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mass.

107108109 Mi[M ]

1024 × 101 6 × 101

ks[Mpc 1]
80

90

100

110

120

CM
B

m
at

,0

FIGURE 3.4: Mass variance parameter at present which origi-
nates from the almost scale-invariant spectrum with the amplitude
ACMB

ζ ' 2.1× 10−9 in the scale of ks corresponding to the initial mass
of UCMHs of Mi. In order to validate the approximation in Eq. (3.50),
the value of the mass variance coming from Padd

ζ at ks should be
larger than ACMB

mat,0(ks).

3.4.2 The observational limit

One can obtain a strong insight into primordial small-scale perturbation from mea-
surements of the UCMH abundance through their relation represented by Eq. (3.48).
Here we briefly review the current observational limit on the UCMH abundance.

If DM is of the particle type, particularly the weakly interacting massive par-
ticle (WIMP) [137]–[139], UCMHs would emit energetic emissions through the en-
hancement of WIMP annihilation due to their dense profiles. To date, various stud-
ies [72]–[78] have investigated the gamma-ray emission signal and imposed con-
straints on the abundance of UCMHs. Furthermore, these studies have also pro-
vided constraints on small-scale primordial scalar perturbations, with Aζ < 10−7

for 10 Mpc−1 < k < 108 Mpc−1, through the non-detection of such energetic sig-
nals in gamma-ray observations such as Fermi-LAT [140]. Additionally, UCMHs
have been investigated through their gravitational lensing effect [77], [141] and their
contribution to cosmic reionization [142]–[145].

Figure 3.5 shows the main constraint on the UCMH abundance. This figure is
adapted from Ref. [76]. In this figure, the purple line represents the limit on large
scales from the CMB, LSS, Lyman-α observations[146]–[148]. The black dashed line
shows the limit from PBHs as shown in Fig. 3.2. The blue dashed line represents
the limit from the contribution of UCMHs on the cosmic reionization through their
WIMP annihilation. The solid red line shows the limit obtained by the nondetection
of gamma-ray emission from UCMHs through the Fermi-LAT mission [140].
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FIGURE 3.5: Limits on the amplitude of primordial density and cur-
vature perturbations, Pδ and Pζ respectively, at wide scales. The pur-
ple line shows the limit on large scales from the CMB, large scale
structure, Lyman-α observations[146]–[148]. The black dashed line
shows the limit from PBHs as shown in Fig. 3.2. The blue dashed line
shows the limit coming from the measurements of the UCMH contri-
bution to the cosmic reionization through their WIMP annihilation.
The solid red line represents the limit obtained by the nondetection
of gamma-ray emission from UCMHs through the Fermi-LAT mis-
sion. For ease of reference, the range of possible DM kinetic decou-
pling scales for some indicative WIMPs is plotted by the grey dotted

line [149]. This figure is adapted from Ref. [76].

In the current status where there are no funded projects to measure the CMB
distortion and with the fact that the measurements of UCMHs can limit on primor-
dial power spectrum stronger than ones of PBHs, the studies of UCMHs would be
attracting the attention more and more. For example, the constraint from the nonde-
tection of the energetic signals from UCMH in gamma-ray observations is very pow-
erful, even compared to the COBE/FIRAS limit. However, it should be stressed that
this constraint highly depends on the parameters of WIMP. Furthermore, ground
experiments like Xenon1T have been putting a tighter constraint on the WIMP pa-
rameter year after year [150]. Then it might happen that the commonly used value
of the parameter, mχ ∼ 1TeV, would be excluded by the future coming experiment.
Based on the above, new measurements which can more deeply explore the primor-
dial power spectrum have been demanded.

3.4.3 Baryonic effects from UCMHs

We have been establishing a DM-model independent approach to UCMHs, focusing
on the signals from baryon gas in UCMHs. If the mass of UCMHs is heavier than
the Jeans mass, UCMHs will host baryon gas in the same way as the standard DM
halos. Then the baryon gas emits several cosmological signals like 21-cm line emis-
sion/absorption. This doctoral dissertation represents our study to investigate these
signals from UCMHs.

21-cm line emission/absorption background

In Chapter 5, we study the 21-cm line emission/absorption background induced
by UCMHs. Depending on their mass, UCMHs can host abundant neutral hy-
drogen gas. Therefore, redshifted 21-cm observations can probe the abundance of
UCMHs [151]. We show that SKA can provide a stringent limit on the abundance of
UCMHs and the amplitude of the primordial perturbations.
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Astrophysical effects

Astrophysical effects that occurred in UCMHs, e.g., the formation of first-generation
stars, would be powerful probes for UCMHs. In Chapter 6, we discuss the formation
of the first stars and investigate their effects on the global cosmic ionization history
in the method of MCMC analysis with Planck CMB anisotropy observation data.
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Chapter 4

Free-free emission from DM halos

Investigation of diffuse background-free-free emission from dark matter (DM) halos
is the focus of our study. Given that DM halos are known to contain ionized ther-
mal plasma, they could be a substantial source of cosmological free-free emission.
We assess the intensity of the global background and the anisotropy of this emission
and deduce that the major contribution arises from DM halos with a mass compa-
rable to the Jeans mass, i.e., Mhalo ∼ 1010M�, at a redshift of approximately z ∼ 3.
This implies that the intensity of the free-free emission is dependent on primordial
small-scale perturbations that produce such small-mass DM halos. We determine
that the intensity of the global and anisotropic free-free emission is less than 10% of
the free-free emission observed in high galactic-latitude regions. We also find that
the free-free emission signal is subject to ∼ 20% modification, even in cases where
the spectral index and the running are consistent with recent Planck results. As such,
measuring cosmological free-free signals could provide more stringent constraints
on the abundance of small-mass DM halos and curvature perturbations, including
the spectral index and running. However, to achieve this, the Galactic free-free emis-
sion must be carefully removed through multifrequency radio observations, cross-
correlation studies with galaxy surveys or 21-cm intensity maps.

4.1 Introduction

The Planck space mission was designed to measure cosmic microwave background
(CMB) anisotropies with unprecedented accuracy. The observation results obtained
by Planck are consistent with the hypothesis of primordial curvature perturbations
that are almost scale-invariant, adiabatic, and Gaussian [1]. Furthermore, when com-
bined with galaxy surveys [152], [153], it is possible to confirm that these statistical
features extend from the present horizon scale to the 1 Mpc scale [154]. Probing the
statistical nature of the primordial curvature perturbations can provide insight into
the early Universe, particularly the inflation model. Notably, the observed statisti-
cal features are consistent with the predictions of a simple inflation model, specifi-
cally the slow roll inflation model with a single scalar field [9] (for a review, see e.g.
Ref. [8]).

One of the next goals in modern cosmology is to reveal the primordial curvature
perturbations on a smaller scale than the Mpc scale. In this context, CMB distor-
tion can serve as a powerful probe [10]–[12]. Although small-scale perturbations
are smoothed out by the Silk damping effect, the energy flows dissipated during
this process create distortions in the blackbody spectrum of the CMB energy spec-
trum [13]–[15]. Thus, measurements of CMB distortion can provide a deeper under-
standing of small-scale perturbations [14], [16]–[19].

In fact, from the measurements of CMB distortion by the COBE/FIRAS instru-
ment, a constraint on the primordial power spectrum was suggested, specifically



54 Chapter 4. Free-free emission from DM halos

that Pζ . 10−5 for the wave number range k ≈ 1 − 104 Mpc−1 [16]. Additionally, it
is anticipated that with next-generation CMB measurements such as PIXIE [28], this
constraint will be improved to the order of Pζ . 10−8.

In the future, measurements of the redshifted 21-cm signal are also expected to
be beneficial in determining small-scale perturbations. As the 21-cm signal is emit-
ted through the transition of neutral hydrogen, in which the electron flips its spin,
measurements of the spatial fluctuations in the redshifted 21-cm signal can trace the
evolutionary history of matter density fluctuations prior to the epoch of reioniza-
tion (for a comprehensive review, see Ref. [155]). Redshifted 21-cm measurements
have the potential to explore density perturbations on smaller scales than the Silk
scale [156]. To accomplish these measurements, the Square Kilometre Array project,
which aims to construct the largest radio telescope with over a square kilometer of
collecting area, is currently in progress.

This work centers on diffuse background free-free emission as a means of inves-
tigating small-scale perturbations. The study of diffuse background free-free emis-
sion has been conducted in relation to foreground components such as the CMB in
the microwave and radio frequency range. While the majority of observed free-free
emission is believed to have a Galactic origin, free-free emission with cosmological
origins also exists, such as in the intergalactic medium (IGM) [157], galaxy groups
and clusters after reionization [158], and during the formation of structures during
reionization [159]. Among these sources, the contribution from DM halos may be
the most significant [160].

In this study, we re-examine the free-free emission from DM halos in the stan-
dard ΛCDM cosmology by considering the impact of small-scale primordial curva-
ture perturbations. Specifically, we investigate the dependency on the spectral index
ns of the primordial power spectrum and the running rns of the free-free emission,
which has not been examined. To do this, we first analyze the distribution of red-
shift and DM halo mass for both the global signal and the anisotropy of the free-free
emission. Afterwards, we establish various parameter sets, (ns, rns), which can al-
ter the number density evolution, particularly for low-mass DM halos, and evaluate
how the emission signal and the anisotropy vary with different parameter sets. Ad-
ditionally, we also evaluate the dependence on the gas profile model within DM
halos.

In this chapter, we will outline the methodology for our analysis of free-free emis-
sion from dark matter halos in the standard ΛCDM cosmology. In Section 4.2, we
will describe the halo model that characterizes the density and temperature pro-
files of the gas within halos, and calculate the intensity of free-free emission from
individual halos of varying masses. In Section 4.3, we will consider the historical
formation of halos and formulate the diffuse background intensity, which comprises
the sum of free-free emission from individual halos. We will also examine the mass
and redshift distribution of this diffuse background intensity. In Section 4.4, we will
formulate the anisotropies of the free-free emission and evaluate the mass and red-
shift distribution of these anisotropies in the same way as the diffuse background
intensity. Finally, in Section 4.5, we will explore the implications of our findings
for constraining primordial curvature perturbations and present our conclusions in
Section 4.6.

In this chapter, we adopt a flat ΛCDM cosmology and use the best-fit cosmolog-
ical parameters from the latest Planck result [1]. We also use the calculation package
named HMFcalc [161] to estimate the halo mass function, the matter power spec-
trum, and so on.
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4.2 Free-free emission rate from an individual halo

The emission of free-free radiation from thermal plasma can be quantified through
the number density ngas, temperature Tgas, and ionization fraction xe of free electrons
in the plasma. The emission coefficient at a frequency ν can then be determined
by [162]

εff
ν =

23e6

3mec3

(
2π

3mekBTgas

)1/2

× x2
en2

gas exp
(
−hpν/kBTgas

)
ḡff , (4.1)

where e is the electric charge, me is the mass of electrons, and hp and kB are the Planck
constant and the Boltzmann constant. In Eq. (4.1), ḡff is a velocity-averaged Gaunt
factor. We utilize the fitting formula for ḡff as presented in Ref. [163],

ḡff = log{exp
[
5.960 −

√
3/π log

(
ν9T−3/2

4

)]
+ e}, (4.2)

where ν9 ≡ ν/(1 GHz), T4 ≡ Tgas/(104 K), and e is Napier’s constant. The free-

free emission at frequencies exceeding the critical frequency, νc =
kBTgas

hp
, is subject to

exponential damping as depicted in Eq. (4.1). However, in the context of the CMB
or radio frequency range, this damping effect is virtually insignificant.

To assess the free-free emission from DM halos, it is imperative to formulate a
model for the energy density and temperature of the gas within these halos. In this
study, we utilize the gas profile model, referred to as the KS model, presented in
previous works [164], [165].

In the KS model, the gas density and temperature profiles are written by

ρgas(x) = ρgas(0)ygas(x), (4.3)

Tgas(x) = Tgas(0)y
γ−1
gas (x), (4.4)

where x is given by x = r/Rvir with the virial radius Rvir, ρgas(0), and Tgas(0) are
the number density and temperature at x = 0, γ is the polytropic index, and ygas is
the shape function of the profile which satisfies ygas(0) = 1. In order to determine
the shape function, ygas, of the gas profile, the equation of hydrostatic equilibrium
must be solved. In this study, we utilize the NFW density profile of DM as outlined
in Ref. [166] and adopted in Ref. [164]. While this profile is widely used, it should
be noted that actual halos hosted by galaxies may exhibit shallower profiles, as re-
viewed in Ref. [167]. Then one can obtain

ygas ≡
{

1 − B
[

1 − ln(1 + x)
x

]}1/(γ−1)

, (4.5)

with

B ≡ 3η−1
0

γ − 1
γ

[
ln(1 + cs)

cs
− 1

1 + cs

]−1

, (4.6)

where η0 is the mass-temperature normalization factor which is defined by

η0 ≡
3kBRvirTgas(0)

GµmpMhalo
, (4.7)



56 Chapter 4. Free-free emission from DM halos

and cs is the concentration parameter. In Eq. (4.7), G is the gravitational constant, µ
represents the mean molecular weight (we set µ = 0.6), and mp is the proton mass.
For the values of η0 and γ, Ref. [165] provides the useful fitting formula as functions
of cs,

η0 ≈ 2.235 + 0.202(cs − 5)− 1.16 × 10−3(cs − 5)2, (4.8)

and

γ = 1.137 + 8.94 × 10−2 ln(cs/5)− 3.68 × 10−3(cs − 5). (4.9)

These functions are valid in range of 0 < cs < 25.
The study in reference [168] has investigated the concentration parameter cs

through the implementation of N-body simulations, spanning from high redshifts
to the present. Based on the findings of these simulations, the authors provide an-
alytic fitting formulae for the concentration parameter cs for DM halos with a mass
of Mhalo & 109M� in the redshift range of 0 < z < 14. We here utilize their results
for the concentration parameter cs. Our investigation confirms that the value of cs
is less than 25 for the range of DM halo masses and redshifts examined in this pa-
per. As such, the fitting formulae presented in Eqs. (4.8) and (4.9) are deemed valid
throughout the remainder of the paper.

With η0 in Eq. (4.7), we can estimate Tgas(0) as

Tgas(0) =2η0

(
µ

0.6

)(
Mhalo

1010h−1M�

)(
Rvir

67h−1kpc

)−1

[eV]. (4.10)

It is noted that the Eq. (4.10) with η0 = 1 shows a value of the virial temperature
of the halo with a mass Mhalo, Tvir(Mhalo). The integration of the density profile
provides ρgas(0) as

ρgas(0) = Mgas

[
4πr3

s

∫ uv

0
ygas(u)u2du

]−1

= 2.63 × 1012M�Mpc−3

×
(

Ωb,0h2

Ωm, 0

)(
Mhalo

1010h−1M�

)(
Rvir

67h−1kpc

)−3

× c3
s

[
y−1

gas(cs)

c2
s (1 + cs)2

] [
ln(1 + cs)−

cs

1 + cs

]−1

,

(4.11)

where Mgas is the total baryonic mass contained in the halo with a mass, Mhalo. Here
we assume that the DM halos can host the baryon gas whose mass is given by

Mgas =
Ωb,0

Ωm,0
Mhalo. (4.12)

The ionization fraction is determined by the equilibrium between the processes
of recombination and ionization via thermal collisions or ultraviolet photons emitted
by galaxies and stars. It is postulated that a majority of DM halos contribute to
free-free radiation after the Epoch of Reionization. Consequently, in this study, we
assume that the ultraviolet radiation from galaxies and stars is sufficient to maintain
ionization within DM halos. Thus we set the ionization fraction, xe, equal to one.
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4.3 Free-free background emission from DM halos

The free-free emission from a DM halo can be computed utilizing the gas profile
described in the previous section, through the use of Eq. (4.1). We then proceed to
evaluate the aggregate intensity of the diffuse free-free background emission, which
is achieved by summing the emission from all DM halos in the universe. In order
to determine this global intensity, it is beneficial to compute the average intensity of
free-free emission from an individual halo with mass Mhalo at a redshift z,

Iind
ν (z, Mhalo) =

∫
Vhalo

εff
ν dV

4πShalo
, (4.13)

where Vhalo and Shalo is the physical volume and cross section on the sky for the DM
halo, Vhalo = 4πR3

vir/3 and Shalo = πR2
vir, respectively. It is noteworthy that the

optically thin approximation is adopted to derive Eq. (4.13), owing to the negligible
nature of free-free absorption in our scenario.

We now consider a redshift shell located at redshift z, with a width of dz. The
free-free emission contribution from the DM halos within this redshift shell is repre-
sented by

dIff
ν (z) = dz

dVcom

dz

∫
Mmin

dMhalo
Ωhalo

4π
Iind
ν

dncom
halo

dMhalo
, (4.14)

where dncom
halo/dMhalo is the comoving mass function of DM halos, Vcom is the comov-

ing volume, and Ωhalo(z, zf, Mhalo) is the solid angle of a DM halo given by Ωhalo =
π((1 + z)Rvir)2/χ2 with the comoving distance χ to a redshift z. In Eq. (4.14), we
set the DM minimum mass Mmin to the Jeans mass with the background baryon
temperature Tb,bg. Since we are interested in the redshifts after the epoch of reion-
ization, we take Tb,bg ∼ 104 K [169]–[173]. For DM halos with masses below Mmin,
the baryonic gas is unable to collapse during their formation, and these halos can
only retain a relatively small amount of baryonic gas through accretion. As such, we
disregard the contribution of these low-mass DM halos. Finally, the result of the red-
shift integration yields the total global intensity at an observed frequency νobs from
DM halos,

Iobs(νobs) =
∫ ∞

0
dz

1
(1 + z)3

dIff
νem

(z, Mhalo)

dz
, (4.15)

where νem is νem = (1 + z)νobs and the factor (1 + z)−3 is the redshift effect for the
intensity.

The result of Eq.(4.15) is depicted in Fig.4.1. In order to obtain this result, we
adopt the Press-Schechter mass function, as examined in Sec. 2.10.3, utilizing the
cosmological parameter set derived from the Planck best-fit. It may be informative
to express the intensity in terms of the brightness temperature, Tb,ν. In the Rayleigh-
Jeans limit, the brightness temperature is related to the intensity through

Tb,ν =
c2

2ν2
obs

Iobs ' 0.32
(

Iobs

1 Jy/str

)( νobs

10 GHz

)−2
[µK]. (4.16)

Consequently, while the intensity of free-free signals remains relatively constant
across frequency, the brightness temperature of the free-free signal is inversely pro-
portional to ν−2. The strength of the intensity is highly dependent on the gas profile
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FIGURE 4.1: The figure depicts the intensity of the global free-free
emission from DM halos as a function of frequency, measured in
GHz. The solid blue line represents the global intensity for the KS
model, while the orange dashed line corresponds to the intensity for
the homogeneous gas model, as estimated by Eq. (4.15). The dark
gray-shaded region represents the frequencies excluded by the all-
sky mean intensity observed by Planck, and the light gray-shaded
region represents the frequencies excluded by the high galactic lati-

tude mean intensity observed by the Planck satellite.

model adopted for DM halos, in this study we use the KS model discussed in Sec.4.2.
To showcase the effect of the gas profile, we also calculate the intensity using a homo-
geneous gas model, where ngas = 200ngas,IGM with the background IGM gas number
density ngas,IGM and Thalo = Tvir(Mhalo), and plot the intensity as an orange dashed
line in Fig. 4.1.

The clumpiness serves as a useful metric to demonstrate the influence of the gas
profile model on the free-free emission and is quantified as

C(z) ≡
∫

dMhalo
∫

Vhalo
dVn2

e(r, Mhalo)
dncom

halo
dMhalo

n̄2
e,bg

, (4.17)

where the radial electron number density in an individual halo, ne(r, Mhalo), is pro-
portional to the gas density, so that ne(r, Mhalo) = xengas, and the mean value of
the free electron number density in the IGM is denoted by n̄2

e,bg. The clumpiness of
both models are depicted in Fig. 4.2, revealing that the clumpiness in the KS model is
roughly ten times greater than in the homogeneous model. However, this increase in
clumpiness does not result in a corresponding amplification of the free-free intensity
in the KS model, as the gas temperature in DM halos also follows a profile, which
dilutes the enhancement from clumpiness, as indicated in Eq. (4.1). It is important
to note that the homogeneous model represents the minimum possible intensity of
free-free emission from DM halos, and as such, Fig. 4.1 illustrates that differences in
the gas profile can modify the intensity by a factor of a few.
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FIGURE 4.2: The redshift dependence of the clumping factor in
Eq. (4.17). The blue solid and orange dashed lines are for the KS

model and the homogeneous gas model, respectively.

The free-free emission at CMB frequencies has been extensively studied as a fore-
ground of the CMB. In Fig. 4.1, we plot the all-sky mean free-free intensity pro-
vided by the Planck collaboration and the one at high galactic latitudes reported in
Ref. [174]. The current observed signal, even at high galactic latitudes, is ten times
larger than our prediction based on the Planck best-fit parameters. In the observed
free-free signals, the cosmological contribution has yet to be identified, although it is
generally believed that the majority of the observed free-free signals have a Galactic
origin. As predicted in this study, further investigations to identify the cosmologi-
cal contributions are necessary, such as the removal of Galactic signals, the analysis
of statistical anisotropy in the signal, and cross-correlation with other cosmological
observations.

4.3.1 Mass and redshift distribution

The free-free signals calculated above are the sum of the contribution from all DM
halos distributed across a wide range of masses and redshifts. It is of interest to in-
vestigate the mass and redshift contributions to the global intensity. The halo mass
distribution of Iobs at νobs = 70 GHz is illustrated in Fig. 4.3. The figure clearly
demonstrates that the dominant contribution comes from relatively low-mass ha-
los around Mhalo ∼ 1010M�. The monotonic decrease at large masses is due to the
shape of the halo mass function; as the DM mass increases, the number density of
DM halos decreases, resulting in a decrease in the intensity contribution. The cut-
off on the lower mass side is due to the Jeans mass. Therefore, the majority of the
free-free emission signals originate from DM halos around the Jeans mass scale. The
concentration parameter also varies with mass, with lower mass halos having higher
concentration parameters and a resultant enhanced signal. However, we found that
the mass distributions of the signals for both the KS and the homogeneous gas mod-
els are almost identical. This is because the contribution from the halo mass function



60 Chapter 4. Free-free emission from DM halos

1010 1012 1014

M [h 1 M ]
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

dl
nI

ob
s/d

ln
M

KS model
homogeneous

FIGURE 4.3: Mass distribution of the global free-free emission from
DM halos. The blue solid and orange dashed lines are for the KS

model and the homogeneous gas model, respectively.

is much greater than that from the concentration parameters.
In the same manner, as Fig.4.3, we also plot the redshift distribution for these

two models. The redshift distribution reflects the history of the formation efficiency
of DM halos, particularly for halos with Mpeak ∼ 1010M�, which corresponds to
the peak in Fig.4.3. Specifically, the peak feature occurs at redshift zpeak ∼ 3 when
σ(Mpeak, zpeak)/δc ∼ 1. The redshift distribution of DM halos differs from the mass
distribution, as the evolution of the concentration parameter has a significant im-
pact. Figure 10 in Ref. [168] demonstrates that for halos with masses near Mhalo ∼
Mpeak, the concentration parameter increases with decreasing redshift. Consequently,
the redshift distribution for the KS model is shifted towards lower redshifts com-
pared to the homogeneous model.

Given the redshift dependence, it is proposed that redshift tomographic informa-
tion on the global signals of free-free emission could be obtained through techniques
such as cross-correlation analysis with 21-cm line intensity. This information could
provide insights into the formation of small-scale structure in the Universe and the
gas profile in low-mass halos.

4.4 Statistical Anisotropy of the free-free emission from DM
halos

In this section, we examine the anisotropy in the free-free emission caused by DM
halos. The anisotropy of the cosmic free-free signals is generated by the clustering
of DM halos and the Poisson contribution to their number density. The degree of
anisotropy is quantified through the evaluation of the angular power spectrum. To
calculate the angular power spectrum, we utilize the halo formalism outlined in
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FIGURE 4.4: Redshift distribution of the global free-free emission
from DM halos. The blue solid line is for the KS model, and the or-

ange dashed line is for the homogeneous gas model.

Ref. [175]. The resulting power spectrum is comprised of two distinct components,

Cff
` = C1h

` + C2h
` . (4.18)

Here C1h
` is the “one-halo” term describing the Poisson contribution, and C2h

` is the
“two-halo” term describing the clustering contribution. With the limber approxima-
tion, they can be written by [176], [177]

C1h
` =

∫ ∞

0
dz

d2V
dzdΩ

∫
dMhalo

dncom
halo

dMhalo

∣∣ Ĩ`(z)∣∣2 , (4.19)

and

C2h
` ≈

∫ ∞

0
dz

d2V
dzdΩ

P
(

`

χ(z)
, z
) ∣∣∣∣∫ dMhalo Ψ̃(Mhalo, z)

∣∣∣∣2 , (4.20)

where P (k, z) is the conventional matter power spectrum at the redshift z. In Eq. (4.20),
Ψ̃ is defined as

Ψ̃ ≡
dncom

halo
dMhalo

Ĩ`(Mhalo, z)b(Mhalo, z), (4.21)

where Ĩ` is the 2D Fourier modes of the intensity, and b is the halo bias which we
employ in Ref. [94].

Since our gas model is spherically symmetric, the 2D Fourier modes of the inten-
sity are calculated by

Ĩ` =
1

d2
A

∫
dRR2εff

ν (R)
sin(`R/dA)

`R/dA
, (4.22)
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where R is the proper radial distance from the center of the halo, and dA = dA(z) is
the proper angular diameter distance.

We computed the angular power spectrum of the free-free emission in the KS
model, D` ≈ `2/2πCff

` , as illustrated in Figure 4.5. The frequency was set to νobs =
10[GHz] for the calculation of the angular power spectrum. The blue dotted line
in the figure represents the one-halo term contribution, as outlined in Eq.(4.19), and
the red dashed-dotted line represents the two-halo term, as outlined in Eq.(4.20). The
total angular spectrum is represented by the solid black line. As seen in the figure,
on large scales, the one- and two-halo terms contribute equally to the anisotropy.
However, on small scales (` & 103), the dominant contribution of the anisotropy
comes from the one-halo term rather than the two-halo term. It is worth noting
that the CMB and radio frequency range of O(1 − 100)GHz is ideal for observing
not only CMB but also free-free emissions. Therefore, to detect the free-free emission
anisotropy from standard DM halos, it is necessary to be able to observe fluctuations
at a level of at least 1Jy/str on angular scales of 0.1 deg to 0.01 deg in this frequency
range. Although the Planck satellite and also future observations for CMB at a fre-
quency level of O(100)GHz, e.g., CMB-S4 do not have the sensitivity, it would be
achieved by future radio observations at a frequency level of O(10)GHz such as
SKA-mid project.

Let us here briefly mention the sensitivity of the SKA observation, especially
SKA1-mid project. According to the Ref. [155], the interferometer’s noise level is
expressed in terms of the brightness temperature as

δTN(λ) =
λ2/θ2

Ae

Tsys√
∆νobstobs

, (4.23)

where θ is the beam width, ∆νobs is the width of frequency bands, Tsys is the system
temperature, Ae is the effective collecting area, and tobs is the total observation time.
The system temperature can be expressed as a sum of two components, namely the
instrumental noise temperature Tins and the sky temperature Tsky, as

Tsys = Tins + Tsky. (4.24)

In the SKA1-mid project, the performance is expected to be Ae ≈ 5× 104m2, min(∆νobs) =
3MHz, and Tins = 30K. Then we set Ae ≈ 5× 104m2 and Tins = 30K [178]. As we are
now focused on the continuous-spectrum emission, there is no need to establish a
narrow frequency bandwidth. Here we are interested in e.g. 10GHz as the observa-
tion frequency. Thus we set ∆νobs) = 1GHz. For the system temperature, we choose
to use the temperature of the sky at high Galactic latitude, where the foreground
emission exhibits its minimum. This sky temperature in the region is approximately
computed to be

Tsky ∼ 180
(

180MHz
ν

)2.6

K. (4.25)

There exists a difference in the frequency dependence between the instrumental
noise temperature and the sky temperature. At frequencies lower than 150MHz,
the noise is dominated by the sky temperature, and the resultant noise brightness
temperature can be approximately expressed as

δTN(ν) '7.36
(

105 m2

Ae

)(
1′

θ

)2 (1MHz
∆νobs

100hr
tobs

)1/2 (1420MHz
νobs

)4.6

µK. (4.26)
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On the other hand, at higher frequencies where we are interested in, the instrumental
noise becomes the primary contributor. Thus the resultant noise brightness temper-
ature can be approximately written as

δTN(ν) '0.03
(

Tins

30 K

)(
105 m2

Ae

)(
1′

θ

)2 (1GHz
∆νobs

1000hr
tobs

)1/2 (10GHz
νobs

)2.0

µK.

(4.27)

To make a comparison between the noise level and the results depicted in Fig. 4.5,
it is necessary to convert the energy unit of the noise brightness temperature from ¯K
to Jy/str. By utilizing Eq.(4.16) and assuming an observation time of tobs = 1000hr
and an angular resolution of θ = 0.1deg, the estimated noise brightness temperature
of the SKA1-mid at 10GHz can be approximated as

δTN(10GHz) ≈ 0.01Jy/str, (4.28)

which meets the minimum sensitivity of 1Jy/str on angular scales of 0.1 deg required
to detect the anisotropy of free-free emission from standard DM halos.
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FIGURE 4.5: Angular power spectrum of the cosmological free-free
emission induced by DM halos. The blue dotted line shows the one-
halo term in Eq. (4.19), the red dash-dot line represents the two-halo

term in Eq. (4.20), and the black solid line is the total.

4.4.1 Mass and redshift distribution

In this section, we investigate the mass and redshift distribution in the anisotropy of
the cosmological free-free emission. We begin by considering the mass distribution
of the one-halo term. This distribution can be evaluated by

d ln C1h
`

d ln Mhalo
≡

Mhalo
∫

dz dV
dz

dncom
halo(Mhalo,z)

dMhalo

∣∣ Ĩ`(Mhalo, z)
∣∣2∫

dz dV
dz

∫
dMhalo

dncom
halo(Mhalo,z)

dMhalo

∣∣ Ĩ`(Mhalo, z)
∣∣2 . (4.29)
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Figure 4.6 illustrates the mass distribution for different angular scales. As the ` mode
becomes small, the peak location of the contribution shifts to larger-mass halos. As
previously discussed, small-mass halos produce the dominant contribution to the
overall intensity. However, in the anisotropy mass distribution, the contribution of
small-mass halos to small ` values is proportionally suppressed by `2 due to the
Poisson contribution. As a result, the large-mass halo profile structure cannot be
relatively neglected on large scales when compared to the small-mass halo contribu-
tions.

Subsequently, we examine the redshift contribution. The redshift distributions
are obtained through

d ln C1h
`

d ln z
≡

z dV
dz

∫
dMhalo

dncom
halo(Mhalo,z)

dMhalo

∣∣ Ĩ`(Mhalo, z)
∣∣2∫

dz dV
dz

∫
dMhalo

dncom
halo(Mhalo,z)

dMhalo

∣∣ Ĩ`(Mhalo, z)
∣∣2 , (4.30)

and

d ln C2h
`

d ln z
≡

z dV
dz P

(
`

χ(z)

) ∣∣∫ dMhaloΨ̃(Mhalo, z)
∣∣2∫

dz dV
dz P

(
`

χ(z)

) ∣∣∫ dMhaloΨ̃(Mhalo, z)
∣∣2 . (4.31)

Figures 4.7 and 4.8 depict the redshift distribution for the one- and two-halo
terms, respectively. The peak location of the one-halo term exhibits a dependence
on ` modes, shifting towards lower redshifts as ` decreases. This is due to the signif-
icant role of the apparent size of DM halos, as conveyed through I`. As demonstrated
in the mass contribution of the one-halo term in Fig.4.6, the majority of contributions
stem from small-mass halos in the form of Poisson contributions. On small ` modes,
the larger apparent angle size of the DM halos results in a weaker suppression of
Poisson noise, as the suppression is proportional to `/`3

halo, where `halo corresponds
to the apparent angular size of halos. Thus, as the ` mode decreases, the peak lo-
cation shifts towards lower redshifts due to the presence of more substantial DM
halos at lower redshifts. Conversely, the two-halo term displays a sharp peak at a
constant redshift, z ∼ 3, for all ` modes. This is a result of the strong dependence
of the two-halo term on the abundance of DM halos with Mhalo ∼ 1010M�, as ex-
pressed through C`2h ∝ (dnhalo/dMhalo)

2. These halos actively form at z ∼ 3 and
thus contribute significantly to the two-halo term at this redshift.

4.5 Cosmological application: ns and rns

As previously discussed in sections accompanied by Figs 4.3 and 4.6, the majority
of the global signal and anisotropy of free-free emission arises from small-mass DM
halos whose mass corresponds to the Jeans scale. This implies that the observation
of the cosmological free-free signal may serve as an effective tool for probing the
abundance of such DM halos. The examination of the abundance of small-mass
DM halos is crucial for studying the statistics of primordial curvature perturbations,
particularly on small scales. In this section, we investigate the dependence of free-
free signals on the statistics of primordial curvature perturbations.

The statistical nature of primordial curvature perturbations can be described
through the dimensionless primordial curvature power spectrum, Pζ. To character-
ize the k-dependence, the spectral index, ns, and the running, rns, are often utilized
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FIGURE 4.6: The mass distribution of the one-halo term of the free-
free emission anisotropy that is induced the distribution of DM halos,
as presented in Eq. (4.29). The coloration represents the magnitude of

the anisotropy on smaller and larger angular scales, respectively.
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FIGURE 4.7: The redshift distribution of the one-halo term of the free-
free emission anisotropy that is induced the distribution of DM halos,
as presented in Eq. (4.30). The coloration represents the magnitude of

the anisotropy on smaller and larger angular scales, respectively.
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1
2

rns ln
(

k
kpivot

)
,

(4.32)

where kpivot is the pivot scale given in kpivot = 0.05Mpc−1.
According to the latest Planck paper, the spectral index and the running are eval-

uated as

ns = 0.9659 ± 0.0040 (69%CL),
rns = −0.0041 ± 0.0067 (69%CL).

(4.33)

In this study, we establish six distinct parameter combinations, (ns, rns), as out-
lined in Table 4.1, based on Eq. (4.33), to investigate the dependency of the cosmo-
logical free-free signal on the spectral index. The first three models (columns I-III)
are non-running models, yet they feature the best-fit value of the spectral index, as
well as the maximum values within the 1σ- and 2σ-regions. The latter three mod-
els (columns IV-VI), in addition to the tilts, also comprise the running of the best-fit
value and the 1σ- and 2σ-maximum values for the running, respectively.1

Figure 4.9 illustrates the global signals with six distinct parameter sets. Although
the frequency dependences among the six parameter sets are consistent, the ampli-
tudes differ. As the spectrum approaches a blue tilt, the signal amplitude increases,

1It is noteworthy that in the Planck analysis, the estimated value from the cosmological model with
running and the one without running should be distinguished. However, in this study, we refer to the
value estimated by the cosmological model incorporating the running index as the best-fit value, even
in our model without running.
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I II III IV V VI
ns 0.9659 0.9699 0.9739 0.9659 0.9699 0.9739
rns 0 0 0 -0.0041 0.0026 0.0093

TABLE 4.1: Parameter sets

owing to the enhancement of the abundance of small-mass DM halos, which pri-
marily contribute to the free-free signals. The impact of the running parameter rns is
particularly pronounced. Even within the parameter set that is consistent with the
Planck data, the amplitude of the free-free signal would increase by approximately
12%. This implies that a minimum sensitivity of ∼ 0.1Jy/str is required to detect the
impact of the spectral index and running on the free-free emission anisotropy from
standard DM halos. This requirement can be verified by examining Eq. (4.28) and
assuming tobs = 1000hr and θ = 0.1deg.
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FIGURE 4.9: The global signals of halos’ free-free emission with the
six parameter sets are summarized in Table. 4.1.

The anisotropies of the free-free emission for the six distinct parameter sets are
depicted in Fig.4.10. For comparative purposes, we present the ratio of the anisotropy
of free-free emission to the parameter set (I) for the other parameter sets in Fig.4.11.
Consistent with the global signal, the anisotropy signal is augmented in the models
that possess a substantial amplitude of the primordial curvature perturbations on
large k scales. In particular, the enhancement becomes substantial on small scales,
reaching approximately 20% amplification for the parameter set (VI).

It is of value to compare the dependence of this anisotropy on the parameter set
with one of the CMB signals; the primordial temperature anisotropy of the CMB and
the thermal Sunyaev-Zel’dovich effect.

The primordial temperature anisotropy of the CMB is a powerful probe of the
primordial curvature perturbations. This has been demonstrated by the Planck anal-
ysis of the cosmological parameter sets mentioned above. Similarly to Fig. 4.11,
we plot the ratio of the CMB temperature anisotropy for the six parameter sets in
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FIGURE 4.10: The anisotropies of halos’ free-free emission signal with
the six parameter sets are summarized in Table. 4.1.
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FIGURE 4.11: The difference of anisotropies of free-free emission by
halos with the six parameter sets summarized in Table. 4.1. We nor-

malized them by the parameter set (I), (ns, rns) = (0.9659, 0).
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Fig. 4.12. As the scale deviates from the pivot scale of ` ∼ 1000, the deviation of
the ratio from unity increases. For instance, the signal enhancement reaches a max-
imum of ∼ 1% among the six sets of parameters on small scales, ` ∼ 3000. It is
anticipated that the deviation will become substantial on even smaller scales. How-
ever, these smaller scales are subject to substantial damping of the primordial tem-
perature anisotropies due to the Silk effect, making them challenging to measure.
As a result, it is difficult to explore small-scale primordial curvature perturbations
through the examination of primordial temperature perturbations.
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FIGURE 4.12: The difference of CMB temperature anisotropies with
the six parameter sets summarized in Table. 4.1. We normalized them

by the parameter set (I), (ns, rns) = (0.9659, 0).

Next, we examine the thermal Sunyaev-Zel’dovich (SZ) effect. The thermal SZ
effect is the inverse Compton scattering of CMB photons caused by hot electrons in-
side DM halos. This leads to an increase in the brightness temperature of the CMB
photons. As a result, CMB temperature anisotropy is produced, following the dis-
tribution of DM halos in the sky. Therefore, the SZ effect temperature anisotropy is
sensitive to the abundance of DM halos. Using the same gas model as explained in
Sec.4.3, we calculate the thermal SZ effect temperature anisotropy and investigate
the signal dependence on the six parameter sets. In Fig. 4.13, we plot them as the
ratio of the thermal SZ signals, similar to Fig. 4.11.

In reference to the thermal SZ effect, the abundance of DM halos with masses
greater than 1013M� as described in Ref. [165] influences the angular power spec-
trum. The variance of these halos is not highly sensitive to the spectral index and
running because the scale in question is close to the pivot scale defined in Eq. (4.32).
Thus, the signal’s dependence on the parameter set is limited. Nonetheless, on
smaller scales (` & 103), the internal structure of such massive DM halos impacts the
thermal SZ anisotropy. The concentration parameter, which influences the internal
structure, depends on the spectral index and running in our model, thus increasing
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the dependence on the parameter set. Despite this increase, the maximum difference
remains at ∼ 15% at the smallest scale (` ∼ 105) in Fig. 4.13.

Compared to these CMB observations that are sensitive to the primordial curva-
ture perturbations, the free-free signals exhibit a stronger dependence on the spectral
index and the running. This is because the majority of the free-free signals stem from
DM halos with smaller masses, to which other observations are not as sensitive. As
a result, these findings suggest that observations of free-free emission have the po-
tential to be a valuable tool for probing the small-scale primordial perturbations,
particularly the spectral index and the running.
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FIGURE 4.13: The difference of anisotropies of CMB temperature in-
duced by Compton scattering with the six parameter sets summa-
rized in Table. 4.1. We normalized them by the parameter set (I),

(ns, rns) = (0.9659, 0).

4.6 Conclusion

In this study, we have explored the cosmological free-free emission produced by DM
halos in the ΛCDM paradigm. Utilizing an analytic gas model that is compatible
with the hydrostatic equilibrium within a DM NFW profile, we have estimated the
free-free emission from individual halos. The global signal and anisotropy have been
then calculated, taking into account the effects of cosmological structure formation
as described in Sec. 2.10.3.

The obtained amplitude of the global free-free emission spectrum is approxi-
mately 10 Jy/str and is largely uniform across the CMB and radio frequency do-
mains. As for anisotropy, the Poisson contribution dominates, resulting in an angu-
lar power spectrum proportional to the square of the multipole. However, on large
scales, ` < 1000, the clustering contribution becomes comparable or greater than the
Poisson contribution. Consequently, the anisotropy of cosmological free-free emis-
sion on large scales reflects matter density fluctuations. We have also calculated the
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above quantities for the constant gas profile model for checking the gas-model de-
pendency. We have found that the amplitude of the free-free signal becomes 5 Jy/str
which would be the lowest signal.

In addition, we have investigated the mass distribution of the free-free signals.
We have demonstrated that the majority of the contribution arises from DM halos
with a mass of approximately 1011M� for both the global signal and the anisotropy.
This implies that the measurement of cosmological free-free signals has the potential
to probe the abundance of such small-mass DM halos or the primordial curvature
perturbations on small scales, which are the origin of these halos.

As an application of probing small-scale perturbations in the cosmological con-
text, we assess the sensitivity of the cosmological free-free signal to the spectral index
and the running. The difference in these parameters modifies the amplitude of the
global signal and results in a deviation from the scale dependence with ∝ `2 in the
angular power spectrum. Our results indicate that the free-free signals are altered
by 20 % even in the parameter set consistent with the Planck results. This modifi-
cation is larger than that of the CMB temperature anisotropy induced by the halo
thermal SZ effect, which changes the signal by 15 % for the same parameter set.
Consequently, the measurement of the cosmological free-free signals could provide
a more stringent constraint on the spectral index and the running.

However, the measurement of the cosmological free-free signal poses a signifi-
cant challenge. Although the free-free emission in the sky has been investigated in
the CMB and radio frequency range, the observed free-free emission sky is domi-
nated by signals from the Milky Way Galaxy, which are roughly 100 times larger in
the all-sky average and ten times larger in high galactic latitudes than the cosmo-
logical free-free emission obtained in this paper. As a result, the cosmological free-
free signal cannot be accurately measured without effectively removing the Milky
Way contribution. The future radio observatory, Square Kilometre Array, has suffi-
cient sensitivity to measure cosmological free-free signals. The utilization of cross-
correlation studies can aid in reducing foreground contamination. The clustering
effect of DM halos, due to underlying matter density fluctuations, can make a non-
negligible contribution to the cosmological free-free emission anisotropy on large
scales. Therefore, cross-correlating with other cosmological probes of matter den-
sity fluctuations, including ongoing and upcoming deep galaxy surveys such as the
Prime Focus Spectrograph or future 21-cm intensity maps around z ∼ 1, could be
useful in revealing cosmological free-free anisotropy on large scales.

The theoretical uncertainty of the gas profile within DM halos also poses a signifi-
cant challenge in probing the abundance of these halos and the primordial curvature
perturbations. Calibration using other cosmological observations, such as X-ray and
SZ cluster observations, may prove useful, despite the fact that the free-free emis-
sion signals originate from smaller DM halos than those observed in other contexts.
In this study, we demonstrate that differences in gas profile models primarily affect
the overall amplitude of anisotropy, rather than its scale dependence, which remains
proportional to `2. Conversely, variations in the scale dependence of primordial cur-
vature perturbations, including the spectral index and running, do affect the scale
dependence. Thus, a detailed measurement of the scale dependence in anisotropy
can aid in resolving the degeneracy between uncertainties in the gas profile model
and the scale dependence of primordial curvature perturbations.
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Chapter 5

The 21-cm signals from UCMHs

Through this chapter, we demonstrate that by measuring fluctuations in the 21-cm
signal prior to the epoch of reionization, we can impose constraints on the abun-
dance of ultracompact minihaloes (UCMHs). We calculate the 21-cm signal emitted
by UCMHs and show that UCMHs enhance the 21-cm fluctuations. Furthermore,
we examine the constraints on UCMH abundance and small-scale curvature per-
turbations. Our findings indicate that the upcoming 21-cm observation, the Square
Kilometre Array (SKA), will impose constraints on the amplitude of the primordial
curvature power spectrum, Aζ . 10−6, on the range 100 Mpc−1 . k . 1000 Mpc−1.
Although this constraint is not as strong as the one derived from the non-detection
of gamma rays caused by dark matter (DM) annihilation in UCMHs, it is significant
because it is independent of the DM particle model.

5.1 Introduction

Recent advancements in cosmological observations have allowed us to gain a deeper
understanding of the origins of galaxies, galaxy clusters, and large-scale structures.
The highly precise measurement of anisotropies in the CMB has revealed that the
statistical properties of these seeds can be expressed in the form of an almost scale-
invariant power spectrum of curvature perturbations with an amplitude Aζ ∼ 10−9 [179],
which is in agreement with predictions made by the inflationary paradigm [180],
[181]. The observations of the Lyman-alpha forest have further supported this, show-
ing that this trend holds true up to a wave number of k ∼ 1Mpc−1 [148], [182]. How-
ever, understanding perturbations on scales smaller than 1 Mpc remains a significant
challenge. Currently, the upper limits on the amplitude of small-scale perturbations
have been obtained through constraints on CMB distortions [16], [18], the abundance
of primordial black holes [183], and gravitational waves. However, these constraints
are weaker than those on larger scales [184].

Ultracompact minihalos (UCMHs) have gained attention as a potential probe of
small-scale perturbations in the universe. The formation of UCMHs is thought to
be linked to the presence of excess power on small scales in the primordial power
spectrum [71]. These halos can collapse and form well before the standard structure
formation history, as early as z ∼ 1000. UCMHs are characterized by their compact,
high-density profiles and may be formed via radial infalling in high redshifts [71].
Simulations [133] have shown that a large amplitude on small scales leads to the
formation of early, high-density halos. Recent studies [72], [73] have also shown that
these halos have a Moore profile, with a steep inner cusp (ρ ∝ r−3/2) that is steeper
than the NFW profile [135].

The absence of gamma-ray emissions resulting from the annihilation of weakly
interacting massive particles (WIMPs) [137]–[139] in UCMHs has provided con-
straints on the abundance of these structures, as well as on the small-scale curvature
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power spectrum, with Aζ < 10−7 for 10 Mpc−1 < k < 108 Mpc−1 [72]–[74], [76]–
[78], [185]. Similarly, the lack of detection of neutrinos from WIMP annihilations
has also yielded similar constraints [78], [186]. Additionally, measurements of the
Thomson scattering optical depth of CMB photons can be used to infer the abun-
dance of UCMHs, as the gamma-rays emitted by these structures can contribute to
the photon budget required for cosmic reionization [142]–[145]. Furthermore, ob-
servations of gravitational lensing by UCMHs can also be utilized to constrain their
abundance [77], [141].

The objective of this study is to demonstrate that upcoming 21-cm observations
can provide constraints on the ultracompact minihalo (UCMH) abundance and small-
scale curvature power spectrum, without the need for a specific dark matter (DM)
particle model. The measurement of the 21-cm line emitted by the hyperfine tran-
sition of neutral hydrogen in the high-redshift universe is expected to be an invalu-
able tool for investigating the formation of structures during the dark ages to the
epoch of reionization (EoR) [155]. The amplitude of the signal is closely linked to
the spatial distribution of neutral hydrogen in the intergalactic medium (IGM) and
collapsed objects. 21-cm observations can probe IGM matter fluctuations on much
smaller scales than the Silk scales[156]. Minihalos, which formed during the early
stages of the hierarchical structure formation history, can also be a potential source
of 21-cm signals in high redshifts [151], [187]. Recent research has demonstrated that
future measurements of 21-cm signals from minihalos can provide detailed insights
into the statistical properties of small-scale density fluctuations, such as the running
spectrum and non-Gaussianity [188]–[190]. Additionally, it has been proposed that
21-cm observations can serve as an indirect method for constraining the abundance
of primordial black holes [191], [192].

Currently, several observation projects are underway to detect 21-cm fluctuations
around and prior to the EoR, such as the Low Frequency Array [193], the Giant
Meterwave Radio Telescope [194], the Murchison Widefield Array [195], [196], and
the Precision Array for probing the EoR [197]. Despite the challenges associated
with measuring 21-cm fluctuations, these projects have only yielded upper limits
thus far [198]–[202]. However, it is anticipated that the high sensitivity of the future
instrument, the Square Kilometre Array (SKA), will allow for the detection of 21-cm
fluctuations up to a redshift of z ∼ 28 [203].

In the following sections, we will explore the potential for the SKA to detect
21-cm fluctuations originating from UCMHs. By constructing a baryon gas model
within UCMHs and evaluating the resulting 21-cm fluctuations, we will assess the
detectability of these fluctuations by the SKA and discuss the potential for con-
straints on both UCMH abundance and small-scale primordial curvature perturba-
tions.

The paper is organized as follows: In Section 5.2, we provide a brief overview
of UCMHs. In Section 5.3, we construct a baryon gas model within UCMHs and
evaluate the 21-cm signal from an individual UCMH. In Section 5.4, we calculate the
21-cm fluctuations resulting from the distribution of UCMHs, and we also consider
the detectability of these fluctuations by the SKA. Based on this analysis, we dis-
cuss the potential constraints on UCMHs and primordial curvature perturbations in
Section 5.5. Finally, we provide a conclusion in Section 5.5.
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5.2 UCMHs with the spiked matter spectrum

Small-scale matter density fluctuations with larger amplitude can be seeds of UCMHs.
In this section, we begin with the brief review of UCMHs with the spiky shape power
spectrum, according to Delos, Erickcek, Bailey, et al. [72], [73].

In addition to the nearly scale-invariant spectrum, we consider the spike shape of
the primordial curvature power spectrum on a small scale, which enters the horizon
during the radiation-dominated (RD) era. This can be represented by the equation:

Pζ(k) = Aζksδ(k − ks), (5.1)

where Aζ is the amplitude of the spike shape and ks is the wave number of the
spike. During the RD era, DM fluctuations can grow logarithmically. Here, for sim-
plicity, we adopt the Dirac delta function to represent the additional spike-shaped
spectrum. Then, after the radiation-matter equality, they evolve proportionally to
the scale factor. When the density amplitude in an overdensity region reaches the
critical value for collapse, the overdensity region can collapse into a DM halo, as per
the standard hierarchical structure formation.

However, when the amplitude of the spike in the primordial curvature power
spectrum is significantly larger than that of the standard scale-invariant spectrum,
the properties of the resulting DM halos differ from those of typical DM halos. Nu-
merical simulations by Delos, Erickcek, Bailey, et al. [73] have demonstrated that
a spike spectrum can lead to the formation of isolated, compact DM halos known
as UCMHs. The resultant DM density profile in a UCMH is represented by a self-
similar form as

ρdm(r) = ρsydm

(
r
rs

)
, (5.2)

where r is the radial distance from the centre, ρs is the scale density and rs are the
scale radius. The non-dimensional density profile ydm is given by

ydm(x) =
1

xα(1 + x)3−α
, (5.3)

with defining x ≡ r/rs. The simulations demonstrated that the index α for UCMHs
is α = 1.5, that is the Moore profile [134]. It is known that the hierarchical structure
formation yields the NFW profile [135] whose index corresponds to α = 1. There-
fore, UCMHs have a steeper DM profile in the inner region.

Delos, Erickcek, Bailey, et al. [73] also showed that ρs and rs are related to the
UCMH forming redshift zc and the wave number of the spike as

ρs = 30(1 + zc)
3Ωm,0ρcrit,0 (5.4)

rs = 0.7[(1 + zc)ks]
−1, (5.5)

where ρcrit,0 is the critical density at present.
For the UCMH (virial) mass, Mvir, we adopt the mass enclosed within r200,

Mvir = 4πρsr3
s m(uν), (5.6)

m(x) ≡
∫ x

0
u2ydm(u)du. (5.7)

where uv is uv ≡ r200/rs and the scale r200 is defined as the scale inside which the
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averaged DM density is 200 times the mean DM density of the Universe. We found
that the UCMH mass is related to zc and ks as in

Mvir ∼ 4 × 103 M� ×
(

ks

103 Mpc−1

)−3

ln
(

1 + zc

1 + z

)
. (5.8)

Therefore, the virial mass of a UCMH continues to grow logarithmically even
after its formation. This growth corresponds to the late-time accretion on the outer
region as suggested by simulations [73]. The number density of UCMHs can be
evaluated using the peak theory [87], as UCMHs form at the peak locations of the
density fluctuations following the spike-shaped spectrum. As seen in Eq. (2.170), the
differential UCMH number density can be expressed by

dnUCMH

dzc
=

k3
s

1 + zc
h

[
δc

S1/2
mat,0D(zc)

]
, (5.9)

where δc = 1.686 is the critical density contrast for collapse, and Smat,0 is the variance
of matter density contrast at present. As we explained in Sec. 3.4.1, we can estimate
this variance and the growth rate through S1/2

mat,0D(z) = A1/2
mat,0/(1+ zc) using Amat,0

defined in Eq. (3.49) during MD epoch. In Eq. (5.9), h(ν) is the function defined in
Eq. (2.171),

h(ν) =
33/2ν

(2π)2 e−ν2/2 f (ν). (5.10)

with the function f (ν) defined in Eq. (2.161). The abundance of UCMHs, as ex-
pressed through Eq.(5.9), is contingent upon the properties of the spike shape, Aζ
and ks. Consequently, by obtaining a constraint on the abundance of UCMHs, we
can infer limits on the peak-shape spectrum through Eq. (5.9).

5.3 21-cm signal from a single UCMH

In this section, we evaluate the 21-cm signal emitted by a single UCMH. The 21-cm
signal is sensitive to the gas density profile within a UCMH. Therefore, we begin
by deriving the profile of a UCMH under the assumption of hydrostatic equilibrium
with the gravitational potential of the DM profile presented in the previous section.

5.3.1 Baryon gas mass in UCMHs

Unlike DM, baryonic density fluctuations cannot grow prior to the decoupling of
photons. Following the decoupling, baryonic density fluctuations start to evolve,
tracking the evolution of dark matter density fluctuations. However, due to the
resistance of baryonic gas to gravitational collapse, there is a critical scale for collapse
known as the Jeans scale. Therefore, in order to evaluate the baryonic gas mass
within UCMHs, we consider two scenarios based on the spike scale, ks.

When ks is smaller than the Jeans wave number, kJ, baryonic density fluctuations
with ks can grow and collapse, tracking the evolution of dark matter density. There-
fore, for simplicity, we assume that UCMHs can possess baryonic gas in proportion
to the ratio of the cosmological background,

Mgas(z) =
Ωb,0

Ωdm,0
Mvir(z) (for ks < kJ), (5.11)
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where Ωdm,0 is the density parameter of CDM.
On the contrary, if ks exceeds kJ, then the baryon density fluctuations associated

with ks are hindered by their own pressure. Nevertheless, UCMHs can still possess
a substantial amount of baryonic matter through the accretion of baryonic gas. We
calculate the mass of accreted baryonic gas at the redshift z using

Mgas(z) =
∫ zacc

z
dz′

Ṁgas(z′)
(1 + z′)H(z′)

(for ks > kJ), (5.12)

where zacc is the starting redshift of the gas accretion. We set zacc to zacc = min[zc, zdec]
where zdec is the redshift for the decoupling of photons. For the accretion rate, Ṁgas(z),
we adopt the Bondi-Hoyle-Lyttleton accretion [204],

Ṁgas(z) = 4πG2Ωbρcrit(z)M2
vir(z)v

−3
r (z). (5.13)

Here vr is the relative velocity between baryon and DM, vr(z) = 30 kms−1[(1 +
z)/1000] [205]1. Note that, to avoid the over-accretion to UCMHs, we set the upper
limit of the accretion gas mass, Mgas < MvirΩb,0/Ωdm,0.

In Figure 5.1, we plot the ratio of baryonic gas mass to DM mass in UCMHs,
fmass = Mgas/Mvir, at a redshift of z = 20 as a function of the spike-wave number, ks.
The black solid, dashed, and dotted lines represent fmass for UCMHs that collapsed
at zc = 50, 100, and 1000, respectively. For reference, we also plot the Jeans wave
number at z = 20 as a thin blue vertical line. In this work, we adopt the Jeans wave
number as presented in Barkana and Loeb [206].

When the spike-wave number is smaller than kJ, we assume that the baryonic
matter can collapse in tandem with the dark matter. As a result, the gas mass ratio
is fmass = Ωb/Ωdm, as shown in Equation (5.11). Conversely, when ks > kJ, UCMHs
obtain baryonic gas through accretion, with the accretion rate given by Eq. (5.13).
Since the accretion rate is proportional to M2

vir ∝ k−6
s , the baryonic gas mass steeply

declines with increasing ks. Figure 5.1 also demonstrates that a UCMH with a large
zc has a higher gas mass ratio. As UCMH formation occurs at earlier redshifts, the
UCMH undergoes a longer period of accretion, resulting in a larger accreted gas
mass within the UCMH.

5.3.2 Baryon gas density and temperature in UCMHs

Now we evaluate the density and temperature profiles of the baryon gas following
the method of [207], which is based on the hydrostatic equilibrium assumption.

Since the DM profile is expressed in the self-similar form, the gas density profile
of UCMHs, ρgas, would also be the self-similar form as

ρgas(r) = ρgas(0)ygas

(
r
rs

)
, (5.14)

where ygas(x) is the non-dimensional gas profile normalised as ygas(0) = 1. Ap-
plying the polytropic gas model with the polytropic index γ, we can write the gas

1Here, we disregard the impact of the thermal velocity of baryons, as it is known to be smaller than
the relative velocity between baryons and DM [205]. The peak spectrum also results in an additional
relative velocity. Nevertheless, this velocity is dampened by the wave number k. Therefore, we also
choose to omit this contribution.
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FIGURE 5.1: Baryon gas mass ratio to the DM mass, fmass =
Mgas/Mvir, at the redshift z = 20. The solid, dashed and dotted
black lines show the baryon gas mass fraction of the UCMH formed
at zc = 50, 100 and 1000, respectively. We also provide the Jeans wave

number at z = 20 in a vertical blue line.

temperature profile in

Tgas(r) = Tgas(0)y
γ−1
gas

(
r
rs

)
. (5.15)

The assumption of the hydrostatic equilibrium allows us to relate the gas pres-
sure profile to the DM density profile,

ρ−1
gas

dPgas

dr
= −GM(r)

r2 . (5.16)

Here we assume that the gas component does not contribute to the gravitational
potential. To derive the pressure profile, we adopt the equation of the state of an
ideal gas,

Pgas =
kBTgas

µmp
ρgas, (5.17)

where kB is the Boltzmann constant, mp is the proton mass and µ is the mean molec-
ular weight of the gas. Using Eqs. (5.15) and (5.16), ygas can be derived as [208]

yγ−1
gas (x) = 1 − 3η−1

0
γ − 1

γ

uv

m(uv)

∫ x

0
du

m(u)
u2 , (5.18)

where the mass-temperature normalisation factor η0 is expressed as

η0 =
3kBr200Tgas(0)

GµmpMvir
. (5.19)

To obtain the gas profile, it is required to fix η0 and γ. For the determination of
these parameters, we take the assumption that the gas profile traces the DM profile
outside halo core. This condition is satisfied by imposing the slopes of these two
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profiles to match,

s∗ ≡
d ln ρdm(x)

d ln x

∣∣∣∣
x=x∗

=
d ln ρgas(x)

d ln x

∣∣∣∣
x=x∗

, (5.20)

where x∗ is the location outside the core region. As a result, we obtain

γ = 1 − 1
s∗

+
∂ ln[m(x∗)/s∗]

s∗∂ ln x∗
, (5.21)

η0 = 3γ−1
[(

−1
s∗

) [
x−1
∗ m(x∗)

u−1
v m(uv)

]
+ (γ − 1)

uv

m(uv)

∫ x∗

0
du

m(u)
u2

]
, (5.22)

where s∗ is provided from the DM distribution,

s∗ = −
[

α + (3 − α)
x∗

1 + x∗

]
. (5.23)

One can see that η0 is a function of x∗ and γ. It is preferable that η0 does not de-
pend on the location x∗. To satisfy this condition, we impose the following condition,
according to [209],

∂η0

∂x∗
= 0, (5.24)

with setting x∗ = uv. This equation yields

γ =
16u2

v + 20uv + 5
3(1 + 2uv)2 − 2uv

3(1 + 2uv)m(uv)

(
uv

1 + uv

)1/2

, (5.25)

where m(x) is given by

m(x) = 2 ln
(√

x +
√

1 + x
)
− 2
√

x
1 + x

. (5.26)

The final parameter to determine the gas profile is ρgas(0), which we obtain
through

ρgas(0) = Mgas

[
4πr3

s

∫ uv

0
ygas(u)u2du

]−1

, (5.27)

where Mgas is given in Eqs. (5.11) and (5.12).

5.3.3 Brightness temperature

Let us evaluate the 21-cm signal of a single UCMH at a given redshift. We first con-
sider a line of sight that intersects the UCMH at an impact parameter αR, measured
in units of r200, from its center. The brightness temperature along this line of sight is
given by the following equation,

Tb(αR) = TCMB(z)e−τ(αR) +
∫ Rmax

−Rmax

Ts(l)e−τ(αR,R) dτ

dR
dR, (5.28)

where TCMB(z) = TCMB,0(1 + z) with TCMB,0 = 2.725 K, R is the coordinate along the
line of sight, whose origin is set to the center of the UCMH, Ts is the radial profile of
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the spin temperature in the UCMH, as we will discuss later, l represents the radial
distance satisfying l2 = R2 + (αRr200)2 and Rmax is defined as R2

max ≡ r2
200(1 − α2

R).
The optical depth, τ(R), for the frequency at the rest frame of the UCMH, ν, is

calculated from

τ(αR, R) =
3c2A10T∗

32πν2
∗

∫ R

−Rmax

nHI(l)φ(ν, l)
Ts(l)

dR, (5.29)

where T∗ = 0.0681 K, ν∗ = 1440 MHz is the frequency of the 21-cm line in the
rest frame, c is the speed of light, A10 = 2.85 × 10−15s−1 represents the Einstein A
coefficient for the 21-cm transition, and nHI(r) provides the radial profile of neu-
tral hydrogen which we obtain through nHI(r) = (1 − Yp)ρgas/mp with the helium
fraction Yp. Here φ(ν, r) is the line profile at the radial distance r for the rest-frame
frequency ν, which suffers the Doppler broadening due to the thermal velocity of
the gas,

φ(ν, r) =
1

∆ν
√

π
exp

(
− (ν − ν∗)2

∆ν2

)
, (5.30)

where the Doppler width ∆ν is given by

∆ν =
ν∗
c

√
2kBTgas(r)

mH
. (5.31)

In Eq. (5.28), τ(αR) is obtained by τ(αR) = τ(αR, Rmax). Hereafter, we set the
frequency, ν, to the reference frequency, ν∗, such that the observed frequency is
(1 + z)ν∗. The reasoning behind this choice is discussed in Section 5.4.

It is necessary to determine the spin temperature, which is a function of the ratio
of the number densities of the two hyperfine structure levels to calculate the bright-
ness temperature of the 21-cm signal along a line of sight intersecting the UCMH, as
given in Eq.(5.28) using Eq.(5.29). The spin temperature can be calculated using the
expression provided by [210],

T−1
s =

T−1
CMB(z) + xcT−1

gas + xαT−1
α

1 + xc + xα
, (5.32)

where Tα is the colour temperature of Lyα photons, and xc and xα represent the
coupling coefficients for the gas collisions and the Lyα pumping, respectively. In this
work, we set xα = 0, because we assume that there exist no UV and X-ray external
sources. The coupling coefficient for gas collisions is expressed in

xc =
T∗

A10TCMB
CHI, (5.33)

where CHI is the collisional coefficient between HI atoms and we adopt the value
in [211]. In this context, we assume that the gas within UCMHs is entirely neutral,
and thus, we neglect the contribution from the collisions of HI with protons and
electrons. By utilizing Eq. (5.32) in conjunction with the gas radial profile derived
in Section5.3.2, we can compute the radial profile of the spin temperature within
UCMHs for Eqs. (5.28) and (5.29).
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FIGURE 5.2: The 21-cm signal from a single UCMH, which is given
a product of the differential brightness temperature and a geometri-
cal cross section of UCMH, as a function of redshift. We show the
21-cm signal from a single UCMH at the formation redshift zc =
50, 100, 1000 as the solid, dashed and dotted black lines, respectively.

The effective brightness temperature, averaged over the cross-sectional area of a
single UCMH, SUCMH = πr2

200, is given by

Tb,zc =

∫
TbdSUCMH

SUCMH

= 2
∫ 1

0
Tb(αR)αRdαR. (5.34)

We measure the 21-cm signals as the difference between the brightness and the
CMB temperature, called the differential brightness temperature. The differential
brightness temperature for the single UCMH at the redshift z can be calculated from

δTb,zc(z) =
Tb,zc

1 + z
− TCMB(0). (5.35)

In Figure 5.2, we illustrate the evolution of the 21-cm signal emanating from
a single UCMH. The y-axis of the figure represents the product of the differential
brightness temperature and the UCMH cross-section, which corresponds to the to-
tal 21-cm flux emitted by the UCMH. Here, we set ks = 300 Mpc−1, which is smaller
than kJ at z = 10. In this scenario, the signal is observed as an emission on the CMB
frequency spectrum. The strength of the signal is dependent on the baryon gas mass
and temperature within the UCMH. As the redshift decreases, the signal monotoni-
cally increases due to the logarithmic growth of the UCMH’s virial mass as a result of
accretion, as per Eq. (5.8), even with a fixed value of ks. The figure also demonstrates
the dependence of the signal on the collapse redshift, zc, with UCMHs collapsed at
higher redshifts having larger virial masses and, thus, producing stronger signals in
comparison to those collapsed at lower redshifts.

In Figure 5.3, we plot the signal as a function of ks. The black lines represent the
emission signals, while the red ones denote the absorption signal. As ks becomes
larger, UCMHs have smaller gas mass and lower baryon gas temperatures. As a
result, the spin temperature decreases, and the signal shifts from emission to ab-
sorption because the average spin temperature cannot exceed the CMB temperature
in such a low UCMH mass. The figure also illustrates that the signal drastically de-
creases when ks exceeds kJ. This is because the baryons with such ks cannot collapse



82 Chapter 5. The 21-cm signals from UCMHs

𝛿𝑇
!,
# !
×
𝑆 $

%&
'
	[K

⋅k
pc

( ]

FIGURE 5.3: Dependence of the 21-cm signal from a single UCMH
on the spike scale ks. The solid and dashed lines correspond to the
21-cm signal from a single UCMH at zc = 100, 1000, respectively. The

vertical line shows the Jeans wave number at z = 20.

into the UCMH, and the baryon gas mass fraction decreases, as shown in Figure 5.1.

5.4 21-cm fluctuations due to the UCMH clustering

In this section, we evaluate the RMS fluctuations of the differential brightness tem-
perature as the 21-cm signal of UCMHs, as the angular scale of an individual UCMH
in the sky is too small to be resolved by forthcoming 21-cm observations, such as
the SKA. The key observable for UCMHs is the differential brightness temperature
fluctuations due to the number density fluctuation of UCMHs in the observational
beam.

Now we consider the ensemble of UCMHs formed in the redshift from zc,max
to zc,min. Following Iliev, Shapiro, Ferrara, et al. [151], the mean 21-cm differential
brightness temperature from this ensemble at the redshift z is given by

δTb(z) =
c(1 + z)4

ν∗H(z)

∫ zc,max

zc,min

∆νeff(z)δTb,zc(z)SUCMH

dnUCMH

dzc
dzc. (5.36)

Here we set zc,max = 4000 and zc,max = 50, and ∆νeff is the effective linewidth, which
is provided by

∆νeff(z) = [φ(ν∗)(1 + z)]−1 ≈ ν∗
c(1 + z)

√
2πkBTgas(z)

mH
, (5.37)

where Tgas(z) is the volume averaged temperature within an individual UCMH. In
order to determine the mean differential brightness temperature of the 21-cm signal,
we must calculate the total flux integrated over the line profile. To simplify this
calculation, we utilize a rectangular approximation, which has a height obtained by
setting ν = ν∗ in Eq. (5.29) and a width of ∆νeff (for further information, we refer
readers to read Sec. 2 inIliev, Shapiro, Ferrara, et al. [151]).

On large scales, the distribution of UCMHs is homogeneous with a number den-
sity of nUCMH =

∫
dzcdnUCMH/dzc. However, as the scale-invariant fluctuations on
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large scales evolve, the distribution of UCMHs can gravitationally trace these fluc-
tuations, resulting in fluctuations in the number of UCMHs within an observational
beam volume that depend on the matter density fluctuations in the beam. The RMS
fluctuations due to UCMHs can be evaluated by

〈δT2
b〉1/2(z) = βUCMH(z)σp(z)δTb(z), (5.38)

where σp is the RMS fluctuation of the matter density averaged in the observation
beam volume. We adopt the cylinder-shape beam: the diameter and height of the
cylinder-shape beam respectively correspond to the angular resolution, ∆θ, and the
frequency resolution, ∆ν, of the observations. In this configuration, σp is given by

σp(z) =
∫ ∞

0

dk
k
Pδ(k, z)Wcy(k, z), (5.39)

where Pδ(k, z) is the non-dimensional matter power spectrum at the redshift z. For
the matter power spectrum, we use the amplitude σ8 = 0.81 and the spectral in-
dex ns = 0.965. The cylinder-shape beam window function is expressed in

Wcy(k, z) =
16

R2L2

∫ 1

0
dx

sin2(kLx/2)J2
1(kR(1 − x2)1/2)

k4x2(1 − x2)
, (5.40)

where R and L are the comoving radius and height of the cylinder, R = ∆θ(1 +
z)DA(z)/2 and L ≈ (1 + z)2c(∆ν/ν∗)/H(z).

In Eq. (5.39), βUCMH(z) is the bias factor for the UCMH clustering to the matter
density fields. We assume that βUCMH can be obtained by the flux-weighted average
of the linear bias over the different collapse redshifts,

βUCMH(z) =

∫ zc,max
zc,min

bUCMH∆νeff(z)δTb,zc(z)SUCMH
dnUCMH

dzc
dzc∫ zc,max

zc,min
∆νeff(z)δTb,zc(z)SUCMH

dnUCMH
dzc

dzc
, (5.41)

where bUCMH is the linear bias in the peak theory as shown in Eq. (2.172). With the
redshift decreasing, bUCMH is monotonically becomes small.

In the top panel of Fig. 5.4, we illustrate the evolution of the 21-cm fluctuations
of UCMHs as a function of redshift. As the redshift decreases, the fluctuations also
become more pronounced, similar to the single UCMH signal in Fig. 5.2. It is impor-
tant to note that we have not taken into account the impact of the cosmic reionization
process on the fluctuations. During the EoR, the abundance of ionizing photons can
photoevaporate the neutral gas in UCMHs, similar to the case of minihalos [212],
and this can suppress the amplitude of the fluctuations near the EoR (z . 10).

In the top panel of Fig. 5.4, we also demonstrate the dependence of the fluctua-
tions on the amplitude Aζ. An increase in Aζ enhances the fluctuations through two
effects. Firstly, it increases the number density of UCMHs. However, at the scales
and redshifts of interest, the number density is saturated when Aζ > 10−7. Thus
the enhancement through the number density is weak. Secondly, an increase in Aζ

results in the early-time formation of UCMHs. As shown in Fig.5.2, UCMHs that
form at high redshifts provide large signals, which gives the dependency on Aζ as
shown in the top panel of Fig. 5.4.

The bottom panel in Fig. 5.4 shows the dependence on ks for two different Aζ

at z = 20. As the value of ks increases, the signal emitted by individual UCMHs
decreases, and as a result, the RMS fluctuations also decrease. As anticipated, when
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ks exceeds the Jeans wave number, the signal rapidly diminishes, as can be observed
from Figure 5.3.

5.4.1 Detectability with SKA

Several ongoing observations are attempting to detect the 21-cm fluctuation signal
coming from z & 10, e.g., LOFAR, GMRT, MWA, and Paper. Although there has
been no report of the signal detection yet, some observations have provided upper
limits on the 21-cm fluctuations, e.g., δT2

b(k) < (49.0 mK)2 at k ≈ 0.59hMpc−1 at
z = 6.5 by MWA [202] and δT2

b(k) < (79.6 mK)2 at k ≈ 0.053hMpc−1 at z ∼ 10 by
LOFAR [198].

However, the maximum fluctuations produced by UCMHs in our model, δT2
b .

(5 mK)2 at z = 20, are considerably smaller than the sensitivities of current 21-cm
observation instruments. Thus, we are unable to constrain the UCMH abundance
and the spike-shaped power spectrum using current 21-cm fluctuation observations.

The upcoming 21-cm observation, the SKA, is expected to detect and measure
the 21-cm fluctuations at z & 10. In this work, we estimate the detectability of 21-cm
signals from UCMHs using the SKA by taking into account the 21-cm fluctuations
from the IGM and minihalos (MHs), as well as the observational noise of the SKA.

In Fig.5.4, we plot the expected fluctuations due to the IGM + MHs and the noise
of SKA in the blue lines. For more detailed calculations, we refer readers to Ap-
pendixD. We assume that the primary source of noise is the foreground emission of
the sky. Since the foreground has a strong frequency dependence, the noise rapidly
increases as the redshift increases (the observation frequency decreases). In the fre-
quency and angular resolutions of our interest, the noise becomes larger than the
IGM + MH fluctuations above z ∼ 20. It is important to note that we do not take into
account the effects of cosmic reionization, which might enhance the 21-cm fluctua-
tions of the IGM below z ∼ 10 based on the Planck constraint on Thomson scattering
optical depth.

Our analysis involves two free parameters, ks and Aζ that pertain to the spike-
shape spectrum and affect the amplitude of fluctuations. By surveying a range of
(ks, Aζ) parameter sets, we have identified the region in which the 21-cm fluctua-
tions from UCMHs surpass those from the IGM and minihalos (MHs), as well as the
observational noise of the upcoming SKA telescope, at a redshift of z = 20. This
region is depicted in red in Fig. 5.5. In instances where the spike-shape spectrum
generates fluctuations within this red region, the SKA will be able to detect an excess
of 21-cm signals from UCMHs over the expected IGM and MH signals. Conversely,
if the SKA fails to detect such an excess, the delta-shape spectrum within this red
region can be ruled out.

At ks ∼ 700 Mpc−1, one can see the sharp cutoff in Figure 5.5. The cutoff scale
corresponds to the Jeans scale at the observation redshift z = 20. When ks > kJ,
the baryon mass fraction drastically decreases in UCMHs, particularly those that
form late. These UCMHs do not host enough baryonic gas to produce strong 21-cm
signals for detection. Consequently, 21-cm observations cannot provide a constraint
below the Jeans scale.

It is worth noting the dependence of this constraint on the observed redshift.
As shown in the top panel of Figure 5.4, the fluctuation amplitude increases as the
redshift decreases, with ks fixed. Therefore, when a lower redshift is considered,
the constraint becomes slightly tighter. Furthermore, as the redshift decreases, the
Jeans scale becomes smaller. Accordingly, the sharp cutoff of the allowed region on
the high-k side shifts towards larger k. When 21-cm observations are performed at
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FIGURE 5.4: (Top) Redshift dependence of the 21-cm fluctuations from
UCMHs. The black solid line and the dashed lines are the 21-cm fluc-
tuations from UCMH for Aζ = 4.0 × 10−6 and 4.0 × 10−7, respec-
tively. In both lines, we set ks = 300 Mpc−1. We also plot the fluc-
tuation from the IGM + MHs in the blue dotted line, the SKA noise
level in the blue dot-dashed line and the sum of them in the blue
solid line. (Bottom) Dependence of the 21-cm fluctuations on the spike
wave number ks at z = 20. The solid line is for Aζ = 4.0× 10−6 while
the dashed line is for 4.0 × 10−7. The blue solid line represents the

fluctuation from the IGM + MHs with the SKA noise level.
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FIGURE 5.5: Detectability of the signal from UCMHs with observa-
tion by SKA. The parameter set within the red region of Fig. 5.5 can
yield 21-cm fluctuations resulting from UCMHs that can be detected
by the SKA at a redshift of z = 20. The leftmost boundary of the red
region corresponds to the Jeans scale, kJ, and the dotted line repre-
sents the threshold for detection when the DM density distribution of

UCMHs is modeled using the NFW profile.

z = 10, the red region can be extended to ks ≈ 1000 Mpc−1 which corresponds to
the Jeans scale at z = 10. In lower redshifts, the cosmological reionization process
generates additional 21-cm fluctuations, which are dependent on the model of the
reionization process. As a result, it is challenging to accurately evaluate the poten-
tial constraint on the primordial curvature amplitude while taking into account the
impact of reionization.

Lastly in this section, we also examine the impact of the density profile on 21-cm
signals. In our calculations, we utilize the Moore profile and determine the gas den-
sity and temperature profiles based on hydrostatic equilibrium. However, according
to numerical simulations by Gosenca, Adamek, Byrnes, et al. [133], if UCMH forma-
tion occurs in non-isolated situations, the profile of the resultant UCMHs can be
well-approximated by the NFW profile. To investigate the impact of the profile on
the 21-cm signal, we adopt the NFW profile as the DM density distribution, using
Eqs.(5.4)and(5.5), and evaluate the signal using the procedures outlined in sections
5.3and5.4. Since the NFW profile has a shallower slope in the inner region than the
Moore profile, the signal from the NFW halo is weaker than that from the Moore
halo. We depict the critical amplitude for detection in the blue dotted line in Fig.5.5.
In summary, when a UCMH has a shallower profile, the constraint on the spike-
shape amplitude becomes less stringent.

5.5 Conclusion

UCMHs are believed to be formed from density fluctuations with a spike-shape
spectrum on small scales. As a result, the observational limit on the abundance
of UCMHs serves as an upper bound on the small-scale power spectrum of primor-
dial fluctuations. In this study, we evaluated the 21-cm signals emitted by UCMHs
and demonstrated that the SKA could provide an upper limit on the abundance of
UCMHs as well as the small-scale primordial fluctuations.

To construct a theoretical model of the baryon gas density and temperature within
UCMHs, we adopted the Moore profile as the DM density distribution. We then
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calculated the 21-cm signal from an individual UCMH and found that the signal
increases with the UCMH mass.

Our observable is the 21-cm fluctuations caused by the number density fluctu-
ations of UCMHs. We investigated the relationship between these fluctuations and
the spike-shape spectrum of primordial fluctuations. We found that the 21-cm fluc-
tuations produced by UCMHs become larger as the spike amplitude increases or as
the peak shifts to smaller scales. Additionally, we found that the 21-cm fluctuations
due to UCMHs are on the order of millikelvin in the redshift range between z = 10
and 30. However, if the wave number of the spike-shape spectrum becomes smaller
than the Jeans scale, the baryon gas mass within a UCMH drastically decreases,
leading to a significant decrease in the signal.

Although the 21-cm fluctuations produced by UCMHs do not currently fall within
the detection capabilities of current observational instruments, the SKA may be
able to detect these signals if a spike-shaped spectrum on the primordial power
spectrum is present. Conversely, if the SKA fails to detect the signal, an upper
limit on the amplitude of the curvature perturbations can be placed at Aζ . 10−6

for 100 Mpc−1 . k . 1000 Mpc−1. Constraints on the abundance of UCMHs
and the spike-shaped spectrum of primordial fluctuations have also been provided
through gamma-ray observations, assuming the self-annihilation of DM particles
within UCMHs. It is important to note that these constraints are highly dependent
on the specific model of DM, such as its annihilation mechanism and mass. In con-
trast, 21-cm emission is independent of these properties of DM, making it a more
robust method for surveying small-scale primordial fluctuations.
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Chapter 6

Population III stars in UCMHs

In this chapter, we investigate the impact of first-generation stars, also known as
Population III (Pop. III) stars, on the cosmic ionization history within ultracompact
minihalos (UCMHs) by utilizing Planck observation data. Despite the current lack
of understanding of high-redshift astrophysics, UCMH has the potential to host Pop
III stars, similar to halos formed in the standard structure formation scenario. These
stars would emit ionizing photons during their main sequence, potentially foster-
ing cosmic reionization at higher redshifts, thus providing a powerful means for
constraining primordial perturbations. To study their effect on global ionization,
we model the cosmic reionization evolution based on the "tanh"-type reionization
model, which is characterized by zreio and two additional parameters representing
the initial mass of UCMHs and their number density. We employ Monte Carlo
Markov Chain analysis and the latest Planck observation data in our reionization
model. Our results indicate that if the UCMH initial mass is larger than 108.4M�, the
number density of UCMHs is strictly limited. This, in turn, leads to a constraint on
the amplitude of the primordial power spectrum, specifically Aζ . 10−8 in the scales
k . 50Mpc−1, assuming that standard "tanh" type reionization occurs by z = 3, and
zreio > 3 is set.

6.1 Introduction

Ultracompact minihalo (UCMH) is gravitationally bound object formed by denser
region of matter induced by excess power in primordial scalar perturbations on
small scales [71]. Although there is currently no observational evidence to confirm
the existence of UCMHs, they have been proposed as a powerful cosmological probe
of primordial scalar perturbations, particularly on small scales, k & 1Mpc−1. The ba-
sic formation process of UCMHs is thought to occur during the radiation-dominated
epoch, in which dark matter density fluctuations can grow after entering the hori-
zon, as long as the initial density perturbation is large enough at the time of horizon
entry. Reference [71] suggests that UCMHs have a more compact profile with a
larger central density than typical dark matter halos, known as NFW profiles [135],
as a result of radial infall in high redshift. Subsequent studies, such as Refs.[72], [73],
have performed cosmological simulations of UCMH formation for spike-type power
spectra on small scales, demonstrating that the excess power in small-scale primor-
dial scalar perturbations can lead to early structure formation, with UCMHs pos-
sessing a Moore-type matter density profile, ρ ∝ r−3/2 at the inner cusp region [134],
which is steeper than the NFW profile.

In this context, previous works have studied the possibility that UCMHs emit
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energetic emissions through weakly-interacting massive particle (WIMP) annihila-
tion, which is enhanced by the dense profile of UCMHs. Especially some previ-
ous works [72]–[78] have investigated the gamma-ray emission signal and provided
constraints on the UCMH abundance. These studies also provided constraints on
small-scale primordial scalar perturbation, with an amplitude Aζ less than 10−7

for wavenumbers between 10 Mpc−1 and 108 Mpc−1, through the non-detection of
such energetic signals in gamma-ray observations, such as those made by Fermi-
LAT [140]. Additionally, UCMHs have been investigated through their gravitational
lensing effect [77], [141] and their contribution to cosmic reionization [142]–[145].

The primary focus of the author is on the baryonic gas contained within UCMHs.
When the mass of a UCMH exceeds the Jeans mass, it is capable of hosting bary-
onic gas. By studying the cosmological signals emitted by this baryonic gas within
UCMHs, we can place constraints on both the abundance of UCMHs and the small-
scale primordial perturbations without making any assumptions about the nature of
dark matter. In previous research (referenced in [213]), we examined the anisotropy
of 21cm line emission induced by UCMHs and established a constraint on primor-
dial scalar perturbations on small scales, Aζ . 10−6 on 100 Mpc−1 . k . 1000 Mpc−1.
Additionally, in reference [174], we studied the free-free emission from UCMHs and,
utilizing measurements of free-free emission by Planck, established a constraint on
primordial scalar perturbations of Aζ . 10−7 for 1 Mpc−1 . k . 100 Mpc−1.

This paper presents another observable that has the potential to be more con-
straining than previous works. Our focus is on the astrophysical effects that occur
within UCMHs. Given that UCMHs can form in the early Universe and possess a
dense matter profile, such as the Moore profile, they may facilitate the formation of
stars at significantly higher redshifts than what is predicted by standard cosmology.
As a result, zero metallicity stars, commonly referred to as Population III (Pop. III)
stars, would be formed from the primordial baryon gas, primarily composed of hy-
drogen, within UCMHs. According to theoretical and numerical studies [214], [215],
Pop. III stars are known to emit ionizing photons effectively. As such, Pop. III stars
hosted by UCMHs would proceed to globally ionize high redshifts and alter the
standard cosmic reionization history. Our work builds upon a similar study of as-
trophysical effects in axion clusters formed by isocurvature fluctuations, presented
in Ref. [216]. Although our focus is on the effects that occur within UCMHs formed
by spike-type power spectra as opposed to isocurvature-type, we refer to this work
in our calculations.

In the standard cosmology, after the cosmic recombination epoch at z ∼ 1000,
the kinematic decoupling of the baryons from radiation occurs [217], [218], the Uni-
verse enters the next epoch, referred to as the "dark age," where the global ionization
fraction is very low, xe ∼ 10−4. This epoch culminates with the formation of stars,
galaxies, etc., and their emission of ionizing photons; this is the standard cosmic
dawn and reionization scenario. It is believed that the cosmic reionization has been
primarily proceeded by Population II (Pop. II) stars and first galaxies [219], and was
almost completed by z ∼ 6, as indicated by observations of Lyman-α(Lyα) absorp-
tion lines imprinted on quasar spectra [220]. The luminosity of Lyα is highly sensi-
tive to the amount of neutral hydrogen. Thus the observation of the redshift evolu-
tion of the Lyα luminosity can provide significant information on the evolution of
neutral hydrogen fractions during the epoch of reionization. Current observations
of Lyα emitters suggest that the number density of Lyα emitters decreases as the
redshift increases, and the neutral hydrogen fraction increases from z ∼ 6 − 7 [221]–
[226].



6.2. The properties of UCMHs 91

One of the observables for the reionization history is cosmic microwave back-
ground (CMB) anisotropies. Specifically, the CMB E-mode polarization anisotropy
is sensitive to the high redshift reionization expected by the UCMH Pop. III stars
model through the Compton scattering. In this work, we investigate this model
characterized by the mass and the number density of UCMHs using Markov Chain
Monte Carlo (MCMC) methods with the Planck 2018 observation likelihoods [1].

The organization of this chapter is as follows: In Section II, we describe the prop-
erties of UCMHs formed by the spike-type curvature power spectrum. In Section
III, we introduce the effect of Pop. III stars formed in UCMHs on the global ion-
ization fraction. In Section IV, we explain our cosmic reionization model consid-
ered here and demonstrate the relationship between the reionization models and
the anisotropies of the CMB temperature and E-mode polarization. In Section V, we
explain the MCMC methods used in this work and present the results. We also dis-
cuss the constraint on the amplitude of the primordial power spectrum suggested by
the MCMC results. Finally, we summarize in Section VI. Throughout this chapter,
we adopt the flat ΛCDM model with the Planck best-fit parameters obtained from
TT, TE, EE, and low-` + lensing observation data[1].

6.2 The properties of UCMHs

The larger amplitude of the small-scale matter density fluctuation would provide
the UCMH formation. In this work, we assume the existence of an UCMH popula-
tion formed through a spike in the small-scale matter density fluctuation spectrum,
characterized by a specific wavenumber ks in addition to the nearly scale-invariant
spectrum with an amplitude of ACMB

ζ ∼ 2.1 × 10−9, as inferred from Planck CMB
observations. Here, for simplicity, we adopt the Dirac delta function to represent the
additional spike-type power spectrum as,

Pζ(k) = Aζksδ(k − ks), (6.1)

where Aζ is the amplitude of the additional power spectrum, and ks is the wave
number corresponding to the spike center. We begin with a brief summary of the
features of UCMHs with the spike-type power spectrum (see Refs. [72], [73] for de-
tails.)

In the spike-type power spectrum case, the initial mass of UCMHs Mi are related
to the spike-wave number ks like

Mi ∼ 4 × 104 M� ×
(

ks

103 Mpc−1

)−3

. (6.2)

The mass can increase after their formation at redshift zf through late-time accretions
from their outer region, e.g. intergalactic medium (IGM), as [73], [213]

M(z, zf) = Mi

(
1 + ln

(
1 + zf

1 + z

))
. (6.3)

In this work, we assume that the accretion of matter onto UCMHs does not cease
during the calculated duration, despite suggestions from reference [73] that the log-
arithmic mass increment may not continue beyond a certain point. Additionally, it is
worth noting that previous literature, such as reference [127] and [76], have assumed
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that the mass of UCMHs increases proportionally to the scale factor a under the ra-
dial infall theory of mass accretion. However, since this theory relies on the presence
of an overdense region within an otherwise unperturbed background, which may
not be representative of the actual Universe, we utilize the mass increase specified
in equation (6.3). In the subsequent calculations, we estimate the number density of
UCMHs using the equations outlined in section 3.4.1 to derive an expression for the
abundance of UCMHs.

In the following calculation, we estimate the number density of UCMHs by us-
ing equations explained in Sec. 3.4.1. Then one will obtain the expression for the
abundance of UCMHs,

nUCMH(Mi, z) =
k3

s

(2π)233/2

∫ ∞

δc/S1/2
mat,0(Mi)D(z)

e−ν2/2 f (ν)dν. (6.4)

Here we stress the following two points. First, we hereafter use Amat,0 as a parameter
about the present mass variance instead of Smat,0. Secondly, we adopt the transfer
function of Ref.[89] as already shown in Eq. (2.139),

Tδ(k) =
45
2

Ω2
m,0H2

0

Ωr,0k2

(
−

7
2
+ γE + ln

(
4
√

Ωr,0k
√

3Ωm,0H0

))
, (6.5)

when calculating Smat,0 in this work. This transfer function is valid only for the scale,
k � 10−2Mpc−1. These scales correspond to the range, Mi < 1015M� in terms of the
UCMH initial mass. Since we are interested in the mass range which is much smaller
than Mi = 1015M� as we will mention in Sec. 6.5, this function is valid throughout
this work.

We also focus on the baryonic gas within UCMHs. To form stars within UCMHs,
they must enclose baryonic gas. As long as the spike-wave number ks is smaller
than the Jeans wave number, kJ, at their formation redshift zf, the baryonic gas can
collapse towards the dark matter gravitational potential, overcoming its own gas
pressure. In such a scenario, we assume that UCMHs would enclose enough bary-
onic gas to form stars with the same mass ratio to dark matter as in the cosmological
background, Ωb,0/Ωm,0, where Ωb,0 is the baryon density parameter at present, al-
though there are other conditions that must be satisfied to host stars. We will discuss
these conditions in the next section. Additionally, we postulate that the mass ratio
between baryonic gas and dark matter in UCMHs remains constant throughout their
mass evolution as represented by Eq. (6.3).

In addition, we mention the scenario in which the spike-wave number ks is
greater than the Jeans wave number, kJ, at their formation redshift zf. In this sce-
nario, although the baryon density fluctuations with ks cannot collapse due to their
own pressure, UCMHs may still host dense baryon gas through the accretion of
baryonic matter, such as the Bondi accretion mechanism [227]. However, as pre-
vious studies [213] have shown, the amount of accreted baryonic matter would be
small. Furthermore, as other conditions would impose stronger constraints on the
mass of UCMHs, we neglect this accretion effect.

6.3 Pop. III stars formation in UCMHs

In high redshifts, z & 10, the Universe is primarily composed of hydrogen and he-
lium. In that case, the formation of zero-metallicity stars, known as Pop. III stars are
possible. UCMHs, being minihalos formed at a higher redshift than the standard
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halo formation scenario, may also host Pop. III stars if certain conditions are met.
In this section, we focus on the impact of ionizing photons emitted by Pop. III stars
within UCMHs on the global ionization fraction.

These photons would create and evolve ionized bubbles, and the time evolution
of the global ionization fraction induced by these bubbles is given by [228]

dxe

dt
=

d (ζ fcoll)

dt
− n̄H(t)αB (Te)CHIIxe (6.6)

where n̄H, αB, Te, CHII, and fcoll represent the mean number density of hydrogen
nuclei in the IGM, the case B recombination rate as detailed in Reference [229], the
electron temperature, the clumping factor, and the collapsed fraction, respectively.
In this work, we set the electron temperature as Te = 104K, and the clumping factor
as CHII ≈ 3. The star ionizing efficiency, ζ, is represented by ζ ≡ AHeNγ fesc f?,
where AHe ≈ 1.22 is the correction factor for singly ionized helium, Nγ represents the
average number of ionizing photons produced per stellar baryon, fesc represents the
escape fraction of ionizing photons, and f? represents the star formation efficiency.
Due to the current uncertainty in understanding the contributions of Pop. III stars to
the ionization history [230], we adopt a simplified model to mimic the approach used
for Pop. II stars in previous work [216]. We assume an average number of ionizing
photons produced per stellar baryon, Nγ, of 4× 104, which is expected for the hotter
photospheres of metal-free stars [231]. We postulate that all ionizing photons escape,
as is typical for star formation in small halos, and set the escape fraction, fesc, to 1.
We also set the star formation efficiency, f?, to 5× 10−4, which is on the lower end of
the values typically used in prior work [232], [233], with the most commonly used
value being around 10−3. It is worth noting that the value of the escape fraction can
be considered one of the star formation efficiency parameters.

With the common assumption that the star formation rate in a halo is propor-
tional to the baryon gas accretion rate Ṁacc with f? as the proportional coefficient,
the first term in right-hand side of Eq. (6.6) can be written

d (ζ fcoll)

dt
= AHeNγ fesc

∫
Mmin

dM′ f?Ṁacc
dnUCMH(M′, z)

dM
1

ρ̄b(z)

= AHeNγ fesc
ρ̇SFR(z)
ρ̄b(z)

,
(6.7)

where ρ̇SFR is the star formation rate density, ρ̄b is the mean baryon density, Ṁacc can
be estimated from Eq. (6.3) as

Ṁacc(M, z) = MiH(z)
Ωb,0

Ωm,0
, (6.8)

and dnUCMH/dM is the UCMH mass function associated with Eq. (6.4). In Eq. (6.7),
Mmin represents the criteria of the halo mass to form the Pop. III stars including the
Lyman-Werner negative feedback [234], [235],

Mmin = Mhalo (Tvir = 500 K)
[
1 + 6.96F0.47

LW,21

]
, (6.9)

with Mhalo(Tvir) which is the typical halo mass with a given virial temperature Tvir,
and the Lyman-Werner intensity integrated over a solid angle, FLW,21 which is in
units of 10−21ergs−1Hz−1cm−2.
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To estimate Mhalo(Tvir = 500 K), we use the relation,

Mhalo(Tvir, zf)

≈ 4 × 105 M�

(
Tvir

500K
1 + zf

10

) 3
2
(

Ωm,0

Ωm(zf)

)− 1
2

,
(6.10)

where Ωm(z) is the matter density parameter at a redshift z after the matter-dominant
era,

Ωm(z) =
Ωm,0(1 + z)3

Ωm,0(1 + z)3 + ΩΛ,0
, (6.11)

with ΩΛ,0, which is the present density parameter of the cosmological constant.
We also employ the relation between the Lyman-Werner intensity and ρ̇SFR [236],

[237] and estimate FLW,21 as

FLW,21 = 7.22
(1 + z)3

H(z)
e−τLW NLW

ρ̇SFR

ρ̄b
, (6.12)

where H(z) is the Hubble parameter, τLW is the intergalactic opacity for the Lyman-
Werner photons, and NLW is the number of Lyman-Werner photons produced per
baryon in stars. In our analysis, we adopt the value of e−τLW = 0.5 as reported in
previous studies [215], [238], acknowledging that the Lyman-Werner background
optical depth, τLW, may be increased by the presence of UCMHs that obscure the
background. Additionally, we adopt a value of NLW = 105 for Pop. III stars as
suggested in[237].

In Eq. (6.9), we posit that a virial temperature of Tvir = 500K is sufficient to excite
rotational transitions of molecular hydrogen, which can serve as an efficient cooling
mechanism for the formation of Pop. III stars. We further assume that UCMHs can
host Pop. III stars as long as their mass exceeds the minimum mass, Mmin, required
for such cooling, as well as the Jeans mass. It is worth noting that in the parameter
ranges of interest, Mmin exceeds the Jeans mass.

UCMHs would have the mass variety even in the case of delta function type
power spectrum of Eq. (6.1) because there is a variety of their formation redshifts zf
following the number density formed in the duration of [zf, zf + ∆zf],

dnUCMH

dzf
=

k3
s

1 + zf
h

(
ν =

δc(1 + zf)

A1/2
mat,0

)
. (6.13)

In Eq. (6.13), h(ν) is given by

h(ν) =
33/2ν

(2π)2 e−ν2/2 f (ν), (6.14)

with the function f (ν) defined in Eq. (2.161). The earlier-formed UCMHs are heavier
than the later-formed ones due to matter accretion. However, in peak theory, most
UCMHs are formed around the specific redshift zeff ≈ 2.1936A1/2

mat,0/δc − 1 which
can be estimated by the derivative of the differential number density of Eq. (6.13)
unlike the Press Schechter halo formation formalism [91]. Then we assume that the
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mass of all UCMHs is given by

Meff(z) ≡ M(z, zeff) = Mi Max
(

1, 1 + ln
(

1 + zeff

1 + z

))
, (6.15)

and the mass function of UCMHs is given by

dnUCMH(M, z)
dM

≈ nUCMH(M, z)δ(M − Meff). (6.16)

Therefore, we approximately calculate Eq. (6.7) as

d (ζ fcoll)

dt
≈
{

AHe fγ fesc f?ṀaccnUCMH(Meff, z) Meff > Mmin

0 otherwise,
(6.17)

Figure 6.1 illustrates the evolution of Meff and Mmin as a function of redshift. It is
important to note that the minimum mass, Mmin, and ρ̇SFR in Eq. (6.9) are indepen-
dent of the UCMH initial mass. This is because the dependencies on UCMH mass
for both Ṁacc and dn/dM in Eq. (6.7) cancel each other out. Additionally, the de-
pendency on Amat,0 is also relatively weak because the redshift dependence of the
bracket term in Eq. (6.9) and the other term, Mh(Tvir = 500) almost cancel out.
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FIGURE 6.1: The minimum mass of UCMHs to host Pop. III stars
in Eq. (6.9) (black line) and the UCMH effective mass represented
in Eq. (6.15). The horizontal axis shows the redshift normalized by
the zeff with Amat,0. The vertical axis shows the minimum and the
effective mass of UCMHs in a unit of the solar mass. The black
dotted, solid and dashed lines represent the minimum masses with
Amat,0 = 100, 200, 500, respectively. The colorful solid lines show the

effective masses with the different initial mass models.
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6.4 Reionization model including UCMH Pop. III stars

The UCMH Pop. III stars might impact on the traditional ionization scenario, which
predicts that the universe will be reionized a long time after the recombination
epoch. Here we consider the global ionization history adding this effect of Pop. III
stars formed in UCMH. In our model, Pop. II stars and first galaxies would take over
as the primary ionizing photon sources after high redshifts, z & 10, where impacts
of UCMH Pop. III stars on cosmic reionization would become dominating. There-
fore, we postulate that the evolution of the global ionization fraction can be split into
three parts while accounting for the ionizing photons from the UCMH Pop. III stars
for the cosmic reionization as

xe(z) =(xrec
e (z) + xreio

e (z))

+ xadd
e (z)(1 − xrec

e (z)− xreio
e (z)),

(6.18)

where xrec
e is the global ionization fraction in the recombination epoch, and xreio

e
represents the contribution from the main reionization source including Pop II stars
and galaxies. For obtaining xrec

e , we employ the recombination code RECFAST [239]–
[242], whereas for xreio

e , we adopt the widely used “tanh" model as [243]

xreio
e (z) = xbefore

e +
1
2

(
xafter

e − xbefore
e

)
×
[

1 + tanh
(

yreio − y(z)
∆y

)]
, (6.19)

y(z) = (1 + z)3/2, (6.20)

where yreio = y(zreio), ∆y = 1.5
√

1 + zreio∆z with the duration of reionizaiton, and
we set ∆z = 0.5. Note that xreio

e (zreio) = 0.5. In Eq. (6.19), xafter
e = 1 is the ionization

fraction after finishing reionization, and xbefore
e is the leftover ionization fraction well

after the recombination epoch adopted as xbefore
e ∼ 10−4. The evolution of xreio

e (z) is
characterized only by the value of zreio. We deal with zreio as a free parameter in the
following analysis.

For the additional ionization fraction xadd
e , we estimate its value by solving Eq. (6.6).

It is generally inadvisable to add ionization fractions from multiple sources. To ac-
curately calculate the time evolution of the global ionization fraction, it is necessary
to sum the photoionization rates and solve the equilibrium between recombination
and ionization. However, in Eq. (6.6), we calculate the contribution of ionized bub-
bles surrounding Pop. III stars to the global ionization fraction, while terms xrec

e and
xreio

e pertain to the global ionization fraction in the IGM. Therefore, in our model, we
assume that the global ionization fraction can be estimated by Eq. (6.18). Although
Eq. (6.18) is written with respect to redshift, Eq. (6.6) is written with respect to cos-
mic time. In order to estimate the three types of ionization fractions in Eq. (6.18)
consistently, it is essential to exercise caution when calculating Eqs. (6.6) and (6.18)
with respect to the time (redshift) step. We impose a lower limit on the redshift, zcut,
when calculating xadd

e , as we wish to focus on the contribution from halos created by
the additional spike-type power spectrum, rather than standard halos originating
from the almost scale-invariant spectrum. Therefore, we set zcut to the redshift at
which the standard halos are formed effectively, such that zcut = ACMB

mat,0/δc − 1.
Figure 6.2 illustrates examples of the evolution of the ionization fraction obtained

from Eq. (6.18). The color differences in the figure correspond to variations in the
initial mass of UCMHs, while different line styles indicate variations in the value
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of Amat,0. The solid black line depicts the evolution of the global ionization frac-
tion in the absence of any additional contributions from Pop. III stars hosted by
UCMHs. In the figure, we set zreio = 6. Our analysis suggests that broadly speak-
ing, the initial mass of UCMHs, Mi, controls the extent of the ionizing effect, while
the mass variance on the scale of ks, Amat,0, determines the redshift at which the
effect becomes significant. The non-monotonic behavior in the ionization fraction
evolution depicted in Fig. 6.2 is a result of the varying duration of Pop. III star for-
mation within UCMHs. As demonstrated in Fig.6.1, UCMHs with initial masses
in the range of 108M� . Mi . 108.6M� experience Pop. III star formation in two
distinct periods. This results in the global ionization evolution progressing through
three distinct phases: (1) an increase in the ionization fraction, xe, due to ionizing
photons emitted by Pop. III stars within UCMHs during the first period, (2) a de-
crease in xe due to recombination in the absence of Pop. III stars within UCMHs,
and (3) a subsequent increase in xe resulting from the second period of Pop. III star
formation within UCMHs. It is worth noting that the extent of the contributions
from UCMHs with initial masses larger than Mi = 108.6M� saturates, as evidenced
by the overlap of lines in Fig. 6.2. We also mention the contributions from UCMHs
with a smaller initial mass than 108M�, in that case, the contributions are too small
to change the global ionization evolution.

The CMB anisotropy would be one of the helpful observables to test these mod-
els. Figures. 6.3 and 6.4 depict the temperature and the E-mode polarization anisotropies
for different UCMH initial mass models. A meaningful indicator to explain these
modifications in Figs. 6.3 and 6.4 is the Thomson scattering optical depth for CMB
photons which is defined by,

τ =
∫ dz

H(z)
σTxe(z)n̄H(z), (6.21)

where σT is the Thomson cross section. As one can see in Fig. 6.3, the amplitude of
the temperature anisotropy is suppressed as the optical depth increase. The theoret-
ical dependency is ∝ exp(−τ), and the suppression is slight in these models. For the
E-mode polarization anisotropy, one can find a significant difference among these
models in Fig. 6.4, especially with the behavior at ` . 20 mode. This behavior is
called the “reionization bump," whose amplitude is proportional to τ2.

6.5 MCMC analysis with Planck 2018

6.5.1 Setup

In order to investigate the impact of ionizing photons emitted from Pop III stars
within UCMHs on the CMB using our proposed model (Eq. (6.18)), we employ the
MCMC analysis utilizing Planck 2018 data. We generate chains of MCMC sam-
ples using the publicly available code MontePython [244], which incorporates the
CLASS [245] code for calculating the theoretical CMB angular power spectrum. We
have modified the CLASS code to include the global ionizing effect of Pop III stars
within UCMHs represented by Eq. (6.18). In our calculations, we treat the following
two parameters as free variables: (1) the mass variance on the scale ks, represented
by Amat,0, which relates to the amplitude of the spike power spectrum, and (2) the
standard reionization parameter zreio in Eq. (6.19). For the initial mass of UCMHs
Mi, which corresponds to the spike scale ks, we fix it to a value within the range
of Mi = 108−9M� for each calculation. To ensure the validity of the approximation
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FIGURE 6.2: The cosmological evolution of the global ionization frac-
tion estimated by Eq. (6.18). The color difference shows the differ-
ence of the initial mass of UCMHs, and the different line style shows
the different value of Amat,0: Amat,0 = 200 (solid) and Amat,0 =
500 (dashed). The black solid line shows the global ionization frac-
tion evolution without any additional contribution from Pop. III stars
in UCMHs so that xadd

e = 0. In this figure, we set zreio = 6. The ex-
tent of the contributions from UCMHs with a larger initial mass than
Mi = 108.6M� would saturate. Thus, the lines for Mi = 108.6M� and

Mi = 109M� mostly overlap.
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FIGURE 6.3: (Top): Angular power spectrum of the CMB tempera-
ture. The colorful lines shows CMB temperature anisotropies with
the three different initial mass of UCMHs, and the different line
style shows the different value of Amat,0: Amat,0 = 200 (solid) and
Amat,0 = 500 (dashed). The black solid line shows the standard CMB
temperature anisotropy without any additional effects from Pop. III
stars in UCMHs, xadd

e = 0. (Bottom): Ratio between the standard CMB
temperature anisotropy (black solid line) and one of each UCMH ini-

tial mass model.
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FIGURE 6.4: (Top): Angular power spectrum of the CMB E-mode
polarization. The colorful lines shows CMB E-mode polarization
anisotropies with the three different initial mass of UCMHs, and the
different line style shows the different value of Amat,0: Amat,0 =
200 (solid) and Amat,0 = 500 (dashed). The black solid line shows
the standard CMB E-mode polarization anisotropy without any ad-
ditional effects from Pop. III stars in UCMHs, xadd

e = 0. (Bottom): Ra-
tio between the standard CMB E-mode polarization anisotropy (black

solid line) and one of each UCMH initial mass model.
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represented in Eq. (3.50), we set a lower limit for Amat,0, and impose hard priors for
Amat,0 such that the condition Amat,0(Mi) > ACMB

mat,0(Mi) shown in Fig. 3.4 is satisfied
for each Mi. For example, we set Amat,0(108M�) > 79.2 and Amat,0(109M�) > 64.7.
We also assume that standard "tanh" type reionization occurs by z = 3, and thus set
zreio > 3.

It is important to note the other cosmological parameters that are fixed in this
analysis. Our primary focus is on the global ionization fraction evolution as rep-
resented in equation (6.6) and the resultant optical depth that appears in the reion-
ization bump. The three parameters (Mi, Amat,0, zreio) primarily control these fac-
tors, and as such, we fix other cosmological parameters to the Planck best-fit values
obtained from the TT, TE, EE, low-` + lensing measurement, specifically Ωb,0 =
0.02237, Ωcdm,0 = 0.1200, 100θs = 1.04092, ln1010ACMB

ζ = 3.044, and ns = 0.9649.
These parameters do not significantly affect the reionization bump.

It is also worth noting the accuracy of the MCMC analysis. It is essential to ensure
that the MCMC chains contain enough samples that are independent of each other
and cover a sufficient volume of parameter space for confirmation of the accuracy
of results from MCMC methods. Otherwise, the density of the samples will not
converge to the actual posterior probability distribution. To address this, we employ
the Gelman and Rubin convergence statistic R, which represents the ratio of the
variance of parameters between chains to the variance within each chain, and only
consider chains that satisfy the condition, R − 1 < 0.05 [246], [247].

6.5.2 MCMC results and discussion

We have conducted an MCMC analysis with UCMH initial masses ranging from
108M� to 109M�. We have presented the results of our ionization history model
represented by Eq. (6.18) for four UCMH initial mass values, namely Mi = 108M�,
108.2M�, 108.4M�, and 109M� in Fig. 6.5. In this analysis, Amat,0 and zreio were
treated as free parameters, while the optical depth τ was derived from Eq. (6.21)
using the sampled data of the aforementioned parameters. The thick-colored region
in the figure represents the 1σ region, while the thin-colored region denotes the 2σ
region. As outlined in Sec. 6.4, the CMB polarization anisotropy is sensitive to the
optical depth τ both during and after cosmic reionization, and the Planck measure-
ment provides a constraint on τ. We have found that, even in our ionization history
model, that accounts for the effects of UCMH Pop. III stars, the Planck observation
data (TT, TE, EE, low-` + lensing) prefer a similar best-fit value for the optical depth,
τCMB = 0.0544. Thus, as the additional ionization fraction xadd

e increases the optical
depth to some extent, the value of zreio is shifted to a lower value than the Planck
result, zCMB

reio = 7.67. If the mass of UCMHs is smaller than the lower mass criteria
estimated by Eq. (6.9), the effect from UCMH Pop. III stars will not be observed,
regardless of the value of Amat,0.

In contrast, when the initial mass of UCMHs exceeds 108M�, the ionizing pho-
tons emitted by Pop. III stars within these UCMHs can produce a non-insignificant
optical depth. To compensate for this increase in optical depth, the reionization red-
shift, zreio, must be lower, as depicted in Figs. 6.1 and 6.2. If the UCMH initial mass
exceeds 108.2M�, Pop. III stars can persist within UCMHs for prolonged periods,
resulting in a significant increase in their contribution to the optical depth. If the
initial mass exceeds 108.6M�, the contribution reaches its maximum. In such cases,
decreasing zreio cannot fully offset the increase in optical depth resulting from high
values of Amat,0, and the constraint on Amat,0 becomes more stringent. In this study,
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we have considered UCMH initial mass ranges up to 109M�. However, this con-
straint would also apply to UCMHs with initial masses exceeding 109M�.

Although this work includes several uncertainties in astrophysics, it may be use-
ful to convert the constraint on Amat,0 to one on Aζ , which quantitatively demon-
strates the amplitude of the additional spike-type power spectrum. By considering
the relation between Amat,0 and Aζ represented by Eq. (3.50), one can infer

Aζ ≈ 10−9Amat,0

(
8.7 − 1

3
ln
(

Mi

106M�

))−2

. (6.22)

The Fig. 6.6 illustrates the upper limit of the amplitude of the additional spike-
type power spectrum, Aζ , as constrained by the Planck 2018 data. This limit is cal-
culated via Eq. (6.22), utilizing the 2-σ constraint of Amat,0 obtained through the
MCMC analysis. It should be noted that in this figure, we have assumed zreio > 3, as
this was the lower limit set in the MCMC analysis. As UCMHs with initial masses
greater than 108.4M� are powerful in globally ionizing in our model, the large ex-
cess in the primordial power spectrum on scales ks . 40Mpc−1 is constrained. Con-
versely, this work is unable to put a constraint on the power spectrum on smaller
scales, ks & 60Mpc−1, as such diminutive UCMHs lack the power to significantly
alter the global ionization evolution.

6.6 Conclusion

In this study, we examined the impact of Pop. III stars in UCMHs on the cosmic ion-
ization history using data from the Planck observation. The formation of UCMHs
could occur at an earlier epoch than the standard halo formation scenario, depend-
ing on the scale or amplitude of the additional spike-type power spectrum. While
high-redshift astrophysics is not yet fully understood, it is believed that UCMHs
may host Pop. III stars, similar to standard halos. These stars would emit ionizing
photons during their main sequence and thus facilitate reionization at high redshifts.

To assess the effect of UCMH Pop. III stars on the cosmic reionization history, we
employed the conventional "tanh" reionization model, which represents the contri-
bution of the first galaxies and Pop. II stars as the main sources of ionizing photons.
We also implemented the MCMC analysis with the latest Planck observation data to
investigate the effect of UCMH Pop. III stars on the CMB anisotropies. We examined
three parameters that compose our reionization model: (1) the mass variance on
the scale ks, represented by Amat,0, which relates to the amplitude of the additional
power spectrum, (2) the standard reionization parameter zreio, which controls the
conventional "tanh" reionization, and (3) initial mass models of UCMHs in the range
of 108M� < Mi < 109M� corresponding to the spike scale ks of the additional power
spectrum. We conducted separate MCMCs for several UCMH initial mass models
to explore the other parameters of Amat,0 and zreio.

We discovered that, while UCMH Pop. III stars have minimal effect on the cosmic
reionization when the initial mass is less than 108M�, their contribution increases as
the initial mass becomes greater than 108M�. Then UCMH Pop. III stars gradually
affect the reionization history and thus the CMB Thomson scattering optical depth,
whose value is well determined by the CMB observation. In order to compensate
for the early reionization due to the UCMH Pop. III stars, the “tanh"-type reioniza-
tion would be delayed. Once the UCMHs mass becomes larger than the minimum
mass to host Pop. III stars, their contribution significantly increases. In such case,
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FIGURE 6.5: MCMC results for several models of the UCMH ini-
tial mass, M = 108M� (top left), M = 108.2M� (top right), M =
108.4M� (bottom left), M = 109M� (bottom right). zreio and Amat,0
are free paramters, and τ is the derived paramter. The thick shaded
region shows the 1σ region, and the thin shaded region shows the 2σ

region.
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FIGURE 6.6: Upper limit on the amplitude of the additional spike-
type power spectrum, Aζ , corresponding to the 2-σ constraint of the
Amat,0 through the MCMC analysis with Planck 2018 data. It is noted
that we assume zreio > 3 in this figure. The red-shaded region shows

the limited parameter region through this work.
The solid black line shows the almost scale-invariant power spectrum with

amplitude ACMB
ζ ' 2 × 10−9 with the spectral index, ns = 0.9649.

the decrement of zreio cannot cancel out the increase of the Thomson scattering op-
tical depth of the CMB, resulting in a stringent constraint on the value of Amat,0.
This constraint can be translated into a constraint on the amplitude of the additional
spike-type power spectrum, Aζ , of Aζ . 10−8 in the scales k . 50Mpc−1 when
assuming that the standard "tanh" type reionization occurs by z = 3.

In conclusion, it is worth noting several limitations of this study. Firstly, we have
adopted a fixed set of assumptions regarding the unknown astrophysical proper-
ties of Pop. III stars and UCMHs, as previously established in the literature [216].
However, it would be necessary to conduct further simulations to validate these as-
sumptions. This is a subject for future research.

Additionally, we have not considered the formation of Pop. II stars and the con-
nection between the formation of Pop. III stars and Pop. II stars. This would require
taking into account the lifetimes of Pop. III stars, their fate to produce heavier ele-
ments, the increment of cosmic metalicity, and the subsequent formation of Pop. II
stars. These are also topics for future research.
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Chapter 7

Summary of this thesis

In this thesis, we studied the DM halos and UCMHs to explore primordial small-
scale perturbations. Our universe has a wealth of hierarchical structures spanning
many orders of magnitude, from asteroids to galaxy clusters. The seeds of such hi-
erarchical structures are called primordial scalar perturbations. Despite the great
success of recent measurements for large-scale perturbations, primordial small-scale
perturbations have yet to be observationally revealed well. Throughout this thesis,
we discussed the current status of the investigation on primordial small-scale per-
turbations and proposed new methods to probe them.

First, we introduced the primordial perturbations generated by quantum fluc-
tuations during inflation, especially slow-roll single-field inflation in Chapter 2. To
do that, we discussed how inflation converts microscopic quantum fluctuations into
macroscopic seeds for cosmological structure formation, i.e., primordial perturba-
tions. For the discussion, we demonstrated cosmological linear perturbation the-
ory. The perturbation theory is based on the Einstein equation. Thus we reviewed
the perturbed Einstein equation in the Conformal Newtonian gauge during the in-
flationary epoch. After that, we discussed the connection between the quantum
fluctuation during inflation and primordial perturbations through quantization of
the scalar field. We also linked the primordial perturbations and the observables
regarding CMB and LSS. We derived the theoretical prediction for the number den-
sity and the bias of DM halos in the case where the primordial power spectrum is
monochromatic.

Second, we reviewed the current status of exploring small-scale perturbations in
Chapter 3. The most robust limit would come from measurements of CMB spectral
distortion. So far, the COBE/FIRAS had measured the µ- and y-distortion in the
CMB spectrum and put a limit on the primordial power spectrum like Aζ . 10−5

for the scales, k ≈ 1 − 104 Mpc−1 [16]. The next-generation project like PIXIE would
allow us to achieve a deeper investigation at the level of Aζ . 10−8. There are
also other projects to measure the CMB distortion at a similar level. However,
any projects have not been selected yet. Measurements of PBHs also provide in-
formation on the primordial power spectrum on small scales. However, the ob-
tained limits from the nondetection of PBHs are very weak. Investigations of small-
scale structures like galaxies would be usable for probing small-scale perturbations.
Recently, Ref. [69] proposed a new measurement using high-redshift UV galaxy
LF data from the HST. This measurement is powerful, and the authors succeeded
in constraining the perturbations until k . 10Mpc−1. Besides, measurements of
UCMHs could explore small-scale perturbations. So far, Refs. [72]–[78] have inves-
tigated the gamma-ray emission signal from the DM annihilation inside UCMHs
and provided the tight constraint on the primordial power spectrum, Aζ < 10−7

for 10 Mpc−1 < k < 108 Mpc−1, through the nondetection of such energetic signals
in a gamma-ray observation like Fermi-LAT [140]. However, this constraint highly
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depends on the nature of DM. Based on the above, new measurements which can
more deeply explore the primordial power spectrum have been anticipated.

Third, we studied the diffuse background free-free emission induced by DM ha-
los as the new measurement in Chapter 4. Investigations of small-mass DM ha-
los would be useful for probing the small-scale perturbations in the same way as
galaxies. We found that the free-free emission signal is dominantly contributed by
small-mass DM halos rather than massive DM halos. We also found that the sig-
nal is significantly sensitive to the spectral index and the running. For example,
the signal would be modified by ∼ 20% even in the parameter sets consistent with
the recent Planck result. Therefore, we suggested that the measurement of the cos-
mological free-free signals has the potential to provide more stringent constraints
on the abundance of small-mass DM halos and the primordial perturbations while
carefully removing the Galactic free-free emission is required. The multifrequency
radio observation or the cross-correlation study with the galaxy surveys or 21-cm
intensity map would help reduce the contamination.

Fourth, we studied the 21-cm fluctuations induced by UCMHs, which can al-
low us to explore primordial small-scale perturbations by using the SKA observa-
tion in Chapter 5. We calculated the 21-cm signal from UCMHs and showed that
UCMHs enhance the 21-cm fluctuations. We also investigated the constraint on the
UCMH abundance and small-scale curvature perturbations, which indicates that the
upcoming SKA observation can provide the constraint on amplitude of primordial
power spectrum as Aζ . 10−6 on 100 Mpc−1 . k . 1000 Mpc−1. Although it is
not stronger than the one from the nondetection of gamma rays induced by DM an-
nihilation in UCMHs, this constraint by the SKA would be important as a new DM
model-independent method to explore the primordial perturbations.

Fifth, we also investigated the effect of Pop. III stars in UCMHs on the cosmic
ionization history. Although high-redshift astrophysics is not well-understood yet,
UCMHs could host the Pop. III stars like the standard DM halos. Such Pop. III
stars would emit ionizing photons and foster cosmic reionization in higher redshifts,
which could be potent probes to cut into constraining the primordial perturbations.
We have implemented the MCMC analysis with the latest Planck observation data
to test our reionization model, including the effects of the Pop. III stars. As a result,
if the UCMH initial mass is larger than 108.4M�, the number density of UCMHs is
strictly limited. Then we obtained the constraint on the amplitude of the primordial
power spectrum through the constraint on the UCMH number density like Aζ .
10−8 on k . 50Mpc−1 with the assumption that the standard reionization by Pop. II
stars and first galaxies occurs by z = 3.

Finally, in closing this thesis, we mention the future direction of study about DM
halos and primordial perturbations. There are a lot of ongoing/upcoming projects
in cosmology, such as JWST, the Prime Focus Spectrograph, SKA, and so on. These
observations would give us new insight into small-scale structures such as small-
mass DM halos and UCMHs. As discussed in this thesis, their abundance and dis-
tribution will provide new insight into primordial small-scale perturbations and the
inflationary mechanism. Also, such information would provide clues on the prob-
lems in cosmology, e.g., the nature of DM and dark energy. We hope the day will
come when we solve such cosmological problems by studying them.
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Appendix A

Stress-Energy Tensor

Here we introduce the stress-energy tensor which is defined by

Tµν = (ρ + p)uµuν + pgµν + σµν, (A.1)

where ρ, p, and σµν are the matter energy density, the isotropic pressure, and the
anisotropic stress tensor, respectively. σµν satisfies,

σ
µ
µ = 0, σµνuν = 0, σµν = σνµ. (A.2)

In Eq. (A.1), uµ is the 4-vector,

uµ ≡ dxµ

dτ
(A.3)

which satisfies uµuν = −1. Introducing the metric of the 3-dimensional spatial sec-
tions orthogonal to uµ as γµν = gµν + uµuν, the Eq. (A.1) can be rewritten by

Tµν = ρuµuν + pγµν + σµν. (A.4)

We can use this metric γµν to project physical quantities orthogonal to 4-velocity into
the instantaneous rest frame of the observers. Then one can obtain the following
relations;

ρ = Tµνuµuν, p =
1
3

Tµνγµν,

σµν =

(
1
2
(γ α

µ γ
β

ν + γ α
ν γ

β
µ )γ λ

α γ
ρ

β − 1
3

γαβγ λ
α γ

ρ
β γµν

)
Tλρ.

(A.5)

In a case of the perfect fluid, the stress-energy tensor would become

Tµ
ν = gµαTαν = (ρ + p)uµuν − pδ

µ
ν. (A.6)

In the comoving frame where the observer is comoving with the fluid, one may
choose the simple 4-velocity as uµ = (1.0, 0, 0). Then the stress-energy tensor can be
written by

Tµ
ν =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 . (A.7)
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Let us consider the stress-energy tensor in the case of perturbative metric (Eq. (2.45))
until the linear order. From the normalization condition, uµuµ = −1, one can get

uµ = a−1
(

1 − A, vi
)

uµ = a (−1 − A, vi − Bi) .
(A.8)

Assuming that qµ and σµν in Eq. (A.1) are perturbative quantities, one can also obtain

σ00 = σ0i = σi0 = 0, γijσ
ij = 0, σij = σji, (A.9)

and

σ0
0 = σ0

i = σi
0 = 0, σi

i = 0, σi
j = σi

j. (A.10)

Defining perturbations as δρ ≡ ρ − ρ̄ and δp ≡ p − p̄, one may obtain

T0
0 = −ρ̄ − δρ,

T0
i = (ρ̄ + p̄) (vi − Bi) ,

Ti
0 = −(ρ̄ + p̄)vi,

Ti
j = p̄δi

j + δpδi
j + σi

j.

(A.11)
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Appendix B

Relation between ζ and R on
superhorizon scales

As we discussed in Sec. 2.4.6, ζ and R are commonly used gauge-invariant quantities
representing curvature perturbations on uniform-density hypersurface and comov-
ing curvature perturbations respectively. Here we show the relation between them;
they would match on superhorizon scales from linearized Einstein equations.

From the expressions in Eqs. (2.61) and (2.66), the difference between ζ and R is
given by

ζ −R = H
(

δρ

ρ′
− δφ

φ′

)
. (B.1)

Using the (00) and (0i) components of linearized Einstein equations represented in
Eq. (2.71) and Eq. (2.72), one can obtain following two equations,

−2M2
pla

−2
(

1
ρ̄φ + p̄φ

(HΦ − Ψ′) +
∆Ψ

3H(ρ̄φ + p̄φ)

)
=

δρφ

ρ̄′φ
+ B + E′, (B.2)

and

HΦ − Ψ′ = 4πGa2(ρ̄φ + p̄φ)
δφ − φ′(B + E′)

φ̄′ . (B.3)

Combining these two equations reads the relation between δρφ/ρ̄′φ and δφ/φ̄′ like

δρφ

ρ̄′φ
− δφ

φ̄′ = − ∆Ψ
12πGa2H(ρ̄φ + p̄φ)

, (B.4)

where we use ρφ = 3M2
pla

−2H2. Inserting this equation to Eq. (B.1) and transforming
to the Fourier space, one can obtain

ζ −R =
k2

H2

2ρ̄φ

3(ρ̄φ + p̄φ)
Ψ. (B.5)

In the superhorizon limit (k/H → 0), Eq. (B.5) shows their matching. That is im-
portant result. (Remind that ζ and R are also equal during slow-roll inflation as
mentioned in Sec. 2.4.6.) The correlation functions of ζ and R are therefore equal at
horizon crossing.
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Appendix C

Jeans mass

In this appendix, we introduce the typical mass scale of gravitationally collapsing
against the baryonic gas pressure, the Jeans mass. The basic equations related to the
evolution of density perturbation through gravity are

• Continuity Eq.:
∂ρ

∂t
+∇ · (ρv) = 0, (C.1)

• Euler Eq.:
∂v
∂t

+ (v · ∇)v = −∇P
ρ

−∇φ, (C.2)

• Poisson Eq.:
∆φ = 4πGρ． (C.3)

These equations are represented in the rest frame, x. In order to take into account the
expansion of our universe, let us transform the variables defined in the rest frame to
the new ones in the comoving frame with the Hubble expansion as x = r/a, where
r is the comoving spatial coordinate, and a is the scale factor.

First, we transform the velocity field in Eqs. (C.1) and (C.2). Considering the time
derivative of r, one can obtain

ṙ = ȧx + aẋ. (C.4)

The first term on the right-hand side of Eq. (C.4) represents the Hubble expansion.
Therefore, in the comoving frame, we need not count it as a velocity of "matter," so
that we replace the velocity in Eqs. (C.1) and (C.2) like

v → v + ȧx. (C.5)

In addition, considering the coordinate transformation, (t, r) → (t, x), the partial
derivatives in the above three equations should be replaced like

∂

∂t
→ ∂

∂t
− ȧ

a
x ·∇, ∇ → 1

a
∇, (C.6)

where ∇ = ∂/∂x. Combining these transforms with Eqs. (C.1) and (C.2) reads

∂ρ

∂t
+ 3

ȧ
a

ρ +
1
a
∇ · (ρv) = 0, (C.7)

∂v
∂t

+ 2
ȧ
a

v +
1
a
(v · ∇)v = −∇P

aρ
−∇Φ, (C.8)

where we define Φ as
Φ ≡ φ +

1
2

aä|x|2. (C.9)
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We next consider the φ in Eq. (C.9). Let us assume that the dominant component in
the Universe is matter whose energy density is represented by ρtot. Then the gravita-
tional potensial φ is determinded by the Poisson equation in Eq. (C.3) as

∆φ = 4πGρtot, (C.10)

where ∆ is the Laplacian in the rest frame.
From Eqs. (2.20) and (2.22), one can obtain

ä
a
= −4πG

3
ρ̄tot. (C.11)

Inserting Eqs. (C.9) and (C.10) to Eq. (C.11), one can obtain the Poisson equation
in the comoving frame,

∆Φ = 4πGa2(ρtot − ρ̄tot). (C.12)

Here we put perturbations for the density and pressure as

ρ = ρ̄(1 + δ), (C.13)

P = P̄ + δP, (C.14)

in Eqs. (C.7), (C.8) and (C.12). The background terms in Eq. (C.7) read

d
dt
(a3ρ̄) = 0. (C.15)

Then the linear terms in Eqs. (C.7), (C.8) and (C.12) read

∂

∂t
ρ̄δ +

1
a
∇ · (ρ̄v) = 0, (C.16)

∂

∂t
v + 2

ȧ
a

v = −∇δP
aρ̄

− 1
a
∇Φ, (C.17)

∆Φ = 4πa2Gρ̄totδtot, (C.18)

where δtot is the density perturbation with respect to ρtot.
Combining Eqs. (C.16) to (C.18) reads

∂2δ

∂t2 + 2
ȧ
a

∂δ

∂t
− c2

s
∆δ

a2 = 4πGρ̄totδtot, (C.19)

where we assume δP =
(

∂P
∂ρ

)
ρ̄δ = c2

s ρ̄δ with the sound speed of this fluid, cs.
Here let us neglect the component apart from the matter. Then in the Fourier space,
Eq. (C.19) can be written by

∂2δ̃

∂t2 + 2
ȧ
a

∂δ̃

∂t
−
(

4πGρ̄ − c2
s k2

a2

)
δ̃ = 0. (C.20)

Eq. (C.20) suggest that the perturbation would evolve if 4πGρ̄ − c2
s k2/a2 > 0, which

corresponds that the perturbation would gravitationally collapse in the case that
the gravity overcomes the matter(gas) pressure. On the contrary, the perturbations
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would be suppressed by the pressure when 4πGρ̄− c2
s k2/a2 < 0. The critical wavenum-

ber is called the Jeans wavenumber, which is defined by

kJ =
a
√

4πGρ̄

cs
. (C.21)

The corresponding mass scale is called Jeans mass, which is defined by

MJ ≡
4πρ̄

3

(
πa
kJ

)3

=
π5/2

6
c3

s√
G3ρ̄

. (C.22)
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Appendix D

21-cm signals from IGM and
Minihalos

In this appendix, we give descriptions for construction of 21-cm signals from IGM
and MHs. Here, we assume xα = 0 in Eq. (5.32) because we assume that no UV and
X-ray sources exist in the Universe above z = 20.

D.1 IGM fluctuations

The mean differential brightness temperature of the IGM is given by [248]

δTb = 9.1 (1 + z)1/2
(

1 − TCMB

TS

)(
Ωbh
0.33

)(
Ωm

0.27

)−1/2

mK, (D.1)

where we assume that the IGM is fully neutral. The IGM spin temperature is as-
sumed to evolve solely through Compton heating.

The spatial fluctuations of 21-cm signals are contingent upon variations in bary-
onic density. It is postulated that the distribution of baryons mirrors fluctuations in
matter density, thus enabling the computation of the observed rms 21-cm fluctua-
tions resulting from the IGM in

〈δT2
b,IGM〉1/2 = σp(z)δTb, (D.2)

where σp(z) is given in Eq. (5.39). In our assessment, we neglect the effect of ion-
ization fluctuations on the IGM. However, as cosmological reionization advances,
this contribution to 21-cm fluctuations becomes more substantial. Consequently, our
evaluation of IGM fluctuations is likely to be underestimated at around z ∼ 10.

D.2 Minihalo fluctuations

Minihalos (MHs) are virialized structures with virial temperatures less than 104 K.
In the standard hierarchical structure formation paradigm, they are formed in co-
pious quantities at high redshifts, and are composed primarily of neutral hydrogen
atoms. Therefore, MHs are considered to be potential sources of 21-cm signals at
high redshifts [151], [187].

As depicted in Fig. 5.4, we estimate the 21-cm fluctuations arising from MHs in a
similar fashion to ultracompact minihalos (UCMHs), with the exception of the dark
matter profile. It is predicted that the dark matter distribution within MHs can be
characterized by the NFW profile. For the concentration parameter, pcon ≡ rvir/rs in
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the NFW profile, we set [249]

pcon =
10

1 + zc

[
M

M∗(z = 0)

]−0.2

, (D.3)

In this instance, M∗(z) is defined such that σ(M∗, z) = δc, where σ(M, z) represents
the dispersion of density fluctuations smoothed using a top-hat filter with a radius
corresponding to the mass M at redshift z. In our calculation, we posit that the
mass range of MHs extends from the Jeans mass MJ to the virial mass, with a virial
temperature of 104 K.

D.3 Noise level of SKA

The noise level of an interferometer such as SKA is given with the observation wave
length λ by Furlanetto, Oh, and Briggs [155]

δTN(λ) =
λ2

Aeff∆θ2

Tsys√
∆νtobs

, (D.4)

where Aeff, tobs and Tsys are the effective collecting area, the observational time, and
the system temperature, respectively.

We are interested in low-frequency observations, specifically in the range of ν <
150 MHz. In this low-frequency regime, the sky temperature is the primary compo-
nent of Tsys. Consequently, we consider sky temperature at high Galactic latitudes,
where the foreground is minimal as

Tsys ∼ 180
(

180 MHz
ν

)2.6

K. (D.5)

Therefore, the noise level is given in

δTN(ν) = 0.507mK
(

8 × 105m2

Aeff

)(
20′

∆θ

)2 (3MHz
∆ν

)1/2

×
(

1000h
tobs

)1/2 (1 + z
21

)4.6

. (D.6)

For SKA, we set Aeff = 8 × 105 m2, ∆θ = 20 arcmin, ∆ν = 3 MHz and tobs = 1000 h.
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