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ABSTRACT

With the recent discovery of the Accelerating Expansion of the Universe, dark en-
ergy, the unknown energy that drives cosmic expansion, has been widely accepted and its
nature has been constrained by a combination of various observational methods. In the
cosmic microwave background radiation (CMB), the nature of dark energy is strongly
reflected to the integrated Sachs-Wolfe (ISW) effect caused by the time variation of the
gravitational potential during propagation. However, the direct measurement of this ef-
fect is difficult due to the cosmic variance caused by the statistical error in estimating
the variance of the initial fluctuations of the universe. Using polarized CMB photons
produced by Thomson scattering by free electrons in a galaxy cluster, it is possible to
obtain information of the same initial fluctuation at different times, thus constraining the
dark energy model through the ISW effect without suffering from the cosmic variance.
In this thesis, we propose a method that combines temperature and E-mode polarization
anisotropy in CMB all-sky observations with the known method using polarization ob-
servations of clusters of galaxies. To validate the method, we calculate the temperature
anisotropy and E-mode polarization anisotropy of the CMB all-sky survey and the polar-
ization of a cluster of galaxies from the initial fluctuations in simulations, and reconstruct
the initial fluctuations assuming several dark energy equation of state parameters from
them. The difference between the CMB in the all-sky temperature quadrupole anisotropy
estimated from the reconstructed initial fluctuations, and the quadrupole calculated in
the previous step, provides the statistical power in estimating the equation of state pa-
rameters. We found from simulations that the statistical power is improved by about
18% in the case that we add the temperature and E-mode polarization anisotropies of
the CMB in the all-sky observations, compared to the case that the reconstruction is
performed only with polarization observations of clusters of galaxies.
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Chapter 1

Introduction

1.1 Accelerated expansion and dark energy

The factor that drives the expansion of the universe was first introduced
by Einstein as the cosmological constant [56]. However, since the cosmological
constant was conceived to realize a static universe at that time, its existence
was later withdrawn when Hubble and Lemaitre discovered the expansion of the
universe [31][37].

However, as recent improvements in observational technology have made it
possible to accurately measure the distance and age of the universe, observa-
tional facts that cannot be explained by a matter-dominated universe have come
to attract attention. In particular, distance measurements from type Ia super-
nova explosions in the 1990s have conclusively shown that the current universe
is undergoing accelerated expansion [53] [56][47]. As shown in Fig.1.1, recent
observations of supernova explosion also fit the ΛCDM model, in which the cos-
mological constant is the dominant energy component today and ΛCDM model
has been the standard cosmology [46].

Figure 1.1: Hubble diagram for the Dark Energy Survey Supernova Program
(DES-SN) sample. Top figure: distance modulus for each SN (red, orange circles).
The dashed lines show models. Bottom figure: residuals to the best fit model.
(figure taken from ref [2]).

The cosmological constant has the relation between energy density and pres-
sure, pΛ = −ρΛ, and the energy density is constant regardless of the expansion
of the universe. The energy component that causes accelerated expansion must
have negative pressure, and such an energy component with negative pressure is
called dark energy [32]. The relationship between the energy density and pressure
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of dark energy is generally expressed as pDE = wρDE with the equation of state
parameter w. As an extension, the parameterization w(a) = w0 + wa(1 − a) is
also often used [39], and it varies with the expansion of the universe.

The nature of dark energy has a strong influence on the evolution of the uni-
verse and has been explored using a variety of observations, including the Cosmic
Microwave Background (CMB), Type Ia Supernovae (SNIa), Baryon Acoustic
Oscillations (BAO), the Weak Gravitational Lensing (WL), and Redshift-Space
Distortions (RSD).

The CMB is one of the most powerful probes in cosmology. In particular,
much of the information about the early universe is obtained from the CMB,
which measures the curvature of the universe, the amount of matter, and photon
counts with a high degree of accuracy. In addition, CMB measurements provide
the most accurate measurement of the peak of the sound horizon at the time
of recombination, which is also important in the measurement of matter and
baryon density in the late universe. On the other hand, since the CMB is an
instantaneous snapshot of recombination, it is difficult to put a direct limit on
the dark energy that will be a major component in the late universe. However,
in combination with other measurements at low redshifts, it also contributes to
constraining the dark energy, as shown in Fig.1.2.

Figure 1.2: Confidence contours for matter density parameter and dark energy
equation of state parameter. Each contour shows constraint from CMB (blue),
Pantheon SN with systematic uncertainties (red), Pantheon SN with only statis-
tical uncertainties (gray line), and Pantheon SN + CMB (black). (figure taken
from ref [57]).

SNIa is extremely bright and can be observed far in the distance (z > 1),
and its luminosity curve and its peaks are well known. Therefore, it can be used
as a standard candle in the universe to measure luminosity distances. Since the
expansion rate of the universe can be directly determined from the relationship

2



between the redshift and distance for each event, it is possible to constrain on
dark energy equation of state parameters w based on observations of supernova
explosions alone.

Acoustic oscillations of the photon-baryon fluid in the early universe have
left a characteristic pattern, called the BAO scale, in the post-recombination era
[20]. At low redshifts (z < 1), their magnitudes can be measured from galaxy
correlations from large-scale galaxy surveys [24][12]. The BAO scale can also be
measured at higher redshifts by using hydrogen absorption line observations.In
addition, a method using 21cm hydrogen absorption line observations has been
developed and is expected to provide all-sky measurements over a wide range of
redshifts.

Distortion of light path due to the gravitational field distorts the observed
galaxy shape, and this effect is called the gravitational lensing effect [1][27]. Spa-
tially coherent effects produced by large-scale structures are called weak gravi-
tational lensing (WL) effects in particular, and it is possible to obtain histories
of structure growth. Since the evolution of large-scale structures is sensitive to
cosmic expansion,detailed measurement within small redshift bins can strongly
constrain on dark energy model, but they have difficulty with the large uncer-
tainties.

The power spectrum in redshift space has anisotropy due to the effect of the
RSD caused by the peculiar velocity of the galaxies [34][6]. As in the continuity
equation, velocity can be described from the time variation of density fluctuations.
Therefore, information of structure growth can be obtained from RSD, which
allows us to probe the nature of dark energy.

As described above, a number of methods can be used to study the nature
of the dark energy, and their combination imposes strong constraints on dark
energy.

1.2 Cosmic Microwave Background Radiation(CMB)

The CMB is the emission at recombination and is the most distant electro-
magnetic wave we can observe. It has been observed over the entire sky and
its average temperature is consistent with blackbody radiation at 2.725 K [21].
Although its temperature fluctuation is extremely small, it is an important key in
cosmology, and both new observations and precise measurements down to small
scales are in progress [42][30][48]. Figure 1.3 shows the temperature fluctuations
observed by the Planck satellite, and its angular correlation function (power spec-
trum) is shown in Fig.1.4. The large dispersion at large angular scales (small
l) is due to the fact that the observable region is limited on the final scattering
plane and is called the cosmic variance [45]. The processes that generate such
temperature fluctuations on large scales are mainly due to the Sachs-Wolfe effect
(SW) and the integral Sachs-Wolfe effect (ISW) [54]. Both effects arise due to
the change of energy by the gravitational potential: it gains energy as it falls into
the gravitational potential and loses energy as it escapes. The SW effect arises
with gravitational potential at observers and the surface of last scattering shown
as Fig.1.5. The ISW effect arises because of the variation with time of the cosmic
gravitational potential between observers and the surface of last scattering shown
as Fig.1.6. The potential can be traced by Large Scale Structure surveys [15],
and the ISW effect can be therefore a probe that links the CMB with the low
redshift matter distribution.

The contributions of each effect are shown in the Fig.1.7, where the SW effect
is dominant and the ISW effect is generally difficult to extract.
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Figure 1.3: Temperature fluctuation map of cosmic microwave background radi-
ation, observed by the Planck satellite. (figure taken from ref [49]).
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Figure 1.4: Angular correlation function of temperature fluctuation of CMB from
the Planck observation. (figure taken from ref [49]).

.

In fact, the first measurement of the ISW effect using COBE data failed to
detect it [9], and WMAP made it possible to detect it [10].

Figure 1.5: The solid black line shows the gravitational potential of the path
taken by the photons emitted from the last scattering surface. The blue ar-
rows represent falling to the gravitational potential, and the red arrows represent
escaping from the gravitational potential.
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Figure 1.6: Rough sketch of ISW effect. The solid black line shows the gravita-
tional potential of the path taken by the photons emitted from the last scattering
surface. The step is the change in gravitational potential during the photon’s pas-
sage. The blue arrows represent falling to the gravitational potential, and the
red arrows represent escaping from the gravitational potential.

Figure 1.7: The single contributions to the CMB temperature spectrum. The
solid line indicates the lCDM model. The solid black line is the sum of all effects,
the solid blue line represents the SW effect, the solid yellow line the early ISW
effect, and the solid purple line the late ISW effect (figure taken from ref [5]).

.

1.3 Cosmic mirror

If we can place a mirror in space, we can observe the same point at different
times. We can apply this to the CMB and use scattering from galaxy clusters
instead of mirrors to reduce the cosmic variance [35]. This is based on the phe-
nomenon that when light of different intensity is incident perpendicularly on the
scattering target, as shown in Fig.1.8, Thomson scattering produces linear po-
larization in the reflected light [55]. However, the information obtained by this
method is limited to the inside of our optical cone and is correlated with each
other, so it’s not enough improvement to resolve cosmic variance [50][11]. On
the other hand, multiple observations of the same initial fluctuation at different
epochs can be used to fix the SW effect and to obtain information on the integral
Sachs-Wolfe effect at each redshift. The information on the ISW effect can be
retrieved for each redshift, and the method of restricting the equation of state
parameters for the dark energy is verified using simulations [33][59]. This simula-
tion reconstructs the fluctuations at the recombination epoch by using the CMB
polarization of many clusters of galaxies, and evaluates the reconstruction of the
fluctuations through the quadrupole temperature fluctuations that we directly
observe. As shown in Fig.1.9, the polarization of a galaxy cluster reflects infor-
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Figure 1.8: The process of producing linearly polarized light in a galaxy cluster.
A red cross represents strong intensity and a blue cross weak intensity. The
observer measures the ratio as the polarization intensity.

mation from a smaller last scattering surface than our last scattering surface, and
that region creates a lot of overlap given the large number of clusters.

1.4 Aim and structure of the thesis

Since the ISW effect is caused by changes in the gravitational potential along
the path of propagating CMB photons, the effect is enhanced by accelerated ex-
pansion. Typical measurements of the ISW effect cannot effectively constrain
the dark energy model very much because the ISW effect is small compared to
the cosmic variance from the variance of the initial fluctuations at recombination
so called the SW effect. However, by using the linear CMB polarization gener-
ated by clusters of galaxies due to the past CMB quadrupoles, it is possible to
obtain information on the quadrupoles at different times with the same initial
fluctuations. In [33], a method is proposed to predict the quadrupole of the CMB
that we directly observe from the quadrupole of galaxy clusters and to constrain
the dark energy model by comparison with actual observations. Such distant
quadrupoles also correlate with polarization anisotropy and other temperature
anisotropies than the quadrupoles in our direct all-sky observations. Therefore,
in this thesis, we propose a new method of constraining the dark energy model
using the polarization of galaxy clusters, combining polarization and temperature
anisotropy from all-sky observations of the CMB, and test the improvement of
constraints on the dark energy model using simulations by this method.

The thesis is structured as follows. In Chapter 2 I introduce the foundations
of standard cosmology. In chapter 3 I describe the temperature anisotropy of the
CMB in clusters of galaxies, and after that I explain the process of polarization
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Figure 1.9: Rough sketch of the simulation. This figure shows the light corn of
the observer. The bottom panel represents the temperature fluctuations at the
last scattering time. The star-shaped objects represent galaxy clusters, and the
CMB that each sees is represented by a red circle.

production in clusters of galaxies. In chapter 4 I introduce the simulations for
validation and show the results obtained. In addition I discuss the reconstruction
of the initial fluctuations in the validation process. Finally, I summarize my thesis
in Chapter 5.
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Chapter 2

Standard cosmology

In this thesis, we adopt a natural unit system with the following physical
constants.

c = ℏ = kB = 1 (2.1)

The following notation is used in this thesis.
Here x⃗ represents the coordinates in any inertial system, and each component is
represented as follows, 0 represents time and 1,2,3 represents spatial components.
For example, in Cartesian coordinates

x0 = t, x1 = x, x2 = y, x3 = z (2.2)

The Roman letters i, j, ... in the subscripts represent three-dimensional spatial
components, and the Greek letters µ, ν, ... represent time and spatial components.
An over-dot indicates a derivative by proper time, and a prime maker indicates
a derivative by conformal time.

dX

dt
≡ Ẋ,

dX

dτ
≡ X ′ (2.3)

In derivatives that include spatial components, partial derivatives and covariate
derivatives are denoted by commas and semicolons, respectively. In addition, the
covariate derivative of the spatial component only is indicated by a vertical bar.

Aµ
ν,λ ≡ ∂λA

µ
ν =

∂Aµ
ν

∂xλ
(2.4)

Aµ
ν;λ ≡ ∇λA

µ
ν = ∂λA

µ
ν + Γµ

λαA
α
ν − Γα

λνA
µ
α (2.5)

Bi|j ≡ (3)∇jBi (2.6)

The symmetrized and symmetrized tensors for sign reversal from a second-
order tensor Cµν are written as follows.

C(µν) =
1

2
(Cµν + Cνµ), C [µν] =

1

2
(Cµν − Cνµ) (2.7)
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2.1 Friedmann-Robertson-Walker metric

Modern cosmology is built on a concept called the cosmological principle.
Take inertial systems that can observe the universe isotropically in multiple spa-
tial coordinates. In this case, each inertial system is static each other. The proper
time synchronized in any coordinates is defined as cosmic time. Then, the same
universe is observed in each coordinate at the same proper time. Under these
conditions, we can establish spatial coordinates that do not change with the ex-
pansion of the universe, called co-moving coordinates. By adding cosmic time to
the space coordinate, it is defined as a four-dimensional coordinate, and its line
element is shown as

ds2 = gµνdx
µdxν = g00dt

2 + 2cg0idtdx
i + gijdx

idxj (2.8)

In the spatially static case, the spatial component is zero dxi = 0. Then by the
definition of line elements, the time component g00 is −1. In order to observe
the universe isotropically, the metric has no special direction g0i = gi0 = 0.

ds2 = −dt2 + gijdx
idxj (2.9)

Denote by γij the metric of three-dimensional space at any given time t0 in a
given spatial coordinate x⃗.

γij(x⃗) = gij(t0, x⃗) (2.10)

The distance between two points separated by a microscopic distance dxi is

dl(t0) =
√
γijdxidxj (2.11)

Consider equal expansion or shrinkage in all coordinates in space, depending on
time. Therefore, the change in the micro vector can be expressed as a time only
function a(t). The distance dl at a general time t is

dl(t) =
√

γija(t)dxia(t)dxj = a(t)dl(t0) (2.12)

The proportionality constant a(t) that represents the degree of expansion or
shrinkage of the universe is called the scale factor. Normalizing so that a(t0)dl(t0) =
dl(t0) when t = t0, we obtain

a(t0) = 1 (2.13)

In the following, the time t0 is taken as the current time, and the current scale
factor is set to 1.
In order to obtain the actual form of the metric γij , we introduce a two-dimensional
plane on a sphere in polar coordinate form. First, we take the radial coordinate
r⃗ so that the area of the two-dimensional sphere at a constant distance from
the origin is 4πr2. In this case, the line element is given by r2(dθ2 + sin2 θdϕ2).
Since the radial direction is orthogonal to the line element on the sphere, the line
element in 3-dimensional space can be defined by adding the radial component.

γijdx
idxj = F (r)dr2 + r2(dθ2 + sin2 θdϕ2) (2.14)

Christoffel symbol showing space distortion from the metric is

Γµ
λν =

1

2
gµρ (∂νgρλ + ∂λgρν − ∂ρgλν) (2.15)
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In addition, the curvature tensor is

Rµ
ναβ = ∂αΓ

µ
βν − ∂βΓ

µ
αν + Γµ

αλΓ
λ
βν − Γµ

βλΓ
λ
αν (2.16)

Its summation is the Ricci tensor Rµν .

Rµν = Rλ
µλν (2.17)

A further summation yields the scalar curvature R.

R = Rµ
µ (2.18)

Calculating the three-dimensional scalar curvatureRi
i from the metric in Eq.(2.14)

(3)R =
2

r2
d

dr

[
r

(
1−

1

F

)]
(2.19)

As the space is uniform, (3)R is independent of the spatial coordinates. Using
the constant K and setting (3)R = 6K, the metric of space is

γijdx
idxj =

1

1−Kr2
dr2 + r2(dθ2 + sin2 θdϕ2) (2.20)

Taken together, it is called Friedmann-Robertson-Walker metric (FRW metric),
a general metric for a homogeneous and isotropic universe.

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
(2.21)

It has two degrees of freedom: a scale factora(t) representing the expansion or
contraction of the universe due to time variation and the curvature of spaceK.
Now consider matching the radial coordinates with the physical distance. The
geodesic micro distance on radial direction dx from the FRW metric of Eq.(2.21)
is

dx =
dr

√
1−Kr2

(2.22)

Integrating this in the radial direction yields the geodesic distance. The inte-
grated function is summarized as SK(x), since it varies with the sign of the
curvature K.

r = SK(x) (2.23)

SK(x) =



sinh
(√

−Kx
)

√
−K

(K < 0)

x (K = 0)

sin(
√
Kx)

√
K

(K > 0)

(2.24)

Using x-coordinate as a radial coordinate, FRW metric becomes

ds2 = −dt2 + a2(t)
[
dx2 + S2

K(x)
(
dθ2 + sin2 θdϕ2

)]
(2.25)

The distance x used here is equal to the physical distance from the origin at the
current time a(t0) = 1. Also, the distance x does not have time-dependence,
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but the physical distance changes with the expansion and contraction of the
universe. Therefore, the physical distance from the origin to the coordinate x at
any given time is a(t)xmultiplied by a scale factor. Such coordinates independent
of the expansion and contraction of the universe are called co-moving coordinates,
and the distance x defined in a time-independent format is called the co-moving
distance.
In addition, consider a metric in which the time component, like the space, varies
with the scale factora(t).

ds2 = −a2(t)dτ2 + a2(t)
[
dx2 + S2

K(x)
(
dθ2 + sin2 θdϕ2

)]
(2.26)

Then, the new time component τ is called conformal time and represented with
using the proper time t

τ =

∫ t

0

dt′

a(t′)
(2.27)

In summary, the FRW metric is represented

ds2 = a2(τ)
[
−dτ2 + dx2 + S2

K(x)
(
dθ2 + sin2 θdϕ2

)]
(2.28)

Light from distant objects is affected by the expansion of the universe as it
propagates to the observer. If the cosmic expansion is uniform, the physical
distance between the observer and the object is elongated in proportion to the
co-moving distance. Therefore, the spectrum of light emitted from astronomical
objects is also shifted toward longer wavelengths, which is called redshift.
Consider that the object to be observed in FRW metric Eq.(2.25) emits light from
position (x1, θ1, ϕ1) at time t1, and the observer observes at time t0 at the origin
x = 0. The light ray travels along the null geodesic ds = 0. Also, since space is
isotropic, dθ = dϕ = 0 for a geodesic connecting the origin and a celestial body.
Therefore, the time on the ray and the minute distance in the radial direction
are

dt = −a(t)dx (2.29)

Integrating this yields ∫ t0

t1

dt

a(t)
= x1 (2.30)

he x1 is the co-moving distance between the observer and the object, so it does
not change with time. Consider light propagating as a wave: the first wave peak
starts at time t1 and the second peak starts at time t1 + δt1.　 Let t0 be the
time when the first peak reaches the observer at the origin, and t0 + δt0 be the
time when the next peak arrives. Since the propagating co-moving distance x1
is constant, ∫ t0

t1

dt

a(t)
=

∫ t0+δt0

t1+δt1

dt

a(t)
= x1 (2.31)

The wave period δt0, δt1 is sufficiently short compared to the time-varying scale
of the scale factor, so the Taylor expansion

δt1

a(t1)
=

δt0

a(t0)
(2.32)
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By multiplying δt0, δt1 by the speed of light c, we can obtain each wavelength.

λ0 = cδt0, λ1 = cδt1 (2.33)

Redshift is defined as the change in wavelength during emission and observation.

z ≡
λ0 − λ1

λ1
(2.34)

From Eq.(2.32) and Eq.(2.34), the relationship between redshift and scale factor
is derived.

1 + z =
λ0

λ1
=

a(t0)

a(t1)
(2.35)

From the normalization of a(t0) = 1, when the observed time is taken to be the
present

1 + z =
1

a(t1)
(2.36)

In the expanding universe, the scale factor a(t) is a monotonically increasing
function of time, and the scale factor a(t) and redshift z(t) correspond one-to-
one to time t. This means that the co-moving coordinate x can be described not
only as an integral of the cosmological time t, as in Eq.(2.30), but also as an
integral of the scale factor a and redshift z.

x =

∫ t0

t

dt

a
=

∫ 1

a

cda

a2H
=

∫ z

0

cdz

H
(2.37)

The H(t) used here is a function of time t, the expansion rate of the universe,
and is called the Hubble parameter.

H(t) ≡
ȧ(t)

a(t)
(2.38)

hus, the cosmological redshift caused by the effect of cosmic expansion can be
calculated. However, in the actual universe, objects such as galaxy has proper
motion in random directions. Therefore, in addition to the cosmological redshift,
the Doppler effect also produces redshifts. Therefore, it is impossible to determine
the complete cosmological redshift of a galaxy, and thus its distance to the galaxy,
from the measurement of the redshift.
Here γij is a time-independent uniformly isotropic 3-dimensional space metric
given by Eq.(2.20), and the 4-dimensional space-time metric gµν and its inverse
gµν are divided into time and space components.

ds2 = −dt2 + a2(t)γijdx
idxj (2.39)

g00 = −1, g0i = gi0 = 0, gij = a2γij (2.40)

g00 = −1, g0i = gi0 = 0, gij =
1

a2
γij (2.41)
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The Christoffel symbol is obtained from Eq.(2.40) and Eq.(2.41) with three-
dimensional metric γij , γ

ij .

Γ0
00 = Γ0

0i = Γ0
i0 = Γi

00 = 0

Γ0
ij =

aȧ

c
γij , Γi

0j = Γi
j0 =

ȧ

ca
δij (2.42)

(3)Γi
jk ≡ Γi

jk =
1

2
γil(γlk,j + γjl,k − γjk,l)

Then, we obtain the three-dimensional curvature tensor (3)Rijkl.

(3)Rijkl = (γikγjl − γilγjk) (2.43)

The curvature tensor, including a time component, is

R0
00i = R0

0ij = R0
ijk = Ri

0jk = Ri
j0k = 0

R0
i0j = aäγij , Ri

00j =
ä

a
δij (2.44)

Ri
jkl =

(
ȧ2 +K

)
(δikγjl − δilγjk)

From this, Rich Tensor is

R0
0 =

3ä

a

Ri
0 = R0

i = 0 (2.45)

Ri
j =

 ä
a
+ 2

(
ȧ

a

)2

+
2

a2
K

 δij

Further contraction yields a scalar curvature of

R = 6

 ä
a
+

(
ȧ

a

)2

+
1

a2
K

 (2.46)

2.2 Einstein’s equations and Friedmann equation

In Newtonian mechanics, where matter does not bend space-time, the Poisson
equation ∆ϕ = 4πGρ exists as the equation describing the gravitational field. It
links the gravitational potential ϕ to the mass density ρ. The Einstein equation,
which is an extension of this equation, is the most important basic formula that
gives the relationship between matter, energy, and gravity in the general theory
of relativity.

Gµ
ν =

8πG
Tµ

ν (2.47)

where Tµ
ν is the energy-momentum tensor. Also, Gµ

ν on the left side is described
by the Ricci tensor, scalar curvature, and metric gµν .

Gµ
ν ≡ Rµ

ν −
1

2
gµνR (2.48)
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This is the Einstein tensor. With using Eq.(2.45) and Eq.(2.46)

G0
0 = −3

( ȧ

a

)2

+
K

a2


Gi

0 = G0
i = 0 (2.49)

Gi
j = −

1

c

2 ä
a
+

(
ȧ

a

)2

+
K

a2

 δij

Due to the isotropy of space, the spatial component of the Einstein tensor also
has no off-diagonal component from δij . The Bianchi identity for the curvature
tensor is

Rλ
µνρ;σ +Rλ

µσν;ρ +Rλ
µρσ;ν = 0 (2.50)

From here, the energy-momentum tensor satisfies the energy-momentum conser-
vation law as follows.

Tµ
ν,µ = 0 (2.51)

Comparing the Einstein equation in Eq.(2.47) with the Einstein tensor in Eq.(2.49),
the energy-momentum tensor Tµ

ν is determined as

(Tµ
ν) =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (2.52)

The ρ and p correspond to the energy density and pressure, respectively. These
energy densities and pressure are allowed to change only in time due to the
uniform isotropy of the universe. Two equations are obtained from the diagonal
components of Einstein’s equations for uniformly isotropic spacetime.(

ȧ

a

)2

=
8πG

3
ρ−

K

a2
(2.53)

ä

a
= −

4πG

3
(ρ+ 3p) (2.54)

These are called the Friedman equations, which describe the expansion and con-
traction of the universe in terms of its components, such as energy density and
pressure, and curvature. Also, from Eq.(2.53) and Eq.(2.54)

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (2.55)

This equation represents energy conservation.
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2.3 Cosmological constant and dark energy

Looking at Eq.(2.54), the second-order derivative of the scale factor ä, which
is the acceleration of the expansion rate of the universe, is determined by the
energy density ρ and pressure p. For ordinary matter, both the energy density
and pressure are positive, so according to Eq.(2.54), the expansion rate of the
universe is always negative. This is due to the fact that gravity works as an
attractive force between matter, an effect that contracts space-time. In such
a universe, the cosmic expansion always continues to decelerate and eventually
begins to shrink. In order to realize a stationary universe in which the scale factor
a is a constant independent of time, Einstein modified the Einstein equation by
adding the cosmological term Λδµν to Einstein’s equation Eq.(2.47).

Gµ
ν + Λδµν = 8πGTµ

ν (2.56)

The Λ introduced here is a constant and is called the cosmological constant.
Since the cosmological term is a constant, the conservation law of energy and
momentum in Eq.(2.55) remains unchanged. On the other hand, Eq.(2.53) and
Eq.(2.54), which include the Friedman equation, can be rewritten to include the
cosmological constant Λ. (

ȧ

a

)2

=
8πG

3
ρ−

K

a2
+

Λ

3
(2.57)

ä

a
= −

4πG

3
(ρ+ 3p) +

Λ

3
(2.58)

When the cosmological constant Λ is positive, it behaves as if it is driving the
expansion of the universe, and a stationary universe can be realized by tuning it
together with the curvature K. However, the stationary universe is theoretically
unstable. In recent years, Perlmutter, Schmidt, and Ries have discovered that the
present universe is accelerating expansion based on observations of distant Type
1a supernova explosions. The cosmological term is widely accepted because the
accelerated expansion of the universe, ȧ > 0, can be explained by a cosmological
term more positive than Eq.(2.58). Consider the existence of the cosmological
term as some kind of energy component. Matching the form to the energy density
and pressure of Eq.(2.57) and Eq.(2.58), we obtain

ρΛ =
Λ

8πG
, pΛ = −

Λ

8πG
(2.59)

The equation of state linking the pressure and energy in the cosmological term is

pΛ = −ρΛ (2.60)

Unlike ordinary matter, the energy density exerts a negative pressure, indicating
that it is also driving cosmic expansion.
However, the necessary condition for explaining the accelerating expansion of the
cosmological term is Eq.(2.58), which means that the energy density and pres-
sure do not necessarily have to be constants, since ρ + 3p < 0 from Eq.(2.58).
Therefore, all unknown energy components that cause the accelerated expansion
of the universe are generally referred to as dark energy. Since dark energy can
be included in the energy density ρ and pressure p by considering it as an energy
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component, Eq.(2.57) and Eq.(2.58) can be returned to the form of Eq.(2.53) and
Eq.(2.54). The contribution of dark energy to cosmic expansion can also be cal-
culated once the relationship between energy density and pressure is determined.
The energy density ρDE and pressure pDE of dark energy are

pDE = wDEρDE (2.61)

2.4 Cosmological parameters

Parameters that cannot be determined solely from the theoretical structure
and must be determined by observation in solving the evolution of the universe as
a whole are called cosmological parameters. Here, we define the parameters for
a uniformly isotropic universe. The expansion rate of the universe is defined as
the Hubble parameter as a function of each time t in Eq.(2.38). As the expansion
rate at the current time t0, the Hubble constant is

H0 =
ȧ

a

∣∣∣∣∣
t=t0

(2.62)

The subscript 0 indicates the value at the current time t0. Generally, current
Hubble constant divided by 100 is also expressed using the lowercase letter h.

h ≡
H0

100
(2.63)

With the Hubble constant, the Friedman equation becomes

H2
0 =

8πG

3
ρ0 −K (2.64)

where ρ0 is the current total energy density. Dark energy is also included as well
as the radiative and material components.

ρ0 =
∑
A

ρA0 (2.65)

As can be seen from Eq.(2.64), the Hubble constant is a cosmological parameter
because it is given by the curvature and the current energy density. In the flat
universe model with zero curvature K = 0, the current total energy density from
Eq.(2.64) is

ρc0 =
3H2

0

8πG
(2.66)

This energy density at zero curvature ρc0 is called the critical energy density. If
this is converted to a mass density,

ϱc0 ≡ ρc0 =
3H2

0

8πG
(2.67)

The ϱc0 is called the critical mass density and is a cosmological parameter de-
termined together with the Hubble constant. The dimensionless quantity that
normalizes the current energy density of each component by the critical energy
density is called the density parameter. The density parameter for component A
is

ΩA0 =
ρA0

ρc0
=

8πGρA0

3H2
0

(2.68)
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The total energy density is given by the addition of all components.

Ω0 =
ρ0

ρc0
=

8πGρ0

3H2
0

=
∑
A

ΩA0 (2.69)

The density parameter of the cosmological term, a kind of the dark energy, is
from Eq.(2.59)

Ωd0 =
ρΛ

ρc0
=

Λ

3H2
0

(2.70)

The energy density of the cosmological constant ρΛ is a constant value that does
not change with time. With the density parameter, the Friedman equation can
be written in terms of the curvature K with the density parameter

K

H2
0

= Ω0 − 1 (2.71)

The sign of Ω0 − 1 and the sign of the curvature K coincide, which means that
the space has positive curvature when the total density of the universe is larger
than the critical density and negative curvature when it is smaller. To remain the
universe being flat, the sum of matter, radiation and dark energy must equal the
critical density. The curvature parameter is obtained by non-dimensionalizing
the curvature from the table expression in Eq.(2.71).

ΩK0 = −
K

H0
(2.72)

By introducing a curvature parameter, Eq.(2.71) The density parameter can be
rewritten to add up to 1.

Ω0 +ΩK0 =
∑
A

ΩA0 +ΩK0 = 1 (2.73)

The density parameter is defined from the density of each component at the cur-
rent time. This is due to the fact that the density parameter is a cosmological
parameter determined by observation. However, in general, most of the cosmo-
logical parameters are scale factor dependent, and time variation must be taken
into account when considering a sufficiently distant, high-redshift universe. The
time-dependent cosmological parameters are defined as follows.

H =
ȧ

a
, ρc =

3H2

8πG
(2.74)

ΩA =
ρA

ρc
=

8πGρA

3H2
, ΩK = −

K

a2H2
(2.75)

Writing Eq.(2.73) also in a time-dependent form

Ω ≡
∑
A

ΩA = 1− ΩK (2.76)

Time-dependent cosmology expressed in terms of current cosmological parameters

ΩA =
H2

0

H2

ρAΩA0

ρA0
, ΩK =

H2
0

H2

ΩK0

a2
(2.77)
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With these, we rewrite Eq.(2.76) to obtain an expression for the Friedman equa-
tion with density parameters.

H2

H2
0

=
∑
A

ρAΩA0

ρA0
+

ΩK0

a2
(2.78)

From these equations, the time-dependent density parameter is expressed as

ΩA =
ρAΩA0/ρA0∑

B ρBΩB0/ρB0 +ΩK0/a2
, ΩK =

ΩK0/a
2∑

B ρBΩB0/ρB0 +ΩK0/a2
(2.79)

From these, given the time variation ρA/ρA0 by the scale factor of each compo-
nent, the variation of the ratio of each component to the critical density can be
calculated as shown in Fig.2.1.

(Ωr,Ωm,Ωd) =

(
Ωr0,Ωm0a,Ωd0a

4
)

Ωr0 +Ωm0a+Ωd0a4
(2.80)

Figure 2.1: Evolution of each energy component along scale factor. The dotted
line shows the radiative component, the dashed line shows the material compo-
nent, and the solid line shows the dark energy component as a percentage of
the energy density. The curvature component is omitted here because its value
is small and it is not the primary component at any time. The current time is
a = 100, and the dark energy component will rapidly increase its share even more
in the future.

Fig.2.2 shows the ratio of each energy component to the total energy along
the redshift based on observations of the current energy density. In the early
universe, the radiative component dominates, and then with expansion, the main
energy component switches to matter such as dark matter around z ∼ 3000.
Furthermore, at redshift z ∼0.3, the dark energy exceeds the energy density of
matter, and an accelerated expanding universe starts. Assume that there is no
energy exchange across radiation, matter, and dark energy in the entire universe.
Then the energy density of each will change only due to the expansion of space.
The energy density of matter is inversely proportional to the volume of space(∝
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Figure 2.2: Evolution of each energy component along redshift. The dotted line
shows the radiative component, the dashed line shows the material component,
and the solid line shows the dark energy component as a percentage of the energy
density. The curvature component is omitted here because its value is small and it
is not the primary component at any time. In the current standard cosmological
ΛCDMmodel, the energy densities of matter and dark energy are equal at redshift
z ∼ 0.3.

a−3) and the energy density of radiation is further inversely proportional to the
scale factor(∝ a−4) due to the further wavelength extension effect. Considering
the variation of each component with the scale factor a, the energy density can be
calculated from the current respective energy densities (radiation:ρr0, matter:ρm0,
dark energy:ρd0) to

ρr =
ρr0

a4
, ρm =

ρm0

a3
, ρd = ρd0 exp

[
3

∫ 1

a
(1 + wDE)

da

a

]
(2.81)

The energy density of the entire universe is

ρ =
ρr0

a4
+

ρm0

a3
+ ρd0 exp

[
3

∫ 1

a
(1 + wDE)

da

a

]
(2.82)

Rewrite Eq.(2.78) by adding the density parameter of curvature from Eq.(2.77).

ȧ2 = H2
0

{
Ωr0

a2
+

Ωm0

a
+ΩK0 +Ωd0a

2 exp

[
3

∫ 1

a
(1 + wDE)

da

a

]}
(2.83)

This describes the Friedman equation by the current density parameter. It rep-
resents the cosmic expansion ȧ as determined for each period by the component
that accounts for the largest fraction of the right-hand side. This is converted to
a form describing the Hubble parameter in terms of the Hubble constant using
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the redshift z.

H(z) = H0

[
(1 + z)4Ωr0 + (1 + z)3Ωm0 + (1 + z)2ΩK0

+Ωd0 exp

(
3

∫ z

0

1 + wDE

1 + z
dz

)]1/2
(2.84)

By integrating this H(z) as Eq.(2.37), we can calculate the co-moving distance
x to the source at redshift z. Thus, the density parameter determines the rela-
tionship between redshift and distance.

2.5 Einstein’s equations in liner perturbation

In a homogeneous and isotropic universe, the metric can be determined as
in Eq.(2.26). However, if it is not perfectly uniformly isotropic, it becomes a
function of space-time. The general metric tensor is divided into uniform ḡµν and
non-uniform hµν components.

gµν = ḡµν + hµν (2.85)

In the following, conformal time is adopted as the time coordinate, and homoge-
neous isotropic background space-time is represented as follows.

ds2 = a2(τ)
(
−dτ2 + γijdx

idxj
)

(2.86)

The homogeneous isotropic background space-time metric is a solution to Ein-
stein’s equations. Consider that the non-uniform component is sufficiently small
relative to the uniform component. Then hµν can be regarded as a perturbation,
and the solution of Einstein’s equations in the universe including the nonuniform
component can be obtained using a linear approximation.
Three variables, A,Bi, and Cij , are introduced for the perturbed components,
which are deviations from the homogeneous and isotropic universe.

h00 = −2a2A, h0i = −a2Bi, hij = 2a2Cij (2.87)

Bi ≡ γijBj , Ci
j ≡ γikCkj , C j

i ≡ γjkCik, Cij ≡ γikγjlCkl (2.88)

The metric of the perturbed universe is

ds2 = a2(τ)
[
−(1 + 2A)dτ2 − 2Bidτdx

i + (γij + 2Cij)dx
idxj

]
(2.89)

The specific metric is

g00 = −a2(1 + 2A), g0i = −a2Bi, gµν = a2(γij + 2Cij) (2.90)

The inverse of the metric under linear approximation is

g00 = −
1

a2
(1 + 2A), g0i = −

1

a2
Bi, gij =

1

a2
(γij − 2Cij) (2.91)

In the following, H is used instead of the Hubble parameterH, including the
derivative in conformal time expressed as a prime.

H ≡
1

a

da

dτ
=

a′

a
= aH (2.92)
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Christoffel symbols containing perturbation variables are

Γ0
00 = H +A′ (2.93)

Γ0
0i = Γ0

i0 = A|i − H Bi (2.94)

Γ0
ij = H (1− 2A)γij +

1

2
(Bi|j +Bj|i) + Ci

j
′ + 2H Cij (2.95)

Γi
00 = A|i − (Bi)′ − H Bi (2.96)

Γi
0j = Γi

j0 = H δij +
1

2
(B

|i
j −Bi

|j) + Ci
j
′ (2.97)

Γi
jk = (3)Γi

jk + H Biγjk + Ci
j|k + Ci

k|j − C
|i

jk (2.98)

The curvature tensor in background spacetime is the same as in Eq.(2.41)–
Eq.(2.43). Similarly, we obtain a linear approximate form for the energy-momentum
tensor.

Tµ
ν = (ρ+ p)uµuν + pδµν + σµ

ν (2.99)

where uµ is the quaternary velocity of the fluid element and σµ
ν is the non-stress

tensor. The non-stress tensor is a symmetric tensor that is traceless and has only
a spatial component.

σµνuν = 0, gµνσ
µν = 0, σµν = σνµ (2.100)

Spatial velocity is chosen independently from the quaternionic velocity.

vi ≡
ui

u0
(2.101)

Background spacetime is homogeneous and isotropic and thus has no spatial
velocity. Writing the quaternionic velocity in the linear approximation using the
spatial velocity,

uµ = a−1(1−A, vi) (2.102)

uµ = a(−1−A, vi −Bi) (2.103)

The unstress tensor likewise has no value in background spacetime, so it is only
a perturbative component. Therefore, in a linear approximation, the metric in
Eq.(2.100) remains only the background spacetime component.

σ00 = σ0i = σi0 = 0, γijσ
ij = 0, σij = σji (2.104)

σ0
0 = σ0

i = σi
0 = 0, σi

i = 0, σi
j = σ i

j (2.105)

In summary, each component of the energy-momentum tensor is obtained from
Eq.(2.99)

T 0
0 = −ρ (2.106)

T 0
i = (ρ+ p)(vi −Bi) (2.107)

T i
0 = −(ρ+ p)vi (2.108)

T i
j = pδij + σi

j (2.109)

We now define dimensionless energy density fluctuations δ and pressure fluctua-
tions δp.

δ ≡ ρ− ρ̄

ρ̄
, δp ≡ p− p̄ (2.110)
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A dimensionless quantity is also defined for the non-stress tensorσi
j .

Πi
j ≡

σi
j

p
(2.111)

Using these perturbation quantities, the energy-momentum tensor can be rewrit-
ten as

T 0
0 = −ρ̄− ρ̄δ (2.112)

T 0
i = (ρ̄+ p̄)(vi −Bi) (2.113)

T i
0 = −(ρ̄+ p̄)vi (2.114)

T i
j = p̄δij + δpδij + p̄Πi

j (2.115)

The Einstein tensor Gµ
ν and energy-momentum tensorTµ

ν contained in the Ein-
stein equation Eq.(2.56) with the cosmological term are divided into a background
component and a perturbative component.

Gµ
ν = Ḡµ

ν + δGµ
ν , Tµ

ν = T̄µ
ν + δTµ

ν (2.116)

The background component satisfies the Einstein equation as Eq.(2.56).

Ḡµ
ν + Λδµν = 8πGT̄µ

ν (2.117)

Subtract the background component to obtain the Einstein equation in the per-
turbed component.

δGµ
ν = 8πGδTµ

ν (2.118)

The Einstein tensor of the background component is

Ḡ0
0 = − 4

a2
(H 2 +K), Ḡi

0 = Ḡ0
i = 0,

Ḡi
j = − 1

a2
(2H ′ + H 2 +K)δij (2.119)

Similarly, the energy-momentum tensor is

T̄ 0
0 = −ρ̄, T̄ i

0 = T̄ 0
i = 0, T̄ i

j = p̄δij (2.120)

Equations corresponding to the Friedman equation are derived from the Einstein
equation using the components of background spacetime.

H 2 =
8πG

3
a2ρ̄+

Λ

3
a2 −K (2.121)

H ′ =
4πG

3
a2(ρ̄+ 3p̄) +

Λ

3
a2 (2.122)

Similarly, the energy-momentum conservation law is

ρ̄′ = −3H (ρ̄+ p̄) (2.123)

The density parameter, state parameter, and sound velocity are also redefined
using background space-time variables.

Ω ≡ 8πGa2ρ̄

3H 2
, w ≡ p̄

ρ̄
, cs

2 =
p̄′

ρ̄′
(2.124)
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Rewrite Eq.(2.122)–Eq.(2.123)using the time-dependent parameters of the back-
ground time component.

H 2 = H 2Ω+
Λ

3
a2 −K (2.125)

H ′ = −1

2
H 2Ω(1 + 3w) +

Λ

3
a2 (2.126)

w′ = −3H (a+ w)
(
cs

2 − w
)

(2.127)

From these equations, we obtain

H 2 +K − H ′ = 4πGa2(ρ̄+ p̄) =
3

2
H 2Ω(1 + w) (2.128)

H ′′ − H
(
H 2 +K + H ′) = −4πGa2p̄′ =

9

2
H 3Ω(1 + w)cs

2 (2.129)

The spatial components of the Einstein equation for perturbations are divided
into trace and non-trace components.

δGi
i = 8′DδT i

i, δGi
j −

1

3
δijG

k
k = 8πG

(
δT i

j −
1

3
δijδT

k
k

)
(2.130)

For the perturbation component, the independent expressions derived from the
Einstein equations are

3H 2A− H Bi
|i − H Ci

i
′ +KCi

i −
1

2
Cij

|ij +
1

2
Ci

i|j
|j = 4πGa2ρ̄δ (2.131)

H A|i +KBi +
1

4
Bi|j

|j − 1

4
Bj

|ij + Cj ′
[i|j] = −4πGa2(ρ̄+ p̄)(vi −Bi)(2.132)

3H A′ + 3
(
H 2 + 2H ′)A+△A−Bi

|i
′ − 2H Bi

|i

−Ci
i
′′ − 2H Ci

i
′ +KCi

i −
1

2
Cij

|ji +
1

2
Ci

i|j
|j = 12πGa2δp (2.133)(

δik −
1

3
γklγ

ij

)(
A|ij −B(i|j)

′ − 2H B(i|j) − Cij
′′ − 2H Cij

′′ − 2H Cij
′

+4KCij + Cij|m
|m + Cm

m|ij − 2Cm(i|j)
|m
)
= −8πGa2p̄Πkl (2.134)

Next, consider the covariant derivative of the energy-momentum tensor.

Tµ
ν;µ = Tµ

ν,µ + Γµ
µλT

λ
ν − Γλ

µνT
µ
λ (2.135)

Under the linear approximation, the time and space components are respectively

Tµ
0;µ = −ρ̄′ − 3H (ρ̄+ p̄)− (ρ̄p̄)− 3H (ρ̄δ + δp)− (ρ̄+ p̄)

(
vi|i + Ci

i
′)(2.136)

Tµ
i;µ = [(ρ̄+ p̄)(vi −Bi)]

′ + 4H (ρ̄+ p̄)(vi −Bi) + (ρ̄+ p̄)A|i + δp|i + p̄Πj
i|k(2.137)

Assuming that pressure is a function of energy density and entropy, pressure
fluctuations can be expressed using entropy fluctuations as

δp =

(
∂p

∂ρ

)∣∣∣∣∣
S

δρ+

(
∂p

∂S

)∣∣∣∣∣
ρ

δS = cs
2ρ̄δ +

(
∂p

∂S

)∣∣∣∣∣
ρ

δS (2.138)

In addition, we define dimensionless entropy fluctuations.

Γ =
δp− cs

2ρ̄δ

p̄
=

δp

p̄
− cs

2

w
δ (2.139)

Using entropy fluctuations, the following can be derived from the energy-momentum
conservation law

δ′ + 3H
(
cs

2 − w
)
δ + (1 + w)

(
vi|i + Ci

i
′)+ 3wΓ = 0(2.140)

(vi −Bi)
′ + H

(
1− 3cs

2
)
(vi −Bi) +

cs
2

1 + w
δ|i +A|i +

w

1 + w

(
Γ|i +Πj

i|j
)
= 0(2.141)
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2.6 Gauge conversion and scalar mode

Consider minute coordinate transformations in perturbed spacetime.

xµ → x̃µ = xµ + ξµ (2.142)

The metric conversion is

gµν(x) → g̃µν(x̃) =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(x) (2.143)

Using a linear approximation, given the change in the metric tensor

g̃µν(x)− gµν(x) = g̃µν(x̃)− gµν(x)− gµν,α(x)ξ
α

= −gµα(x)ξ
α
,ν − gνα(x)ξ

α
,µ − gµν,α(x)ξ

α (2.144)

The change in coordinates is also a perturbation quantity, and the spatial and
temporal components are calculated respectively

A → Ã = A− T ′ − H T (2.145)

Bi → B̃i = Bi + Li
′ − T|i (2.146)

Cij → C̃ij − H Tγij − L(i|j) (2.147)

where we divide the coordinate transformation vector into time component T and
space component Li.
For the energy-momentum tensor, the transformation also yields

T̃µ
ν(x)− Tµ

ν(x) = Tα
ν(x)ξ

µ
,α − Tµ

β(X)ξβ,ν − Tµ
ν,α(X)ξα (2.148)

Calculating the energy-momentum tensor component-by-component, we find that
each element is transformed as follows.

δ → δ̃ − δ − ρ̄′

ρ̄
T (2.149)

vi → ṽi = vi + L′
i (2.150)

δp → δ̃p = δp− p̄′T (2.151)

Πi
j → Π̃i

j = Πi
j (2.152)

Γ → Γ̃ = Γ (2.153)

Consider the scalar, vector, and tensor decomposition of the perturbed compo-
nent A, Bi, Cij . Only the scalar components that are ultimately needed are shown
here. Since A has only a scalar component, no decomposition is performed. Bi is
divided into a covariate differential component of the scalar field B(S) and other
components.

Bi = B(S)
|i +B(V)

i (2.154)

Since B(S) satisfies △B(S) = Bi
|i,

B(S) = △−1∇iBi (2.155)

Since C is a tensor, it is decomposed into four components, including two scalar
fields D, E(S)

Cij = γijD + E(S)
|ij + E(V)

(i|j) + E(T)
ij (2.156)
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The contraction and covariant derivative of Cij is

Ci
i = 3D +△E(S) (2.157)

Cij
|j = D|i +

[
(△+ 2K)E(S)

]
|i
+

1

2
E(V)

i|j
|j +KE(V)

i (2.158)

Cij
|ji = △

(
D +△E(S) + 2KE(S)

)
(2.159)

From Eq.(2.157) and Eq.(2.159),

D =
1

3
Ci

i − 1

2
△ (△+ 3K)−1

(
△−1∇i∇jCij −

1

3
Ci

i

)
(2.160)

E(S) =
3

2
(△+ 3K)−1

(
△−1∇i∇jCij −

1

3
Ci

i

)
(2.161)

The variable Li in the gauge transformation is decomposed in the same way,

Li = L(S)
|i + L(V)

i (2.162)

In summary, the gauge transformation of the scalar component of perturbation
component of background spacetime are written as

A → Ã = A− T ′ − H T (2.163)

B(S) → B̃(S) = B(S) + L(S)′ − T (2.164)

D → D̃ = D − H T (2.165)

E(S) → Ẽ(S) = E(S) − L(S) (2.166)

Similarly, we perform SVT decompositions for perturbations of the energy-momentum
tensor.

vi = v(S)|i + v(V)
i (2.167)

Since the non-stress tensor has no trace component.

Πij = Π(S)
|ij − 13γij △Π(S) +Π(V)

(i|j) +Π(T)
ij (2.168)

Thus, for the scalar components of perturbations of the energy-momentum tensor,

δ → δ̃ = δ − ρ̄′

ρ̄
T (2.169)

v(S) → ṽ(S) = v(S) + L(S)′ (2.170)

δp → δ̃p = δp− p̄′T (2.171)

Π(S) → Π̃(S) = Π(S) (2.172)

In gauge conversion, the scalar, vector, and tensor components are transformed
independently. The linear Einstein equation in the scalar component is written
as

3H 2A− H △B(S) − 3H D′ + (△+ 3K)D − H △ E(S)′

= −4πGa2ρ̄δ (2.173)

H A+KB(S) −D′ +KE(S)′ = −4πGa2(ρ̄+ p̄)
(
v(S) −B(S)

)
(2.174)

3H A′ +
(
H 2 + 2H ′)A+△A−△B77(S)′ − 2H △B(S) − 3D′′

−6H D′ + (△+ 3K)D −△E(S)′′ − 2H △ E(S)′ = 12πGa2δp (2.175)

A−B(S)′ − 2H B(S) +D − E(S)′′ − 2H E(S)′ = −8πGa2p̄Π(S) (2.176)
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In the following, we will find the gauge invariants in scalar-type perturbations.
The following two relations are adopted from the gauge transformation equation
for scalar-type perturbations.

B̃(S) + Ẽ(S)′ = B(S) + E(S)′ − T (2.177)

Ẽ(S) = E(S) − L(S) (2.178)

Using these equations, we remove the variables of the gauge transformation and
define two variables that are not changed by the gauge transformation.

Φ = A−
(
B(S) + E(S)′

)′
− H

(
B(S) + E(S)′

)
(2.179)

Ψ = D − H
(
B(S) + E(S)′

)
(2.180)

Also, since the perturbation variables for the energy component are not gauge in-
variants, we construct gauge-invariant variables using Eq.(2.177) and Eq.(2.178).

δ(GI)δ + 3H (1 + w)
(
B(S) + E(S)′

)
(2.181)

v(GI) = v(S) + E(S)′ (2.182)

δp(GI) = δp+ 3H ρ̄cs
2(1 + w)

(
B(S) + E(S)′

)
(2.183)

The linear Einstein equations for the scalar-type components are expressed in
terms of these gauge-invariant perturbation variables as

3H (H Φ−Ψ′) + (△+ 3K)Ψ = −4πGa2ρ̄δ(GI) (2.184)

H Φ−Ψ′ = 4πGa2(ρ̄+ p̄)v(GI) (2.185)

△Φ+ (△+ 3K)Ψ + 3
(
H 2 + 2H ′)Φ+ 3H Φ′ − 6H Ψ′ − 3Ψ′′

= 12πGa2δp(GI) (2.186)

Φ + Ψ = −8πGa2p̄Π(S) (2.187)

We adopt the Newtonian conformal gauge. Its conditions are

B(S) = E(S) = 0 (2.188)

Then the gauge invariants in the background spacetime are

Φ = A, Ψ = D (2.189)

And the line element is written as

ds2 = a2(τ)
[
−(1 + 2Φ)dτ2 + (1 + 2Ψ)γijdx

idxj))
]

(2.190)

In the Newtonian conformal gauge, Gauge invariants of energy components are
consistent with those before making them gauge-invariant.

δ(GI) = δ, v(GI) = v(S), δp(GI) = δp (2.191)

Although we defined gauge invariants earlier, one of the other variables that
are gauge invariants is called the Bardeen’s variable. In the Bardeen’s variable,
gauge-invariant density fluctuation is defined as

∆ ≡ δ(GI) − 3H (1 + w)v(GI) = δ +
ρ̄′

ρ̄

(
v(S) −B(S)

)
(2.192)
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Rewriting with the Bardeen’s variable

∆′ − 3H w∆ = −(△+ 3K) [(1 + w)V − 2H wΠ] (2.193)

V ′ + H V = − cs
2

1 + w
∆− Φ− w

1 + w

[
Γ +

2

3
(△+ 3K)Π

]
(2.194)

(△+ 3K)Ψ = 4πGa2ρ̄∆ (2.195)

Φ + Ψ = −8πGa2p̄Π (2.196)

where we describe v(GI) as V and Π(S) as Π. The Einstein equation for scalar-
type perturbations also yields an equation called the Bardeen equation.

Ψ′′ + 3H
(
1 + cs

2
)
Ψ′ − cs

2 △Ψ(2.197)

+
[
8πGa2ρ̄

(
cs

2 − w
)
+ Λa2

(
1 + cs

2
)
− 2K

(
1 + 3cs

2
)]

Ψ(2.198)

= −8πGa2ρ̄

{
1

2
wΓ + H wΠ′ +

1

3
w△Π+

[
8πG

3
a2ρ̄

(
2w − 3w2 − 3cs

2
)
(2.199)

+
Λ

3
a2
(
5w − 3cs

2
)
+ 3K

(
cs

2 − w
)]

Π

}
(2.200)

Solving these for each variable yields

∆ = −(△+ 3K)Ψ

4πGa2ρ̄
(2.201)

Φ = −Ψ− 8πGa2p̄Π (2.202)

V =
Ψ′ − H Φ

4πGa2(ρ̄+ p̄)
(2.203)

2.7 Evolution of potential in each dominant era

In the universe after the radiation-dominated period, the equation of state
parameters are equal to the speed of sound, and the non-stress tensor and entropy
fluctuations can be approximately neglected.

w = cs
2, γ = Π = 0 (2.204)

Since the non-stress tensor is negligible,

Ψ = −Φ (2.205)

Also, by mode decomposition of the Bardeen equation, the following equation is
obtained.

Φ′′ + 3H
(
1 + cs

2
)
Φ′ + cs

2k2Φ+
[
Λa2

(
1 + cs

2
)
− 2K

(
1 + 3cs

2
)]

Φ = 0(2.206)

Similarly, an expression describing a Bardeen variable can be mode decomposed
to

∆ = −k2 − 3K

4πGa2ρ̄
Φ, V = − (aΦ)′

4πGa2ρ̄(1 + w)
(2.207)

First, consider the radiation-dominated phase, which is the earliest time in this
condition. Since the radiative component is dominant

w = cs
2 =

1

3
, Λ = K = 0 (2.208)
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The time dependence of the scale factor is

a ∝ τ, τ, H =
1

τ
, H ′ = − 1

τ2
(2.209)

Using these, the Bardeen equation can be expressed as a simple differential equa-
tion of potential.

Φ′′ +
4

τ
Φ′ +

k2

3
Φ = 0 (2.210)

The potential that is the solution of the equation is found to be

Φ =
9ϕini

k2τ2

(√
3

kτ
sin

kτ√
3
− cos

kτ√
3

)
(2.211)

where ϕini is derived from the integration constant and is determined by the
initial conditions. From the obtained potentials, the other Bardeen variables are

∆ = −6ϕini

(√
3

kτ
sin

kτ√
3
− cos

kτ√
3

)
(2.212)

V =
9
√
3ϕini

k3τ2

[(
1− k2τ2

6

)
sin

kτ√
3
− kτ√

3
cos

kτ√
3

]
(2.213)

Next, consider the material dominance period. In matter, the pressure is suffi-
ciently small.

w = cs
2 = 0, Λ = K = 0 (2.214)

The time dependence of the scale factor and the expansion rate is described as

a ∝ τ2, H =
2

τ
, H ′ = − 2

τ2
(2.215)

The Bardeen equation can be expressed as a differential equation of potential.

Φ′′ +
6

τ
Φ′ = 0 (2.216)

This equation has a time-invariant static solution and we describe its potential
as

Φ = ϕm (2.217)

And the other Bardeen variables are

Φ = ϕm, ∆ = −ϕm

6
k2τ2, V = −ϕm

3
τ (2.218)

The curvature fluctuations in the long wavelength limit, which are conserved
beyond the Hubble scale, allow us to link the unique potential values of the
radiation-dominated and matter-dominated phases, respectively.

ϕm =
9

10
ϕini (2.219)

Finally, consider the dark Λ-dominant era, which is later than the matter-dominant
era. Assuming that the speed of sound is negligible,

w = cs
2 = 0 (2.220)
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The Bardeen equation, which includes the cosmological constant and curvature,
is

Φ′′ + 3H Φ′ +
(
Λa2 − 2K

)
Φ = 0 (2.221)

The Bardeen variables for density fluctuations and velocity are

∆ = −k2 − 3K

4πGρ̄0
aΦ, V = − (aΦ)′

4πGρ̄0
(2.222)

Using the cosmological constant and curvature, the expansion rate can be written
as

H 2 =
8πGρ̄0
3a

+
Λ

3
a2 −K, H ′ = −4πGρ̄0

3a
+

Λ

3
a2,

H ′′

H
=

4πGρ̄0
3a

+
2

3
λ2(2.223)

Using these equations to solve the Bardeen equation, we obtain

Φ =
20πGρ̄0

3
ϕm

H

a2

∫ a

0

da

H 3
(2.224)

The time evolution part of this solution in the Λ-dominant period is defined as a
linear growth factor.

D+(τ) ≡
20πGρ̄0

3

H

a

∫ a

0

da

H 3
(2.225)

Using this to write the Bardeen variable, the potential is

Φ =
D+

a
ϕm (2.226)

The other variables are

∆ = −k2 − 3K

4πGρ̄0
D+ϕm, V = −

H D+
D′

+

H D+
ϕm

4πGρ̄0
(2.227)

The linear growth factor can also be expressed using an energy density parameter.

D+ =
5

2
aΩm

∫ 1

0

dx

(Ωm/x+ΩΛx2 +ΩK)3/2
(2.228)
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Chapter 3

Remote quadrupole from galaxy clusters

3.1 Correlation remote quadrupole

T = TCMB + ∆T is the temperature of the CMB radiation looking in the
direction n̂ from coordinate x⃗ at conformal time τ . The deviation of the CMB
from the average temperature, normalized by the average temperature, is written
as

∆(x⃗, n̂, τ) ≡
∆T (x⃗, n̂, τ)

TCMB
(3.1)

Given that the CMB surface was expanded using spherical harmonic functions

∆(x⃗, n̂, τ) =

∞∑
l=0

l∑
m=−l

alm(x⃗, τ)Ylm(n̂) (3.2)

The two-point correlation function of the temperature fluctuation at arbitrary
points is written as〈

∆(x⃗, n̂, τ)∆(x⃗′, n̂′, τ ′)
〉
=
∑
lm

∑
l′m′

Clml′m′(x⃗, τ, x⃗′, τ ′)Ylm(n̂)Y ∗
l′m′(n̂′) (3.3)

The commonly used CMB correlation function is used here.

Clml′m′(x⃗, τ, x⃗′, τ ′) ≡
〈
alm(x⃗, τ)a∗l′m′(x⃗′, τ ′)

〉
(3.4)

This correlation function has some symmetries due to the properties of spherical
harmonic functions.

Cl,−m,l′,−m′(x⃗, x⃗′) = (−1)m+m′
C∗
lml′m′(x⃗, x⃗′) (3.5)

Clml′m′(x⃗′, x⃗) = C∗
l′m′ lm(x⃗, x⃗′) (3.6)

What we observe is linearly polarized light resulting from the scattering of CMB
photons by clusters of galaxies. CMB photons scattered by a galaxy cluster at
position x⃗ propagate to the observer t = |x⃗| after scattering. Therefore, the
last scattering surface, which is the source of linearly polarized light, is the last
scattering surface observed by the galaxy cluster at time τ = τ0 − |x⃗|, with the
last scattering time as τ0 as shown in Fig.3.1. Since the last scattering time τ0 is
constant, in the following, we consider only the τ = τ0−|x⃗| case and don’t denote
τ . We now check the properties of the expansion coefficients alm, which of the
spherical harmonic function expansion. At any given point, different components
are uncorrelated and independent. However, when considering combinations at
different points, some of the combinations are correlated. This can be understood

30



Figure 3.1: Cluster of galaxies and last scattering surface in the co-moving coor-
dinate system. The origin is the observer, the circle enclosing the whole system is
the last scattering surface, which is the CMB directly observed by the observer,
and the inner region is the interior of the light cone. x and x′ indicate the po-
sitions of the galaxy clusters, and since each cluster is on the light cone of the
observer, their conformal times are τ = τ0 − |x⃗| and τ ′ = τ0 − |x⃗′|, respectively.
The small red circles indicate the last scattering surface of the clusters, which is
always inscribed on the observer’s last scattering surface.

from the fact that the last scattering surfaces at different points overlap. The
covariance matrix of the coefficients alm is

Rij =
〈
alimi

(x⃗i)a
∗
ljmj

(x⃗j)
〉
= Climiljmj

(x⃗i, x⃗j) (3.7)

Now consider the relationship between the correlation function and the transfer
function of the CMB. The temperature anisotropy can be Fourier expanded in
comoving wave number k⃗ on the three-dimensional hyper-surface of conformal
time τ , Στ

∆(x⃗, n̂, τ) =

∫
d3keik⃗·x⃗∆(k⃗, n̂; Στ ) (3.8)

where left side ∆(x⃗, n̂, τ) indicates temperature anisotropy in real space and right
side ∆(k⃗, n̂; Στ ) is the Fourier transform. Using the Legendre polynomial, we
expand the temperature anisotropy in Fourier form.

∆(k⃗, n̂; Στ ) =
∞∑
l=0

(−i)l(2l + 1)∆l(k⃗, τ)Pl(k̂, n̂) (3.9)

Here, it can be divided into a CMB anisotropy part ∆(k⃗, τ), which is a function
of wavenumber and time, and a Lejandre polynomial, which has direction k̂ · n̂
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as an argument. Using these functions, we can write the temperature anisotropy
of real space as

∆(x⃗, n̂, τ) = 4π

∫
d3keik⃗·x⃗

∞∑
l=0

(−i)l∆l(k⃗, τ)
l∑

m=−l

Y ∗
lm(k̂)Ylm(n̂) (3.10)

With the orthogonality of the spherical harmonic Ylm, the coefficient of temper-
ature anisotropy alm is

alm(x⃗, τ) =

∫
dΩ∆(x⃗, n̂, τ)Y ∗

lm(n̂) (3.11)

= (−i)l4π

∫
d3keik⃗·x⃗∆l(k⃗, τ)Y

∗
lm(k̂) (3.12)

Using this form, the correlation function is

Clml′m′(x⃗, x⃗′) = (−i)l−l′(4π)2
∫

d3k

∫
d3k′eik⃗·x⃗e−ik′·x′

(3.13)

×
〈
∆l(k⃗, τ)∆

∗
l′(k⃗

′, τ ′)
〉
Y ∗
lm(k̂)Yl′m′(k̂′) (3.14)

In linear perturbation theory, the time evolution of the CMB temperature anisotropy
is independent of the direction k̂ and depends only on its scale |⃗k|. Therefore,
the CMB temperature anisotropy can be divided into a transfer function with k
corresponding to the scale and an initial potential fluctuation ϕini(k⃗).

∆l(k⃗, τ) = ϕini(k⃗)∆l(k, τ) (3.15)

If the initial potential perturbation is described by a Gaussian, then its correlation
function is 〈

ϕini(k⃗)ϕ
∗
ini(k⃗

′)
〉
= Pϕ(k)δ

3(k⃗ − k⃗′) (3.16)

where Pϕ(k) is the power spectrum of the initial potential fluctuations. From
these, the correlation function for temperature anisotropy is〈

∆l(k⃗, τ)∆
∗
l′(k⃗

′, τ ′)
〉
= ∆l(k, τ)∆l′(k

′τ ′)Pϕ(k)δ
3(k⃗ − k⃗′) (3.17)

The correlation function at the same point is

Clml′m′(x⃗, x⃗) = (4π)2δl′lδm′m

∫
k2dk∆2

l (k, τ)Pϕ(k)

≡ δl′lδm′mCl(τ) (3.18)

where Cl(τ) ≡
〈
|alm(x⃗, τ)|2

〉
shows the emsemble average of CMB power spec-

trum with l harmonic at conformal time τ . In general case x⃗ ̸= x⃗′, the correlation
function is wrriten as

Clml′m′(x⃗, x⃗′) = (−i)l−l′(4π)2
∫

d3keik⃗·x⃗∆l(k, τ)

×∆l′(k, τ
′)Pϕ(k)Y

∗
lm(k̂)Yl′m′(k̂) (3.19)

The angular part included in the integral is expanded by the spherical Bessel
function.

exp(ik⃗ ·∆x⃗) =
∞∑

l′′=0

(2l′′ + 1)il
′′
Pl′′(k̂ ·∆x̂)jl′′(k |∆x⃗|)

= 4π

∞∑
l′′

il
′′
jl′′(k |∆x⃗|)

l′′∑
m′′=−l′′

Y ∗
l′′m′′(k̂)Yl′′m′′(∆x̂) (3.20)
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where we define the difference between points ∆x ≡ x⃗ − x⃗′ and their angular
∆x̂ ≡ (x⃗− x⃗′)/|x⃗− x⃗′|. The correlation function becomes

Clml′m′(x⃗, x⃗′) = (4π)3
∫

k2dk∆l(k, τ)∆l′(k, τ
′)Pϕ(k)(−i)l−l′(−1)m

×
∑
l′′m′′

il
′′
jl′′(k |∆x⃗|)

∫
dΩkYl,−m(k̂)Yl′m′(k̂)Y ∗

l′′m′′(k̂) (3.21)

The part including three spherical harmonics can be written with the Wigner 3j
symbols.∫

dΩkYlm(k̂)Yl′m′(k̂)Y ∗
l′′m′′(k̂) =

√
(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

(
l l′ l′′

0 0 0

)(
l l′ l′′

m m′ m′′

)
(3.22)

the Wigner 3j symbols has to satisfy two conditions for having a non-zero value.
One is m + m′ = m′′, which determines m′′. The other is triangle condition
|l − l′| ≤ l′′ ≤ l + l′. Thus the correlation function is

Clml′m′(x⃗, x⃗′) = (−i)l−l′(−1)m(4π)3
l+l′∑

l′′=|l−l′|

√
(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×
(
l l′ l′′

0 0 0

)(
l l′ l′′

m m′ m′ −m

)
il

′′

√
2l′′ + 1

×
∫

k2dk∆l(k, τ
′)Pϕ(k)jl′′(k |∆x⃗|)Y ∗

l′′,m′−m(∆x̂) (3.23)

In summary, at the same point x⃗ = x⃗′, the correlation function is zero with
different l,m cases, but at two different points x⃗ ̸= x⃗′, the correlation function
has a value.

3.2 Transfer function of temperature anisotropy

In this section, we will look at the propagation function to specifically cal-
culate CMB temperature anisotropy. The quadrupole, which is the source of
polarization of the galaxy cluster, is sufficiently large in scale that the main ef-
fects are Sachs-Wolfe (SW) and Integrated Sachs-Wolfe (ISW) effects. Both are
caused by the gravitational redshift, but the processes they focus on are different.
The SW effect is due to the anisotropy of the fluctuations of the gravitational po-
tential at the last scattering surface. Similarly, the gravitational potential at the
observation point is also affected, but in this case there is no direction-dependent
anisotropy. The ISW effect occurs when fluctuations in the gravitational potential
evolve with redshift. As photons fall into and out of this time-varying potential,
they gain and lose energy. That is observed as temperature anisotropy. Consider
the transfer function of the SW effect on a large scale. In this case, anisotropy
is caused by the potential across the last scattering surface and changes in pho-
ton density. With the line-of-sight integration method, the SW temperature
anisotropy is calculated

∆(x⃗, n⃗, τ) =

∫ τ

0
dχ′ζ̇(τ − χ′)

[
1

4
δγ(χ

′n̂) + ϕ(χ′n̂)

]
(3.24)

where χ′ is the comoving distance. Also, we use the visibility function de-
fined by ζ(τ) ≡ e−τC(τ), and optical depth of Thomson scattering τC(τ) =
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∫ τ
0 dχ′a(τ − χ′)ne(τ − χ′)σT .
On a large scale the Sachs-Wolfe approximation can be applied, the density
fluctuations of photons are δγ = −8

3ϕ, and the potential in Fourier space is

ϕ(k⃗, τ) = 9
10ϕini(k⃗). In Fourier space

∆l(k, τ) =
3

10

∫ τ

0
dχ′ζ̇(τ − χ′)jl(kχ

′) (3.25)

The visibility function depends on the property of recombination. Assuming
recombination occurred instantaneously,

∆l(k, τ) =
3

10
jl [k(τ − τr)] (3.26)

The CMB transfer function with the ISW effect is

∆(x⃗, n⃗, τ) =

∫ τ

0
dχ′ζ̇(τ − χ′)

[
1

4
δγ(χ

′n̂) + ϕ(χ′n̂)

]
+

∫ τ

0
dχ′ζ(τ − χ′)2ϕ̇(χ′n̂) (3.27)

The growth rate of the potential perturbations is described with the growth
function D+(τ) in the linear theory. In the adiabatic case, the potential becomes
ϕ(k⃗, τ) = 9

10ϕini(k⃗)D+(τ)/a(τ). When there is only non-relativistic matter and
dark energy, the growth function is of the simple form

D+(τ) =
5

2
Ωm

√
Ωm +ΩDEa(τ)3

a(τ)3/2

∫ a(τ)

0

[
a′

Ωm +ΩDEa′3

]3/2
da′ (3.28)

Assuming recombination occurred instantaneously, the CMB transfer function
including the ISW effect can be

∆l(k, τ) =
3

10
jl [k(τ − τr)] +

9

5

∫ τ−τr

0
dχ′jl(kχ

′)
∂

∂τ

D+

a

∣∣∣∣
τ−χ′

(3.29)

3.3 Stokes parameter by Thomson scattering

The Stokes parameters are defined as time averages of quadratic products of
the amplitudes of the electric field Ei. The electromagnetic wave propagating
from the z direction is characterized by the 2×2 matrix ⟨EiE

∗
j ⟩ with i, j in x-y

plane. To generalize for three-dimensional space, we use 3×3 matrix associated
with direction n̂.

Qij(n⃗) =
〈
EiE

∗
j

〉
, (i, j) ∈ {x, y, z} (3.30)

The electric field this polarization matrix shows is always vertical to the propa-
gating direction n̂

niQij(n⃗) = 0 (3.31)

The polarization matrix Qij is expressed with a superposition of beams with
various momenta p⃗ from various directions n. Using specific intensity matrices
Iij as the elements,

Qij =

∫
dpdΩIij(p⃗) (3.32)
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The Stokes parameter depends on the polarization basis vector. Therefore write
the parameters with specific intensity matrices Iij and polarization basis vectors

I +Q

2
= ϵ

(1)
i ϵ

(1)
j Iij ,

I −Q

2
= ϵ

(2)
i ϵ

(2)
j Iij

U + iV

2
= ϵ

(1)
i ϵ

(2)
j Iij ,

U − iV

2
= ϵ

(2)
i ϵ

(1)
j Iij (3.33)

Conversely, the Stokes parameters can also be used to represent the intensity
matrix. In a case ϵ(1)=x, ϵ(2)=y,

Iij =
1

2

 I +Q U + iV 0
U − iV I −Q 0

0 0 0

 (3.34)

Similarly, if we consider unpolarized light, it has only diagonal components, and
only the direction n̂ in which it propagates is a special direction. The form of the
matrix is

Iij(n̂) = Aδij +Bni − nj (3.35)

For light along the z direction, the matrix is clearly

Iij =
I

2

1 0 0
0 1 0
0 0 0

 (3.36)

From these, it follows that for unpolarized light from the direction n̂

Iij(n̂) =
1

2
(δij − ninj) (3.37)

On the general matrix Iij , the magnitude of polarization is

Π2 = 2Tr

[
I⃗2
]
/
(
Tr

[
I⃗
])2

− 1 (3.38)

Consider a perfectly linearly polarized incident light and the polarization matrix
produced by Thomson scattering on a stationary electron. Then Qijϵ

∗
i ϵj is the

energy density of the electromagnetic wave. Let the polarization vector of the
incident light be ϵ and the momentum be p⃗. The differential cross section of
Thomson scattering in the Thomson limit, where the final momentum is p⃗′ = p′n⃗′

and the polarization is ϵ′, is

dσ

dΩ′ =
3σT
8π

∣∣⃗ϵ∗ · ϵ⃗′∣∣2 (3.39)

where dΩ′ is the solid angle element for the direction n⃗′ of the scattered photons.
From this, the power per solid angle is

dP ′

dΩ′ =
3σT
8π

∣∣⃗ϵ∗ · ϵ⃗′∣∣2 (3.40)

Consider a set of stationary electrons of number density ne in a galaxy cluster.
The temperature of the galaxy cluster is sufficiently low relative to the mass of the
electrons that the thermal motion of the electrons can be neglected. Assuming
that multiple scattering does not occur, we can convert the scattered power per
electron to a change in energy density.

dQ′
ij

dΩ′ =
3σT
8π

neQijϵ
′∗
i ϵ

′
jdΩ

′ (3.41)
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where Q′
ij is the polarization matrix after scattering. Assuming that photon

momentum is conserved p = p′

dIij
dt

ϵ′∗i ϵ
′
j =

3σT
8π

neϵ
′∗
i ϵ

′
j

∫
dΩIij (3.42)

Because the polarization of the incident wave and the polarization of the scattered
wave are not in the same plane, we can’t make the relation dI ′ij ∝ ΩIij The
momentum vector p′ of the scattered light and the polarization basis vector ϵ′1, ϵ

′
2

are orthogonal, and only the components on the polarization basis vector ϵ′1 − ϵ′2
plane after this scattering are projected from the incident light. The matrix
representing the projection is

Pij(n⃗
′) ≡ δij − n′

in
′
j (3.43)

The projection vectorPij(n
′) does not change the polarization vector. By oper-

ating on Eq.(3.42)

dI ′ij(n⃗
′)

dt
=

3σT
8π

nePik(n⃗
′)Pjl(n⃗

′)

∫
dΩIkl(n⃗) (3.44)

This equation shows that the scattered light is proportional to the incident light
minus the component in the n′ direction. By the time integral, we obtain the
polarization matrix of the scattering

I ′ij(n⃗
′) =

3σT
8π

Pik(n⃗
′)Pjl(n⃗

′)

∫
dΩIkl(n⃗) (3.45)

where we replace σTne to the optical depth of Thomson scattering. In case the
incident light is unpolarized, using the matrix in Eq.(3.37)

I ′ij(n⃗
′) =

3σT
16π

Pik(n⃗
′)Pjl(n⃗

′)

∫
dΩI(n⃗)Pkl(n⃗) (3.46)

3.4 Polarization of galaxy clusters

Here we consider the process of polarization generation by Thomson scattering
CMB quadrupole on a galaxy cluster in an ideal case such as galaxy clusters are
regarded as point objects with optical depth τC . The Stokes parameters of the
radiation scattered by the cluster depend on the quadrupole anisotropy in the
local CMB radiation at the cluster. The quadrupole is written in the coefficients
a2m(x⃗) of the spherical harmonic expansion of the temperature anisotropy, which
are functions of the cluster position x⃗. The brightness temperature of the CMB
radiation from the direction vector n̂ at the cluster position x⃗ can be written in
terms of the spherical harmonic expansion coefficients alm(x⃗).

I(n̂, x⃗) = TCMB(τ)

∞∑
l=0

l∑
m=−l

alm(x⃗)Ylm(n̂) (3.47)

Here we assume that the CMB radiation observed at the cluster position is un-
polarized. In the Thomson limit, the brightness temperature polarization matrix
Iij ∼ ⟨EiEj⟩ is described as

Iij(x⃗) =
3τC
16π

(δik − x̂ix̂k)(δjl − x̂j x̂l)

∫
dΩ′I(n̂, x⃗)(δkl − n̂kn̂l) (3.48)
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Figure 3.2: Coordinate system for the process of polarization generation by
Thomson scattering. The observer is taken as the origin, and there is a galaxy
cluster causing scattering at position x. Furthermore, before the galaxy cluster
scattering, CMB photons are propagating from any direction, denoted by n̂ and
its solid angle is Ω. The incident light here is assumed to be unpolarized, and
only the l=2 component in the spherical harmonic decomposition contributes to
polarization. The radiation scattered by the free electrons in the galaxy cluster
is observed by the observer in the direction of the cluster x̂. The polarization
basis vector is defined as ê1, ê2 on the plane perpendicular to the cluster position
vector χ2 and is used in the Stokes parameters.

where Ω′ is the solid angle about the n̂. To define the Stokes parameters at the
observer, we define a polarization basis ê1, ê2. The Stokes parameters are

I(x⃗) +Q(x⃗) = 2Iij(x⃗)ê1,iê1,j

I(x⃗)−Q(x⃗) = 2Iij(x⃗)ê2,iê2,j (3.49)

U(x⃗) = 2Iij(x⃗)ê1,iê1,j

The linearly polarized component Q(x⃗), U(x⃗) is written as

Q(x⃗) =
3τC
16π

TCMB(τ)
∑
lm

alm(x⃗)

∫
dΩ′Ylm(n̂)

[
(ê2 · n̂)2 − (ê1 · n̂)2

]
(3.50)

U(x⃗) = −3τC
8π

TCMB(τ)
∑
lm

alm(x⃗)

∫
dΩ′Ylm(n̂)(ê1 · n̂)(ê2 · n̂) (3.51)
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The direction vectors n̂, x̂ in the Cartesian coordinate are written as

n̂ = (n̂x, n̂y, n̂z) = (sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′) (3.52)

x̂ = (x̂x, x̂y, x̂z) = (sin θ, cosϕ, sin θ sinϕ, cos θ) (3.53)

For convenience, we use (z1, z2, z3) = (sin θ′eiϕ
′
, sin θ′e−iϕ′

, cos θ′). In this form,
n̂ = [(z1 + z2)/2, (z1 + z2)i/2, z3]. Also we define

ê+ ≡ êx + iêy (3.54)

ê− ≡ êx − iêy (3.55)

The inner products can be calculated as

ê1 · n̂ =
z1
2
ê1 · ê− +

z2
2
ê1 · ê+ + z3ê1 · êz (3.56)

On the other hand, the spherical harmonic functions for quadrupole components
are

Y2,0

√
5

4π

(
3

2
z23 −

1

2

)
Y2,1 = −

√
15

8π
z1z3, Y2,−1 =

√
15

8π
z2z3 (3.57)

Y2,2 =
1

4

√
15

2π
z21 , Y2,−2 =

1

4

√
15

2π
z22

Expressing the inner product in Eq.(3.51) using the spherical harmonic function

(ê2 · n̂)2 − (ê1 · n̂)2 =
√

8π

5

2∑
m=−2

Qm(x̂)Y2,m(n̂) (3.58)

−2(ê1 · n̂)(ê2 · n̂) =
√

8π

5

2∑
m=−2

Um(x̂)Y2,m(n̂) (3.59)

Where the coefficients Qm, Um are functions of polarization basis vectors. There-
fore, it has the position of the galaxy cluster as an argument.

Q0(x̂) = − 1√
2

[
(ê1 · êz)2 − (ê2 · êz)2

]
Q1(x̂) =

1√
3
[(ê− · ê1)(êz · ê1)− (ê− · ê2)(êz · ê2)] (3.60)

Q2(x̂) =
1

2
√
3

[
(ê− · ê2)2 − (ê− · ê1)2

]

U0(x̂) = −
√
2(ê1 · êz)(ê2 · êz)

U1(x̂) =
1√
3
[(ê− · ê1)(êz · ê2) + (ê− · ê2)(êz · ê1)] (3.61)

U2(x̂) = − 1√
3
(ê− · ê1)(ê− · ê2)

With negative m, the coefficients have relations

Q−m(x̂) ≡ (−1)mQ∗
m(x̂), U−m(x̂) ≡ (−1)mU∗

m(x̂) (3.62)
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Here we choose particular polarization basis vectors defined as

ê1 =
x̂× êz√
1− µ2

, ê2 =
êz − µx̂√
1− µ2

(3.63)

where we define µ ≡ x̂ · êz = cos θ. On this basis, each component of the
coefficients is written with polar coordinates

Q0(x̂) =
1√
2
sin2 θ, Q1(x̂) =

1√
3
cos θ sin θe−iϕ

Q2(x̂) =
1

2
√
3
(1 + cos2 θ)e−2iϕ (3.64)

U0(x̂) = 0, U1(x̂) =
i√
3
sin θe−iϕ

U2(x̂) =
i√
3
cos θe−2iϕ (3.65)

where θ is the angle between x̂ and êz and ϕ is the angle between the projected
x̂ : (êx, êy) and êx. Also, Qm and Um are associated using spherical harmonic
functions

Qm + iUm =
4

3

√
3π

5
2Y

∗
2m(θ, ϕ) (3.66)

From Eq.(3.51), the Stokes parameter of the observed polarization is the sum of
all m-modes.

Q(x⃗) = τCP0

2∑
m=−2

Qm(x̂)a2m(x⃗) (3.67)

U(x⃗) = τCP0

2∑
m=−2

Um(x̂)a2m(x⃗) (3.68)

where P0 ≡ 3/(4
√
10π)TCMB(τ). Summarizing as Eq.(3.66).

Q(x⃗)± iU(x⃗) = −
√
6

10
τCTCMB(τ)

2∑
m=−2

±2Y2m(x̂)a2m(x⃗) (3.69)
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Chapter 4

Validation method for dark energy models

using CMB

4.1 Galaxy cluster polarization simulation

The following is the procedure for simulation and analysis in this method.
In this simulation, we use transfer functions generated by the publicly available
code CAMB. We use Λ-CDM model with Ωbh

2 = 0.0226, Ωch
2 = 0.112, Ωνh

2 =
0.00064, h = 0.7, As = 2.1 and ns = 0.96 as the reference correct cosmological
models.

The first step is to generate the initial fluctuation field ϕini(ki). Here, polar
coordinates are employed in Fourier space, and a Gaussian is used to reproduce
the initial fluctuations so that they fit the power spectrum Pϕ(k).

Pϕ(k) = As

(
k

k∗

)ns−1

(4.1)

The direction is divided by Healpix with Nside = 8, and this means that the whole
sky is divided into 768 sections. The line-of-sight direction is also expressed in
60 wavenumber modes, with a range from k = 10−5 to 10−1. Thus, the overall
independent Fourier modenk for this simulation is 46080.
Second, we simulate the polarization Qfiducial(xi), Ufiducial(xi) produced by each
galaxy cluster from the initial fluctuations ϕini(ki). In this process, we use the
transfer function ∆(k, τ) with the correct cosmological parameters as a reference.
Fig.4.1 4.3 shows the Q and U maps in a realization.

Here we use randomly placed clusters of galaxies Ncluster = 6000, distributed
uniformly in the angular direction and with redshifts ranging from z = 0 to 2.
Fig.4.4 shows the region that construct the polarization of these galaxy clusters.

Similarly, we simulate the CMB directly observed at the origin, which is the ob-
servation point from the initial fluctuation. Both the temperature fluctuation
and the polarization component, E-mode, are calculated from l = 2 to 9. Only
the l=2 component of the temperature fluctuation aT2m

true is used to measure the
statistical power at the end.
Next, the initial fluctuations are reconstructed. Specifically, we fit the polariza-
tion Q(xi), U(xi) produced by the cluster of galaxies and the CMB aTlm, aElm
directly observed at the origin. The minimize function is given as

ftot = fpol + fT + fE + fprior (4.2)

This function has four components, in order: the chi-square minimizations for the
polarization of the galaxy cluster Q(xi), U(xi), the temperature anisotropy of the
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Figure 4.1: Q polarization map observed from a galaxy cluster at redshift 0.01.
Because they are produced by quadrupoles that are nearly identical to the
quadrupoles we observe, they have a pattern similar to that of quadrupoles.

Figure 4.2: U polarization map observed from a galaxy cluster at redshift 0.01

CMB aTlm and the polarization anisotropy of the CMB aElm, and the prior. The
fiducial value in the function represents the observable obtained in the previous
step with Gaussian noise, which is equivalent to errors in the observation.

fpol =

Ncluster∑
i

[
(Q(xi)−Qfiducial(xi))

2

2σ2
pol

+
(U(xi)− Ufiducial(xi))

2

2σ2
pol

]
(4.3)

where σpol is the uncertainty of the polarization observation.
We use CMB temperature anisotropy from l = 3 to 9 for fitting

fT =
∑
l=3

l∑
m=−l

(aTlm − aTlmfiducial)
2

σ2
T

(4.4)

For E mode, l = 2 mode is also added to the fitting function

fE =
∑
l=2

l∑
m=−l

(aElm − aElmfiducial)
2

σ2
E

(4.5)

41



Figure 4.3: Q polarization map observed from a galaxy cluster at redshift 0.1.
While maintaining features similar to the map at z = 0.3, smaller patterns de-
velop.

All these components are calculated from the initial fluctuations ϕini(ki). There-
fore, in actual observations, Qfiducial(xi), Ufiducial(xi), aTlmfiducial and aElmfiducial is
the observed quantity, and we can search for the initial fluctuationsϕini(ki) in the
actual universe by reproducing Q(xi), U(xi), aTlm and aElm that fits to fiducial
observable.
To improve the accuracy of the reconstruction we also adopt a Gaussian prior
based on power spectrum Pϕ(k).

fprior =

nk∑
j

R2
ini(kj)

2P (kj)
(4.6)

In this process, the transfer functions are used to calculate the observable from
the initial fluctuations ϕini(ki). Since the transfer function depends on the cosmo-
logical parameters, different cosmologies lead to different estimates of the initial
fluctuations. In this work, we estimate the initial fluctuations with several dark
energy state parameters w in order to verify the statistical power for the dark
energy state parameter. Fig.4.5 shows the quadrupole transfer functions with
different dark energy state parameters.
We calculate the l = 2 mode temperature anisotropy aT2m

est(0) observed at the
origin using the estimated initial fluctuations and compare it to the true value
aT2m

true(0) calculated before. Up to this point, the method has been applied to
a single universe. The sequence of steps is repeated one hundred times from the
generation of the initial fluctuations and makes one hundred pairs of aT2m

true(0)
and aT2m

est(0).
The generated aT2m

true(0) and aT2m
est(0) pairs should agree within statistical error

if they are generated using the same transfer function. In application to actual
observations, the cosmological parameters of the transfer function used in the
estimation process should match those of the actual universe. Thus, the larger
the difference between pairs generated using different transfer functions, the more
effective the method is able to constrain the cosmological parameters.
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Figure 4.4: This figure shows the observable region in the co-moving coordinate.
The largest solid circle shows the last scattering surface that we can directly
observe. The other two solid circles show the last scattering surfaces seen from
clusters at redshifts z = 1 and z = 2 on our light cone. Since we observe the
polarization produced by the scattering of the CMB from these last scattering
surfaces by the galaxy clusters, we can obtain information about the interior of
the light cone through polarization that we cannot observe directly. At a given
redshift, the last scattering surface is a spherical shell, assuming that there are
clusters of galaxies in all directions. The shaded region is the interior of the
spherical shell and represents the region that cannot be surveyed only by clusters
at each redshift. To survey the entire Universe down to our nearest neighbor, a
cluster of galaxies at redshift z ∼ 3 would be required.

43



Figure 4.5: The quadrupole transition function of the CMB temperature
anisotropy. The solid line shows the quadrupole transfer function for the cor-
rect dark energy equation of state parameters, and the dashed line shows it for
the wrong w = −0.75 parameters. The horizontal axis is the wavenumber of the
initial fluctuation, and the right side is the smaller scale.The solid orange line
also shows the transfer function at redshift z = 1 with the correct parameters,
reflecting the overall smaller-scale fluctuations. This corresponds to the fact that
high-redshift clusters have smaller last scattering surfaces. The dashed lines with
larger equation of state parameters for dark energy have larger values than the
solid blue lines at the same redshift. This is due to the fact that the dark energy
dominated era begins at higher redshifts and is more strongly affected by ISW
effects. However, to make it easier to see, the dashed lines have even larger values
of the parameters than those used in the simulation.

4.2 Cosmic variance

In linear perturbation theory, large scale fluctuations can be expressed as the
product of initial fluctuations and transfer functions in each scale. Since there is
no statistical uncertainty in the transfer function ∆l(k, τ), the power spectrum
of the CMB temperature fluctuation is proportional to the square of the initial
fluctuation. Suppose that the initial fluctuations ϕini(k⃗) are given by a normal
distribution (gaussian) with mean 0 and variance σ2. Since the power spectrum
follows a chi-square distribution, the expected value is nσ2 and the variance is
2nσ4 with a degree of freedom n (n independent samples). Since the degrees
of freedom at the angular scale l is 2l + 1, its expected value and variance are
(2l + 1)σ2, 2(2l + 1)σ4, respectively. This variance is called the cosmic variance,
and its standard deviation is proportional to

√
2(2l + 1)σ2. Dividing the expected

value by the standard deviation gives the signal-to-noise ratio
√
(2l + 1)/2. Ob-

servational noise is not considered here, this considers only statistical uncertainty.

Cl

∆Cl (cosmic variance)
=

√
(2l + 1)

2
(4.7)
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At large scales, this signal-to-noise ratio becomes very small. In the case of l = 2,
it is just 2.5, which can not provide a strong constraint on cosmology.

In this method using galaxy cluster polarization, there is no statistical uncer-
tainty in the process of connecting initial fluctuations and observables. Therefore,
unlike the power spectrum, the initial fluctuation can be obtained directly and is
not disturbed by the cosmic variance arising from the statistical uncertainty.

4.3 Statistical power for dark energy equation of state parame-
ters

The accuracy of this method depends on factors such as errors in polarization
measurements, the number of galaxy clusters, the optical depth of the clusters,
and the redshift errors of the clusters. In this study, we assume the most ideal
conditions, where the polarization measurement error and optical depth of the
clusters are uniformly σpol/τ = 10−2 µK, and the redshift error is negligible.
The number of clusters used is assumed to be 6000 and randomly distributed.
The error for the CMB all-sky observation also uses σT = σE = 10−2 µK. The
methodological statistical uncertainty in this method is a complex mixture of
factors and is calculated from the reconstruction error in the pair when the correct
transfer function is used in the simulation.

σ2
method =

1

N

N∑
i=1

1

5

[
|∆aT20 i|2 + 2|∆aT21 i|2 + 2|∆aT22 i|2

]
(4.8)

where N refers to the number of simulations used, and each ∆a2m are difference
of pairs aT2m

true(w = −1)− aT2m
est(w = −1) In the setting of this simulation with

Ncluster = 6000, σpol = 10−2 µK, Nside = 8andnkmode = 60, the methodological
statistical uncertainty is

σmehthod ≃ 4.0× 10−8 (4.9)

Almost the same values were obtained even when not including all-sky CMB
observations of temperature fluctuations and polarization. As shown in Fig.4.6,
the quadrupole temperature fluctuations are almost perfectly recovered, and the
residuals in each mode are distributed without bias as Fig.4.7.

In future observations, LiteBIRD, the next-generation CMB satellite obser-
vation, is planned. In future observations, LiteBIRD, the next-generation CMB
satellite observation, is planned. Its detection sensitivity is ∼ 2.0 µK arcmin, and
the sensitivity for the quadrupole component used in this verification is

σLiteBIRD
l=2 ≃ 2.0

5700
≃ 3.7× 10−4 µK (4.10)

where we treat a quadrupole size as 90° = 5400 arcmin. When made dimensionless
by CMB temperature 2.725 × 106 µK, the sensitivity is 1.4 × 10−10. Thus, the
variance in the quadrupole observations of the CMB is sufficiently smaller than
the methodological statistical uncertainty to not directly limit this method. This
means that the accuracy of the observation of the polarization and optical depth
of the galaxy clusters is a limitation of this method.

4.4 Constraints on the dark energy parameter w

The chi-square statistic for the quadrupole is defined as

χ2(w) =
1

σ2
method

(
|∆aT20|2 + 2|∆aT21|2 + 2|∆aT22|2

)
(4.11)
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Figure 4.6: Restoration of quadrupole temperature fluctuation. The upper left
represents the correct quadrupole temperature fluctuation, and the upper right
represents the quadrupole temperature fluctuation reconstructed using fiducial
cosmology. The lower left figure shows the residual, and the lower right figure is
multiplied by 100 for clarity.

where ∆a2m = aT2m
est(w)− aT2m

true(w = −1). While the m = 0 component is a
real number, the m = 1, 2 components are complex numbers, so the independent
components are doubled, requiring a factor of 2 on the right side.
The chi-square is a measure of the goodness of fit between the correct cosmological
model and the model used for estimation. If the correct model is used in the
estimation as well, it ideally follows the chi-square distribution with a degree of
freedom of five. The chi-square values are larger when different models are used
in the estimation process. In other words, the cosmological parameters can be
varied and the cosmology can be restricted by comparing the differences in the
chi-square values ∆χ2(w) = χ2(w)−χ2(w = −1). In the previous study, only the
polarization of the galaxy clusters was used in the fitting process to reconstruct
the initial fluctuations. In this study, we investigate the change in statistical
power for the dark energy equation of state parameter by adding temperature
anisotropy and polarization in the all-sky CMB observations. Fig.4.8 shows the
l = 2 and l = 3 transfer functions and Fig.4.9 compares the transfer functions for
E-mode and temperature anisotropy.

We set the true equation-of-state parameters of dark energy w = −1. Cor-
relation coefficients between the true and estimated quadrupoles for each real-
ization of the simulation are shown in Fig.4.10. For almost all realizations, the
quadrupole with the correct parameters recovers a quadrupole closer to the true
quadrupole, and this shows that the parameters can be verified from a compari-
son of the observed and estimated quadrupoles.
Also, their errors for each realization of the simulation are shown in Fig.4.11.
The case (w = −1) corresponds to the methodological statistical uncertainty used
in the analysis. This difference is the statistical power in the validation of the
parameters.

The histograms of the residuals of the temperature fluctuations when w =
-0.99 was verified are shown in Fig.4.12 and Fig.4.13. The residual of w = -0.99
is slightly larger than in the fiducial case. This trend is stronger when all-sky
CMB observations are added, indicating an improvement in the method.

The difference in chi-square values for w = −0.99 is ⟨χ2(w = −0.99)⟩ =
1.14, 1.16, and 1.33 respectively only galaxy clusters polarization case, plus E-
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Figure 4.7: The residuals of the recovery with fiducial cosmology in each com-
ponent of the quadrupole. The horizontal axis indicates the real part and the
vertical axis is the imaginary part.

mode polarization, and plus E-mode polarization and temperature anisotropy.
As shown in Table.4.1, σmehthod changes little, but ∆χ2 improve 16.7%. The
histogram of ∆χ2 for each realization is shown in Fig.4.14.

Observable σmehthod ∆χ2

Only cluster polarization 4.060× 10−08 1.137
Cluster polarization + E-mode 4.039× 10−08 1.163
Cluster polarization + E&T-mode 4.014× 10−08 1.327

Table 4.1: ∆χ2 for parameters with w = −0.99.

In the case that is a little easier to verify, the histograms of the residuals of the
temperature fluctuations when w = -0.95 was verified are shown in Fig.4.15 and
Fig.4.16. Compared to w=-099, the residuals are also clearly split, indicating that
the assumed cosmological model is incorrect. Also, the increase in the residual
of w=-0.95 with the addition of the all-sky CMB observations is also clear.

The difference in chi-square values for w = −0.95 is ⟨χ2(w = −0.95)⟩ =
16.90, 17.85, and 19.93 respectively only galaxy clusters polarization case, plus
E-mode polarization, and plus E-mode polarization and temperature anisotropy.
∆χ2 improves 17.9% with temperature and polarization anisotropy. To sum-
marize the results, for both dark energy equation of state parameters, we ob-
tained larger chi-square values when adding E-mode polarization and tempera-
ture anisotropy. This is due to the fact that E-mode polarization and temperature
anisotropy in all-sky observations are associated with the polarization produced
by galaxy clusters. Thus, combining all-sky CMB observations with the remote
quadrupole technique using the polarization of galaxy clusters can more strongly
constrain the cosmology.
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Figure 4.8: Transfer functions for temperature anisotropy at current time z=0 and
redshift z=1.1. The dashed lines show the l=2 and 3 components of the transition
function at the current time. The octupole l=3, which has more divisions in
the whole sky, consists of smaller-scale fluctuations. The past quadrupole l=2,
shown by the solid line, depends on smaller scales, which corresponds to a smaller
projected universe. Even the same multipole component depends on smaller-scale
fluctuations at higher redshifts, and its characteristic scale is closer to the higher-
order poles.

Observable σmehthod ∆χ2

Only cluster polarization 4.060× 10−08 16.90
Cluster polarization + E-mode 4.039× 10−08 17.85
Cluster polarization + E&T-mode 4.014× 10−08 19.93

Table 4.2: ∆χ2 for parameters with w = −0.95

48



Figure 4.9: Transfer functions in the l=2 component of temperature anisotropy
and polarization E-mode. Polarized E-mode requires ionized hydrogen for its
generation process, so a characteristic scale appears on a smaller scale than that
of temperature anisotropy.
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Figure 4.10: Correlation coefficient r2 between the true
quadrupole a2m and the reconstructed quadrupole. r2 =∑l

m=−l(a
T
2m

estaT2m
true)/(

∑
(aT2m

est)2
∑

(aT2m
true)2)1/2.The horizontal axis repre-

sents independent simulations with different distributions of initial fluctuations
and galaxy clusters, respectively, and the vertical axis represents dimensionless
correlation coefficients with the true quadrupole. The solid blue line shows the
correlation coefficients for the realizations with the true dark energy equation
of state parameters, while the solid orange line shows the case with the wrong
parameters.
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Figure 4.11: Variance of the reconstructed quadrupole. E2 =
∑l

m=−l(a
T
2m

est −
aT2m

true)2/
∑

(aT2m
true)2 The horizontal axis represents different independent sim-

ulations of the initial fluctuations and the distribution of galaxy clusters, respec-
tively, and the vertical axis represents the dispersion from the true quadrupole
at each realization. The solid blue line shows the variance when reconstructed
using the true dark energy equation of state parameters. The solid orange line
shows the case with the wrong parameters.
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Figure 4.12: Histogram of residuals with respect to the true quadrupole tem-
perature fluctuations for the case with galaxy cluster polarization, temperature
fluctuation higher-order multipoles and E-mode polarization fluctuation multi-
poles. Blue and orange represent the fiducial cosmological model (w = −1) and
w = −0.99, respectively.

Figure 4.13: Histogram of residuals with respect to the true quadrupole tem-
perature fluctuations for the case with galaxy cluster polarization and . Blue
and orange represent the fiducial cosmological model (w = −1) and w = −0.99,
respectively.
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Figure 4.14: Distribution of the difference of the chi-square statistic for the 100
simulations at w = -0.99. Each color shows the case of fitting using only the
polarization of the galaxy cluster, the case of fitting adding the E-mode of the
all-sky CMB observations, and the case of also adding temperature anisotropy.
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Figure 4.15: Histogram of residuals with respect to the true quadrupole tem-
perature fluctuations for the case with galaxy cluster polarization, temperature
fluctuation higher-order multipoles and E-mode polarization fluctuation multi-
poles. Blue and orange represent the fiducial cosmological model (w = −1) and
w = −0.95, respectively.

Figure 4.16: Histogram of residuals with respect to the true quadrupole tem-
perature fluctuations for the case with galaxy cluster polarization and . Blue
and orange represent the fiducial cosmological model (w = −1) and w = −0.99,
respectively.
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Figure 4.17: Distribution of the difference of the chi-square statistic for the 100
simulations at w = -0.95. Each color shows the case of fitting using only the
polarization of the galaxy cluster, the case of fitting adding the E-mode of the
all-sky CMB observations, and the case of also adding temperature anisotropy.

4.5 Reconstructed initial fluctuations

In this section, we consider the initial fluctuations reconstructed in the simu-
lation process.
In the first step of the simulation, the initial fluctuations are given using Gaus-
sians to fit the power spectrum. Since the spectrum is almost flat, it shows a
wavenumber-independent feature as shown in Fig.4.18. Ideally, the reconstruction
of the initial fluctuations would result in fluctuations with similar flat features.
However, the reconstructed fluctuations in the current simulation are shown in
Fig.4.19. As the amount of observations used in the reconstruction increases, the
range of wave numbers reconstructed also increases. In addition, using the wrong
parameters in the reconstruction results in excessively large amplitudes on some
scales, while the amplitudes around them are suppressed, and stripe patterns
float. When the reconstructed fluctuation amplitudes are converted to the same
dimension as the transfer function, the distribution is very similar to that of the
transfer function, as shown in Fig. 4.20. The reconstructed initial fluctuations
are limited to the range of these transition functions, and their distribution is
similar to the behavior of the transition functions. The scale of the initial fluc-
tuations that can be reconstructed is naturally limited to the scale at which the
observables are sensitive. Therefore, it is suitable to test the statistical power
with the quadrupole at z = 0 in this method using the polarization of the galaxy
clusters that reflect the remote quadrupole.

55



Figure 4.18: Initial fluctuations generated in the first stage of the simulation. The
initial fluctuations in one simulation are given by 46080 independent values from
768 sky directions and 60 scales. The horizontal axis is the wavenumber and the
vertical axis is the intensity, and the color of each pixel represents the number
of initial fluctuations applicable Since the initial fluctuations in this study are
scale-independent, the features do not change along the horizontal axis.
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Figure 4.19: Reconstructed initial fluctuations in a simulation. The initial fluc-
tuations in a simulation are given by 46080 independent values from 768 sky
directions and 60 scales. The horizontal axis is the wavenumber and the vertical
axis is the intensity. The color of each pixel represents the number of initial
fluctuations corresponding to that region. The figures on the left show the initial
fluctuations recovered using the correct dark energy equation of state parame-
ters, and the figures on the right show the initial fluctuations recovered using
the wrong dark energy equation of state parameters of w = -0.95. The upper
figures also use only the polarization of the galaxy cluster in the fitting for the
restoration. The middle panels additionally use the E-mode of the all-sky CMB
observations, and the lower panels also use the temperature anisotropy T-mode.
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Figure 4.20: Quadrupole transfer function and reconstructed initial fluctuations.
The horizontal axis shows the wavenumber of the initial fluctuations, and the re-
constructed initial fluctuations for each scale are plotted in a scatter plot. Over-
laid blue and orange solid lines plot the quadrupole transition functions, which
are temperature anisotropy and E-mode polarization, respectively.
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Chapter 5

Discussion

In this study, the improvement in statistical power with the addition of E-
mode deflection fluctuations was more limited than previously assumed. E-mode
polarization fluctuations, which have the same scattering process as the galaxy
cluster polarization and occur at higher redshifts, are expected to correlate well
with the galaxy cluster polarization. However, if sufficient information on the
SW effect was available in the distant galaxy clusters, the E-mode polarization
would not have information on the ISW effect due to its higher redshift, and its
effect would have been limited. On the other hand, the higher-order multipoles
of the temperature fluctuations provide information on the ISW effect at small
scales, which could have provided a good contrast to distant clusters of galaxies
with only the SW effect.

In this thesis, a priors that minimizes when the amplitude of the fluctuation is
zero is incorporated in the fitting function of the process of reconstructing the
initial fluctuations. However, such a priors interfere with the reproduction of the
power spectrum, so it is necessary to find an alternative priors. Complex pri-
ors, however, significantly increase the computational cost and make the method
difficult to compute, so they must be simple and allow for positive and negative
reversal of the initial fluctuations during the fitting.
Transfer functions used in simulations must be precise to small scales. When the
transfer function is obtained analytically, it may not converge sufficiently on the
small-scale side due to the limitation of computational cost. If such a function is
used, the reconstruction process of the initial fluctuation will cause large fluctu-
ations on the small scale, which will affect the validation of the method.
The distribution of the electric gas inside the galaxy cluster is another factor that
needs to be verified. The intrinsic density changes the optical depth [22], and de-
viations from the spherical shape produce polarization independent of quadrupole
temperature fluctuations.
The peculiar velocity of a galaxy cluster also generates quadrupole temperature
fluctuations [4][52]. Therefore, it is necessary to treat the velocity of galaxy clus-
ters if more detailed analysis is to be realized.

[22]
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Chapter 6

Summary and future prospects

In this thesis, in order to constrain the nature of dark energy, we present a
method to combine information on the CMB quadrupole temperature anisotropy
at the redshift of a galaxy cluster obtained from the CMB polarization produced
by the Thomson scattering in the cluster with the quadrupole anisotropy of the
CMB temperature and E-mode polarization directly observed at z = 0. Conven-
tional analysis methods using the ISW effect have large variances due to initial
density fluctuations at recombination (SW effect), which disturb the statistical
detection of the ISW effect [14]. However, in this method, the initial fluctuations
are reconstructed to fit the CMB observables including the galaxy cluster polar-
ization, thus suppressing the effect of variance from the initial fluctuations and
allowing us to verify the nature of the dark energy by the ISW effect. In the
previous study [33], only the quadrupole of temperature anisotropy at redshift z
= 0, which is clearly expected to have a correlation with the polarization of CMB
photons scattered by galaxy clusters, is used to constrain the equation of state
parameters of dark energy. However, the quadrupole components of the CMB
scattered by galaxy clusters are quadrupoles at different locations in the same
universe. Therefore, it correlates not only with quadrupoles but also with higher
multipoles at z = 0, which is shown in [41]. Compared to the constraints for
galaxy cluster polarization alone, the constraint on the dark energy parameter w
when including E-mode polarization (l ≥ 2) and temperature anisotropy (l ≥ 3),
with 6000 clusters and assuming a polarization sensitivity σpol/τ = 10−2 µK, for
w = −1 and w = −0.95 dark energy models, is improved by 18% as shown. The
improvement is due to the fact that the information on E-mode polarization and
temperature anisotropy at z = 0 allowed us to solve a part of the degeneracy
between the 3D density fluctuation Fourier modes inferred from the polarization
produced in galaxy clusters.

6.1 future prospects

The polarization of a galaxy cluster produced by Thomson scattering is typ-
ically about 10−2µK. Since the expected angle is about 2 arcmin (z ∼ 1), the
sensitivity required for detection is about 2 × 10−2 µK·arcmin. The sensitivity
of the Simons Observatory, the most advanced ground-based CMB polarization
observation currently ongoing, is about 3µK, which is not enough to detect the
polarization of each galaxy cluster [23]. In addition, CMB S4, which is planned
for the future, will increase the number of 6-meter large aperture telescopes to
three and improve the sensitivity to about 1µK. Even at this stage, it is diffi-
cult to observe the polarization of individual clusters of galaxies, but As shown
in Fig.6.1. Using the full cluster object, the cluster polarization signal can be
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detected.

Figure 6.1: Aggregate S/N on the measurement of the cluster polarized emission
for a future CMB S4 experiment. The S/N scales roughly linearly with mirror
size.(figure taken from ref [41]).

Not only sensitivity but also contamination by foreground radiation is an im-
portant issue. The main sources are synchrotron radiation and thermal dust
emission, and the removal of foreground radiation using their frequency depen-
dencies is also necessary to improve detection [60][61].

The simulations in this thesis used galaxy clusters up to redshift 2. There
are various methods to identify galaxy clusters, including galaxy density, weak-
weight lensing effects, SZ effects, and x-ray emission in the Intracluster medium.
Each method has different redshifts and masses of galaxy clusters that can be
detected, and the predictions for the current observations are shown in Fig.6.2.
The depest observations are the SZ effect in CMB observations [8] [29], and CMB
S4 can detect galaxy clusters at z ∼ 2 [51].
Although the simulations in this thesis were performed only for the dark energy
equation of state parameter, the method allows the user to arbitrarily choose the
cosmological parameters to be assumed and verified.
If the present method can be used to precisely reconstruct the initial fluctuations
inside the optical cone, it will allow direct comparison with the large-scale struc-
ture of the low redshift. This shows the possibility of examining the evolution of
the universe without using statistics, which is not possible with other methods.
If it can also be shown that the dark energy equation of state parameter w is not
−1, this could be a turning point in physics, as dark energy becomes a completely
unknown energy, not vacuum energy.
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Figure 6.2: Predictions of detectable masses and redshifts of galaxy clusters in
the major observations. (figure taken from ref [62]).

62



References

[1] T. Abbott, F. B. Abdalla, S. Allam, A. Amara, J. Annis, R. Armstrong,
D. Bacon, M. Banerji, A. H. Bauer, E. Baxter, M. R. Becker, A. Benoit-
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Amélie Tamone, Jeremy L. Tinker, Rita Tojeiro, Yuting Wang, Gong-Bo
Zhao, Cheng Zhao, Jonathan Brinkmann, Joel R. Brownstein, Peter D. Choi,
Stephanie Escoffier, Axel de la Macorra, Jeongin Moon, Jeffrey A. Newman,
Donald P. Schneider, Hee-Jong Seo, and Mariappan Vivek. The Completed

66



SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement
of the BAO and growth rate of structure of the luminous red galaxy sample
from the anisotropic power spectrum between redshifts 0.6 and 1.0. MNRAS,
498(2):2492–2531, October 2020.

[25] E. Goto. The parametron, a digital computing element which utilizes para-
metric oscillation. Proceedings of the IRE, 47(8):1304–1316, 1959.

[26] Alex Hall and Anthony Challinor. Detecting the polarization induced
by scattering of the microwave background quadrupole in galaxy clusters.
Phys. Rev. D, 90(6):063518, September 2014.

[27] Takashi Hamana, Masato Shirasaki, Satoshi Miyazaki, Chiaki Hikage,
Masamune Oguri, Surhud More, Robert Armstrong, Alexie Leauthaud,
Rachel Mandelbaum, Hironao Miyatake, Atsushi J. Nishizawa, Melanie
Simet, Masahiro Takada, Hiroaki Aihara, James Bosch, Yutaka Komiyama,
Robert Lupton, Hitoshi Murayama, Michael A. Strauss, and Masayuki
Tanaka. Cosmological constraints from cosmic shear two-point correlation
functions with HSC survey first-year data. PASJ, 72(1):16, February 2020.

[28] M. Hazumi, P. A. R. Ade, A. Adler, E. Allys, K. Arnold, D. Auguste,
J. Aumont, R. Aurlien, J. Austermann, C. Baccigalupi, A. J. Banday,
R. Banjeri, R. B. Barreiro, S. Basak, J. Beall, D. Beck, S. Beckman,
J. Bermejo, P. de Bernardis, M. Bersanelli, J. Bonis, J. Borrill, F. Boulanger,
S. Bounissou, M. Brilenkov, M. Brown, M. Bucher, E. Calabrese, P. Campeti,
A. Carones, F. J. Casas, A. Challinor, V. Chan, K. Cheung, Y. Chinone,
J. F. Cliche, L. Colombo, F. Columbro, J. Cubas, A. Cukierman, D. Cur-
tis, G. D’Alessandro, N. Dachlythra, M. De Petris, C. Dickinson, P. Diego-
Palazuelos, M. Dobbs, T. Dotani, L. Duband, S. Duff, J. M. Duval, K. Ebi-
sawa, T. Elleflot, H. K. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli,
R. Flauger, C. Franceschet, U. Fuskeland, M. Galloway, K. Ganga, J. R. Gao,
R. Genova-Santos, M. Gerbino, M. Gervasi, T. Ghigna, E. Gjerløw, M. L.
Gradziel, J. Grain, F. Grupp, A. Gruppuso, J. E. Gudmundsson, T. de
Haan, N. W. Halverson, P. Hargrave, T. Hasebe, M. Hasegawa, M. Hat-
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Ma, J. F. Maćıas-Pérez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli,
A. Marcos-Caballero, M. Maris, P. G. Martin, M. Martinelli, E. Mart́ınez-
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