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Abstract
The charmonium-like X(3872) state was discovered as a narrow peak in the vicinity

of the D0D∗0 threshold on the J/ψπ+π− invariant mass distribution in exclusive B+ →
J/ψπ+π−K+ decays at the Belle experiment. Various interpretations have been proposed,
such as a loosely bound DD∗ molecule state, an admixture of a molecular state and a
charmonium, and a cusp at the D0D∗0 threshold. The structure of the state remains
uncertain.

To reveal the structure, the X(3872) lineshape, which reflects the information of the
structure, is examined. In this study, we use B → (X(3872) → D0D∗0)K decays in a data
sample of 772×106 BB pairs collected with the Belle detector at the KEKB asymmetric-
energy e+e− collider. An important performance for this analysis is mass resolution,
and this X(3872) → D0D∗0 decay mode is superior in it. The lineshape is evaluated
using the Flatté lineshape. This lineshape model can describe the lineshape distortion
due to the DD∗ coupled-channel effect, which cannot be represented by the Breit-Wigner
lineshape commonly used for normal hadrons. Compared with the previous analysis of the
Flatté lineshape using X(3872) → J/ψπ+π− decays at the LHCb experiment, this study is
inferior in data size; however, it has two advantages. The first is the aforementioned better
resolution. The second is including the information on the X(3872) → D0D∗0 branching
fraction, which is important for determining the coupling strength to the DD∗ channel.
Therefore, we aim to provide more information on the lineshape, and in particular on the
coupling strength of X(3872) → D0D∗0 by analyzing the D0D∗0 decay.

First, we evaluate with the relativistic Breit-Wigner lineshape to ensure this analysis
method. The branching fraction is found to be

B(B+ → X(3872)K+)× B(X(3872) → D0D∗0) = (0.97+0.21
−0.18(stat)± 0.10(syst))× 10−4.

The signal from B0 decays is firstly observed with 5.2σ significance. The relative branching
fraction between B0 → X(3872)K0 and B+ → X(3872)K+ is measured to be

B(B0 → X(3872)K0)/B(B+ → X(3872)K+) = 1.34+0.47
−0.40(stat)

+0.10
−0.12(syst).

The mass and width parameters are determined to be

m = 3873.71+0.56
−0.50(stat)± 0.13(syst) MeV/c2, Γ0 = 5.2+2.2

−1.5(stat)± 0.4(syst) MeV.

In this study, the precision of the lineshape measurement is relatively improved by at
least 22% compared with the previous studies using D0D∗0 decays. The improvement
is contributed by including additional D0 decay modes used in the reconstruction and
studying detailed mass dependence of the detector response.

Second, we establish a method to measure the undetermined parameter in the previous
study at LHCb, the DD∗ coupling constant g. It is measured to be

g > 0.075 at 95% credibility.

Because the lower limit is more stringent than the previous study at LHCb, it suggests that
analysis using the D0D∗0 decay mode can indeed complement the study of the J/ψπ+π−

decay mode in this framework. The limit shows that the coupling strength to the DD∗

channel is not small.
For future improvements, because uncertainty due to the limited statistics is dominant

in all of the results, it is important to use higher statistical data, e.g. the data at the
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successor experiment, Belle II. For the measurement of the Flatté lineshape, the sensi-
tivity can be improved further by performing a simultaneous fit between the D0D∗0 and
J/ψπ+π− decays. Such an analysis could fully determine the lineshape in the coupled-
channel framework, and greatly contribute to determining the internal structure.
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Chapter 1

Introduction

The matter has a hierarchical structure. For example, the molecules forming matter are
composed of atoms, and an atom is composed of electrons and a nucleus, which is a
bound system of protons and neutrons. The particles forming the proton and neutron
are quarks, currently known as the most fundamental particles. In our nature, quarks
are not observed alone, and thus they are confined to composite particles called hadrons.
Hadrons observed to date can be well classified into mesons and baryons by the number
of quarks in the hadron. For example, a meson and a baryon are respectively composed of
qq and qqq, where q represents a quark and q represents an antiquark. On the other hand,
the quantum chromodynamics (QCD), the fundamental theory of the strong interactions
between quarks, allows structures other than the normal mesons and baryons. An example
is multiquark states, composed of four or more quarks. For many years, such “exotic”
hadrons have been explored.

Since the search for hadrons containing heavy quarks began, the candidates of exotic
hadrons have been discovered. They are called “X, Y , Z, and Pc” and are found to have
quantum numbers that the normal mesons and baryons do not have. These states are
expected to be hadronic molecular states, multiquark states, virtual states, and so on.
However, their true nature is still uncertain.

I focus on a candidate of exotic hadrons X(3872), discovered in the vicinity of the
D0D∗0 threshold at Belle [1], and aim to elucidate its internal structure. The shape of
the invariant mass distribution of the X(3872) signal, hereafter referred to as lineshape,
is one of the key properties to achieve that goal. In this study, two lineshape measure-
ments in the D0D∗0 decay are performed using an analysis method improved from the
previous studies at Belle and BABAR [2, 3]. The first is the relativistic Breit-Wigner
lineshape, commonly used for a resonance state. Through the evaluation with this model,
we ensure the analysis method and examine the tendency to yield the higher mass, the
larger width, and the higher relative branching fraction between B0 → X(3872)K0 and
B+ → X(3872)K+ in the X(3872) → D0D∗0 decay mode only. The second is the Flatté
lineshape, a more sophisticated model considering the coupled-channel effect. It can de-
scribe both a resonance state, a bound state, and a virtual state. However, due to the
model property, it is difficult to determine all lineshape parameters with the analysis in
the J/ψπ+π− decay, as reported in the previous study at LHCb [4]. For a countermea-
sure, the analysis in the D0D∗0 decay is essential. When all parameters are completely
determined, it provides us with the pole location of the scattering amplitude, which is
one of the pieces of information needed to classify hadrons.

Therefore, in this thesis, a study of the X(3872) lineshape in the B → X(3872)K →

1



2 CHAPTER 1. INTRODUCTION

D0D∗0K decay is described. This analysis is based on a data sample of 772×106 BB pairs
collected at the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy
e+e− collider. The thesis is organized as follows. Chapter 2 describes the motivation for
this study, focusing on our target of an exotic hadron candidate X(3872). Chapter 3
provides an overview of the Belle experiment, where the used data were collected. In
Chapter 4, the reconstruction and selection for the signal events are described. In Chap-
ter 5, the fitting procedure and its validation are presented. The results of fitting the
data and systematic uncertainties are summarized in Chapter 6. The discussion based
on the results and the prospects are given in Chapter 7. Finally, chapter 8 contains the
conclusions of the thesis.



Chapter 2

Candidate of Exotic States X(3872)

My research theme is a study of the X(3872) lineshape using X(3872) → D0D∗0 candi-
dates produced from exclusive decays B → D0D∗0K. This chapter describes the implica-
tions of studying hadron physics with a focus on exotic hadrons, the background of the
target hadron X(3872), and the research issues.

2.1 Hadrons and Quarks

Several hundred hadrons have been observed to date. In the quark model, hadrons can be
well classified by considering hadrons to be composed of fermions with a spin 1/2 called
quarks [5, 6]. Hadrons composed of a quark and an antiquark are mesons, and those
composed of three quarks are baryons. To date, six flavors of quarks have been observed:
down (d), up (u), strange (s), charm (c), bottom (b), and top (t), as shown in Table 2.1.
Each quark has quantum numbers related to its flavor, e.g., z-component of isospin (Iz),
strangeness (S), charm (C), bottomness (B), topness (T ). The following relationship
holds for electric charge (Q/e), flavor quantum numbers, and baryon number (B), which
is known as the Gell-Mann-Nishijima formula [7]

Q

e
= Iz +

1

2
· (B + S + C +B + T ). (2.1)

In QCD, a new degree of freedom of color is introduced for quarks, and it is described
by a field theory based on SU(3) gauge symmetry of three colors, e.g., red, green, and

Table 2.1: Quarks and their quantum number.

d u s c b t

Electric charge (Q/e) −1
3

2
3

−1
3

2
3

−1
3

2
3

Isospin (I) 1
2

1
2

0 0 0 0

Isospin z-component (Iz)
1
2

−1
2

0 0 0 0

Strangeness (S) 0 0 -1 0 0 0

Charm (C) 0 0 0 1 0 0

Bottomness (B) 0 0 0 0 -1 0

Topness (T ) 0 0 0 0 0 1

Baryon number (B) 1
3

1
3

1
3

1
3

1
3

1
3

3
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Figure 2.1: Summary of measurements of the coupling constant of the strong interaction
αs as a function of the energy scale Q [18].

blue. The strong interaction is mediated by a massless particle called a gluon. One of
the QCD characteristics is the asymptotic freedom, where the coupling constant of the
strong interaction is very small in a high-energy region. It was confirmed from both the
theoretical and experimental sides, as shown in the relation between the coupling constant
and the energy scale (Fig. 2.1). On the other hand, the coupling constant becomes large
in the low energy region, and the phenomena are non-perturbative. One of the most
important phenomena is the quark confinement. In other words, quarks have never been
observed alone.

Hadrons are observed as only color-charge-neutral states, i.e., white. The fact pre-
dicts the existence of a tetraquark (qqqq) [8–10], a pentaquark (qqqqq) [11], a H-dibaryon
(uuddss) [12] a hadronic molecule [13], a glueball (gg) [14–16], and a qq-pair with an
excited gluon (a hybrid, qqg) [17], where q (q) denotes a quark (anti-quark) and g denotes
a valance gluon. Exploring these states and investigating their internal structure must
answer the question of how valance quarks and gluons are combined to form hadrons.

2.2 Charmonium Spectroscopy

Particles composed of cc are collectively known as charmonia. The constituent quark mass
of the c quark is large, about 1500 MeV*1, and thus the quarks behave non-relativistically.
Therefore, the mass spectrum can be predicted by solving the Schrödinger equation with
the Coulombic potential and the linear potential as a bound state of a two-body sys-
tem [19, 20]. The expected spectrum is shown in Fig. 2.2 (dashed lines). Below the DD

*1Note that it is different from the current mass in QCD.
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Figure 2.2: The current status of the charmonium-like spectrum. The dashed black
lines indicate the theoretical predictions based on the Godfrey-Isgur relativized potential
model [20]. The open circles are the observed conventional charmonia. The open squares
and open triangles are candidates of neutral and charged exotic hadrons, respectively.
Here, masses and spin-parity (JPC) quantum numbers of experimentally observed states
are taken from Ref. [18].

threshold of about 3740 MeV, the predictions match the observed states (open circles)
well. On the other hand, many unexpected states named XY Z*2 have been found above
the threshold. They are exotic hadron candidates because they have properties that nor-
mal charmonium should not have, e.g., the non-zero charge and the violation of isospin.
Although these hadron properties have been well investigated, there is no conclusive evi-
dence to determine their internal structure. In this study, I focus on X(3872) among the
exotic hadron candidates because its data size are relatively rich. The other states are
described in detail elsewhere [22, 23].

2.3 Charmonium-like X(3872) State

The charmonium-like X(3872) state, also known as χc1(3872), was discovered by the Belle
experiment as a narrow peak in the vicinity of the D0D∗0 threshold on the J/ψπ+π−

invariant mass distribution in exclusive B+ → J/ψπ+π−K+ decays [1]. Its existence has
been confirmed by multiple experiments: D0 [24], BABAR [25], CDF [26], LHCb [27],
and BESIII [28]. In addition to the J/ψπ+π− decay, other decays such as J/ψω, J/ψγ,

*2The new naming scheme was proposed by the LHCb collaboration [21], and it is currently being
discussed in experiments other than the LHCb experiment. This thesis follows the conventional naming
scheme.
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ψ(2S)γ, D0D∗0, D0D0π0, and π0χc0 have been observed [18]. The X(3872) peak has
been analyzed with the Breit-Wigner lineshape. The mass is 3871.65± 0.06 MeV/c2, and
the width is 1.19 ± 0.21 MeV on the world average based on the analyses of the decays
including J/ψ [18]. The quantum number JPC was determined to be 1++ [29, 30]. Based
on the experimental results, it seems to be a candidate of exotic hadrons rather than a
pure charmonium. There are three reasons.

• Mass inconsistent with the quark model predictions:
Comparing the measured mass and JPC with the quark model predictions (Fig. 2.2),
this state is close to the χc1(2P ) state, but the mass is inconsistent with the predic-
tion.

• Narrow width:
Since this state has been found to a decay via a strong interaction, D0D∗0 decay,
the width is expected to be much larger than the measured width of the χc1(1P )
state, 0.84 ± 0.04 MeV [18], if it is a normal charmonium. However, the measured
X(3872) width is only slightly larger.

• Isospin violation:
For normal charmonia, the isospin should be zero. For X(3872), the π+π− invariant
mass distribution of the X(3872) → J/ψπ+π− decay is consistent with a prediction
for the ρ → π+π− decay with a non-zero isospin, I = 1 [31, 32]. In addition,
the decay mode with the final state of I = 0, X(3872) → J/ψω, was discovered,
too [33–35]. This fact concludes that X(3872) has components other than cc and
large isospin mixture.

Because the observed mass coincides with theD0D∗0 threshold of 3871.69±0.10 MeV/c2

and the JPC state can couple to the D0D∗0 channel in S-wave, some DD∗ component
contribution is expected in the X(3872) nature. Various interpretations such as a loosely
bound state of DD∗ [36–39], an admixture of a molecular state and a pure charmo-
nium [40], and a cusp at the D0D∗0 threshold [41–43] have been proposed (Fig. 2.3), and
the structure of the state remains uncertain. Measurement of the lineshape in various de-
cay modes helps to discriminate between different options for the structure, because the
lineshape reflects poles of the scattering amplitude corresponding to the complex energy
eigenstates [44].

2.4 Lineshape Models of X(3872)

In this study, issues regarding studies of two lineshapes using D0D∗0 decay are investi-
gated: the Breit-Wigner lineshape and the Flatté-inspired parametrization. This section
summarizes the definition, important properties, and a current issue of each line-shape
model.

2.4.1 Relativistic Breit-Wigner Lineshape

The differential branching fraction as a function of the observed invariant mass has been
analyzed with the Breit-Wigner lineshape, commonly used for a resonance state.
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(a) The loosely bound state of DD∗ (b) The admixture of a molecular state
and a pure charmonium

(c) The cusp at the D0D∗0 threshold

Figure 2.3: Schematic diagrams of the X(3872) interpretations.

Definition

The relativistic Breit-Wigner lineshape is defined as follows [18]:

fBW(M) =
mMΓ(M)

(M2 −m2)2 +m2Γ(M)2
, (2.2)

where M is the observed invariant mass, and m is the mass of the resonance. The mass-
dependent width Γ(M) is defined as

Γ(M) = Γ0
m

M

(
p(M)

p(m)

)2L+1

, (2.3)

where Γ0 and L are the width of resonance and the orbital momentum, respectively.
Taking account of the closeness to the threshold, the decay is assumed to be S-wave
(L = 0) with no D-wave (L = 2) admixture. The momentum of one of the daughters in
the rest frame of X(3872), p(M), can be calculated as

p(M) =

√
(M2 − (mD0 +mD∗0)2(M2 − (mD0 −mD∗0)2

4M2
, (2.4)

where mD0 and mD∗0 are the nominal masses of D0 and D∗0 (Table 2.2), respectively [18].

Relation between Lineshape and Parameters

In general, m and Γ0 are consistent with a peak and a full width at half maximum
(FWHM), respectively. If m is close to the threshold, however, the denominator of
Eq. (2.2) increases monotonically with M . This often makes a dump near the thresh-
old, i.e., m and Γ0 are not always consistent with the peak position and the FWHM,
respectively.
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Table 2.2: Summary of the mass and width values in the lineshape definitions.

Parameter 　Value
mD0 1864.84± 0.05 MeV/c2

mD∗0 2006.85± 0.05 MeV/c2

mD+ 1869.66± 0.05 MeV/c2

mD∗− 2010.26± 0.05 MeV/c2

mJ/ψ 3096.900± 0.006 MeV/c2

mρ 775.26± 0.34 MeV/c2

Γρ 149.1± 0.8 MeV
mω 782.66± 0.13 MeV/c2

Γω 8.68± 0.13 MeV

Table 2.3: Results of previous studies.

BABAR 2008 [3] Belle 2010 [2]

Amount of data [fb−1] 347 605

m [MeV/c2] 3875.1+0.7
−0.5 ± 0.5 3872.9+0.6

−0.4
+0.4
−0.5

Γ0 [MeV] 3.0+1.9
−1.4 ± 0.9 3.9+2.8

−1.4
+0.2
−1.1

B(B+ → X(3872)K+)× B(X(3872) → D0D∗0) [10−4] 1.67± 0.36± 0.47 0.77± 0.16± 0.10

B(B0 → X(3872)K0)× B(X(3872) → D0D∗0) [10−4] 2.22± 1.05± 0.42 0.97± 0.46± 0.13

B(B0 → X(3872)K0)/B(B+ → X(3872)K+) 1.33± 0.69± 0.43 1.26± 0.65± 0.06

Issue of Inconsistent Results Depending on the Decay Mode

Based on the analyses of the decays including J/ψ, the mass is 3871.65±0.06 MeV/c2, and
the width is 1.19± 0.21 MeV on the world average [18]. Analyses of the decay to D0D∗0

based on the Breit-Wigner lineshape tend to yield a higher mass and a larger width,
with the width measurement subject to large uncertainties, as shown in Table 2.3 [2, 3].
Therefore, a more precise lineshape measurement in the D0D∗0 decay is needed.

In addition, although the relative branching fraction between B0 → X(3872)K0 and
B+ → X(3872)K+ is expected to be independent of the X(3872) decay mode, that in the
D0D∗0 decay tended to be shifted by +1.2σ from the average of the measurements in the
J/ψπ+π− decay at Belle and BABAR, 0.48 ± 0.13 [45]. To clarify the disagreement, we
need to observe a significant signal from B0 → X(3872)K0.

2.4.2 Flatté Lineshape

Discrepancies in the lineshape between the decays to the J/ψπ+π− and D0D∗0 final state
can arise near the threshold due to coupling to the DD∗ channel, so-called coupled-
channel effects. One of the models to account for coupled-channel effects is the Flatté-
inspired parametrization*3, a Breit-Wigner model with an explicit expression for the
energy-dependent partial width. Furthermore, this model has the advantage of describing
both resonant states, bound states, and virtual states.

*3The Flatté model was originally introduced to describe the πη and KK invariant mass distributions
near the KK threshold for the scalar-isovector meson a0(980) [46]. Experimentally, it is used to represent
lineshapes of the near-threshold states, such as the light scalar mesons of a0(980) [47] and f0(980) [48–50],
and the nucleon resonance N(1535) [51]. An extension of this model for X(3872) is proposed in Refs [41,
52].
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Definition

The Flatté-inspired parametrization is defined as follows using the energy from the D0D∗0

threshold, E =M − (mD0 +mD∗0) [41, 52]:

fFlatte(E) =
gkD0D∗0

|D(E)|2
, (2.5)

D(E) =

{
E − Ef − 1

2
gκD+D∗− + i

2
[gkD0D∗0 + Γ(E)] for 0 < E < δ,

E − Ef +
i
2
[g(kD0D∗0 + kD+D∗−) + Γ(E)] for E > δ,

(2.6)

where Ef = m0−(mD0+mD∗0) is the mass difference of this state (m0) from the threshold,
and g is a coupling constant to the DD∗ channels*4; we assume the coupling constants for
the D0D∗0 and D+D∗− channels are the same due to isospin symmetry. The momenta
ka and κa for the channel a are measured in the rest frame of the X(3872). They are
expressed using the reduced mass µ as

kD0D∗0 =
√

2µD0D∗0E,

kD+D∗− =
√
2µD+D∗−(E − δ),

κD+D∗− =
√

2µD+D∗−(δ − E),

δ = (mD+ +mD∗−)− (mD0 +mD∗0).

(2.7)

The energy-dependent width Γ(E) is defined by

Γ(E) = ΓJ/ψρ(E) + ΓJ/ψω(E) + Γ0, (2.8)

where Γ is the partial width of the channel indicated by the subscript. For the J/ψρ and
J/ψω channels, the dependence on E is defined using the phase space and an effective
coupling constant, fρ or fω:

ΓJ/ψρ(E) = fρ

∫ M(E)−mJ/ψ

2mπ

dm′

2π

q(m′, E)Γρ
(m′ −mρ)2 + Γ2

ρ/4
, (2.9)

ΓJ/ψω(E) = fω

∫ M(E)−mJ/ψ

3mπ

dm′

2π

q(m′, E)Γω
(m′ −mω)2 + Γ2

ω/4
, (2.10)

where Γρ and Γω are the total widths for the ρ and ω resonances, respectively. The mass
and width values in the definition are summarized in Table 2.2. The upper limit of the
integral is set by the difference between

M(E) = E + (mD0 +mD∗0) (2.11)

and mJ/ψ. In each case, q(m′, E) is the momentum of the two- or three-pion system in
the rest frame of the X(3872):

q(m′, E) =
1

2M(E)

√
(M2(E)− (m′ +mJ/ψ)2)(M2(E)− (m′ −mJ/ψ)2). (2.12)

*4The coupling constant of this Flatté model is dimensionless so that it differs from the conventional

constant. This coupling constant g is related to the matrix element M by g = |M|2
8πm2

0
according to

the Fermi’s golden rules, in which the partial width for X(3872) → D0D∗0 (ΓD0D∗0) is derived by

ΓD0D∗0 =
kD0D∗0
8πm2

0
|M|2 = gkD0D∗0 .



10 CHAPTER 2. CANDIDATE OF EXOTIC STATES X(3872)

3.869 3.87 3.871 3.872 3.873 3.874

]2c) [GeV/-π +π ψM(J/

0

50

100

150

200

250

300

350

400

 = 0.5λ

 = 1.0λ

 = 5.0λ

 = 0.5λ

 = 1.0λ

 = 5.0λ

 = 0.5λ

 = 1.0λ

 = 5.0λ

(a) The J/ψπ+π− invariant mass.

3.87 3.875 3.88 3.885 3.89

]2c) [GeV/
*0

D 0M(D

0

100

200

300

400

500

600

700

 = 0.5λ

 = 1.0λ

 = 5.0λ

 = 0.5λ

 = 1.0λ

 = 5.0λ

 = 0.5λ

 = 1.0λ

 = 5.0λ

(b) The D0D∗0 invariant mass.

Figure 2.4: The Flatte lineshape when all the free parameters variables (Ef , g, fρ, fω, and
Γ0) are multiplied by one constant, λ. The dotted green line is the lineshape measured
at LHCb [4]. The solid red and dashed blue lines are cases of λ = 0.5 and λ = 5.0,
respectively.

The parameter Γ0 is the sum of the partial widths of other channels, such as radiative
decays. In total, this model has five free parameters, Ef , g, fρ, fω, and Γ0.

The lineshapes in other decays can be similarly described in the model. They are
defined by rewriting the numerator of Eq. (2.5) to the partial width of the decay to draw.
For example, in the case of J/ψπ+π−, it is defined by

fFlatte(E) =
ΓJ/ψρ(E)

|D(E)|2
. (2.13)

Lineshape Features

In this model, a peak is easy to make in the vicinity of the D0D∗0 threshold onM(J/ψπ+π−)
despite the parameter relating to the mass Ef , because the derivative of the denominator
|D(E)| becomes discontinuous at the DD∗ thresholds for g > 0. On the other hand, in
the D0D∗0 channel, such a sharp peak is suppressed because of the phase space. A wider
peak is predicted on M(D0D∗0). Thus, the model can explain the inconsistency of the
decay width between the J/ψπ+π− and D0D∗0 decays in the past measurements. The
lineshape for each decay is shown in the dotted green lines of Fig. 2.4.

One of the important properties is that the area under the lineshape is proportional
to the branching fraction. For example, it can be derived for the J/ψπ+π− channel by∫

fFlatte(M(J/ψπ+π−))dM(J/ψπ+π−) ∝
∫
dB(X(3872) → J/ψπ+π−)

dE
dE

= B(X(3872) → J/ψπ+π−).

(2.14)

Using this property, the lineshape parameters can be constrained. For example, fω can be
constrained so that the branching fraction of the J/ψπ+π− mode and that of the J/ψω
mode are equal according to experimental results to date. Details are given in Sec. 5.4.
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Relation with Internal Structures

In this sub-subsection, we show that the Flatté lineshape is related to the internal struc-
tures such as a resonance, a bound state of DD∗, and a virtual state*5.

Examples of the lineshape in the J/ψπ+π− decay for different structures are shown in
Fig. 2.5; here, g is set to zero for the resonance state, i.e., the lineshape is consistent with
the Breit-Wigner lineshape, and the parameter sets 4 and 3 in Table 2 of Ref. [52] are
used for the cusp and bound state, respectively. The figure indicates that the lineshape
is distorted for the bound and virtual states compared to the resonance expressed in the
Breit-Wigner lineshape. Thus, the lineshape is sensitive to the internal structure.

Strictly, we need to search poles on the scattering amplitude to identify the internal
structure from the measured lineshape. The amplitude FFlatte(E) is defined as

FFlatte(E) = − 1

2kD0D∗0

gkD0D∗0

D(E)
. (2.15)

The pole is given by solving D(E) = 0. The energy is a multivalued function because it is
defined as E = k2

D0D∗0/(2µD0D∗0). Therefore, the pole position is represented by Riemann
sheets; the basic theory on this subject is described in Refs [18, 53]. In this case, four
Riemann sheets associated with the D0D∗0 channel are treated because the thresholds of
the other channels, i.e., J/ψπ+π−, J/ψπ+π−π0, and radiative decays, are much far from
the D0D∗0 channel. According to Ref. [54], the Riemann sheet is labeled as follows:

Sheet I: ImkD0D∗0 > 0 and Imkother > 0;

Sheet II: ImkD0D∗0 > 0 and Imkother < 0;

Sheet III: ImkD0D∗0 < 0 and Imkother < 0; and

Sheet VI: ImkD0D∗0 < 0 and Imkother > 0.

Here, kother represents the momentum of the channel with the next lower threshold than
the D0D∗0 channel in this model. Sheets I and II (III and IV) correspond to a physical
(unphysical) sheet for the D0D∗0 channel. Sheets I and II are labeled separately due to
the presence of the other channels. The closeness to the real axis depends on the energy,
as shown in Fig. 2.6. Above the D0D∗0 threshold, sheet III is close to the real axis, and
between the D0D∗0 threshold and the lower threshold, sheet II is close to the axis. The
relation between the pole position and the hadronic state is as follows:

Resonance: Pole on the sheet III above the D0D∗0 threshold;

Virtual state: Pole on sheet II above the D0D∗0 threshold,
on sheet III below the D0D∗0 channel, or on the sheet IV;

Bound state: Pole on the real axis of sheet I; and

Quasi-bound state: Pole on the sheet II below the D0D∗0 threshold.

Therefore, the Flatté lineshape measurement is directly related to examining the in-
ternal structure of X(3872).

*5The threshold cusp effect is enhanced when the virtual state pole is near the threshold.



12 CHAPTER 2. CANDIDATE OF EXOTIC STATES X(3872)

3.869 3.87 3.871 3.872 3.873 3.874

]2c [GeV/ρ ψJ/M

0.2

0.4

0.6

0.8

1a.
u.

Cusp
Bound state
Resonance

Figure 2.5: The Flatté lineshape of the
J/ψπ+π− decays for the cusp state (dot-
ted), the bound state (dashed) and the
resonance (solid).

Figure 2.6: Riemann sheets close to the
real axis and the classification of the pole
for two channels.

Scaling Behavior Issue

This model has a scaling behavior that the lineshape near the threshold does not change
when all parameters are scaled by a constant, λ [55]:

Ef → λEf , g → λg, fρ → λfρ, fω → λfω, Γ0 → λΓ0. (2.16)

Under the scaling transformation, the lineshape is transformed as follows for an arbitrary
channel:

fFlatte(E) =
Γ∀

|E/λ− Ef +
i
2
[g(kD0D∗0 + kD+D∗−) + ΓJ/ψρ(E) + ΓJ/ψω(E) + Γ0]|2

, (2.17)

where Γ∀ denotes the partial width for the arbitrary channel. This formula indicates that
the lineshape is scale-invariant at the threshold, i.e., E = 0. Figure 2.4 (a) shows the
Flatté lineshape of J/ψπ+π− channel for λ = 0.5, 1.0 or 5.0. The narrow peak at the
threshold is not sensitive to the scaling parameter λ. On the other hand, the lineshape is
a little more sensitive to the transformation for the larger |E|. However, for λ ≫ 0, the
term E/λ becomes quite small, and the lineshape converges to

lim
λ→∞

fFlatte(E) =
Γ∀

| − Ef +
i
2
[g(kD0D∗0 + kD+D∗−) + ΓJ/ψρ(E) + ΓJ/ψω(E) + Γ0]|2

. (2.18)

It causes a poor sensitivity to a large λ.

At LHCb, the analysis of the Flatté lineshape was performed using the J/ψπ+π−

decay [4]. Due to the scaling behavior issue and the poor mass resolution of 2.4–3.0 MeV
compared to the lineshape, it was difficult to determine all of the parameters. For example,
the mass difference from the threshold value was widely allowed to be −270 MeV <
Ef < −2.0 MeV at 90% credibility. Instead, the ratio of a coupling constant to Ef was
determined precisely,

dg

dEf
= (−15.11± 0.16) GeV−1. (2.19)
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Fixing Ef to −7.2 MeV/c2, the other parameters were determined:
g = 0.108± 0.003+0.005

−0.006,
fρ = (1.8± 0.6+0.7

−0.6)× 10−3,
Γ0 = 1.4± 0.4± 0.6 MeV,

(2.20)

where Ef = −7.2 MeV/c2 is an assumption for the scattering amplitude analysis at LHCb.
As proposed in Ref. [52], there is possibility of pinning down the scaling behavior

using the D0D∗0 decay. The reason is that the D0D∗0 decay causes the following two
changes even under scaling transformations; (1) the lineshape changes at higher mass,
and (2) the area associated with the X(3872) → D0D∗0 branching fraction changes. In
addition, the D0D∗0 decay has one more advantage of the good mass resolution, which is
about 100 keV near the mass peak. Therefore, we attempt to experimentally pin down
the scaling behavior observed at LHCb using the D0D∗0 decay in this study.

2.5 Previous Studies Using X(3872) → D0D∗0 Decay

and Improvement

There are three similar previous studies [2, 3, 56]. Reference [56] is an analysis of the
B → D0D0π0K decay at Belle, and Refs [2, 3] are analyses of the B → D0D∗0K decays
at BABAR and Belle, respectively. A comparison of analysis methods with previous
studies is summarized in Table 2.4. The latter two analyses apply a D∗0 selection and a
mass-constrained fit to the D∗0 candidates. While this has the advantage of improving
the signal-to-background ratio, it has the disadvantage of disallowing entries below the
D0D∗0 threshold, which is important for the study of the structure. We also adopt this
technique, given the limited size of our data sample. The disadvantage of requiring the
D∗0 is partially compensated for by analyzing the Flatté model, in which we can obtain
a lineshape reflecting poles of the scattering amplitude.

The major updates from the previous measurements (Refs [2, 3]) are the following two
items.

• Statistics; They are improved by not only using the higher statistical data at Belle
but also adding more D0 decay modes and loosening the requirement of the pre-
vious studies about the D0 decay modes, in which at least one D0(D0) decays to
K−π+(K+π−).

• A broken-signal PDF; We additionally consider a lineshape for broken-signals de-
pending on the assumed lineshape (Sec. 5.2). Especially in the previous study at
Belle [2], they considered the broken-signal as an indistinguishable shape from the
signal. Its systematic uncertainty was relatively large for measuring the parameters
of the relativistic Breit-Wigner lineshape.

2.6 Objective of This Thesis

In this study, we measure the X(3872) lineshape using a sample of X(3872) → D0D∗0

candidates, produced in the exclusive decay B → D0D∗0K in the full Belle dataset. The
following items are measured using the analysis procedure improved from the previous
studies at Belle and BABAR [2, 3, 56].
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Table 2.4: Comparison of analysis methods with previous studies.

Belle 2006 [56] BABAR 2008 [3] Belle 2010 [2] This work

Amount of data [fb−1] 414 347 605 711

X(3872) decay mode D0D0π0 D0D∗0 D0D∗0 D0D∗0

The number of D0 decay modes 4 3 5 6
K−π+

K−π+π−π−

K0
Sπ

+π−

K−K+


 K−π+

K−π+π0

K−π+π−π−




K−π+

K−π+π0

K−π+π−π−

K0
Sπ

+π−

K−K+




K−π+

K−π+π0

K−π+π−π−

K0
Sπ

+π−

K0
Sπ

0π+π−

K−K+


Requirements of D0 mode No Yes Yes No(

At least one D0

decays to K−π+

) (
At least one D0

decays to K−π+

)
D∗0 mass requirement No Yes Yes Yes

Mass constraint fit on D∗0 No Yes Yes Yes

(Mass difference)

• The relativistic Breit-Wigner lineshape: the mass and width parameters, the branch-
ing fraction of B(B → KX(3872))×B(X(3872) → D0D∗0) and the relative branch-
ing fraction between B0 → X(3872)K0 and B+ → X(3872)K+.

• The Flatté lineshape: the parameter g, as the undetermined parameter at LHCb [4].

Throughout this thesis, charge conjugation is always included. We do not distinguish
D0D∗0 from D0D∗0 unless otherwise indicated.



Chapter 3

Belle Experiment and Data Set

Belle is the B-factory experiment designed and optimized to test the Kobayashi–Maskawa
mechanism for CP-violation in B-meson decays. It consists of an accelerator with low
background via e+e− collisions, KEKB, and a multi-purpose 4π detector with high per-
formance, Belle. These components enable us to address various physics projects, for
example, not only B physics but also hadron physics, tau physics, two-photon physics
and so on. The data containing a lot of B meson decays is the best experimental data
for this study because it is capable of reconstructing photons and π0 mesons, which are
essential for the D∗0 reconstruction in this study. This chapter describes overviews of the
KEKB accelerator and the Belle detector.

3.1 KEKB Accelerator

KEKB is an asymmetric energy electron-positron collider at Tsukuba aiming at producing
B meson pairs mainly [57, 58]. Its schematic view is shown in Fig. 3.1. It consists of a
LINear ACcelerator (LINAC) and two main rings for electrons and positrons installed in
a tunnel with a circumference of 3 km. Electrons and positrons are accelerated to 8.0 GeV
and 3.5 GeV, respectively in LINAC, and then injected into the High Energy Ring (HER)
for electrons and the Low Energy Ring (LER) for positrons. The electrons and positrons
collide at the interaction point (IP) where the two rings cross. The crossing angle is set
to 22 mrad, which plays an important role in terms of simplifying the collision area with
no bending magnets for beam separation.

The center-of-mass (CM) energy is mainly tuned to 10.58 GeV. This value is just
above the BB threshold and corresponds to the mass of the Υ(4S) state composed of a
bb quark pair. The Υ(4S) state is produced by the collisions of electrons and positrons
via a virtual photon. Then it decays to a BB pair with a branching fraction of over 96%.
The production cross-section of e+e− → Υ(4S) → BB is about 1.2 nb. In addition to the
process, various physics processes are produced, whose cross sections are summarized in
Table 3.1. Among them, hadrons originating from the e+e− → qq process are one of the
background sources in analyses of hadronic B decays.

The accelerator was operated from 1999 to 2010. The peak instantaneous luminosity
reached 2.11 × 1034 cm−2s−1, which is about twice as large as the design value. The
integral luminosity corresponding to the data acquired by the Belle detector is 1040 fb−1.
The amount of the data collected at a CM energy of 10.58 GeV is 711 fb−1 of the data,
which corresponds to 772 × 106 BB pairs. The other data was collected at various CM
energies from 9.4 GeV to 11.2 GeV, depending on the physics motivations.

15
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Figure 3.1: Schematic view of KEKB [58].

3.2 Belle Detector

The Belle detector [59] is a large-solid-angle magnetic spectrometer installed around the
IP. It is designed and optimized to measure time-dependent CP violation in B-meson
decay. The performance, e.g., vertex resolution, particle identification, and low-energy
photon detection, is superior.

The configuration of this detector is shown in Fig. 3.2. The beam pipe is surrounded
by a silicon vertex detector (SVD) to measure B mesons decay vertices. A central drift
chamber is located outside of SVD for tracking of charged particles. Charged particles are
identified not only by energy loss in CDC but also by information from aerogel Cherenkov
counters (ACC) and time-of-flight counters (TOF). Photons and electrons are detected
as an electromagnetic shower by an electromagnetic calorimeter (ECL) installed inside a
super-conducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return
located outside of the coil is installed to detect K0

L mesons and to identify muons (KLM).
These sub-detectors cover a wide region of the polar angle from 17◦ to 150◦. In the
uncovered angles, an extreme forward calorimeter (EFC) is installed, consisting of an
array of bismuth germanate oxide (BGO) crystals. Its main purpose is to improve the
sensitivity of some physical processes, such as B → τν. It is also used as an active shield
against the beam background and a monitor of online luminosity.

The subsequent subsection gives a more detailed description of each sub-detector used
in this analysis. Since the information from EFC is not used in this analysis, a detailed
description is omitted in this thesis; Details are written in Sec. 3 of Ref. [59]. Hereafter,
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Table 3.1: Physics processes and total cross-sections at the CM energy of 10.58 GeV [59]
.

Physics process Cross section [nb]

e−e+ → Υ(4S) → BB 1.2
e−e+ → qq (q = u, d, s, c) 2.8
e−e+ → l−l+ (l = µ, τ) 1.6
Bhabha scattering 44

γγ 2.4
two photons process ∼ 15

Total ∼ 67

the coordinate system of the Belle detector is used. The definition is a left-handed system
with the origin at IP and the z-axis corresponding to the opposite direction of the positron
beam. The radius, polar and cylindrical angles are denoted by r, θ and ϕ, respectively.

3.2.1 Silicon Vertex Detector

The vertex detector is designed to fulfill a position resolution of about 100 µm to measure
the time-dependent CP violation of B mesons. In addition, this detector can contribute to
tracking and reducing background tracks with the information of the impact parameter.

SVD consists of several approximately cylindrical layers of silicon sensors. The ini-
tial SVD installed at the beginning of the experiment (SVD1) is a three-layer structure.
Because it was degraded due to accumulated radiation damage, it was replaced with an
upgraded SVD with a four-layer structure (SVD2) after five years of operation. The data
acquired using SVD1 are about 20% of the full data. The respective configurations are
shown in Fig. 3.3. The detector covers a polar angle of 17◦ < θ < 150◦ (23◦ < θ < 139◦),
and the radii of the layers are 20 mm, 43.5 mm, 70 mm and 88 mm (20 mm, 45.5 mm and
60.5 mm), where the value without (with) the parentheses is the specification of the SVD2
(SVD1). Each layer consists of independent ladders, and each ladder consists of double-
sided silicon detectors. On one side, p-type strips are stretched along the z-direction, and
on the opposite side, n-type strips are stretched along the ϕ-direction. Since these two
types of strips are orthogonal, the position of a passing charged particle can be measured
in the z–ϕ plane.

3.2.2 Central Drift Chamber

The main role of CDC is the precise determination of three-dimensional trajectories and
momenta of charged particles. In addition, it provides information for the trigger system
(See Sec. 3.3) and energy loss (dE/dx) used for charged particle identification.

Its structure is asymmetric in the z-direction, covering a region of polar angle of
17◦ < θ < 150◦ and radius of 83 mm < r < 874 mm, as shown in Fig. 3.4. The chamber
consists of six axial superlayers and five small-angle-stereo superlayers with 8400 drift cells.
The drift cells are approximately rectangular, and each cell consists of one sense wire of
gold-plated tungsten and eight field wires of unplated aluminum. High voltage, typically
2.35 kV, is applied to the sense wires, and the field wires are connected to the ground.
The maximum drift distance is 8–10 mm. In the central part, the axial superlayers and
the small-angle stereo superlayers are installed alternately. The stereo layers are used to
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Figure 3.2: Side view of the Belle detector [60].

measure the z-direction in combination with the axial layers. The inner part consists of
one axial superlayer with smaller drift cells and three cathode strip layers. The cathode
strip layers are attached to the inner cylinder surface of the chamber and have the role
of measuring the z-direction. The cathode strips are divided into eight segments in the ϕ
direction and have a pitch of 8.2 mm in the z-direction. When the SVD was replaced in
2003, The design of the inner part was changed to make enough space for SVD2. It is a
two-layer structure with 128 drift cells of 5 mm in both radial and azimuthal directions.

The detector inside is filled with a gas mixture consisting of 50% helium and 50%
ethane. Helium gas is one of the low-Z gases that can minimize multiple Coulomb scat-
tering. In addition, it has the advantage of suppressing background from synchrotron
radiation due to a smaller photo-electric cross-section than argon. On the other hand,
ethane has a long enough radiation length (640 m) and a property in which the drift
velocity can saturate at a relatively low electric field in the ethane gas. The latter is im-
portant to simplify calibration by reducing the voltage dependence of the distance-time
function. In addition, the large ethane component provides good dE/dx resolution.

3.2.3 Time of Flight Counter

The TOF detector using plastic scintillation counters is installed outside CDC. This detec-
tor is used to measure the time of flight. The velocity of a charged particle is determined
from the time of flight and the distance of flight measured by CDC, and then the charged
particle is identified from the velocity and the momentum measured by CDC. It is designed
to have a time resolution of 100 ps so that particles with a momentum below 1.2 GeV/c
can be well identified. In addition, it provides fast-timing signals for the trigger system.
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(a) SVD1 [59]

(b) SVD2 [61]

Figure 3.3: Detector configitaion of SVD .

This TOF system consists of 64 modules installed in a cylindrical section of 34◦ <
θ < 120◦. Each module consists of two trapezoidal TOF counters and a thin trigger
scintillation counter (TSC) with a 1.5-cm gap in the radial direction (Fig. 3.6). Sizes
of TOF and TSF are 4.0 × 6.0 × 255.0 cm3 and 0.5 × 12.0 × 263.0 cm3, respectively.
Scintillator materials are Bicron BC408 for the TOF counters and Bicron BC412 for the
TSC counters. At each edge of the TOF counter, a fine-mesh photomultiplier tube of a
2-inch diameter and 24 stages, which is operated in a magnetic field of 1.5 T, is attached
with a 0.1 mm air layer. For each TSC counter, the photomultiplier tube is glued to the
light guides at the backward edge.

3.2.4 Aerogel Cherenkov Counter

ACC is an array of aerogel threshold Cherenkov counters. Charged particles are identified
using momentum measured in CDC and whether Cherenkov light is detected in ACC
according to the condition for emitting Cherenkov light when passing through a radiator,
β > 1/n. Here, n and β denote a refractive index and a particle velocity. By selecting a
silica aerogel with a refractive index of 1.01 to 1.03 as a radiator, it is possible to identify
pion and kaon particles in the high momentum region of 1.0–2.5 GeV that cannot be
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Figure 3.4: The overview of CDC structure [59]

(a) Main part (b) Inner part

Figure 3.5: Cell structure of CDC [59]

covered by dE/dx or time-of-flight.

The detector consists of 960 counter modules in the barrel section (34◦ < θ < 126◦)
and 228 modules in the forward endcap region (17◦ < θ < 34◦). All the counters are
arranged to point to IP. The typical sizes of the modules are 120 × 120 × 120 mm3 and
100 × 100 × 100 mm3 in the barrel and endcap region, respectively. Inside each module,
five silica aerogel tiles are stacked in a box, made of 0.2 mm-thick aluminum in the barrel
region and 0.5 mm-thick CFEP in the endcap region. To detect Cherenkov light, a fine
mesh-type photomultiplier tube, which can be operated in a 1.5 T magnetic field, is used.
Two photomultiplier tubes are directly attached to both sides of the box in the barrel
region, and one tube is attached to one side through an air light guide in the endcap
region.
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Figure 3.6: Dimensions of a TOF/TSC module [60].

(a) Barrel ACC module (b) Endcap ACC module

Figure 3.7: Schematic drawing of a typical ACC counter module [59].

3.2.5 Electromagnetic Calorimeter

ECL measures the energy deposited by the electromagnetic shower produced when a
photon or an electron incidents on a heavy material. It is designed to be detectable
over a wide energy range, e.g., from the typical energy of photons produced from B
meson, O(10−100) MeV, to high energy photon from two-body B decay, O(1) GeV. The
measured energy is also utilize to identify electrons.

The system consists of 8736 CsI(Tl) counters installed in the forward endcap, barrel,
and backward endcap regions. It covers the polar angle region of 17.0◦ < θ < 150◦ at a
radius of 1.25 m. The material of CsI(Tl) was chosen because of its many advantages,
such as large photon yield, weak hygroscopicity, and mechanical stability.

Each counter has a tower-like shape and is arranged to point toward the IP. The design
of each counter is shown in Fig. 3.8. The crystal size is typically 55 × 55 mm2 on the
front face and 65× 65 mm2 on the rear face. The length is set to 30 cm, corresponding to
a 16 radiation length, to avoid degradation of the resolution of high-energy photons due
to leakage of the electromagnetic shower from the rear. On the rear face, two silicon PIN
photodiodes with a sensitive area of 10 × 20 mm2 and preamplifiers are attached for the
readout.
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Figure 3.8: Mechanical assembly of the ECL counter [59].

3.2.6 K0
L and Muon Detector

KLM is designed to detect muons and K0
L’s with high efficiency in the wide momentum

region above 600 MeV/c. It covers both the barrel region of 45◦ < θ < 125◦ and the
endcap region of 20◦ < θ < 45◦ and 125◦ < θ < 155◦. The detector consists of 15
(14) layers of charged particle detectors and 14 layers of steel plates of 4.7 cm thickness
arranged alternately where the value without (with) the parentheses is the specification
of the barrel (endcap) region.

This amount of iron plates corresponds to 3.9 hadronic interaction lengths of material
for a particle passing vertically. When a charged particle passes through the steel plates,
a charged hadron makes multiple scattering while a muon does not. Therefore, it is
identified as a muon with this detector. In the case of K0

L, it interacts with the steel
plates or ECL. The direction of K0

L can be determined by the position of this shower,
although its energy cannot be measured due to varying size of the shower.

The detector layer is made of glass-electrode resistive plate counters (RPCs). The
RPC consists of two parallel plate electrodes of 2.4 mm thick float glass, which have a
high bulk resistance (≥ 1010 Ωcm) at room temperature. The electrodes are separated by
a 1.9 mm gap, and the gap is filled with a non-combustible mixture of 62% HFC-134a,
30% argon, and 8% butane-silver. In order to supply high voltage on the electrodes, the
outer surface is coated with carbon ink with high resistivity. The electrodes are supplied
with high voltage. The cathodes are set at −3.5 kV. The anodes are set at +4.7 kV
for the barrel RPCs and +4.5 kV for the endcap RPCs. When a charged particle passes
through, the charge stored in the high-resistance glass electrode plates is discharged. This
discharge gives a signal to the external pickup, and the location and time of ionization
can be measured. To read out many pickup strips, VME-based discriminator and time
multiplexing boards are used.
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(a) Barrel (b) Endcap

Figure 3.9: View of a superlayer module of KLM [59].

3.3 Trigger, Data Acquisition and Preselection

The data acquisition (DAQ) system collects the signals from each sub-detector. In this
system, the readout for all the subsystems except SVD is processed with a charge-to-
time conversion chip combined with a common FASTBUS multi-hit TDC. These data are
collected by event builders based on VME processors, and then processed by the online
computer farm consisting of a cluster of VME processor modules. Finally, the data is
sent via about 2 km of optical fibers to the KEK Computing Center, and recorded on
the offline computing system. To cope with the high background rate arising from higher
luminosity, some of the FASTBUS TDCs were replaced by the COPPER TDCs in the
middle of the operation. In addition, the VME processors for the event builder were
replaced by a set of Linux PC servers (EFARM), and the real-time reconstruction farm
(RFARM) was introduced. The overview of the DAQ system is shown in Fig. 3.10.

Uninteresting events are eliminated using three levels of triggers: a Level-1 hardware
trigger, a Level-3 software online trigger, and a Level-4 software offline trigger. The Level-1
trigger system consists of sub-detector trigger systems and a central trigger system (global
decision logic, GDL), as shown in Fig. 3.11. As the sub-detector trigger systems, each
trigger is provided with parallel signals from CDC, ECL, TOF, KLM, and EFC. The
GDL receives the information from each sub-triggers and combines them to characterize
an event type for the hadronic events, Bhabha events, µ+µ− pair events, and so on. When
an event is characterized, a trigger signal is formed in GDL and issued 2.2 µs after the
event occurs. The trigger rate is typically 200–400 Hz. Concerning the hadronic events,
the events are characterized by the following conditions: the presence of three or more
charged tracks, high energy deposition in ECL, or four isolated neutral clusters in ECL.
The trigger efficiency is greater than 99%.

On the online computer farm, event data is formatted for offline processing and the
Level-3 trigger is performed to suppress beam background events. In the trigger, only
those events are retained in which at least one of the charged-particle track candidates
originates near the IP (|dr| < 5.0 cm).
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Figure 3.10: The configuration of the DAQ system at the end of data taking [60].

After the Level-3 trigger, the remaining events are recorded on the offline computing
system. Just before full event reconstruction, the Level-4 trigger performs a fast track
reconstruction and retains only events with at least one good track. A concrete criterion
of the good track is that a transverse momentum is greater than 300 MeV/c, |dr| is less
than 1.0 cm, and |dz| is less than 4.0 cm. This trigger reduces the background events to
about 20%, whereas it retains about 98% of physical events.

After performing the Level-4 trigger, the remaining events are fully reconstructed. At
the most downstream of the reconstruction flow, the event classification and skimming
are performed to be efficient for the physics analyses. The data skimmed for hadronic
events are used in this analysis. The primary requirements are track multiplicity and
visible energy. The requirement for track multiplicity is that there are at least three
tracks with transverse momentum of more than 0.1 GeV/c, |dz| of at least 4.0 cm, and
|dr| of at least 2.0 cm. The requirement for visible energy is that the sum of the energy
of charged tracks and reconstructed photons E∗

vis is greater than 20% of the
√
s. To

reduce beam background and non-hadronic events, events satisfied with the following
criterion are retained; (1) the vertex position is in the vicinity of IP if the vertex is well
reconstructed, (2) there are two or more clusters detected at the large polar angular in
the center-of-mass system, (3) the average ECL cluster energy is less than 1 GeV, (4) the
total energy of ECL clusters is less 80% of

√
s, (5) an invariant mass of particles detected

in hemispheres perpendicular to the event thrust axis, HJM , is greater than 1.8 GeV/c2

or HJM/E∗
vis > 0.18

√
s. In addition, the inclusive J/ψ and ψ(2S) samples are added.

3.4 Data Set

This analysis uses a real data sample to obtain physics results and a Monte-Calro (MC)
sample to determine the event selection criteria and investigate the detector response. A
description of each data set is given in this section.
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Figure 3.11: The overview of the Level-1 trigger system [59].

3.4.1 Real Data Sample

For this analysis, 711 fb−1 of data accumulated with the Belle detector at a center-of-mass
energy of

√
s = 10.58 GeV. This data contains 772 × 106 BB pairs.

3.4.2 Monte-Calro Simulation Samples

In this analysis, we use a signal MC sample and a background MC sample according to
the purpose. In both samples, amplitudes of B decay and other sequential decays are
simulated using EvtGen [62]. For generic B decay, the branching fractions and the decay
models are mainly specified to fit experimental measurements to date, theory, phenomeno-
logical models, and symmetry arguments. However, approximately 40% of B decays are
not specified, and thus PYTHIA and JETSET [63] compensate them. For quark fragmen-
tations in the continuum events, PYTHIA and JETSET are used, too. Subsequently, the
detector response is simulated using GEANT3 [64].

Signal MC sample

Signal MC samples are used to determine detector response in detail. The samples are
generated separately for the following Υ(4S) decays at a branching fraction of 100%,

Υ(4S) →
{
B+B−, B+ → X(3872)K+,
B0B0, B0 → X(3872)K0.
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All of X(3872) decays into the following modes

X(3872) → D0D∗0,

D∗0 →
{
D0π0 (64.7%),
D0γ (35.3%),

D0 →



K−π+ (10.1%),
K−π+π0 (36.7%),
K−π+π−π+ (20.9%),
K0
Sπ

+π− (7.1%),
K+K− (1.1%),
K−π+π−π+π0 (10.9%),
K0
Sπ

+π−π0 (13.2%),

where the fractions among the D∗0 and D0 modes follow the known ratios [18]. Although
the D0 → K−π+π−π+π0 mode is generated in this sample, it is not used for the final
analysis due to a bad signal-to-background ratio.

When examining the detector response, we generally use MC samples in which the
event generator generates the lineshape of interest. However, all lineshape models, e.g.,
the relativistic Breit-Wigner model and the Flatté model, are not defined in the event
generator. We establish a model-independent method of determining detector response
using two groups of signal MC samples: zero-width signal MC samples and finite-width
signal MC samples. The former are necessary to parameterize the D0D∗0 invariant mass
dependence of signal efficiency and mass resolution, which are essential to make the prob-
ability density functions of the signal contribution for any lineshapes. The latter are used
to check the validity of the fitting function, the total efficiency and so on. Among the
latter, the signal MC sample in which lineshapes are generated with 3.9 MeV width and
3.8729 GeV/c2 mass [2] is called the default signal MC sample. Detailed input values are
summarized in Table 3.2.

Background MC sample

To investigate background events except for the signal events, we use the MC samples of
e+e− → BB with generic B decay and the continuum MC samples. The amount of the
MC samples corresponds to 711 fb−1 of integrated luminosity.
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Table 3.2: Summary of the signal MC samples used in this study. The number of
generated events is denoted by Nsig.

Type Mass [GeV/c2] Width [MeV] Ngen

Zero-width signal MC samples

3.8719
3.8720
3.8721
3.8722
3.8723
3.8724
3.8725
3.8730
3.8735
3.8740
3.8745
3.8750
3.8755
3.8760
3.8765
3.8790
3.8815
3.8840
3.8865
3.8890
3.8915
3.8940
3.8965
3.8990
3.9100
3.9300
3.9500
3.9700
3.9900

0.0 8× 105

Finite-width signal MC samples
Second one is ”default signal MC samples”

3.8725
3.8729
3.8729

1.0
3.9
10

8× 105





Chapter 4

Signal Reconstruction

We reconstruct B+ → D0D∗0K+ or B0 → D0D∗0K0
S followed by D∗0 → D0γ or D∗0 →

D0π0 (Fig. 4.1) using five types of final state particles: π+, K+, γ, π0, and K0
S. This

chapter describes the reconstruction of the final state particles and the signal event se-
lection. The last section describes the observable and the expected distribution of the
D0D∗0 invariant mass.

4.1 Reconstruction of Final State Particles

In this section, the reconstructions of the final state particles, π+, K+, γ, π0, and K0
S, are

described.

Charged Track Reconstruction

The stable charged particles such as π+ and K+ are reconstructed by finding helical tracks
from a cluster of hits of CDC and SVD. The track is parameterized as a helix by fitting.
The helix parameters are the following five:

dr: the signed distance of the Point Of Closest Approach (POCA) to the IP for
the r-direction;

ϕ0: the azimuthal angle to specify the IP with respect to the helix center;

κ: the inverse of track transverse momentum times a charge of the track;

dz: the signed distance of POCA to the IP for the z-direction; and

Figure 4.1: The decay chain of signal events.

29
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Figure 4.2: Reconstruction efficiency for
charged tracks as a function of the trans-
verse momentum of the particle [60].

Figure 4.3: The pt resolution. The solid
curve shows the fitted result. The dotted
curve shows the ideal expectation for β =
1 [59].

tanλ: the tangent of the angle defined by the momentum at the POCA and the
transverse plane.

The parameters are converted to the position and momentum of the charged particle.

Important performances for this analysis are the detection efficiency and the momen-
tum resolution. The tracking efficiency was evaluated using a D∗+ → π+(D0 → π+π−K0

S)
sample. Figure 4.2 shows the efficiency as a function of transverse momentum. The effi-
ciency is above 90% in the transverse momentum range from 400 MeV/c to 1000 MeV/c.
For momentum above 200 MeV/c, the efficiency in the MC samples reproduces that in
the data within 0.35%. For momentum below 200 MeV/c, the performance was precisely
evaluated by the sample of soft-charged pions from D∗− in the B0 → D∗−π+ decay. The
data-MC difference is up to 15%. A correction factor is applied to the signal efficiency
based on the ratio of tracking efficiency obtained for MC and data.

The momentum resolution is investigated using data of cosmic rays passing through
the interaction region. It is good, as shown in Fig. 4.3, and the relative pt resolution is
obtained by

σpt/pt = (0.201± 0.003)pt ⊗ (0.290± 0.003)/β%.

In the later analysis, the helix parameters are smeared in the MC samples so as to get
better agreement between the mass resolution of the hadrons reconstructed with only
charged particles for the MC samples and that for the data.

Charged Hadron Identification

The charged hadron is identified using a likelihood ratio derived from the CDC, TOF,
and ACC information,

LK
LK + Lπ

(for K+ candidates) and
Lπ

LK + Lπ
(for π+ candidates),
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(a) Pion ID (b) Kaon ID

Figure 4.4: Performance of the charged hadron identification [60].

where Li is the total likelihood for the particle hypothesis i. It is derived from a product
of the sub-detector likelihoods,

Li = LCDC
i × LTOF

i × LACC
i . (4.1)

A likelihood of each detector is calculated as follows.

LCDC
i ; Based on dE/dx measured in CDC, a likelihood is calculated by the prob-

ability density function, which is a normalized Gaussian distribution with
a mean of the expected dE/dx and a standard deviation corresponding to
resolution for the particle i.

LTOF
i ; Based on time-of-flights measured at both ends of a TOF counter, a likelihood

is calculated by the probability density function, which is a two-dimensional
normalized Gaussian distribution with means of the expected time-of-flights
and standard deviations of the resolution taking into account their correlation
for the particle i.

LACC
i ; Based on the number of photo-electron Npe detected in ACC, a likelihood is

calculated by the probability density function of Npe expected from the MC
simulation.

The identification performance is evaluated using the sample of the decay D∗+ →
D0π+ followed by D0 → K−π+. The identification efficiency and the miss identification
rate as a function of momentum are shown in Fig 4.4. The efficiency is more than 85%
in the whole momentum range, while the miss identification rate is suppressed to about
10%. In the later analysis, a correction factor is applied to the signal efficiency based on
the ratio of the hadron identification efficiencies obtained for MC and data.

Photon Reconstruction

Photon candidates are reconstructed by the energy deposition of an electromagnetic
shower in ECL. A group of crystals in which energy is detected is called a cluster. The
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Figure 4.5: The γγ invariant mass distribution for hadronic events [59].

reconstructed clusters with no matching charge tracks are used as photon candidates. The
bias of the energy and position measurements, caused by the energy deposition in ACC
and TOF and the leakage of electromagnetic showers for high-energy photons, are always
corrected based on the MC study.

The resolutions of energy and position and the detection efficiency are evaluated. The
energy resolution is from about 4% at 100 MeV to 1.6% at 8 GeV. The angular resolution
is from 13 mrad at low energy to 3 mrad at high energy. The detection efficiency is
evaluated using the χc1 → J/ψγ decay in the low energy region of O(0.1) GeV, which is
the energy range of signal photons. The difference in efficiency obtained for MC and data
is 3.0%.

π0 Reconstruction

Candidates of π0 are reconstructed from the four-momenta of two-photon candidates since
π0 decays to two photons with a branching fraction of 98.8% [18]. Only candidates in
which the γγ invariant mass is consistent with the nominal mass of 135 MeV/c2 [18]
are used in the analysis. At the initial stage of the analysis, the mass window is set to
80 MeV/c2 < M(γγ) < 180 MeV/c2, which is optimized later. Finally, a mass-constrained
fit is performed on these π0 candidates to update the three-momenta.

The mass resolution is evaluated using the hadronic events of the data, as shown in
Fig. 4.5. The typical resolution is determined to be 5.0 MeV/c2. The reconstruction
efficiency is evaluated using the τ− → π−π0ντ sample for high momentum and the sample
of B+ → (D∗0 → D0π0)π+ for low momentum. The efficiency for the data is about 4%
lower than that for the MC simulation with a precision of about 1.5%. Based on the ratio
of the π0 efficiencies obtained for MC and data, a correction factor is applied to the signal
efficiency.
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K0
S Reconstruction

The neutral kaon decays to two charged pions with opposite charges with a branching
fraction of 69.2% [18]. Since K0

S has a relatively long lifetime, the vertex position is sepa-
rated from IP. Then, the vertex position is reconstructed by applying a vertex-constrained
fit. In the fit, the momenta and positions of the daughter particles are updated to those
derived from the helix parameter, assuming that the pivot equals to the vertex position.

4.2 Selection of Signal Event

Selection criteria are optimized so that Figure-Of-Merit (FOM) is improved while the
signal efficiency keeps as high as possible. In this analysis, FOM is defined as S/

√
S +B,

where S and B are the number of signal events and that of background events, respec-
tively. The number of signal events is estimated by scaling the signal MC sample so that
the branching ratio is 0.8×10−4 [2]. The background consists of broken-signal and generic
background. The former is the background coming from the wrong combination in the
signal event, and the same scale factor as the signals is applied. The latter is the back-
ground coming from continuum events and BB events except for the signals. To focus
on the B → X(3872)K signal region, both S and B are counted only in the region of
M(D0D∗0) < 3.877 GeV/c2, 5.271 GeV/c2 < Mbc < 5.287 GeV/c2, and |∆E| < 16.1 MeV
(33.6 MeV) for B → KD0D0π0(γ). In this section, the resulting selection is described;
See Appendix A for the optimization details.

4.2.1 Final State Particles

Tracks coming not fromK0
S are selected using vertex information measured by the tracking

system. The requirement is that |dr| is less than 1.0 cm and |dz| is less than 4.0 cm. In
addition, pion and kaon candidates are selected using likelihood ratios. In this analysis,
tracks with a likelihood ratio Lπ/(Lπ+LK) > 0.1 are used as charged pion candidates, and
tracks with a likelihood ratio LK/(Lπ + LK) > 0.1 are used as charged kaon candidates.
The hadron identification efficiency is approximately 97% for both pions and kaons. Tracks
satisfying Le/(Le + Lẽ) > 0.95 are identified as electrons and are eliminated. Here, Le
and Lẽ are distinct likelihoods for the electron and non-electron hypotheses, based on
ECL, tracking, and other information. The particle identification is described in detail
elsewhere [65].

K0
S candidates are selected by the π+π− invariant mass. The π+π− invariant mass

distribution is shown in Fig. 4.6. The π+π− invariant mass is required to agree with
the known K0

S mass (498 MeV/c2 [18]) within 7.0 MeV/c2 (≈ 3.6σ of the resolution).
The candidates are selected using a neural network classifier [66] with various kinematic
variables as input. To improve the four-momenta of the K0

S candidates, a mass- and
vertex-constrained fit is applied.

Photon candidates are selected by the ratio of the energy deposited in the 3× 3 array
of the crystals centered on the crystal with the highest energy deposition to that in the
5× 5 array of crystals, E9/E25. The requirement is that E9/E25 is greater than 0.8.

For the selection of neutral pions candidates, an energy of the daughter photon is re-
quired to be greater than 30 MeV in the barrel region or 50 MeV in the endcap region. The
γγ invariant mass is required to agree with the π0 nominal mass (135 MeV/c2 [18]) within
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12 MeV/c2. This mass window corresponds to 92% signal efficiency. The distribution of
γγ invariant mass is shown in Fig. 4.7.

4.2.2 Candidates of D0 meson

D0 candidates are reconstructed in seven decay modes: K−π+, K−π+π0, K−π+π−π+,
K−π+π−π+π0, K0

Sπ
+π−, K0

Sπ
+π−π0 or K+K− mode. The K−π+π−π+π0 mode is totally

eliminated to improve sensitivity, because the mode has high background. Thus, the used
decay modes cover 35.0% of the total D0 decay branching fraction [18]. The π0 candidates
used in this reconstruction are required to have momentum in the center-of-mass system
greater than 100 MeV/c, and energy in the laboratory system greater than 150 MeV. If a
π0 is included, the reconstructed D0 invariant mass is required to be within 16 MeV/c2 of
the nominal mass [18] corresponding to 85% signal efficiency; otherwise, it is required to
be within 8.5 MeV/c2 corresponding to 91% efficiency. Each invariant mass distribution
of reconstructed D0 is shown in Fig. 4.8. To improve the momentum resolution, a mass-
and vertex-constrained fit is applied. The candidates with poor quality fit whose χ2

probability is less than 0.0001 are eliminated.

4.2.3 Candidates of D∗0 meson

D∗0 candidates are reconstructed in two decay modes: D0γ and D0π0. For the D0γ mode,
only γ candidates with an energy greater than 90 MeV in the laboratory system are used.
For the D0π0 mode, π0 candidates with a momentum in the center-of-mass system of less
than 100 MeV/c and an energy in the laboratory system of less than 200 MeV are used.
The difference of the reconstructed mass between D∗0 and D0 is required to agree with the
nominal value (142 MeV/c2 [18]) within 9.0 MeV/c2 and 2.0 MeV/c2 for D0γ and D0π0,
respectively, corresponding to 90% signal efficiency. Figure 4.9 shows the distributions of
the mass difference and the selection criteria.

4.2.4 Candidates of B meson

B meson candidates are reconstructed in the decay modes of D0D∗0K+ and D0D∗0K0
S.

To reduce wrong combinations, the daughter K+ is required to have LK/(Lπ+LK) > 0.6,
corresponding to the identification efficiency of 89%. The B candidates are selected based
on the beam-energy constrained mass, Mbc ≡

√
(Ecms

beam)
2 − (pcms

B )2 and the difference of
the energy in the center-of-mass system between the B candidate and the beam, ∆E ≡
Ecms
B −Ecms

beam, where E
cms
beam is the beam energy in the center-of-mass system corresponding

to half of
√
s, and pcms

B and Ecms
B are the energy and momentum of B candidates in the

center-of-mass system, respectively. Figures 4.10–4.11 shows their distributions. We
retain events with Mbc > 5.2 GeV/c2 and |∆E| < 50 MeV for later analysis. The
Mbc signal region is defined as |Mbc − mB| < 4.5 MeV/c2 (≈ 2σ) for D∗0 → D0γ and
|Mbc −mB| < 6.0 MeV/c2 (≈ 2.5σ) for D∗0 → D0π0, where mB denotes the nominal B
mass [18]. The ∆E signal region is defined as |∆E| < 12 MeV (≈ 2σ).

4.2.5 Continuum Supression

For suppression of continuum events, we use a FastBDT classifier [67] trained on the
simulation sample with event-shape information as input; See Appendix B for input vari-
ables, training, and classifier performance. The distributions of the output are shown in
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Fig. 4.12. Events for which the classifier output is less than 0.15 are eliminated. This
requirement retains 96% of the signal candidates and rejects 49% of the candidates of
continuum events.
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Figure 4.6: The π+π− invariant mass distribution in the X(3872) and B signal regions
for the MC samples. The blue, green, and red histograms show distributions for signal,
broken-signal, and generic background events, respectively. The gray vertical line shows
the criterion used for the later analysis.
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Figure 4.7: The distributions of the γγ invariant mass for each source of π0 candidates in
the X(3872) and B signal regions for the MC samples. The notations are the same as in
Fig. 4.6.
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Figure 4.8: The distribution of the reconstructed D0 mass in the X(3872) and B signal
regions for the MC samples. The notations are the same as in Fig. 4.6.
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Figure 4.9: The distribution of the difference of the reconstructed mass between D∗0 and
D0 in the X(3872) and B signal region for the MC samples. The notations are the same
as in Fig. 4.6.
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Figure 4.10: The Mbc distribution in the X(3872) and B signal regions for the MC
samples. The notations are the same as in Fig. 4.6.
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Figure 4.11: The ∆E distribution in the X(3872) and B signal regions for the MC
samples. The notations are the same as in Fig. 4.6.
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Figure 4.12: The distribution of the FastBDT output of the continuum suppression in
the X(3872) and B signal regions for the MC samples. The notations are the same as in
Fig. 4.6.
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4.2.6 Best Candidate Selection

After this selection, the average number of signal B candidates per event is 1.8, because
D0D∗0 and D∗0D0 are often indistinguishable and double-counted. To avoid multiple
counting of signal events, we select the candidate that has the highest value of the product
of the following likelihood L and prior probability P . The prior probability is a measure
to select a candidate based on expected branching fractions and reconstruction efficiency.

The likelihood L is the product of the likelihoods of the measured D0 mass, D0 mass,
D∗0 mass, and ∆E; and, for the D∗0 → D0π0 mode, the likelihood of the measured π0

mass,
L = LM(D0) × LM(D0) × LM(D∗0)−M(D0) × L∆E [×LM(π0)]. (4.2)

Each likelihood is obtained using PDFs of double Gaussian with a common mean, which
are determined using the default signal MC sample. The PDF parameters are summarized
in Table 4.1.

The probability P is obtained from the probability that a signal event can be re-
constructed εijk, the average number of the B candidates per single event ζijk, and the
branching fractions, when D0, D0, and D∗0 are reconstructed from i, j, and k modes,
respectively,

P =
εijk
ζijk

× B(D0 → i)× B(D0 → j)× B(D∗0 → k). (4.3)

The values of εijk and ζijk are determined using the default signal MC sample. The P
values are summarized in Fig. 4.13.

For the validation, the efficiency is evaluated and compared with the best candidate
selection using the likelihood only. The efficiency is derived as

(The number of signal events after BCS)

(The number of events including a correctly reconstructed signal before BCS)
.

Table 4.2 shows the efficiency for each B mode. The signal efficiency is almost the same
for the B+ mode. For the B0 mode, it is improved by several percent. Therefore, we
confirm that this method works well for both B modes.

The (Mbc,∆E) distribution of the selected B candidates is shown in Fig. 4.14. The red
solid (blue dashed) rectangle shows the (Mbc,∆E) signal region for D∗0 → D0γ (D0π0);
B candidates used in the lineshape study are selected from this region.
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Figure 4.13: The P value of the best candidate selection for each D0 (vertical axis) and
D0 mode (horizontal axis).
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Table 4.1: Parameters of the double Gaussian with a common mean for the resolution
functions used in the best candidate selection. The smaller and wider standard deviation
are denoted by σcore and σtail. The fraction represents that to the core component.

Variable Mode σcore [MeV/c2] σtail [MeV/c2] Fraction

M(D0), M(D0)

D0 → K−π+

D0 → K−π+π0

D0 → K−π+π−π+

D0 → K−π+π−π+π0

D0 → KSπ
+π−

D0 → KSπ
+π−π0

D0 → K+K−

4.32
6.64
4.20
6.61
4.00
8.35
4.11

9.91
17.3
10.4
15.9
11.6
28.1
18.9

0.799
0.493
0.723
0.675
0.769
0.834
0.893

M(D∗0)−M(D0)
D∗0 → D0γ
D∗0 → D0π0

3.96
0.733

5.69
2.02

0.273
0.670

M(π0) D∗0 → D0π0 4.63 10.2 0.408

∆E
D∗0 → D0γ
D∗0 → D0π0

6.70
5.66

17.0
19.3

0.903
0.926

Table 4.2: The efficiency of the best candidate selection (BCS) for each B mode.

Signal mode BCS with L BCS with L × P
B+ → K+(X(3872) → D0[D∗0 → D0π0]) 75.7% 75.4%
B+ → K+(X(3872) → D0[D∗0 → D0γ)) 80.1% 80.1%

Total for B+ mode 77.9% 77.9%

B0 → K0
S(X(3872) → D0[D∗0 → D0π0]) 73.3% 75.1%

B0 → K0
S(X(3872) → D0[D∗0 → D0γ]) 74.4% 80.9%
Total for B0 mode 73.9% 78.2%
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Figure 4.14: Distributions of (Mbc,∆E) for B+ (left) and B0 (right) candidates in the
M(D0D∗0) < 3.88 GeV/c2 region, where the signal-to-background ratio for X(3872) in
data is relatively high. The red solid and blue dashed rectangles show the (Mbc,∆E)
signal regions for D∗0 → D0γ and D0π0, respectively.



42 CHAPTER 4. SIGNAL RECONSTRUCTION

Table 4.3: Summary of signal, broken-signal, and generic background yields for each
decay mode when assuming the mass and width of the relativistic Breit-Wigner lineshape,
and branching fraction measured in Ref. [2]. Values in parentheses are products of the
efficiency and the branching fraction of the intermediate states.

Mode Signal Broken-signal generic BG

B+ → K+D0[D∗0 → D0π0] 22.5 (3.54× 10−4) 23.0 (3.62× 10−4) 731
B+ → K+D0[D∗0 → D0γ] 21.3 (3.35× 10−4) 24.0 (3.77× 10−4) 2545
B0 → K0

SD
0[D∗0 → D0π0] 5.40 (9.00× 10−5) 5.36 (8.93× 10−5) 120

B0 → K0
SD

0[D∗0 → D0γ] 5.23 (8.71× 10−5) 5.55 (9.24× 10−5) 343
Total 54.4 (8.66× 10−4) 57.8 (9.21× 10−4) 3739

4.3 Observable and Expected Distribution

In measuring the X(3872) lineshape, we use the D0D∗0 invariant mass distributions in
the region below 4.0 GeV/c2 for all events surviving in the selection. The D0D∗0 invariant
mass is calculated subtracting the reconstructed D∗0 mass instead of applying a mass-
constrained fit to improve the mass resolution:

M(D0D∗0) =

{
M(D0D0γ)−M(D0γ) +mD∗0 for D∗0 → D0γ,
M(D0D0π0)−M(D0π0) +mD∗0 for D∗0 → D0π0.

(4.4)

Here M(D0D0γ[π0]) and M(D0γ[π0]) are the D0D0γ[π0] and D0γ[π0] invariant mass
respectively, where the particles without [with] the square brackets are the specification
of the D∗0 → D0γ [D∗0 → D0π0] mode. Because the D∗0 width is predicted to be nonzero
(65.5 ± 6.2 keV [41]), the techniques of the resolution improvement cause small bias.
To make the bias more tractable, the mass difference technique is adopted. The bias is
considered as a systematic uncertainty and is discussed in Chapter 6.

The expected distributions of the D0D∗0 invariant mass are shown in Fig. 4.15, in
which the mass, the width, and the branching fractions are assumed to be those measured
in Ref. [2]. The expected peak yield under the assumption is summarized in Table 4.3.
Here, methods for making the shape function of the peak and background and efficiency
determinations are explained in the next chapter. In the previous study, the peak yield was
50.1+14.8

−11.1, while it is expected to be 112.2 in this study, where the signal and broken-signal
contributions are included. The improvement is a factor of 2.2. The main contribution
is adding the D0 decay modes. For example, whereas at least on D0(D0) is required to
decay to K−π+(K+π−) in the previous studies to reduce the background, we remove the
requirement, add further D0 → K0

Sπ
+π−π0 mode, and re-optimize the event selection to

improve FOM. The signal-to-background ratio is about two times worse than that in the
previous study. Since the background contribution near the peak is small, sensitivity is
expected to improve. The concrete improvement of statistical uncertainty is evaluated
using pseudo-experiments with the relativistic Bright-Wigner lineshape (Chapter 5.4).
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Figure 4.15: (Left) The distributions of the D0D∗0 invariant mass with the data of
605 fb−1 in Ref. [2]. (Right) The expected distributions of the D0D∗0 invariant mass in
this study with the full data (711 fb−1). To suppress the fluctuation of the distributions,
a distribution with a thousand times yields is generated and scaled. The top and bottom
rows are the D∗0 → D0γ and D0π0 modes, respectively. For each panel, distributions of
B0 and B+ are always combined.





Chapter 5

Method of Signal Extraction

When signal events are reconstructed correctly, the invariant mass distribution has a
peak consisting of the natural lineshape convolved with the mass-dependent detector
response. To extract the natural lineshape, we perform fits in this analysis. Since the
signal-to-background ratio depends on the D∗0 decay mode, fits are performed separately
for D∗0 → D0γ and D∗0 → D0π0. In addition, fits are performed separately for B0 and
B+ candidates to determine the relative branching fraction between B0 → X(3872)K0

and B+ → X(3872)K+.
The distribution of the D0D∗0 invariant mass comprises three types of components.

The first component is the correct combination of signal daughter particles, which we refer
to as the signal. It is the most sensitive to the natural lineshape. The second component
is the incorrectly reconstructed signal; hereafter called the broken-signal. It is also slightly
sensitive to the natural lineshape because the final state particles have similar momentum
to the signal after applying the selection. The third component is the background coming
from continuum events and BB events except for the signals, hereafter called the generic
background. It is insensitive to the lineshape. Respective components are discussed in
Sec. 5.1–5.3. At the end of this chapter, the fit procedure and its validation are given.

5.1 Signal Reconstructed Correctly

The signal PDF is created by convolving the assumed lineshape with the detector re-
sponse. For analyses of near-threshold states using a decay mode corresponding to the
threshold, the detector response strongly depends on the mass because the detector ef-
ficiency is reduced for low-momentum final-state particles and the resolution function
generally depends on the Q value. This response, i.e., the mass dependence of the signal
efficiency and the mass resolution, is studied and parameterized using the zero-width sig-
nal MC samples; see Sec. 5.1.1. The shape determination is described in Sec. 5.1.2. In
the fit, the ratio of signal yields between D∗0 → D0γ and D∗0 → D0π0 is fixed using the
total signal efficiency to combine the D∗0 and B sub-samples. The method to evaluate
total signal efficiency is discussed in Sec. 5.1.3.

5.1.1 Detector Response

True Mass dependence of the Signal Efficiency

The true mass dependence of the signal efficiency is determined using the zero-width
signal MC samples. In what follows, the efficiency always includes branching fractions

45
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of intermediate particles, for example, D0, D∗0, π0, and K0
S. Figure 5.1 (a, b) shows

the efficiency as a function of the true mass for B+ mode. It shows that the signal
efficiency varies depending on the mass by a few tens percent relatively, especially around
the threshold. The following exponential threshold function is used to parameterize the
efficiency:

εreco(M) =

 p0(1− p1e
p2{M−(mD0+mD∗0 )})

+ p3{M − (mD0 +mD∗0)} for M ≤ 3.920 GeV/c2,
εreco(3.920 GeV/c2) for M > 3.920 GeV/c2.

(5.1)
where the case is divided to represent the convergence for large true mass. The threshold
of the cases is determined by fitting with εreco(M) floated it. Subsequently, we determine
the parameters p0–p3 by fitting the relation with the function for the B+ mode. The
resulting values are summarized in Table 5.1.

For the B0 mode, a similar structure is obtained in the relation between the efficiency
and the true mass (Fig. 5.1 (c, d)). We fit it with εreco(M) fixed parameters related to
the structure, p1–p3. The p0 value is determined as shown in Table 5.1.

True Mass Dependence of Resolution

The mass resolution depends on the invariant mass, especially in the vicinity of the
threshold. We parameterize it using the zero-width signal MC samples. For each input
X(3872) mass sample, the resolution PDF is determined to reproduce a distribution for
the difference between the D0D∗0 invariant mass and true X(3872) mass, Mdiff .

We use the sum of a Gaussian and a Crystal Ball function [68] with a common mean
multiplied by a turn-on curve on the threshold as the resolution function fres:

fres(Mdiff) =[c · fgauss(Mdiff , µ, σgauss) + (1− c) · fCB(Mdiff , µ, σCB, n, α)]

× fturn-on(Mdiff),
(5.2)

where fgauss and fCB represent a Gaussian PDF and a Crystal Ball PDF, respectively. µ
is a common mean, σ is a standard deviation, n is a value of the exponent of the power
law, α is a transition point between the Gaussian and the power-law tail, and c is the
fraction. For the turn-on curve fturn-on, the following soft threshold function that rises
from zero to one at the threshold using an error function (fer) is used,

fturn-on = 0.5× (fer(p0 ·Mdiff) + 1), (5.3)

where p0 is determined to the best result which reproduces the distribution in the zero-
width signal MC samples; the value is fixed to 36065.6. For the standard deviations, they
degrade with the square root of the difference between the mass and the threshold; oth-
erwise, since there are no requirements for the other parameters, we need to parameterize
them by checking the relation among them.

The PDF is parameterized using B+ mode only because the resolution is determined
approximately by the momentum resolution of the X(3872) daughter particles regardless
of the B decay modes. The details of the parameterization are described in Appendix C.2.
The resulting resolution functions are shown in Fig. 5.2. For lower input masses, e.g.,
3.8724GeV/c2, there is a structure of O(0.1) MeV/c2 in the pull distribution. It can be
ignored because it is very small compared to the width of the Breit-Wigner lineshape
measured by Ref. [2], O(10) MeV/c2.
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Figure 5.1: The signal efficiency as a function of the true mass with the zero-width signal
MC samples. The red line shows the fit result with εreco(M).

Table 5.1: εreco(M) parameters determined by the fits in Fig. 5.1.

Mode Parameter Value

B+ → K+(X(3872) → D0[D∗0 → D0γ])

p0 (3.521± 0.041)× 10−2 %
p1 (−1.11± 0.16)× 10−1

p2 (54± 16)× 10
p3 3.78± 0.43

B+ → K+(X(3872) → D0[D∗0 → D0π0])

p0 (4.61± 0.10)× 10−2 %
p1 (2.04± 0.18)× 10−1

p2 180± 40
p3 −0.15± 0.60

B0 → K0(X(3872) → D0[D∗0 → D0γ])

p0 (9.304± 0.051)× 10−3 %
p1 Fixed to −1.11× 10−1

p2 Fixed to 54× 10
p3 Fixed to 3.78

B0 → K0(X(3872) → D0[D∗0 → D0π0])

p0 (1.1908± 0.0066)× 10−2 %
p1 Fixed to 2.04× 10−1

p2 Fixed to 180
p3 Fixed to −0.15
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(c) Generated X(3872) mass is 3.9300 GeV/c2

Figure 5.2: The Mdiff distributions for B+ → K+(X(3872) → D0[D∗0 → D0γ]) (left
side) and B+ → K+(X(3872) → D0[D∗0 → D0π0]) (right side) with the zero-width signal
MC samples. In each panel, the solid blue line shows the fit result with the resolution
PDF fixed the shape parameters. The dashed blue and red lines show the Crystal Ball
and Gaussian components, respectively. The vertical black line represents the D0D∗0

threshold. The bottom figure of each panel shows the pull distribution.
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5.1.2 Determination of Shape

To obtain the signal shape (fsig), the true lineshape multiplied by εreco(t) is convoluted
with the mass-dependent resolution PDF

fsig =

∫ ∞

0

dtfres(M − t)× (ftrue(t)× εreco(t)). (5.4)

To reduce the computational time, convolution with the specific resolution function at a
mass of 3871.9 MeV/c2 near the peak is adopted as an approximation, because the natural
lineshape is broad [2, 3] and the smearing effect due to the resolution is small at masses
away from the peak. To reproduce the behavior near the threshold, the signal function is
multiplied by fturn-on after the convolution.

The differences in lineshape between the convolution methods are shown in Figs. 5.3–
5.4. The original convolution (dashed red lines) and the approximation (dashed black
lines) are in good agreement for both lineshape models. Therefore, the effect of the
approximation is negligible.

5.1.3 Total Reconstruction Efficiency

The total efficiency is necessary for not only the measurement of the branching fraction
but also the fit constraint on a yield ratio between X(3872) → D0[D∗0 → D0π0] and
X(3872) → D0[D∗0 → D0γ]. Because the efficiency depends on the D0D∗0 invariant
mass, the total efficiency is varied by the true lineshape. In addition, since the Flatté
lineshape has a long tail and some signal leaks out of the fitting range, the total signal
efficiency ϵtot needs to include such effects. Thus, the total efficiency is calculated by

ϵtot = ϵreco × ϵretain, (5.5)

where ϵreco is the signal efficiency for the reconstruction and the selection, and ϵretain is the
signal efficiency that remains in the fit range without leaking. The calculation method
for each efficiency is shown as follows.

ϵreco; It is derived by an average of the signal efficiency as a function of true mass
εreco(M) weighted with the assumed lineshape ftrue,

ϵreco =

∑
i εreco(Mi)× ftrue(Mi)∑

i ftrue(Mi)
, (5.6)

where Mi is one of 5000 points taken at equal intervals from the invariant-mass
range from D0D∗0 threshold to mB −mK .

ϵretain; It is derived as a ratio of the values obtained by definite integration of lineshape
for the fit range over that for the total range,

ϵretain =

∫Mmax

Mmin
f(M)dM∫ mB−mK

0
f(M)dM

, (5.7)

where Mmax and Mmin denote the maximum and minimum of the fit range,
respectively.
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Figure 5.3: A Comparison of lineshapes with different convolution methods in the case
of the Flatté lineshape model. The solid blue line shows the assuming lineshapes after
considering the efficiency as a function of a true mass. The dashed red line shows the
lineshapes convoluted with the mass-dependent PDF. The dashed green line shows the
lineshapes convoluted with the mass-independent PDF, and the dashed black line shows
the product of the dashed green line and fturn-on. The bottom figure of each panel shows
residuals from the assuming lineshape considering the efficiency to the lineshape con-
voluted with the mass-dependent PDF (solid red line), and that to the product of the
lineshape convoluted with the mass-independent PDF and fturn-on (dashed black line).
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Figure 5.4: A Comparison of lineshapes with different convolution methods in the case
of the relativistic Breit-Wigner lineshape. The notations are the same as in Fig. 5.3.
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To verify this calculation method, we compare the efficiency, derived from the ratio of
the number of the correctly reconstructed signal events to that of the generated events.
Figure 5.5 shows the total efficiency when the M(D0D∗0) range is to 4.0 GeV/c2. In
each panel, the first to third points from the left are the results using the finite-width
signal MC samples. The efficiencies with the calculation method are consistent with those
obtained by counting the number of events. It means that our calculation method works
well. The fourth and fifth points from the left are examples of the efficiency calculated
for the relativistic Breit-Wigner lineshape and the Flatté lineshape. The method is used
for the later analysis.
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Figure 5.5: Total signal efficiency for five lineshapes when the M(D0D∗0) range is to
4.0 GeV/c2: from left, the signal MC samples with a mass of 3.8729 GeV/c2 and a
width of 3.9 MeV, the signal MC samples with a mass of 3.8729 GeV/c2 and a width of
10 MeV, the signal MC samples with a mass of 3.8725 GeV/c2 and a width of 1.0 MeV,
the relativistic Breit-Wigner with a mass of 3.8729 GeV/c2 and a width of 3.9 MeV, and
the Flatté lineshape with the parameters of Eq. (2.20). In each panel, the black points
represent the calculation method results, and the red points represent the results obtained
by counting the number of events. The values under the points show the relative difference
between the methods.
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5.2 Signal Reconstructed Incorrectly

The broken-signal contribution is mainly caused by three sources (Fig. 5.6), where a
wrong π0 or γ is combined in the D∗0 reconstruction, the D0 is reconstructed incorrectly,
or a D∗0D0 signal event is misinterpreted as D0D∗0 by combining π0 or γ from D∗0

incorrectly with the D0 to make a fake D∗0. This contribution is slightly sensitive to the
natural lineshape. In this section, the PDF of the broken-signal is studied for each D∗0

mode. Also, the yield of the broken-signal relative to the signal is determined for the fit
constraint.
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Figure 5.6: The histogram stacked for three background sources where a wrong π0 or γ
is combined in the D∗0 reconstruction (red), the D0 is reconstructed incorrectly (blue), a
D∗0D0 signal event is misinterpreted as D0D∗0 by combining π0 or γ from D∗0 incorrectly
with the D0 to make a fake D∗0 (green) and the others (gray).
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Figure 5.7: The D0D∗0 invariant mass
distributions with the default signal MC
samples for D∗0 → D0γ. The blue and red
histograms show the signal and broken-
signal components, respectively.
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5.2.1 D∗0 → D0γ

For X(3872) → D0[D∗0 → D0γ], the background peak is much wider than that for the
signal, as shown in Fig. 5.7. The comparison of the distributions for the broken-signal
with three types of the finite-width signal MC samples (Fig. 5.8) shows that the shape
and the yield are similar among them; thus, sensitivity to the natural lineshape is very
small. For the fit PDF, the histogram PDF depending on the true lineshape is used to
reduce the systematic uncertainty due to the shape. In the fit, we fix the yield of the
broken-signal relative to the signal determined from the signal MC samples.

Shape

Since the slight true lineshape dependence on the shape exists (Fig. 5.8), we determine the
PDF depending on the assumed lineshape. Because we confirmed that the distribution
never changes between B+ and B0, the histogram PDF is determined using only B+

samples. The procedure is as follows.

1. Plot the M(D0D∗0) distributions of the broken-signal with the zero-width signal
MC samples. Here, the bin widths are adjusted to increase as the mass increases so
that the statistical fluctuation is suppressed.

2. Scale each histogram by the assumed lineshape. Here, the scale factor for the MC
sample with mass of mi is derived by the integral value from the midpoint between
mi−1 and mi to that between mi and mi+1 because the intervals of input masses of
the samples are not constant,∫ (mi+mi+1)/2

(mi−1+mi)/2

ftrue(µ)dµ.

3. Sum up all of the scaled histograms.

4. Generate a histogram PDF from the total histogram with the first-order interpola-
tion.

The validation of this method is done using the finite-width signal MC samples. Fig-
ure 5.9 shows the comparison between the distribution obtained from the sample and the
histogram PDF assuming the generated lineshape in the sample. The histogram PDF
reproduces the distribution well. The lineshape-dependent histogram PDF is used for
fitting.

Yield of Broken-Signal Relative to Signal

The dependence of the yield of the broken-signal relative to the signal on true lineshape
is studied. A comparison among the finite-width signal MC samples is shown in Fig. 5.10.
Since the relative yields are consistent within 1σ, the impact of true lineshape dependence
is small. In the fit, the relative yields for both B modes are fixed by the values for the
default signal MC sample.
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Figure 5.9: Comparison between the D0D∗0 invariant mass distribution of the broken-
signal (black points) for X(3872) → D0[D∗0 → D0γ] and the histogram PDF assuming
the generated lineshape in the default signal MC samples (red line). The bottom plot in
each panel shows the pull distribution.
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Figure 5.10: The yield of broken-signal relative to signal with three types of the finite-
width signal MC samples. A value under the point shows the value for each ratio.
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Figure 5.11: The D0D∗0 invariant mass
distributions with the default signal MC
samples for D∗0 → D0π0. The blue
and red histograms show the signal and
broken-signal components, respectively.
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Figure 5.12: The comparison of the dis-
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D0π0.

5.2.2 D∗0 → D0π0

For X(3872) → D0[D∗0 → D0π0], the broken-signals produce a broad peak in the
M(D∗0D0) signal region and possibly distort the lineshape of the signal (Fig. 5.11). The
distribution for the broken-signal depends on the true lineshape because the final state
particles have similar momentum to the correctly reconstructed signal after applying the
selection. Therefore, we prepare a shape and a broken-signal yield that depend on the
true lineshape as with the signal.

True Mass Dependence of the Efficiency

As with the signal, the mass dependence of the efficiency of the broken-signal events is
studied. We call it broken-signal efficiency, and it is used to determine the PDF shape
and the fraction of the background component in the fitting. The definition is

(The number of broken events after reconstruction and selection)

(The number of generated events)
.

Figure 5.13 shows the efficiency as a function of the input mass using the zero-width signal
MC samples. The dependence is parameterized with a similar threshold function to the
signal. The function εbrokenreco is defined as

εbrokenreco (M) = p0(1− p1e
p2{M−(mD0+mD∗0 )}) + p3{M − (mD0 +mD∗0)}. (5.8)

To determine p0–p3, the efficiency as a function of the true mass is firstly fitted with
εbrokenreco (M) for the B+ mode. The red line in Fig. 5.13 (a) shows the fit result, and
εbrokenreco can reproduce the dependence. For the high mass region, the efficiency of the MC
sample is expected to be lower than εbrokenreco . The cause is leakage into the range above
4.00 GeV/c2. In practice, this effect can be canceled because some events where the true
mass is greater than 4.00 GeV/c2 can flow into the region. Therefore, we ignore the high
mass region from 3.96 GeV/c2 in the fit. For the B0 mode, the dependence is the same
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Figure 5.13: The broken-signal efficiency as a function of the true mass with the zero-
width signal MC samples for X(3872) → D0[D∗0 → D0π0]. The red line shows the fit
result with εbrokenreco (M). The fit range is from the D0D∗0 threshold to 3.96 GeV/c2.

Table 5.2: εbrokenreco (M) parameters determined by the fits in Fig. 5.13.

Mode Parameter Value

B+ → K+(X(3872) → D0[D∗0 → D0π0])

p0 (3.98± 0.22)× 10−2 %
p1 (−1.63± 0.60)× 10−1

p2 82± 42
p3 −2.08± 0.73

B0 → K0(X(3872) → D0[D∗0 → D0π0])

p0 (9.977± 0.058)× 10−3 %
p1 Fixed to −1.63× 10−1

p2 Fixed to 82
p3 Fixed to −2.08

as that for the B+ mode, as shown in Fig. 5.13 (b). The parameter p0 is determined from
the fit fixing p1–p3 to the values obtained in the B+ mode. The resulting parameters are
summarized in Table 5.2.

Shape

The shape is determined with a similar method as the signal PDF. In what follows, the
M(D0D∗0) spread at a certain true mass is called broken-signal resolution. The broken-
signal resolution PDF is parameterized by the true mass so that the true lineshape is
convoluted with the broken-signal resolution PDF.

The broken-signal resolution PDF fbroken
res is determined by using the zero-width signal

MC samples. We use a triple-Gaussian with a common mean as the PDF, which is multi-
plied by the turn-on curve to reproduce the behavior at the threshold. The resolution is
parameterized using the MC samples of B+ only, because no background sources originate
from the B mode, i.e., the broken-signal resolution of the B+ and B0 modes are expected
to be the same. Details of the parameterization are summarized in Appendix C.3. Fig-
ure 5.14 shows the parameterized broken-signal resolution PDFs. They reproduce the
M(D0D∗0) distributions of the broken-signal for several choices of the input mass. Some
difference is found for the low input mass, e.g., 3.8724 GeV/c2. We ignore it since we



5.2. SIGNAL RECONSTRUCTED INCORRECTLY 57

confirm it does not affect the lineshapes after the convolution.
Finally, the resolution convolution is performed to determine the shape. To reduce the

computational time, a discrete convolution is adopted as an alternative method because
the convolution performance is adequate for the poor resolution. The convolution can
be represented by the sum of the broken-signal resolution PDFs weighted by the broken-
signal efficiency and the true lineshape,

fbroken =

(∑
µi

fbroken
res (M − µi, σ(µi))× εbrokenreco (M)× ftrue(µi)

)
× fturn-on(Mdiff), (5.9)

where µi is a set of arbitrary masses. To obtain a smooth line, we select five hundred
points at intervals at 0.8 MeV/c2 from the D0D∗0 threshold as µi. The largest point is
about 4.272 GeV/c2.

To verify the method, we compare the shape with the distribution obtained from the
default signal MC sample in Fig. 5.15. The pull distributions show no difference for both
B modes, and the lineshapes can reproduce the distributions well; therefore, the procedure
is reasonable.

Total Broken-Signal Efficiency for Each Lineshape

The method to calculate the total broken-signal efficiency is the same as the signal
(Sec. 5.1.3). To verify it, we compare the results with those obtained from the ratio
of the number of broken-signal events to that of generated events (Fig. 5.16). The depen-
dence on the true lineshape is well reproduced, but there are differences in some cases.
The largest difference is 1.7σ in the case using the signal MC sample with small width.
The efficiency is used for the final fit, but the deviation is considered as a systematic
uncertainty.
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Figure 5.14: TheM(D0D∗0) distributions of the broken-signal for B+ → K+(X(3872) →
D0[D∗0 → D0π0]) with the zero-width signal MC samples. The solid blue lines are the
total fit results. The dashed blue lines show the components of Gaussians. The vertical
black line represents the D0D∗0 threshold. In each panel, the bottom plot shows the pull
distributions.
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Figure 5.15: Comparison between the D0D∗0 invariant mass distribution of the broken-
signal (black points) and the lineshape with the discrete convolution (red line) with the
default signal MC samples. The bottom plot in each panel shows the pull distribution.
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Figure 5.16: Total broken-signal efficiency for five lineshapes when the M(D0D∗0) range
is to 4.0 GeV/c2: from left, the signal MC samples with a mass of 3.8729 GeV/c2 and a
width of 3.9 MeV, the signal MC samples with a mass of 3.8729 GeV/c2 and a width of
10 MeV, the signal MC samples with a mass of 3.8725 GeV/c2 and a width of 1.0 MeV, the
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the calculation method results, and red points represent the results obtained by counting
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Figure 5.17: The distributions of the D0D∗0 invariant mass for the generic background
using the background MC samples. In each panel, the red dashed line shows the fit result
with the threshold function.

5.3 Generic background

In this section, we check the generic background and determine the shape and yields
expected for the data. The latter is necessary for fit validation with pseudo experiments.

5.3.1 Shape

The number of background events increases with the phase space, as shown in the back-
ground distribution of theD0D∗0 invariant mass in Fig. 5.17. The shape can be reproduced
by the threshold function (red dashed line in Fig. 5.17)

fgenBG(M(D0D∗0)) = p0

√
M(D0D∗0)− p1, (5.10)

where p0 is a normalization factor, and p1 is the threshold. p1 can be deviated slightly
from the D0D∗0 threshold due to the effect of the mass resolution. Since it is difficult to
estimate precisely, it is fixed by the threshold.
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Table 5.3: Summary of the number of generic background events in the background MC
sample, the scaling parameter, and the yield expected in the data.

Mode Parameter Value

B+ → K+(X(3872) → D0[D∗0 → D0π0])

Yield in MC 1122
p0 (data) 47.8± 1.8
p0 (MC) 73.3± 2.2

Scale factor 0.652± 0.031
Yield expected for data 1122 × 0.652 = 731

B+ → K+(X(3872) → D0[D∗0 → D0γ])

Yield in MC 3357
p0 (data) 166.4± 3.4
p0 (MC) 219.4± 3.8

Scale factor 0.758± 0.020
Yield expected for data 3357 × 0.758 = 2545

B0 → K0(X(3872) → D0[D∗0 → D0π0])

Yield in MC 135
p0 (data) 7.87± 0.74
p0 (MC) 8.82± 0.76

Scale factor 0.89± 0.11
Yield expected for data 135 × 0.89 = 120

B0 → K0(X(3872) → D0[D∗0 → D0γ])

Yield in MC 468
p0 (data) 22.4± 1.2
p0 (MC) 30.6± 1.4

Scale factor 0.734± 0.053
Yield expected for data 468 × 0.734 = 343

5.3.2 Yield Expected for the Data

The number of background events for the background MC samples may differ from that
for the data because the branching fractions of B decay assumed for the background MC
sample are not the same as the nature. Therefore, the yield expected for the data is
calculated by a product of the yield in the background MC sample and the scaling factor
of the data to the MC sample.

The yield in the fit region, 3.868 GeV/c2 < M(D0D∗0) < 4.000 GeV/c2, is determined
with the background MC samples, summarized in Table 5.3. Next, we compare the yields
between the data and MC samples to determine the scaling factors. To avoid artificial bias,
the signal region of the data is hidden until the analysis procedure is completely validated;
thus, the data sideband region, 3.890 GeV/c2 < M(D0D∗0) < 4.000 GeV/c2, is used in
this study. Figure 5.18 shows the distribution of the generic background for the data
sideband. Compared with Fig. 5.17, the number of background events in the data is less,
although the shapes of the distributions are consistent. The scale factor is determined by
fitting both distributions of the data and MC samples and taking the ratio of the variables
corresponding to the area, p0; the resulting p0 values are summarized in Table 5.3. Finally,
the scale factors for B+ → K+D0[D∗0 → D0π0] modes and B+ → K+D0[D∗0 → D0γ]
are obtained as 0.652 and 0.758, respectively. For the B0 mode, the scale factors for
B0 → K0

SD
0[D∗0 → D0π0] modes and B0 → K0

SD
0[D∗0 → D0γ] are obtained as 0.89 and

0.734, respectively.
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Figure 5.18: The distributions of the D0D∗0 invariant mass for the generic background
using the data sideband. The solid red line shows the fit result with the threshold function
in each panel.

5.4 Fit Procedure

A simultaneous Unbinned Extended Maximum-likelihood fit is performed on theM(D0D∗0)
distributions. The distributions with different signal-to-background ratios due to the
D∗0 modes are separated. Furthermore, we treat the modes separately to measure the
relative branching fraction between B+ → X(3872)K+ and B0 → X(3872)K0. In to-
tal, we simultaneously fit four distributions: B+ → K+(X(3872) → D0[D∗0 → D0γ]),
B+ → K+(X(3872) → D0[D∗0 → D0π0]), B0 → K0

S(X(3872) → D0[D∗0 → D0γ]), and
B0 → K0

S(X(3872) → D0[D∗0 → D0π0]).
We treat three components in the fit: signal, broken-signal, and generic background.

The PDFs and constraints used for each component are summarized below.

• Signal component; Parameter conditions of the assumed lineshape are described
in the subsequent subsections. The lineshape is multiplied by the mass-dependent
signal efficiency and then convoluted the mass resolution at the peak to create a
PDF for the signal. The ratio of signal yields between D∗0 → D0γ and D∗0 → D0π0

is fixed by the total efficiency ratio for the assumed lineshape. The typical yield
ratio of D∗0 → D0π0 to D∗0 → D0γ is about 1.1 regardless of B modes. To measure
the relative branching fraction between B+ → X(3872)K+ and B0 → X(3872)K0,
the signal yield for each B mode is floated.



5.4. FIT PROCEDURE 63

• Broken-signal component; For both decay modes, parameters of the assumed line-
shape are always common with the signal PDF. For D∗0 → D0γ, we use the
lineshape-dependent histogram PDF estimated using the zero-width signal MC sam-
ples. The yield of the broken-signal relative to the signal is fixed to that obtained
with the default signal MC sample. For D∗0 → D0π0, we use a PDF in which the as-
sumed lineshape is multiplied by the efficiency and then discretely convoluted with
the mass-dependent broken-signal resolution PDF. The yield of the broken-signal
relative to the signal is fixed from the total efficiency ratio between the signal and
the broken-signal.

• Generic background component; The shape is the threshold function using a square
root. Note that it has no parameters for the shape. The parameter of the back-
ground yield for each decay mode is floated.

The subsequent subsection describes the detailed parameter conditions and a fit vali-
dation for each lineshape.

5.4.1 Breit-Wigner Lineshape

Parameter Conditions

The relativistic Breit-Wigner lineshape has two parameters: m and Γ0. (See Sec. 2.4.)
Both of them are floated in the fit. Figure 5.19 shows the comparison of the relativistic
Breit-Wigner lineshapes with various m’s and Γ0’s. For larger Γ0, the peak is easy to
move to the threshold. It implies that uncertainty is not always symmetric. We need to
evaluate it with a likelihood profile, and Minos in RooFit [69] is used for this purpose.

Fit Validation

We check if a fit result reproduces the input values correctly with pseudo experiments.
Pseudo experiments are performed using the following procedure.

1. Generate the D0D∗0 distributions according to the PDFs with arbitrary m and Γ0.
The number of generated events is determined by a random number according to
the Poisson distribution centered at the predicted value. For the signal and broken-
signal components, the predicted values are derived by the total efficiency and an
arbitrary branching fraction B(B → X(3872)K) × B(X(3872) → D0D∗0). For the
generic background, we use the values obtained from the background MC sample
and the data sideband.

2. Fit them with the PDFs floated m, Γ0, the signal yield, and the generic background
yield.

From eight hundred pseudo experiments, pull distributions of m, Γ0 and signal yields are
made to check the fit bias. The pull is defined as follows for asymmetric uncertainties [70]:

(true value)− (fit value)

(positive uncertainty)
(For (true value)− (fit value) ≥ 0),

(fit value)− (true value)

(negative uncertainty)
(Otherwise).

(5.11)

The pull distributions are evaluated by fitting with a Gaussian.
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Figure 5.19: Comparison of the relativistic Breit-Wigner lineshapes with the various
masses and widths.

The following five input values for m are to be verified under B(B → KX(3872)) ×
B(X(3872) → D0D∗0) = 0.80 × 10−4, which is the center value of the previous measure-
ment at Belle [2]:

m =


3.87228 GeV/c2 (−1.0σ from center value at Belle 2010),
3.87278 GeV/c2 (Center value at Belle 2010),
3.87339 GeV/c2 (+1.0σ from center value at Belle 2010),
3.87371 GeV/c2 (+1.5σ from center value at Belle 2010),
3.87510 GeV/c2 (Center value at BABAR 2008).

where we take 3.87278+0.0006
−0.0007 GeV/c2 as the m measurements at Belle 2010, which is

updated according to the updates of masses of D0 and D∗0. For each input m, we verify
five widths in the 1σ range of the previous measurements at Belle and BABAR:

Γ0 =
{

1.0 MeV, 3.0 MeV, 3.9 MeV, 5.0 MeV, 7.0 MeV
}
.



5.4. FIT PROCEDURE 65

In addition, the following seven branching ratios are assumed to verify the signal yields:

B(B → KX(3872))× B(X(3872) → D0D∗0)

=



0.58× 10−4 (−1σ from center value at Belle 2010),
0.69× 10−4 (−0.5σ from center value at Belle 2010),
0.80× 10−4 (Center value at Belle 2010),
0.91× 10−4 (+0.5σ from center value at Belle 2010),
1.02× 10−4 (+1σ from center value at Belle 2010),
1.67× 10−4 (Center value at BABAR 2008),
2.26× 10−4 (+1σ from center value at BABAR 2008).

Figures 5.20–5.21 summarize the means and standard deviations of pull for m and Γ0.
For the width, pull distributions are almost consistent with a Gaussian with a mean of
0.3 and a standard deviation of one regardless of the input mass. It indicates that the
fit bias is less than statistical uncertainty, so it is taken in the systematic uncertainty.
For the mass, the bias is smaller than the statistical uncertainty in most cases, and thus
the bias is basically accounted for the systematic uncertainty rather than corrected the
final results. However, the bias becomes large, especially when the input mass is around
the threshold or the input width is large. In the former case, the peak is so sharp that
the shape is indistinguishable due to the mass resolution. In the latter case, the PDF
summing the signal and broken-signal components becomes almost the same even when
m is changed, as shown in Figs. 5.22–5.23. A bias correction is applied only if the mass or
width obtained for data is expected to have a large mass bias compared to its statistical
uncertainty or the previous studies.

Means and standard deviations of pull for yield are summarized in Figs. 5.24–5.25.
They are almost consistent with a Gaussian with a mean of 0.1 and a standard deviation
of one. It means the bias is small enough compared to the statistical uncertainty, and
thus it is taken in the systematic uncertainty.

Comparison of Statistical Uncertainty with Previous Studies

To check improvement, we compare the expected precision with the most precise previous
measurement [2]. The expected statistical uncertainty of our measurement is evaluated
by the medians of fit outputs, upper uncertainties, and lower uncertainties obtained from
pseudo experiments. Here, the reason for using a median instead of a mean is to reduce
the impact caused by outliers or asymmetry of the output distribution. The results are
summarized in Table 5.4. Compared with the previous study, all statistical uncertainties
are improved by about 5–19%. It is almost consistent with the sensitivity improvement
expected when peak yield is improved by a factor of two (Sec. 4.3). Note that the statistical
precision of this measurement depends on the lineshape parameters. The dependence on
mass and width is shown in Fig. 5.26. The precision degrades for smaller mass or larger
width.
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input Γ0.
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Table 5.4: Comparison of medians of the output m, Γ0, and yield values with results in
the previous study.

Belle 2010
This study

Improvement
Assumption Output mean

m (MeV/c2) 3872.8 (+0.6/− 0.4) 3872.78 3872.96 (+0.51/− 0.44) 5%
Γ0 (MeV) 3.9 (+2.8/− 1.4) 3.9 3.7 (+2.3/− 1.3) 10%
Yield 50.1 (+14.8/− 11.1) 54.4 53.8 (+12.7/− 9.9) 19%
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Figure 5.24: Means of pull (left) and standard deviations of pull (right) for input B+

yield as a function of input branching fraction.
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Figure 5.26: Statistical precision, which is obtained from a center value over a statistical
uncertainty, for m (red), Γ0 (yellow), the signal yield from B+ decays (green), the signal
yield from B0 decays (blue), and the combined signal yield (violet). The opened circles
with lines represent the expectation of our measurement. The closed stars and squares
represent the Belle and BABAR measurements [2, 3], respectively.
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Figure 5.27: (Left) fω as a function of the branching ratio between X(3872) → J/ψω and
J/ψπ+π−. The gray line is the central value of the world-average branching ratio, and the
gray region is ±1σ of the uncertainty. (Right) Comparison among the lineshape PDFs
with seven fω values: the value under the central value of the world-average branching
ratio, and those under ±1σ, ±2σ, and ±3σ from the center value. For simplicity, the
other parameters are fixed to Eq. (2.20).

5.4.2 Flatté Lineshape

Parameter Conditions

The Flatté model has five free parameters: Ef , g, fρ, fω, and Γ0 (Sec. 2.4). The fit floating
all parameters is unstable because the X(3872) → D0D∗0 sample does not have enough
statistics in this analysis. Therefore, we apply some constraints to the fit.

According to the LHCb result [4], dg/dEf is fixed as follows because it was measured
with a precision of about 1%:

dg

dEf
= −15.11 GeV−1. (5.12)

The uncertainty due to the dg/dEf measurement is assigned in the systematic uncertainty.
The effective coupling constant to the J/ψω channel fω is fixed so that the branching

fraction of the J/ψπ+π− mode and that of the J/ψω mode are equal, consistent with
experimental results to date [33–35]. It is predicted by the ratio of areas of the Flatté
lineshapes as follows:

B(X(3872) → J/ψω)

B(X(3872) → J/ψπ+π−)
=

∫ mB−mK
mD0+mD∗0

fFlatte(M(J/ψω))dM(J/ψω)∫ mB−mK
mD0+mD∗0

fFlatte(M(J/ψπ+π−))dM(J/ψπ+π−)
. (5.13)

To save computational resources, the integration range is set from 3.77GeV/c2 to 3.97 GeV/c2,
where the lineshape converges sufficiently. Figure 5.27 (left) is fω as a function of the
ratio. When the branching ratio changes in the ±1σ ≡ ±0.4 range of the world-average
uncertainty, it shows that fω changes by about +37%/−21%. However, a comparison of
the lineshape PDFs under the fω changes, shown in Fig. 5.27 (right), indicates that the
effect on the lineshape is negligible.

Figure 5.28 (left) shows a comparison of the lineshapes scaled by all parameters by a
constant, which the parameter setting causes the scaling behavior for the J/ψπ+π− mode.
It shows that the width increases logarithmically rather than linearly when g increases
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Figure 5.28: (Left) Comparison among the lineshapes (NOT PDFs) with seven g values:
0.043, 0.065, 0.086, 0.108, 0.130, 0.151 and 0.173. (Right) The branching ratio between
X(3872) → D0D∗0 and J/ψπ+π− as a function of g. The ratios between the other
parameters are fixed to Eq. (2.20). The gray line is the central value under the LHCb
assumption (Eq. (2.20)), and the gray region is ±1σ of the uncertainty. The orange line
is the central value of the Belle previous measurement with the relativistic Breit-Wigner
lineshape [2], and the orange region is ±1σ of the uncertainty.

linearly. It is expected to cause asymmetric errors of g in the fit and makes it difficult
to determine the upper statistical uncertainty. Therefore as a countermeasure for the
former, we use Minos to obtain the asymmetric uncertainty from the likelihood profile.
As a countermeasure for the latter, we introduce the constraint of the branching ratio
between the J/ψπ+π− channel and the D0D∗0 channel. The ratio is defined as

B(X(3872) → J/ψπ+π−)

B(X(3872) → D0D∗0)
=

∫ mB−mK
mD0+mD∗0

fFlatte(M(J/ψπ+π−))dM(J/ψπ+π−)∫ mB−mK
mD0+mD∗0

fFlatte(M(D0D∗0))dM(D0D∗0)
. (5.14)

The branching fraction as a function of the coupling constant for fρ and Γ0 scaled si-
multaneously is shown in Fig. 5.28 (right). The larger the coupling constant is, the
smaller this ratio is. However, the B(X(3872) → D0D∗0) depends on its own mea-
surement. For this analysis, we transform the formula and apply the constraint on
B(B → X(3872)K)× B(X(3872) → J/ψπ+π−),

B(B → X(3872)K)× B(X(3872) → J/ψπ+π−)

=

∫ mB−mK
mD0+mD∗0

fFlatte(M(J/ψπ+π−))dM(J/ψπ+π−)∫ mB−mK
mD0+mD∗0

fFlatte(M(D0D∗0))dM(D0D∗0)

× B(B → X(3872)K)× B(X(3872) → D0D∗0).

(5.15)

Here, the branching fraction of the D0D∗0 mode is calculated as follows:

B(B+ → X(3872)K+)× B(X(3872) → D0D∗0) =
Nsig

2NBBB(Υ(4S) → B+B−)ϵtot
,

B(B0 → X(3872)K0)× B(X(3872) → D0D∗0) =
Nsig

2NBBB(Υ(4S) → B0B0)ϵtot
,

(5.16)

where Nsig is the signal yield on the D0D∗0 invariant mass distributions, which is deter-
mined by this fit. NBB is the number of the BB pairs in the data, and B(Υ(4S) → f)
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Table 5.5: Input values for the calculation of B(B → X(3872)K)×B(X(3872) → D0D∗0).

Parameter Value Reference
NBB (772± 11)× 106

B(Υ(4S) → B+B−) (51.4± 0.6)% [18]
B(Υ(4S) → B0B0) (48.6± 0.6)% [18]

is the branching fraction from Υ(4S) to a mode f . The factor of two in the denominator
is used to count the number of B mesons in the BB pairs. Their input values are sum-
marized in Table 5.5. ϵtot is the total efficiency, and it is the sum of ϵtot of the two D∗0

modes defined in Sec. 5.1.3.
For the value of B(B → X(3872)K) × B(X(3872) → J/ψπ+π−), we evaluate the

average of the independent measurements from BABAR [71] and Belle [31] and also
LHCb [72] for that the B+ mode (Table 5.6, Fig. 5.29). They are calculated by a weighted
average of the measurements using their uncertainties. The measurements of Belle and
BABAR contain systematic uncertainties of the same sources: the MC model and the
secondary branching fractions. Therefore, we conservatively consider full correlation for
the uncertainties of the sources and combine them. The values are obtained as

B(B+ → X(3872)K+)× B(X(3872) → J/ψπ+π−) = (8.10× 0.30)× 10−6, (5.17)

B(B0 → X(3872)K0)× B(X(3872) → J/ψπ+π−) = (4.1× 1.1)× 10−6. (5.18)

To include the uncertainty of B(B → X(3872)K)×B(X(3872) → J/ψπ+π−), we perform
the fit with a soft constraint by multiplying the likelihood (L) by constraint PDFs (C) as
a function of the branching fraction,

Lc =L × C(B(B+ → X(3872)K+)× B(X(3872) → J/ψπ+π−))

× C(B(B0 → X(3872)K0)× B(X(3872) → J/ψπ+π−)).
(5.19)

A normalized Gaussian is used as the constraint PDF,

C(B) = 1√
2πσBAvg.

exp

(
− (BAvg. − BMes.)

2

2(σBAvg.)2

)
, (5.20)

where BMes. is the branching fraction calculated by Nsig (Eq. (5.15)), BAvg. is the average
branching fraction, and σBAvg. is the BAvg. uncertainty. This method is also known as the
Gaussian constraint [73]. Strictly speaking, the correlation between two branching ratios
should be included. They are assumed to be uncorrelated since the branching fraction
from B+ depends exclusively on the LHCb measurement and that from B0 depends on
the other measurements.

There are insufficient events in our X(3872) → D0D∗0 sample to simultaneously de-
termine the three remaining parameters, i.e. g, fρ, and Γ0. Therefore, we focus on the
parameter regions where scaling behavior was observed at LHCb [4]. We search for the
best lineshape fitted to the M(D0D∗0) distribution when the following ratios of parame-
ters are fixed to the values measured at LHCb: fρ/Ef and Γ0/Ef are fixed based on the
measurements fρ = 1.8× 10−3 and Γ0 = 1.4 MeV under the assumption Ef = −7.2 MeV.
Therefore, the free parameter for the signal PDF is only g.
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Figure 5.29: (Top) Comparison of B(B+ → X(3872)K+)× B(X(3872) → J/ψπ+π−) at
BABAR [71], Belle [31], and LHCb [72]. (Bottom) Comparison of B(B0 → X(3872)K0)×
B(X(3872) → J/ψπ+π−) between BABAR [71] and Belle [31]. In each panel, the blue
line is the average value, and the blue region is the ±1σ of the uncertainty.

Fit Response

The validity of the fit is confirmed using pseudo experiments. The procedure of the pseudo
experiments is as follows.

1. Generate the D0D∗0 distributions according to the PDFs with an arbitrary g. Here,
fρ and Γ0 are also scaled so that the ratio to g is constant. The number of generated
events is determined by a random number according to the Poisson distribution
centered at the predicted value. For components of the signal and the broken-
signal, the predicted values are derived by the total efficiency and an arbitrary
branching fraction. For the generic background, we use the values obtained from
the background MC sample and the data sideband.

2. Fit them with the PDFs floated g of the Flatté parameters and the number of the
signal and that of the generic background. Here the constraint value of B(B →
X(3872)K)× B(X(3872) → J/ψπ+π−) is fluctuated by its uncertainty [73].

To verify the fit output, we check only the median of the output value distribution as a
function of the input value because the pull distribution could not be evaluated well due
to the large asymmetry.

The g response is shown in Fig. 5.30 (a). If g is smaller than 0.100, i.e., a narrow
lineshape, g obtained by the fit can reproduce the input value, because it is well-separated
from the generic background event even with the statistically limited data at Belle. In
the case of large g, fits fail, especially in determining an upper statistical uncertainty.
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Table 5.6: Summary of the B(B → X(3872)K) × B(X(3872) → J/ψπ+π−) values
used in the calculation of the weighted average, Eqs. (5.17)-(5.18). For the LHCb re-
sult [72], B(B → X(3872)K) × B(X(3872) → J/ψπ+π−) is obtained by a product of
B(B+→X(3872)K+)×B(X(3872)→J/ψπ+π−)

B(B+→ψ(2S)K+)×B(ψ(2S)→J/ψπ+π−)
, B(B+ → ψ(2S)K+), and B(ψ(2S) → J/ψπ+π−).

Experiment Branching fraction Value [×10−6] Ref.

Belle
B(B+ → X(3872)K+)× B(X(3872) → J/ψπ+π−) (8.63± 0.82± 0.52)× 10−6

[31]B(B0 → X(3872)K0)× B(X(3872) → J/ψπ+π−) (4.3± 1.2± 0.4)× 10−6

BABAR
B(B+ → X(3872)K+)× B(X(3872) → J/ψπ+π−) (8.4± 1.5± 0.7)× 10−6

[71]B(B0 → X(3872)K0)× B(X(3872) → J/ψπ+π−) (3.5± 1.9± 0.4)× 10−6

LHCb

B(B+ → X(3872)K+)× B(X(3872) → J/ψπ+π−)

B(B+ → ψ(2S)K+)× B(ψ(2S) → J/ψπ+π−)
(3.69± 0.07± 0.06)× 10−2 [72]

B(B+ → ψ(2S)K+) (6.24± 0.20)× 10−4 [18]
B(ψ(2S) → J/ψπ+π−) (34.68± 0.30)× 10−2 [18]
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Figure 5.30: The median of the output g values with respect to the input g values based
on 4000 pseudo experiments. The values near the points are the success rates of the fit
in the pseudo experiment. The blue line is an ideal relation, goutput = ginput. The red
line results from the fit with a first-order polynomial function in the input g range of
0.000–0.150. The green line shows the threshold function, Eq. (5.21).

The main reason is that the lineshape converges to a fixed form for large g (given the
assumed ratios for the other parameters); See Eq. (2.18). It causes the underestimation of
g. The bias is corrected in some cases by the relation between the median of the output
parameters and the input value; It can be reproduced by the following threshold function
(green lines in Fig. 5.30 (a)),

goutput = p0(1− p1 exp(p2 · ginput)), (5.21)

where goutput and ginput denote the output and input g values, respectively. The corrected
result is shown in Fig. 5.30 (b). It confirms that better linearity is obtained for g < 0.14.
If we observe a larger g than 0.14, we cannot determine the center value; therefore the
lower limit is determined using the likelihood profile. If the fit fails for the data, the
statistical uncertainty is re-evaluated with pseudo experiments.



Chapter 6

Fit to Data and Systematic
Uncertainty

This chapter describes the fit result for the real data for each lineshape model.

6.1 Relativistic Breit-Wigner Lineshape

Figure 6.1 presents the M(D0D∗0) distributions obtained from the data. Here, unbinned
maximum likelihood fits are performed simultaneously to the distributions for the D∗0

decay modes, D∗0 → Dπ0 and Dγ, and for the B+ and B0 samples, with the common
fit parameters m and Γ0. Table 6.1 summarizes the parameters obtained from the fit.
The significance is determined from the log-likelihood ratio −2 ln(L0/L) accounting for
the difference in the number of degrees of freedom, where L0 and L are the fit likelihood
without and with the peak component, i.e., the yield is dropped for the significance of each
B mode, and the parameters m and Γ0, and the yields of both B modes, are dropped for
the combined significance. Here the likelihood is smeared to take account of the systematic
uncertainties on the signal yields as described below. The significance is found to be 5.9σ
for B+ → X(3872)K+, and 5.2σ for B0 → X(3872)K0. To investigate contributions from
peaking background, we check the M(D0D∗0) distribution in the (Mbc,∆E) sideband
region, as shown in Fig. 6.2; here the sideband region is defined as 12 MeV/c2 < |Mbc −
mB| < 20 MeV/c2 or 30 MeV < |∆E| < 50 MeV. The absence of peaks confirms that
any contribution from peaking background is small

The lineshape parameters are determined to be

m = 3873.71+0.56
−0.50(stat)± 0.13(syst) MeV/c2,

Γ0 = 5.2+2.2
−1.5(stat)± 0.4(syst) MeV.

Table 6.1: Results using the relativistic Breit-Wigner lineshape: the fitted mass, width
and signal yield, the total signal efficiency, and the significance.

Mode m (MeV/c2) Γ0 (MeV) Nsig ϵtot (×10−4) significance
Combined 3873.71+0.56

−0.50 5.2+2.2
−1.5 70.5+13.6

−11.5 8.70 7.5σ
X(3872)K+ — — 53.2+11.6

−9.8 6.92 5.9σ
X(3872)K0 — — 17.3+4.7

−4.1 1.78 5.2σ

75
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Signal Broken signal Generic background Total
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Figure 6.1: The M(D0D∗0) distributions with the fit result with the relativistic Breit-
Wigner lineshape for B+ → X(3872)K+ (top) and B0 → X(3872)K0 (bottom). The left
and right rows are for D∗0 → D0γ and D∗0 → D0π0, respectively. The points with error
bars represent data. The solid blue line shows the total fit result. The dashed blue and
green lines show the signal and broken-signal contributions, respectively. The dashed red
line shows the generic background contribution.

We consider the following nine sources of systematic uncertainty on the mass, and the
width, as listed in Table 6.2:

(i) The systematic uncertainty due to the assumed shape of the generic background is
estimated by performing a fit after changing the PDF from the threshold function
with a square root to an inverted ARGUS function [74]

fARGUS(M) = p0 ·M

√
1−

(
M

p1

)2

· exp
[
p2

(
1−

(
M

p1

)2)]
, (6.1)

where p0 and p1 are the normalization factor and the threshold, respectively. In the
fit, p1 is fixed to the D0D∗0 threshold, and p2 is floated. The symmetric both-side
uncertainty based on the change from the original result is taken as a conservative
estimation of the systematic uncertainty.

(ii) The mass resolution is validated by comparing the data and MC ∆E resolution
in the B+ → D∗0π+π−π+ control sample, which has a similar decay topology to
B → (X(3872) → D0D∗0)K. This resolution is consistent in data and MC, so no
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Figure 6.2: The M(D0D̄∗0) distributions in the Mbc or ∆E sideband region for B+ →
X(3872)K+ (top) and B0 → X(3872)K0 (bottom). The left and right rows are for
D̄∗0 → D̄0γ and D̄∗0 → D̄0π0, respectively. In each panel, the red solid line is the fit
result with the generic background PDF. The bottom plot is the pull distribution.

correction is applied, and the associated uncertainty is assigned by performing fits
with the resolution varied by the corresponding precision, ±1σ ≡ ±13%. Here,
because the broken-signal resolution of the D∗0 → D0π0 mode is also affected by
the degradation of the resolution, it is varied simultaneously.

(iii) The systematic uncertainty arising from the mass dependence of the efficiency is
evaluated by the quadratic sum of the changes induced by ±1σ variations of the
parameters p1–p3 in Eq. (5.1) and (5.8).

(iv) The systematic uncertainty arising from the ratio of the broken-signal to the signal
is evaluated by the quadratic sum of the changes induced by ±1σ variations of
the corresponding parameters, e.g., p0 in Eq. (5.1) and (5.8), and the yield of the
broken-signal relative to the signal for D∗0 → D0γ obtained with the default signal
MC sample. For the total broken-signal efficiency of D∗0 → D0γ, a 1.7σ difference
is found for a small width in the validation; See Sec. 5.2.2. Because the fitted width
is large enough, we ignore the effect.
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(v) The systematic uncertainty due to possible bias in the fit is evaluated by perform-
ing the pseudo experiments containing the signal and background components. The
pseudo data is generated from the lineshape and the yield based on the data re-
sult. The input value of a parameter subtracted from the median of the parameter
distribution is regarded as the corresponding uncertainty.

(vi) The uncertainty arising from the finite precision of the D0 mass and the ∆(mD∗0 −
mD0) mass difference is taken as the ±1σ uncertainty of 2mD0 +∆(mD∗0 −mD0) =
3871.69± 0.10 MeV/c2 following Ref. [18].

(vii) The nonzero D∗0 width (ΓD∗0) leads to three potential sources of bias: a bias arising
from the mass difference technique, a bias arising from the consideration of the D∗0

width in the lineshape model, and a bias due to the interference between X(3872) →
D0D∗0 and D0D∗0. These three sources of bias are evaluated as follows. For the first
bias, two M(D0D∗0) distributions are formed in MC with a broad lineshape: one
where mD∗0 in Eq. (4.4) is fixed to the nominal value (as in our analysis), and one
where mD∗0 is replaced by the true D∗0 mass generated by EvtGen, where ΓD∗0 =
65.5 keV [42] is assumed. Each distribution is fitted with the PDF of the signal
component, and the largest difference is regarded as the associated uncertainty.
For the second bias, the distribution for data is fitted after smearing the assumed
lineshape with a Breit-Wigner function of ΓD∗0 = 65.5 keV, and the change from the
original result is regarded as the associated uncertainty. The third bias is ignored
since the interference effect is negligible above the threshold [75]. The uncertainties
associated with the first and second biases are added in quadrature.

(viii) Limited MC statistics lead to uncertainty on the shape of the broken-signal for
D∗0 → D0γ. This is evaluated by repeating the fit while varying each bin entry of
the MC PDF histogram assuming Poisson distributions. The 68% interval of the
distributions of the resulting fit values is used to assign the systematic uncertainty.

(ix) The uncertainty arising from the fixed ratio of the signal yields for D∗0 → D0γ
to D0π0 is evaluated by performing new fits, and varying the relative branching
fraction between D∗0 → D0γ and D∗0 → D0π0 by ±1σ [18]. The difference from
the original result is treated as the uncertainty.

The product branching fraction is calculated as follows:

B(B → X(3872)K)× B(X(3872) → D0D∗0) =
Nsig

2NBBB(Υ(4S) → BB)ϵtot
, (6.2)

where ϵtot is the sum of products of the signal efficiency and the branching fraction of the
intermediate states (Sec. 5.1.3), and NBB is the number of BB meson pairs in the data.
For B(Υ(4S) → BB), 0.514 and 0.486 are assigned for that of the B+B− mode and that
of the B0B0 mode, respectively [18]. The results are

B(B+ → X(3872)K+)× B(X(3872) → D0D∗0) = (0.97+0.21
−0.18(stat)± 0.10(syst))× 10−4,

B(B0 → X(3872)K0)× B(X(3872) → D0D∗0) = (1.30+0.36
−0.31(stat)

+0.12
−0.07(syst))× 10−4,

where we consider eight sources of systematic uncertainty in addition to the sources (i)–
(ix), as listed in Table 6.3:
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(x) The uncertainty of the tracking efficiency is estimated using a D∗+ → π+(D0 →
π+π−K0

S) sample for tracks with high momentum. The efficiency is consistent in
data and MC; the precision of the test, 0.35% per track, is taken as a systematic
uncertainty. For tracks with low momentum, the sample of soft-charged pions from
D∗− in the B0 → D∗−π+ decay is used. The ratio of tracking efficiency obtained
for MC and data is applied as a correction factor. The uncertainty in the correction
factor is regarded as a systematic uncertainty.

(xi) The uncertainty of the efficiency of hadron identification is estimated using the
inclusive D∗+ → (D0 → K−π+)π+ sample. A correction factor is applied to the
signal efficiency based on the ratio of the hadron identification efficiencies obtained
for MC and data. The uncertainty in the correction factor is regarded as a systematic
uncertainty.

(xii) The uncertainty of the efficiency of the K0
S reconstruction is evaluated using the

D∗+ → (D0 → K0
Sπ

0)π+ sample. A correction factor is applied to the signal effi-
ciency based on the efficiency ratio obtained for MC and data. The uncertainty in
the correction factor is regarded as a systematic uncertainty.

(xiii) The uncertainty of the efficiency of the π0 detection is evaluated using the τ− →
π−π0ντ sample. The ratio of the π0 efficiency obtained for MC and data is applied
to the signal efficiency as a correction factor. The uncertainty in the correction
factor is regarded as a systematic uncertainty.

(xiv) The uncertainty of the efficiency of the γ detection is evaluated using the B+ →
(χc1 → J/ψγ)K+ sample: 3.0% is assigned for the D∗0 → D0γ decay mode.

(xv) The uncertainty of
∑
ϵ×BIMS mainly arises from the uncertainties on the D0 branch-

ing fraction, and the limited size of the signal MC sample. In addition, validation of
the calculation method for the total signal efficiency shows input-output differences
in the B0 decay mode larger than expected from statistical fluctuations: the largest
of these is assigned as a systematic uncertainty. These sources of uncertainty are
added in quadrature.

(xvi) The number of BB pairs in the data set is measured to be (772 ± 11) × 106: the
associated uncertainty is set to 1.4%.

(xvii) The uncertainties on the branching fractions B(Υ(4S) → B+B−) = (51.4 ± 0.6)%
and B(Υ(4S) → B0B0) = (48.6 ± 0.6)% [18] are also included. In Ref. [18],
B(Υ(4S) → BB) is assumed to be one; therefore the correlation between B(Υ(4S) →
B+B−) and B(Υ(4S) → B0B0) is assumed to be fully negative.

The relative branching fraction between B0 → X(3872)K0 and B+ → X(3872)K+ is
measured as

B(B0 → X(3872)K0)

B(B+ → X(3872)K+)
= 1.34+0.47

−0.40(stat)
+0.10
−0.12(syst),

with the same sources of systematic uncertainty as for the branching fractions; some
uncertainties cancel, or partially cancel, in the ratio.
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Table 6.2: Summary of systematic uncertainty for the mass and the width of the rela-
tivistic Breit-Wigner lineshape.

Source m (MeV/c2) Γ0 (MeV)
(i) Generic BG PDF ±0.07 ±0.38
(ii) Mass Resolution ±0.02 −0.11/+0.13
(iii) Mass dependence of efficiency ±0.02 −0.08/+0.07
(iv) Ratio of broken-signal BG to signal ±0.01 ±0.02
(v) Fit bias −0.02/+0.00−0.02/+0.00
(vi) D∗0 and D0 masses ±0.10 · · ·
(vii) D∗0 width −0.01/+0.02 ±0.02
(viii) Broken-signal shape for D∗0 → D0γ ±0.00 ±0.01
(ix) Signal ratio of D∗0 → D0γ to D0π0 ±0.01 ±0.05

Total ±0.13 ±0.4

Table 6.3: Summary of systematic uncertainty for the branching fraction measurements
using the relativistic Breit-Wigner lineshape.

Source X(3872)K+ (%)X(3872)K0 (%)Ratio(K0/K+) (%)
(i) Generic BG PDF ±8.2 ±1.4 ±6.7
(ii) Mass Resolution −0.2/+0.4 −0.3/+0.4 −0.1/+0.0
(iii) Mass dependence of efficiency −2.7/+2.0 −2.3/+1.7 −0.5/+0.6
(iv) Ratio of broken-signal BG to signal ±2.1 ±0.6 ±2.1
(v) Fit bias −1.3/+0.0 −7.3/+0.0 −4.5/+0.0
(vi) D∗0 and D0 masses · · · · · · · · ·
(vii) D∗0 width ±0.0 ±0.0 ±0.0
(viii) Broken-signal shape for D∗0 → D0γ ±0.1 ±0.1 ±0.1
(ix) Signal ratio of D∗0 → D0γ to D0π0 ±0.8 ±0.2 ±0.6
(x) Tracking efficiency ±2.1 ±2.4 ±0.3
(xi) PID efficiency ±2.9 ±2.4 ±0.4
(xii) K0

S reconstruction ±0.2 ±1.0 ±0.8
(xiii) π0 reconstruction ±1.9 ±1.9 · · ·
(xiv) γ reconstruction ±1.5 ±1.5 · · ·
(xv)

∑
ϵ× BIMS ±1.4 −3.1/+2.3 −1.7/+0.9

(xvi) NBB ±1.4 ±1.4 · · ·
(xvii)B(Υ(4S) → BB) ±1.2 ±1.2 ±2.4

Total ±10 −9.6/+5.7 −9.0/+7.6
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Figure 6.3: The M(D0D∗0) distributions with the fit result with the Flatté lineshape for
B+ → X(3872)K+ (top) and B0 → X(3872)K0 (bottom). The left and right rows are
for D∗0 → D0γ and D∗0 → D0π0, respectively. The points with error bars represent the
data. The solid blue line show the total fit result. The dashed blue and green lines show
the signal and broken-signal contributions, respectively. The dashed red line shows the
generic background contribution.

6.2 Flatté Lineshape

The fit result for the data is shown in Fig. 6.3 and Table 6.4. The fitted g is 0.29+2.69
−0.15,

where the uncertainty is statistical. A systematic uncertainty arising from the analysis
method, e.g., the sources (i)-(xvi), are summarized in Table 6.5. The method to evaluate
the uncertainty due to sources from (i) to (ix) is the same as in the measurement of
the relativistic Breit-Wigner lineshape. Sources (x) to (xvii) also contribute through the
constraint on the branching fraction applied in the fit. They are evaluated by performing
fits after varying each parameter by ±1σ, and adding the resulting changes in quadrature.
Regarding the fitter bias (vii), the bias causes the upper systematic uncertainty, however,
its magnitude was not determined based on a study of the pseudo experiments; Details are
described in Sec. 5.4.2. With the total lower systematic uncertainty, therefore, the lower
limit is determined using the likelihood profile. The likelihood including the systematic
uncertainties listed in Table 6.5, L(g), is shown as the black solid line in Fig. 6.4. Noting
that the curve is asymmetric, with a larger integral above than below the best fit value,
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Table 6.4: Results using the Flatté lineshape: the fitted coupling constant g, and the
signal yield.

Mode g Nsig

Combined 0.29+2.69
−0.15 90.9+11.3

−15.9

X(3872)K+ — 77.9+9.6
−13.5

X(3872)K0 — 13.0+3.0
−2.9

we conservatively set the lower limit at 90% or 95% credibility glower from∫ gbest

glower

L(g)dg = 0.8

∫ gbest

0

L(g)dg for 90% credibility,

∫ gbest

glower

L(g)dg = 0.9

∫ gbest

0

L(g)dg for 95% credibility,

(6.3)

where gbest denotes the coupling constant at the maximum likelihood; the derivation of
these requirements is described in Appendix E. The effect of fixing dg/dEf , fρ, and Γ0

to the values measured by LHCb is studied by varying each parameter by ±1σ. Separate
curves of the relative likelihood L/L0 for each case are also shown in Fig. 6.4, where
L = L(g) is the likelihood of the fit and L0 is the likelihood of the best fit for each
parameter set. The corresponding fit results and lower limits are summarized in Table 6.6.
The L0 values for the different parameter sets vary in a small range around the value for
set (1): the best is favoured by only 1.2σ relative to set (1), and the worst is disfavoured by
3.4σ. The loosest lower limit is obtained for the parameter set (6), one of the disfavoured
scenarios, where fρ is changed by +1σ. We conservatively choose this as the final lower
limits for this study:

g > 0.094 at 90% credibility, and

g > 0.075 at 95% credibility.

These limits correspond to

Ef < −6.2 MeV at 90% credibility, and

Ef < −5.0 MeV at 95% credibility,

which is derived from dg/dEf = −15.11 GeV−1.
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Table 6.5: Summary of systematic uncertainties for the coupling constant g of the Flatte
lineshape.

Source g
(i) Generic BG PDF < O(0.001)
(ii) Mass Resolution −0.011/+0.003
(iii) Mass dependence of efficiency −0.012/+0.024
(iv) Ratio of broken-signal BG to signal −0.007/+0.020
(v) Fit bias −0.000/+∞
(vi) D∗0 and D0 masses · · ·
(vii) D∗0 width −0.006/+0.001
(viii) Broken-signal shape for D∗0 → D0γ−0.001/+0.002
(ix) Signal ratio of D∗0 → D0γ to D0π0 −0.000/+0.004

(x)-(xvii) Branching fraction −0.021/+0.042
Total −0.029/+∞

Table 6.6: Summary of the seven parameter sets used in the evaluation of lower limits on
the coupling constant g, showing the g of the best fit, the g lower limits, and corresponding
Ef upper limits. The parameter sets are the center values of dg/dEf , Γ0, and fρ measured
at LHCb [4] (1), changing dg/dEf by +1σ (2), changing dg/dEf by −1σ (3), changing Γ0

by +1σ (4), changing Γ0 by −1σ (5), changing fρ by +1σ (6), and changing fρ by −1σ
(7). For the parameter set (7), no lower limit is determined, because no best fit is found
in the range g < 50.

Parameter set (1) (2) (3) (4) (5) (6) (7)

dg/dEf (GeV−1)
−15.11 −14.95 −15.27 −15.11 −15.11 −15.11 −15.11

(+1σ) (−1σ)

Γ0/Ef
−0.19 −0.19 −0.19 −0.29 −0.09 −0.19 −0.19

(+1σ) (−1σ)

fρ/Ef (GeV−1)
−0.25 −0.25 −0.25 −0.25 −0.25 −0.38 −0.12

(+1σ) (−1σ)
g of best fit 0.29 0.27 0.31 0.21 0.46 0.17 > 50

g lower limit at 90% CL > 0.143 > 0.136 > 0.151 > 0.105 > 0.212 > 0.094 —
at 95% CL > 0.113 > 0.108 > 0.119 > 0.082 > 0.167 > 0.075 —

Ef upper limit at 90% CL (MeV) < −9.5 < −9.0 < −10.0 < −6.9 < −14.0 < −6.2 —
at 95% CL (MeV) < −7.6 < −7.2 < −7.9 < −5.5 < −11.1 < −5.0 —
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Figure 6.4: For each of seven parameter sets, the likelihood ratio L/L0 is shown, as a
function of the coupling constant g, where L = L(g) is the fitted likelihood and L0 is the
likelihood of the best fit for that parameter set. The solid black line shows the parameter
set (1). The red and blue dotted lines show parameter sets (2) and (3), respectively. The
red and blue dashed lines show sets (4) and (5), and the red and blue dot-dashed lines
show sets (6) and (7), respectively. The parameter sets are described in Table 6.6. Circles
on the lines show the best fit g.
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6.3 Comparison between Breit-Wigner and Flatté Line-

shapes

We investigate which lineshape model best fits the M(D0D̄∗0) distribution better using
a test statistic with t = −2 ln(LB-W/LFlatte). Here, LB-W is the best fit likelihood for the
Breit-Wigner lineshape, and LFlatte is the best likelihood without the RDD∗ constraint
term for the Flatte lineshape in the parameter setting (1). For data, we obtain t = −8.5,
i.e. the Breit-Wigner lineshape is favored. Based on the t distribution obtained from
pseudo experiments, the exclusion level for the Flatté lineshape is only 2.2σ; this level
declines when the systematic uncertainties are taken into account. Thus, neither lineshape
can be excluded.
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Figure 6.5: The t distributions obtained from pseudo experiments with a hypothesis
of the Breit-Wigner lineshape (red) and the Flatte lineshape (blue). For each type of
pseudo experiments, we use the parameters obtained from the data. The dashed curve
is the fit results with an asymmetric Gaussian: (µ = −7.4 ± 0.4, σupper = 3.7 ± 0.3,
and σlower = 6.9 ± 0.3) for the simulated Breit-Wigner hypothesis, and (µ = 1.0 ± 0.3,
σupper = 3.3 ± 0.2, and σlower = 4.3 ± 0.2) for the simulated Flatte hypothesis. Here, µ
denotes a mean, and σupper and σlower are standard deviations for the upper and lower
sides, respectively. The black arrow is the t value observed for the data. Any systematic
uncertainty is not taken into account in this figure.





Chapter 7

Discussion

7.1 Result of This Study

We examine the X(3872) lineshape on the D0D∗0 decay distribution using the full data
at Belle. When fitting it with the relativistic Breit-Wigner lineshape, its mass and width
are measured as

m = 3873.71+0.56
−0.50(stat)± 0.13(syst) MeV/c2,

Γ0 = 5.2+2.2
−1.5(stat)± 0.4(syst) MeV.

Comparison with the previous studies using the D0D∗0 decay [2, 3, 56] is shown in the
first and second panels from the top of Fig. 7.1. It indicates that the precision of the
measurement is improved by at least 22%, and the values are in good agreement with
those measured in the previous studies. The measured branching fractions are as follows:

B(B+ → X(3872)K+)× B(X(3872) → D0D∗0) = (0.97+0.21
−0.18(stat)± 0.10(syst))× 10−4,

B(B0 → X(3872)K0)× B(X(3872) → D0D∗0) = (1.30+0.36
−0.31(stat)

+0.12
−0.07(syst))× 10−4.

It is the first observation of the signal from B0 decays with more than 5σ significance.
The ratio of the branching fractions is determined to be

B(B0 → X(3872)K0)

B(B+ → X(3872)K+)
= 1.34+0.47

−0.40(stat)
+0.10
−0.12(syst).

The properties of the branching fractions are in good agreement with the previous studies
using the D0D∗0 decay (from the third to the last panels from the top of Fig. 7.1).

We compare these results with the analysis of the Breit-Wigner lineshape using the
J/ψπ+π− decay mode to date. The measured Breit-Wigner mass is significantly higher
than the D0D∗0 threshold, while the world-average mass with the J/ψπ+π− decay is
consistent with the threshold. The measured width and B(B0 → X(3872)K0)/B(B+ →
X(3872)K+) are shifted from the average with the J/ψπ+π− decay by 2.6σ and 2.0σ,
respectively [45]. This study supports the trend that these properties in the X(3872) →
D0D∗0 decay mode differ from those in the J/ψπ+π− decay mode as shown by the previous
studies using the D0D∗0 decay. It means that the Breit-Wigner mass and width cannot
describe the X(3872) state universally.

The lineshape distortion is explained by the coupled-channel effect. In this study, we
also examine the lineshape using a model considering a coupled channel effect, Flatté
lineshape. In such a model, it is difficult to determine all the parameters with the narrow

87
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Figure 7.1: Comparison of the relativistic Breit-Wigner results obtained in this study
(blue), the previous studies in the D0D∗0 decays (black) and the world-average val-
ues in the J/ψπ+π− decays (red). From the top panel, results for m, Γ0, B(B+ →
X(3872)K+) × B(X(3872) → D0D∗0), B(B0 → X(3872)K0) × B(X(3872) → D0D∗0),
and B(B0 → X(3872)K0)/B(B+ → X(3872)K+) are shown. The error bar of each point
is the total uncertainty. The filled area of each point shows the statistical uncertainty.
The previous studies with parentheses show the results using the X(3872) decay mode
written in parentheses. The value on the right shows the precision of each measurement.
Here, the systematic and statistical uncertainties are combined by taking the square root
of the sum of squares. If the upper and lower uncertainties are different, they are aver-
aged.
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peak of the J/ψπ+π− mode due to the scaling behavior and the detector resolution, as
reported by the LHCb analysis [4]. Thus, based on the analysis with the J/ψπ+π− decay
at LHCb, we established the method to measure the coupling constant to the DD∗ channel
g as the undetermined parameter. As a result, we find that the fitted value of g is in a
region that is relatively insensitive to the underlying value. We determine its lower limit
to be

g > 0.094 at 90% credibility.

g > 0.075 at 95% credibility.

It shows the coupled-channel effect cannot be ignored in the X(3872) lineshape analysis.
This limit at 90% credibility corresponds to an upper limit Ef < −6.2 MeV, which is
slightly more stringent than the LHCb measurement, −270 MeV < Ef < −2.0 MeV
at 90% credibility [4]. This suggests that analysis using D0D∗0 can indeed complement
the study of the J/ψπ+π− mode in this framework. The limit includes the solution
Ef = −7.2 MeV assumed in the scattering amplitude analysis at LHCb. There is still
uncertainty in the pole positions of the scattering amplitude, because the limit is not so
stringent.

Both lineshapes fit the invariant mass distribution obtained from the data. Finally, we
examine which lineshape model fits the invariant mass distribution. Based on a likelihood
ratio from the fits, the Breit-Wigner lineshape is favored, but the Flatté lineshape is not
significantly excluded.

Analysis of a large dataset will be important, because the statistical uncertainty dom-
inates in both of the lineshape measurements. It would be accomplished by adding more
D0 modes to reconstruct and using higher statistical data. Such an analysis is possible in
the Belle II experiments. Moreover, we need a more sensitive analysis, especially for the
Flatté lineshape measurements. The dominant sources of systematic uncertainty in our
measurement and their necessary improvements are as follows.

• Systematic uncertainty due to the fitter bias: Because the bias decreases as data
size increases, the data size needs to be improved.

• Systematic uncertainty due to fρ and Γ0: Because the parameters contribute differ-
ently to lineshapes for both J/ψπ+π− and D0D̄∗0 decays*1, and the relative branch-
ing fraction B(X(3872) → J/ψπ+π−)/B(X(3872) → D0D∗0), it is necessary to
improve all of their precision.

Therefore, improving the statistic of the X(3872) → D0D̄∗0 decay sample is essen-
tial to suppress these uncertainties, too. Especially for a measure of the latter un-
certainty, a simultaneous fit of the J/ψπ+π− and D0D∗0 decay modes is also useful
to handle all of the information effectively. For the J/ψπ+π− sample, an exclusive
B+ → (X(3872) → J/ψπ+π−)K+ sample at LHCb is the most appropriate from view-
points of statistic. Here, the exclusive B decay is a key to applying the constraint of
the relative branching fraction. Furthermore, in the future, resonance energy scans with
a high-resolution beam are planned for the PANDA experiment [76]. The resolution is
several ten times better than the mass resolution at LHCb. It will provide detailed line-
shapes of theX(3872) lineshape in the J/ψπ+π− decays, which was hidden by the detector

*1If fρ is varied, the lineshapes in both J/ψπ+π− and D0D̄∗0 decays barely vary, whereas B(X(3872) →
J/ψπ+π−)/B(X(3872) → D0D∗0) aries in proportion to fρ. If Γ0 is varied, not only the lineshape widths
in both J/ψπ+π− and D0D̄∗0 decays but also B(X(3872) → J/ψπ+π−)/B(X(3872) → D0D∗0) vary.
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resolution at LHCb. These could fully determine the lineshape in the coupled-channel
framework, and greatly contribute to determining the internal structure.
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Figure 7.2: Top view of the Belle II detector [79].

7.2 Prospect for the Belle II Experiment

The Belle II experiment [77] is an advanced B-factory experiment using an energy-
asymmetric e+e− collider, SuperKEKB [78]. Our goal is to advance our understanding
of particle physics broadly, e.g., search for physics beyond the Standard Model, precise
measurements of electroweak interaction parameters, and exploration of properties of the
strong interaction; The planned physics projects are summarized in Ref. [79]. Collision
data began to be collected with the Belle II detector in 2019, aiming to acquire 50 times
more data than Belle.

The configuration of the Belle II detector is shown in Fig. 7.2. It consists of seven sub-
detectors: a two-layer silicon pixel detector (PXD), a four-layer double-sided silicon strip
detector (SVD) and a 56-layer central drift chamber (CDC), a time-of-propagation counter
in the barrel region of the detector (TOP), an aerogel ring-imaging Cherenkov counter in
the endcap region (ARICH), an electromagnetic calorimeter comprised of CsI(Tl) crystals
(ECL), and a K0

L and muon detector (KLM). All the sub-detectors were upgraded to
tolerate the high background environment associated with an increase of instantaneous
luminosity, improve the resolutions of the vertex position and momentum measurements,
improve the particle identification performance, and so on.

At Belle II, photons and π0’s can be reconstructed as well as the Belle detector [59].
It provides the best environment for the analysis in the B → K(X(3872) → D0D∗0)
decay. As the first milestone of this program, we searched B → K(X(3872) → J/ψπ+π−)
with the initial data collected with the Belle II detector. Furthermore, the tools for
the Belle II distributed computing system were developed to perform physics analysis
efficiently with this system, which is important for all physics analyses at Belle II. The
subsequent subsections describe summaries of the achievements.
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7.2.1 Revisiting X(3872) at Belle II

We searched B → K(X(3872) → J/ψπ+π−) using 62.8 fb−1 data collected at a center-of-
mass system energy of 10.58 GeV with the Belle II detector at the SuperKEKB accelerator
in 2019. This subsection describes the event reconstruction and selection, the validation
using the control sample, and the result of the X(3872) search.

Event Reconstruction and Selection

We analyze only events that passed the following preselection. The number of good tracks
with pT < 0.2 GeV/c, |dr| < 2.0 cm and |dz| < 4.0 cm is greater than three, where pT ,
dr and dz are a transverse momentum, a signed distance of the POCA in the r–ϕ plane
and that along the z-axis, respectively.

For the track reconstruction except K0
S, well-measured tracks, |dr| < 1.0 cm and |dz| <

3.0 cm, are used. In addition, charged track candidates are selected using the likelihood
Lh for a particle hypothesis h, given based on particle identification information of all sub-
detectors. Moreover, for charged kaon candidates, the kaon identification likelihood ratio,
LK/(Lπ+LK+Lp+Le+Lµ+Ld), is required to be greater than 0.1. For charged lepton
candidates, the lepton identification likelihood ratio, Ll/(Lπ +LK +Lp +Le +Lµ +Ld),
is required to be greater than 0.5 (l = e, µ). Only for electron candidates, the energies
of the bremsstrahlung photons in the vicinity of the tracks of the electron candidates are
recovered for the momentum calculation.

The candidates of K0
S mesons are reconstructed from a pair of oppositely-charged

tracks, for which the pion mass is assumed. The candidates are selected by the criteria
described in Ref. [80]. The π+π− invariant mass is required to be in the range of 4σ from
the peak mean, 490 MeV/c2 < M(π+π−) < 506 MeV/c2.

The candidates of J/ψ mesons are reconstructed from a pair of oppositely-charged
lepton tracks. We select the J/ψ candidates within around 3σ from the peak mean for
the µ+µ− decay mode, i.e., 3.070 GeV/c2 < M(µ+µ−) < 3.117 GeV/c2. For the e+e−

decay mode, 3.065 GeV/c2 < M(e+e−) < 3.117 GeV/c2 is required to consider the tail
component. In order to improve the ∆E and Mbc resolutions, a mass-constrained fit of
J/ψ candidates is applied.

The candidates of B mesons are reconstructed in the decay modes of B+ → J/ψπ+π−K+

and B0 → J/ψπ+π−K0
S. The B candidates with Mbc > 5.27 GeV/c2 and |∆E| <

0.02 GeV are selected. To reduce more background in the X(3872) signal region, a
requirement of the π+π− invariant mass is useful [31]. The same requirement as [31],
M(π+π−)−M(l+l−π+π−)+mJ/ψ > −0.150 GeV/c2, is adopted only for the later X(3872)
analysis. Here, M(π+π−), M(l+l−π+π−) and mJ/ψ mean the π+π− invariant mass, the
l+l−π+π− invariant mass and the nominal J/ψ mass, respectively. In order to suppress
background contributed from continuum events, we also require R2 < 0.4, where R2 is
the normalized Fox-Wolfram moment [81]. After reconstructing the B → KJ/ψπ+π−

decay, the best candidate selection is used to reduce the multiplicity of the B candidates.
It is performed by selecting one candidate with the lowest |∆E| per one event.

Control Sample Study using B → ψ(2S)K

The control sample study is performed as a validation analysis for the rediscovery work.
The J/ψπ+π− distribution for data is shown in Fig. 7.3. In order to extract the ψ(2S)
events, we perform an Unbinned Extended Maximum-likelihood fit. A triple Gaussian
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Figure 7.3: The M(J/ψπ+π−) distributions on the ψ(2S) signal region with the real
data. Here, the solid blue line shows the total fit result. The striped blue area and the
dotted red line represent the signal and background contributions, respectively.

Table 7.1: B → ψ(2S)K signal yields and branching fraction for data.

B+ → ψ(2S)K+ B0 → ψ(2S)K0

Signal yield with data 409.07± 23.4 104.30± 11.5
Signal efficiency ϵ (%) 22.69± 0.16 17.40± 0.17
Branching fraction 6.21± 0.36 6.31± 0.70

World-average Branching fraction [18] (6.24± 0.20)× 10−4 (5.8± 0.5)× 10−4

Measured / World average 0.995± 0.066 1.08± 0.15

with a common mean is used as a PDF for ψ(2S) contributions, where parameters except
the mean and scaling factor of the standard deviations are fixed to the values determined
with the signal MC sample. The reason why the Breit-Wigner function is not used is
that the total width of ψ(2S) is almost zero, and thus the lineshape is determined by
the resolution only. For combinatorial background contributions, a first-order Chebyshev
function is used. The yield obtained by the fit is shown in Table 7.1. To ensure the signal
efficiency in the data, which is essential for the later search of B → X(3872)K decay, we
compare the measured branching fraction with the world average,

B(B → ψ(2S)K) =
Nsig

2NBBB(Υ(4S) → BB) B(ψ(2S) → J/ψπ+π−)B(J/ψ → l+l−)ϵfK
,

(7.1)
where Nsig is signal yields for data and NBB is the number of B-meson pairs in the data
sets, measured as (68.2 ± 0.01) × 106. The symbol B denotes branching fractions in the
parenthesis: B(Υ(4S) → B+B−) = (51.4 ± 0.6)%, B(Υ(4S) → B0B0) = (48.6 ± 0.6)%
and B(ψ(2S) → l+l−) = (11.03± 0.05)%. ϵ means the signal efficiency determined using
the signal MC sample. fK is a fraction of the kaon decay mode: fK = 1 for B+ decay
mode and fK = 0.346 for B0 decay mode. The measured decay branching fractions are

B(B+ → ψ(2S)K+) = (6.21± 0.36)× 10−4,

B(B0 → ψ(2S)K0) = (6.31± 0.70)× 10−4,

where uncertainty is statistical only. They are in good agreement with the world average
within the statistical uncertainty. It indicates little difference in the signal efficiency
between data and MC in B → J/ψπ+π−K decay.
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Figure 7.4: The M(J/ψπ+π−) distributions on the X(3872) signal region with the real
data. Here, the solid blue line shows total fit result. The striped blue area and the dotted
red line represent the signal and background contributions, respectively.

Search of B → X(3872)K decay

Since little difference in the signal efficiency between data and MC in B → J/ψπ+π−K
decay is found, we can derive the B → X(3872)K yield expected for the data from the
signal efficiency and the branching fraction measured using the Belle full data [31],

B(B → X(3872)K)× B(X(3872) → J/ψπ+π−) = (8.63± 0.97)× 10−6,

B(B → X(3872)K)× B(X(3872) → J/ψπ+π−) = (4.3± 1.3)× 10−6.

The signal efficiency is 22.9% and 17.5% from B+ and B0 decay using the signal MC
sample, respectively. The expected signal yield is 19.8 for 62.8 fb−1, and its statistical
significance is expected to exceed 4.3σ.

For data, the observed M(J/ψπ+π−) distributions on the X(3872) signal region are
shown in Fig. 7.4. To extract the X(3872) signal, an Unbinned Simultaneous Extended
Maximum-likelihood fit is performed. For signal contributions, a histogram PDF gener-
ated with the signal MC sample assuming the world average mass of X(3872) [18] and
the Breit-Wigner width of the LHCb measurement [72] is used. A first-order Cheby-
shev function is used as a PDF of the background contribution. To combine B0 mode,
in the simultaneous fit, the ratio of the number of the signals between the B0 and
B+ mode is fixed by the ratio of the expected signal yields per 1 fb−1 with assuming
B(B0 → X(3872)K0)/B(B+ → X(3872)K+) = 0.50 [31].

The fitted signal yield is 14.4±4.6, where uncertainty is statistical only. The statistical
significance is determined from the log-likelihood ratio −2 ln(L0/L), where L0 and L
are the fit likelihood without and with the signal component, respectively. Taking into
account of the number of degrees of freedom, the significance is determined to be 4.6σ.
Furthermore, the possibility that the peak is caused by background coming from B meson
decay is verified by examining the M(J/ψπ+π−) distributions on Mbc and ∆E sidebands.
No peaking background on the X(3872) signal region for all the sidebands is found.
Therefore, we conclude that we get the evidence of X(3872) signal at Belle II.

7.2.2 Belle II Distributed Computing System

At the Belle II experiment, massive collision data is collected to broadly advance our
understanding of particle physics. At the end of the data taking, an order of 100 PB disk
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Figure 7.5: Workflow of usual analysis job submission on the DC system. In the gbasf2
command, script.py shows the analysis script. The blue box shows an executor, and the
job optimization is performed using four executors. The orange box and cylinder show a
service and a database (DB), respectively.

storage and tens of thousands of CPU cores are required [82]. To store and process the
massive data with the resources, a worldwide distributed computing (DC) system is uti-
lized. This system is also used for physics analysis. To perform physics analysis efficiently
with this system, it is important that jobs are processed quickly without interfering with
the analysis activities. A job that does not run properly due to issues, hereafter a “failed
job”, is one of the causes of the efficiency reduction. To suppress failed jobs, a syntax
checker and a scout job framework were developed. This subsection describes overviews
of the Belle II DC system and physics analysis, the two developed features, and their total
performance.

Belle II DC System and Physics Analysis

The Belle II DC system consists of several pieces of software [82, 83]. The core one is
DIRAC interware [84]. It provides a complete grid solution that interconnects end-users
and heterogeneous computing resources. It includes a Workload Management System
(WMS), a Data Management System, support of analysis job execution, and so on. Its
extension, BelleDIRAC, has been developed to meet the requirements of the experiment,
e.g., an automatic system that generates jobs for producing simulation samples and pro-
cessing raw data [85].

Processes for all aspects of the data-processing chain can be performed by the Belle II
Analysis Software Framework (basf2) [86]. To analyze data distributed over computing
sites, a client tool to support basf2 job execution on the DC system (gbasf2) and a set
of client tools to manage submitted jobs and output data are provided. End-users can
submit a group of basf2 jobs by a single command specifying input data sets and the other
job parameters. In detail, the jobs are stored in JobDB when the command is executed, as
shown in Fig. 7.5. The parameters are quickly analyzed by several tasks called executors,
e.g., site assignment based on input data, etc. What is done by all of the executors is
henceforth referred to as job optimization. The jobs are registered in TaskQueueDB by
the last executor. Gradually, WMS submits pilot jobs to the computing elements (CE)
of the sites where input data is hosted. When the pilot job is submitted to the worker
node and executed, the end-user job is pulled, input data is downloaded from the storage
element (SE), and the basf2 process is executed. This workflow indicates that even if
there is a problem with an end-user job, the job spends a few minutes on the worker node
to authenticate and download input data.

The failed jobs have potential to prevent efficient analysis in two points. First, worker
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Figure 7.6: Design and workflow of the scout job framework

nodes are unnecessarily occupied for at least a few minutes due to failed jobs. Second,
when many jobs are submitted at once and they fail quickly, access to the central system,
CE, and SE is concentrated for a short time. It often triggers system trouble and reduces
system uptime. In addition, solving the trouble becomes a load on the operation side.
In 2019, 9.6 million analysis jobs were executed, but about ten percent of them failed.
The main reason was not problems in the DC system or computing resources but basf2
or gbasf2 termination, which is caused by syntax errors, improper job parameter settings
specified by the end-user, failure to upload output files, etc. At Belle II, therefore, python
syntax checker and scout job framework were introduced as countermeasures against such
failed jobs.

Developments to Suppress Failed Jobs

We have developed two features to suppress the failed jobs.

First, the python syntax checker is added to gbasf2. It detects syntax errors at the
language level of analysis scripts and prevents jobs with simple errors from storing the
job in the system.

Next, since the syntax checker is not enough to detect complicated syntax errors or the
improper settings of job parameters, a scout job framework was developed. The targets of
the framework are job groups with a large number of jobs. Its concept is that original jobs
and a small number of test jobs (henceforth referred to as “main jobs” and “scout jobs”,
respectively) are stored in JobDB at the same time, and the main jobs are submitted
to sites only when scout jobs are successful. To achieve this functionality, The following
three components were developed.

• A mechanism to generate scout jobs in the client tool.

• A new executor to temporarily hold back the main jobs from registering in TaskQueueDB.

• A new agent, which is to perform actions periodically, to monitor the status of scout
jobs and to take action to resume the remaining job optimization of main jobs only
when the scouting is judged to be successful.
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After introducing the framework, the workflow of the job execution is shown in Fig. 7.6.
Details of their design are described in Ref. [87].

Performance

The python syntax checker and the scout job framework were introduced to the production
environment in early May 2020 and late April 2021, respectively. Total performance was
evaluated by comparing the percentage of failed jobs between two periods: two years
before both introductions, Apr. 2018 – Mar. 2020, and those after the syntax checker
was introduced first, Apr. 2020 – Mar. 2022. Fig. 7.7 shows the cumulative number
of analysis jobs by job status in the two periods. Comparing these two plots, the total
number of executed jobs in the latter period is three times larger than in the former
period, because analysis activity increased as data accumulated. The percentage of failed
jobs is 9.5% and 7.9% in the former and the latter period, respectively. That results in a
relative improvement of 17%. Under a more severe environment in which there are more
people and opportunities to use the system, the situation could be improved.

For evaluation of the performance of the scout job framework, 245 thousand job groups
executed in the period from April 2021 to March 2022 are analyzed. Of these job groups,
the 45.2 thousand groups were the target of this framework. 6.5% of them, 2930 groups,
were deemed problematic, and stopped before the submission. If such problematic jobs
had been submitted, the number of failed jobs would have increased by more than 12%
relative to the current results. The result concludes that this framework works well
enough.

As a result, the percentage of failed jobs was reduced compared to before these features
were implemented. It enables us to prevent failed jobs from causing system problems and
waste of computing resources.

(a) Results for two years before both features
were introduced.

(b) Results for two years after the syntax
checker was introduced.

Figure 7.7: Cumulative number of analysis jobs by job status as a function of time and
pie charts of the job failure reasons.





Chapter 8

Conclusion

In this thesis, the X(3872) lineshape in the D0D∗0 decays is examined using exclusive
decays B → D0D∗0K in a data sample of 772 × 106 BB pairs collected with the Belle
detector at the KEKB asymmetric-energy e+e− collider.

In this work, we evaluate the lineshape with two models. The first is the relativistic
Breit-Wigner lineshape, commonly used for resonance states. Through the evaluation
with this model, we ensure the analysis method and examine the tendency to yield the
higher mass, the larger width, and the higher relative branching fraction between B0 →
X(3872)K0 and B+ → X(3872)K+ in the X(3872) → D0D∗0 decay mode only. The
second is the Flatte model, in which the Breit-Wigner model is extended to account for
the coupled-channel effect. It can describe not only resonance states but also a bound
state and a threshold cusp; it explains the lineshape discrepancy between the decays to
the J/ψπ+π− and the D0D∗0 final states. However, this model has the scaling behavior
that the lineshape does not change in the vicinity of the threshold when all parameters are
simultaneously scaled. Because of this behavior and the too-narrow width of the lineshape
compared with the mass resolution, the analysis using J/ψπ+π− decay was performed at
LHCb, however, all parameters could not be determined. The analysis in the D0D∗0

decay is expected to be useful in pinning down the scaling behavior. Therefore, the issue
of each lineshape model regarding the analysis of the D0D∗0 decays is investigated.

In this study, we developed an analysis method that is independent of the lineshape
model so that it can be applied to other lineshape models. In addition, D0 decay modes
used in the reconstruction are added to improve statistical sensitivity. The lineshape
dependence of the fit mode for incorrectly reconstructed signal events is additionally
considered to reduce systematic uncertainty.

As a result of the data analysis, the mass, width and branching fractions of the rela-
tivistic Breit-Wigner lineshape are determined to be

m = 3873.71+0.56
−0.50(stat)± 0.13(syst) MeV/c2,

Γ0 = 5.2+2.2
−1.5(stat)± 0.4(syst) MeV,

B(B+ → X(3872)K+)× B(X(3872) → D0D∗0) = (0.97+0.21
−0.18(stat)± 0.10(syst))× 10−4,

B(B0 → X(3872)K0)× B(X(3872) → D0D∗0) = (1.30+0.36
−0.31(stat)

+0.12
−0.07(syst))× 10−4,

B(B0 → X(3872)K0)

B(B+ → X(3872)K+)
= 1.34+0.47

−0.40(stat)
+0.10
−0.12(syst).

The signal from B0 decays is firstly observed with more than 5σ significance. These results
are consistent with the previous study using the D0D∗0 decays, and our measurement

99



100 CHAPTER 8. CONCLUSION

precision is relatively improved by at least 22%. The measured Breit-Wigner mass is
significantly higher than the D0D∗0 threshold, while the world-average mass with the
J/ψπ+π− decay is consistent with the threshold. The measured width and B(B0 →
X(3872)K0)/B(B+ → X(3872)K+) are shifted from the average with the J/ψπ+π− decay
by 2.6σ and 2.0σ, respectively [45]. This study supports the trend that these properties
in the X(3872) → D0D∗0 decay mode differ from those in the J/ψπ+π− decay mode, as
shown by the previous studies.

For the Flatté lineshape, we established the method to measure the coupling constant
to the DD∗ channel g as the undetermined parameter based on the LHCb result using
the J/ψπ+π− decay. As a result, the fitted g is in the region that is insensitive to exact
values due to the limited size of our data sample. The lower limit is determined to be

g > 0.075 at 95% credibility.

It is a more stringent lower limit than the previous measurement at LHCb. This suggests
that analysis using D0D∗0 can indeed complement the study of the J/ψπ+π− mode in
this framework.

As a prospect, these measurements are currently dominated by the uncertainty due to
the limited size of the data sample, and they will be improved by applying this analysis at
the successor experiment, Belle II. Furthermore, for the analysis with the Flatté lineshape,
the sensitivity can be improved more by performing a simultaneous fit between samples of
B → (X(3872) → D0D∗0)K at Belle II and B+ → (X(3872) → J/ψπ+π−)K+ at LHCb.
Such an analysis could fully determine the lineshape in the coupled-channel framework,
and greatly contribute to determining the internal structure.
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Appendix A

Optimization of Event Selection

This appendix describes the optimization of the signal event selection. In optimizing
the selection criteria, we require a loose signal selection for the candidates at the recon-
struction. Hereafter, this is referred to as preselection. In this chapter, we describe the
preselection and the selection optimization.

A.1 Preselection

This section describes the preselection of each particle candidates.
Tracks are required to have a transverse distance between the point of closest approach

and the interaction point (dr) of less than 1 cm, and a distance along the beam axis
between them (dz) of less than 4 cm. Since the signal events do not include any electrons,
well-identified electrons are eliminated by requiring that electron-ID is smaller than 0.95.
Among the remaining charged track candidates, those with Lπ/(Lπ + LK) > 0.1 are
considered as pion candidates, and those with LK/(Lπ + LK) > 0.1 are used as kaon
candidates. For the kaon candidates from the B+ decay, a tighter requirement of kaon
identification, LK/(Lπ+LK) > 0.6, is used to reduce the multiplicity of the B+ candidates.

Neutral pion candidates are required that both photons satisfies E9E25 > 0.8, and
an energy ELab > 30 MeV for the barrel region or ELab > 50 MeV for the endcap region.
Only those with the γγ invariant mass of 0.1124 GeV/c2 < M(γγ) < 0.1575 GeV/c2 is
retained for the later analysis. In order to improve the mass resolution of the D0D∗0

invariant mass, a mass-constrained fit is applied.
Candidates of K0

S mesons are seleccted by requireing the π+π− invariant mass to be
consistent with K0

S nominal mass [18] within 15 MeV/c2. A mass- and vertex-constrained
fit are applied.

ForD0 candidates, the reconstructed invariant mass is required to be within 39 MeV/c2

of the nominal mass [18] if a π0 is included; otherwise, it is required to be within
19 MeV/c2. A mass- and vertex-constrained fit is applied. For photon candidates for
D∗0 reconstruction, γ candidates with E9E25 > 0.8 and Elab > 70 MeV are required. To
reduce the number of candidates, we retain the candidates with M(D0D∗0) of less than
4.0 GeV/c2 only.

The beam-energy constraint mass, Mbc, and the difference of the energy in the center-
of-mass system between the beam and the B candidate, ∆E, are used to identify the
signal B candidates. The events which satisfy Mbc > 5.2 GeV/c2 and |∆E| < 50.0 MeV
are selected. Events with more than 10000 candidates of D0, D∗0, X(3872) or B in the
reconstruction are discarded.
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A.2 Optimization of the Selection

Selection criteria are optimized so that Figure-Of-Merit (FOM) is improved while the sig-
nal efficiency keeps as high as possible. There are a total of ten variables to be optimized.
We divided them into two groups: variables with high separation power and the others.
For the former, the selection criteria are determined to be the point in the FOM plateau
region. For the latter, the criteria are set so that the FOM increases slightly, but the
efficiency is greater than 90%.

• Variables with high separation power:

– M(π+π−) for the K0
S selection,

– M(γγ) for the π0 selection,

– Reconstructed D0 mass for the D0 selection,

– Difference of the reconstructed mass between D∗0 and D0 for the D∗0 selection,

– ∆E for the B selection,

– Mbc for the B selection.

• The others:

– γ energy in the laboratory system for the selection of γ from D∗0,

– π0 energy in the laboratory system (Elab) for the π
0 selection,

– π0 momentum in the center-of-mass system (Pcms) for the π
0 selection,

– χ2 probability of the vertex- and mass-constraint fit on the D0 candidates.

In the following, the results of the selection optimization for each intermediate state are
described.

Neutral kaons

Neutral kaons in the signal event have two sources: D0 decays and B0 decays. The
selection criterion for each source is optimized. Figure A.1 shows the FOM as a function
of a criterion of M(π+π−). Regardless of the source, we can maximize FOMs by requiring
M(π+π−) to be consistent with the nominal mass within 7.0 MeV/c2.

photons

For γ from D∗0 decays, Elab is optimized with requirements of the D0, D∗0, and B
selections described in the later sub-subsections. The reason is that the FOM is efficiently
improved compared to the γ optimization performed before the optimization of the D0,
D∗0, and B selection. The distribution and FOM as a function of the criterion are shown
in Fig. A.2. FOM is slightly improved by the requirement of Elab > 90 MeV, so we use
the requirement.
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Neutral pions

In this analysis, π0’s in the signal event have two sources, one is from D0 decay, and the
second one is from D∗0 decays. The selection criteria of these variables are optimized
separately since the momentum and energy are different for each source.

Figures A.3–A.4 show the Elab and Pcms distributions for each source and the FOM as
a function of the criterion. We use criteria of Elab and Pcms, which can increase the FOM
without decreasing the signal efficiency: Elab > 0.15 GeV and Pcms > 0.10 GeV/c for the
π0 from D0 decay, and Elab < 0.20 GeV and Pcms < 0.10 GeV/c for the π0 from D∗0

decay. The FOM as a function of the M(γγ) criterion with the other optimized selections
is shown in Fig. A.5. Regardless of the source, the γγ invariant mass is required to be
consistent with a nominal π0 mass within 12 MeV/c2.

Candidates of D0 mesons

In case the D0 candidate is reconstructed without π0, the mass resolution is better and
the background level is smaller than those with π0. Therefore, the criteria are optimized
by dividing the sample into two parts. Figure A.6 shows the FOM as a function of the
criterion of the reconstructed D0 mass after the other optimized selections are required.
To maximize FOM, the invariant mass is required to be consistent with a nominal D0

mass within 8.5 MeV/c2 for candidates without π0 and 16 MeV/c2 for candidates with
π0. Figure A.7 shows the FOM as a function of the criterion of the χ2 probability of the
constraint fit. It is required to be greater than 0.0001, regardless of the reconstruction
mode.

Candidates of D∗0 mesons

Since the mass resolution changes depending on the reconstruction D∗0 mode, the selection
is separately optimized. The FOM as a function of the criterion with the other optimized
selections is shown in Fig. A.8. The mass difference between D∗0 and D0 is required to be
within 9.0 MeV/c2 of the nominal value for D∗0 → D0γ and 2.0 MeV/c2 of the nominal
value for D∗0 → D0π0.

Candidates of B mesons

The criteria of Mbc and ∆E are optimized for each of the D∗0 and B modes. The FOMs
as a function of the criterion are shown in Fig. A.9–A.10. For ∆E, FOMs are maximized
when |∆E| < 12 MeV is required, regardless of the B and D∗0 decay modes. For Mbc,
regardless of the B decay mode, FOMs are maximized when Mbc is required to agree
with the nominal B mass [18] within 6.0 MeV/c2 for D∗0 → D0π0 and 4.5 MeV/c2 for
D∗0 → D0γ.

Continuum Suppression

For suppression of continuum events, we use a FastBDT classifier [67]; Details are de-
scribed in Appendix B. A requirement of the FastBDT output is optimized by FOM, as
shown in Fig. A.11. In what follows, the FastBDT output is required to be greater than
0.15, regardless of whether it is the B+ mode or the B0 mode. Also, we checked if the
sensitivity could be increased by binning with that output as in Ref. [88] because the
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classification power is not very strong. The improvement of the FOM was only a few
percent; therefore, we use it for the cut rather than binning.
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Figure A.1: FOM (closed black circles) and the signal efficiency (opened red circles)
as a function of the criterion of M(π+π−). The vertical gray line shows the optimized
criterion.
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Figure A.2: (Left) The distribution of Elab for γ from D∗0. The blue, green, and red
histograms show distributions for signal, broken-signal, and generic background, respec-
tively. (Right) FOM (closed black circles) and the signal efficiency (opened red circles) as
a function of the criterion of Elab. In each panel, the vertical gray line shows the optimized
criterion.
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(b) π0 candidates from the D∗0 decays

Figure A.3:(Left) The distribution of Elab of the π0 candidates. The blue, green, and red
histograms show distributions for signal, broken-signal, and generic background, respec-
tively. (Right) FOM (closed black circles) and the signal efficiency (opened red circles) as
a function of the criterion of Elab. In each panel, the vertical gray line shows the optimized
criterion.
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(b) π0 candidates from the D∗0 decays

Figure A.4: (Left) The distribution of Pcms for the π0 candidates. The blue, green,
and red histograms show distributions for signal, broken-signal, and generic background,
respectively. (Right) FOM (closed black circles) and the signal efficiency (opened red
circles) as a function of the Pcms criterion. In each panel, the vertical gray line shows the
optimized criterion.
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(b) π0 candidates from the D∗0 decays

Figure A.5: FOM (closed black circles) and the signal efficiency (opened red circles) as
a function of the criterion of the γγ invariant mass with the optimized selections other
than M(γγ). In each panel, the vertical gray line shows the optimized criterion.
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(a) D0 candidates reconstructed with π0
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(b) D0 candidates reconstructed without π0

Figure A.6: FOM (closed black circles) and the signal efficiency (opened red circles) as a
function of the criterion of the reconstructed D0 mass with the optimized selection other
than the reconstructed D0 mass. In each panel, the vertical gray line shows the optimized
criterion.
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(b) D0 candidates reconstructed without π0

Figure A.7: (Left) The distribution of the χ2 probability of the vertex- and mass-
constraint fit on the D0 candidates. The blue, green, and red histograms show distri-
butions for signal, broken-signal, and generic background, respectively. (Right) FOM
(closed black circles) and the signal efficiency (opened red circles) as a function of the
criterion of the χ2 probability.
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(a) Decay mode of D∗0 → D0γ
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(b) Decay mode of D∗0 → D0π0

Figure A.8: FOM (closed black circles) and the signal efficiency (opened red circles) as a
function of the criterion of the difference of the reconstructed mass between D∗0 and D0

with the optimized selection other than the mass difference. In each panel, the vertical
gray line shows the optimized criterion.
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(a) B+ → K+(X(3872) → D0[D∗0 → D0γ])
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(c) B0 → K0(X(3872) → D0[D∗0 → D0γ])
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(d) B0 → K0(X(3872) → D0[D∗0 → D0π0])

Figure A.9: FOM (closed black circles) and the signal efficiency (opened red circles) as a
function of the criterion of Mbc. In each panel, the vertical gray line shows the optimized
criterion.
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(b) B+ → K+(X(3872) → D0[D∗0 → D0π0])
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(c) B0 → K0(X(3872) → D0[D∗0 → D0γ])
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(d) B0 → K0(X(3872) → D0[D∗0 → D0π0])

Figure A.10: FOM (closed black circles) and the signal efficiency (opened red circles) as a
function of the criterion of ∆E. In each panel, the vertical gray line shows the optimized
criterion.
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(a) The B+ decay mode
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(b) The B0 decay mode

Figure A.11: FOM (closed black circles) and the signal efficiency (opened red circles) as
a function of the FastBDT output criterion. In each panel, the vertical gray line shows
the optimized criterion.





Appendix B

Multivariate Analysis for Continuum
Suppression

About 30% of the generic background comes from the continuum event. For the continuum
suppression, the FastBDT classifier is used. It is trained on MC samples containing
1.00 × 105 signal events and 3.31 × 106 continuum events, which are independent of any
other analysis samples. Thirty variables are used as input: KSFW variables (et, mm2,
hso00, hso04, hso10, hso14, hso20, hso22, hso24, hoo0, hoo1, hoo2, hoo3, hoo4) [89],
CleoConeCS (1st–9th) [90], magnitude of the signal B thrust axis (thrustBm), magnitude
of the ROE thrust axis (thrustOm), cosine of the angle between thrust axis of the signal B
and thrust axis of ROE (cosTBTO), cosine of the angle between thrust axis of the signal
B and z-axis (cosTBz), and reduced Fox-Wolfram moment R2 [81]. Figures B.1–B.2 show
the distributions of the input variables. For each distribution, there is a difference in the
distribution of the signal events and the continuum events. R2 has the largest difference
between them, and it is the most important variable of the classification.

To check for overlearning, a test sample is used to check the performance, e.g. output
distribution and the receiver operating characteristic (ROC) curves, as shown in Figs. B.3
and B.4. Here, the test sample is a part of the analysis sample and contains 2.00 × 105

signal events and 2.05 × 106 continuum events. Compared with those performances for
the training sample, the performances agree with each other’s samples. It means that the
classifier is not overtrained. Furthermore, the performance is better than that of R2 only.
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Figure B.1: The distributions of the input variables with the training samples. In each
panel, the solid black line is for the signal events, and the dashed red line is for the
continuum events. To compare easily, all distributions are normalized by the number of
events.
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Figure B.2: Continuation of Fig. B.1.
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Figure B.3: The distributions of the FastBDT output in the X(3872) signal region.
In each panel, the black and red points are the distributions of the signal and contin-
uum events with the test sample, respectively. The striped black and red area are the
distributions of the signal and continuum events with the training sample, respectively.
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Figure B.4: The ROC curves of the FastBDT output (closed gray circles for the test
sample and opened black circles for the training sample) and R2 (blue squares).



Appendix C

Parameterization of the D0D∗0

Invariant Mass Resolution

This appendix describes the parameterization of the D0D∗0 invariant mass resolution
for the signal and broken-signal contributions. Before describing the parameterizations,
the tendency of the mass resolution as a function of true mass is explained using the
formulation.

C.1 Dependence of Mass Resolution on the D0D∗0 In-

variant Mass

The dependence of mass resolution on the D0D∗0 invariant mass is examined by the
propagation of resolution of the D0 and D∗0 invariant mass. The D0D∗0 invariant mass
is obtained by the D0 and D∗0 three-momenta in the rest frame of X(3872) as follows:

M(D0D∗0) = E(D0) + E(D∗0)

= mD0

√
1 +

p(D0)2

m2
D0

+mD∗0

√
1 +

p(D∗0)2

m2
D∗0

∼ mD0 +mD∗0 +
p(D0)2

2mD0

+
p(D∗0)2

2mD∗0
,

(C.1)

where p is the three-momentum, and the approximation is used because the momentum
is very small in the vicinity of the D0D∗0 threshold. The resolution can be expressed as
follows by propagating from the resolution of the three-momenta,

σM(D0D∗0) =

√
(
∂M(D0D∗0)

∂|p(D0)|
)2(σ|p(D0)|)2 + (

∂M(D0D∗0)

∂|p(D∗0)|
)2(σ|p(D∗0)|)2

=

√
(
p(D0)

mD0

)2(σ|p(D0)|)2 + (
p(D∗0)

mD∗0
)2(σ|p(D∗0)|)2

∼

√
M(D0D∗0)−mD0 −mD∗0

2m
(σ|p|)2 =

√
Q

2m
(σ|p|)2,

(C.2)

where the approximation from the second line to the third line is assumed that the mo-
mentum resolutions and masses of D∗0 and D0 are the same. Therefore, the resolution
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increases roughly in proportion to the squared root of the Q value, which is the mass
difference between the D0D∗0 invariant and the threshold.

C.2 Signal Reconstructed Correctly

The resolution PDF is defined by Mdiff as follows,

fres(Mdiff) =[c · fgauss(Mdiff , µ, σgauss) + (1− c) · fCB(Mdiff , µ, σCB, n, α)]

× fturn-on(Mdiff),
(C.3)

where fgauss and fCB represent a Gaussian PDF and a Crystal Ball PDF, respectively. µ
is a common mean, σ is a standard deviation, n is a value of the exponent of the power
law, α is a transition point between the Gaussian and the power-law tail, and c is the
fraction; Details are described in Sec. 5.1.1.

In parameterizing those parameters, it is difficult to determine at once due to the
correlation among the parameters. Therefore, they are sequentially investigated using the
following procedure.

1. The distributions are fitted with fres, which all parameters are floated. The correla-
tion between σCB and σgauss is fitted with a first-order polynomial function (Fig. C.1).
The intercept is almost consistent with zero, so we ignored it, and σCB/σgauss is ob-
tained as follows

σCB/σgauss =

{
2.095 for X(3872) → D0[D∗0 → D0γ] mode,
1.737 for X(3872) → D0[D∗0 → D0π0] mode.

2. The distributions are fitted with fres fixed σCB/σgauss, and c as a function of the
input mass is plotted in Fig. C.2. The relation fluctuates because the resolution
function contains the multiple tail components, e.g., a tail on one side of the Crystal
Ball function and a wide Gaussian (or Crystal Ball function), despite the small
asymmetry of the distribution. Therefore, this relation is tentatively fitted and
determined with a constant in this step,

c =

{
0.2200 for X(3872) → D0[D∗0 → D0γ] mode,
0.6931 for X(3872) → D0[D∗0 → D0π0] mode.

It is re-investigated after determining the other parameters.

3. The distributions are fitted with fres, which σCB/σgauss, and c are fixed, and n as
a function of the input mass is plotted in Fig. C.3. Since the dependence is very
small, it can be approximated by a constant and determined as follows by fit:

n =

{
134.12 for X(3872) → D0[D∗0 → D0γ] mode,
127.18 for X(3872) → D0[D∗0 → D0π0] mode.

4. The distributions are fitted with fres fixed σCB/σgauss, c and n, and α as a function
of the input mass is plotted in Fig. C.4. The tail component decreases as the input
mass increases. It is parameterized by fitting with a first-order polynomial function,

α =

{
18.0− 4.99 mX(3872) for X(3872) → D0[D∗0 → D0γ] mode,
67.1− 17.6 mX(3872) for X(3872) → D0[D∗0 → D0π0] mode.
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It is not a problem that the first-order polynomial function does not reproduce α as a
function of the input mass completely because the final function with parameterized
α can reproduce the Mdiff distribution well.

5. The distributions are fitted with fres fixed σCB/σgauss, c, n and α, and σgauss as
a function of the input mass is plotted in Fig. C.5. In principle, the resolution
increases roughly in proportion to the squared root of Q value, which is the mass
difference between the D0D∗0 invariant and the threshold,

σM(D0D∗0) ∼
√

Q

2m
(σ|p|)2. (C.4)

The relation follows the threshold function like Eq. (C.4). To take into account the
effect of the higher-order terms, a constant is introduced in the threshold function.
It is parameterized by

σgauss =


2.6043× 10−3

√
mX(3872) − (mD0 +mD∗0) + 2.559× 10−4 GeV/c2

for X(3872) → D0[D∗0 → D0γ] mode,

4.343× 10−3
√
mX(3872) − (mD0 +mD∗0) + 1.86× 10−4 GeV/c2

for X(3872) → D0[D∗0 → D0π0] mode.

6. As with step 2, the distributions are fitted with fres fixed σCB/σgauss, n, α, and σgauss
floated c, and c as a function of the input mass is plotted in Fig. C.6. The relation
is determined by fitting with a constant

c =

{
0.1852 for X(3872) → D0[D∗0 → D0γ] mode,
0.7003 for X(3872) → D0[D∗0 → D0π0] mode.

There is a small structure near the threshold, but the impact on the lineshape after
convolution is negligible.
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Figure C.1: The correlation between σCB and σgauss with the zero-width signal MC
samples for X(3872) → D0[D∗0 → D0γ] (left) and X(3872) → D0[D∗0 → D0π0] (right).
In each correlation plot, the results with failed fits are stripped out. The red line shows
the fit result with a first-order polynomial function.
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Figure C.2: The fraction c as a function of the input mass with the zero-width signal
MC samples for X(3872) → D0[D∗0 → D0γ] (left) and X(3872) → D0[D∗0 → D0π0]
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Figure C.3: The value of the exponent of the power law n as a function of the input
mass with the zero-width signal MC samples for X(3872) → D0[D∗0 → D0γ] (left) and
X(3872) → D0[D∗0 → D0π0] (right). In each correlation plot, the results with failed fits
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Figure C.4: The transition point between the Gaussian and the power-law tail α as
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plot, the results with failed fits are stripped out. The red line shows the fit result with a
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Figure C.6: The fraction c as a function of the input mass with the zero-width signal
MC samples after fixing the other parameters for X(3872) → D0[D∗0 → D0γ] (left) and
X(3872) → D0[D∗0 → D0π0] (right). The red line shows the fit result with a constant.
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C.3 Signal Reconstructed Incorrectly for D∗0 → D0π0

The broken-signal resolution is parameterized by the input mass as

fbroken
res (M) =

(
c1 · fgauss(M,µ, σcore) + c2 · fgauss(M,µ, σmiddle)

+ (1− c1 − c2) · fgauss(M,µ, σtail)
)
× fturn-on(M),

(C.5)

Here, fgauss is a Gaussian PDF. fturn-on is the same definition as Eq. (5.3). The p0 in
fturn-on is smeared by the ratio of the standard deviation between the signal and the
broken-signal. σcore, σmiddle and σtail are standard deviations for the Gaussian of the core,
middle and tail components, respectively. c1–c2 is the fractions of the core and middle
components. The five parameters of σcore, σmiddle, σtail, c1 and c2 are determined with the
following procedure.

1. The M(D0D∗0) distributions for broken-signals are fitted with fbroken
res which all

parameters are floated. The correlation between σcore and σmiddle and that between
σcore and σtail are plotted in Fig. C.7. Each correlation is fitted with a first-order
polynomial function, and the relation is determined as follows:

σmiddle/σcore = 2.97,

σtail/σcore = 11.09.

Here, the intercepts are always ignored because they are ideally zero.

2. The distributions are fitted with fbroken
res fixed σmiddle/σcore and σtail/σcore. The frac-

tions as a function of the input mass are plotted in Fig. C.8 and fitted with a
threshold function that converges to a constant for high mass,

c1 = 0.2032× [1− 1.0180 · exp[206.2(mD0 +mD∗0 −mX(3872))],

c2 = 0.6006× [1 + 0.442 · exp[1386(mD0 +mD∗0 −mX(3872))].

These relations are re-investigated after determining σcore, because the relations tend
to depend on σcore, especially near the threshold.

3. The distributions are fitted with fbroken
res fixed σmiddle/σcore, σtail/σcore, c1, and c2.

σcore as a function of the input mass is plotted in Fig. C.9. It is fitted with the
threshold function using square root like Eq. (C.4), and the relation is obtained as

σcore = 9.137× 10−3
√
mX(3872) − (mD0 +mD∗0) + 1.340× 10−3 GeV/c2.

4. The distributions are fitted with fbroken
res fixed σmiddle/σcore, σtail/σcore, and σcore

floated c1 and c2. The fractions as a function of the input mass are plotted in
Fig. C.10 and fitted with the same threshold function as in step 2. The relations
are obtained as

c1 = 0.1896× [1− 1.0557 · exp[524(mD0 +mD∗0 −mX(3872))],

c2 = 0.5999× [1 + 0.425 · exp[1430(mD0 +mD∗0 −mX(3872))].

Near the threshold, c1 is less than zero, and c2 is greater than one in these formulas,
even though c1 and c2 must be values between zero and one. In such a case, we
always reset it to zero or one.
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(a) The correlation between σcore and σmiddle. (b) The correlation between σcore and σtail.

Figure C.7: The correlation between σcore and the standard deviation of the other Gaus-
sian with the zero-width signal MC samples. The red line shows the fit result with a
first-order polynomial function.

(a) The fraction of the core component c1. (b) The fraction of the middle component c2.

Figure C.8: The fractions as a function of the input mass with the zero-width signal MC
samples. The red line shows the fit result with the threshold function.
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(a) The fraction of the core component c1. (b) The fraction of the middle component c2.

Figure C.10: The fractions as a function of the input mass after fixing σmiddle/σcore,
σtail/σcore, and σcore with the zero-width signal MC samples. The red line shows the fit
result with the threshold function.



Appendix D

Mass Resolution Difference between
Data and MC

In this appendix, we investigate the difference in the M(D0D∗0) resolution in the MC and
data, which is one source of the systematic uncertainty.

There is no perfect control sample, such as a resonance decaying into D0D∗0, except
for X(3872) itself. Therefore, examining the resolution of ∆E with B+ → D∗0π+π−π+

sample is used as an alternative. The reason for using B+ → D∗0π+π−π+ is that it has
a similar decay topology to B+ → [X(3872) → D∗0D0]K and thus can cover low D∗0

momentum like D∗0 coming from the X(3872) decays.

The reason for using ∆E is that the ∆E resolution change is similar as that of the
M(D0D∗0) resolution when the track momentum and/or the cluster energy are smeared.
Ratios of the resolution with smearing to that without smearing are shown in Fig. D.1,
where three types of smearing are tried; smear cluster energy by 2% (red circles), smear
cluster energy by 5% (green circles), and both smear cluster energy by 2% and track
momentum by two times the scaling factors used in smear trk (blue circles). smear trk

is a module that smears the helix parameters in the MC sample so as to get a better
agreement between data and MC for the mass resolution of the hadrons reconstructed
with only charged particles. We check the resolution ratio for ∆E, M(D0γ or π0), and
M(D0) using signal MC samples of B+ → D∗0π+π−π+, and M(D0D∗0) using the default
samples of B+ → [X(3872) → D∗0D0]K. It can be confirmed that the behavior of the
∆E resolution reproduces that of the M(D0D∗0) resolution.

The ∆E resolution is evaluated using the background MC sample and the Belle full
data. About the B+ → D∗0π+π−π+ selection, we require the same selection criteria
for D0, D∗0, and the final state particles (K+, K0

S, π
+, π0, γ) as for B+ → [X(3872) →

D∗0D0]K. As with the X(3872) analysis, a mass-constrained fit are applied for the π0 can-
didates, and a mass- and vertex-constrained fit are applied for the K0

S and D0 candidates.
In addition, only candidates with low momentum D∗0, which is less than 1.6 GeV/c, are
used to select the same momentum regions as D∗0 in B+ → [X(3872) → D∗0D0]K. For
B selection, Mbc is required to be within 4.5 MeV/c2 of nominal B mass. For continuum
suppression, R2 and cosTBTO are required to be less than 0.2 and 0.8, respectively.
To reduce combinatorial background, we requier the number of tracks in a single event
Ntrk < 17 if D0 is reconstructed with a π0; otherwise, we require Ntrk < 15 and χ2 > 0.01
of the π0 mass-constraint fit.

The ∆E distribution for D∗0 → D0γ and D∗0 → D0π0 are shown in Figs. D.2 and

D.3, respectively. Here, only for D∗0 → D0γ, the D
0
reconstruction mode is restricted
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to K+π− to reduce the huge background. The resolution is evaluated by fitting the
distribution with a double-Gaussian function for the signal component and a second-
order Chebyshev function for the background component. First, the standard deviations
of the two Gaussians are determined using the ∆E distribution of the background MC
sample (left panels in Figs. D.2–D.3). When fitting the data distribution (right panels),
the standard deviations are fixed to the fit result for the MC sample, but a common
scaling factor to the standard deviations is floated. The scaling factors are obtained as
1.01 ± 0.10 for D∗0 → D0γ and 1.08 ± 0.13 for D∗0 → D0π0. It indicates that the
M(D0D∗0) resolution of MC is consistent with that of data within a precision of 13%.
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Figure D.2: The ∆E distributions of B+ → [D∗0 → D0γ]π+π−π+. In each panel,
the solid blue line is the total fit result. The dashed blue represents each Gaussian in
the double Gaussian for the signal contributions. The dashed red line shows a second-
order Chebyshev function as the background component. In the left panel, µ, σcore, and
σtail denote a common mean, a standard deviation of the core Gaussian, and a standard
deviation of the tail Gaussian, respectively. In the right panel, ∆µ and SFµ denote the
difference in µ between data and MC and the scale factor of the σ’s for data, respectively.
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Figure D.3: The ∆E distributions of B+ → [D∗0 → D0π0]π+π−π+. The notations are
the same as in Fig. D.2.





Appendix E

Derivation of a Lower Limit for the
Coupling Constant of the Flatté
lineshape

In principle, a lower limit at certain credibility is set by

α =

∫ ∞

θlower

p(θ|x)dθ, (E.1)

where α denotes the credibility, p(θ|x) is the posterior probability of the desired theoretical
parameter θ, and x is the data. For the Flatté lineshape study, θ is the coupling constant
g. Following common practice, we use a uniform prior probability of g, and then we get
the following requirement in this study.

∫ ∞

glower

Ldg = α

∫ ∞

0

Ldg, (E.2)

where glower is the lower limit. On the other hand, we use the following different equations
to derive the lower limit in the Flatté lineshape study:

∫ gbest

glower

Ldg = β

∫ gbest

0

Ldg, (E.3)

where gbest is the g at the maximum likelihood. In this appendix, we prove that this lower
limit derivation formula gives us a conservative lower limit at (β + 1)/2 credibility when
the L function is asymmetric about g = gbest and the right-handed area is larger than the
left-handed area.

First,
∫∞
gbest

is added to both sides of Eq. (E.3).

∫ gbest

glower

Ldg +
∫ ∞

gbest

Ldg = β

∫ gbest

0

Ldg +
∫ ∞

gbest

Ldg∫ ∞

glower

Ldg = β

∫ gbest

0

Ldg +
∫ ∞

gbest

Ldg
(E.4)
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This right-hand side can be transformed as

β

∫ gbest

0

Ldg +
∫ ∞

gbest

Ldg

= −(1− β)

∫ gbest

0

Ldg +
∫ gbest

0

Ldg +
∫ ∞

gbest

Ldg

=

∫ ∞

0

Ldg − (1− β)

∫ gbest

0

Ldg,

(E.5)

According to the asymmetry of the L function, we obtain the following relationship:∫ gbest

0

Ldg < 1

2

∫ ∞

0

Ldg. (E.6)

Based on Eq. (E.6), Eq. (E.5) is given by∫ ∞

0

Ldg − (1− β)

∫ gbest

0

Ldg > 1 + β

2

∫ ∞

0

Ldg, (E.7)

where 1− β is always positive. Thus, Eq. (E.4) is written as∫ ∞

glower

Ldg > 1 + β

2

∫ ∞

0

Ldg. (E.8)

Compared with Eq. (E.2), this relation means that the credibility of the lower limit is
greater than (β + 1)/2. Therefore, we can get the conservative lower limit of 90% (95%)
credibility for β = 0.8 (0.9) from Eq. (E.3).
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