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Abstract

Recent observations of molecular clouds show that dense filaments are the sites
of present-day star formation. Thus, it is necessary to understand the filament
formation process because these filaments provide the initial condition for star for-
mation. Theoretical research suggests that shock waves in molecular clouds trigger
filament formation. Since several different mechanisms have been proposed for fil-
ament formation, the formation mechanism of the observed star-forming filaments
requires clarification. In this study, I perform a series of isothermal magnetohy-
drodynamics (MHD) simulations of filament formation and identify mechanisms
for filament formation. I find that the dominant filament formation mode changes
with the velocity of the shock wave triggering the filament formation. Moreover,
I show that strong shock waves can naturally create high-line-mass filaments such
as those observed in massive star-forming regions in a short time.

Observations show that a massive star cluster formation occurs where the peak
of gas column density in a cloud exceeds 1023 cm−2. I investigate how the initial
conditions of massive star formation are realized by performing MHD simulations
with gas inflow duration from the boundaries as a controlling parameter. Filaments
expand after the duration time for short-duration models, whereas long-duration
models lead to star formation by forming massive supercritical filaments. More-
over, when the shock duration is longer than two postshock free-fall times, the
peak column density of the compressed layer exceeds 1023 cm−2, and the gravi-
tational collapse of the layer leads that the number of OB stars expected to be
formed reaches the order of ten (i.e., massive cluster formation).

The filament width is an important quantity because it determines the fragmen-
tation scale by self-gravity. Observations show that the width takes the universal
value of 0.1 pc. However, theoretically, the width of the supercritical filaments
should contract by self-gravity. Recent studies suggest that massive filaments are
bound by the slow shocks that are caused by accretion flows onto the filaments. As
the wavefront of such slow shock is known to be unstable (slow shock instability:
SSI), the accretion ram pressure can be expected to convert into thermal/turbulent
pressure across the shock front that potentially maintains the width. In the scale of
dense filaments, ambipolar diffusion (AD) suppresses the SSI at small scales. I in-
vestigate the influence of AD on SSI using two-dimensional (2D) MHD simulations.
The results demonstrate that the most unstable scale of SSI is approximately five
times the length scale of AD calculated using post-shock variables. The filament
would be sandwiched between two shocks. I investigate the linear growth of two
adjacent slow shocks. The results show that the odd mode is unstable, whereas
the even mode is stable. Furthermore, I find that turbulence is driven as a result
of the nonlinear evolution of the SSI with AD. I also performed a 3D MHD sim-
ulation with self-gravity. For a massive filament of ∼ 70 M⊙ pc−1, the profile is
consistent with observations and has a width of 0.06 pc. I propose that the width
is maintained by turbulent pressure driven by SSI including AD.
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Chapter 1

Introduction

Star formation and evolution is a fundamental physical process in molecular clouds
in galaxies. Furthermore, stars cause stellar winds and supernovae, which affect
galaxy evolution and supply the gas that is the ingredient of stars (see Fig.). Since
the evolution of a star is determined by its mass, the origin of the initial mass
function is important, which implies that it is important to understand the star
formation process. Therefore, understanding the star formation process is essential
to understanding the universe as a whole. However, the initial conditions of the
star formation process have not yet been unknown. In this thesis, we investigate
the formation and evolution of dense filamentary molecular clouds, sites of star
formation, to understand the initial condition of star formation.

1.1 Overview of Molecular Cloud

1.1.1 Molecular Clouds Formation

In galaxies, there is multi-phase gas such as hot ionized medium, warm/cold neu-
tral medium, molecular clouds, and HII region. We focus on warm/cold neutral
medium because the former transit to molecular clouds and the latter are sites of
star formation. The warm neutral medium is neutral hydrogen atomic gas whose
density and temperature of ∼ 0.1 cm−3 and ∼ 8000 K, respectively. Almost all
of the volume of a galaxy is occupied by the warm neutral medium and the hot
ionized medium. The cold neutral medium is also neutral hydrogen atomic gas
whose density and temperature of ∼ 1 cm−3 and ∼ 100 K, respectively. These
two components can coexist because pressure equilibrium with ∼ 1000 K cm−3 is
realized between the warm and cold neutral medium. Therefore the warm/cold
neutral medium is stable for linear perturbation. The molecular clouds are mainly
composed of molecular hydrogen and range in size from a few pc to 100 pc. The
density and temperature are more than 102 cm−3 and ∼ 10 K cm−3, respectively,
that is pressure is larger than the warm/cold medium due to self-gravity.

We introduce how dense gas formation such as the cold neutral medium and
the molecular clouds from diffuse atomic gas is achieved. The cooling and heating
processes are essential to understand dense gas formation. Koyama & Inutsuka
(2000) shows important cooling and heating process in interstellar medium (Fig.
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Figure 1.1: The dashed and solid lines show heating and cooling rates for unshielded
gas per hydrogen nucleus at equilibrium, respectively. Heating processes are photoelec-
tric from dust grains and PAHs (PE), X-ray (XR), cosmic ray (CR), and H2 forma-
tion/destruction (H2). Cooling processes are CII fine-structure (CII), OI fine structure
(OI), hydrogen Lyα (Ly-α), CO rotation/vibration line (CO), and atomic and molecular
collisions with dust grains (GR).

1.1). The dashed and solid lines show heating and cooling rates for unshielded
gas per hydrogen nucleus at equilibrium, respectively. The heating mechanisms
are the photoelectric emission from dust grains and PAHs (Polycyclic Aromatic
Hydrocarbons), ionization by cosmic rays and soft X-rays, and the formation and
photo-dissociation of H2. The local far-ultraviolet (FUV) field is set to 1.7 times
Habing’s estimate (Wolfire et al., 1995). The dominant cooling processes are the
line emission from H, C, O, Si, and Fe, by rotation/vibrational line from CO, as
well as by atomic and molecular collisions with dust grains.

Adiabatic fluid is stable for an increment of density because of pressure en-
hancement. However, if there is a cooling process, it can be unstable. Field (1965)
studies the stability conditions of a uniform medium about heating and cooling
and shows that a phase transition (warm neutral medium becomes cold one) due
to thermal instability occurs when the following conditions are satisfied(

∂L
∂T

)
P

< 0 ⇔
(
∂P

∂ρ

)
L
< 0 (1.1)

where, L = ρΛ− Γ, ρΛ denote the cooling function per volume and Γ denotes the
heating function. This instability occurs for temperatures between ∼ 100 and ∼
5000K in the interstellar medium. In Figure 1.2, we show the dispersion relation
for thermal instability Koyama & Inutsuka (2000). The dashed curve represents
the dispersion relation for the case of the unperturbed state in equilibrium. (The
solid curve is the dispersion relation for the case of an isobarically contracting
unperturbed state1.) Thermal conduction stabilizes the perturbations with smaller

1Their motivation to create this curve is that they consider thermal instability shocked layer.
We will mention below the importance of shock compression
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Figure 1.2: Dispersion relation for thermal instability. The dashed curve represents the
dispersion relation for the case of the unperturbed state in equilibrium. The solid curve
shows the dispersion relation for the case of an isobarically contracting unperturbed
state.

wavelengths. The critical wavelength is

λc = 2π

{
ρ

K

[
∂L
∂T

]
P

}−1/2

∼

√
KT

ρ2Λ
(1.2)

where K denotes the coefficient of thermal conduction. Cold neutral medium
around this scale forms. The molecular cloud that eventually forms by this insta-
bility has a clumpy structure.

As we mentioned, the warm/cold neutral medium is stable for linear pertur-
bation. Thus, a nonlinear trigger is necessary to create the cold neutral medium.
One of the triggers is a shock wave. A shock wave is caused by gas collision,
feedback from massive stars including supernovae and expanding HII regions, and
encounters with galactic spiral shock. In Figure 1.3, we show the phase diagram
and schematics of the evolution track for interstellar medium (Inoue & Inutsuka,
2009). Inoue & Inutsuka (2009) indicates that the direct formation of molecular
clouds from a warm neutral medium is not a typical molecular cloud formation
process unless the direction of shock wave propagation is biased to the orienta-
tion of the mean magnetic field. Thus, they emphasize the importance of multiple
compression, as a typical formation process of molecular clouds.

1.1.2 Properties of Molecular Clouds and Star Formation

Isothermal Approximation

In molecular clouds, the dominant heating source is cosmic rays. Dominant cool-
ing sources are CO rotation/vibration line emission and dust cooling at higher
densities (> 105 cm−3). The balance between them maintains a temperature of
approximately 10 K (sound speed cs = 0.2 km s−1). Using the cooling rate at the
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Figure 1.3: Phase diagram of the interstellar medium. The thick line shows the thermal
equilibrium state. In the dotted region, gas is thermally unstable. Arrows represent
schematical evolution tracks for gas.

thermal equilibrium of the molecular gas, the cooling time tcool can be written as

tcool =
kBT

nΛ
∼ 104 yr, (1.3)

for n = 100 cm−3. where kB is Boltzmann constant. This timescale is smaller
than the dynamical timescale of molecular clouds (see Figure 1.4). Therefore, the
isothermal equation of state is justified in the molecular cloud.

MHD Approximation

The main component of molecular clouds is molecular hydrogen, i.e., uncharged
particles, and there is a slightly ionized component (ionization degree of ∼ 10−7).
However, these neutrals also interact indirectly with the magnetic field like charged
particles, and as a result, the motion of the gas in the molecular cloud can be
approximated to follow the ideal magneto-hydrodynamics (MHD) equation. The
qualitative explanation is as follows. Electrons and protons have electric charges,
and in the presence of a magnetic field, they are subject to the Lorentz force and
orbit around the magnetic field lines. From a macroscopic point of view, a group of
charged particles (plasma) couples with a magnetic field (magnetic frozen-in). On
the other hand, neutral particles such as molecular hydrogen interact with charged
particles via collisions. When plasma moves, the group of neutrals (neutral fluid)
is dragged via collision with plasma. Since plasma couples with the magnetic field,
The motion of neutral fluid, the magnetic field, and plasma couple. Therefore,
molecular clouds behave just like a fully ionized plasma, and their motion can be
described by the MHD equation.

We consider the specifics using the equations. The Lorentz force per unit
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Figure 1.4: Various timescales, cooling time (solid line), recombination time (dashed
line), free-fall time (dot-dashed line), and H2 formation time (dotted line).

volume is

fL =
1

4π
(∇×B)×B, (1.4)

where, B denotes magnetic field. The frictional force by ion fluid2 on neutral fluid
can be written as follows

fd = γinρnρi (ui − un) (1.5)

where, ρn and ρi denote the mass density for the neutral fluid and the ion fluid,
respectively. When collision velocity between an ion and a neutral molecule is
small, i.e., cold environment such as a molecular cloud, Osterbrock (1961) pointed
out that Langevin cross section is correct for the cross-section between ions and
neutrals, because the ion induces a dipole moment in the neutral molecule, effec-
tively changing the collision cross-section. For the Langevin cross-section, since
σin ∝ w−1, γin becomes constant. Draine et al. (1983) computed the resulting value
for γin = 3.5×1013cm3g−1s−1. The interior of a molecular cloud is partially ionized
by cosmic rays. If the ionization rate for a neutral particle is ζ, the ionization rate
of the neutral particle per unit volume is ζnn. On the other hand, the recombina-
tion rate of ions and electrons is proportional to the number density of both ions
and electrons and is, therefore, proportional to nine ∝ n2

i . Considering the steady
state, the ionization and recombination are balanced and can be written using the
mass density and the constant C = 3× 10−16 cm−3/2 g1/2 as follows

ρi = Cρ1/2n . (1.6)

Since the gas in the molecular cloud is dense enough to collide between gas parti-
cles, the Lorentz force and the frictional force are dominant over the other forces

2Ions, which are the most massive of the charged particles, are responsible for momentum ex-
change in collisions with neutral particles. Electrons have less mass than ions, so they contribute
little to the momentum exchange. electrons do not contribute much to momentum exchange
because they have less mass than ions.
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(gravity and pressure gradient forces) and their sum is nearly zero. Therefore,
considering fL = fd, the ion-neutral drift velocity is

vd ≡ ui − un =
1

4πγρnρi
(∇×B)×B (1.7)

To evaluate the drift velocity, we estimate the order of Eq. 1.7,

vd ∼ B2

4πγρnρiL
≈ v2A

V
, (1.8)

where, V ≡ γρiL = γCLρ1/2. vA ≡ B/
√
4πρ denotes Alfvén velocity. We assume

ρ = ρn + ρi ≈ ρn. When L = 1 pc, nn = 100 cm−3, and B = 10 µG, then V = 19
km s−1 and vA = 1.4 km s−1. Therefore, vd ∼ 0.1 km s−1 ≪ vA is satisfied,
indicating that the difference in motion between plasma and neutral fluid is small
and the MHD approximation is justified. Note that we cannot neglect the effect
of the slip of the magnetic field at the small scale.

Supersonic Turbulence

Figure 1.5: Observational data for velocity dispersion δv v.s. size of molecular clouds
l (Heyer & Brunt, 2004).

One of the important features given by observation of 12CO J=1-0 is the line
width which is larger than the expected line width by the sound speed of gas,
indicating that molecular clouds are super-sonically turbulent. In Figure 1.5, we
show observational data for velocity dispersion δv v.s. size of molecular clouds
l (Heyer & Brunt, 2004). There is typical relation of δv ∝ l0.5 (Larson, 1981).
The super-sonic turbulence creates density inhomogeneity with a power spectrum
of (log ρ)2k ∝ k−4 (Beresnyak et al., 2005; Elmegreen & Scalo, 2004; Scalo &
Elmegreen, 2004).
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Shock Wave

Figure 1.6: Left panel : A schematic illustration of multiple compression scenario of
interstellar medium (Inutsuka et al., 2015) The thick red unfilled circles correspond to
the dense multi-phase interstellar medium. Right panel : The evolution of the Local
Bubble and sequential star formation at the surface of its expanding shell. The central
panel shows the present day. Colored paths represent star cluster trace-backs. Before
the cluster birth, the trace-backs are shown as unfilled circles, but after the birth, they
are shown as filled ones. The purple sphere represents a model for the evolution of the
Local Bubble. The yellow trace-backs show solar orbit (Zucker et al., 2022).

We should emphasize that shock wave is important for the dynamics of molec-
ular clouds. As mentioned in §1.1.1, propagation of shock waves is ubiquitous in
galaxies. Using supernovae as an example, we can estimate the time scale of shock
wave sweeping for whole gas in a galactic disk,

tswept ∼
V

1/3
galaxy

vSNN
1/3
SN

≃ 1 Myr (1.9)

where, Vgalaxy ∼ (10 kpc)2 × 100 pc, vSN ∼ 100 km s−1, and NSN ∼ 106 yr/100 yr
denote the volume of galactic disk, typical shock velocity of supernovae, and the
number of supernovae of age one million year, respectively. We assume supernova
explosions occur once 100 yr in a galaxy. Therefore, molecular clouds are shock
compressed once per million year.

Inutsuka et al. (2015) found the resultant star formation efficiency ϵSF ∼ 10−2

within a cloud, which is consistent with observation (Zuckerman & Evans, 1974),
based on the episodes of multiple supersonic compression. Zucker et al. (2022)
reported an analysis of the 3D positions, shapes, and motions of dense gas and
young stars within 200 pc of the Sun from Gaia data. They found that the most
star-forming regions lie on the surface of the shock front of multiple supernovae
(Local Bubble) and that their young stars show outward expansion mainly per-
pendicular to the bubble’s surface (see Figure 1.6). These findings support the
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scenario that the expansion of the Local Bubble swept up the interstellar medium
and drives star formation, in turn providing robust observational support for the
theory of supernova-driven star formation (Inutsuka et al., 2015). When molecular
clouds are shock-compressed, further dense structure formation occurs. This topic
is our main target, details are shown in §1.2.

Self-gravitational Collapse in Molecular Clouds

Within the high-density region of a molecular cloud, a particularly dense region
that is the parent body of a star is called a molecular cloud core. When the
molecular cloud core gravitationally contracts, it evolves into a denser object, and
eventually, hydrogen-burning reactions begin. The central body is then pressurized
by the nuclear reaction energy, the gas sphere stops contracting and the radius of
the central body remains constant. The central body at this stage is in the main
sequence and can be said to have given birth to a star.

1.2 Filamentaly Molecular Clouds

Stars are formed in dense regions in molecular clouds (e.g., Lada et al., 2010; Enoch
et al., 2007; André et al., 2014; Hennebelle & Inutsuka, 2019). Recent dust ther-
mal emission observations by the Herschel space telescope (band: 70 µm–500 µm)
revealed that dense filamentary structures are ubiquitous in nearby molecular
clouds (e.g., André et al., 2010; Arzoumanian et al., 2011). Additionally, star-
forming cores and young stellar objects are embedded along the filaments, which
indicates their crucial role in star formation (Könyves et al., 2015). Therefore,
comprehension of the formation and evolution mechanisms is significant to under-
stand the star formation scenario and the initial condition of star formation.

1.2.1 Definitions

To understand the stability of filament, let us consider a uniform, infinitely elon-
gated, axisymmetric, and cylindrical gas. The Poisson equation for self-gravity
is

∇2ϕ =
1

r

d

dr
r
dϕ

dr
= 4πGρ, (1.10)

where, ϕ, G is gravitational potential and constant, respectively. To get the grav-
itational force, multiplying r and integrate from r = 0 to outer edge of cylinder
r = R,

R
dϕ

dr

∣∣∣∣
r=R

= 2G

∫ R

0

2πrρdr = 2GMline, (1.11)

and,

Fg =
dϕ

dr

∣∣∣∣
r=R

=
2GMline

R
=∝ R−1, (1.12)
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Figure 1.7: Column density (line-mass) map of molecular hydrogen in
Aquila(left)/Polaris(right) molecular cloud given by Herschel telescope. The column
density of molecular hydrogen is estimated from the intensity map of dust thermal
emission. (The density of the molecular hydrogen column density can be estimated by
considering that the more dust there is, the more molecular hydrogen is also present.)
The color bar on the right of each figure indicates the line-mass normalized by the crit-
ical line-mass (Eq. 1.16), which is gravitationally unstable when it exceeds unity. The
line-mass map is given by a typical filament width of 0.1 pc (see §1.2.4), and the column
density can be compiled as the line-mass. The green stars and blue triangles in the
left panel are candidates for Class 0 protostars and bound prestellar cores identified by
Könyves et al. (2010) and Bontemps et al. (2010). While the line-mass is supercritical,
i.e., the region of gravitational instability coincides with the region where the proto-
star/bound core is located, the right figure suggests that the filament is gravitationally
stable and no star formation is currently taking place.

where, Mline ≡
∫ R

0
2πrρdr is mass per unit length (Line-mass). On the other hand,

pressure gradient force is

Fp = ρ−1 ∂p

∂r

∣∣∣∣
r=R

∝ R−2γeff+1, (1.13)

where, p = Kργeff is pressure, γeff is effective specific ratio. The ratio of Eq. 1.12
and Eq. 1.13 is

Fp

Fg

= R2(1−γeff). (1.14)

For the isothermal cylindrical system (γeff = 1), it is possible to become dynamical
equilibrium when a filament has the critical line-mass. The hydro-static equilib-
rium distribution is given by

ρeq(r) = ρc

[
1 +

(
r

H0

)2
]−2

, (1.15)
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where, ρc and H0 ≡
√

2c2s
πGρc

are central density and scale-height. To create stars

in filaments, their line-masses have to exceed the critical line-mass Mline,cr for
gravitational instability,

Mline,cr,th =

∫ ∞

0

2πρeq(r)rdr = 2c2s/G ≃ 17 M⊙ pc−1, (1.16)

where, cs ≃ 0.2 km s−1 is the isothermal sound speed of typical molecular clouds (e.g.,
Stodólkiewicz, 1963; Ostriker, 1964; Inutsuka &Miyama, 1992a; Inutsuka &Miyama,
1997). Non-thermal velocity dispersion ∆v, i.e., turbulence, makes the critical line-
mass increase. Eq. 1.16 can be written as

Mline,cr,tot = 2
(
c2s +∆v2

)
/G ≃ 17 + 425

(
∆v

1 km s−1

)2

M⊙ pc−1. (1.17)

The magnetic field also makes the critical line-mass amplify. It is known that
star-forming filaments are threaded by magnetic field perpendicularly (see details
in §1.2.4). Tomisaka (2014) gave the formula of line-mass including the effect of
the magnetic field is

Mline,cr,B ≃ 2.2

(
w

0.1pc

)(
B

10µG

)
M⊙pc

−1 + 13.9

(
cs

0.19 km s−1

)2

M⊙pc
−1,

(1.18)
where, w and B are the widths of a filament and magnetic field strength.

The column density profiles are parameterized by Plummer function,

N(x) = Ap
n0Rflat(

1 + (x/Rflat)
2)(p−1)/2

, (1.19)

where, Ap and x are constant and projected distance from filament’s axis. Rflat ≡
N(0)/(n0Ap). The equilibrium filament width i.e., full-width-half-maximum of the
Plummer function is given by

weq = 2Rflat

(
22/(p−1) − 1

)1/2
. (1.20)

For p = 4, Eq. 1.19 corresponds isothermal case, corresponding 3D profile is Eq.
1.15, Ap = π/2, Rflat = H0, and weq ≃ 1.53Rflat.

1.2.2 Formation

Previous theoretical research on filament formation proposed several types of mech-
anisms. We summarize the filament formation mechanism in the following, Figure
1.8, table 1.1.

Type G

The first one is a well-known self-gravitational fragmentation of a sheetlike cloud (Tomisaka
& Ikeuchi, 1983; Miyama et al., 1987a,b; Nagai et al., 1998; Kitsionas & Whit-
worth, 2007; Balfour et al., 2015, 2017), which is created when molecular clouds
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Figure 1.8: Schematic illustrations of filament formation mechanisms (Abe et al., 2021;
Pineda et al., 2022). See also table 1.1

are shock-compressed. In this paper, we call this type of filament formation type G
formation. According to linear stability analysis conducted by Nagai et al. (1998),
gravitational instability creates filaments with line-masses larger than but compa-
rable to the critical line-mass when the width of the sheet is comparable to the
Jeans length (i.e., the self-gravity is important in the dynamics).

Type I

Padoan & Nordlund (1999), Pudritz & Kevlahan (2013), Matsumoto et al. (2015),
and, Federrath (2016) showed filament formation induced by turbulence in molec-
ular clouds by using three-dimensional magnetohydrodynamic (MHD) simulation.
Padoan & Nordlund (1999) reported that the turbulent velocity given in an ini-
tially uniform molecular gas induces the formation of shock-compressed sheets,
and then the interaction of two sheets creates a filament at the intersection of
them. We call this mechanism type I filament formation. It should be noted that
the type I process occurs in the super-Alfvénic case, in which the initial Alfvénic
Mach number MA,i ≳ 10.
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Type O

Inoue & Fukui (2013), Vaidya et al. (2013), Inutsuka et al. (2015), and Inoue et al.
(2018) reported that the filaments are generated when a shock wave sweeps a cloud
containing density inhomogeneity or clumps. In this case, a dense blob embedded
in a magnetized molecular cloud is transformed into a dense filament in the shock-
compressed layer owing to the effect of an oblique (or curved) MHD shock wave.
Throughout this study, this filament formation mode is called type O mode. It
should be noted that the effects of thermal instability and turbulence cause molec-
ular clouds to be highly clumpy by nature (e.g., Inoue & Inutsuka, 2012a). Note
that in most theoretical works that study structure formation in molecular clouds
by turbulence, a uniform-density gas is used as an initial condition. Therefore the
type O mode is missing in the studies that assume the uniform initial density. As
we show subsequently, the type O mode dominates over other modes when the
shock Mach number is high.

Type C

Chen & Ostriker (2014) and Chen (2015) showed another filament formation be-
hind shock waves that is different from type O. They found that filaments are
formed by converging gas flow components along the local magnetic field in the
case the substantial turbulent motions are given in the initial condition. We call
this mode type C filament creation mechanism. This mechanism creates the fila-
ments that are perpendicular to the background magnetic field when the turbulence
is sub-Alfvénic (Chen & Ostriker, 2014; Chen, 2015; Planck Collaboration XXXV,
2016). This is because the component of turbulent velocity perpendicular to the
magnetic field is suppressed by magnetic tension force, and only motion parallel to
the magnetic field can compress the gas. Padoan & Nordlund (1999) also reported
the type C process in the trans-Alfvénic case (MA,i ∼ 1).

Type S

Hennebelle (2013) reported that a small clump in a turbulent molecular cloud
is stretched by turbulent shear flows and evolves into a small line-mass filament
parallel to the magnetic field (see also Inoue & Inutsuka, 2016, for the origin of
HI filament/fiber). We call this mode type S mechanism, and this type S creates
filaments that are parallel to the magnetic field lines in contrast to the other types
that create filaments perpendicular to the magnetic field lines. Xu et al. (2019)
showed that the anisotropic nature of turbulent MHD eddies results in filamentary
structure formation parallel to a magnetic field.

1.2.3 Evolution

Accretion

Gas accretion onto filaments is a crucial process to determine the evolution and
physical properties such as line-mass and width of filaments. Klessen & Hen-
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Table 1.1: Filament formation mechanisms.
Category Filament vs. Magnetic field A brief description

of the formation mechanism

type G perpendicular self-gravitational fragmentation
of a sheetlike cloud

type I - the intersection of two shocked layers
type O perpendicular the effect of an oblique MHD shock wave
type C perpendicular converging gas flow components

along the magnetic field
in the post-shock layer

type S parallel stretching by turbulent shear flows,
small line-mass

nebelle (2010) argued that turbulence is generated by the accretion in a general
sense and that turbulence affects evolution. As mentioned in §1.2.2, the formation
mechanisms of high-density filaments, which are important for star formation, are
mainly Type G, C, and O. The common feature of these mechanisms is that fil-
aments are formed by gas flowing perpendicular to the long axis of the filament
(along the magnetic field) in a shocked-compressed sheet. Line observations also
show the evidence of the perpendicular accretion onto filaments (Palmeirim et al.,
2013; Shimajiri et al., 2019; Chen et al., 2020). Especially, Shimajiri et al. (2019)
claimed that the accretion onto filaments in the shocked sheet. The accretion rate
Ṁline is estimated to range from a few 10 to a few 100 M⊙ Myr−1 pc−1 (Palmeirim
et al., 2013; Bonne et al., 2020). The accretion timescale can be written as

tacc =
Mline

Ṁline

, (1.21)

which is the order of ∼ 0.1 Myr.
Shock wave with the Alfvén Mach number MA < 1 and sonic Mach number

Ms > 1 is called “slow (mode) shock.” Given that the massive filaments are
formed in the post-shock layer threaded by the strong magnetic field, the surface
of the filament is naturally bound by the slow shocks. Lessen & Deshpande (1967)
found through linear stability analysis that the slow shock front is corrugationally
unstable (slow shock instability, hereafter SSI). The mechanism of SSI is as follows.
For the slow shock, in contrast to the fast shock, the component of the magnetic
field tangential to the shock surface decrease across the front. Thus, when the
shock corrugates, magnetic field lines kink as red lines shown in Figure 1.9. Because
gas flows along the magnetic field, the gas converges behind the peak of the shock,
while it diverges behind the valley. Such flow patterns increase (decrease) the
pressure behind the peaks (valleys), which further push up (pull down) the shock
front unstably. Édel’Man (1989) showed that the approximated dispersion relation
of SSI for MA ≪ 1 can be written as

ω ∼ −i
γ − 1

γ + 1
M2

Avshk, (1.22)
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Figure 1.9: Schematic illustration of two-dimensional slow mode shock.

where, ω, vsh, and k are frequency, shock velocity, and wave number of the shock
corrugation. As an more accurate solution, Édel’Man (1989) derived the approxi-
mate dispersion relation for γ = 5/3:

ω ≃ −i
(
0.208M2

A − 0.0775M4
A + 0.06M6

A

)
vshk. (1.23)

Eqs. (1.22) and (1.23) show that the most unstable scale is infinitesimally small.
This unphysical feature stems from ideal approximation and resulting discontinu-
ous treatment of the shock. To know the physical scale length of the SSI, we have
to take a non-ideal effect into account.

Fragmentation

Understanding the fragmentation of filaments is important since fragmentation
results in core formation. Linear analysis by Stodólkiewicz (1963); Inutsuka &
Miyama (1992b) shows the most unstable wavelength for self-gravitational frag-
mentation of filaments λmax,

λmax ∼ 4× weq. (1.24)

The distance collects gas is typically four times its width when a filament frag-
ments. Thus, (sub-) critical filaments will form equally spaced cores. The e-folding
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time for most unstable mode (λ = λmax) is

tfrag =
3

2
√
πGρ0

= 1.66
( n0

103 cm−3

)−1/2

Myr. (1.25)

However, the actual spacing of cores given by observations is not consistent
with theories. The spacing is irregular or shorter than λmax or scattered. This
complexity might come from the accretion onto filaments considering the accretion
timescale tacc and the fragmentation timescale tfrag can be comparable. Clarke
et al. (2016) performed numerical simulations and showed that accretion affects the
dispersion relation for gravitational fragmentation. Chira et al. (2018) emphasized
the importance of turbulence and density enhancements during the formation of
filaments.

1.2.4 Properties

Line Mass

Figure 1.10: Crest-averaged line-mass histogram given by HGBS (André et al., 2019;
Arzoumanian et al., 2019). Solid and dotted lines represent a Salpeter-like power law
∆N/∆ logMline ∝ M−1.6±0.1

line and the critical line-mass (Eq. 1.16).

In Figure 1.10, we show line-mass histogram (Filament line-mass function;
FLMF) given by Herschel Gould Belt Survey (HGBS) data (André et al., 2019;
Arzoumanian et al., 2019). Solid and dotted lines represent a Salpeter-like power
law ∆N/∆ logMline ∝ M−1.6±0.1

line and the critical line-mass (Eq. 1.16). Figure 1.10
show typical line-mass range of 5–17 M⊙ pc−1. Both super-critical and sub-critical
filaments exist, and stars form in at least thermally super-critical (Mline Mline,cr,th)
ones. The high line-mass region (Mline ≳ 17M⊙ pc−1) is consistent with a Salpeter-
like power, thus also consistent with initial mass function (IMF) and (CMF), in
this sense, it is interesting considering the link among FLMF, IMF, and CMF.
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However, there have been no explanations. In Chapter 2, we give hints to solve
the origin of FLMF.

Infrared Dark Clouds (IRDCs) are the sites for massive mass star forma-
tion typically located at distances of a few kpc and have also high line-mass
(≳ 100 M⊙ pc−1) filamentary structures (e.g., Peretto et al., 2014; Henshaw
et al., 2014). Fukui et al. (2019); Tokuda et al. (2019) show that massive filaments
of ≳ 100 M⊙ pc−1 exist in the Magellanic Clouds using ALMA observations.

Length Scale

Figure 1.11:

Figure 1.12:

Arzoumanian et al. (2018); André et al. (2019) revealed that Herschel Gould
Belt filaments have typically 0.5 pc length. In the left panel of Figure 1.12, we show
the histogram of 599 filaments’ width. The mean value is 0.1 pc with a spread by
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a factor of 2. Similar results are given by C18O line emission observations (Orkisz
et al., 2019; Suri et al., 2019). The widths given by using a denser tracer tend to
be smaller than 0.1 pc, but these observations reflect the internal sub-structure in
filaments. It is noted that the dynamic range of the dust emission is wider than the
line emission, therefore the dust observations provide the real filament’s width. In
the right panel of Figure 1.12, we show the relation between column density (line-
mass) and the widths of filaments in nearby clouds. The remarkable point is that
the widths of filaments are 0.1 pc regardless of their line-mass, and are inconsistent
with the Jeans length. The width of massive filaments should depend on column
density (line-mass) due to the strong self-gravity and should be smaller than 0.1 pc.
All theoretical models and simulations could have not explained the observational
fact (Fischera & Martin, 2012; Federrath, 2016; Ntormousi & Hennebelle, 2019).
Fischera & Martin (2012) considered the external pressure and calculated the
dynamical equilibrium of a filament. They concluded that sub-critical filaments
have a width of 0.1 pc. However, they did not explain the maintaining mechanism
of the width of super-critical filaments. This contradiction between the theories
and the observational fact is one of the open questions in the star formation domain
remaining about 10 years. In this thesis, we call this problem “0.1 pc problem,”
and discuss it in Chapter 4.

Radial Profile

The radial profile of filaments provides information about their stability, equation
of state, and environments. As mentioned in §1.2, the index of p = 4 corresponds
to the isothermal case. However, most filaments show p = 1.5–2.5 (Arzoumanian
et al., 2011; Palmeirim et al., 2013), indicating that the isothermal equilibrium
cannot explain the feature of the observed filaments. Tomisaka (2014); Kashi-
wagi & Tomisaka (2021) calculated the equilibrium solution of a filament laterally
threaded by the magnetic field and showed the index 2.48 ≲ p ≲ 2.73. Pressure-
confined filaments also have flatter profile p < 4 (Fischera & Martin, 2012).

Magnetic Field

Observation of polarized dust emission or stellar polarization indicated that the
direction of the magnetic field is perpendicular to the long axis of the high col-
umn density filaments (Palmeirim et al., 2013; Planck Collaboration XXXV, 2016;
Soler & Hennebelle, 2017). For low column density filaments (N ≲ 1021−22 cm−2),
on the other hand, the long axis of filaments tends to orient parallel to the mag-
netic field. These facts can be interpreted considering the mechanism of filament
formation (see §1.2.2).

Davis-Chandrasekhar-Fermi method and the Zeeman observations derive plane-
of-sky and line-of-sight magnetic field strength (Davis, 1951; Chandrasekhar &
Fermi, 1953; Crutcher, 2012). The typical magnetic field strength is 70 µG for
nearby filaments and 45 – 500 µG for IRDC. Note that the observations of the
magnetic field strength have limitations or uncertainty.

17



Turbulence

Figure 1.13: Total velocity dispersion v.s. line-mass. Blue points represent IC5146,
magenta for Aquila, cyan for Polaris, red for NGC2264C, and green for DR21 fila-
ments. The squares and triangles are velocity dispersion measured from N2H

+ and
C18O spectra, respectively. The grey shade shows the theoretical position of the critical
line-mass (Eq. 1.16) for temperatures in the range T = 10–20 K. The dotted is Mline

= Mline,vir/2 = 2σ2
tot/G/2, which corresponds to the boundary between gravitationally

unbound and bound filaments. The blue solid line shows the best power-law fitting line
for the gravitationally bound filaments. The best-fit σtot ≡

√
c2s +∆v2 ∝ M0.36

line ± 0.07
does not change a lot (0.31 ± 0.08) when the fitting is performed without DR21 and
NGC2264C filaments.

The gas velocity dispersions in filaments are measured by line observations.
Arzoumanian et al. (2013) shows that the velocity dispersion in filaments close to
sound speed and finds the relation between total velocity dispersion and line-mass
such as σtot ∝ M0.36

line ± 0.07, where σtot ≡
√

c2s +∆v2 (Figure 1.13).
Simulations show that turbulence within a filament is driven by gas accretion

from the outside of the filament (Seifried & Walch, 2015; Clarke et al., 2017;
Heigl et al., 2018). However, Heigl et al. (2020) indicated that turbulence does not
contribute to the stability of filaments because the profile of turbulent ram pressure
is flat. Furthermore, it is known that turbulence kinetic energy results in a only
few percent of the kinetic energy of the accretion flow (Klessen & Hennebelle,
2010). The resulting velocity dispersion is trans-sonic to supersonic (Seifried &
Walch, 2015; Clarke et al., 2017; Heigl et al., 2018, 2020)], which agrees with
observations (Arzoumanian et al., 2013). Therefore, the statement in previous
works is that gas accretion has nothing to stabilize the radial collapse of filaments.
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1.3 Purpose of This Thesis

This study aims to understand the initial conditions of the star formation process.
We investigate the formation and evolution of filamentary molecular clouds. Previ-
ous theoretical research on filament formation proposed many types of mechanisms
as shown in §1.2.2. However, it is still unclear which type is responsible for the
creation of star-forming filaments. Most of the proposed mechanisms (type I, O,
C, and possibly type G) are triggered by shock compression. Thus, in this study,
we perform a series of isothermal MHD simulations of filament formation by shock
waves, focusing on the influences of shock strength, turbulence, and self-gravity
on the filament formation mechanism. Note here that, since type I is effective
only in highly super-Alfvénic turbulence, we hardly observe it in the results of our
simulations that are performed under a realistic 10 µG initial magnetic field.

Previous studies have demonstrated that strong MHD shock compression al-
lows for the formation of massive cores (Inoue & Fukui, 2013; Inoue et al., 2018;
Sakre et al., 2021). However, these studies implicitly assumed a long duration
of a shock wave (corresponding to collisions between large clouds), whereas the
realistic duration of a shock wave depends on the situation, e.g., the shock created
by cloud collision cannot be kept over a crossing time. On the other hand, simula-
tions of unmagnetized cloud collisions by Takahira et al. (2014) demonstrated that
gravitationally bound cores do not form in the case of short duration. Therefore,
a systematic study into the effect of shock duration on the resulting filament/core
formation is required. Furthermore, Enokiya et al. (2021) demonstrated that the
peak column density of a star-forming region correlates with the number of OB
stars in the system, and massive star clusters with more than 10 OB-type stars
are associated with massive clouds whose peak column density exceeds 1023 cm−2.
Thus, the physical origin of the threshold peak column density of 1023 cm−2 must
be clarified. In Chapter 3, we show the effect of shock wave duration on star
formation.

As shown in §1.2.4, the width of filaments is one of the significant quan-
tities to determine the initial condition for star formation. In linear theory,
the self-gravitational fragmentation length scale of the filament depends on the
width (Stodólkiewicz, 1963; Inutsuka & Miyama, 1992a). Arzoumanian et al.
(2018) revealed that Herschel Gould Belt filaments have characteristic width of
0.1 pc. Similar results are given by C18O line emission observations (Orkisz et al.,
2019; Suri et al., 2019). Remarkably, the filaments keep their width regardless of
their line-mass even beyond 100 M⊙ pc−1. If we only consider thermal support
against gravity, such a high line-mass structure cannot keep 0.1 pc. Many au-
thors studied the effects of turbulence and/or magnetic field and have shown that
sub-critical and mildly super-critical filaments have a width of 0.1 pc (Fischera &
Martin, 2012; Auddy et al., 2016; Priestley & Whitworth, 2022; Federrath, 2016;
Ntormousi & Hennebelle, 2019), but still, the constant width of filaments par-
ticularly for massive filaments remains a mystery. Still, we need to understand
the origin of universal width particularly for massive filaments by examining the
detailed process of gas accretion flows onto the filament. We expect that the SSI
can deposit additional energy to the filament, because the corrugation of the shock
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front generally leads to turbulent flows behind the shock (e.g., Inoue et al., 2012;
Inoue & Inutsuka, 2012b). Eqs. (1.22) and (1.23) show that the most unstable
scale is infinitesimally small. This unphysical feature is caused by ideal approx-
imation and results in the discontinuous treatment of the shock. To know the
physical scale length of the SSI, we take ambipolar diffusion into account. As the
first step to understanding the effect of SSI on filament width, we study the effect
of ambipolar diffusion on the SSI and derive the most unstable scale. In realistic
situations, filaments are bound by two shocks. Because the separation of these two
shocks is narrow and they are threaded by the same magnetic field lines, we can
expect that the two shocks dynamically influence each other. As the second step,
we study the effect of interacting two shocks and show that the slow shock instabil-
ity mediates inhomogeneous postshock flows and can provide additional dynamical
pressure to the filament. As the third step, we perform a three-dimensional SSI
simulation including self-gravity and ambipolar diffusion, and compare the column
density profile and filaments width with observations. We challenge to explain the
origin of the universality of filament width.
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Chapter 2

Classification of Filament
Formation Mechanisms

2.1 Short Introduction

Previous theoretical research on filament formation proposed many types of mech-
anisms as shown in §1.2.2. However, it is still unclear which type is responsible
for producing star-forming filaments. Most proposed mechanisms, including types
I, O, C, and possibly type G, are triggered by shock compression. In this study,
we perform a series of isothermal MHD simulations to investigate filament for-
mation by shock waves, focusing on the impacts of shock strength, turbulence,
and self-gravity on the filament formation mechanism Note here that, since type
I is effective only in highly super-Alfvénic turbulence, we hardly observe it in our
simulations performed under a realistic 10 µG initial magnetic field. In addition,
we analyze the line-mass distribution of the simulated filaments. The paper is
organized as follows: In §2, we provide the setup of our simulations, and we show
and interpret the results including the filament line-mass distribution in §3. In §4,
simple models account for the dominant filament formation timescale. Finally, we
summarize the results in §5.

2.2 Setup of Simulations

We solve the isothermal MHD equations including self-gravity using the SFU-
MATO code (Matsumoto, 2007). This code integrates the MHD equations using a
Godunov-type scheme and an HLLD Riemann solver (Miyoshi & Kusano, 2005),
providing third- and second-order accuracy in space and time, respectively. To
maintain the divergence-free condition of the magnetic field (∇ · B = 0), we em-
ploy the divergence cleaning method (Dedner et al., 2002). Poisson’s equation is
solved using a multi-grid method.

We investigate the mechanism of filament formation induced by shock waves
by performing converging flow simulations. A schematic illustration of the ini-
tial condition is shown in Figure 2.1. We prepare a cubic numerical domain of
side lengths Lbox = 6.0 pc consisting of 5123 uniform numerical cells, indicating
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Figure 2.1: Schematic diagram of initial condition. The color bar represents the
density magnitude; the black lines are the initial magnetic field lines; and the grey
arrows indicate the orientations of the converging flows.

that the physical resolution ∆x is approximately 0.012 pc. We initially set the
isothermal gas characterized by the isothermal sound speed at cs = 0.2 km s−1.
Because molecular clouds are highly inhomogeneous by nature, we initially add
isotropic density fluctuations given as a superposition of sinusoidal functions with
various wavenumbers from 2π/Lbox ≤ |k| ≤ 32π/Lbox and random phases. The
power spectrum of the density fluctuations is given by (log ρ)2k ∝ k−4 , which can
be expected as a consequence of supersonic turbulence (Beresnyak et al., 2005;
Elmegreen & Scalo, 2004; Scalo & Elmegreen, 2004; Larson, 1981; Heyer & Brunt,
2004). Thus, the initial density structure of our simulations is parameterized by
mean density n̄0 = ρ̄0/m = 100 cm−3 and dispersion ∆n/n̄0 = 0.5, where ρ̄0 and
m = 2.4 mproton are the mean mass density and the mean mass of the molecular
gas particles, respectively. In addition to density fluctuations, we set the initial
turbulent velocity field depending on the model summarized in Table 3.1. The
initial turbulent velocity fluctuation has a dispersion of 1.0 km s−1 with a power
spectrum of v2k ∝ k−4 following Larson’s law (Larson, 1981).

In addition to the turbulent component, we set the initial coherent velocity
component as vz(z) = −(vcoll/2) tanh[z−3], i.e., two flows colliding head-on in the
x-y plane at z = 3 pc with a relative velocity of vcoll. In the previous studies that
reported the type C filament formation, the filaments are created in the shock-
compressed layer with a shock velocity of a few km s−1. However, in the studies
that found the type O mechanism, high shock velocity cases of ∼ 10 km s−1 are
studied. To systematically study the filament formation mechanism, we perform
simulations using various shock velocities. Specifically, we examine cases with
vcoll = 3, vcoll = 6, vcoll = 8, vcoll = 10, and 12 km s−1. Table 3.1 includes a
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Table 2.1: Model parameters.
Model Name Collision Velocity Shock Velocity Self-Gravity Turbulence

vcoll [km s−1] vsh[km s−1]

v12GyTn 12 7.0 Yes No
v12GnTn 12 7.0 No No
v12GyTy 12 7.0 Yes Yes
v12GnTy 12 7.0 No Yes
v10GyTn 10 6.0 Yes No
v8GyTn 8.0 5.0 Yes No
v6GyTn 6.0 4.0 Yes No
v3GyTn 3.0 2.5 Yes No
v3GnTn 3.0 2.5 No No
v3GyTy 3.0 2.5 Yes Yes
v3GnTy 3.0 2.5 No Yes

summary of the model parameters. In the model names, the number following
“v” represents the value of vcoll in units of km s−1, and the characters “y” and
“n” following “G” and “T” represent simulation with and without self-gravity and
initial turbulence, respectively.

At the x-y boundary planes, the velocity is fixed at vcoll/2, and the density
is given by n0(x, y, z = vcollt/2) for the z = 6 pc plane and n0(x, y, z = Lbox −
vcollt/2) for the z = 0 pc plane, where n0(x, y, z) is the initial density field including
fluctuations. For the z-x and y-z boundary planes, we impose periodic boundary
conditions.

We initially set a uniform magnetic field of B0 = (0, 10 µG, 0), which is per-
pendicular to the direction of the shock propagation. This magnetic field strength
is consistent with observed magnitude in molecular clouds (e.g., Crutcher, 2012;
Heiles & Crutcher, 2005). Because the magnetic field component perpendicular to
the direction of the shock propagation is expected to be strongly amplified by the
shock compression, whereas the parallel component is not, the initial z-component
of the magnetic field would play a minor role even if it is given.

To investigate its impact on filament formation, we perform simulations both
with and without considering self-gravity. In cases where self-gravity is taken
into account, we employ the sink particle technique in regions where gravitational
collapse is anticipated to occur. The sink particle generation condition is the
same as that discussed in previous research (Inoue et al., 2018; Matsumoto et al.,
2015). It should be noted that the employment of the sink particle is simply
for a continuation of the simulations even after the onset of local gravitational
collapse1. In this paper, we will not focus on the information of sink particles,
because the resulting total mass of the sink particles is much smaller than that of
dense filaments (for instance, the final total mass of the sink particles is only 3%

1The threshold density for the sink formation is 5.6 × 104 cm−3. This value is much lower
than that used in our previous studies because we do not employ the adaptive mesh refinement
in the present study
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to that of dense filaments for model v12GyTy, and 6% for model v3GyTy).

2.3 Results

2.3.1 High Shock Velocity Case
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Figure 2. 本研究で行ったシミュレーション結果の一例。 
速い衝突速度(相対速度12 km/s)で初期乱流がない場合で、 

Figure 2.2: Column density maps at time t =
0.2 (top), 0.4 (middle), and 0.8 (bottom) Myr. Left row (panels I, II, and
III): Column density in the y-z plane of model v12GyTn. Middle row (panels i,
ii, and iii): Same as panels (I)-(III) but for the x-y plane. Right row (panels i’,
ii’, and iii’): Same as panels (i)-(iii) but for model v12GnTn.

In the case of vcoll = 12 km s−1, the flow collision induces fast isothermal MHD
shock waves. According to the shock jump condition (e.g., §4.1 of Fukui et al.,
2020), the compression ratio of the isothermal fast shock is given by

ρ1/ρ0 = v0/v1 ≃
√
2MA, (2.1)

where MA ≡ v0/vAlf,0 is the Alfvénic Mach number, the Alfvén velocity is given by
vAlf,0 = B0/

√
4πρ0 and subscripts 0 and 1 indicate preshock and postshock values

respectively. The preshock velocity in the shock rest-frame v0 is equivalent to the
shock velocity in the upstream rest frame vsh. Given that the numerical domain
is on the postshock rest frame, the shock wave propagates with the velocity of
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Figure 2.3: Column density maps at time t =
0.2 (top), 0.4 (middle), and 0.8 (bottom) Myr. Left row (panels I, II, and
III): Column density in the y-z plane of model v12GyTy. Middle row (panels i,
ii, and iii): Same as panels (I)-(III) but for the x-y plane. Right row (panels i’,
ii’, and iii’): Same as panels (i)-(iii) but for model v12GnTy.

v1 ≃ v0/(
√
2MA). The relation between the converging flow velocity vcoll and the

shock velocity vsh is given by

vsh = vcoll/2 + v1

≃ vcoll/2 + vAlf,0/
√
2

≃ 6
( vcoll
12 km s−1

)
km s−1

+1

(
B0

10 µG

)( n0

100 cm−3

)−1/2

km s−1. (2.2)

In Figure 2.2, we show snapshots of the column density structure of the results of
models v12GyTn and v12GnTn at t = 0.2 (top), 0.40 (middle), and 0.60 (bottom)
Myr. In constructing the column density, we identify the shock fronts and integrate
the density only in the shock-compressed region. To identify the shock fronts, we
scan the total pressure ρ(x, y, z)c2s +B2(x, y, z)/8π along the z-axis from upstream
(z = 0 and 6) to downstream (z = 3) and define the two shock fronts as the largest
and smallest locations of z(x, y) where the following condition is satisfied:

ρ(x, y, z)c2s +B2(x, y, z)/8π ≥ fjump × ρ̄0v
2
coll. (2.3)
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Here, we choose fjump = 0.2 for convenience, but we confirmed that the result with
fjump=0.4 gives the indistinguishable result to fjump = 0.2 case.

Panels (I)-(III) and (i)-(iii) in Figure 2.2 show column density snapshots of
model v12GyTn in the y-z and x-y planes, respectively. Panels (I), (II), and (III)
show two shock waves induced by the converging flows propagating toward the
positive and negative z-directions. Panels (i)-(iii) and (i’)-(iii’) show the formation
of many filaments regardless of the effect of self-gravity that indicates the filament
formation is not driven by self-gravity in the present high shock velocity cases. In
§2.3.4, we show that very massive filaments as large as 100 M⊙ pc−1 are formed
at t = 1 Myr in this series of high shock velocity results.

Because the present models (v12GyTn and v12GnTn) do not include initial
turbulence, the type O mechanism definitively accounts for the filament formation.

In Figure 2.3, we show snapshots at t = 0.20 (top), 0.40 (middle), and 0.80
(bottom) Myr of models v12GyTy (panels I-III and i-iii) and v12GnTy (panels
i’-iii’). In panels (i)-(iii) and (i’)-(iii’), more (mostly faint) filaments parallel to
the mean magnetic field lines are present compared with that shown in Figure
2.2. This indicates that type C mechanism helps to create (faint) filaments. By
comparing these two models, we again find that type G does not account for
filament formation. However, see below for Figure 2.8 where we will see that the
resulting filaments tend to disperse in the absence of self-gravity.

To clarify the dominant filament formation mechanism, we show the local
density cross-sections around the five major filaments as the results of models
v12GyTn in Figure 2.4 and v12GyTy in Figure 2.5. The high-density blobs (yellow
regions) in the local cross-section maps correspond to those of the major filaments.
In the type O mechanism, the post-shock gas flows toward a region behind the
concave shock surface, where the filament is formed. Such a characteristic flow
is created due to the effect of the oblique MHD shock wave. Further details of
the flow structure have been reported by Inoue & Fukui (2013) and Inoue et al.
(2018). The curved shock morphology and velocity vectors (black arrows) shown
in the cross-section panels in both v12GyTn and v12GyTy models clearly support
the type O origin of the (major) filaments.

In principle, the flows in the post-shock region induced by the oblique MHD
shock may drive turbulence in the long-term evolution. However, at least in the
stage of filament formation, the converging flows along the bending magnetic field
are laminar. Thus, it is not appropriate to simply say that type O filament for-
mation is involved in the simulation of supersonic turbulence in general. Type O
mechanism is expected to selectively appear in the compression by shock waves
with a relatively smooth surface, such as the one caused by an expansion of the
super-shell or HII region. It should be noted that we can observationally dis-
tinguish type O mechanism from the other types by measuring the structure of
magnetic and velocity fields (Arzoumanian et al., 2018; Tahani et al., 2018, 2019;
Bonne et al., 2020; Chen et al., 2020; Kandori et al., 2020a,b).
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2.3.2 Low Shock Velocity Case

In Figure 2.6, we show snapshots at t = 0.6 (top), 1.4 (middle), and 1.8 (bottom)
Myr of models v3GyTn (panels I-III and i-iii) and v3GnTn (panels i’-iii’). From Eq.
(2.2), the average shock velocity is calculated to be 2.5 km s−1 for vcoll = 3 km s−1

simulations presented in this section. Although filamentary structures are created
in panel (iii), no obvious dense filaments are shown in panel (iii’). This suggests
that the type O mechanism does not work for this low shock velocity case and that
self-gravity (type G) accounts for the filament formation in model v3GyTn.

Figure 2.7 shows snapshots at t = 0.4 (top), 1.20 (middle), and 2.00 (bottom)
Myr of model v3GyTy (panels I-III and i- iii) and the model v3GnTy (panels
i’-iii’). The similar filamentary structure formation occurring at t = 0.4 and 1.2
Myr in both models suggests that type C filament formation is important for the
low shock velocity models2. In the later stage of t = 2.0 Myr, the results of model
v3GyTy show that the filaments are attracted to each other by the self-gravity
that eventually induces filament collisions and enhances the filament line mass.
More detailed analysis is given in §2.3.4.

2.3.3 Filament Formation Timescale vs. Free-Fall Time

In this section, we use the following procedure to compute the filament forma-
tion time. First, we identify the filaments by employing the FilFinder algo-
rithm (Koch & Rosolowsky, 2015) that returns filament skeletons for a given input
two-dimensional image. A skeleton is a single-pixel-width object that corresponds
to the major axis of a filament. To focus on major filaments, we neglect filaments
having column density smaller than 1.5× N̄sh, where N̄sh is the mean column den-
sity of the shocked region. We confirmed that the result does not change even if we
change the factor 1.5 to 2.0. We stress that because of this minimum column den-
sity requirement for the filament identification, our analysis is given below always
omits faint filaments with column densities smaller than 1.5× N̄sh.

Then, we calculate the filament mass fraction Ffil defined by

Ffil ≡ Mfil,tot/Msh, (2.4)

where Mfil,tot and Msh are the total mass of the filaments in the snapshot and the
shocked region mass, respectively. Mfil,tot is computed by integrating the gas col-
umn density over the region around 0.1 pc of the filament skeleton (Arzoumanian
et al., 2011; Koch & Rosolowsky, 2015). Using the Ffil, we define the filament
formation time tfil as the time at which the filaments are produced most actively.
Specifically, The time at which ∆Ffil/∆t reaches its maximum value is defined as
the tfil. Where ∆t and ∆Ffil are the one-tenth of free-fall time tff in the shocked
layer and the increment of Ffil in the time interval ∆t, respectively.

The free-fall time in the post-shock layer, which gives the timescale of the

2Even in the low shock velocity models, some major filaments appear to be formed by type
O mechanism.
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self-gravitating sheet fragmentation (Nagai et al., 1998), can be estimated as

tff =

√
1

2πGρ̄1

=

√
v̄Alf

2
√
2πGρ̄0v̄sh

=

√
B0

4
√
2π3/2Gρ̄

3/2
0

(
vcoll/2 +B0/

√
8πρ̄0

)
≃ 1.0 Myr

(
B0

10 µG

)1/2 ( n̄0

100 cm−3

)−3/4

×
[(

vcoll
12 km/s

)
+ 0.17

(
B0

10 µG

)( n̄0

100 cm−3

)−1/2
]−1/2

, (2.5)

where ρ̄1 ≃
√
2MAρ̄0 and v̄Alf = B0/

√
4πρ̄0 are the mean density of the shocked

layer and the mean Alfvén velocity, respectively (from eq. [2.1]), and v̄sh = vcoll/2+
v1 ≃ vcoll/2 +B0/

√
8πρ̄0 represents the mean shock velocity (eq. [2.2]).

Figure 2.8 represents the evolution of the filament mass fraction for the high
shock velocity models, in which the time is normalized by the free-fall time tff . As
we have shown in § 2.3.1, major filaments in these models are created by the type
O mechanism. Figure 2.8 confirms that the formation timescale of the filaments
by type O mechanism is much faster than the timescale of self-gravity.

Figure 2.9 shows the evolution of the filament mass fraction for the low shock
velocity models. In the results of model v3GyTn (panel c), the filament formation
time tfil coincides with the free-fall time tff ≃ 1.6 Myr. This supports our discussion
in § 2.3.2 such that the filaments are created by type G mechanism. In panels (d)
and (d’), type C occurs earlier than the free-fall time.

Figure 2.10 shows the evolution of the filament mass fraction (solid lines) and
the filament formation time (dashed lines) for the several shock velocity models
without turbulent velocity fluctuation such as v12GyTn (cyan), v10GyTn (blue),
v8GyTn (purple), v6GyTn (red), and v3GyTn (orange). We can confirm that the
filament formation time increases with a decrease in shock velocity, indicating that
the dominant filament formation mechanism gradually changes with a decrease of
shock velocity from the type O to type G mechanism. Figure 2.10 suggests thresh-
old collision velocity for type O mechanism is approximately vcoll ∼ 4.5 km s−1,
corresponding to vsh ∼ 3.3 km s−1.

2.3.4 Filament Line Mass Function

To calculate the line-mass histogram, we utilize the filament skeletons identified in
the previous section. To do so, we first determine the direction perpendicular to
the filament at each grid on the filament skeleton in the projection plane. Then,
we compute the line mass of the filament at each skeleton grid by integrating the
gas column density along the normal directions within 0.1 pc of the skeleton grid.
As a result, the line mass evaluated in our histogram represents the local apparent
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line mass at each skeleton grid in the 2D projection plane, rather than the average
line mass of each filament.

In the top panels of Figure 2.11, we plot the line-mass functions of model
v12GyTn at t ≃ tfil (top-left) and a later stage of t = 1.3 Myr (top-right). The
bottom panels are the same as the top panels but for model v12GyTy. The hori-
zontal and vertical axes are the local line mass of the filament at a skeleton pixel
(or a point on the filament axis) Mline and the number of pixels on filament axes
(skeletons), respectively. The pixel size equals to 6/512 pc ≃ 0.012 pc. The black
line represents the power-law function with the Salpeter index, and the green and
the black dashed lines show the critical line mass with and without magnetic field
support, respectively, i.e., Mline,cr = 2c2s/G ∼ 17 M⊙ pc−1 (Stodólkiewicz, 1963;
Ostriker, 1964) and

Mline,cr,B = 2.24
B1w

G1/2
+ 15.4

c2s
G

≃ 13.5

(
w

0.1 pc

)( n̄0

100 cm−3

)1/2
×
[(

vcoll

12 km s−1

)
+0.17

(
B0

10 µG

)( n̄0

100 cm−3

)−1/2
]
M⊙pc

−1

+15.4

(
cs

0.2km s−1

)2

M⊙pc
−1, (2.6)

derived by Tomisaka (2014), where B1 =
√
2MAB0 and w are the mean magnetic

field in the shocked region and the width of filaments, respectively. Note that
eq. (2.6) is estimated by using the mean magnetic field strength in the shocked
layer, which does not give the exact magnetic field strength threading the filaments.
In models v12GyTn and v12GyTy, most of the line-masses are sub-critical at t ≃ tfil
(panels [e] and [g] in Figure 2.11), but they quickly evolve into super-critical ones
by continuous accretion flows induced by the oblique shock in roughly 1 Myr
(panels [f] and [h] in Figure 2.11).

In panels (f) and (h) of Figure 2.11, we can see that the filament line-mass
functions have a Salpeter-like slope ∝ M−1.35

line at large line-masses. This slope is
similar to the line-mass function found in André et al. (2019). Interestingly, this
slope is the same as the high mass part of the core mass function of Inutsuka
(2001). To understand the physical reason for this agreement between specific
models and the Salpeter-like slope, we have to do more simulations by varying the
parameters in our models. This will be done in our next work.

Recent observations suggest that high line-mass filaments greater than 100 M⊙ pc−1

are strong candidates for massive star progenitors (Fukui et al., 2019; Shimajiri
et al., 2019; Tokuda et al., 2019). We stress that such high line-mass filaments are
naturally created in high shock velocity models in a short time.

In Figure 2.12, we show the filament line-mass function for the low shock ve-
locity cases at t ≃ tfil (left panels) and at the time when the maximum line-mass
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exceeds 100 M⊙ pc−1 (right panels). In the results of model v3GyTn, the filaments
have almost critical line mass at t = tfil (panel i), which is consistent with our find-
ing that the filaments are formed by type G mechanism in this model. Panels (k)
and (l) for model v3GyTy show that type C mode can create super-critical fila-
ments. However, the formation of massive filaments around 100 M⊙ pc−1 requires
a relatively long time, i.e., more than 2 Myr after t = tfil.

To compare the histograms in models without self-gravity to the ones with
self-gravity, in Figure 2.13, we show line-mass functions for models v12GnTn,
v12GnTy, v3GnTn, and v3GnTy. The line-mass functions in panels (m) to (p)
are comparable to those in panels (e) to (h), respectively. This suggests that
star-forming filaments can be formed regardless of self-gravity. In panel (t), we
observe that low line-mass filaments vanish and a significant portion of the filament
mass function is truncated compared to panel (l). This indicates that low line-
mass filaments created by type C are transitory, and self-gravity is necessary for
the formation of massive filaments. It should be noted that we impose a column
density threshold of 1.5 × N̄sh for filament identification. The threshold column
density for the filament identification in model v3GnTy at t = 2.3 Myr is set at
6.5× 1021 cm−2. The corresponding minimum line mass of the identified filament
is 13 M⊙ pc−1 when the filament width is 0.1 pc.

2.3.5 Role of Shear: Angle between Filaments and Mag-
netic Field

In the type S mechanism, shear motions in turbulence create faint filaments parallel
to the magnetic field (Soler et al., 2013; Soler & Hennebelle, 2017; Körtgen & Soler,
2020; Inoue & Inutsuka, 2016). To further investigate the role of the shear flow,
we compute probability distribution histograms based on the angles between the
filaments and the mass-weighted average magnetic field in the projection plane.
As we have already determined the filament skeletons, it is straightforward to
calculate the angle.

We show angle histograms of model v12GyTy at t = 0.2 (panels a and b), 0.4
(panels c and d), and 0.8 (panels e and f) Myr in Figure 2.14. The top and bottom
panels are results when t ≃ tfil (see §2.3.3 and Figure 2.8 panel b) and t ≃ tff (eq.
[2.5]), respectively. Left panels (a), (c), and (e) are the angle histograms for the
filaments in the column density range of 0.5 N̄sh to 1.5 N̄sh. Right panels (b),
(d), and (f) are the histograms for the filaments with N > 1.5 N̄sh. We observe
that the majority of filaments, particularly dense filaments, in the right panels are
oriented perpendicular to the magnetic field. In later times, the less prominent
filaments shown in the left panels alter their angle from being perpendicular to
parallel with the local magnetic field. The influence of turbulent shear (type S
mode) can explain this evolution naturally.

In Figure 2.15, we show angle histograms of model v3GyTy at t = 0.4 (panels g
and h), 1.15 (panels i and j), and 2.0 (panels k and l) Myr. Top and bottom panels
are results at t ∼ tfil and t ∼ tff , respectively. As Figure 2.14, the left panels are
for filaments having the column density in the range of 0.5 N̄sh to 1.5 N̄sh, and the
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right panels are for filaments with 1.5 N̄sh. The trend is basically the same as the
result of larger shock velocity simulation (v12GyTy; Figure 2.14), but the angle
distributions are more dispersed especially for fainter filaments (left panels). This
is because model v3GyTy has a slower evolution timescale than model v12GyTy
and has more time for the fainter filaments to be stretched by the turbulent shear
flows.

These results confirm that, except in regions of high column density, the turbu-
lent shear flow elongates the gas structure over time to create a low-density filamen-
tary structure. However, in this case, the filaments are aligned with the magnetic
field lines and their line masses remain lower than the critical line mass (Soler
et al., 2013; Soler & Hennebelle, 2017; Körtgen & Soler, 2020; Inoue & Inutsuka,
2016).

2.4 Discussion

2.4.1 PV diagram in Type O mechanism

To make it possible to compare the actual observations, we show the synthetic
position-velocity (P-V) diagrams across the three major filaments in the results of
the models v12GyTn (Figure 2.16) and v12GyTy (Figure 2.17). The color in the
P-V diagram represents,

F (y, v) =

∫
ρ(x0, y, z) exp

[
−(v − vz(x0, y, z))

2

c2s

]
dz. (2.7)

The red regions in the PV diagrams correspond to filaments. In the Type O
mechanism, it is shown that the gas flow behind curbed shock makes a V-shape
like structure in P-V diagram (Inoue et al., 2018; Arzoumanian et al., 2018, in
particular §4.2 and Figure 12), while the turbulent mechanism does not (Chen
et al., 2020). The V-shaped structure in major filaments of both v12GyTn and
v12GyTy clearly indicates that major filaments are created as a consequence of
the oblique MHD shock compression mechanism when the gas collision velocity is
high.

2.4.2 Estimation of formation time-scales

In this section, we aim to estimate the growth timescale of filaments formed by
the type O (oblique shock effect) and type C (compressive flows involved in ini-
tially given turbulence) mechanisms. The goal is to understand why the dominant
filament formation mechanism changes with shock velocity. We highlight that the
type O and C mechanisms are distinct and have different characteristic timescales.
First, we estimate the filament formation timescale for the type O mechanism. As
shown schematically in panel (A) of Figure 2.18, the oblique MHD shock model
predicts that the mass flux of the post-shock gas flow to the filament is given by
ρ1v0 sin θ, where θ is the oblique shock angle, and we have used the fact that the
velocity component perpendicular to the shock normal is almost conserved across
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the shock3. If we assume constant width w of the filament, the line-mass of the
filament after time t can be written as

Mline = 2ρ1v0wt sin θ. (2.8)

By substituting the isothermal strong MHD shock jump condition ρ1 ≃
√
2MAρ0

(eq. [2.1]), the timescale tO, in which type O mechanism creates filament of the
line-mass Mline, is estimated in the following equation.

tO =
Mline

2ρ1v0 sin θw

=
MlineB0

4
√
2πρ

3/2
0 v20w sin θ

= 0.3 Myr (sin θ)−1
( vsh
7 km s−1

)−2

×
(

Mline

Mline,cr

)( n0

100 cm−3

)−3/2
(

B0

10 µG

)(
w

0.1 pc

)−1

, (2.9)

where we have used the fact that v0 = vsh.
Next, we consider the timescale of type C filament formation. As shown in

panel (B) in Figure 2.18, the filament is formed when a turbulent flow converges
in the shock-compressed slab. In the following equation, we write the velocity of
the converging flows in turbulence as ∆v, their scale as l, and the width of the flow
as h. Because the origin of the converging flow is turbulence, we can use Larson’s
law ∆v ∼ V08 (l/L1)

0.5, where V08 = 0.8 km s−1, and L1 = 1 pc (Larson, 1981).
Then, the mass accumulation timescale is given by

tC = l/∆v ∼ l1/2L
1/2
1 /V08. (2.10)

By using l and w, we can estimate the line mass of the filament as

Mline = ρ1lw. (2.11)

By combining, eqs (2.10)-(2.11), the timescale tC, in which the turbulent flow
creates filament of the line-mass Mline, can be estimated as

tC =
Mline

ρ1w∆v

=

(
MlineL1B0

2
√
2πwV 2

08ρ
3/2
0 vsh

)1/2

= 0.78 Myr
( vsh
7 km s−1

)−1/2
(

Mline

Mline,cr

)1/2

×
(

w

0.1 pc

)−1/2 ( n̄0

100 cm−3

)−3/4
(

B0

10 µG

)1/2

. (2.12)

3The conservation of the parallel velocity component is exact only for the limit of no mag-
netic field. In the case of fast shock, the parallel velocity conservation is a highly accurate
approximation.
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In the top panel of Figure 2.19, we plot the two timescales tO and tC for the
critical line-mass filament (Mline = Mline,cr) as a function of the shock velocity. We
also plot the timescales for the filament with half the critical line mass (Mline =
Mline,cr/2) in the bottom panel. The blue lines represent tO with θ = 30◦; the red
lines are tC; and dashed lines are the free-fall time in the post-shock layer (eq.
[2.5]). When the shock velocity is high (vsh ≳ 5 km s−1, i.e., vcoll ≳ 8 km s−1),
we obtain the relationship of tO < tC < tff , and for the lower shock velocity cases
(vsh ≲ 5 km s−1, i.e., vcoll ≲ 8 km s−1), we get tC < tff < tO. These results are
fairly consistent with the results of the simulations. That is, the type O mechanism
is important for the high shock velocity case, whereas type C is more effective for
the low shock velocity case.

2.5 Summary

We have performed isothermal MHD simulations of the filament formation trig-
gered by shock compression of a molecular cloud. We found that when the shock
is fast (vsh ≃ 7 km s−1), the oblique MHD shock induced flows (type O) works
as the major mechanism for the formation of star-forming filaments irrespective
of the presence of initial turbulence and self-gravity. When the shock is slow
(vsh ≃ 2.5 km s−1), compressive flows involved in supersonic turbulence induce
transient filament formation (type C), but the resulting filaments disperse unless
the line-masses are comparable or larger than the thermal critical line-mass. If we
initially input strong turbulence with velocity dispersion larger than ∼ 5 km s−1

in the simulation, shock waves locally occur in the simulation. Thus, in principle,
the type O process can occur in these simulations. However, it cannot be called
”turbulent” filamentation. On the other hand, type O can be induced almost al-
ways by a single compression of a molecular cloud by interaction with relatively
fast large-scale shock waves, such as from an expanding HII region, a supernova
remnant, or a super-shell. It should be noted that type O and type C can be distin-
guished observationally through a characteristic structure in the position-velocity
map and/or curved magnetic fields as noted in studies by (see, Arzoumanian et al.,
2018; Tahani et al., 2018, 2019; Chen et al., 2020; Kandori et al., 2020a,b). When
the shock velocity is low and no turbulence is set initially, filaments are created
(type G) through the fragmentation of the shock-compressed sheet by self-gravity
over the gravitational fragmentation timescale of the dense sheet. The formation
of filaments through turbulent sheet-sheet collision (type I) was not clearly ob-
served in our simulations, as this mode seems to only be activated when a weakly
magnetized, uniform-density molecular cloud is initially set.

By developing simple analytical models, we have shown that for vsh ≳ 5 km s−1,
type O is responsible for creating major filaments, while type C is more effective
for vsh ≲ 5 km s−1. We conclude that the dominant filament formation mode
changes with the strength of the incident shock wave. Moreover, we analyzed the
line-mass distribution of the filaments and showed that strong shock waves can
naturally create high-line-mass filaments such as those observed in the massive
star-forming regions (Mline ≳ 100 M⊙ pc−1) in a short time. We stress that such
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high line-mass filaments are naturally created in high shock velocity models in a
timescale of the creation of the dense compressed sheet-like regions.
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Figure 2.4: Panel (0): Early stage (t = 0.25 Myr) column density map in the x-y
plane of result of model v12GyTn. The five white lines mark the planes in which the
cross-section maps in panels (1)-(5) are drawn. Panels (1)-(5): Cross-section maps of the
number density in the y-z plane. The yellow blobs located roughly at the center of each
panel correspond to cross-sections of the filaments formed by the type O mechanism.
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Figure 2.5: Same as Figure 2.4 but for model v12GyTy. We can confirm that the
type O mechanism takes a major role in filament formation even in the case of initial
turbulence.
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Figure 2.8: Temporal evolution of the filament mass fraction Ffil (solid line) and the
filament formation time tfil (dashed line). Panel (a), (a’), (b), and (b’) are the results of
models v12GyTn, v12GnTn, v12GyTy, and v12GnTy, respectively.
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Figure 2.9: Temporal evolution of the filament mass fraction Ffil (solid line) and the
filament formation time tfil (dashed line). Panels (c), (c’), (d), and (d’) are the results
of models v3GyTn, v3GnTn, v3GyTy, and v3GnTy, respectively.
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Figure 2.10: Temporal evolution of the filament mass fraction Ffil (solid lines) and
the filament formation time tfil (dashed lines) in models with self-gravity and various
shock velocities but without turbulent velocity fluctuation. The colors show the results
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Figure 2.11: Filament mass functions for model v12GyTn (top panels (e) and (f)) and
v12GyTy (bottom panels (g) and (h)). Left panels (e) and (g): Filaments mass functions
at time t = tfil. Right panels (f) and (h): Results at time t > 1 Myr. The black solid line
represents the power-law function of the Salpeter initial mass function; the black dashed
line shows the critical line-mass (Stodólkiewicz, 1963; Ostriker, 1964); and the green
dashed line is the critical line-mass considering the magnetic field (Tomisaka, 2014).
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Figure 2.12: Filament mass functions for model v3GyTn (top panels (i) and (j)) and
v3GyTy (bottom panels (k) and (l)). Left panels (i) and (k): Filament mass functions
at time t = tfil. Right panels (j) and (l): Results at time t > 2 Myr. The lines’ colors
are the same as those defined in Figure 2.11.
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Figure 2.13: Filament mass functions for no-self-gravitating models v12GnTn (panels
m and n), v12GnTy (panels o and p), v12GnTn (panels q and r), and v12GnTy (panels
s and t). To compare the histograms in the models with and without self-gravity, we
show the histograms that are taken at the same times in Figure 2.11 and 2.12. The lines’
colors are the same as those defined in Figure 2.11.
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(a) (b)

(c) (d)

(f)(e)

Figure 2.14: Histogram of angles between filaments and magnetic field for model
v12GyTy. From top to bottom, results at time t= 0.2, 0.4 and 0.8 Myr, respectively.
Top panels (1) and (2) are results at filament formation time (see §2.3.3 and Figure 2.8).
Bottom panels (5) and (6) are results at close to free-fall time (Eq. 2.5). Left panels (1),
(3), and (5): Results when we identify filaments in the column density range of 0.5N̄sh to
1.5N̄sh. Right panels (2), (4), and (6): Results when the filament identification threshold
column density is chosen to be 1.5N̄sh.
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(g) (h)

(i) (j)
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Figure 2.15: Histogram of angles between filaments and magnetic field for model
v3GyTy. From top to bottom, results at time t= 0.4, 1.15, and 2.0 Myr, respectively.
Top panels (7) and (8) are results at filament formation time (see §2.3.3 and Figure 2.9).
Bottom panels (11) and (12) are results that exceed free-fall time (Eq. 2.5). Left panels
(7), (9), and (11): Results when we identify filaments in the column density range of
0.5N̄sh to 1.5N̄sh. Right panels (8), (10), and (12): Results when the filament identifica-
tion threshold column density is chosen to be 1.5N̄sh.
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Figure 2.16: Column density map and position-velocity (PV) diagrams of the result of
the model v12GyTy at time t = 0.3 Myr. When we make PV diagrams, we specify x-
position x0 = 0.5, 2.5, and 3.0 pc. The black line is the contour of F (v, y) (see equation
2.7). The right bottom illustration is the schematic view of the filament formation
process in the oblique MHD shock compression mechanism. The red regions in PV
diagrams correspond to a filament. We can confirm the V-shape structure which is the
supportive evidence for the oblique MHD shock compression mechanism (Arzoumanian
et al., 2018).
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Figure 2.17: Column density map and position-velocity (PV) diagrams of the result of
the model v12GyTy at time t = 0.3 Myr. The dense V-shaped structures also appear
in this model, indicating that the oblique MHD shock compression mechanism occurs
regardless of the initial turbulence.
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Figure 2.18: Illustrations of the models used to estimate the filament formation
timescale. The gray and black regions represent the post-shock layer and filament,
respectively. (A): Schematic of the oblique MHD shock compression mechanism (type
O), where w is the filament width, and θ is the oblique shock angle. The angle depends
on the detail of the interaction between the shock and the gas clump that evolves into
the filament and is roughly θ ∼ 30◦ as indicated in Figures 2.4 and 2.5. (B): Schematic
of type C (compressive flows involved in initially given turbulence) mechanism, where l
is the scale of the turbulent compressive flow related to the velocity of the flow ∆v via
Larson’s law. Here we assume the width of the compressive flows as w = 0.1 pc.
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Figure 2.19: Filament formation timescales as functions of shock velocity. The blue
line shows the timescale for the type O mechanism given by eq. (2.9), and the red
line shows the type C timescale estimated by eq. (2.12). The dashed line represents
the free-fall time in the shocked region tff (eq. [2.5]). Top panel : Timescales required
to reach the thermal critical line mass (e.g., Stodólkiewicz, 1963; Ostriker, 1964), i.e.,
Mline(t) = Mline,cr. Bottom panel : Timescales required to reach half the thermal critical
line mass, i.e., Mline(t) = Mline,cr/2.
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Chapter 3

The Effect of Shock Wave
Duration on Star Formation and
the Initial Condition of Massive
Cluster Formation

3.1 Short Introduction

Revealing the mechanism behind the formation of massive stars and clusters is
crucial, as they significantly impact the evolution and dynamics of galaxies. Ob-
servations have shown that stars form in dense molecular filaments, regardless of
their mass. The formation of these filaments has been extensively studied, with
recent findings suggesting that the dominant mechanism changes with the shock
velocity that triggers filament formation (Abe et al., 2021). One of the main mech-
anisms is ”Type O,” which requires a high Mach number shock to form massive
filaments in the shock-compressed layer (Abe et al., 2021).

Numerical simulations of shock compression in molecular clouds through cloud
collision have been compared to observations, with some studies showing that
strong MHD shock compression leads to the formation of massive cores (Inoue &
Fukui, 2013; Inoue et al., 2018; Sakre et al., 2021). However, these studies assumed
a long-lasting shock wave (corresponding to collisions between large clouds), while
the duration of a shock wave in reality depends on the situation. In contrast,
simulations of unmagnetized cloud collisions showed that gravitationally bound
cores do not form in the case of a short-duration shock wave (Takahira et al.,
2014). Thus, a systematic study into the impact of shock duration on filament/core
formation is necessary.

Enokiya et al. (2021) demonstrated that the peak column density of a star-
forming region correlates with the number of OB stars in the system, and massive
star clusters with more than 10 OB-type stars are associated with massive clouds
whose peak column density exceeds 1023 cm−2. Thus, the physical origin of the
threshold peak column density of 1023 cm−2 must be clarified. It should be noted
that the mean column density N̄H2 is related to the shock duration tdur, because
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N̄H2 = nL and tdur = L/vsh lead to N̄H2 ∝ tdur, where n̄, L, vsh is the mean num-
ber density of a cloud, cloud size, and, shock velocity, respectively. Therefore,
we can suppose that shock duration is one of the important parameters in deter-
mining peak column density. Previous simulations with a high column density
core/clump as an initial condition successfully demonstrated massive star/cluster
formation (Bonnell et al., 2004; Krumholz & McKee, 2008; Krumholz et al., 2009,
2012), indicating that the high column density initial core/clump leads to the mas-
sive star/cluster formation. In Krumholz et al. (2009), their initial condition, a
dense core of 100 M⊙ within 0.1 pc, was justified based on observed values of a
protostellar object IRAS 05358+3543. This is an extremely dense core and is not
usually found. A recent molecular study of IRAS 05358+3543 by Yamada et al.
(2022) found evidence for two colliding molecular clouds at several pc scales, which
formed a dense filament including the IRAS 05358+3543 core. The study of IRAS
05358+3543 supports the idea that the formation of high-mass stars requires strong
compression by an external trigger, such as the collision of molecular clouds. The
duration of the collision must be longer than the free-fall time, calculated based on
the mean density in the shock-compressed layer, in order to create the high column
density necessary for star formation. This highlights the importance of external
triggers and the duration of the trigger in the formation of high-mass stars.

In this chapter, we study the correlation between the shock duration and re-
sulting star formation by controlling the amount of gas that flows into the numer-
ical domain to examine the effect of shock duration and the origin of threshold
peak column density of massive cluster formation. In previous related studies,
there have been discrepancies in conclusions. Inoue et al. (2018) and Abe et al.
(2021) demonstrated that fast MHD shock compression allows for the formation of
massive cores/stars by numerically setting long-lasting shock compression. These
studies assumed a long/infinite duration of a shock wave. On the other hand,
Takahira et al. (2014) and Sakre et al. (2022), considered collisions of relatively
small clouds and concluded that the fast shock compression prevents the formation
of gravitationally bound cores. To clarify this contradictory situation, we examine
the effect of shock duration on the resulting massive core/star formation. This
paper is organized as follows: In §2, we provide the setup of our simulations, and
we demonstrated and interpreted the results in §3. In §4, we discussed the peak
column density in the shock-compressed layer by developing a simple theoretical
model. Finally, we summarize the results in §5.
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Figure 3.1: Schematic of the initial condition. The color bar represents the density
magnitude, the black lines represent the initial magnetic field lines, the θB rep-
resents the angle between the y-axis and the initial magnetic field lines, and the
gray arrows represent the orientations of the converging flows.

3.2 Setup for simulations

We perform three-dimensional (3D) isothermal1 MHD simulations including self-
gravity using SFUMATO code (Matsumoto, 2007). The initial condition is the
same as that of Abe et al. (2021) except that we additionally introduce a finite
duration of shock compression. In this section, the numerical setup is briefly
stated. We use a cubic numerical domain with a box size of Lbox = 6 pc, which
is filled with a nonuniform gas, a mean density n0, and fluctuations with a power
spectrum of (log ρ)2k ∝ k−4 due to supersonic turbulence (Larson, 1981; Beresnyak
et al., 2005; Elmegreen & Scalo, 2004; Scalo & Elmegreen, 2004; Heyer & Brunt,
2004). We set the gas temperature to 10 K (corresponding sound speed cs ∼ 0.2
km/s). We divide the numerical domain into uniform 5123 cells, resulting in a
spatial resolution of ∆x = 6 pc/512 = 1.2 ×10−2 pc. The initial velocity field is
set to, v(x, y, z) = vturb(x, y, z) − (vcol/2) tanh[(z − Lbox/2)/0.1]ẑ, where vturb is

1Isothermal treatment is a good approximation for describing compression. However, it
might not be a good approximation for the expansion regions, which are created after tdur. The
minimum density in the expansion region can be as small as 1 cm−3. In such regions, the low-
density gas would become atomic and warm. One of the non-isothermal effects imposed on the
cold gas surrounded by the warm gas is an evaporation flow due to gas heating and thermal
conduction, and the flow speed is known to be subsonic (Inoue et al., 2006). Thus, the non-
isothermal effect would not be substantial because the expansion goes on at sonic speed owing
to pressure reduction.
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the turbulent velocity, having a dispersion of 1.0 km s−1 with a power spectrum
of v2k ∝ k−4, following Larson’s law (Larson, 1981). This initial velocity leads to
a gas collision at z = Lbox/2 plane. We select an initial magnetic field strength
B0 = 10 µG (Heiles & Crutcher, 2005; Crutcher, 2012) and an angle θB to the y-z
plane 45◦, or 60◦.

The velocity fields at z-boundaries are given by

v±
boundary(x, y) = [±vcol/2ẑ+ vturb(x, y, z)] exp[−(t− tstop)/0.1Myr], (3.1)

where “v+
boundary” and “v−

boundary” are the velocity field at z = 0, and 6 pc, respec-
tively, and “vcol” is the relative velocity of two flows colliding at z = 3 pc. These
boundary conditions realize the cessation of gas inflows around t = tstop, and
their implementation differs significantly from that of Abe et al. (2021). The den-
sity/turbulence field to be inflow from the boundary is the same density/turbulence
spatial distribution as the initial condition. We impose free boundary conditions
on the magnetic field at z = 0, Lbox boundaries. We use periodic boundary con-
ditions for all physical variables for x = 0, Lbox and y = 0, and Lbox boundary
planes.

We simulate 18 different models. Each model has a unique name, starting with
“v” (for “velocity of collision”), followed by the collision velocity (“3,” “5,” “14,”
and “18”, “24” [km s−1]) and, the shock duration (“t”), followed by the time scale
(“0.23–1.9” [Myr]). Models with a different initial magnetic field angle and initial
mean density are additionally denoted as “ang60” and “d300” corresponding to
θB = 60◦ and n̄0 = 300 cm−3, respectively. The set of parameters used in our
simulations is listed in Table 3.1.

In the regions where gravitational collapse occurs, we introduce the sink par-
ticle (Matsumoto et al., 2015; Inoue et al., 2018). The conditions for generating
the sink particles depend on the resolution. The threshold density of sink par-
ticle generation in the current simulations with 5123 cells is 5.6×104cm−3, which
is lower than that in previous studies. Thus, we perform an AMR simulation to
demonstrate whether the results depend on the resolution and threshold density
of the sink creation. The Jeans criterion is used for the refinement (Truelove et al.,
1997): ∆x ≤ λJ/8 (where λJ = π1/2cs/

√
Gρ is the Jeans length), and the minimum

cell size for the AMR run is ∆x = 6 pc/1024=5.9 ×10−3 pc. The threshold density
of sink particles is 2.2×105cm−3. The results are almost the same as those in the
non-AMR run, as shown in §3.

3.3 Results

3.3.1 Column Density Maps

Short Duration Case

Figure 3.2 shows snapshots of the column density map of model v24t0.23 at t
= 0.10, 0.20, 0.30, and 0.60 Myr. Panels (a)–(d) and (a’)–(d’) show snapshots
in the y-z and x-y plane slices, respectively. The formation of dense filaments
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Table 3.1: Model parameters.
Model Name vcoll vsh tstop tdur θB n̄0 ∆x

[km s−1] [km s−1] [Myr] [Myr] [cm−3] [pc]

v3t1.4 3 2.2 0.0 1.4 45◦ 100 1.2×10−2

v5t0.94 5 3.2 0.0 0.94 45◦ 100 1.2×10−2

v5t1.5 5 3.2 0.7 1.5 45◦ 100 1.2×10−2

v14t0.39 14 7.7 0.0 0.39 45◦ 100 1.2×10−2

v14t0.40ang60 14 7.5 0.0 0.40 60◦ 100 1.2×10−2

v14t0.66 14 7.7 0.3 0.66 45◦ 100 1.2×10−2

v14t0.84 14 7.7 0.5 0.84 45◦ 100 1.2×10−2

v14t1.0 14 7.7 0.7 1.0 45◦ 100 1.2×10−2

v14t1.1d300 14 7.4 0.7 1.1 45◦ 300 1.2×10−2

v14t1.5 14 7.7 1.2 1.5 45◦ 100 1.2×10−2

v14t1.7ang60 14 7.5 1.4 1.7 60◦ 100 1.2×10−2

v14t1.9 14 7.7 1.7 1.9 45◦ 100 1.2×10−2

v18t0.68 18 9.7 0.4 0.68 45◦ 100 1.2×10−2

v24t0.23 24 13 0.0 0.23 45◦ 100 1.2×10−2

v24t0.43 24 13 0.2 0.43 45◦ 100 1.2×10−2

v24t0.61 24 13 0.4 0.61 45◦ 100 1.2×10−2

v24t1.6 24 13 1.4 1.6 45◦ 100 1.2×10−2

v24t1.6AMR 24 13 1.4 1.6 45◦ 100 5.9×10−3

v24t1.8 24 13 1.7 1.8 45◦ 100 1.2×10−2

is shown in panels (a’)–(d’). Recently, Abe et al. (2021) classified the filament
formation mechanisms into several categories. According to their classification,
the type of filament formation seen in the results of model v24t0.23 is type O (the
oblique MHD shock compression mechanism). Note that type O filamentation
works behind a strong shock of vsh ≳ 5 km s−1, and the shock waves created in
this model have vsh of approximately 13 km s−1. The evolution of the mass of the
dense gas in the numerical domain is shown in panel (a) of Figure 3.3. The blue,
red, and green points represent the gas masses of the regions with densities greater
than 103, 104, and 105 cm−3, respectively. Panels (b’)–(d’) in Figure 3.2 and panel
(a) in Figure 3.3 show that the mass of the dense gas decreases 0.2–0.3 Myr. This
evolution is due to the expansion of the shock-compressed layer and the resulting
pressure reduction (see Figure 3.2d), which deconfines dense filaments. The time
at which the compression layer starts to expand tdur can be written using tstop as

tdur ≃ tstop +
Lbox/2− v1tdur

vcol/2
(3.2)

≃ tstop + Lbox/vcol

1 +
√
2valf,0/vcol

. (3.3)

where v1 ≃ v̄Alf,⊥/
√
2 is the shock velocity at the rest frame of the compression

layer, and v̄Alf,⊥ = B0,⊥/
√
4πρ̄0 is the mean Alfvén velocity. B0,⊥ = B0 cos(θB) is

the initial magnetic field strength perpendicular to the shock normal. The second
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term on the right-hand side of Eq. (3.2) represents a retarded time for the gas to
reach the compression layer after tstop. In the case of model v24t0.23, tdur ≃ 0.23
Myr corresponds to the time when the dense gas mass in Figure 3.3 reaches its
peak.

The free-fall time in the postshock layer, which gives the timescale for self-
gravitating sheet fragmentation (Nagai et al., 1998), can be estimated as

tff =

√
1

2πGρ̄1

=

√
v̄Alf,⊥

2
√
2πGρ̄0v̄sh

=

√
B0,⊥

4
√
2π3/2Gρ̄

3/2
0

(
vcoll/2 +B0/

√
8πρ̄0

)
≃ 1.0 Myr

(
B0,⊥

10 µG

)1/2 ( n̄0

100 cm−3

)−3/4

×
[(

vcoll
12 km/s

)
+ 0.17

(
B0,⊥

10 µG

)( n̄0

100 cm−3

)−1/2
]−1/2

, (3.4)

where ρ̄1 ≃
√
2MAρ̄0 is the mean density of the shocked layer (e.g., Inoue & Fukui,

2013), and v̄sh = vcoll/2 + v1 ≃ vcoll/2 + B0/
√
8πρ̄0 represents the mean shock

velocity. Because tdur < tff ≃ 0.68 Myr in model v24t0.23, the shock compression
layer expands before gravitational fragmentation and no sink particles are created.

Long Duration Case

Similar to Figure 3.2, Figure 3.4 shows snapshots of the column density map of
model v24t1.6 at t = 0.30, 0.80, 1.60, and 1.80 Myr. Because the shock veloc-
ity is the same as in the previous model (v24t0.23), dense filamentary structures
are created via the type O mechanism. The “+” symbols in Figure 3.4 indicate
the positions of the sink particles. The evolution of the dense gas mass in the
numerical domain is shown in panel (b) of Figure 3.3. The blue, red, and green
points represent the masses of the regions with densities greater than 103, 104,
and 105 cm−3, respectively, as in panel (a). It should be noted that the range of
the vertical axis is different from that of the panel (a). In this model also, the
shock-compressed layer expands after t = tdur ≃ 1.6 Myr, as in model v24t0.23.
However, the duration of the compression is longer than the free-fall-time calcu-
lated using the mean density in the layer tff ≃ 0.58 Myr (Eq. 2.5), allowing the
filaments to coalesce because of the gravitational contraction of the compression
layer. Therefore, in contrast to model v24t0.23, the dense gas mass continues to
increase even after tdur (panel a in Figure 3.3).

3.3.2 Peak Column Density vs. Dense Gas Mass

Observations show that the peak column density of a star-forming cloud correlates
with the number of OB stars in the system (Enokiya et al., 2021). Here, we
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compare the results of our simulations with the observed results. We consider the
following two types of mass in the numerical domain, as a proxy of star formation:
the total mass of sink particle, Msink,tot(t), and total gas mass in the region with
AV > 8 mag. (NH2 ≃ 7.8×1021 cm−2), MAv8(t) (Lada et al., 2010). The sum of
these masses Mdense(t) ≡ Msink,tot(t)+MAv8(t), is proportional to the total mass of
stars in the system. Figure 3.5 shows the evolution of Mdense(t). Panels (a) and (b)
show the results for models v24t0.23 and v24t1.6, respectively. In our simulation,
the Mdense(t) saturates in late time, and we can define a mass associated with star
formation. By fitting the Mdense(t) using a trial function α tanh[2π(t− t0)/tw]+β,
as shown in the red lines in Figure 3.5, we obtain the time tsat ≡ t0+ tw/4 (dashed
lines in Figure 3.5) at which we measure total dense gas mass representing the star
formation activity in the system, where α, t0, tw, β are fitting parameters. Note
that tsat corresponds to the time when the fitting curve reaches approximately
α tanh[2π(tsat − t0)/tw] + β = tanh(π/2) + β ≃ 0.92α + β, i.e., this value means
mass corresponding to (0.92+1.0)× 100/2 = 96 [%] of the increment in the trial
function.

Generally, a peak column density highly depends on a spatial grid (or in other
words, spatial resolution) used for the derivation. Thus, the observed peak col-
umn densities of cloud-cloud collision (CCC) candidates in the plots of Figure 9
in Enokiya et al. (2021) have potentially independent spatial resolutions. Never-
theless, the correlation between the peak column density and the number of O-
and B-type stars is apparent in the plots. This suggests that the spatial reso-
lutions are similar among the observed CCC candidates. We have checked the
spatial resolution among the CCC candidates and found it roughly ∼ the size
of the smaller cloud/10. Assuming 5 pc for the size of the smaller cloud (see
Figure 9 in Fukui et al., 2021), we estimate the typical spatial resolution of the
observed CCC candidates to be 0.5 pc. Thus, before computing the peak column
density of the system, we take a smoothing of the column density structure using
the Gaussian kernel function of a width of 0.5 pc. In panel (a) of Figure 3.6,
we demonstrated the scatter plot of the peak column density vs. the dense gas
mass Mdense(tsat) for all runs listed in Table 2.1. The color of the points indicates
tdur/tff , which represents the influence of self-gravity. We employ the following
procedures to estimate the number of OB stars formed in the numerical system:
We multiply Mdense(tsat) by the star formation efficiency SFEdense ∼0.1 to obtain
the total mass of stars (Fukui et al., 2021). The fraction of OB-type stars in the

total stellar mass fOB =
(∫ 150M⊙

10M⊙
dM MFKroupa

)
/
(∫ 150M⊙

0.01M⊙
dM MFKroupa

)
= 0.19

is then multiplied to obtain the total mass of OB stars expected in the system.
Note that we consider stars heavier than the early-B type, i.e., larger than approx-
imately 10 M⊙. Here, FKroupa ≡ dN/dM is an IMF proposed by Kroupa (2001).
Therefore, the estimation of the number of OB stars is

NOB ≃ Mdense(tsat)× SFEdense × fOB ×

(∫ 150M⊙
10M⊙

dM MFKroupa∫ 150M⊙
10M⊙

dM FKroupa

)−1

, (3.5)

where
∫ 150M⊙
10M⊙

dM MFKroupa/
∫ 150M⊙
10M⊙

dM FKroupa on the right-hand side is the typ-
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ical mass of OB stars. Panel (b) in Figure 3.6 is compiled from panel (a) using
Eq. (3.5). The result shows a correlation similar to that of Enokiya et al. (2021),
although our simulations cover only a limited range of peak column density than
the observations. The power-law index obtained by fitting data in panel (b) is 0.75,
which agrees well with that of observations 0.73±0.11 (Enokiya et al., 2021). The
black line is the fitting line in Figure 9 (b) of Enokiya et al. (2021). It has been
known observationally that massive star cluster formation occurs in the clouds
with a peak column density greater than Npeak ≥ 1023 cm−2 (Fukui et al., 2016).
Our simulations agree with this threshold peak column density (see the region with
Npeak ∼ 1023cm−2 in panel (b) of Figure 3.6). The stability parameter, the ratio of
the shock duration and the free-fall time of the compressed layer tdur/tff , indicates
that massive stars are expected to be formed where the dense shock-compressed
layer is kept over the free-fall time. We find that when the Npeak exceeds 10

23 cm−2

the stability parameter ≳ 2. Coincidentally, the threshold peak column density
takes a similar value to the threshold column density for fragmentation suppression
1 g cm−2 proposed by Krumholz & McKee (2008).

3.3.3 Sink Mass Histogram

Figure 3.7 shows the sink mass histograms at t = tsat for the models v14t0.38,
v14t0.84, and v14t1.9. In our simulations, the sink particles correspond to gravi-
tationally collapsing cores. Note that Figure 3.7 is not a core mass function because
low-mass cores are not well resolved in our simulations. a massive sink particle of
355 M⊙, and OB-type stars can be formed in the model v14t1.9, which has a long
flow duration of tdur/tff ≃ 2.6. The mass/number of sink particles increases with
tdur, as expected, but only the long duration model v14t1.9 has tdur/tff ≳ 2 and
exhibits active massive star formation.

Figure 3.8 shows a sink mass histogram at t = tsat in the models v24t1.6
and v24t1.6AMR, comparing the results with and without AMR. The number of
sink particles with masses ∼ 1 M⊙ increased because AMR calculation can cap-
ture self-gravitational fragmentation of short-wavelength modes in dense filaments.
However, the total masses of massive sink particles (> 10M⊙) are almost the same
between v24t1.6 (Msink = 1803 M⊙) and v24t1.6AMR (Msink = 2048 M⊙), indi-
cating that the results exhibited in §3.2 do not change significantly, even if the
spatial resolution is improved.

3.4 Discussion

3.4.1 Estimation of Peak Column Density

In §3.3.2, we stated that self-gravitational collapse must achieve a peak column
density of 1023 cm−2. Given that the column density map obtained from observa-
tions is approximately ∼ 500 × 500 pixels, the peak column density approximately
corresponds to 5σ away from the mean of the PDF obtained from observations.
Here, we estimate the peak column density using a theory of the gas density PDF in
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a turbulent medium, which shows that gravitational collapse in shock-compressed
layers is required to achieve a peak column density of 1023 cm−2. The PDF of the
gas density in a turbulent medium shows log-normal PDF of the form (Passot &
Vázquez-Semadeni, 2003; Padoan et al., 2014)

ps(s) =
1√
2πσ2

s

exp

(
−(s− s1)

2

2σ2
s

)
. (3.6)

where s ≡ ln (ρ/ρ1), ρ1 and s1 represent the mean density and mean logarithmic
density in the shocked layer, respectively. The latter is related to the standard
deviation σs as s1 = −σ2

s /2. Molina et al. (2012) find that the standard deviation
σs is determined using the turbulence Mach number M, plasma beta β, and the
ratio of solenoidal mode to compressive mode b (pure solenoidal forcing gives b=1/3
and pure compressive forcing gives b=1) as

σ2
s = ln

(
1 + b2M2 β

β + 1

)
. (3.7)

Here, we estimate the maximum possible column density of a cloud formed by
the gas collision. The density PDF can have maximum width if we substitute the
collision velocity for the turbulence velocity dispersion

Mmax ≡ vcol/(2cs). (3.8)

The beta of the shock-compressed layer is given by the shock jump condition of
the isothermal MHD as

βsh =
8πρ1c

2
s

B2
1

≃ 8πρ0c
2
s√

2MA,maxB2
0

, (3.9)

where ρ1 ≃
√
2MA,maxρ0, B1 ≃

√
2MA,maxB0, and MA,max = vcol/(2valf,0) are

the density, magnetic field in the compression layer, and the Alfvén Mach number
of the shock. If we use the parameter b=0.4, which is expected in the shock-
compressed layer (Kobayashi et al., 2022), then we can determine σs,max and density
PDF.

Numerical experiments of supersonic isothermal turbulence and observations (Good-
man et al., 2009) show that the PDF of column density is also close to log-
normal (Federrath et al., 2010)

pη(η) =
1√
2πσ2

η

exp

(
−(η − η1)

2

2σ2
η

)
, (3.10)

where η ≡ ln (N/N1). N and N1 are column density and the mean column density,
respectively. By comparing s1 and η1 in numerical simulations by Federrath et al.
(2010), η1 is approximately expressed as η1 ∼ 0.5s1. The standard deviation is also
approximated by ση ∼ 0.5σs. These relationships can be used to convert density
PDF to column-density PDF.

59



The peak column density is defined as 5σ away from the mean

N5σ ≡ exp(η1 + 5ση,max)N1, (3.11)

where ση,max ≡ 0.5σmax. Substituting the strong collision case parameters (vcol =
10 km s−1, n̄0 = 100 cm−3, and B0 = 10 µG), yields a peak column density of N5σ
= 8.7×1022 cm−2, which is less than 1023 cm−2. Therefore, even if the velocity
dispersion of the turbulence in the shock-compressed layer is overestimated, the
peak column density of the structure created solely by turbulence is not expected
to exceed 1023 cm−2, indicating that gravitational collapse of the shock layer is
necessary to reach this value. In other words, the shock-compressed layer must be
sustained until gravitational collapse is triggered, resulting in the formation of a
massive star cluster that can increase the peak column density.

3.4.2 Which is advantageous for massive star formation,
fast or slow collisions?

According to the recent study by Sakre et al. (2022), there is a maximum collision
speed for triggering star formation by a cloud collision for a given initial cloud.
This is consistent with the findings of other studies, as high collision speed can
lead to a short shock duration. However, it doesn’t necessarily mean that a high
shock velocity is negative for induced star formation. As we discuss below, the high
shock velocity is generally positive for star formation: The duration of the shock is
estimated by tdur = L/vsh, where L is the spatial scale and vsh is the typical velocity
of the flows. If we suppose supersonic turbulent gas flow collision as an origin of the
shock, Larson’s law gives vsh ∝ L0.5 or L ∝ v2sh, and then, tdur = L/vsh ∝ vsh. Since

the average free-fall time of the shocked layer is tff ∝ v
−1/2
sh from Eq. (2.5), the ratio

of the shock duration and the postshock free-fall time is written as tdur/tff ∝ v
3/2
sh .

This indicates that faster shock leads to a longer duration in units of the free-fall
time, i.e., larger clouds naturally lead to more active star formation. In contrast,
if we fix the scale of the flow L and use a different scaling tdur = L/vsh ∝ v−1

sh , we

obtain an opposite result tdur/tff ∝ v
−1/2
sh . Thus, under the fixed cloud scale, faster

shock leads to a negative effect on star formation, but we should bear in mind that
this is due to artificially fixed L and not a general trend.

3.5 Summary

We performed simulations of the shock compression of molecular clouds using
the SFUMATO, a 3D isothermal magnetohydrodynamic code that includes self-
gravity. The impact of the shock-compressed layer’s duration on filament and
star formation was studied by making the shock duration a controlled variable.
We analyzed the correlation between the peak column density and the estimated
number of OB-type stars to gain insight into the initial conditions for the formation
of massive stars and compared our findings with the observations reported by
Enokiya et al. (2021). Our main conclusions are as follows.
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1. The formation of filaments behind the shock in the short-duration model is
followed by expansion/evaporation after the shock duration timescale, while
the long-duration model results in the formation of massive filaments leading
to star formation.

2. If the observed peak column density exceeds 1023 cm−2, then the number
of OB stars expected to be formed in the shock-compressed layer can reach
the order of ten, which is indicative of massive cluster formation. This is
consistent with the findings of Enokiya et al. (2021), as shown in the region
with Npeak ∼ 1023cm−2 in panel (b) of Figure 3.6. A simple theoretical
model indicates that achieving such a high peak column density is possible
only when the shock-compressed layer undergoes gravitational collapse.

3. The duration of shock compression must be at least two free-fall times in the
compressed layer (tdur/tff ≳ 2) for massive star formation to be activated,
and this conclusion is not significantly influenced by spatial resolution.
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Figure 3.2: Column density maps of the result of model v24t0.23 at time t = 0.3, 0.8,
1.6, and 1.8 Myr (from top to bottom). Left row (panels a, b, c, and d): y-z plane
column densities. Right row (panels a’, b’, c’, and d’): x-y plane column densities.
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(b) v24t1.6(a) v24t0.23

Figure 3.3: Panel a: the evolution of the total dense gas mass in the model v24t0.23.
The blue, red, and green points represent the total masses with densities above 103, 104,
and 105 cm−3, respectively. Panel b: the same as panel (a), but for model v24t1.6.
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Figure 3.4: Column density maps in the result of model v24t1.6 at time t = 0.3, 0.8,
1.6, and 1.8 Myr (from top to bottom). Left row (panels a, b, c, and d): y-z plane
column densities. Right row (panels a’, b’, c’, and d’): x-y plane column densities.

64



(a) (b)

Figure 3.5: Evolution of Mdense(t), which is the sum of the total mass of sink parti-
cles (Msink,tot(t)) and the mass of gas with column density larger than 7.8×1021 cm−2

(MAv8(t)) for the simulation results of models v24t0.23 (left) and v24t1.6 (right). A red
line represents the fitting curve obtained using a trial function α tanh[2π(t− t0)/tw]+β,
where α, t0, tw, β are fitting parameters. The dashed line denotes the time tsat, which is
defined as the time at which the total gas mass associated with star formation is mea-
sured.

(a) (b)

Figure 3.6: Panel a: Scatter plot of the peak column density vs. the dense gas mass
Mdense(tsat) for all runs summarized in Table 2.1. Before computing the peak column
density of the system, we take a smoothing of the column density using the Gaussian
kernel function of a width of 0.5 pc, corresponding to the typical beam width for massive
star-forming regions. The color of the points represents tdur/tff indicating the influence
of self-gravity. Panel b: Scatter plot of the peak column density vs. the estimated
number of OB-type stars NOB. NOB is estimated using Eq. (3.5). The black line is the
fitting line in Figure 9 (b) of Enokiya et al. (2021).
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Chapter 4

Filament Evolution Process

4.1 Short Introduction

Type G, C, and O are the fundamental formation mechanisms of supercritical fila-
ments, which are essential for star formation. The common feature of these mecha-
nisms is that filaments are formed by gas flow along the local magnetic-field line in a
shocked-compressed sheet. Molecular emission-line observations provide evidence
of the perpendicular accretion onto filaments (Palmeirim et al., 2013; Shimajiri
et al., 2019; Chen et al., 2020). In particular, Shimajiri et al. (2019) reported the
occurrence of accretion onto filaments in a shocked sheet. The accretion rate Ṁline

is estimated in the range from a few 10 to a few 100 M⊙ Myr−1 pc−1 (Palmeirim
et al., 2013; Bonne et al., 2020). The accretion timescale tacc ≡ Mline/Ṁline is com-
parable to self-gravitational fragmentation time-scale in filaments, implying that
accretion is essential for the evolution of filaments.

The filament width is one of the significant quantities to determine the initial
condition for star formation. The critical line mass considering magnetic support
depends on the width of a filament (Tomisaka, 2014). According to linear the-
ory, the self-gravitational fragmentation length scale of the filament depends on
the filament width (Stodólkiewicz, 1963; Inutsuka & Miyama, 1992a). Arzouma-
nian et al. (2018) revealed that the characteristic width of Herschel Gould Belt
filaments is 0.1 pc (see also Koch & Rosolowsky, 2015), and similar results have
been reported by C18O line-emission observations (Orkisz et al., 2019; Suri et al.,
2019). Remarkably, the filaments maintain their width, regardless of their line-
mass exceeding 100 M⊙ pc−1. If we consider only thermal support against gravity,
such a high-line-mass structure cannot maintain a length scale of 0.1 pc. Several
authors studied the effects of turbulence and/or magnetic field and have shown
that sub-critical and mildly super-critical filaments have a width of 0.1 pc (Fis-
chera & Martin, 2012; Auddy et al., 2016; Priestley & Whitworth, 2022; Federrath,
2016; Ntormousi & Hennebelle, 2019), however, the reason for the constant width
of filaments, especially for massive filaments, remains as a mystery. We need to
understand the origin of the universal width, especially for massive filaments, by
examining the detailed process of gas accretion flows onto the filament.

Given that massive filaments are formed in the post-shock layer threaded by
the strong magnetic field, the filament surface is naturally bound by the slow
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shocks. This unphysical feature stems from the ideal approximation and the re-
sulting discontinuous treatment of the shock. To know the physical scale length
of the SSI, we consider a non-ideal effect. Since the corrugation of the shock front
generally produces turbulent flows behind the shock (e.g., Inoue et al., 2012; Inoue
& Inutsuka, 2012b), we can expect that the SSI will deposit additional energy to
the filament.

In molecular clouds, ambipolar diffusion is effective and potentially modifies
the SSI dynamics. The Reynolds number of the ambipolar diffusion is given as

RAD =
4πγρnρivℓ

B2
, (4.1)

where, γin ≡ ⟨σinvin⟩/(m + mi) = 3.5 × 1013 cm3 g−1 s−1 and ρi denotes the ion
mass density. σin, vin, m, and mi represent the Langevin cross-section, the relative
velocity between a neutral molecule and ion, mean molecule mass, and mean ion
mass, respectively. Assuming a balance between the ionization by cosmic rays
and the recombination, ρi can be expressed as Cρ1/2. The characteristic length
scale below which the effect of ambipolar diffusion becomes non-negligible can be
obtained by solving RAD = 1 that yields

ℓAD = 0.09 pc

(
B

30 µG

)2 ( n

103 cm−3

)−3/2
(

v

1 km/s

)−1

, (4.2)

which is comparable to the filament width and suggests that the scale obtained
using the ambipolar diffusion affects the filament dynamics. In the context of
the solar chromosphere, Snow & Hillier (2021) performed two-dimensional two-
fluid simulations of SSI for partially ionized gas. They demonstrated that the
neutral fluid stabilizes the SSI on a small scale and found new features such as gas
accumulation at valleys. However, the situation in their simulations is different
from the one in molecular clouds (e.g., ionization degree, ion-neutral collision cross-
section, etc.), and they did not study the dispersion relation and the dependence
on density and magnetic field. The linear analysis of SSI including ambipolar
diffusion is challenging. Our strategy is to directly simulate the SSI including the
ambipolar diffusion and the measurement of the growth rate.

As the first step to understanding the effect of SSI on filament width, we study
the effect of ambipolar diffusion on the SSI and derive the most unstable scale.
In realistic situations, filaments are bound by two shocks. Because the separation
of these two shocks is narrow and they are threaded by the same magnetic field
lines, we can expect that the two shocks dynamically influence each other. As
the second step, we study the effect of interacting two shocks and show that the
slow shock instability mediates inhomogeneous postshock flows and can provide
additional dynamical pressure to the filament. As the third step, we perform a
three-dimensional SSI simulation including self-gravity and ambipolar diffusion,
and compare the column density profile and filaments width with observations.
We try to explain the origin of the universality of filament width.
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4.2 Setup for simulations

We perform two-dimensional ideal/non-ideal MHD simulations using Athena++
code (Stone et al., 2020). We use the second-order accurate van Leer predictor-
corrector scheme and piecewise linear method applied to primitive variables to
integrating the equations. The constrained transport method (Stone & Gardiner,
2009) ensures the divergence-free condition, ∇ ·B = 0. In this paper, we do not
solve the Poisson equation for self-gravity because we concentrate ourselves on the
physics of SSI under the influence of ambipolar diffusion as a first step of this sort
of study. The effect of self-gravity will be taken into account in our future studies.
We solve the following equations:

∂ρ

∂t
+∇ · (ρv) = 0 (4.3)

∂ρv

∂t
+∇ ·

(
ρvv − BB

4π
+ P ∗I +Π

)
= 0 (4.4)

∂E

∂t
+∇ ·

[
(E + P ∗)v −B(B · v) +Π · v +

ηAD

|B|2
{B × (J ×B)} ×B

]
= 0(4.5)

∂B

∂t
−∇×

[
(v ×B)− ηAD

|B|2
B × (J ×B)

]
= 0, (4.6)

where, P ∗ = p + B2/(8π) and E = e + ρv2/2 + B2/(8π) are the total pressure
and the total energy density; ρ, p,v, and B are the density, pressure, velocity, and
magnetic field; and J = ∇ × B is the current. We introduce the viscous stress
tensor

Πij = ρν

(
∂vi
∂xj

+
∂vj
∂xj

− 2

3
δij∇ · v

)
(4.7)

to prevent the carbuncle phenomenon (Quirk, 1994; Liou, 2000; Kim et al., 2003)
and the growth of a grid scale SSI seeded by the carbuncle instability. ν is the co-
efficient of physical kinematic viscosity. We adjust ν to stabilize a grid scale (eight
meshes) fluctuation. The box size Lbox and ν are chosen so that the stabilizing
scale by ambipolar diffusion is sufficiently smaller than this grid scale. ηAD is the
ambipolar diffusion coefficient, which is given by

ηAD =
B2

4πγinρnρi
, (4.8)

where, γin ≡ ⟨σinvin⟩/(m + mi) = 3.5 × 1013 cm3 g−1 s−1, ρn ≃ ρ and ρi are
neutral gas mass density and ion mass density. σin, vin, m, and mi are Langevin
cross-section, the relative velocity between the neutral molecule and ion, mean
molecule mass and mean ion mass, respectively. We can write the ρi as Cρ1/2

when ionization by cosmic rays balances recombination. In this study we apply
C = 3× 10−16 cm−3/2 g1/2 (Shu, 1992).
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4.2.1 Initial Condition for One-Shock Cases

We numerically solve Eqs. (4.3)–(4.6) on a two-dimensional domain of the size
[-4Lbox, 4Lbox] × [0 pc, Lbox] in the shock rest frame. We choose Lbox = 1 pc for
the γ = 5/3 case, and Lbox = 0.2, 0.25, or 0.5 pc for the γ = 1.01 case. The initial
density, velocity, and pressure field are set to be

ρ(x, y) = ρ0

[
1 +

r − 1

2
(1− tanh[x/0.003Lbox])

]
+ ρp(x, y), (4.9)

vx(x, y) = −vx0

[
1 +

r − 1

2
(1− tanh[x/0.003Lbox])

]−1

, (4.10)

and

p(x, y) = p0

[
1 +

rpres − 1

2
(1− tanh(x/0.003Lbox))

]
(4.11)

respectively, where, ρ0, vx0, and p0 are the initial density, x-component of velocity,
and pressure in the pre-shock region, respectively. We perform simulations for
dozens of sets of ρ0 and vx0. As a seed of the instability, we set the upstream
gas sound speed cs as 0.2 km s−1 so that the p0 is given by p0 = ρ0c

2
s/γ. The

compression ratio r and the pressure jump rpres are

r ≡ (γ + 1)M2
s

(γ − 1)M2
s + 2

, (4.12)

and

rpres ≡
2γM2

s − (γ − 1)

γ + 1
. (4.13)

As a seed of instability, we introduce density perturbation as follows.

ρp = 10−4 × ρ0 cos

(
2πy

λp

)
sin

(
π
x− 0.02Lbox

0.01Lbox

)
, if 0.005Lbox ≤ x ≤ 0.015Lbox

(4.14)
where, λp is the wavelength of the perturbation. These initial conditions lead
to a perturbed stationary shock at x = 0. Since the star-forming filaments are
perpendicular to the magnetic field, we set the initial uniform magnetic field along
the x-axis B0x̂. The numerical domain is a 2D box with a uniform grid of 4096
× 512 cells, which leads to a spatial resolution of ∆x = Lbox / 512. We impose
free boundary conditions at x = −4Lbox, 4Lbox boundaries. For the y = 0, Lbox

boundaries, we use periodic boundary conditions.
We simulate 22 different models. Each model has a unique name, starting

with “n” (for “upstream density n0”), followed by the number density (“800,”
“1000,” “1300,” and “1600” [cm−3]), the magnetic field (“b”), followed by the
field strength (“24,” “30,” “35,” and “40” [µG]), and the velocity (“v”), followed
by the upstream velocity (“0.8,” “0.9,” “1,” and “1.3” [km s−1]), followed by the
Reynolds number of the physical shear viscosity (“9.8,” “16.3,” “19.5,” and “∞”).
Models with a different MHD solver are additionally denoted as “E,” “D,” and
“LD” corresponding to HLLE, HLLD, and LHLLD, respectively. Models with
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Table 4.1: Model parameters.
Model Name n0 B0 vx0 γ Rshear ambipolar Solver

[cm−3] [µG] [km s−1] ≡ vx0∆x/ν diffusion

n1000b30v1R∞ 1000 30 1.0 5/3 ∞ No Roe
n1000b30v1R16.3 1000 30 1.0 5/3 16.3 No Roe
n1000b30v1R9.8 1000 30 1.0 5/3 9.8 No Roe
n1000b30v1R∞E 1000 30 1.0 5/3 ∞ No HLLE
n1000b30v1R∞D 1000 30 1.0 5/3 ∞ No HLLD
n1000b30v1R16.3D 1000 30 1.0 5/3 16.3 No HLLD
n1000b30v1R9.8D 1000 30 1.0 5/3 9.8 No HLLD
n1000b30v1R∞LD 1000 30 1.0 5/3 ∞ No LHLLD
n1000b30v1R16.3LD 1000 30 1.0 5/3 16.3 No LHLLD
n1000b30v1R9.8LD 1000 30 1.0 5/3 9.8 No LHLLD
n1000b30v1.3aR∞D 1000 30 1.3 5/3 ∞ No HLLD
n1000b30v1.3aR∞LD 1000 30 1.3 5/3 ∞ No LHLLD

n1000b30v1 1000 30 1.0 1.01 19.5 No Roe
n1000b30v1AD 1000 30 1.0 1.01 19.5 Yes Roe
n800b30v1AD 800 30 1.0 1.01 19.5 Yes Roe
n1300b30v1AD 1300 30 1.0 1.01 19.5 Yes Roe
n1600b30v1AD 1600 30 1.0 1.01 19.5 Yes Roe
n1000b24v1AD 1000 24 1.0 1.01 19.5 Yes Roe
n1000b35v1AD 1000 35 1.0 1.01 19.5 Yes Roe
n1000b40v1AD 1000 40 1.0 1.01 19.5 Yes Roe
n1000b30v0.8AD 1000 30 0.8 1.01 19.5 Yes Roe
n1000b30v0.9AD 1000 30 0.9 1.01 19.5 Yes Roe
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Table 4.2: Model parameters for the nonlinear evolution of one-shock SSI.
Model Name λp ambipolar difusion

NL1Shock 0.1 No
NL1ShockAD 0.1 Yes

NL1Shockλp0.01AD 0.01 Yes

ambipolar diffusion are additionally denoted as “AD.” The set of parameters used
in our simulations is listed in Table 4.1.

We also perform simulations for the case with initially perturbed shock position
fluctuation, which is convenient for the investigation of nonlinear evolution. The
initial density, velocity, and pressure field are set to be

ρ(x, y) = ρ0

[
1 +

r − 1

2

(
1− tanh

[
x− ξ sin (2πy/λp)

0.003Lbox

])]
, (4.15)

vx(x, y) = −vx0

[
1 +

r − 1

2

(
1− tanh

[
x− ξ sin (2πy/λp)

0.003Lbox

])]−1

, (4.16)

and

p(x, y) = p0

[
1 +

rpres − 1

2

(
1− tanh

[
x− ξ sin (2πy/λp)

0.003Lbox

])]
, (4.17)

where ξ is the initial amplitude of shock position fluctuation. We choose n0 =
1000 cm−3, vx0 = 1 km s−1, p0 = γρ0c

2
s , Rshear = 9.8, and ξ = 0.02 pc. The initial

uniform magnetic field is set to be along the x-axis and the strength of B0 = 30
µG. The set of parameters used in our simulations of the nonlinear evolution of
one-shock SSI is listed in Table 4.2.

4.2.2 Initial Condition for Two-Shocks Cases

Considering the realistic formation process of filaments, a filament is sandwiched by
colliding flow. Thus, we also perform converging flow simulations. To understand
SSI for the two-shocks case, we study the linear evolution for odd and even mode
perturbation. In Figure 4.1, we show the schematic illustration of the initial density
field. The initial density can be written as

ρ(x, y) = ρ0 + ρp,right(x, y) + ρp,left(x, y). (4.18)

The density perturbations ρp,right(x, y) and ρp,left(x, y) are set to be

ρp,right = 10−4 × ρ0 cos

(
2πy

λp

)
cos

(
πx

0.01Lbox

)
, if 0.005Lbox ≤ x ≤ 0.015Lbox(4.19)

and

ρp,left = ±10−4 × ρ0 cos

(
2πy

λp

)
cos

(
πx

0.01Lbox

)
, if − 0.015Lbox ≤ x ≤ −0.005Lbox(4.20)
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Figure 4.1: Schematic illustration of the initial density field to study the stability of
odd and even mode SSI. (models 2S-odd, 2S-even, and 2S-evenB24)
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Figure 4.2: The initial velocity field for model NL2Shockλ0.05. The initial condition
with shock position fluctuation is convenient for the investigation of nonlinear evolution.
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Table 4.3: Model parameters to study the stability of two-shocks SSI in the liner
evolution.
Model Name One-shock or Two-shocks B0 [µG] vx0 [km s−1] density perturbation

2S-odd Two 30 0.5 Odd
2S-even Two 30 0.5 Even

2S-evenB24 Two 24 0.5 Even
1S-odd One 30 0.56 Odd

Table 4.4: Model parameters to study the nonlinear evolution.
Model Name λp ξ Rshear Ambipolar Diffusion

NL2Shockλ0.05 0.05 0.02 9.8 No
NL2ShockRand - 0.0005 9.8 No

NL2Shockλ0.05AD 0.05 0.02 9.8 Yes
NL2Shockλ0.05ADξ0.005 0.05 0.005 9.8 Yes

NL2Shockλ0.01AD 0.01 0.02 ∞ Yes
NL2ShockRandAD - 0.0005 ∞ Yes

where the plus/minus sign indicates even/odd mode, respectively. We set the x
component of the velocity field as

vx(x, y) = −vx0 tanh[x/0.003Lbox]. (4.21)

The velocity field of y and z component are vy(x, y) = 0 [km s−1] and vz(x, y) = 0
[km s−1], respectively. The initial pressure field is p(x, y) = γρ(x, y)c2s . The set
of parameters used in our simulations of the linear evolution of two-shock SSI is
listed in Table 4.3.

We also perform simulations for the case with initially perturbed shock position
fluctuation. As will be shown in §4.3, only the odd mode perturbation is unstable,
thus the only odd mode case is studied. Initial density and pressure are set to be
uniform, ρ(x, y) = ρ0 and p(x, y) = p0. We change the x component of the velocity
field as

vx(x, y) = −vx0 tanh

[
x− ξ sin (2πy/λp)

0.003Lbox

]
. (4.22)

In Figure 4.2, an example of the x component of the initial velocity field is shown.
We also study the case with random fluctuation. In this case, the x component of
the velocity field is

vx(x, y) = −vx0 tanh

[
x− ξ

∑nmode

kbox=1 sin (2πy/λp))

0.003Lbox

]
, (4.23)

where, kbox ≡ Lbox/λp is the wave number normalized by box scale. The set of
parameters used in our simulations of the nonlinear evolution of two-shock SSI is
listed in Table 4.4.
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Figure 4.3: Schematic of the grid structure and the initial condition. Top panel : The
color bar represents the density magnitude, the black arrows represent the orientations
of the initial magnetic field, and the white arrows represent the orientations of the
converging flows. Bottom left panel : Grid structure (grey lines) and the initial velocity
field at z = 0 pc plane. Bottom right panel : Same as bottom left panel but for the y =
0 pc plane.
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Figure 4.4: Dispersion relations for the model n1000b30v1 (grey) and n1000b30v1AD-
STS (red).

4.2.3 Initial Condition for Three-dimensional Simulation

We perform a three-dimensional simulation including self-gravity to investigate
the nonlinear evolution of massive filament. Considering the realistic situation of
filament formation, we set a dense sheet as the initial condition. The initial density
can be written as

n(x, y, z) = (nsheet − next) exp

(
− z2

2H2

)
+ next, (4.24)

where, nsheet = 4000 cm−3, next = 100 cm−3, and H = 0.1 pc are number density
of the dense sheet and ambient gas, the thickness of the sheet. We set the x
component of the velocity field as

vx(x, y, z) = −vx0 tanh

[
x− ξ

∑nmode,y

kbox=1 sin (2πy/λp) sin (2πz/λp))

0.003Lbox

]
, if −H/2 ≤ z ≤ H/2.

(4.25)
The velocity field of y and z component are vy(x, y, z) = 0 [km s−1] and vz(x, y, z) =
0 [km s−1], respectively. The initial pressure field is p(x, y) = γρ(x, y, z)c2s . We set
the initial uniform magnetic field along the x-axis B0 = 50 µG. In Figure 4.3, we
show the schematic illustrations of the initial condition.

Static mesh refinement technique is used to resolve a filament and reduce the
calculation costs (see Figure 4.3). The finest resolution is ∆x = 1/1024 pc ≃
0.00098 pc. This leads to a bottleneck to solve ambipolar diffusion because the
time step ∆t is proportional to ∆x2 when the diffusion equation is solved numer-
ically. Thus, we use the super time stepping method (Meyer et al., 2014). The
time stepping under the CFL condition is based on the condition that the solution
is stable at the next time step i.e., no unphysical behavior or oscillations. The
super time stepping method relaxes this restriction and requires the solution to
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be stable after larger time steps than the one which is determined by the CFL
condition. A parameter of the super time stepping method is the maximum time
step ratio max (dt/dtparabolic) which is the limit time step if the ratio of overall
time step dt calculated by fluid equations to time step dtparabolic calculated by a
diffusion equation exceeds this value. It is necessary to test that the time inte-
gration using the super time stepping method is not significantly different from
the time integration without it. We test the super time stepping method with
the same initial condition as model n1000b30v1AD and λp = 0.05 pc, and we
perform a simulation with max (dt/dtparabolic) = 1000 as model n1000b30v1AD-
STS. Figure 4.4 shows the dispersion relations for model n1000b30v1AD (black)
and n1000b30v1AD-STS (red). In nonlinear evolution, we measure the maximum
value of ∥(ρSTS(x, y, z)− ρ(x, y, z))/ρ(x, y, z)∥ ≃ 0.2 at t = 0.5 Myr in only about
10 cells, where, ρSTS(x, y, z) is the density for model n1000b30v1AD-STS. We can
confirm that the results do not change a lot even max (dt/dtparabolic) = 1000.

4.3 Results

4.3.1 Linear Evolution for One-shock SSI

Selection of Numerical Scheme and Physical Viscosity

Figure 4.5: Evolution of the mean value of the perturbed magnetic field for
the case with adiabatic ideal MHD including physical shear viscosity (model
n1000b30v1R9.8).

We perform simulations for the case of γ = 5/3 and compare the results with
dispersion relation (Eq. [1.23]), by which we can check whether the selected numer-
ical scheme appropriately reproduces the regime of linear instability. The method
to measure the growth rate of SSI is the same as the method developed by Stone
& Edelman (1995). It is convenient to use compression weighted averages because
we need to evaluate physical quantities in the vicinity of a shock wave. We can
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write compression-weighted transverse magnetic energy as follows.

〈
B2

y

〉
=

∫
B2

yCdV∫
CdV

(4.26)

where,
C = min (∂vx/∂x, 0) . (4.27)

In Figure 4.5, we show the evolution of
〈
B2

y

〉
in model n1000b30v1a. The slope of

each line in Figure 4.5 reflects the growth rate. The growth rate can be measured
from the slope of

〈
B2

y

〉
as

ωnum = (2 log10 e)
−1 d

dt
log10

〈
B2

y

〉
B2

0

≃ (2 log10 e)
−1 ∆ log10

〈
B2

y

〉
/B2

0

∆t
. (4.28)

where,
∆log10 ⟨B2

y⟩/B2
0

∆t
is the gradient in the t–log10

〈
B2

y

〉
/B2

0 plane. We can confirm

linear growth. For λp = 0.01 pc,
〈
B2

y

〉
/B2

0 decreases until ∼ 0.3 Myr, a larger
scale noise start to grow after t ∼ 0.3 Myr, which is different from the growth of
λp = 0.01 pc mode. Since the initial perturbation is not given as the eigenstate of
the SSI, the SSI does not start to grow t = 0. Thus we define the measuring range
as [t0 = tstart + ftgrowth, t0 + trange] to observe the linear growth of SSI. where,
tgrowth ≡ 1/ωana is a growth timescale We choose tini = 0.05 Myr, trange = 0.2 Myr
and f = 0.4.

The HLLD and LHLLD Riemann solvers is a robust and high-resolution MHD
solver, but it does not take into account the slow mode characteristics in the
Riemann problem, and it is necessary to test the optimal solver for solving SSI.
We perform simulations using HLLD, LHLLD, HLLE, and Roe solvers to decide
which solver is the best for solving SSI. If physical shear viscosity is not included,
the measurement of the growth rate fails due to the carbuncle phenomenon. We
can prevent the carbuncle phenomenon by introducing physical shear viscosity.
Grid noise, which is numerically induced noise whose scale is different from a
given λp, potentially becomes the seed of SSI. The growth of SSI seeded by the
grid noise may arise after a long time integration (e.g., see the red line in Figure
[4.5]), thus we avoid measuring the growth of grid noise by adjusting the trange.

The top panel of Figure 4.6 shows the dispersion relation for adiabatic cases cal-
culated using HLLE or Roe solvers (models n1000b30v1aR∞E, n1000b30v1aR∞,
n1000b30v1aR16.3, and n1000b30v1aR9.8). The dashed line represents Eq. (1.23).
The vertical dotted line represents the scale of λ = 8∆x. We can see that the grid
scale structure created by the carbuncle phenomenon is suppressed by introduc-
ing physical shear viscosity. For simulations employing the HLLE solver, we do
not introduce the physical shear viscosity, since the carbuncle phenomenon does
not occur, however very diffusive nature of the HLLE solver makes SSI attenuate
at 0.02 ≤ λp < 0.05 pc (see, filled triangles). In the results with the Roe solver
without the physical shear viscosity (bold cross marks), we cannot measure growth
rates at long wavelength regimes, due to the contamination by the carbuncle phe-
nomenon. For model n1000b30v1R16.3 (blue crosses), the carbuncle phenomenon
still appears at λp = 0.02 pc (see the right edge of the blue curve). Using the Roe
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Figure 4.6: Dispersion relation for adiabatic cases. Top panel : Dispersion relations
for the case with Roe (cross marker, models n1000b30v1aR∞, n1000b30v1aR16.3,
and n1000b30v1aR9.8) and HLLE (triangle marker, model n1000b30v1aR∞E)
solvers. Black and purple lines show the non-viscous results. Blue and green lines
show the result with Rshear = 16.3 and Rshear = 9.8. Bottom panel : the same as
top panel, but for the case with HLLD (circle marker, models n1000b30v1aR∞D,
n1000b30v1aR16.3D, and n1000b30v1aR9.8D) and LHLLD (plus marker, models
n1000b30v1aR∞LD, n1000b30v1aR16.3LD, and n1000b30v1aR9.8LD) solvers.

method with Rshear = 9.8 (see green crosses), the SSI growth rate can be mea-
sured with high resolution (down to ∼ 0.02 pc) as well as preventing carbuncle
phenomenon.

The bottom panel of Figure 4.6 shows the same as the top but results us-
ing HLLD or LHLLD solvers (models n1000b30v1aR∞D, n1000b30v1aR16.3D,
n1000b30v1aR9.8D, n1000b30v1aR∞LD, n1000b30v1aR16.3LD, and n1000b30v1aR9.8LD).
The simulation using HLLD suffers from the carbuncle phenomenon. The LHLLD
scheme is designed to alleviate the carbuncle phenomenon, but after a long time
integration, the growth of grid noise appears. Both schemes give similar results,
but we fail to measure for λp > 1.0 pc modes if we do not involve physical
shear viscosity by the effects of the carbuncle phenomenon due to slower growth
of the SSI than the carbuncle phenomenon (see filled purple circles and purple
plus marks). It should be mentioned that the results using LHLLD are more close
to the approximated analytical solution than those using HLLD at λp ≤ 0.5 pc.
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Simulations using either HLLD or LHLLD successfully reproduce the growth of
SSI for Rshear = 9.8.

In a conclusion, we find that the HLLD, LHLLD, and Roe solvers with adjusted
physical shear viscosity can correctly calculate the growth rate of SSI over a wide
scale range. We can use any of the HLLD, LHLLD, and Roe solvers to measure
the linear growth rate, but in the following sections, we use the Roe solver that
shows numerically more stable features in nonlinear regimes (see, Appendix).

Dispersion Relation of SSI in Molecular Clouds

Figure 4.7: Evolution of the mean value of the perturbed magnetic field for the case
with isothermal ideal MHD including physical shear viscosity (model n1000b30v1).

Since the isothermal treatment is justified in dense regions of molecular clouds,
we adopt γ = 1.01. We measure the growth rate in the same way as §4.3.1. In Fig-
ure 4.7, we show the evolution of the mean value of the perturbed magnetic field for
model n1000b30v1. For λp = 0.002 pc,

〈
B2

y

〉
/B2

0 decreases until ∼ 0.2 Myr, then
a larger scale (> 0.002 pc) grid noise grows after t ∼ 0.2 Myr, which is different
from the growth of λp = 0.002 pc mode of the SSI. For λp = 0.2, 0.1, 0.02, 0.005 pc,
we can see the slope increments of the perturbed magnetic field after t = 0.7 Myr
caused by grid noise.

〈
B2

y

〉
/B2

0 converges to −4 after t = 0.75 Myr for λp = 0.01
due to the saturation of SSI (Stone & Edelman, 1995). As in §4.3.1, the range
to measure the linear growth rate is [t0 = tstart + ftgrowth, t0 + trange], and we
choose tstart = 0.05 Myr, trange = 0.5 Myr, and f = 0.6. We show the disper-
sion relation for the isothermal ideal MHD case including physical shear viscosity
(model n1000b30v1) as the grey cross marks in Figure 4.9. We find that, if we use
Rshear = 19.5, we find that a physical dispersion relation is successfully obtained
by suppressing the carbuncle phenomenon.

SSI v.s. Ambipolar Diffusion

We perform a similar analysis as in §4.3.1 for the simulation results including
ambipolar diffusion. In Figure 4.8, we show the evolution of the mean value of the
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Figure 4.8: Evolution of the mean value of the perturbed magnetic field for the case
with isothermal ideal MHD including ambipolar diffusion and physical shear viscosity
(model n1000b30v1AD).
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Figure 4.9: Dispersion relation for the model n1000b30v1 (grey) and n1000b30v1AD
(black).

perturbed magnetic field for model n1000b30v1AD. Because the effect of ambipolar
diffusion makes the phase speed of the Alfvén wave smaller, it takes more time for
the eigen state to develop from the given initial perturbation compared to the ideal
MHD case. Thus, for measuring the liner phase growth rate, we take longer tstart
of 1.2 Myr, and f = 0.6 and trange = 0.3 Myr. We show the dispersion relation for
the isothermal MHD case including ambipolar diffusion (model n1000b30v1AD)
as the black cross marks in Figure 4.9. We can see the damping of the SSI growth
by the ambipolar diffusion. We find that the most unstable scale ℓmax ≃ 0.2 pc
and the damping scale ℓdamp ≃ 0.02 pc.

To investigate the parameter dependence on the most unstable scale, we per-
form a parameter survey for unperturbed magnetic field strength, density, and
shock velocity. In Figure 4.10, we show the dispersion relation for models n1000b24v1AD,
n1000b40v1AD, n800b30v1AD, n1600b24v1AD, n1000b30v0.8AD. We can con-
firm that the most unstable scale changes with the magnetic field density and
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Figure 4.10: Dispersion relation for the models n1000b30v1AD, n1600b30v1AD,
n800b30v1AD, n1000b24v1AD, n1000b40v1AD, and n1000b30v0.8AD.
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velocity. The larger the density/velocity, the smaller the most unstable scale of
ambipolar diffusion. Contrary, the larger the magnetic field, the larger the damp-
ing scale. These trends can be understood by the scale of ambipolar diffusion
ℓdamp ∼ ℓAD ∝ B2

0ρ
−3/2v−1

x0 (Eq. [4.2]).

4.3.2 Nonlinear Evolution for One-shock SSI

We show the density maps of nonlinear evolution for model NL1Shock in Figure
4.11. The white lines represent the contour of the vector potential, i.e., magnetic
field lines. The results are consistent with Stone & Edelman (1995). The preshock
gas flows along the magnetic field lines, pushing the fluid away from the peaks and
concentrating it in the valleys. This effect reduces/increases preshock densities in
peak/valley and provides the observed changes in postshock densities. Changes
in preshock density affect shock velocities, causing peak/valley velocities to be
higher/lower than average, resulting in finger growth.

In the left panels of Figure 4.12, we show the density maps of non-linear evo-
lution including ambipolar diffusion (model NL1ShockAD). We can confirm the
growth rate of shock position fluctuation is slowed down due to ambipolar diffu-
sion. The right panels of Figure 4.12 show the density maps of non-linear evolution
including ambipolar diffusion (model NL1Shockλp0.01AD). Because λp = 0.01 pc
< ℓdamp ≃ 0.03 pc, i.e., ambipolar diffusion strongly affects, shock position fluctu-
ation is stabilized and disappears. Figure 4.13 shows that the gas flows along the
shock front (see top panel), leading to the formation of high-density regions at the
valleys (see left panels of Figure 4.12). The magnetic field structure is close to the
eigen state of slow shock and kinks around the shock front (see a bottom panel or
white lines in Figure 4.12). These indicate that ambipolar diffusion strongly works
around the shock front. This result is consistent with Snow & Hillier (2021).

4.3.3 Linear Evolution for Two-shocks SSI

We measure the growth rate to investigate the stability of odd and even mode SSI.
Here we used the HLLE solver, which does not require physical shear viscosity
adjustment to suppress the grid scale fluctuations, since we only need to check
whether odd/even mode SSI is stable or not. The evolution of the perturbed
magnetic field is shown in Figure 4.14. The cross, plus, and round markers are the
results for models 2S-odd, 1S-odd, and 2S-even, respectively. For model 1S-odd,
we choose vx0 = vsh = 0.56 km s−1 to consistently compare the result for 2S-odd
because the shock velocity for model 2S-odd is vsh = vx0 + v1 ≃ vx0 + vx0/M2

s =
vx0 + vx0c

2
s/v

2
sh then vsh ≃ 0.56 km s−1. We can confirm that odd mode SSI

is unstable. Comparing the results for models 2S-odd and 1S-odd, the slope is
almost the same indicating that the growth rate for the odd mode SSI is similar
to the one-shock case. For model 2S-odd, the perturbed magnetic field is more
amplified than 2S-odd at the initial stage of t ≃ 0 Myr, but we cannot examine
the reason in our setup since the initial perturbation is not given as the eigen state
for the SSI.
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N1000b30v1, 
nu0, l0.1, 
oneshock

Figure 4.11: Density maps in the result of model NL1Shock at time t = 0.0, 0.4, and
0.8 Myr (from top to bottom). White lines represent the magnetic field lines.
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N1000b30v1, 
nu0.0001, l0.1, 

oneshock

Figure 4.12: Same as Figure 4.12 but for model NL1ShockAD (left column) and
NL1Shockλp0.01AD (right column).
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Figure 4.13: vy and By maps in the result of model NL1ShockAD at time t = 1.6 Myr.
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Figure 4.14: Evolution of the mean value of the perturbed magnetic field for the case
with isothermal ideal MHD. The cross, plus, and, circle markers are the results for
models 2S-odd, 1S-odd, and 2S-even.

Figure 4.15: Evolution of the mean value of the perturbed magnetic field for the case
with isothermal ideal MHD for model 2S-evenB24.
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Figure 4.16: y component of velocity (left column) and magnetic field (right column)
maps in the result of model 2S-even at time t = 0.0, 0.06, 0.08, 0.12, and 0.16 Myr
(from top to bottom). Red lines show the density contour. Black lines represent the
streamlines of the magnetic field. Note that these streamlines are not real magnetic field
lines because we plot them with the By emphasized.
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Figure 4.17: Same as Figure 4.16 but for t = 0.22, 0.27, 0.36, 0.40, and 0.49 Myr (from
top to bottom).
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Figure 4.18: Schematic illustration of the interpretation of the result for model 2S-
evenB24.

For the case in the even mode (model 2S-even), the magnitude of the perturbed
magnetic field globally decreases with oscillating indicating that the even mode SSI
is stable. In Figure 4.15, we show the long evolution of the perturbed magnetic field
for a higher growth rate model 2S-evenB24. We can confirm that stabilization for
the even mode works at the initial stage, and SSI revives after t = 1 Myr because
the interaction between shocks is weak and each behaves as a single shock wave
when two shocks are distant. To understand the stabilizing mechanism, we show
By and vy maps for higher growth rate model 2S-evenB24 in Figure 4.15. The left
column shows vy maps. The red lines are contours of density, and represent initial
density perturbation at t = 0 Myr and shock fronts at t > 0 Myr. The black lines
represent the streamlines of the magnetic field. Note that these streamlines are not
real magnetic field lines because we plot them with the By emphasized. We can
confirm the sign of By and vy change with time, indicating that magnetic field lines
oscillation results in the creation and annihilation of the perturbed magnetic field
just behind the shock fronts. We conclude that the magnetic tension stabilizes the
even mode SSI.

4.3.4 Non-linear Evolution of Two-shocks SSI

We focus on studying the nonlinear evolution for the odd mode SSI since the even
mode SSI is stable (see §4.3.3). As a result of colliding flow, a filament forms
at the center x ≃ 0 pc. In Figure 4.19, we show the density maps for model
NL2Shockλ0.05 at time t = 0.04, 0.2, and 0.4 Myr (from top to bottom). White
lines represent magnetic field lines. To compare with no SSI case, we simulate a
one-dimensional case and show the density profile in Figure 4.21. Panel (a) and (b)
show the result for the ideal MHD case and non-ideal MHD case, respectively. We
find that turbulence is not generated, but the width of the shocked layer becomes
wider than no SSI case (1D case, see panel [a] in Figure 4.21) considering the
coarse visualization by observations. In Figure 4.20, we show density maps for
model NL2ShockRand as a general case. We can confirm that the smaller-scale
SSI grows fast. Here also, the turbulent structure does not arise.

Considering the growth of the shock position fluctuation is slowed down for
the case of one-shock SSI including ambipolar diffusion, we can expect that the
growth rate will also be low in two-shocks SSI including ambipolar diffusion case.
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N1000b30v1, 
nu0, l0.05

Figure 4.19: Density maps in the result of model NL2Shockλ0.05 at time t = 0.04,
0.2, and 0.4 Myr (from top to bottom). White lines represent the contour of the vector
potential i.e., magnetic field lines.
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Figure 4.20: Density maps in the result of model NL2ShockRand at time t = 0.04, 0.1,
0.3, 0.5, 0.7, and 0.9 Myr. White lines represent magnetic field lines.

However, we find a mechanism of faster expansion than the one-shock case. In
Figure 4.22, we show density maps for model NL2Shockλ0.05AD. Compared to
Figure 4.19, the expanding speed of the shocked layer is more prominent. The
mechanism of the fast expansion is following. Ambipolar diffusion permits the
flow along the shock fronts, leading to gas accumulation and dense blobs forming
in valleys. The blobs move towards the center of the shocked layer and hit the
other shock front, i.e., momentum transportation occurs (see the central panel in
Figure 4.23). Then, the magnitude of corrugation grows and new dense blobs are
created in new valleys. We summarize this mechanism in Figure 4.24.

For the small λp = 0.01 pc < ℓdamp model NL2Shockλ0.01AD, the instability
survives contrary to the one-shock case because the momentum transportation
is driven rather by ambipolar diffusion. At t = 0.2 – 0.4 Myr, longer modes
different from the initial λp we set becomes prominent. This may be because the
Kelvin Helmholtz instability occurs at a small scale in the shocked region and
disturbs the momentum transportation. At t = 0.6 – 0.8 Myr, the shocked layer
shrink temporally. Long modes of ≃ 0.1 pc start to grow at t = 0.8–1.4 Myr.
For a more general case, we show the result with a random perturbation case
(model NL2ShockRandAD). Similar to the result for model NL2Shockλ0.01AD,
small-scale finger structures dominate at the initial stage (t < 0.3 Myr), and the
larger-scale finger becomes outstanding at the later stage (t > 0.7 Myr)
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Figure 4.21: Density profile for one-dimensional simulation of slow shock. The initial
condition is the same as model NL2Shockλ0.05 but calculated only on the x-axis. Note
that SSI does not occur in this situation. Panel (a): Result for ideal MHD case. Panel
(b): Same as the panel (a) but ambipolar diffusion is included.
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N1000b30v1, 
nu0, ambi, l0.05, 

amp0.02

Figure 4.22: Density maps in the result of model NL2Shockλ0.05AD at time t = 0.04,
0.2, and 0.4 Myr (from top to bottom). White lines represent magnetic field lines.
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Figure 4.23: By, vx, and vy maps in the result of model NL2Shockλ0.05AD at time t
= 0.2 Myr (from top to bottom).
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Figure 4.24: Schematic illustration of the mechanism of fast expansion driven by the
nonlinear effect of two-shocks SSI including ambipolar diffusion.

N1000b30v1, 
nu0, ambi, l0.01

Figure 4.25: Density maps in the result of model NL2Shockλ0.01AD at time t = 0.04,
0.2, 0.4, 0.6, 0.8, and 1.4 Myr.
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N1000b30v1, 
nu0, ambi, rand 

Figure 4.26: Density maps in the result of model NL2ShockRandAD at time t = 0.04,
0.1, 0.3, 0.5, 0.7, and 0.9 Myr.

4.3.5 Three-dimensional simulation including self-gravity

The left panels in Figure 4.27 show snapshots of the column density map of the
result of three-dimensional SSI simulation including self-gravity and ambipolar
diffusion at t = 0.4, 0.7, 1.0, and 1.30 Myr. The nonlinear evolution of SSI including
ambipolar diffusion generates turbulence in the filament leading to fine structure
formation. We show a three-dimensional density structure in Figure 4.28. A lot
of finger structures (dark blue and light blue) and dense blobs (light blue) created
by the instability are observed.

The right panels in Figure 4.27 are the same as the left panels in Figure 4.27
but for maps taken a smoothing of the column density using the Gaussian kernel
function of a width of 0.01 pc, corresponding to the typical beam width for Herschel
Gould Belt survey (Arzoumanian et al., 2013). We examine the column density
structure and the width of the filament by computing the median along the filament
smoothed by the Gaussian kernel function. The red lines in Figure 4.29 represent
median radial column density profiles of the right side (x > 0 pc) of the filament.
The dashed lines are Plummer function whose parameters are given by (Rflat =
0.017 pc, p = 1.6) for the left panel and (Rflat = 0.013 pc, p = 1.8) for the right
panel. The black solid lines show half of the Full-width half maximum FWHM/2,
i.e., the radius of the filament (solid lines). We can confirm that the median radial
column density profiles are well described by the Plumnner function. Note that
the amount of the gas at x > 0.2 pc (the right edge of the red lines) decreases
due to self-gravity and the boundary condition. We measure the line mass of the
filament by tracing the dense region (> 8000 cm−3) in our simulation box, and
Mline ≃ 57 M⊙ pc−1 at t = 1 Myr and Mline ≃ 75 M⊙ pc−1 at t = 1.3 Myr. As we
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t = 0.4 Myr t = 0.4 Myr

t = 0.7 Myr t = 0.7 Myr

t = 1.0 Myr t = 1.0 Myr

t = 1.3 Myr t = 1.3 Myr

Figure 4.27: Left column: Column density maps result from three-dimensional SSI
simulation including self-gravity and ambipolar diffusion at time t = 0.4, 0.7, 1.0, and
1.3 Myr (from top to bottom). Right column: Same as the left column panels but for
maps taken a smoothing of the column density using the Gaussian kernel function of
a width of 0.01 pc, corresponding to the typical beam width for Herschel Gould Belt
survey (Arzoumanian et al., 2013).
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Figure 4.28: Density contour result from three-dimensional SSI simulation including
self-gravity and ambipolar diffusion at time t = 1.3 Myr. The color bar represents the
density magnitude.
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t = 1.0 Myr 
Mline = 57 M  pc-1⊙

t = 1.3 Myr 
Mline = 75 M  pc-1⊙

FWHM = 0.10 pc FWHM = 0.056 pc

Figure 4.29: Median radial column density profile of right side (x > 0 pc) of the filament
(red lines), Plummer function whose parameters given by (Rflat = 0.017 pc, p = 1.6) for
the left panel and (Rflat = 0.013 pc, p = 1.8) for the right panel (dashed lines), and half
of Full width half maximum FWHM/2, i.e., the radius of the filament (solid lines).

introduced in 1.2.4 and 1.2.4, Observations showed that most filaments have the
slope index of p = 1.5–2.5 and the width of ≃ 0.1 pc. Our results are consistent
with them even for massive filament (Mline ≃ 57–75 M⊙ pc−1). The estimated
critical line mass including magnetic field (Eq. [1.18]) is given by

Mline,cr,B ≃ 11

(
w

0.1pc

)(
B

50µG

)
M⊙pc

−1 + 15

(
cs

0.2 km s−1

)2

M⊙pc
−1

= 26 M⊙pc
−1, (4.29)

which is lower than our filament formed in the simulation, i.e., our filament is mag-
netically (and thermally) supercritical. Therefore, we propose that the nonlinear
evolution of SSI including ambipolar diffusion induces an additional pressure to
support the filament against gravitational collapse.

4.4 Discussion

4.4.1 Parameter dependence of damping scale

In §4.3.1, we have stated that the most unstable scale depends on the magnetic
field, density, and shock velocity. In this section, we discuss how the characteristic
of the SSI is scaled. In Figure 4.30, we show the damping length scale, which
scales with the most unstable length, as a function of the initial density (panel
a), the initial magnetic field (panel b), and the shock velocity (panel c). The grey
dotted line is the scale of ambipolar diffusion evaluated in post-shock quantities
which can be written as

ℓAD,post ≡
B2

1

4πγinCρ
3/2
1 v1

≃ B2
0cs

4πγinCρ
3/2
0 v20

= 0.017 pc

(
B0

30 µG

)2 ( n0

103 cm−3

)−3/2
(

v0
1 km/s

)−2

,

(4.30)
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Figure 4.30: Parameter dependence of damping scale ℓdamp (solid vertical lines). The
grey dashed and solid lines represent ℓAD,post (see, eq. 4.30) and 1.7ℓAD,post. (a) Up-
stream density versus damping scale. (b) Magnetic field versus damping scale. (c) Shock
velocity versus damping scale.
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where, B1 ≃ B0, ρ1 ≃ M2
sρ0, and v1 ≃ M−2

s v0 are post-shock magnetic field
strength, density, and velocity, respectively. The grey solid line represents 1.7 ×
ℓAD,post. The top and bottom edges of vertical lines are the minimum lengths with
a positive growth rate and the maximum lengths with a negative growth rate, i.e.,
the vertical lines show the range in which the damping scale exists. For panels (a)
and (b), the damping length scale well follows 1.7ℓAD,post. For the shock velocity
dependence, the dependency is not as good as n0 and B0, but the difference from
1.7ℓAD,post is within a factor of 2. Thus we conclude that the characteristic damping
scale of the SSI can be approximately estimated by ℓdamp ∼ 1.7ℓAD,post, and the
most unstable scale by ℓSSI ∼ 5ℓdamp ∼ 9ℓAD,post.

4.4.2 Growth rate of two shocks SSI including ambipolar
diffusion

To understand the property of the nonlinear two shocks SSI including ambipolar
diffusion, we compare the results for model NLλ0.05AD and NLλ0.05ADξ0.005.
We can confirm the expanding speed of the shocked layer depends on ξ, indicating
that the shock angle is one of the key parameters to determine the expanding
speed.

4.4.3 Why could a massive filament maintain a width of
0.1 pc?

In §4.3.5, the massive filament can maintain a width of 0.1 pc. We discuss why
filament width could be kept. Nonlinear evolution of SSI including ambipolar
diffusion drives the motion of dense gas blob from the inside of the filament toward
the surface of the filament. We estimate velocity dispersion and the ram pressure
of the dense blob. From simulation data, the filament has the velocity dispersion
of ≃ 0.2 km s−1 (which is consistent with observations by Arzoumanian et al.
(2013)), thus effective critical line mass (Eq. [1.17, 1.18]) is given by

Mline,crit ≃ 0.24
Bw

G1/2
+ 1.66

c2s +∆v2

G

≃ 12

(
w

0.1 pc

)(
B

50 µG

)
+ 15

(
c2s

0.2 km s−1

)
+ 15

(
∆v2

0.2 km s−1

)
M⊙ pc−1

= 42 M⊙ pc−1, (4.31)
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N1000b30v1, 
nu0, ambi, l0.1, 

amp0.005

Figure 4.31: Density maps in the result of model NL2Shockλ0.05ADξ0.005 at time t =
0.04, 0.2, and 0.4 Myr (from top to bottom). White lines represent the contour of the
vector potential i.e., magnetic field lines.
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which is not enough to support a massive filament whose line mass of ∼ 100
M⊙ pc−1. If we use the ram pressure of blob in the filament,

Mline,crit ≃ 0.24
Bw

G1/2
+ 1.66

c2s +∆v2

G

≃ 12

(
w

0.1 pc

)(
B

50 µG

)
+ 15

(
c2s

0.2 km s−1

)
+ 94

(
v2blob

0.5 km s−1

)
M⊙ pc−1

= 121 M⊙ pc−1. (4.32)

If the line mass of the filament is half the critical value of the critical value and
the effect of external pressure is taken into account, the width becomes around
0.1 pc (Fischera & Martin, 2012). In a conclusion, we conclude that additional
pressure given by the instability works as a widening mechanism of filament width.
It should be noted that we need to further investigate whether it is always 0.1 pc.

4.5 Summary

We have performed the SSI simulations in molecular clouds using isothermal
(γ = 1.01) or adiabatic (γ = 5/3) using Athena++. To test the optimal solver
for solving SSI, we performed simulations using HLLD, LHLLD, HLLE, and Roe
solvers to decide which solver is the best for solving SSI by comparison with the
approximated analytic solution (Eqs. 1.23). The stabilization length scale of SSI
in molecular clouds by ambipolar diffusion was investigated. We also study the
nonlinear evolution of SSI and the effect of ambipolar diffusion on it. Furthermore,
we performed a three-dimensional simulation including self-gravity and ambipolar
diffusion. Our main findings are as follows.

1. HLLD, LHLLD, and Roe solvers with physical kinetic viscosity are most
suitable for simulating SSI. Simulations using HLLD/LHLLD solvers could
cause unphysical explosions depending on the initial condition. Although
such a numerical effect can be quenched using physical viscosity, we select
the Roe solver as an optimal one in Athena++.

2. Ambipolar diffusion suppresses SSI on a small scale. We find that the most
unstable scale of the order of ∼ 0.1 pc and the damping scale of the order of
∼ 0.01 pc in molecular clouds.

3. The most unstable and damping length scales depend on the density, shock
velocity, and, magnetic field strength. The scaling is roughly described by
ℓSSI ∼ 5ℓdamp ∼ 9ℓAD,post ∝ B2

0ρ
−3/2v−2

x0 .

4. Even/odd mode is stable/unstable for two-shocks SSI. The growth rate for
the odd mode is similar to the single shock case.
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5. Two shocks SSI for ideal MHD does not generate turbulence, however, tur-
bulence (dense blob motion in a filament) is driven if we introduce ambipolar
diffusion.

6. The turbulence gives additional pressure leading to the maintenance of fil-
ament width against gravitational collapse in three-dimensional simulation.
Furthermore, the column density profile was also consistent with observa-
tions.
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Chapter 5

Conclusion

Filament formation and evolution in molecular clouds determine the initial condi-
tion for star formation. However, there are unsolved problems. We tried to solve
the following problems.

1. Theoretical research suggests that shock waves in molecular clouds trigger
filament formation. Since several different mechanisms have been proposed
for filament formation, the formation mechanism of the observed star-forming
filaments requires clarification.

2. Previous studies have demonstrated that strong MHD shock compression
allows for the formation of massive cores. However, these studies implicitly
assumed a long duration of a shock wave (corresponding to collisions between
large clouds). On the other hand, some studies demonstrated that gravita-
tionally bound cores do not form in the case of short duration. Therefore,
a systematic study into the effect of shock duration on the resulting fila-
ment/core formation is required.

3. Observations show that a massive star cluster formation occurs where the
peak of gas column density in a cloud exceeds 1023 cm−2. However, the
physical origin of the threshold peak column density of 1023 cm−2 is unknown.

4. Observations show that the filament width takes the universal value of 0.1
pc regardless of their line-mass, even supercritical filaments subject to grav-
itational collapse. Theoretically, however, the width should shrink for the
supercritical filaments.

In Chap. 2, we tackled the problem 1. We performed a series of isothermal
MHD simulations of filament formation. We focused on the influences of shock
velocity and turbulence on the formation mechanism and identified three different
mechanisms for filament formation. The results indicate that when the shock
is fast, at shock velocity vsh = 7 km s−1, the Type O mechanism substantially
works. However, at a slow shock velocity vsh = 2.5 km s−1, Type C mechanism
becomes important. When both the shock velocities and turbulence are low, Type
G becomes important for filament formation. Moreover, we analyzed the line-mass
distribution of the filaments and showed that strong shock waves can naturally
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create high-line-mass filaments such as those observed in the massive star-forming
regions in a short time. We conclude that the dominant filament formation mode
changes with the velocity of the shock wave triggering the filament formation. The
filament formation mechanism is understood in a unified way by this work.

In Chap. 3, we investigated the effect of the shock-compressed layer dura-
tion on filament/star formation and how the initial conditions of massive star
formation are realized, which leads to solving problems 2 and 3. We performed
three-dimensional (3D) isothermal MHD simulations with gas inflow duration from
the boundaries (i.e., shock wave duration) as a controlling parameter. Filaments
formed behind the shock expand after the duration time for short shock duration
models, whereas long-duration models lead to star formation by forming massive
supercritical filaments. Moreover, when the shock duration is longer than two
postshock free-fall times, the peak column density of the compressed layer exceeds
1023 cm−2, and the gravitational collapse of the layer causes the number of OB
stars expected to be formed in the shock-compressed layer reaches the order of ten
(i.e., massive cluster formation). In this sense, a faster shock wave is advantageous
because postshock free-fall time becomes smaller when the shock wave is faster.

In Chap. 4, to solve problem 4, focusing on the slow shock instability (SSI)
that occurs at the filament boundaries, we used non-ideal MHD simulations to
investigate the mechanism of filament width maintenance. The wavefront of the
slow shock is known to be unstable, and we expect the conversion of the accretion
flow ram pressure into thermal/turbulent pressure across the unstable shock front
that potentially maintains the filament width. However, since the linear dispersion
relation obtained from the ideal MHD analysis show infinitesimal scale as the most
unstable scale. In the scale of dense filaments, the effect of ambipolar diffusion
is non-negligible that expected to suppress the instability at small scales. As
a first step, we investigated the linear dispersion relation of the SSI including
ambipolar diffusion. We performed two-dimensional MHD simulations to examine
the linear stage of the slow shock instability including the effect of the ambipolar
diffusion. We found that the most unstable scale of the slow shock instability is
given by roughly 5 times the length scale of the ambipolar diffusion calculated
using postshock variables.

The filament would be sandwiched between two slow shocks. Although the
wavefront of the slow shock is unstable, the stability of the two slow shocks when
they are adjacent has not been investigated. Two adjacent slow shocks are ex-
pected to interact via magnetic field lines. As the second step, we aimed to un-
derstand the interaction between two adjacent slow shocks. The results show that
the odd mode is as unstable as the single slow shock, the growth rate is the same
as the single shock case, and the even mode is stabilized by magnetic tension.

Furthermore, as the third step, we aimed to explain the universality of the
filament width and investigated whether slow shock instability with ambipolar
diffusion causes turbulence generation using two-dimensional non-ideal MHD sim-
ulations. We found that turbulence is driven as a result of the nonlinear evolution
of the slow shock instability with bipolar diffusion. As the final step, we also
performed 3D simulations with self-gravity to investigate the radial profile of the
column density. For a massive filament of about 70 M⊙ pc−1, the profile is consis-

107



tent with observations and has a width of 0.06 pc. We proposed that the width is
maintained by turbulent pressure driven by slow shock instability with ambipolar
diffusion.
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Appendix A

Procedure for Derivation of Slow
Shock Instability

Figure A.1: Flow configuration.

In this appendix, we show the detailed derivation of the slow shock instability
based on Lessen & Deshpande (1967) and Édel’Man (1989). Basic equations of
isothermal MHD are given by

ρ
∂U

∂t
+ U · ∇U = −∇p−∇

(
B2

8π

)
+

1

4π
(B · ∇)B, (A.1)

∂ρ

∂t
+∇ · (ρv) = 0, (A.2)

∂B

∂t
= ∇× (v ×B), (A.3)

and
p = ρc2s . (A.4)

Because we consider a situation in a boundary of star-forming filament, the un-
perturbed gas flow, and magnetic field are set to be perpendicular to the shock
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wave (see Figure A.1). The steady-state jump conditions at x = 0 are given by

⟨ρu⟩ = 0, (A.5)

⟨Bx⟩ = 0, (A.6)

and 〈
ρu2 + p

〉
= 0, (A.7)

where ⟨· · · ⟩ and n̂k denotes the jump in the quantity across the shock and the
components of the unit normal n̂ along the xk axis. These equations are the same
as unmagnetized fluid. When a shock wave moves with a velocity of W , these
jump conditions are rewritten as

−⟨ρ⟩W + ⟨ρUi⟩ n̂i = 0 (A.8)

⟨Bi⟩ n̂i = 0 (A.9)

−⟨ρUi⟩W + ⟨ρUkUin̂k⟩ = −
〈
p+

B2

8π

〉
n̂i +

1

4π
⟨BiBk⟩ n̂k (A.10)

−⟨Bi⟩W + ⟨BiUk −BkUi⟩ n̂k = 0 (A.11)

We set perturbations as follows.

δu = f exp [i (kxx+ kyy − ωt)]

δv = Φexp [i (kxx+ kyy − ωt)]

δBx = bx exp [i (kxx+ kyy − ωt)]

δBy = by exp [i (kxx+ kyy − ωt)]

δρ = n exp [i (kxx+ kyy − ωt)]

δp = c2sδρ,

(A.12)

where kx, ky, and ω are x and y components of wave number and the frequency of
disturbance, respectively. The linear equations can be written as

ωLn+ ρ (kxf + kyΦ) = 0 (A.13)

ωLρf + kxπ = 0 (A.14)

ωLρΦ + kyπ + (B/4π) (kybx − kxby) = 0 (A.15)

ωLbx + kyBΦ = 0 (A.16)

ωLby − kxBΦ = 0 (A.17)

kxbx + kyby = 0 (A.18)

where, ωL ≡ −ω + kxu. To find a non-trivial solution to these equations, taking
the determinant of coefficients to be zero, we get the dispersion relation

ω4
L − ω2

L

(
k2
x + k2

y

) (
c2s + v2A

)
+
(
k2
x + k2

y

)
k2
xv

2
Ac

2
s = 0, (A.19)
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where, vA ≡ B/
√
4πρ. While the component of the wave number vector along the

shock wave, ky, is the same on both upstream and downstream, the perpendicu-
lar component kx is different on different sides. These values are obtained from
A.19. The eigenvalue obtained from the second factor of Eq. A.19 corresponds to
magneto-acoustic waves. The shock wave is said to be unstable if there exists a
disturbance vanishing at x = ±∞ and such that Im ω > 0. It is assumed that ky
is real. The boundary condition requires that Im kx < 0 ahead of the shock and
Im kx > 0 behind the shock. Since the solutions of the Eq. A.19 are complex,
we solve it by applying approximation of MA ≪ 1 and ω/(kyu) ≪ 1. (Édel’Man,
1989). Multiplying M2

A(kyu)
4/ω4 Eq. A.19 by , we obtain

(−Ω + l)4 − (−Ω + l)2
(
l2 + l

) (
M−2

s +M2
A

)
+
(
l2 + 1

)
l2M−2

A M−2
s = 0 (A.20)

where, Ω ≡ ω/(kyu) and l ≡ kx/ky. An upstream solution that does not diverge
at infinity is kx = −iky. Solutions in downstream are kx = iky and kx = Ωky/(1 +
M1).

The eigen functions for a magneto-acoustic wave are given by

f = −c2skx
ωL

n

ρ
(A.21)

Φ = − c2skyω
2
L

ωL

[
ω2
L −

(
k2
x + k2

y

)
v2A
] n
ρ

(A.22)

bx =
c2sk

2
yBx

ω2
L −

(
k2
x + k2

y

)
v2A

n

ρ
(A.23)

by = − c2skykxBx

ω2
L −

(
k2
x + k2

y

)
v2A

n

ρ
(A.24)

The surface of the perturbed shock is written as

ξ = η exp (ikyy − iωt) . (A.25)

This leads to the shock velocity normal to itself,

W = −iωξ. (A.26)

Note that the shock amplitude η is small. The unit normal vector to the perturbed
surface is given by n̂k = (1,−ikyξ). Using these equations and the shock jump
condition, we can obtain the jump condition for the perturbation

i ⟨ρω − kyρv⟩ ξ + ⟨ρf + un⟩ = 0 (A.27)

⟨bx⟩ = 0 (A.28)〈
2ρuf + u2n+ π

〉
= 0 (A.29)

i
〈
−kyρ

(
v2 + c2s

)〉
ξ +

〈
ρuΦ− Bxby

4π

〉
= 0 (A.30)
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⟨−BxΦ + uby⟩ = 0 (A.31)

Substituting the eigen functions to Eq. A.28 and A.31, we can confirm that Eq.
A.28 and A.31 are identical, i.e., there are four independent equations.

A solution of the density perturbation can be written as a superposition of
each eigen function. For the slow shock, the solutions upstream and downstream
are given by

n0 = n
(f)
0 exp (ikxfast0

x) , (A.32)

and
n1 = n

(f)
1 exp (ikxfast1

x) + n
(s)
1 exp (ikxslow1

x) . (A.33)

Substituting the eigen functions and Eq. A.32 and A.33 to the perturbed shock
jump condition, the perturbed jump condition can be written as the following form

∥Sij∥

∣∣∣∣∣∣∣∣∣
n
(f)
1

n
(f)
2

n
(s)
2

η

∣∣∣∣∣∣∣∣∣ = 0 (A.34)

where ∥Sij∥ is a 4 × 4 matrix. The determinant of Sij gives a non-trivial solution,
that is dispersion relation of slow shock instability.
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Appendix B

High Shock Velocity Simulations

B.1 High Shock Velocity Case with Strong Tur-

bulence

In the model v12GyTy, the velocity dispersion of the turbulence is set to 1 km s−1.
In this appendix, we investigate the filament formation mechanism and the distri-
bution of the angle between the filament and the magnetic field lines in the case
of larger velocity dispersion of the initial turbulence ∆v = 2 km s−1 as model
‘v12GyTy’. Panels (I)-(III) and (i)-(iii) in Figure B.1 show column density snap-
shots of model v12GyTy2 in the y-z and x-y planes at t = 0.2 Myr, 0.4 Myr, and
0.8 Myr, respectively. We can confirm that stronger turbulence makes the struc-
ture more complex than the results in model v12GyTy. To clarify the dominant
filament formation mechanism, we show the local density cross-sections around the
five major filaments as the results of models v12GyTy2 in Figure B.2. The snap-
shots show that turbulent motion parallel to the magnetic field (y-direction) create
dense clamps in the pre-shock region1 that are swept by the shock and induces
type O filament formations. The curved shock morphology and velocity vectors
(black arrows) shown in the cross-section panels in model v12GyTy2 support the
activation of the type O mechanism.

We show angle histograms of model v12GyTy2 at t = 0.2 (panels a and b),
0.4 (panels c and d), and 0.8 (panels e and f) Myr in Figure B.3. Left panels (a),
(c), and (e) are the angle histograms for the filaments in the column density range
of 0.5 N̄sh to 1.5 N̄sh. Right panels (b), (d), and (f) are the histograms for the
filaments with N > 1.5 N̄sh. While dense filaments are perpendicular to the mag-
netic field, the distribution of the angle between the faint filament and the magnetic
field is random and different from that in Figure 2.14. Remarkably, the histograms
of the angle distribution are much flatter than the case of model v12GyTy (see,
Fig. B.3). This may be because, when the initial turbulence is strong, various
filamentation modes are mixed and the resulting filamentary structure changes its
direction to the magnetic field lines. Observational study of density structure and
magnetic field orientations in several molecular clouds by Planck Collaboration

1This resembles type C filament formation, but this process happens before shocked sheet
formation, and thus preshock clumps are formed.
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Figure B.1: Column density maps at time t =
0.2 (top), 0.4 (middle), and 0.8 (bottom) Myr. Left row (panels I, II, and III):
Column density in the y-z plane of model v12GyTy2. Right row (panels i, ii, and iii):
Same as the panels (I)-(III) but for the x-y plane.

114



Figure B.2: Cross-section maps of the number density in the y-z plane of model
v12GyTy2. The yellow blobs located roughly at the center of each panel correspond
to cross-sections of the filaments. We can confirm that the oblique MHD shock com-
pression mechanism takes a major role in filament formation even in the case of initial
stronger turbulence with high shock velocity.

XXXV (2016) does not show such a flat distribution. Therefore, we conclude that
this kind of initial strong turbulence model does not provide a realistic model.

B.2 High Shock Velocity Case without Magnetic

Field

In this section, we describe the additional set of calculations without a magnetic
field. The compression ratio of the isothermal hydrodynamics shock is given by
R ∼ M2

s , where Ms is the sonic Mach number. Thus, for instance, if we set
vsh = 7.0 (or 2.5) km s−1, the compression ratio becomes 1225 (or 156), which
is extremely high. Note that, with the magnetic field, the compression ratio is
dramatically reduced to R ∼

√
2MA, where MA is the Alfvénic Mach number.

Here, we chose parameter vcoll ∼ 8.0 km s−1 (vsh ∼ 5 km s−1), which we
call v8GnTnB0. Panels a and b in Figure B.4 show column density snapshots
of model v8GnTnB0 in the y-z at t = 0.3 Myr, and 1.0 Myr, respectively. In
contrast to other column density figures in the main text, we integrate the whole
numerical domain in constructing the column density. In panel b, we see the
highly unstable feature of shock surfaces. This seems to be nonlinear thin-shell
instability (Vishniac, 1994), which is known to be suppressed in the case of a
magnetic field. A similar feature is observed in previous similar studies (e.g.,
Folini et al., 2014). In both panels, compressed layers sandwiched by two shocks
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(a) (b)

(c) (d)

(e) (f)

Figure B.3: Histogram of angles between filaments and magnetic field for model
v12GyTy2. From top to bottom, results at time t= 0.2, 0.4, and 0.8 Myr, respec-
tively. Left panels (1), (3), and (5): Results when we identify filaments in the column
density range of 0.5N̄sh to 1.5N̄sh. Right panels (2), (4), and (6): Results when the
filament identification threshold column density is chosen to be 1.5N̄sh.
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Figure B.4: Column density maps at time t = 0.3 (panela), and 1.0 (panelb) Myr in
the y-z plane of model v8GnTnB0.

are extremely thin and dense, which has not been observationally identified in the
actual molecular clouds associated with fast shock waves as far as we are aware.
Under this high compression, the length scale of the initial fluctuations becomes
smaller than the spatial resolution, and thus, the smallest scale structures shown
in this section are limited by numerical resolution. Nonetheless, we can identify
no sign of the formation of the filamentary structure with a sufficiently large line-
mass. Therefore, we think that this setup without a magnetic field is not realistic
and the presence of magnetic fields is critical for creating filamentary structures
in the shock-compressed region.
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Appendix C

Selection of MHD solver

In Figure C.1 and C.2, we show snapshots of the density and pressure map of mod-
els n1000b30v1.3aR∞D and n1000b30v1.3aR∞LD, respectively. For long term
simulations using HLLD/LHLLD without the physical shear viscosity, numerical
errors around the shock front cause unphysical numerical explosions, which do not
appear for simulations with Roe scheme. This numerical problem occurs if the
denominator ρα (Sα − uα) (Sα − SM) − B2

x in Eq. (44)-(47) of Miyoshi & Kusano
(2005) closes to zero. The latest Athena++ has been designed to prevent this
issue to some extent, but it cannot prevent the unphysical explosion under the
initial conditions dealt with in this study. Although such a numerical effect can
be quenched by physical viscosity, we chose the Roe solver with physical shear
viscosity for the safety of long-term integration.
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Figure C.1: Density (left row) and pressure (right row) maps in the result of model
n1000b30v1.3a at time t = 0.57, 0.58, 0.59, and 0.60 Myr (from top to bottom).
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Figure C.2: Density (left row) and pressure (right row) maps in the result of model
n1000b30v1.3a at time t = 0.57, 0.58, 0.59, and 0.60 Myr (from top to bottom).
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Chira R. A., Kainulainen J., Ibáñez-Mej́ıa J. C., Henning T., Mac Low M. M.,
2018, A&A, 610, A62

Clarke S. D., Whitworth A. P., Hubber D. A., 2016, MNRAS, 458, 319

Clarke S. D., Whitworth A. P., Duarte-Cabral A., Hubber D. A., 2017, MNRAS,
468, 2489

Crutcher R. M., 2012, ARA&A, 50, 29

Davis L., 1951, Physical Review, 81, 890
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J. K., McKee C. F., Nordlund Å., 2014, in Beuther H., Klessen R. S., Dullemond
C. P., Henning T., eds, Protostars and Planets VI. p. 77

Palmeirim P., et al., 2013, A&A, 550, A38

Passot T., Vázquez-Semadeni E., 2003, A&A, 398, 845

Peretto N., et al., 2014, A&A, 561, A83

Pineda J. E., et al., 2022, arXiv e-prints, p. arXiv:2205.03935

Planck Collaboration XXXV 2016, A&A, 586, A138

Priestley F. D., Whitworth A. P., 2022, MNRAS, 512, 1407

Pudritz R. E., Kevlahan N. K. R., 2013, Philosophical Transactions of the Royal
Society of London Series A, 371, 20120248

Quirk J. J., 1994, International Journal for Numerical Methods in Fluids, 18, 555

Sakre N., Habe A., Pettitt A. R., Okamoto T., 2021, PASJ, 73, S385

Sakre N., Habe A., Pettitt A. R., Okamoto T., Enokiya R., Fukui Y., Hosokawa
T., 2022, arXiv e-prints, p. arXiv:2205.07057

Scalo J., Elmegreen B. G., 2004, ARA&A, 42, 275

Seifried D., Walch S., 2015, MNRAS, 452
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