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Abstract

Recently, several researches indicate that the nucleon mass consists of
two components: the chiral “variant” condensate and the chiral “invariant”
mass. We build an equation of state (EOS) for neutron stars by interpolating
hadronic EOS at low density and quark EOS at high density, and research
the two components using the observational data of neutron stars.

Crossover from hadronic matter to quark matter in the color-flavor locked
phase is assumed. The parity doublet model (PDM) is used for hadronic mat-
ter, and Nambu–Jona-Lasinio (NJL) type model as a quark effective model
is used for quark matter. The mass of nucleons based on the parity dou-
blet structure has two components: the one associated with the spontaneous
breaking for the chiral symmetry, and a chiral invariant component m0. The
behavior of the nuclear EOSs at low density is affected by the value of the
chiral invariant mass m0, and the neutron star radius has strong correlations
with them. Using the radius constraint by LIGO-Virgo and NICER, we ob-
tain that the large value of the chiral invariant mass m0 is favored, as 600
MeV ≲ m0 ≲ 900 MeV. This is based on our paper [1].

The chiral condensates in crossover domain is also investigated. Using the
condensates at the boundaries, the corresponding condensates in the inter-
polated domain can be calculated numerically. Using the causality and the
constraints obtained from the observational data of neutron stars, the chiral
condensates in the crossover domain connects smoothly the ones calculated
from the PDM and NJL. We emphasize that our method can be applied
to other various quantities: strange quark condensate, diquark condensates,
and the particle number fractions. This is based on our paper [2].
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Chapter 1

Introduction

Understanding of the origin of the nucleon mass is one of the main purposes
in this thesis. Especially, we focus on the chiral “variant” and “invariant”
components of the nucleon mass, as explained below.

The nucleon consists of three valence quarks, and the quarks are described
by quantum chromodynamics (QCD). Unfortunately, QCD is essentially diffi-
cult to be solved, due to its non-perturbative properties in low energy region.
Intuitively, hadrons can be said to have a very complicated internal structure,
in which quark-antiquark annihilations and creations occur many times, and
many gluons propagate among quarks, antiquarks, and gluons themselves.

One of the traditional ways to study the nucleon mass is based on the
chiral symmetry. The chiral symmetry is an approximate symmetry in QCD
that appears when quark masses are neglected. It is well known that the
chiral symmetry is broken spontaneously in vacuum, or also in the typical
energy scale around our lives. In 1961, the Nambu–Jona-Lasinio model (NJL
model) for baryons was originally introduced to study the origin of hadron
masses with the spontaneous symmetry breaking of chiral symmetry [3, 4].
In the original NJL model, the order parameter of the spontaneous chiral
symmetry breaking is the chiral condensate

〈
ψ̄ψ
〉
, which is the expectation

value of the scalar quantity of a baryon field ψ. The chiral condensate has
a nonzero value in vacuum, while vanishes in the chiral restored phase. As
explained later (Sec.1.2), the nucleon mass term breaks the chiral symmetry,
and the chiral condensate becomes the nucleon mass in this model. Intu-
itively, NJL model provides the picture that a baryon obtains its mass to
dress the energy from pairs of fermion-antifermion, which is inspired by the
Bardeen–Cooper–Schrieffer (BCS) theory for superconductivity.
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The sigma model is also broadly used to study the spontaneous symmetry
breaking. Especially, the linear sigma model (LSM) is used as an effective
model for scalar and pseudoscalar mesons. In the LSM, the order parameter
of the spontaneous chiral symmetry breaking is the expectation value of the
scalar field, ⟨σ⟩, which are also called chiral condensate. As also explained
later (Sec.1.2), in the traditional hadronic model with the LSM, the nucleon
mass mN is considered to be made of mainly chiral condensate, as well as
the NJL model. Therefore, the mass also vanishes in the restored phase,
mN ∝ ⟨σ⟩ → 0.

However, there may exist not only such a chiral “variant” component of
the nucleon mass, but also chiral “invariant” component. If so, the nucleon
mass may keep a finite value, mN → m0 ̸= 0, even if the quark masses are
neglected. Briefly, the effective contribution of the chiral invariant component
appears as a mixing coupling with “parity doubling” structure, and nucleon
and its parity doubling partner are degenerate in the chiral restored phase.
In 1989, the main idea of the parity doubling structure was proposed [5], and
from then, there are some lattice QCD simulations which support the parity
doubling structures and the existence of chiral invariant masses [6–10]. In
around 2000–2010, the vacuum properties of the parity doubling structure
for nucleons was studied [11–16].

Since the chiral symmetry is expected to be restored at high tempera-
ture and/or high density, the hadron properties will change in such extreme
environment. Therefore, the structure of the hadron mass, which includes
the chiral condensate and the chiral invariant mass, can affect the physics
at high temperature and/or high density. We focus on neutron stars as the
extreme compact object, where the observational technology has advanced
in the last decade, 2010s.

In 2010, a heavier neutron star with around two times of the solar mass,
∼ 2M⊙, was observed [17], and this observational data excluded a lot of
hadronic models. Moreover, in the late 2010s, the observational technology
for gravitational wave was developed and the first gravitational wave data for
neutron stars (GW170817) was observed in 2017 [18–20]. The observation
through gravitational wave teaches us not only the mass of a compact star
but also its radius. These progress of technology rather encourages the inter-
actions between nuclear physics and astrophysics. Because, if the mass and
the radius of a neutron star are around the solar mass M⊙ ∼ 2× 1030 kg and
10 km, its average density is around ∼ 1017 kg/m3, which is comparable to
the normal nuclear density. Moreover, it is known that a relation between the
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masses and the radii of neutron stars has one-to-one correspondence with an
equation of state (EOS) of matter, which means that the observational data
teaches us the EOS, which includes the microscopic physics. Recently, some
millisecond pulsars were detected by NASA [21–24]. The more observational
data of neutron stars can be obtained in the future.

Today, there are a lot of works to study the nuclear matter or the neu-
tron star matter using hadronic models based on the parity doubling struc-
ture (e.g. Refs. [25–57]). Some works extrapolate the hadronic EOS to
higher density nB ≳ 3n0, but it is questionable whether the pure hadronic
picture is valid at nB ≳ 2n0 [58–61]. While, according to QCD, the color-
superconducting matter is expected to appear with high density limit. More-
over, it is known that the crossover from the hadronic phase to the quark
phase is favored by the neutron star observational data. In Refs. [50, 52],
they construct an effective model combining a PDM and an NJL-type model
with two flavors assuming no color-superconductivity.

Lastly, we summarize the introduction. One of the main targets is quark
condensate, which can be said that the chiral “variant” component of the
nucleon mass. Another one is the chiral invariant component of the nucleon
mass. The rest of the sections 1.1-1.6 in this chapter, we will explain in
more detail the physics treated in this thesis. In Ch. 2, we construct an
unified EOS assuming crossover from the hadronic phase, which is described
by a PDM, to the color-superconducted quark phase. Comparing the masses
and the radii of neutron stars, which are calculated from the unified EOS,
and the observational data of neutron stars, we obtain the possible values of
the chiral invariant mass. In Ch. 3, we develop how to calculate the chiral
condensate from the unified EOS, and we discuss the inhomogeneous picture
of the chiral condensate.

1.1 Mass and chiral symmetry in QCD

QCD is the theory for quarks and gluons. Quarks qf,c have two types of
quantum numbers: Nf flavors with SU(Nf)f , and Nc = 3 colors with SU(3)c.
Gluons are represented as the gauge fields Aµ

a of SU(3)c. In this thesis, Nf = 2
or 3 is mainly used.
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The QCD Lagrangian is

LQCD =

Nf∑
f=1

3∑
c=1

q̄f,c(iγ
µDµ −mf )qf,c −

8∑
a=1

1

4
Gµν

a G
a
µν

= q̄(iγµDµ − m̂)q − 1

2
trGµνGµν , (1.1)

where q = (qf,c) is a quark field, Dµ = ∂µ − igAµ is the covariant derivative
for quarks, Aµ = TaA

a
µ is a gluon field, Gµν = TaG

a
µν is the field strength of

gluons, and m̂ = diag(mf ) is the diagonal matrix of the current quark masses.
When m̂ = 0, QCD possesses the chiral SU(Nf)L×SU(Nf)R symmetry, which
is a combination of the flavor symmetry for the left-handed quarks qL and
that for the right-handed quarks qR,

qL = PLq =
1 − γ5

2
q , qR = PRq =

1 + γ5
2

q . (1.2)

This symmetry structure is easily seen by decomposing the Lagrangian with
respect to the left- and right-handed quark fields as

q̄Liγ
µDµqL + q̄Riγ

µDµqR − (q̄Lm̂qR + q̄Rm̂qL) . (1.3)

We can easily see that the kinetic term for left- and right-handed quarks
are separated, while the mass term mixes left- and right-handed quarks. Al-
though the chiral symmetry is not exact due to the current quark masses, it
can be said that QCD has an approximate chiral symmetry whenmf/ΛQCD ≪
1. Because the characteristic energy scale of QCD, called the QCD scale
ΛQCD, is around 300 MeV, and the current quark masses have the values of
mu ≈ md ≲ 5 MeV and ms ≲ 100 MeV, the approximate chiral symmetry is
valid for the up, down, and strange quarks.

The spontaneously breaking of the chiral symmetry is one of well known
features in low-energy QCD. As explained below, the chiral symmetry is
broken spontaneously to the flavor symmetry as

SU(Nf)L × SU(Nf)R
SSB−−→ SU(Nf)f (1.4)

at low temperature and low density (See also Fig.1.1). Here, let the vacuum
|0⟩ be in trivial phase with the chiral limit mf = 0. The trivial vacuum is
defined as Qa

L |0⟩ = Qa
R |0⟩ = 0 with the generators for chiral symmetry QL
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Figure 1.1: Schematic picture of the spontaneous symmetry breaking of the
chiral symmetry, with a wine-bottle potential.

and QR (also called chiral charges). In other words, the trivial vacuum is not
changed by the chiral transformation

eiQL,R |0⟩ = |0⟩ . (1.5)

This implies that, as well as the Lagrangian, the trivial vacuum is invari-
ant under the chiral transformation. These generators obey the following
commutation relation

[Qa
L, Q

b
L] = iεabcQ

c
L, [Qa

R, Q
b
R] = iεabcQ

c
R, [Qa

L, Q
b
R] = 0 (1.6)

or

[Qa
V, Q

b
V] = iεabcQ

c
V, [Qa

A, Q
b
A] = iεabcQ

c
V, [Qa

V, Q
b
A] = iεabcQ

c
A (1.7)

where QV := QR + QL, QA := QR − QL. Therefore, there is a subgroup
of chiral symmetry with the generator QV, which is just the flavor SU(Nf)f
symmetry. In the symmetry broken phase with the vacuum |Ω⟩, the chiral
charges are not well-defined, due to the existence of the singularity associated
with the massless Nambu–Goldstone (NG) boson. Still, we conventionally
write

“QL,R |Ω⟩ ” ̸= 0 or, “eiQL,R |Ω⟩ ” ̸= |Ω⟩ , (1.8)
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where the quotation mark means that Eq.(1.8) has no meaning literally, but
it can be said that the vacuum may be changed to a different vacuum by
chiral transformation. This is corresponding to the picture of the wine bottle
potential for chiral symmetry.

According to the Nambu–Goldstone theorem, when symmetry breaks
spontaneously, massless modes appear, which is called Nambu–Goldstone
bosons (NG bosons). In the case of the chiral symmetry, the spontaneous
chiral symmetry breaking is triggered by the chiral condensate, ⟨q̄q⟩, and the
NG bosons are called pions (in two-flavor case). Traditionally, the nucleon
mass were considered to be composed of mainly the chiral condensate, such
as the traditional effective models which are explained in Sec.1.2. While,
another contribution to the masses is implied as explained in Sec.1.3.

1.2 Effective models for nucleon mass

In this section, we explain some effective models to be used to study the
spontaneous symmetry breaking.

1.2.1 Nambu–Jona-Lasinio (NJL) model

In the original paper by Nambu and Jona-Lasinio [3,4], a model was proposed
to produce the mass of nucleon by dynamically generating the spontaneous
chiral symmetry breaking. The model is modified to a model for effective
quarks which obtain masses by the spontaneous chiral symmetry breaking
(see e.g. Ref. [62] for a review). Here we briefly review a simplest model
among several extended models.

Lagrangian of the NJL is

LNJL = ψ̄iγµ∂µψ + g
[
(ψ̄ψ)2 + (ψ̄iγ5ψ)2

]
, (1.9)

where ψ is a fermion field, which was originally assigned a baryon [3,4]. The
NJL Lagrangian LNJL is invariant under the chiral transformation,

ψ → e−iθγ5ψ = (cos θ − iγ5 sin θ)ψ , (1.10)

and then,

ψ̄ψ → ψ̄ψ cos 2θ − ψ̄iγ5ψ sin 2θ ,

ψ̄iγ5ψ → ψ̄ψ sin 2θ + ψ̄iγ5ψ cos 2θ .
(1.11)
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The expectation value of the scalar quantity
〈
ψ̄ψ
〉

is the chiral condensate,
and in the NJL model, the spontaneous chiral symmetry breaking is triggered
by the chiral condensate. Note that, because the coupling constant g is mass
dimension of −2, the NJL model is not renormalizable. Therefore, for a
cutoff parameter, Λ, the NJL model can be adopted only up to momentum
p < Λ.

In these days, NJL model is broadly used as the effective model for ef-
fective quarks, denoted q instead of ψ. Taking mean field approximation
as

(q̄q)2
MFA−−−→ 2g ⟨q̄q⟩ q̄q − g ⟨q̄q⟩2 , (1.12)

(q̄iγ5q)
2 MFA−−−→ 2g ⟨q̄iγ5q⟩ q̄iγ5q − g ⟨q̄iγ5q⟩2 , (1.13)

the Lagrangian LNJL is rewritten as

LMFA
NJL = q̄[iγµ∂µ −G(σ + iγ5π)]q − µ2

2
(σ2 + π2) , (1.14)

where −Gσ = 2g ⟨q̄q⟩, −Gπ = 2g ⟨q̄iγ5q⟩, and µ2 = G2/2g. ⟨q̄q⟩ is the
chiral condensate, which is also called the quark condensate, and σ and π
are corresponding to the vacuum expectation values of a scalar meson and
a pseudoscalar meson (pion). Assuming the vacuum is parity symmetric,
π = 0, the gap equation for σ is given as

M =
3gM

π2

(
−M2 ln

√
Λ2 +M2 + Λ

M
+ Λ

√
Λ2 +M2

)
(1.15)

where M = Gσ = −2g ⟨q̄q⟩ is the effective quark mass. This has only a
trivial solution M = 0 for g ≤ gc = π2/3Λ2. For a large coupling g > gc, on
the other hand, there exists a nontrivial solution, M ̸= 0, which implies the
spontaneous chiral symmetry breaking.

1.2.2 Linear sigma model (LSM)

Next, we explain the LSM. The Lagrangian is given by

LLSM =
1

2
(∂µσ)2 +

1

2
(∂µπ)2 − Vtot(σ, π) , (1.16)

Vtot(σ, π) = V (σ2 + π2) − ϵmqσ , (1.17)
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where σ is a scalar meson, π is a pseudoscalar meson (pion), and V (x) is an
arbitrary function. We note that we added a term proportional to the current
quark mass mq, which explicitly breaks the chiral symmetry, to reproduce
the pion mass. The meson fields σ and π are transformed as the same way
of ψ̄ψ and ψ̄iγ5ψ respectively, as

σ → σ cos 2θ − π sin 2θ ,

π → σ sin 2θ + π cos 2θ .
(1.18)

Because the transformation Eq.(1.18) is linear with respect to σ and π, the
model is called “linear” sigma model. When the potential is the shape of a
wine bottle, such as V (x2) = −ax2 + bx4 with positive couplings a and b, the
values of ⟨σ⟩ and ⟨π⟩ have arbitrary values satisfying ⟨σ⟩2 + ⟨π⟩2 = const.
Because of the explicit symmetry breaking term ϵmqσ, the expectation values
are determined as ⟨σ⟩ > 0 and ⟨π⟩ = 0. Here, the value of ⟨σ⟩ is equal to fπ,
which is the pion decay constant.

Taking mean field approximation, the kinetic terms are dropped and the
equation of motion for σ in vacuum is

0 =
∂Vtot
∂σ

(fπ, 0) = 2fπV
′(f 2

π) − ϵmq . (1.19)

The pion mass is determined as the curvature of the potential, and then the
pion mass in vacuum is related to the current quark mass through the explicit
symmetry breaking term,

m2
π =

∂2Vtot
∂π2

(fπ, 0) = ϵmq/fπ . (1.20)

While, the quark condensate can be calculated assuming the partition func-
tions for quarks and for hadrons are equivalent ZQCD = ZLSM = expVtot,

⟨q̄q⟩ =
∂

∂mq

lnZQCD =
∂

∂mq

Vtot = −ϵ ⟨σ⟩ (1.21)

Using Eqs.(1.20) and (1.21), one obtain the following relation,

m2
πfπ ⟨σ⟩ = −mq ⟨q̄q⟩ , (1.22)

which is closely related to Gell-Mann–Oakes–Renner relation.
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To study interactions between baryons and mesons, LSM with Yukawa
couplings is also broadly used, such as

L′
LSM = ψ̄[iγµ∂µ −G(σ + iγ5π)]ψ +

1

2
(∂µσ)2 +

1

2
(∂µπ)2 − Vtot(σ, π) . (1.23)

The LSM Lagrangian with baryon fields L′
LSM is corresponding to the NJL

model with mean field approximation Eq.(1.14). If ϵ = 0 and V (x2) =
−ax2+bx4, the Lagrangian Eq.(1.23) is renormalizable, because the couplings
G and b are dimensionless and a is dimension 2.

The mass term of the baryon is forbidden by the chiral symmetry. In the
LSM, the baryon mass consists of only the chiral condensate ⟨σ⟩. Therefore,
the baryon mass should vanish in the chiral restored phase. The LSM can
explain the low-energy nuclear physics, but it is not established that the LSM
can be extrapolated to high-energy region.

1.3 Chiral invariant component of nucleon mass

Chiral condensate ⟨q̄q⟩ is one of important ingredients to explain the origin
of hadron masses in the low energy hadron physics. Chiral condensate can be
said as a chiral variant component of the masses. Besides, the existence of the
chiral invariant component of the masses is implied. One of the candidates
of the origin of such component is gluon or its bound state, glueball, because
gluon is independent of chiral symmetry for quarks. However, the origin of
the chiral invariant components of hadron masses is not yet clarified.

In 1989, a parity doubling structure for nucleons was proposed in a frame-
work of an effective hadronic model, and the effective contribution of the
chiral invariant mass was introduced as the mixing term between the parity
doubling partners [5]. The models including the parity doubling structure
are generally called parity doublet models (PDM). Some lattice QCD sim-
ulations support the parity doubling structures and the existence of chiral
invariant masses [6–10].

Let us briefly see a typical example of parity doubling structure. In a
PDM, two fields ψ and ψmir are introduced for the ground-state nucleon
N(939) and the negative-parity excited-state nucleon N∗(1535). The parity
partner field ψmir has negative parity, and the opposite chiral representation
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for ψ, which means that the following transformations are satisfied:

ψL,R
parity−−−→ +ψR,L , ψL

chiral−−−→ gLψL , ψR
chiral−−−→ gRψR ,

ψmir
L,R

parity−−−→ −ψmir
R,L , ψmir

L
chiral−−−→ gRψ

mir
L , ψmir

R
chiral−−−→ gLψ

mir
R ,

(1.24)

where gL ∈ SU(2)L and gR ∈ SU(2)R. Such representation like ψmir is called
the “mirror representation”. Although the fermion mass term of ψ̄LψR+ψ̄RψL

is not chiral invariant, there is the chiral invariant mixing term

m0(ψ̄Lψ
mir
R + ψ̄mir

R ψL − ψ̄Rψ
mir
L − ψ̄mir

L ψR) (1.25)

with the coupling constant m0 having the mass dimension of one. m0 is
just an effective contribution of the chiral invariant component of masses.
Diagonalizing the mass matrix obtained by combining the chiral invariant
mass term in Eq.(1.25) together with the Yukawa terms g1ψ̄σψ+g2ψ̄

mirσψmir,
the mass eigenvalues can be written as

m± =

√
m2

0 +G2
+ ⟨σ⟩2 ∓G− ⟨σ⟩ , (1.26)

where G± = (g2 ± g1)/2. The expectation value of the scalar meson ⟨σ⟩
has a finite value in vacuum, while it will eventually vanish when the chiral
symmetry is restored. A schematic view of the density dependence of the
mass eigenvalues are shown in Fig.1.2. In the high-density limit, the masses
of the two nucleons are degenerate to the value of m0. With a not small
m0, the mass of the ground-state nucleon keeps its value around 939 MeV
even in the chiral restored phase. This behavior is consistent with the lattice
simulations [7].

The mixing between a naive state ψ and a mirror state ψmir plays an
important role. It comes a non-negligible contribution to a transition from
the naive state to the mirror state as shown in the left panel (hadronic
picture) of Fig.1.3. We emphasize that the chiral invariant mass term can
exist only when there are both of the naive state and the mirror state.

Next, let us discuss the mirror representation based on the quark picture.
One choice of the interpolating field of proton is

ψR ∼ uR(uTCd) = PR · uS , (1.27)

where u, d are up, down quark, and S ≡ uTCd = uTRCdR + uTLCdL is a scalar
diquark field. For this interpolating field, one choice of the excited state is

(γµ∂µuR)(uTCd) = PL · (γµ∂µu)S ∼ ψmir
L . (1.28)
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Figure 1.2: Comparison between the density dependences of nucleon masses
in the linear sigma model and in a parity doublet model with the chiral
invariant mass m0.

In Eqs.(1.27)-(1.28), two expressions uR and γµ∂
µuR obey the same chiral

transformation, uR → gRuR and γµ∂
µuR → gRγµ∂

µuR, while they have the
opposite chiralities. In other words, the baryon fields in the two expressions
have the same chiral representations but the opposite chirality, which are just
the naive and the mirror fields, as shown in the right panel (quark picture)
of Fig.1.3.

Let us consider again the dependence of the ground-state nucleon mass
on the environment (temperature and/or density). Chiral invariant mass
may play more important role in hot and/or dense matter, because the nu-
cleon mass is dominated by the chiral invariant mass m0 at high temperature
and/or high density, where the chiral symmetry is expected to be restored
as seen in Fig.1.2.

In this thesis, we apply a chiral model with chiral invariant masses to the
physics of neutron stars. Neutron star, which is explained later in Sec.1.5,
is a “cosmic laboratory” of the nuclear physics at low temperature and high
density. For the high density nuclear physics, it is very difficult to conduct
experiments in the Earth, and it is also difficult to perform lattice simulations
due to the sign problem. We apply the PDM to neutron star physics, and
discuss the relation between the chiral invariant mass and the neutron star
observations.

13



QUARK
qR(qTRCqR) = PR ⋅ qd

∂qR(qTRCqR) = PL ⋅ ∂qd

excite
equal chiral rep. but 
opposite chirality 
(mirror rep. ) 

 

uR
u d = PR ⋅ u

u d
∼ ψR

∂uR
u d = PL ⋅ ∂u

u d ∼ ψmirL

equal 
chirality 
for quarks

opposite 
chirality 
for baryons

u d is a scalar diquark

HADRON

mixing w/ a “mirror” state

ψR ψmirL ψR

QUARK

Figure 1.3: Parity doubling structure of baryons based on hadronic picture
vs. quark picture. The left panel (hadronic picture) indicates the mixing
between the baryon field in the “naive” representation, ψR, and the one in
the “mirror” representation, ψmir

L . In the right panel (quark picture), PL,R

is the chiral projection operators, u and d are up and down quarks, and the
gray-shaded pair of u and d indicates a scalar diquark. The baryon field
ψmir
L in the bottom of the panel, which has a γµ∂µ in front, has the opposite

chirality while it belongs to the same chiral representation as ψR.

Here, we mention some other works for the chiral invariant mass of nu-
cleons. As is said, the lattice simulations [6–10] imply that the ground-state
nucleon mass is almost maintained even at sufficiently high temperature,
which implies that the nucleon mass may not be sensitive to the environ-
ments. While, there are the results [63–65] in which the EOS calculated
from the hadron resonance gas (HRG) model with constant hadron masses
is well matched with the one from the lattice QCD analysis up to around
the critical temperature. This implies that the hadronic effective model with
constant hadron masses provides a good approximation even near the chiral
restored phase. There are also some relations to the hyperon puzzle. The hy-
peron puzzle is the long-term problem that the introduction of the hyperons
makes the EOS of a neutron star too soft to support the heaviest observed
neutron star. This puzzle is due to the large number of fermions, because
there is no Pauli blocking between different fermions. One of the ways for
relaxing the hyperon puzzle is setting a lower bound of the nucleon mass [66].
The notion of the lower bound of the nucleon mass is very similar with the
chiral invariant mass. Furthermore, the work in Refs. [56, 57] studied the
parity doubling model for nucleons and ∆ baryons, and showed that the chi-
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ral invariant mass relaxes the softening by ∆ matter at higher density. This
implies that the chiral invariant component of hadron masses may stiffen the
EOS at higher density.

Because the core of a neutron star is constructed from the homogeneous
“nuclear matter” we will introduce nuclear matter in Sec.1.4.

1.4 Nuclear matter and the saturation prop-

erties

“Nuclear matter” describes the homogeneous environment made of nucleon
many-body system bounded by only nuclear force. Nuclear matter is charac-
terized by the baryon number density nB = np + nn and the isospin density
nI = (np − nn)/2, where np is the proton number density and nn is the
neutron number density. It is well known that the baryon number density
saturates for the size of matter at the value of n0 ≈ 0.16 fm−3 called the
nuclear saturation density.

According to the Bethe–Weizsäcker mass formula, the binding energy of
an atomic nucleus is

EBW = cVA− cSA
2/3 − cC

Z(Z − 1)

A1/3
− cA

(N − Z)2

4A
+ cP

1

A1/2
, (1.29)

where A(= Z+N) is the number of nucleons, Z is the proton number, and N
is the neutron number. This semi-empirical formula shows that there are five
contributions: a volume term with a coefficient cV, a surface term with cS, a
Coulomb term with cC, an asymmetry term with cA, and a pairing term with
cP. In the nuclear matter, we neglect the contribution of electromagnetic
forces. Taking infinite size limit, A→ ∞, the binding energy per nucleon for
the symmetric matter (N = Z) is

EBW/A
A→∞−−−→
N=Z

cV(≈ 16 MeV) . (1.30)

In thermodynamics, nuclear matter is treated by the grand canonical
ensemble, with the grand potential density Ω as a function of the chemical
potential µp for protons and µn for neutrons. The number densities are
calculated by differentiating the pressure P = −Ω as

np ≡
∂P

∂µp

=
Z

V
, nn ≡ ∂P

∂µn

=
N

V
, (1.31)
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Figure 1.4: Illustration of the energy per nucleon w = E/A − mN for the
symmetric matter and the pure neutron matter (totally asymmetric matter).
nB, B0, K0, S0, and δ denote the baryon number density, the binding energy,
the incompressibility, the symmetry energy, and the asymmetry, respectively.

and

nB ≡ ∂P

∂µB

= np + nn , nI ≡
∂P

∂µI

=
np − nn

2
, (1.32)

where µB = (µp + µn)/2 is the baryon number chemical potential and µI =
µp − µn is the isospin chemical potential. The energy density ϵ is calculated
by performing Legendre transformation as

ϵ ≡ µpnp + µnnn − P = µBnB + µInI − P . (1.33)

Let us define the energy density per nucleon (shifted the origin by the
nucleon mass mN) as

w ≡ E

A
−mN =

ϵ

nB

−mN . (1.34)
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Figure 1.4 shows a schematic graph of w for the symmetric nuclear matter
nI = 0 (lower blue curve), and that for the pure neutron matter np = 0
(upper red curve). As said, nuclear matter is saturated at the saturation
density n0 with the binding energy B0 = 16 MeV, which is indicated by the
minimum point of the blue curve in Fig.1.4. Expanding the energy in terms of
1 x = (nB −n0)/(3n0) and the asymmetry δ = (np−nn)/(np +nn) = 2nI/nB

at the saturation point, we obtain

w(x, δ) = −B0 + 0 · x+
1

2
K0x

2 + Esym(x)δ2 + · · · . (1.36)

Esym(x) is the symmetry energy which is expanded as

Esym(x) = S0 + L0x+
1

2
Ksymx

2 + · · · . (1.37)

The symmetry energy is approximately equal to the difference between the
energy of the symmetric matter and that of the pure neutron matter,

Esym(x) ≈ w(x, 1) − w(x, 0) . (1.38)

Other quantities shown in Fig.1.4 are expressed as follows: the incom-
pressibility (or the compression modulus) K0 is given by

K0 ≡
∂2w

∂x2
(0, 0) = 9n0

(
∂µB

∂nB

)
0

, (1.39)

where the lower subscript 0 means x = δ = 0. Since K0 is the curvature of
the energy per nucleon at the saturation point, it is interpreted as literary
incompressibility for the saturated nuclear matter. The symmetry energy at
the saturation density S0 is expressed as

S0 ≡
1

2

∂2w

∂δ2
(0, 0) = Esym(0) =

n0

8

(
∂µI

∂nI

)
0

. (1.40)

1The factor 3 of x is just convention. The thermodynamic quantities for symmetric
nuclear matter are often expanded by the fermi momentum kF which is proportional to

n
1/3
B . Therefore, for example, the incompressibility in Eq.(1.39) can be also defined in

terms of the Fermi momentum as

K0 =

(
k2F

∂2w

∂k2F

)
0

= 9n2
0

(
∂2w

∂n2
B

)
0

, (1.35)

where the lower subscript 0 means x = δ = 0.

17



Table 1.1: Empirical values of the saturation parameters for nuclear matter
used as physical inputs in this thesis. The listed range of the slope parameter
is referred in Ref. [67–69].

n0 [fm−3] B0 [MeV] K0 [MeV] S0 [MeV] L0 [MeV]
0.16 16 240 31 30–90

The slope parameter at the saturation density L0 is expressed as

L0 ≡
1

2

∂2w

∂x∂δ2
(0, 0) =

∂Esym

∂x
(0) = 3S0 + 3n0

∂Esym

∂nB

(0) . (1.41)

We summarize some empirical values of the saturation parameters in
Table 1.1.

1.5 M-R relation for neutron stars

Neutron star is one of the densest objects next to the black holes, whose
density can reach several times of the normal nuclear density. The internal
structure of a neutron star consists of roughly two parts, the crust and the
core. Especially, the core of a neutron star, which is the dominant part of a
neutron star, is basically considered to be composed of homogeneous nuclear
matter.

Mass and radius of a neutron star can be calculated using an EOS through
the Tolman–Oppenheimer–Volkoff (TOV) equation. The TOV equation is
the differential equation derived from the Einstein equation with the static
spherical metric, which means hydrostatic balance. If the EOS of neutron
stars is determined uniquely, static spherical neutron stars are parametrized
by central density (or equivalently, central pressure). Then, the set of mass
and radius profiles of the neutron stars with various values of central density
is called an M -R relation, or an M -R curve. Actually, under some physi-
cal assumption, it is known that there is one-to-one correspondence between
EOSs and M -R relations, as shown in Fig.1.5. Since EOSs are calculated
from microscopic theory, the TOV equation can be said to connect the mi-
croscopic physics and the macroscopic physics. If we have observational data
of neutron stars, we can know some properties of the microscopic quantities,
such as the chiral condensate and the chiral invariant mass.

18



Figure 1.5: Schematic picture of the correspondence between an EOS and an
M -R relation of neutron stars (NSs).

Today, there are several observational data of neutron stars. In 2017,
the LIGO-Virgo observed the gravitational data of a binary neutron star
inspiral, which is called GW170817 [18–20]. While, NASA launched a tele-
scope called The Neutron Star Interior Composition ExploreR (NICER) in
2016, and observed the isolated millisecond pulsar called PSR J0030+0451
in 2019 [21, 22]. Moreover, in 2021, NICER observed the millisecond pulsar
PSR J0740+6620 and provided us the radius estimations [23,24], The pulsar
J0740+6620 was one of well known neutron stars which is heaviest [70].

The useful tools to access the properties of dense matter are the recent
observations for neutron star, which tightly constrain the EOS of matter (see,
e.g., Ref. [60, 71]). The existence of the heavy neutron stars with 1.91M⊙
[72–74], 2.01M⊙ [75], and M = 2.08 ± 0.07M⊙ [76], the radius constraint
R1.4 ≲ 13 km for the typical neutron star with 1.4M⊙ deduced from the
gravitational event GW170817 [18], and recent NICER constraints on R1.4 ≃
R2.08 ≃ 12–13 km [23,24,77], disfavor the strong first order phase transitions
for the domain between the nuclear saturation density (n0 ≃ 0.16 fm−3) and
the core density achieved in neutron stars with ∼ 2M⊙. The core baryon
density of the neutron star with ∼ 2M⊙ is considered to be around ≳ 4–5n0,
presumably high enough to apply quark matter descriptions, so we infer that
nuclear matter smoothly transforms into quark matter (modulo weak first
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order phase transitions).

1.6 Quark-hadron crossover in neutron star

In this last section of the Ch.1, we show the recent trend that the extrap-
olation of the hadronic picture to higher density is questionable, and the
EOS based on crossover from the hadronic phase to the quark phase is well
matched with the observational data.

A lot of works researched the parity doublet structure by constructing nu-
clear matter and neutron star EOS (see, e.g., Refs. [25–35,37–46,48–52]). In
the PDM, the masses of positive-parity and negative-parity nucleons are split
by the chiral condensate and get degenerated to the chiral invariant mass in
chiral restored phase. Some lattice simulations support the idea of the chiral
invariant mass, which indicated the parity degeneracy of nucleons at finite
mass [7]. By increasing m0, the nucleon mass can attain the experimental
value through weak coupling between nucleons and chiral condensates. Con-
sequently, the chiral condensates become less responsive to variations in the
nuclear medium, resulting in a mild chiral restoration that is driven by the
density increase. The influence of m0 is more prominent in high temperature
and/or high density environments such as neutron stars. In models like σ-ω-
ρ [78–80], a decrease in the σN coupling causes a reduction in the attractive
σ exchange. Thus, weaker repulsion by the ω exchange is sufficient to repli-
cate the physics near the saturation density. This trend intensifies at higher
baryon density where σ fields diminish while ω fields amplify.

The PDM has undergone multiple modifications to incorporate the prop-
erties of nucleon and nuclear matter. Recent studies [37, 81] have revisited
the decay width estimate and found that the inclusion of derivative interac-
tions, which were previously neglected [13], permits larger values of m0. The
authors argue that relatively higher values of m0, ranging from 500,MeV to
900,MeV, are more reasonable for explaining the saturation properties of nu-
clear matter. Specifically, [37] demonstrated that the inclusion of a σ6 term
yields an incompressibility value of the empirical value K ≈ 240,MeV, which
was substantially higher in earlier analyses. Furthermore, [48] extended the
analyses to neutron star matter and constrained the chiral invariant mass to
m0 ≳ 600,MeV based on the tidal deformability inferred from the neutron
star merger GW170817 [18–20].

In a previous study [48] using the PDM, the hadronic EOSs were extrap-
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olated to a baryon density of nB ≈ 3n0 (n0 ≃ 0.16, fm−3: nuclear saturation
density). However, it has been pointed out in [58–61] that pure hadronic de-
scriptions become questionable at nB ≳ 2n0 due to the significance of nuclear
many-body forces. This implies that quark descriptions are required even be-
fore the formation of quark matter. To address this, it has been proposed
to construct an EOS by interpolating between the hadronic matter EOS at
nB ≲ 2n0 and the quark matter EOS at high densities (nB ≳ 5n0). In the
present work, the authors adopted a three-flavor Nambu-Jona-Lasinio (NJL)-
type model, leading to color-flavor-locked (CFL) color-superconducting mat-
ter, to describe the quark matter, and investigated effective interactions that
satisfy the two-solar-mass (2M⊙) constraint. For the hadronic EOSs, non-
relativistic nuclear many-body calculations were employed. In [50, 52], an
effective model that combines the PDM with a two-flavor NJL-type model,
assuming no color-superconductivity, was constructed.

The standard Nambu–Jona-Lasinio (NJL) model [62] with additional ef-
fective interactions, such as vector repulsion and diquark attraction [82], is
used to describe quark matter. The vector repulsion plays a crucial role
in chiral restoration by limiting the density growth and thereby smoothing
out the chiral restoration [83, 84]. The inclusion of diquark terms leads to
the color-flavor-locked (CFL) phase in which ud-, ds-, and su-diquark pairs
condense, favoring a larger quark Fermi sea [85]. After considering these com-
peting effects, we found that a significant amount of the chiral condensates
remains in quark matter, and the effective masses for up- and down-quarks
are around 50 MeV, while those for strange quarks are around 300 MeV at
nB ∼ 5n0 [60].

We have developed a three-window approach, as presented in Refs. [58,
59, 86], which involves constructing a series of unified EOSs that cover a
range from nuclear to quark matter. These EOSs are then constrained using
observations of neutron stars [61, 82, 87]. To construct the EOS, we employ
a nuclear model for densities nB ≲ 2n0, a quark model for nB ≳ 5n0, and
interpolate between them for densities nB ≃ 2–5n0. By adjusting the param-
eters of the model, we can ensure that the resulting EOS is consistent with
observations of neutron stars. Furthermore, our approach enables us to pre-
dict physical quantities beyond the EOS and gain insight into the underlying
microphysics, as the microscopic degrees of freedom are explicitly accounted
for [60].
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Chapter 2

Chiral Invariant Mass and
Neutron Stars

The content of this chapter is based on our paper [1].
Here we explain two models for hadronic matter in the low-density region

and quark matter in the high-density region, and how to construct a unified
EOS for crossover in neutron stars.

For the hadronic matter, the parity doublet model is used. To intro-
duce massive vector mesons with chiral symmetry, we use the hidden local
symmetry (HLS) [88, 89]. Some equivalent method to the HLS is shown in
Ref. [89].

For quark matter, assuming the CFL phase as following Refs. [60,61], we
use an NJL-type model with additional diquark pairing and vector interac-
tions.

Assuming a smooth transition between hadronic and quark matter, we
construct the unified EOS to interpolate the resultant EOSs.

In this chapter, we write the integrals over space as,
∫
x

=
∫

d4x,
∫
x

=∫
d3x, and over momentum as,

∫
p

=
∫

d3p
(2π)3

.

2.1 Nuclear matter

2.1.1 Parity doublet model

First, we explain briefly an chiral hadronic effective model based on the parity
doublet structure for nucleons [5, 13,37].

22



For the ground-state nucleon N(939), the parity doublet partner is re-
garded as the negative-parity excited nucleon N∗(1535) in our model. We
introduce the following two baryon fields ψ and ψmir for expressing these
nucleons. The fields ψ and ψmir transform under the chiral symmetry as

ψL → gLψL , ψR → gRψR , (2.1)

ψmir
L → gRψ

mir
L , ψmir

R → gLψ
mir
R , (2.2)

where gL and gR are the elements of SU(2)L and SU(2)R groups, respectively.
The left- and right-handed baryon fields for ψ and ψmir are defined as

ψL,R = PL,Rψ , ψmir
L,R = PL,Rψ

mir , (2.3)

where PL,R = (1 ± γ5)/2 are the chiral projection operators. We assign
positive parity for ψ and negative parity for ψmir:

ψ →
P
γ0ψ , ψmir →

P
−γ0ψmir . (2.4)

We introduce a 2 × 2 matrix field M for the scalar meson σ (iso-singlet)
and the pions π (iso-triplet). M transforms as

M → gLM g†R . (2.5)

The vector mesons are introduced based on the HLS [37], by decomposing
the scalar meson field as

M = ξ†L σ ξR , (2.6)

where ξL,R are matrix fields including pions, and σ is not a matrix but a scalar
field. Under the chiral symmetry and the HLS, the fields ξL,R transform as

ξL → h ξL g
†
L , ξR → h ξR g

†
R , (2.7)

where h ∈ U(2)HLS. We can parametrize the fields ξL,R in the unitary gauge
of the HLS as

ξL = e−iπ/fπ , ξR = eiπ/fπ , (2.8)

where π =
∑

a=1,2,3 π
aτa/2 is the field for pions, and τa being the Pauli

matrices. The following 1-forms are the basic quantities to construct the
Lagrangian

α̂∥
µ =

1

2i

[
(DµξR)ξ†R + (DµξL)ξ†L

]
,

α̂⊥
µ =

1

2i

[
(DµξR)ξ†R − (DµξL)ξ†L

]
.

(2.9)
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For the fields ξL and ξR, the covariant derivatives are defined as the following

DµξL = (∂µ − igωωµT0 − igρρ
a
µTa)ξL − iξLṼµ (2.10)

DµξR = (∂µ − igωωµT0 − igρρ
a
µTa)ξR − iξRṼµ , (2.11)

where ωµ is the gauge field for U(1)HLS with the gauge coupling gω, ρaµ is
the one for SU(2)HLS with gρ, and T0 = 1/2 and Ta = τa/2 are the U(2)
generators. As usual, external gauge fields for the chiral symmetry, Ṽµ, is
introduced to keep track the correspondence between the generating func-
tional of QCD and its effective Lagrangian of hadronic fields. After using the
correspondence to constrain the form of the effective Lagrangian, we set the
values of the external fields as

Ṽµ =
1

2

(
µQ 0
0 −µQ

)
δ0µ . (2.12)

There are a nucleon part and a meson part in our effective Lagrangian
for hadrons as

LPDM = LN + LM . (2.13)

The nucleon part is

LN = ψ̄iγµDµψ + ψ̄miriγµDµψ
mir

− g1
(
ψ̄LMψR + ψ̄RM

†ψL

)
− g2

(
ψ̄mir
L M †ψmir

R + ψ̄mir
R Mψmir

L

)
−m0(ψ̄Lψ

mir
R − ψ̄Rψ

mir
L − ψ̄mir

L ψR + ψ̄mir
R ψL)

+ aV NN

[
ψ̄Lξ

†
Lγ

µα̂∥
µξLψL + ψ̄Rξ

†
Rγ

µα̂∥
µξRψR

]
+ aV NN

[
ψ̄mir
L ξ†Rγ

µα̂∥
µξRψ

mir
L + ψ̄mir

R ξ†Lγ
µα̂∥

µξLψ
mir
R

]
+ a0NN

[
ψ̄Lγ

µ tr
(
α̂∥
µ

)
ψL + ψ̄Rγ

µ tr
(
α̂∥
µ

)
ψR

]
+ a0NN

[
ψ̄mir
L γµ tr

(
α̂∥
µ

)
ψmir
L + ψ̄mir

R γµ tr
(
α̂∥
µ

)
ψmir
R

]
, (2.14)

where the covariant derivatives on the nucleon fields are defined as

DµψL,R = (∂µ − iVµ)ψL,R , Dµψ
mir
L,R = (∂µ − iVµ)ψmir

L,R , (2.15)

with

Vµ =

(
µB + µQ 0

0 µB

)
δ0µ . (2.16)
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The meson part is

LM = Lkin
M − VM − VSB + Lvector

M , (2.17)

where Lvector
M includes the kinetic and mass terms for vector mesons, VSB is

the potential including the explicit chiral symmetry breaking for the scalar
and pseudo-scalar mesons, VM is the chiral symmetric potential, and Lkin

M is
the kinetic term. The scalar and pseudo-scalar mesons terms are given as [37]

Lkin
M =

1

4
tr
[
DµMDµM †] =

1

2
∂µσ∂

µσ + σ2 tr
[
α̂⊥
µ α̂

µ
⊥
]
, (2.18)

VM = − 1

4
µ̄2 tr

[
MM †]+

1

16
λ4(tr

[
MM †])2

− λ6
1

48
(tr
[
MM †])3 , (2.19)

VSB = − 1

4
m2

πfπ tr
[
M +M †] . (2.20)

The vector mesons part Lvector
M is given by

Lvector
M = − 1

4
ωµνω

µν +
m2

ω

2g2ω
tr
[
α̂∥
µ

]
tr
[
α̂µ
∥

]
− 1

2
tr[ρµνρ

µν ]

+
m2

ρ

g2ρ

(
tr
[
α̂∥
µα̂

µ
∥

]
− 1

2
tr
[
α̂∥
µ

]
tr
[
α̂µ
∥

])
, (2.21)

where ωµ is the vector field for ω meson with the mass mω, and ρµ is the one
for ρ meson with the mass mρ. ω

µν and ρµν are the field strengths for these
mesons. The second and forth terms include the mass terms for ωµ and ρµ

as

tr
[
α̂∥
µ

]
tr
[
α̂µ
∥

]
= g2ωω

µωµ ,

tr
[
α̂∥
µα̂

µ
∥

]
− 1

2
tr
[
α̂∥
µ

]
tr
[
α̂µ
∥

]
=

1

2
g2ρρ

a
µρ

µ
a + · · · ,

(2.22)

where “· · · ” stands for interaction terms.
In the present analysis, we calculate the thermodynamic potential in the

mean field approximation as

⟨σ⟩ = σ , ⟨ωµ⟩ = ωδµ0 , ⟨ρµ⟩ =

(
ρ− µQ

gρ

)
T3δ

µ
0 . (2.23)
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We assume that the mean fields are independent of the spatial coordinates.
Mean field ρ is defined in such a way that LM does not explicitly include µQ.

The effective chemical potentials of protons and neutrons are introduced
for simplicity as

µ∗
p = µQ + µB − gωNN ω − 1

2
gρNN ρ ,

µ∗
n = µB − gωNN ω +

1

2
gρNN ρ ,

(2.24)

where

gωNN = (aV NN + a0NN)gω ,

gρNN = aV NNgρ .
(2.25)

For the hadronic matter based on the PDM, The thermodynamic poten-
tial is given as [37]

ΩPDM = −2
∑
i=1,2

∑
α=p,n

∫ kF

p

(µ∗
α − Ei

p)

+ V (σ) − V (fπ) − 1

2
m2

ωω
2 − 1

2
m2

ρρ
2 . (2.26)

The energy Ei
p =

√
(mi)2 + (p)2 is for a relevant particle with mass mi and

momentum p, and the label i = 1, 2 are corresponding to the grand-state nu-
cleon N(939) and the negative-parity excited nucleon N∗(1535), respectively.
kF =

√
(µ∗

α)2 − (mi)2 is the fermi momentum for the relevant particle, and
the above integral region is restricted as |p| < kF . We emphasize that the
no-sea approximation is used in the thermodynamic potential for hadronic
matter, assuming that the structure of the Dirac sea remains the same for
the vacuum and low-density medium.

The scalar field potential V (σ) is

V (σ) = −1

2
µ̄2σ2 +

1

4
λ4σ

4 − 1

6
λ6σ

6 −m2
πfπσ , (2.27)

and the vacuum value V (fπ) is subtracted in Eq.(2.26) to set the value of
the total potential zero in vacuum.

In neutron stars, the leptonic parts should be included in the thermo-
dynamic potential, and we rewrite the label for the total thermodynamic
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potential ΩH as

ΩH = ΩPDM +
∑
l=e,µ

Ωl , (2.28)

where the thermodynamic potentials for leptons Ωl is given by

Ωl = −2

∫ kF

p

(µl − El
p) , (2.29)

with spin degree of freedom 2. The following stationary conditions, which
correspond to the equation of motion, determine the values of the mean fields

0 =
∂ΩH

∂σ
=
∂ΩH

∂ω
=
∂ΩH

∂ρ
. (2.30)

In neutron stars, we impose the beta equilibrium and the charge neutrality
condition represented as

µe = µµ = −µQ ,
∂ΩH

∂µQ

= np − nl = 0 . (2.31)

The hadronic matter pressure is finally obtained as

PH = −ΩH . (2.32)

2.1.2 Model parameters

For determining the model parameters, as following Ref. [37], we use the
physical inputs (Table 2.1). Table 2.2 shows the determined parameters for
several typical choices of m0.

We also list the values of the slope parameter L0 in our model in Table 2.2.
For a smaller chiral invariant mass, the slope parameter L0 becomes larger.
In the high density region, the higher order contributions in the expansion
around the nuclear saturation density become important, and hence, the
differences due to the values of m0 appear in the high density. As we will
show in the next section, the EOS is stiffer for a smaller m0. This can be
understood as follows. For reproducing the nucleon mass in vacuum, the
Yukawa coupling of σ becomes larger for a smaller m0. It implies that the
attractive force between nucleons becomes stronger, which corresponds to
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Table 2.1: Physical inputs in vacuum in unit of MeV.

mπ fπ mω mρ m+(= mN) m−
140 92.4 783 776 939 1535

Table 2.2: Values of model parameters determined for several choices of m0.
The values of the slope parameter L0 is also shown as output.

m0 [MeV] 500 600 700 800 900
g1 9.02 8.48 7.81 6.99 5.96
g2 15.5 14.9 14.3 13.4 12.4

µ̄2/f 2
π 22.7 22.4 19.3 11.9 1.50

λ4 41.9 40.4 35.5 23.1 4.43
λ6f

2
π 16.9 15.8 13.9 8.89 0.636

gωNN 11.3 9.13 7.30 5.66 3.52
gρNN 7.31 7.86 8.13 8.30 8.43

L0 [MeV] 93.76 86.24 83.04 81.33 80.08

the larger values of g1,2. Meanwhile, the repulsive force between nucleons,
which corresponds to gωNN , becomes stronger for a smaller m0, because of the
balance between the attractive and repulsive forces for constructing nuclear
matter. In the high density region, the contribution for σ becomes smaller
while the contribution for ω becomes larger, and therefore the EOS for a
smaller m0 becomes stiffer in the high density region.

2.2 Unified EOS with CFL phase

2.2.1 NJL-type model for quark matter

Based on Ref. [61], we use the following NJL-type model as an quark effective
model, including the 4-Fermi interactions which cause the spontaneous chiral
symmetry breaking and the color-superconductivity. The Lagrangian is given
by

LCSC = L0 + Lσ + Ld + LKMT + Lvec , (2.33)

where

L0 = q̄(iγµ∂µ − m̂q + γµÂ
µ)q , (2.34)
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Lσ = G
8∑

A=0

[
(q̄τAq)

2 + (q̄iγ5τAq)
2
]
, (2.35)

Ld = H
∑

A,B=2,5,7

[
(q̄τAλBCq̄

t)(qtCτAλBq)

+ (q̄iγ5τAλBCq̄
t)(qtCiγ5τAλBq)

]
, (2.36)

LKMT = −K
[
det
f
q̄(1 + γ5)q + det

f
q̄(1 − γ5)q

]
, (2.37)

Lvec = −gV (q̄γµq)(q̄γµq) , (2.38)

We use the external field Âµ to introduce the chemical potentials by

Âµ = δµ0 (µq + µQQ+ µ3λ3 + µ8λ8) , (2.39)

where Q = diag(2/3,−1/3,−1/3) is a charge matrix in flavor space and λa
are Gell-Mann matrices in color space. We chose the values of Hatsuda-
Kunihiro parameters for coupling constants G and K, which successfully
reproduce the hadron phenomenology at low energy [60, 62]: GΛ2 = 1.835
and KΛ5 = 9.29 with Λ = 631.4 MeV. The mean fields are introduced as

σf = ⟨q̄fqf⟩ , (f = u, d, s) , (2.40)

dj =
〈
qtCγ5Rjq

〉
, (j = 1, 2, 3) , (2.41)

nq =
∑

f=u,d,s

〈
q†fqf

〉
, (2.42)

where (R1, R2, R3) = (τ7λ7, τ5λ5, τ2λ2). The thermodynamic potential for
the quark matter with color-superconductivity is calculated as

ΩCSC = Ωs − Ωs[σf = σ0
f , dj = 0, µq = 0]

+ Ωc − Ωc[σf = σ0
f , dj = 0] , (2.43)

where

Ωs = −2
18∑
i=1

∫ Λ

p

εi
2
, (2.44)

Ωc =
∑
i

(2Gσ2
i +Hd2i ) − 4Kσuσdσs − gV n

2
q . (2.45)
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Using the following inverse propagator in Nambu-Gorkov basis, the energy
eigenvalues εi in Eq. (2.44) can be obtained,

S−1(k) =

(
γµk

µ − M̂ + γ0µ̂ γ5
∑

i ∆iRi

−γ5
∑

i ∆∗
iRi γµk

µ − M̂ − γ0µ̂

)
, (2.46)

where the effective masses (constituent quark mass)

Mi = mi − 4Gσi +K|ϵijk|σjσk (i = u, d, s), (2.47)

the pairing gap energies

∆i = −2Hdi (i = 1, 2, 3), (2.48)

and the effective chemical potential

µ̂ = µq − 2gV nq + µQQ+ µ3λ3 + µ8λ8 . (2.49)

In the present parameter choice, at nB ≳ 5n0 they vary in the range of
Mu,d ≈ 50–100 MeV, Ms ≈ 250–300 MeV and ∆1,2,3 ≈ 200–250 MeV [60].
The inverse propagator in Eq. (2.46) S−1(k) is 72×72 matrix in terms of the
color, flavor, spin and Nambu-Gorkov basis, and therefore it has 72 eigenval-
ues. The matix does not depend on the spin, and that the charge conjugation
invariance relates two eigenvalues. Then, there are 18 independent eigenval-
ues at most.

The total thermodynamic potential is

ΩQ = ΩCSC +
∑
l=e,µ

Ωl , (2.50)

where Ωl is the thermodynamic potential for leptons given in Eq. (2.29). The
chiral condensates σj and the diquark condensates di are determined from
the gap equations,

0 =
∂ΩQ

∂σi
=
∂ΩQ

∂di
. (2.51)

The chemical potentials µj (j = Q, 3, 8) are determined by imposing the beta
equilibrium condition given in Eq. (2.31) and the charge neutrality conditions
for electromagnetic and color charges as

0 = nj = −∂ΩQ

∂µj

. (2.52)
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The baryon number density nB is three times of Quark number density is
determined as

nq = −∂ΩQ

∂µq

, (2.53)

and the baryon number density is nB = nq/3, which means that one baryon
has three constituent quarks. On the other hand, the chemical potentials for
baryon number and quark number have a relation: µB = 3µq. Finally, the
pressure in the quark matter is obtained as

PQ = −ΩQ . (2.54)

2.2.2 Interpolating EOSs

We construct the unified EOS by interpolating two EOSs for quark matter
and hadronic matter, which are introduced in the previous sections. The
effective region for each models are determined based on Ref. [60]. In the
low density region nB < 2n0, the hadronic matter is realized and we use the
pressure PH in Eq. (2.32). While the quark matter is valid in the high density
region nB > 5n0, and we use the pressure PQ in Eq. (2.54). In the interme-
diate region from 2n0 to 5n0, we use the pressure PI, which is the following
polynomial in terms of baryon chemical potential with six coefficients an to
interpolate above two EOSs,

PI(µB) =
5∑

n=0

anµ
n
B . (2.55)

The following boundary conditions determine the six free parameters an,

dnPI

(dµB)n

∣∣∣∣
µBL

=
dnPH

(dµB)n

∣∣∣∣
µBL

,

dnPI

(dµB)n

∣∣∣∣
µBU

=
dnPQ

(dµB)n

∣∣∣∣
µBU

, (n = 0, 1, 2) (2.56)

where µBL is the chemical potential corresponding to nB = 2n0 and µBU to
nB = 5n0.

Fig. 2.1 shows the typical examples of the interpolated EOS and Fig. 2.2
shows corresponding sound velocity calculated by

c2s =
dP

dε
=

nB

µBχB

, (2.57)
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(a) (b)

Figure 2.1: Pressure vs. baryon chemical potential, for the PDM and for one
interpolating to the CSC. The solid thin curve corresponds to the interpolation
from the hadronic matter to the quark matter.

(a) (b)

Figure 2.2: Squared speed of sound c2s.

where the baryon number density nB = dP
dµB

and the baryon number sus-

ceptibility χB = d2P
dµ2

B
. We see that, although both plots 2.1(a) and 2.1(b) in

Fig. 2.1 are smooth, Fig. 2.2 shows that the parameter set (b) violates causal-
ity. Therefore, when m0 = 800 MeV, the parameter choice (H/G, gV /G) =
(1.45, 1.2) is excluded.

Figure 2.3 shows the parameter regions (H, gV ) satisfying the causality
condition for several choices ofm0. To see this, there are a positive correlation
for the values of H and gV in all cases. This means that we need to increase
the value of H for a larger gV [61]. The details of this positive correlation
depend on the low density constraint and the choice ofm0. As we can see from
Table.2.2, the low density EOS softens for a large m0, and correspondingly
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(a) m0 = 500MeV (b) m0 = 600MeV

(c) m0 = 700MeV (d) m0 = 800MeV

(e) m0 = 900MeV

Figure 2.3: Allowed combinations of (H, gV ) for m0 = 500–900MeV. Cross marks
× are not causal, while the colored circles are causal. The color of the circle shows the
corresponding maximum mass of neutron stars.

smaller values of gV are favored for causal interpolations. We note that the
range of (H, gV ) is larger than the previously used estimates, (H/G, gV /G) =
(0.5, 0.5), based on the Fierz transformation (see e.g. Ref. [90]). Such choices
were used in the hybrid quark-hadron matter EOS with first order phase
transitions, and tend to lead to the neutron star mass smaller than 2M⊙.
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2.3 Numerical results

In this section, we calculate mass-radius relations of neutron stars using the
Tolman-Oppenheimer-Volkoff (TOV) equation [91, 92]. The TOV equation
for hydrostatic equilibrium in general relativity is given by

dP

dr
= −G(ε+ P )(m+ 4πr3P )

r2 − 2Gmr
,

dm

dr
= 4πr2ε ,

(2.58)

where r is the radial coordinate of a neutron star and G is the constant of
gravitation. P (r) is pressure on the shell with radius r, m is the total mass
of the shell. The energy density ε is determined by EOS.

For the core of neutron stars, we use the EOS which is build in the
previous sections. For the crust of neutron stars, we include the BPS EOS [93]
1 at nB ≤ 0.1 fm−3, and at nB ≥ 0.1 fm−3 we use our unified EOS from nuclear
liquid to quark matter.

A static-spherical neutron star is determined by the central density nc, or
equivalently the central pressure Pc, as the initial values of the TOV equation:
P (0) = Pc and m(0) = 0. Imposing the condition that pressure will vanish
at the boundary of the neutron star P (R)=0, the neutron star radius R is
determined. The neutron star mass is also determined as M = m(R). Since
the mass M and radius R are uniquely determined by the central density
nc, the mass-radius curve is the graph which is parametrized by the central
density (M(nc), R(nc)).

Figures 2.4 and 2.5 show the mass-radius and mass-central density curves,
which are calculated from our EOSs. In each panel of Figs. 2.4 and 2.5, the
different combinations of (H, gV ) are corresponding to the different curves,
which parameters are corresponding to the allowed parameters indicated by
circles in Fig. 2.3. The thin curves are corresponding to the central densities
are in crossover domain: 2n0 < nc < 5n0. Therefore, the neutron stars in the
thick curves in the low-mass region consist of only hadronic matter, while
the ones in the thick lines in the high-mass region contain quark matter.

The maximum mass of a neutron star is determined for each combination
of (H, gV ), and the resulting values are represented by the color in Fig. 2.3.

1The BPS EOS is usually referred as EOS for the outer crust, but it also contains the
BPP EOS [93] for the inner crust.

34



(a) m0 = 500MeV (b) m0 = 600MeV

(c) m0 = 700MeV (d) m0 = 800MeV

(e) m0 = 900MeV

Figure 2.4: Several choices of mass-radius relations for each m0. (See main
texts for detail.)
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(a) m0 = 500MeV (b) m0 = 600MeV

(c) m0 = 700MeV (d) m0 = 800MeV

(e) m0 = 900MeV

Figure 2.5: Several choices of relations between mass and central density for
each m0. (See main texts for detail.)
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Table 2.3: Radius constraints for neutron stars.

radius [km] mass [M⊙]
GW170817 (primary) 11.9+1.4

−1.4 1.46+0.12
−0.10

GW170817 (secondary) 11.9+1.4
−1.4 1.27+0.09

−0.09

J0030+0451 (NICER [21]) 13.02+1.24
−1.06 1.44+0.15

−0.14

J0030+0451 (NICER [22]) 12.71+1.14
−1.19 1.34+0.15

−0.16

The figure clearly demonstrates that a decrease in H or an increase in gV
corresponds to an increase in the maximum mass.

In this thesis, we adopt the mass of PSR J0740+6620, a millisecond pul-
sar, as the lowest maximum mass. The mass value is 2.14+0.10

−0.09M⊙, and it is
represented by a gray-shaded area in Figs. 2.4 and 2.5. The red solid curves in
these figures correspond to the mass-radius relations for which the maximum
mass is greater than the lowest maximum mass, while the blue dashed curves
indicate the maximum masses that do not exceed the lowest maximum mass.
We also depict the constraint on the radius obtained from LIGO-Virgo and
NICER observations 2. The green shaded areas on the middle left and the
red shaded areas on the middle right represent the constraints from LIGO-
Virgo and NICER (Miller et al. [21]), respectively. The inner contour of each
shaded area contains 68% of the posterior probability (1σ), and the outer
contour contains 95% (2σ). The summary of these values, including another
NICER result of Riley et al. [22], is provided in Table 2.3.

LIGO-Virgo has estimated the radius of a neutron star with ≃ 1.4M⊙ to
be 11.9 ± 1.4 km3. If we only require our M -R curves to fall within the 2σ
band, we obtain the constraint m0 ≳ 600 MeV, regardless of the quark EOS.
If we further demand that the M -R curves fall within the 1σ band, we find
that only a few curves with m0 ≥ 700 MeV satisfy this requirement, but they

2More precisely, the LIGO-Virgo constrains the tidal deformability Λ̃ which is the
function of the tidal deformability of each neutron star (Λ1 and Λ2) and the mass ratio
q = M2/M1. But for EOS which do not lead to large variation of radii for M ≳ 1M⊙,
Λ̃ is insensitive to q. In fact the radii of neutron stars and Λ̃ can be strongly correlated
(for more details, see Ref. [94,95]), and for our purposes it is sufficient to directly use the
estimates on the radii given in Ref. [19], rather than Λ̃.

3LIGO-Virgo also provides another estimation with the range of 9–13 km. For our
model, we can obtain the same result for the m0 constraint from both estimations.
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do not satisfy the 2M⊙ constraint and must be rejected. On the other hand,
it is easier to reconcile our modeling with the NICER constraints, which
suggest larger radii. The range 500 MeV ≤ m0 ≤ 900 MeV falls within the
1σ band and hence does not impose additional constraints beyond those of
LIGO-Virgo. Using all of the above observational data, the 2σ range of the
LIGO-Virgo data provides the following constraints on the chiral invariant
mass:

600 MeV ≲ m0 ≲ 900 MeV . (2.59)

Note that if the chiral invariant mass m0 is larger, the corresponding slope
parameter is smaller, 80.08 MeV ≲ L0 ≲ 86.24 MeV, as can be seen from
Table 2.2, which is in agreement with experimental data.

2.4 Summary and discussions of Ch.2

Our approach to constructing the EOS for neutron star matter involves inter-
polating between the EOS obtained in the PDM and the one in the NJL-type
model. To ensure that the resulting EOS is physically meaningful, we impose
constraints on the model parameters based on thermodynamic stability and
causality, as well as the constraints imposed by the M -R curves.

Our main objective was to investigate how observations of neutron stars
constrain the microphysics and hadronic EOS. While our hadronic EOS ac-
curately represents the physics at the saturation density, its extrapolation
towards higher densities is influenced by the chiral invariant mass m0. The
radii of 1.4 M⊙ neutron stars are highly correlated with the stiffness of the
low-density EOS beyond the saturation density (nB = 1–2n0), and we have
established a significant constraint, 600 ≲ m0, [MeV] ≲ 900. At low densities,
the density dependence of the stiffness is determined by the balance between
σ- and ω-exchanges, with the former’s strength being highly dependent on
the fraction of the chiral variant component in the nucleon mass.

The maximum mass of neutron stars is highly correlated with the high
density EOS, and it puts constraints on the parameters of the quark model,
such as (H, gV ). However, these parameters are not independent of the
hadronic sector, as the high and low density EOS must have a causal and ther-
modynamically stable connection. The range of allowed values for (H, gV )
is sensitive to our choice of m0 or the stiffness of the hadronic EOS. Soft
hadronic EOS that are associated with large m0 exhibit greater tensions with
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Figure 2.6: Several choices of mass-radius relations which satisfy both the
maximum mass and the radius constraints.
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sufficiently stiff quark EOS, thereby setting an upper bound of m0 ≲ 900
MeV. This upper bound is in close proximity to the total nucleon mass of
mN ≈ 939 MeV, and therefore, it is not as noteworthy as the radius con-
straint.

We would like to draw attention to the fact that the cores of heavy neutron
stars with masses around 2M⊙ include quark matter, as illustrated by the
thick curves in the heavy-mass region of Fig. 2.6. Conversely, the core of the
neutron star with a mass of 1.4M⊙ falls within the crossover domain of quark
and hadronic matter. Therefore, in our crossover construction of a unified
EOS, variations in the radii of the 1.4M⊙ neutron star are relatively small,
with ∆R ≲ 0.5 km.

For this analysis, we have assumed a crossover between hadronic matter
and quark matter. Our findings, as illustrated in Fig 2.3, suggest that the
coupling parameter H must be sufficiently large to ensure a smooth con-
nection and satisfy causality, as noted in Ref. [60]. In particular, H values
greater than or equal to 1.4G are necessary, which is consistent with the N -∆
splitting [96] and leads to the CFL phase for densities nB greater than or
equal to 5n0.

It is worth noting that previous studies, such as Ref. [60], primarily re-
lied on the constraint R ≲ 13 km from GW170817. However, new NICER
results have emerged that suggest radii of approximately 13 km, allowing for
a relaxation of the condition on low density EOS and the inclusion of stiffer
EOS. This broadens the possibility of first order phase transitions. In this
context, it would be interesting to explicitly incorporate the first order tran-
sition in the interpolated domain, as in Refs. [50, 52], while utilizing quark
and hadronic EOS as boundary conditions.

The slope parameter L0 predicted values, ranging from 80 to 94 MeV,
which are presented in Table 2.2, exceed the typical estimates of L0, which
typically fall between 30 and 90 MeV. References such as [67–69] support
these typical estimates. However, recent analyses of PREXII for the neutron
skin thickness suggest that L0 is around (109.56 ± 36.41) MeV, and it is not
clear which estimates are more accurate. While the current study primarily
focuses on the variation of m0, it is also possible to adjust the value of L0 by
including a term proportional to ω2ρ2 in the hadronic part. This adjustment
could slightly alter the lower and/or upper bounds of m0 in Eq. (2.59). Future
studies will explore these extensions of the PDM model.
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Chapter 3

Chiral Condensate in Crossover

The content of this chapter is based on our paper [2].
In this chapter, we also write the integrals over space as,

∫
x

=
∫

d4x,∫
x

=
∫

d3x, and over momentum as,
∫
p

=
∫

d3p
(2π)3

.

3.1 Nuclear matter

3.1.1 Chiral condensate in the PDM

One can compute the chiral condensate in effective models by taking the
derivative of the thermodynamic potential with respect to the current quark
mass. In our model, the term −m2

πfπσ represents explicit chiral symmetry
breaking, while we have ignored higher order terms of current quark mass
perturbations. These couplings are expected to take the form of ∼ (φ/Mq)

n,
with the effective quark mass Mq ≃ 300 MeV obtained from quark integra-
tion. As a result, we anticipate that these couplings will mainly depend on
length scales shorter than those associated with pions, and thus, the current
quark mass should be a small perturbation in powers of ∼ (mq/Mq)

n. The
Gell-Mann–Oakes–Renner relation rewrites the explicit symmetry breaking
term as

ΩESB = −m2
πfπσ = mq⟨ūu+ d̄d⟩0

σ

fπ
. (3.1)

mq = (mu +md)/2 is the mean value of up- and down- quark current masses.
The chiral condensate in vacuum is written as ⟨ūu + d̄d⟩0. Using this equa-
tion, the chiral condensate in medium can be defined by differentiating the
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thermodynamic potential as

⟨ūu+ d̄d⟩ ≡ ∂ΩESB

∂mq

= ⟨ūu+ d̄d⟩0
σ

fπ
, (3.2)

Here mq dependence of ⟨(ūu + d̄d)⟩0 which is higher orders in mq/Mq is
neglected. We focus on σ instead of ⟨q̄q⟩, below.

3.1.2 Chiral scalar density in a nucleon

The scalar charge in a nucleon, Nσ, is useful to estimate the in-medium chiral
condensates. The nucleon mass in vacuum is related to the nucleon’s scalar
charge as

Nσ =

∫
x

⟨N | ūu+ d̄d |N⟩

= ⟨N | ∂HQCD

∂mq

|N⟩ =
∂mvac

N

∂mq

, (3.3)

where HQCD is the QCD Hamiltonian, and the Hellmann–Feynman theorem
[97] is used in the last step.

The current quark mass dependence of the nucleon mass in the PDM is
only through of σ, so we calculate the scalar charge at vacuum as

Nσ =
∂mvac

N

∂mq

=
∂σvac

∂mq

(
∂mN

∂σ

)
σ=σvac

. (3.4)

When we calculate the variation of σvac, we prepare the thermodynamic po-
tentials at various mq, calculate σvac for each potential, and evaluate the
impact of the mass variation on σvac. The mass derivative of σvac is pro-
portional to the static correlator1 ∼ ⟨(σ − ⟨σ⟩)2⟩ ∼ m−2

σ , so is bigger for a
smaller scalar meson mass.

1The mass derivative of the quark condensate is related to the (connected) scalar cor-
relator at zero momentum,

∂ ⟨q̄q⟩
∂mq

∼
∫

DqDq̄ [q̄q(x)]
∂

∂mq

(
e−

∫
x′ mq q̄q(x

′)+.../Z

)
∼
∫
x′

〈
[q̄q(x)][q̄q(x′)]

〉
conn.

∼ lim
q→0

1

q2 +m2
σ

. (3.5)
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Table 3.1: Some values of the PDM in vacuum.

m0 [MeV] 500 600 700 800 900
(∂mN/∂σ)vac. 7.97 7.01 5.87 4.56 3.07
mσ [MeV] 396 414 388 332 271
ΣN [MeV] 91.9 74.0 70.5 74.6 75.7

The so-called nucleon sigma term ΣN can be defined as

ΣN = mqNσ =

∫
x

⟨N |mq(ūu+ d̄d)|N⟩ . (3.6)

The quantity mq(ūu+ d̄d) is known as a renormalization group invariant one.
As the scalar density is more directly related to the experimental quantities,
it is often discussed in this form. The traditional estimate [98] is ΣN ≃ 45
MeV (which includes up- plus down-quark contributions), but currently the
estimates based on lattice QCD or combined analyses of the lattice QCD and
the chiral perturbation theory range over 40–70 MeV [97]. Using the values
Nσ ≃ 8–14 and mq ≃ 5 MeV, the scalar density can be evaluated as

Nσ

4
3
πR3

N

=

(
0.24–0.30 GeV × 1 fm

RN

)3

, (3.7)

where the size of nucleon is written as RN(∼ 1 fm). The vacuum scalar
density is roughly equal order of magnitude as the mean value of the nucleon
scalar charge, but the opposite sign. In Table 3.1, the values in the PDM for
various m0 are listed for comparison.

We observe that our calculated value of mσ lies in the range of 270–410
MeV, which is smaller than the mass of the scalar meson f0(500) 2, which
has a width of approximately 500 MeV. Additionally, the value of ΣN in our
model is larger than the conventional value of around 45 MeV. It is worth
noting that ΣN is proportional to ∂σvac/mq, which in turn is proportional to
m−2

σ . To achieve better agreement with empirical values, it may be necessary
to increase mσ. This could be accomplished, for instance, by introducing
higher-order polynomials of σ fields to alter the curvature of the effective
potential. Such fine-tuning, however, is beyond the scope of this thesis, and

2Whether σ in mean field models should be interpreted as the physical scalar meson is
not a simple matter.
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Figure 3.1: Chiral condensates in dilute regime. The region dominated by
the vacuum chiral condensate has the negative scalar charge while in nucleons
the scalar charges are positive.

we continue to use the parameter set employed in Chapter 2. Nonetheless,
we believe that the present model can still be used to investigate the overall
qualitative trends of chiral restoration.

The relationship Nσ = ∂mvac
N /∂mq implies that the scalar charge of the

nucleon should be positive, as an increase in the current quark masses is
expected to cause an increase in the nucleon mass. Given that the chiral
condensate in vacuum is negative, the scalar charges of the nucleon tend to
counterbalance the vacuum chiral condensate.

3.1.3 Dilute regime

In the dilute regime (see Fig.3.1) we can make a solid statement; here nu-
cleons are widely separated, so the scalar density in medium is estimated by
simply adding the scalar charges of nucleons to the vacuum condensate, and
then taking the spatial average, i.e.,

⟨ūu+ d̄d⟩ ≃ ⟨ūu+ d̄d⟩0 + nBNσ , (3.8)

or equivalently one can write

σ ≃ fπ

(
1 +

nBNσ

⟨ūu+ d̄d⟩0

)
. (3.9)
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This is the famous linear density approximation, which implies that the value
of σ decreases as nB increases.

The violation of this approximation signals the end of the dilute regime.
Figure3.2 shows the ratio of the quark condensate, ⟨ūu⟩ / ⟨ūu⟩0 = σ/fπ,
versus the neutron number density nn in pure neutron matter and compare
it with the linear density approximation. Our mean field results have milder
chiral restoration than in the linear density approximation. Similar trends
have been found in the analyses based on the chiral effective theories including
the fluctuations of pions [99–101]

We want to emphasize that the chiral restoration described in this paper
does not necessarily have an immediate effect on the properties of baryons or
the Dirac sea, in light of the PDM. Our no sea approximation for the thermo-
dynamic potential for nucleons (see Eq. (2.26)) and the modest changes in
nucleon mass in the PDM support this. Additionally, we note that during a
high-temperature transition from a hadron resonance gas (HRG) to a quark
gluon plasma (QGP), chiral condensates decrease significantly just below the
transition temperature. However, at this temperature, the HRG model with
vacuum hadron masses still accurately describes the lattice data, as reported
in [102, 103]. We will revisit this point when discussing chiral restoration in
quark matter, where changes in the Dirac sea are more likely to occur.

3.1.4 Strange quark condensate

The density increase in the nucleus has an impact on the strange quark
condensate, given that nucleons contain sea strange quarks. The strangeness
sigma-term can be utilized to approximate the prevalence of sea strange
quarks within a nucleon,

ΣsN = ms
∂mN

∂ms

=

∫
x

⟨N |mss̄s|N⟩ = msNs . (3.10)

Our PDM does not manifestly include the strangeness so that we simply
substitute the vacuum value for the linear density approximation,

⟨s̄s⟩ ≃ ⟨s̄s⟩0 + nBNs . (3.11)

This estimate will be used when we consider the interpolation between nu-
clear and quark matter.

There are several errors in our estimation of the strange quark conden-
sate, even in the dilute regime. This is because determining the strangeness
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Figure 3.2: Ratio of the quark condensate in the PDM ⟨ūu⟩ / ⟨ūu⟩0 = σ/fπ
versus the neutron number density nn.
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content in a nucleon is challenging due to its small effect that is unrelated
to the valence quarks. Estimates from lattice QCD suggest a range of val-
ues for the strangeness sigma-term, from approximately 17 MeV to 42 MeV.
Assuming ms ≃ 100 MeV, we estimate Ns ≃ 0.2–0.4, which corresponds to
approximately 0.01–0.05 times Nσ.

The positivity of strangeness sigma-term found on the lattice implies that
∂mN/∂ms is positive. This is by no means trivial, as strange quarks are not
valence quarks in a nucleon, and increasing strange quark does not readily
increase the valence quark mass nor the nucleon mass. One possible way
to express ∂mN/∂ms > 0 is to assume the validity of the expression as in
Eq.(3.4),

Ns =
∂mvac

N

∂ms

≃ ∂σvac

∂ms

(
∂mN

∂σ

)
σ=σvac

, (3.12)

and to consider the Kobayashi–Maskawa–’tHooft term for the U(1)A anomaly,

LKMT ∼ C(ūu)(d̄d)(s̄s) + · · · , (3.13)

where we wrote only the product of scalar densities. A larger strange quark
more explicitly breaks the chiral symmetry and hence enhances the size of
strange quark condensate in vacuum. Within mean field treatments (as in
the NJL model), a larger strange condensate contributes to the term like

LKMT ∼ C⟨s̄s⟩0
[
⟨d̄d⟩0 × ūu+ ⟨ūu⟩0 × d̄d

]
+ · · · , (3.14)

which, for C < 0, assists the chiral symmetry breaking and increases the
effective quark masses for up- and down-quarks. These relations suggest
that a larger ms firstly enhances ⟨s̄s⟩0, and then the effective masses of up-
and down-quarks through the anomaly term. Within this description, mN

or σvac increases for a larger ms, and hence Ns > 0 follows.

3.2 Quark matter (CFL phase)

3.2.1 Overall picture

We utilize the NJL model to describe quark matter. Although the model
does not account for confinement, it can explain hadron phenomenology with
low sensitivity to confining effects [62], such as the low energy constants for
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a hadronic effective Lagrangian for energies ≲ 1 GeV. The NJL model is
designed to capture physics at semi-hard scales, 0.2 GeV ≲ p ≲ 1 GeV, which
is the scale between confinement and chiral symmetry breaking [104, 105].
These quark models can describe the physics within a hadron, about ∼ 1
fm in terms of distance scale, but do not resolve the partonic structure of
constituent quarks [106]. We anticipate that NJL-type constituent quark
models will provide reasonable descriptions of bulk quantities at densities
where baryons begin to overlap.

Our NJL model incorporates the vector repulsion and diquark attraction,
in addition to the standard NJL model [62]. These additional interactions
are necessary to explain the successful hadron description, which requires
proper constituent quark masses and color interactions at semi-hard scale.
For instance, the color magnetic interactions are essential to account for the
level splitting seen in N -∆ or π-ρ [107]. In our diquark terms, we attempt
to include the attractive part of such interactions, which lead to diquark
condensation at high densities and, in the three-flavor model, color-flavor-
locked (CFL) pairing. The magnetic interactions in repulsive channels can
also be used to explain the channel dependence in baryon-baryon interactions
at short distances [108, 109], such as hard-core repulsion between nucleons.
Our vector repulsion can be viewed as a parameterization of such short-
distance repulsion.

Even though the vector and diquark interactions have opposite signs,
their effects do not cancel out because they have different density depen-
dences. The vector repulsion affects the entire bulk of the quark Fermi sea,
contributing to an energy density of εvector ∼ +n2

B, whereas the diquark
attraction mainly affects quarks near the Fermi surface, contributing to an
energy density of εdiquark ∼ −∆2n

2/3
B . Both contributions can lead to stiffer

equations of state [82].

3.2.2 Chiral condensates in the CFL quark matter

In the context of quark matter, the formation of chiral condensates is im-
peded by the quark Fermi sea. This is because the presence of an antiquark
requires energy on the order of the quark Fermi energy, and its creation in-
volves moving a particle in the Dirac sea beyond the Fermi surface to avoid
Pauli blocking. As a result, at higher densities, chiral condensates are natu-
rally broken apart. In contrast, particle-particle or particle-hole pairings are
preferred since they only involve degrees of freedom near the Fermi surface.
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Figure 3.3: Chiral symmetry breaking by condensation of quark-antiquark
pairs; (upper) in vacuum; (lower) in medium. In the latter the pairing is
blocked by the quark Fermi sea.

It is worth noting that the chiral restoration discussed in quark matter
is different from what we have observed in dilute nuclear matter. In the
latter case, chiral restoration occurs due to the balance between positive and
negative charges. However, in quark matter, both the positive and negative
scalar charges decrease as density increases, leading to changes in both the
Dirac sea and the constituent quark masses. This is in contrast to dilute
nuclear matter, where the sum of the scalar charges changes but not the
individual charges. In the PDM context, the modification of the Dirac sea is
likely responsible for the reduction of the chiral invariant mass m0.

3.3 Condensates in a unified EOS

In the previous sections, we calculated the condensates for the nuclear and
quark models. In this section, by interpolating them, unified condensates
are constructed. Especially, the chiral condensates, the diquark condensates,
and the particle number fractions for (u, d, s)-quarks and leptons (electrons
and muons) are computed.
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3.3.1 Unified generating functional

First, we extend the interpolating polynomial P (µB) to a generating func-
tional P (µB; J), where J is the external field coupled to the condensate ϕ.
One can obtain the condensate ϕ by partial differentiating the functional
with respect to J with fixed µB as

ϕ = − ∂P

∂J

∣∣∣∣
J=0

. (3.15)

In low density region, nB ≤ 2n0, the generating functional is given by
the PDM, and in high density region, nB ≥ 5n0, given by the NJL model.
In intermediate region, imposing the continuity conditions up to the second
derivatives at the boundaries, nB = 2n0 and 5n0, these functionals are in-
terpolated. The following polynomial function is used for an interpolating
function,

PI(µB; J) =
5∑

n=0

an(J)µn
B , (3.16)

where an(J) (n = 0, . . . , 5) are six coefficients which depend on J . We write
the chemical potentials at the boundaries as µL

B and µU
B which satsify

nB(µL
B; J) = 2n0 nB(µU

B; J) = 5n0 . (3.17)

It is important to remember that, µL
B and µU

B depend on J , since we use
the fixed densities for the boundaries. The six parameters an are determined
from the six boundary conditions,

∂kPI

(∂µB)k

∣∣∣∣
µL
B(µU

B)

=
∂kPPDM(NJL)

(∂µB)k

∣∣∣∣
µL
B(µU

B)

, (3.18)

where k = 0, 1, 2. Determination of an at J = 0 gives us the unified EOS.
We emphasize that, because of the causality condition, which means that

the sound velocity must be physical as

c2s =
dP

dε
=

nB

µBχB

≤ 1 , (3.19)

the model parameters of the generating functional are restricted.
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3.3.2 A practical method to compute condensates

Here, let us explain a practical method to compute condensates in our de-
scription of the unified generating functional. In this method, it is not nec-
essary to manifestly compute P (µB, J) for various J , but we utilize only the
µB-dependence of the condensate at J = 0 for each interpolating boundary.
The detail of the calculations are shown in Appendix. B. This method is
useful especially when we need to compute many condensates.

Since we use the polynomial function with J-dependent coefficients in
the interpolating domain, the expression of condensate ϕ in the interpolated
domain is given by

ϕI = −∂PI

∂J

∣∣∣∣
J=0

= −
5∑

n=0

∂an
∂J

∣∣∣∣
J=0

µn
B . (3.20)

Therefore, we just calculate the six coefficients ∂an/∂J (n = 0, ..., 5) at J = 0
to obtain the condensate in interpolation ϕI. Using the interpolating condi-
tion in Eq.(3.18), the ∂an/∂J can be obtained by differentiating Eq.(3.18)
with respect to J ,

∂

∂J

(
∂kPI

(∂µB)k

∣∣∣∣
µL
B(µU

B)

)
=

∂

∂J

(
∂kPPDM(NJL)

(∂µB)k

∣∣∣∣
µL
B(µU

B)

)
, (3.21)

and setting J = 0 in the end. We note that the boundary values µL
B(µU

B) are
depending on J , see Appendix. B for the details.

It is noteworthy that all the derivatives at J = 0 can be computed using
quantities at a specific µB and J = 0 only, without the need to consider
quantities for different J or µB. As a result, our calculations are considered
”local” and greatly reduce computational efforts.

3.3.3 Numerical results

We calculate the following quantities from nuclear to quark matter domain
using the method presented in the above: the light quark chiral condensate〈
ūu+ d̄d

〉
, the strange quark condensate ⟨s̄s⟩, the diquark gaps ∆i, and the

quark number densities nf . Unless otherwise stated we pick up three sample
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Figure 3.4: Ratio of the light quark chiral condensates compared with
the vacuum value. In this model, ⟨ūu⟩ / ⟨ūu⟩0 =

〈
d̄d
〉
/
〈
d̄d
〉
0

=〈
ūu+ d̄d

〉
/
〈
ūu+ d̄d

〉
0
.

parameter sets for (m0 [MeV], H/G, gV /G) as

(500, 1.30, 0.7) , [blue solid]

(700, 1.40, 0.8) , [orange dashed]

(900, 1.45, 0.7) , [green dash dotted]

(3.22)

all of which lead to EOS with the causal speed of sound. Here [...] indicates
the types of lines used in figures for these parameters. As a guide, we will
also show the extrapolation of the PDM results by black dotted lines.

Light quark chiral condensates

The ratio of the chiral condensate in medium to the vacuum counterpart,〈
ūu+ d̄d

〉
/
〈
ūu+ d̄d

〉
0
, is displayed in Figure3.4. It can be observed that

the condensate at the boundaries strongly influences the condensate in the
interpolated domain.
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The choice ofm0 has a significant impact on the PDM results. Whenm0 is
set to 500 MeV, the chiral condensate experiences a drastic reduction because
a strong N -σ coupling is needed to reproduce mN = 939 MeV, resulting in
significant changes to the behavior of σ in nuclear medium. However, for
larger m0, the medium effects on σ become less pronounced. On the other
hand, in the NJL model, the chiral condensates are typically around 20–30%
of their vacuum values.

As discussed in Section 3.1.3, the chiral restoration within the PDM may
not fully capture the chiral restoration at the quark level, and interactions
among nucleons become stronger at higher densities, making it necessary
to consider structural changes of nucleons and modifications of m0 and the
couplings. To infer the trends of these effects, we use the bias from the quark
matter side. While our interpolating method is phenomenological, we believe
it provides a reasonably balanced description.

Strange chiral condensates

Fig.3.5 illustrates the strange quark condensate, which is another quantity
of interest. Let us first focus on the trend observed for nB ≤ 2n0. In this
work, the strange quark contributions are not defined in the PDM. However,
we estimated them using the linear density approximation given in Eq.(3.11)
with the strangeness sigma-term. The sigma-term values we used are ΣsN =
0, 17, 41 MeV, with ΣsN = 0 corresponding to a density-independent strange
quark condensate, while the other two values were chosen from Ref. [97].
We fixed the parameters m0 = 700 MeV and (H, gV )/G = (1.4, 0.8), and
varied the values of ΣsN . As anticipated, Fig.3.5 demonstrates that the chiral
restoration in the strange quark sector is negligible in the nuclear regime.

As we move beyond 2n0, the strange quark condensate exhibits a reduc-
tion of approximately 20% at nB ≃ 3n0. This reduction is a result of the
boundary condition bias in the quark matter side as per the construction.
At nB ≃ 5n0, in the quark matter, the reduction is about 50%. Two main
effects contribute to this chiral restoration. Firstly, the suppression of the
anomaly term, ∼ ⟨ūu⟩⟨d̄d⟩(s̄s), associated with the reduction of light quark
condensates. Secondly, the appearance of the strange quark Fermi sea. In
our model, the strangeness density begins to account for around 10% of the
quark density at nB ≃ 3n0, indicating that the strange quark sector is altered
at the quark level.
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Figure 3.5: Ratio of the strange quark condensate compared with the vacuum
value ⟨s̄s⟩ / ⟨s̄s⟩0. In hadronic matter, we assume the linear density approxi-
mation (LDA) with the following values of sigma-term: ΣN = 0, 17, 41 MeV.
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Diquark gaps and number density

The upper and lower panels of Figure3.6 depict the numerical results of
diquark gaps interpolation in the ud-pairing channel and ds-pairing channel,
respectively, using the same parameters as in Fig.3.4. It is assumed that
the diquark condensates are zero when the baryon density is less than or
equal to 2n0. In CFL quark matter, the isospin symmetry is almost perfectly
maintained, whereas in nuclear matter, the pairing is zero, which results in
∆ds ≃ ∆us being reasonably accurate throughout the density range.

Let us now turn our attention to the relationship between the diquark
condensates and quark number density, which is depicted in Fig. 3.7. In the
nuclear regime, the quark densities for each flavor are derived from the proton
and neutron densities (np and nn) as nu = 2np + nn, nd = np + 2nn, and
ns = 0. We observe a strong correlation between the growth of the diquark
condensates and the increase in quark number density, which is evident from
the comparison between Figs. 3.6 and 3.7. This is intuitively reasonable
since a larger Fermi surface allows for more diquark pairs, and the associated
energy reduction of the system further promotes the growth of density.

Another crucial effect is the flavor asymmetry. Notably, the number den-
sity of strange quarks in nuclear matter is zero, while strong pairing between
strange quarks and other light quarks favors equal population of u, d, and s-
quarks in quark matter. Consequently, the number density of strange quarks
increases rapidly in the interpolated region, and the onset of strangeness
occurs at lower densities than it would without pairings. The interplay be-
tween the mass asymmetry and pairing effects determines the fraction of each
quark.

Compositions

Lastly, we investigate the matter composition including leptons. The frac-
tion of quark density for each flavor and lepton fraction per baryon density,
denoted by nf/nB and nl/nB respectively, are presented in Figure 3.8. Here,
f stands for u, d, or s, and the subscript l indicates the electron or muon
densities. The lepton fraction is determined by the charge neutrality and β-
equilibrium condition, which are controlled by the charge chemical potential
µQ.

One of the distinct characteristics of our unified model is the evolution
of the strangeness fraction. It becomes prominent at around nB ≃ 2.5n0,
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Figure 3.6: Diquark condensates. The upper panel is ∆3(= ∆ud), and the
lower panel is ∆1(= ∆ds). ∆2(= ∆su) is the same as ∆1 in this model. In
hadronic matter, we assume the diquark condensates equal zero.
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Figure 3.7: Number density for up-quarks nu (upper), and strange-quarks ns

(lower), normalized by 3n0. In hadronic matter, we defined as nu = 2np+nn,
(nd = np + 2nn, )and ns = 0
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Figure 3.8: Matter composition nf/nB (f = u, d, s) and nl/nB as functions
of baryon density.
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and strange quarks are as abundant as up- and down-quarks at nB ≳ 4.5n0.
When nB = 5n0, the matter transforms into CFL quark matter, where the
sum of quark densities satisfies the charge neutrality condition and no leptons
are required. This deviation from pure nuclear models, in which the lepton
fraction increases with increasing baryon density, highlights the uniqueness
of our approach.

3.4 Discussions

In this study, the chiral condensates in the crossover region are derived by
interpolating those in nuclear and quark matter domains, which makes our
observations of chiral restoration somewhat indirect. The impact of confine-
ment on this process remains uncertain. In this section, we propose several
scenarios to speculate about the microphysics in the interpolated domain.

3.4.1 Casher’s argument and the chiral scalar density
in nucleons

Regarding the relationship between confinement and chiral symmetry break-
ing, Casher suggested that quark confinement cannot be described in the
absence of chiral symmetry breaking effects (Casher, 1979). In this work,
we relax Casher’s arguments slightly by assuming the presence of chiral vari-
ant fields, namely (σ, π⃗). The overall size of these fields is characterized by
ϕ2 ≡ (σ2+ π⃗2), which is chiral invariant, while the direction of the four vector
(σ, π⃗) is chiral variant.

Casher’s argument centers around the helicity of a massless quark. Con-
finement requires the quark to change directions without changing its spin,
which violates either the conservation of helicity or angular momentum. To
avoid this violation, the confining boundaries must generate fields3 that can
carry the quanta of quarks just before reflection, as shown in Figure 3.9. The
σ and π⃗ fields are candidates for such fields, as they transform a left-handed
(right-handed) quark into a right-handed (left-handed) one, while the four-
vector (σ, π⃗) rotates to conserve helicity. This intuitive picture will be further
developed in the next section.

3One can also think of the instantons as the sources of the chirality flipping; in this
picture σ appears due to quarks bound to instantons [110].
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Figure 3.9: Helicity and spin conservation due to the emergence of the (σ, π⃗)
fields. The confinement turns a right-moving quark, uR, into a left-moving
quark, uL (dL), but without changing the spin. The helicity is conserved by
fields made of ūLuR (d̄LuR). The (σ, π⃗) fields fluctuate whenever the chirality
of quarks flip.

Using the above-described picture, we can examine the consequences that
may arise. The first implication is that Casher’s argument naturally implies
the existence of the chiral scalar density in hadrons. This may be linked to
the in-hadron condensate concept. On the other hand, when discussing the
vacuum condensates within this framework, we need to consider the σ meson
as a confined particle and then discuss the condensation of σ mesons. Once
the σ mesons fill the space, quarks can change their chirality anywhere.

3.4.2 Topology of pion clouds and spatial modulations
of the chiral scalar density

The scalar density of nucleons has a magnitude similar to that of the vacuum
chiral condensate, but with an opposite sign. Extrapolating this idea would
suggest that as nucleons overlap, they form a large region dominated by
positive chiral scalar density (negative σ), which is larger than the negative
chiral scalar density (positive σ) from the vacuum, as shown in Fig.3.10.
However, this expectation does not match smoothly with the high-density
quark model descriptions, where the chiral scalar density approaches zero
instead of a positive value. To understand this discrepancy, we first examine
the chiral scalar density in a two-baryon system.

To better understand how the σ field changes sign from the vacuum to
the inside of a nucleon, we will examine this process in more detail. Since the
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Figure 3.10: Naive extrapolation of the linear density approximation for
the chiral condensate. As baryons overlap, the positive chiral scalar density
(negative σ) from baryons dominates over the negative scalar density from
vacuum one (σ > 0).

Figure 3.11: Expected behavior of chiral scalar (σ) and pseudo scalar fields
(π⃗) near a nucleon (one dimensional slice). The chiral invariant combination
of these fields are σ2 + π⃗2 ≃ const. The right is the hedgehog profile.
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Figure 3.12: Two nucleons at close distance, with the hedgehog pion config-
urations, where the vectors π⃗ and x are parallel. The rightmost part shows
the baryon density, π1 fields, and σ fields along the x1 axis. The negative
σ fields are accumulated at the center of baryons, while the positive σ are
accumulated at the interface of two baryons.

effective Lagrangian is chiral symmetric, the effective potential is a function
of ϕ2. At the vacuum, the potential takes a minimum at ϕ = σvac. We
assume that the field variation along this circle (ϕ = const.) does not require
much energy. Therefore, the σ field around a nucleon should be accompanied
by π fields whose magnitudes are large near the surface of the nucleon and
vanishing at the center, as depicted in Fig.3.11. The spatial average of π
fields is zero. By appropriately arranging the isospin distributions for these
π⃗ fields to generate a topological number of one in the hedgehog form, we
can arrive at descriptions similar to those in chiral soliton models [111–118].

To better understand how baryons come close together, we can examine
the topological numbers of pions around nucleons. Consider two nucleons
that are close in distance, as shown in Fig.3.12. In a naive description, two
domains of positive scalar density simply merge to form one large domain
with the positive scalar density (negative σ), as shown in Fig.3.10. How-
ever, this picture is corrected by considering the topological constraint, as
illustrated in Fig.3.12. For two nucleon problems, the configuration of (σ, π⃗)
must have nodes to generate topological numbers two4, rather than zero.

4In (1+1)-dimensional models such statements become exact by applying the bosoniza-
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Hence, (σ, π⃗) should have spatial modulations with positive and negative
scalar densities, instead of forming a single large domain with the positive
scalar charge. As more and more nucleons are packed, the spatial modula-
tions of (σ, π⃗) fields become finer. The positive and negative σ fields tend
to cancel only in the spatial average. The magnitudes of the modulations
are controlled by the size of ϕ, not by the value of σ. While the nucleon
and constituent quark masses are substantial as long as ϕ is nonzero, we can
still describe the chiral restoration in the sense of

∫
x
σ(x) = 0. This picture

fits with the concept of the chiral invariant mass in the PDM, which can be
nonzero even for σ = 0, as discussed in Refs. [127,128].

In the previous argument, we discussed the possibility that each nucleon
has a topological configuration with spatial modulations in σ and π⃗. This idea
is similar to the concept of chiral density waves in the PDM, as discussed in
Refs. [36,46,47]. As nuclear matter is compressed, these modulations do not
cancel but are squeezed together, as long as ϕ remains finite. This viewpoint
is in line with scenarios of soliton crystals [129–133] or chiral spirals [134–144].
If compressed nucleons prefer a periodic structure, they can also lead to a
lattice in (σ, π⃗). Inhomogeneous chiral condensates have been discussed in
both nucleonic and quark models, and it is an interesting question whether
they can be connected through the quark-hadron continuity (see Ref. [145]
and references therein).

3.4.3 Diquarks

Finally, we will explore the evolution of diquark condensates from nuclear
to quark matter. Given our assumption that nucleon fields, before diago-
nalizing the mass matrix, transform as (1/2, 0)L ⊕ (0, 1/2)R under the chiral
multiplet, a straightforward approach for combining three quarks is to first
consider diquarks in the color antitriplet representation, followed by attach-
ing a leftover quark. The diquarks [uLdL]I=0 and [uRdR]I=0 are singlets under
SU(2)L×SU(2)R chiral transformations, thus invariant. When we attach the
leftover quark to these diquarks, the resulting nucleon will follow the chi-
ral transformation of the leftover quark. Additionally, we assume that the
diquark has JP = 0+ and is in a spatial S-wave, where the attractive correla-
tions are strongest. Consequently, the nucleon already contains the diquark

tion method [119–122]; nB ∼ ∂1φ, σ ∼ cosφ, and π ∼ sinφ (for U(1)). Studies of dense
systems can be found, e.g. in Refs. [123–126].
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condensate source for high-density matter.
When the density is low, diquark correlations exist, but diquarks are

bound tightly to leftover quarks to form nucleons. Thus, the diquarks are not
observable as condensates that spread over the system, and the properties
of the system are described in terms of nucleons. However, when quark
exchanges between nucleons become frequent, diquarks are no longer limited
to being constituents of nucleons but also participate in the bulk properties
of the system. As the diquark fields begin to overlap, they become coherent,
and the phase of condensates, φ in ∆ = |∆|eiφ, correlates over long distances.
The development of diquark condensates starts when nuclear many-body
forces become significant (at nB ≳ 2n0), progresses gradually towards quark
matter, and becomes established at high densities (nB ≳ 5n0)

5.
According to the same conceptual framework, we anticipate the intro-

duction of diquark fields with strangeness into the system as constituents
of hyperons. Subsequently, as hyperons dissociate via quark exchanges, the
diquark fields are expected to gradually develop.

3.5 Summary of Ch.3

In this thesis, we have presented a methodology for computing a range of con-
densates in the intermediate region between nuclear and quark matter, based
on the concept of quark-hadron continuity. By examining the properties of
these condensates, we have subsequently proposed potential qualitative sce-
narios for bridging the gap between descriptions of nuclear and quark matter.

In Chapter 2, we have observed that the PDM with a substantial chiral
invariant mass, m0 ≳ 500 MeV, exhibits several favorable characteristics in
terms of describing the EOS and various condensates. Notably, the significant
reduction in σ at low densities (due to the positive scalar charge in nucleons)
has a negligible effect on nucleon properties, which is in line with our decision
to neglect the nucleon Dirac sea and assume fixed nucleon-meson couplings
for nB ≲ 2n0. We believe that the intrinsic properties of nucleons begin to

5The development of diquark pair condensations could be limited by the cooling of
neutron stars. In particular, certain cooling patterns disfavor significant CFL cores that
would cause excessively rapid cooling [146, 147]. One possible explanation is that these
observed neutron stars are not heavy enough and do not possess high-density cores. How-
ever, if these neutron stars are massive and have large core densities, they impose strict
restrictions on the CFL phase. For information on the cooling of accreting neutron stars,
refer to Ref. [148].
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undergo significant changes at nB ≳ 2n0, where quark exchanges between
baryons occur more frequently; given that baryons consist of quarks, such
exchanges are expected to modify the structure of baryons. Additionally,
the quarks that are partially released are also impacted by the surrounding
medium, which can alter their effective mass and other properties. Although
directly characterizing these changes is challenging, we can at least place
constraints on them based on quark matter behaviors at high densities. Our
interpolation method provides a practical approach to implementing these
concepts.

This study has only touched on a few aspects of chiral symmetry in dense
matter, and there are numerous issues that remain to be addressed. Here,
we outline several:

(i) The PDM model can be expanded to incorporate hyperons [34, 149–
153]. For neutron star matter, the charge chemical potential µQ ranges from
−100 MeV to −200 MeV around nB ∼ 1–2n0, and hyperons may emerge
for 2–3n0, not far from our selected hadronic boundary nB = 2n0 (see, for
instance, Sec. III in Ref. [154]). Incorporating hyperons and extending our
treatment to higher densities would provide more concrete descriptions of
strangeness than what is presented in this work.

(ii) A thorough understanding of a nucleon and its meson cloud should
provide insight into chiral symmetry in dense matter. A crucial question
regarding the PDM is how a (σ, π⃗) cloud differs for nucleons of positive
(N(939)) and negative parity (N(1535)). According to constituent quark
models, N(1535) contains a quark’s P-wave excitation and is more spatially
extended than N(939). Understanding the relationship between this size-
scale estimate and σ in the PDM is critical for comprehending the medium
effects in the PDM. In general, medium effects should impact hadrons with
larger sizes, as they are closer in proximity to other hadrons.

(iii) Ultimately, our patchwork of nuclear and quark matter descriptions
should be superseded by a model based on a single framework. Baryons
should be explicitly constructed in terms of quarks. Several recent studies
[155–158], although schematic, have provided concrete descriptions of quarks
from nuclear to quark matter domains. One important outcome is the peak
in the speed of sound [156–158], which has been a puzzling feature inferred
from neutron star observations [159]. However, detailed questions, such as
the fate of chiral symmetry breaking or diquark correlations, have not been
addressed in these models. Our descriptions in this thesis may offer some
insight into fully understanding nuclear-quark matter phase transitions.
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Chapter 4

Conclusion

In this thesis, we studied the chiral condensate and the chiral invariant
mass constructing a unified EOS for neutron stars based on quark-hadron
crossover. What we obtained in our researches are as the following.

In Ch.2, we constructed unified EOSs by interpolating the EOS of the
PDM at lower density and that of the NJL model at higher density. We
found that the value of m0 affects the nuclear EOSs at low density, and has
strong correlations with the radii of neutron stars. The radii of the neutron
star with 1.4 M⊙ are known to have strong correlations with the stiffness
of low density EOS beyond the saturation density, nB = 1–2n0, and indeed
we have obtained the nontrivial constraint, 600 ≲ m0 [MeV] ≲ 900. At low
density, the density dependence of the stiffness is sensitive to the balance
between the σ- and ω-exchanges, where the strength of the former strongly
depends on the fraction of the chiral variant component in the nucleon mass.

In Ch.3, we studied the chiral condensate in the domain between nuclear
and quark matter, assuming the quark-hadron continuity picture. We found
that the chiral condensate decreases mildly at lower density and smoothly
approaches the NJL predictions at higher denisity using the value of the
substantial chiral invariant mass, which is favored by the neutron star obser-
vations. In our descriptions the chiral restoration in the interpolated domain
proceeds with two conceptually distinct chiral restoration effects; the first is
associated with the positive scalar density in a nucleon, relevant in dilute
regime, and the other primarily arises from the modification of the quark
Dirac sea, which is triggered by the growth of the quark Fermi sea.

In the future, when it becomes possible to observe the radius with higher
precision by the gravitational observations of such as LIGO-Virgo, or by the
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X-ray observations of such as NICER, we can obtain more precise constraint
to the hadronic model, and it will be strong guidelines to construct hadronic
effective models. Moreover, if we apply our models to other physics of neutron
stars, such as neutrino emissions, binary merger dynamics, or cooling process,
we will be able to know more about the hadron physics and the microscopic
understanding for neutron stars. In our result, the typical neutron stars with
∼ 1.4M⊙ have cores in crossover domain, and the heaviest neutron stars
with ∼ 2.0M⊙ may have the quark matter cores. Comparing the neutrino
emission rate of the hadronic matter and the one of the quark matter, we
may discuss it with the observational data of neutron stars.
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Appendix A

Chiral condensate and
pion-nucleon sigma-term in
hadron effective models

A.1 Some definitions

First, we list some definitions for convenience below.
The scalar charge of nucleons is defined as

Nσ :=

∫
x

⟨N | q̄q |N⟩ =
∂mN

∂mq

∣∣∣∣
vac

, (A.1)

and the pion-nucleon sigma-term (or simply sigma-term) is also defined as

ΣN :=

∫
x

⟨N |mq q̄q |N⟩ = mq
∂mN

∂mq

∣∣∣∣
vac

≡ mq
∂ ⟨q̄q⟩
∂nB

∣∣∣∣
vac

, (A.2)

where q̄q = ūu + d̄d is the scalar operator of the up and down quark fields,
and mq = m̄ = (mu + md)/2 is the average current quark mass for up and
down quarks.
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A.2 Linear density approximation (LDA) for

chiral condensate

The linear density approximation (LDA) for the chiral condensate is the
low-density expansion of the chiral condensate, which can be calculated as

⟨q̄q⟩ =
∂Ω

∂mq

(A.3)

=
∂Ωvac

∂mq

+
∂(Ω − Ωvac)

∂mq

(A.4)

= ⟨q̄q⟩vac −
∂P

∂mq

(A.5)

= ⟨q̄q⟩vac −
∂mN

∂mq

∂P

∂mN

(A.6)

= ⟨q̄q⟩vac +
ΣN

mq

nσ (A.7)

≈ ⟨q̄q⟩vac +
ΣN

mq

nB (as nB/n0 ≪ 1) , (A.8)

where nσ is the scalar charge density for nucleons as the following

nσ := − ∂P

∂mN

(A.9)

= − ∂

∂mN

2
∑

α: isospin

∫ kF

p

(µ∗
α − Ep) (A.10)

= 2
∑
α

∫ kF

p

mN

Ep

(Ep :=
√
m2

N + p2) (A.11)

= 2
∑
α

∫ kF

p

[
1 − 1

2
(
p

mN

)2 + O(
p

mN

)4
]

(A.12)

= 2
∑
α

1

2π2

[
k3F
3

− 1

10

k5F
m2

N

+ O(k7F )

]
(A.13)

= nB − 35/3π4/3

10 · 22/3

n
5/3
B

m2
N

+ O(n
7/3
B ) (A.14)

where nB =
2k3F
3π2 assuming symmetric matter in the last step. As see Eq.(A.14),

the scalar density can be equal to the baryon number density nB approxi-
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mately in low density regime:

nσ ≈ nB as nB/n0 ≪ 1 . (A.15)

Note that, Eq.(A.14) is not Taylor expansion in terms of nB, because this
is expansion around nB = 0, which is the branch point of the coordinate
transformation kF ∝ n

1/3
B . When we expand around nB ̸= 0, the series must

be Taylor expansion.

A.3 Chiral condensate in the PDM

As we see in Eq.(1.21) in Subsec.1.2.2, the chiral condensate (quark con-
densate) in the PDM can be calculated from the scalar meson mean field σ
as

⟨q̄q⟩PDM (=
〈
ūu+ d̄d

〉PDM
) = −ϵσ . (A.16)

There are the relation ϵm̄ = m2
πfπ, which corresponds to the Gell-Mann–

Oakes–Renner relation. m̄ = (mu + md)/2 ≈ 5.5 MeV is the mean value of
the up and down current quark masses, and mπ ≈ 140 MeV is the pion mass.
In vacuum (zero temperature and zero density), using σvac = fπ ≈ 93 MeV,

⟨q̄q⟩PDM
0 = −m2

πf
2
π/m̄ ≈ −(249 MeV)3 × 2 (A.17)

Under mean field approximation, since the mean fields ϕ⃗ := {σ, ω, . . . ;µQ, . . . }
are determined by the gap equations (and charge neutralities) as functions of
the chemical potential µB, the chiral condensate is calculated as the following

⟨q̄q⟩PDM =
〈
ūu+ d̄d

〉PDM
(A.18)

=

(
∂ΩPDM

∂mu

)
µB

+

(
∂ΩPDM

∂md

)
µB

(A.19)

=

(
∂ΩPDM

∂m̄

)
µB

(A.20)

=

[(
∂

∂m̄

)
µB ,ϕ⃗

+
∂ϕ⃗

∂m̄
·
(
∂

∂ϕ⃗

)
µB ,m̄

]
ΩPDM (A.21)

=

(
∂

∂m̄

)
µB ,ϕ⃗

ΩPDM . (A.22)

70



In the last line, we use the gap equations (∂Ω/∂ϕ⃗)µB ,m̄ = 0, and therefore
the chiral condensate can be obtained by partial differenciating the potential
with respect to the quark mass.

The chiral condensate can be divided to the two parts: the vacuum part
and the matter depended part as

⟨q̄q⟩ = −ϵσ (A.23)

= −ϵfπ + ϵ(fπ − σ) (A.24)

= ⟨q̄q⟩0 +
m2

πfπ
m̄

(fπ − σ) (A.25)

Expanding σ at nB = 0, and comparing it with Eq.(A.8), the sigma-term for
PDM can be calculated as

ΣN =
m2

πfπ
χB

∂σ

∂µB

, (A.26)

where χB = ∂2P
∂µ2

B
is the baryon number susceptibility.

Fig. A.1 is the ratio of the chiral condensate for the pure neutron matter.
For comparison, we also plot the two black dotted lines which are correspond-
ing to the linear density approximation with two values of the sigma-term
ΣN = 45 MeV, 90 MeV.

A.4 Tilte of the chiral condensate in the PDM

In the PDM, the chiral condensate is given as in Eq. (A.16) and its graph is
shown in Fig. A.1. The slope of the graph is calculated as

∂ ⟨q̄q⟩PDM

∂nB

=
∂µB

∂nB

∂(−ϵσ)

∂µB

(A.27)

= − ϵ

χB

∂σ

∂µB

(A.28)

where χB = ∂2P
∂µ2

B
is the baryon number susceptibility and ∂σ

∂µB
can be cal-

culated analytically from gap equations (See Eq.(B.14) in Ch.B). Therefore,
the linear density approximation of the chiral condensate at each density n∗

⟨q̄q⟩PDM = ⟨q̄q⟩PDM
0 +

(
∂ ⟨q̄q⟩PDM

∂nB

)
nB=n∗

(nB − n∗) + O(nB − n∗)2 (A.29)
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Figure A.1: The ratio of the chiral condensate in the PDM ⟨ūu⟩ / ⟨ūu⟩0 =
⟨q̄q⟩ / ⟨q̄q⟩0 = σ/fπ versus the baryon (neutron) number density nn for the
pure neutron matter.

From this, we can define a sigma-term-like quantity at each density as the
following

ΣN(nB) = m̄
∂ ⟨q̄q⟩
∂nB

(A.30)

=
m̄

χB

∂ ⟨q̄q⟩
∂µB

(A.31)

= −ϵm̄ 1

χB

∂σ

∂µB

(A.32)

Fig. A.2 is the graph of the ΣN -like quantity in Eq. (A.32). In the case of
m0 = 500 MeV, there is a first order phase transition in vacuum so the graph
jumps. Also, χB and ∂σ/∂µB are equal to zero in vacuum so Eq. (A.32)
becomes indeterminate form as zero density limit. We can evaluate the value
with using a relation between σ and density in the next section.
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Figure A.2: The slope of the graph shown in Fig. A.1. The cross symbols
are the values calculated in Sec. A.5 (Eq. (A.47)).

A.5 Relation between a scalar meson and a

scalar density and estimation of the value

of sigma-term in vacuum

For the potential of the scalar meson Vs(σ), its Taylor expansion w.r.t. σ̃ :=
fπ − σ is

Vs(σ) = Vs(fπ − σ̃) (A.33)

= Vs(fπ) − V ′
s (fπ)σ̃ +

1

2
V ′′
s (fπ)σ̃2 + O(σ̃3) (A.34)

= Vs(fπ) +
1

2
m2

σσ̃
2 + O(σ̃3) (A.35)

where V ′
s (fπ) = 0 (stationary condition in vacuum) and m2

σ := V ′′
s (fπ) is

the mass of σ in vacuum. Using this, the stationary condition for σ can be
written as

0 =
∂ΩPDM

∂σ
(A.36)

=
∂

∂σ
(V (σ) + Ωb) (A.37)
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= V ′(σ) +
∑
i=±

∂mi

∂σ
ni
s (ni

s =
∂Ωb

∂mi

is the scalar density of a nucleon Ni)

(A.38)

= V ′(fπ − σ̃) +
∑
i=±

∂mi

∂σ
ni
s (A.39)

= V ′(fπ) − V ′′(fπ)σ̃ + O(σ̃2) +
∑
i=±

∂mi

∂σ
ni
s (A.40)

= −m2
σσ̃ + O(σ̃2) +

∑
i=±

∂mi

∂σ
ni
s (A.41)

Therefore, we get

m2
σσ̃ ≈

∑
i=±

∂mi

∂σ
ni
s (PDM) (A.42)

which is similar as that of Walecka model. For Walecka model, when we
write its grand potential as ΩWalecka := 1

2
m2

σσ̃
2 − 1

2
m2

ωω
2 + Ωb, its stationary

condition for σ̃ is

0 =
∂ΩWalecka

∂σ̃
= m2

σσ̃ +
∂MN

∂σ̃

∂Ωb

∂MN

= m2
σσ̃ − gσNNns (Walecka)

(A.43)

where MN = MN0 − gσNN σ̃ is the effective nucleon mass of a nucleon, so we
get m2

σσ̃ = gσNNns.
We consider Eq. (A.16) again with using Eq. (A.42) to obtain a rela-

tion between σ and density. Here, we assume the baryon number density is
sufficiently less than the saturation density: nB ≪ n0. It means that the
negative parity nucleons do not appear and the scalar density of the posi-
tive parity nucleons equals the baryon number density approximately. Then,
Eq. (A.42) becomes m2

σσ̃ ≈ (∂m+/∂σ)vac.nB as nB ≪ n0. Using this, the
chiral condensate is

⟨q̄q⟩ = −ϵσ (A.44)

= −ϵfπ + ϵσ̃ (A.45)

≈ ⟨q̄q⟩0 + ϵ
1

m2
σ

(
∂m+

∂σ

)
vac.

nB (A.46)
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Table A.1: Values of PDM in vacuum

m0 [MeV] 500 600 700 800 900
(∂m+/∂σ)vac. 7.97 7.01 5.87 4.56 3.07
mσ [MeV] 396 414 388 332 271
ΣN [MeV] 91.9 74.0 70.5 74.6 75.7

Therefore, to compare with LDA ⟨q̄q⟩ = ⟨q̄q⟩0 +nBΣN/m̄, the sigma-term is

ΣN =
ϵm̄

m2
σ

(
∂m+

∂σ

)
vac.

=
fπm

2
π

m2
σ

(
∂m+

∂σ

)
vac.

(A.47)

Eq. (A.47) is the value of what we want which is plotted as cross symbols in
Figs. A.2-A.3. Table A.1 is the table of the values of sigma-term Eq. (A.47).

A.6 Sigma-term from the nucleon mass

In PDM, a (positive-parity) nucleon mass is defined as

m+ :=

√
m0 +

(
g1 + g2

2

)
σ2 − |g1 − g2|

2
σ (A.48)

where m0 is a chiral invariant mass and g1,2 are Yukawa couplings of N± and
scalar mesons. In general, the sigma-term ΣN is defined as mq ∂mN/∂mq .
With using this expression, the sigma-term in PDM may be calculated as
the following

ΣN = m̄
∂m+

∂m̄
= m̄

∂σ

∂m̄

∂m+

∂σ
(A.49)

which is depends on the density through σ.

ΣN = m̄

(
∂m+

∂m̄

)
nB

(A.50)

= m̄

(
∂σ

∂m̄
− ϵ

χB

(
∂σ

∂µB

)2
)
∂m+

∂σ
(A.51)
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∂σ
∂m̄

can be calculated from the stationary conditions as the following

0 =

(
∂

∂m̄

)
µB

∂ΩPDM

∂ϕi

(ϕ⃗;µB, m̄) (A.52)

=

[(
∂

∂m̄

)
ϕ⃗,µB

+

(
∂ϕj

∂m̄

)
µB

(
∂

∂ϕj

)
µB ,m̄

]
∂ΩPDM

∂ϕi

(A.53)

=
∂2ΩPDM

∂m̄∂ϕi

+

(
∂ϕj

∂m̄

)
µB

∂2ΩPDM

∂ϕi∂ϕj

(A.54)

=
∂2ΩPDM

∂m̄∂ϕ⃗
+
∂2ΩPDM

∂ϕ⃗∂ϕ⃗

(
∂ϕ⃗

∂m̄

)
µB

(A.55)(
∂ϕ⃗

∂m̄

)
µB

= −
[
∂2ΩPDM

∂ϕ⃗∂ϕ⃗

]−1
∂2ΩPDM

∂m̄∂ϕ⃗
(A.56)

In vacuum, the chiral susceptibility ∂σ/∂m̄ is calculated 1 as(
∂σ

∂m̄

)vac.

µB

= − 1

m2
σ

× (−ϵ) (A.57)

Then, the sigma-term Eq. (A.49) in vacuum is

ΣN =
ϵm̄

m2
σ

(
∂m+

∂σ

)
vac.

=
fπm

2
π

m2
σ

(
∂m+

∂σ

)
vac.

(A.58)

which is equivalent to Eq. (A.47).

A.7 Sigma-term from the energy density per

nucleon

In general, the energy density is defined as the Legendre transformation of
the pressure P as

ε := µBnB − P (A.59)

1susceptibility∼correlator∼ 1
p2+m2 ∼ 1

m2
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and the energy density per nucleon is expanded around x = (nB−n0)/(3n0) =
0 and δ = 2nI/nB = 0 as

ε

nB

= mN −B0 +
1

2
K0x

2 + δ2(S0 + L0x+ O(x2)) + O(δ4) (A.60)

where B0 = 16 MeV is the binding energy of a nucleon, K0 = 240 MeV is
the incompressibility of a nucleon, S0 is the symmetric energy and L0 is the
slope parameter. If we regard the energy density per nucleon as the effective
mass of a nucleon, the sigma-term can be calculated as

ΣN = m̄

(
∂

∂m̄

)
nB

ε

nB

(A.61)

=
m̄

nB

(
∂

∂m̄

)
nB

(µBnB − P ) (A.62)

=
m̄

nB

[(
∂µB

∂m̄

)
nB

nB −
(
∂µB

∂m̄

)
nB

(
∂P

∂µB

)
m̄

−
(
∂P

∂m̄

)
µB

]
(A.63)

=
m̄

nB

[
−
(
∂P

∂m̄

)
µB

]
(A.64)

=
m̄

nB

ϵ(fπ − σ) (A.65)

= ϵm̄
fπ − σ

nB

(A.66)

Then we get

ΣN = ϵm̄
fπ − σ

nB

= fπm
2
π

fπ − σ

nB

(A.67)

This is jsut equivalent to ⟨q̄q⟩PDM = ⟨q̄q⟩PDM
0 +nBΣN/m̄. In vacuum, we can

use the expression m2
σσ̃ ≈ (∂m+/∂σ)vac.nB as nB ≪ n0. Then the sigma-term

in vacuum is

ΣN =
ϵm̄

m2
σ

(
∂m+

∂σ

)
vac.

=
fπm

2
π

m2
σ

(
∂m+

∂σ

)
vac.

(A.68)

This is equivalent to Eq. (A.47).

A.8 Comparison

Fig. A.3 is comparison between two sigma-term Eq. (A.49) and Eq. (A.67).
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(a) ΣN = m̄∂m+/∂m̄ in Eq. (A.49).

(b) ΣN = ϵm̄(fπ − σ)/nB in Eq. (A.67).

Figure A.3: Density dependence of the sigma-term ΣN calculated in two ways

(Eq. (A.49) and Eq. (A.67)). The cross symbols are also the values calculated in

Eq. (A.47).
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Appendix B

Calculation of ∂an/∂J in
Eq.(3.20)

Here, PH denotes pressure for hadronic matter as a function of µB calculated
from PDM, and PQ for quark matter from NJL model. We define P⃗ as the
set of the six boundary condition values, ∂kP/(∂µB)k (k = 0, 1, 2), at the
boundaries µB = µL

B, µ
U
B, as

P⃗ =

(
PH

∣∣∣∣
µL
B

, PQ

∣∣∣∣
µU
B

,
∂PH

∂µB

∣∣∣∣
µL
B

,
∂PQ

∂µB

∣∣∣∣
µU
B

,
∂2PH

∂µ2
B

∣∣∣∣
µL
B

,
∂2PQ

∂µ2
B

∣∣∣∣
µU
B

)T

(B.1)

=
(
PH(µL

B), PQ(µU
B), 2n0, 5n0, χH

B(µL
B), χQ

B(µU
B)
)T

, (B.2)

which is given by the PDM and the NJL model. Since PI is a polynomial of
µB, as

PI =
5∑

n=0

an(J)µn
B , (B.3)

the vector of the values of ∂kPI/(∂µB)k (k = 0, 1, 2) at the boundaries is
represented as Ma⃗, where

a⃗ :=
(
a0(J), a1(J), a2(J), a3(J), a4(J), a5(J)

)T
(B.4)
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and M is a matrix of µL
B, µ

U
B as

M :=


1 µL

B (µL
B)2 (µL

B)3 (µL
B)4 (µL

B)5

1 µU
B (µU

B)2 (µU
B)3 (µU

B)4 (µU
B)5

0 1 2µL
B 3(µL

B)2 4(µL
B)3 5(µL

B)4

0 1 2µU
B 3(µU

B)2 4(µU
B)3 5(µU

B)4

0 0 2 6µL
B 12(µL

B)2 20(µL
B)3

0 0 2 6µU
B 12(µU

B)2 20(µU
B)3

 . (B.5)

Therefore, the six boundary conditions can be represented as the following
one equation for matrices,

P⃗ = Ma⃗

(
⇔

∂kPH(Q)

(∂µB)k

∣∣∣∣
µL
B(µU

B)

=
∂kPI

(∂µB)k

∣∣∣∣
µL
B(µU

B)

)
. (B.6)

Since this condition Eq.(B.6) is satisfied for arbitrary J , the derivative of an
with respect to J can be obtained by differentiating Eq.(B.6) as

∂an
∂J

= −M−1∂M

∂J
M−1P⃗ +M−1∂P⃗

∂J
, (B.7)

where we use an identity for matrices as

∂M−1

∂J
= −M−1∂M

∂J
M−1 , (B.8)

which can be easily shown by using: M−1M = 1 and hence ∂(M−1)M +
M−1∂M = 0.

The derivatives ∂P⃗ /∂J and ∂µL,U
B /∂J can be calculated as the following.

Since P⃗ is evaluated at the boundaries for arbitrary J , for example,

∂

∂J

(
P
∣∣
µL
B

)
=
∂µL

B

∂J

∂P

∂µB

∣∣∣∣
µL
B

+
∂P

∂J

∣∣∣∣
µL
B

, (B.9)

∂

∂J

(
∂P

∂µB

∣∣∣∣
µL
B

)
=
∂µL

B

∂J

∂2P

∂µ2
B

∣∣∣∣
µL
B

+
∂2P

∂J∂µB

∣∣∣∣
µL
B

, (B.10)

∂

∂J

(
∂2P

∂µ2
B

∣∣∣∣
µL
B

)
=
∂µL

B

∂J

∂3P

∂µ3
B

∣∣∣∣
µL
B

+
∂3P

∂J∂µ2
B

∣∣∣∣
µL
B

. (B.11)
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Eq.(B.10) equals zero, since the values of density at the boundaries are fixed
for any J , and therefore,

∂µL
B

∂J
= − ∂2P

∂J∂µB

∣∣∣∣
µL
B

/
∂2P

∂µ2
B

∣∣∣∣
µL
B

. (B.12)

Moreover, ∂k+1P/∂J(∂µB)k = −∂kϕ/(∂µB)k is determined from the deriva-
tion of the gap equation, for example,

0 =
∂

∂J

(
∂Ω

∂ϕ

∣∣∣∣
ϕ∗

)
=
∂2Ω

∂ϕ2

∣∣∣∣
ϕ∗

∂ϕ∗

∂J
+

∂2Ω

∂J∂ϕ

∣∣∣∣
ϕ∗

(B.13)

and then,

∂ϕ∗

∂J
= −

(
∂2Ω

∂ϕ2

∣∣∣∣
ϕ∗

)−1
∂2Ω

∂J∂ϕ

∣∣∣∣
ϕ∗

(B.14)

where ϕ∗ is the solution of the gap equation. Note that, the mean field
variables ϕ may be a vector, hence ∂2Ω/∂J∂ϕ may be a vector and ∂2Ω/∂ϕ∂ϕ
mey be a matrix.

81



Appendix C

Hellmann–Feynman Theorem

We show the theorem for perturbation of an operator, called Hellmann–
Feynman theorem, and its relation to the pseudo-inverse notation.

C.1 Perturbation of Hamiltonian

Let H = H(λ) be a Hamiltonian with a parameter λ, and |n⟩ = |n;λ⟩ be an
eigenstate with an energy eigenvalue En = En(λ). Especially, the expansion
with respect to λ is defined as

H(λ) = H0 + λH1 +
1

2
λ2H2 + · · · (C.1)

|n;λ⟩ =
∣∣n(0)

〉
+ λ

∣∣n(1)
〉

+ · · · (C.2)

En(λ) = E(0)
n + λE(1)

n + · · · . (C.3)

By definition, the following equation is valid for any λ,

H |n⟩ = En |n⟩ . (C.4)

Differentiating the both side, multiplying ⟨m| from left, and using ⟨m|H =
⟨m|Em, we obtain

⟨m| ∂H
∂λ

|n⟩ =
∂En

∂λ
δm,n + ⟨m| (En − Em)

∂ |n⟩
∂λ

. (C.5)

When m = n, taking λ→ 0, it is just the Hellmann-Feynman theorem,

∂En

∂λ
= ⟨n| ∂H

∂λ
|n⟩ → E(1)

n =
〈
n(0)
∣∣H1

∣∣n(0)
〉
, (C.6)
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which means that we can get the derivative of an eigenvalue by just differ-
entiating the operator.

If m ̸= n in Eq.(C.5), the following equation is obtained,

⟨m| ∂ |n⟩
∂λ

=
⟨m| ∂H

∂λ
|n⟩

En − Em

, (C.7)

which is the first order perturbation of the eigenstate. Differentiating the
orthonormal condition ⟨m|n⟩ = δm,n, we also get the following identity as

∂ ⟨m|
∂λ

|n⟩ + ⟨m| ∂ |n⟩
∂λ

= 0 . (C.8)

Using Eqs.(C.7) and (C.8), we obtain the second-order derivative as the
following. Here, the Hamiltonian has two parameters λ1 and λ2.

∂2En

∂λ1∂λ2
=

∂

∂λ1

(
⟨n| ∂H

∂λ2
|n⟩
)

(C.9)

=
∂ ⟨n|
∂λ1

∂H

∂λ2
|n⟩ + ⟨n| ∂H

∂λ2

∂ |n⟩
∂λ1

+ ⟨n| ∂2H

∂λ1∂λ2
|n⟩ (C.10)

=
∑
l

(
∂ ⟨n|
∂λ1

|l⟩ ⟨l| ∂H
∂λ2

|n⟩ + ⟨n| ∂H
∂λ2

|l⟩ ⟨l| ∂ |n⟩
∂λ1

)
+ ⟨n| ∂2H

∂λ1∂λ2
|n⟩

(C.11)

=
∑
l

(
⟨n| ∂H

∂λ1
|l⟩

En − El

⟨l| ∂H
∂λ2

|n⟩ + ⟨n| ∂H
∂λ2

|l⟩
⟨l| ∂H

∂λ1
|n⟩

En − El

)
+ ⟨n| ∂2H

∂λ1∂λ2
|n⟩

(C.12)

=
∑
l

⟨n| ∂H
∂λ1

|l⟩ ⟨l| ∂H
∂λ2

|n⟩ + ⟨n| ∂H
∂λ2

|l⟩ ⟨l| ∂H
∂λ1

|n⟩
En − El

+ ⟨n| ∂2H

∂λ1∂λ2
|n⟩ .

(C.13)

C.2 Pseudoinverse

Next, we explain the relation to the pseudoinverse expression. A Moore–
Penrose pseudoinverse A+ for an arbitrary matrix A is defined with the fol-
lowing conditions:

(i)AA+A = A , (C.14)
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(ii)A+AA+ = A+ , (C.15)

(iii)(AA+)† = AA+ , (C.16)

(iv)(A+A)† = A+A . (C.17)

Briefly speaking, whenA has a nonzero eigenvalue, A+ has an eigenvalue of its
reciprocal, and when A has an eigenvalue of zero, A+ has also zero, i.e. when
A = diag(a1, a2, 0) with a1 ̸= 0 ̸= a2, then A+ = diag(1/a1, 1/a2, 0). Note
that, when A is hermitian, then A and A+ are commutable, AA+ = A+A.

Let H = H(λ) is an hermitian matrix with a parameter λ, and U =
(· · · , u⃗n, · · · ) is its diagonalizing unitary matrix with a diagonal matrix D =
diag(· · · , En, · · · ) as

HU = UD . (C.18)

Differentiating the both side, and multiplying U † from left, we obtain

U †∂H

∂λ
U =

∂D

∂λ
+ [U †∂U

∂λ
,D] , (C.19)

where [A,B] = AB − BA is the commutation bracket. Because the term
[U † ∂U

∂λ
, D] has no diagonal part, this equation Eq.(C.19) clearly corresponds

to Eq.(C.5). Therefore, the Hellmann-Feynman theorem reads

∂Di,i

∂λ
=

(
U †∂H

∂λ
U

)
i,i

. (C.20)

Starting the eigenvalue equation

Hu⃗n = Enu⃗n , (C.21)

we obtain

∂H

∂λ
u⃗n + (H − En)

∂u⃗n
∂λ

=
∂En

∂λ
u⃗n , (C.22)

and therefore we obtain the derivative of the eigenvector as

∂u⃗n
∂λ

= −(H − En)+
∂H

∂λ
u⃗n ,

λ→0−−→ u⃗(1)n = −(H0 − E(0)
n )+H1u⃗

(0)
n . (C.23)

Here, we use the following two relations: (H−En)+u⃗n = 0 and (H−En)+(H−
En)∂u⃗n

∂λ
= ∂u⃗n

∂λ
. First one can be shown by definition,

(H − En)+u⃗n = (H − En)+(H − En)(H − En)+u⃗n (C.24)
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= (H − En)+(H − En)+(H − En)u⃗n (C.25)

= 0 , (C.26)

or briefly, we can say that the pseudoinverse of the eigenvalue 0 is just 0.
Second one can be shown as follow, assuming u⃗n is a real vector for sim-
plicity. Two vectors u⃗n and ∂u⃗n

∂λ
are linearly independent since the vector is

normalized. Because (H − En)u⃗n = 0, all of the column vectors in H − En

are linearly independent of u⃗. Therefore, there exists a coefficient vector c⃗
such that ∂u⃗n

∂λ
= (H − En)c⃗ and

∂u⃗n
∂λ

= (H − En)c⃗ (C.27)

= (H − En)(H − En)+(H − En)c⃗ (C.28)

= (H − En)(H − En)+
∂u⃗n
∂λ

. (C.29)

Then, (H − En)(H − En)+ ∂u⃗n

∂λ
= ∂u⃗n

∂λ
is shown. Similarly, (H − En)+(H −

En)∂u⃗n

∂λ
= ∂u⃗n

∂λ
can be shown.

Using Eq.(C.23), we can calculate the higher-order derivative of the eigen-
values in matrix notation.
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Praki, and Jon-Ivar Skullerud. Nucleons and parity doubling across
the deconfinement transition. Phys. Rev. D, 92(1):014503, 2015.

[7] Gert Aarts, Chris Allton, Davide De Boni, Simon Hands, Benjamin
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