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Abstract 

Intergovernmental Panel on Climate Change (IPCC) indicates that global warming caused by the 

anthropogenic carbon dioxide (CO2) is a growing concern, and that unless CO2 emissions are reduced 

to net zero by the 2050s, severe impacts of climate change on humankind will be inevitable. Carbon 

capture utilization and storage (CCUS), which captures CO2 from exhaust gases and the atmosphere, 

sequestrates it by storage, and converts it to valuable resources for reuse, is one of the approaches to 

contribute to the CO2 reduction. However, cost must be reduced to realize economically feasible CCUS 

systems. 

Since thermal power plants generate about 30% of anthropogenic CO2 emissions, a cost-efficient 

post-combustion CO2 capture process is essential for the CCUS systems. Post-combustion CO2 capture 

processes include absorption, adsorption, and membrane separation. Currently, absorption processes 

are the most established, but they require a large amount of energy to regenerate the absorbent materials. 

For this reason, adsorption processes are promising because they require less energy to for regeneration 

than absorptive processes due to their lower CO2 affinity. While various CO2 adsorbents have been 

developed, metal–organic frameworks (MOFs) are new adsorbents that show desirable properties by 

selecting combinations of organic ligands and metal ions that consist the MOF crystals. Among many 

MOFs, flexible MOFs have attracted attention because of their unique property of changing structure 

before and after adsorption. Due to this property, flexible MOFs show remarkable performance for 

CO2 separation — high working capacity and selectivity, step-type adsorption isotherm, and low heat 
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of adsorption. However, they have not yet been analyzed using a process simulation, and the 

performance of the CO2 capture process using the flexible MOFs is unknown. 

In this thesis, adsorption isotherms were modeled for the CO2 capture process using a flexible MOF. 

Adsorption isotherms data using elastic layer-structured metal–organic framework-11 (ELM-11), one 

of the typical flexible MOFs, were measured by my collaborator, Nippon Steel Corporation. I modeled 

the stepwise and hysteresis adsorption isotherms which were confirmed to fit well to the data. 

The process simulation using ELM-11 was performed using a rigorous model with partial 

differential-algebraic equations (PDAEs). Since PDAEs may not converge with rapid change in 

derivatives in a short time, the process simulation with ELM-11 is computationally challenging 

because the stepwise adsorption isotherms can cause rapid changes in CO2 partial pressure, and the 

isotherms hysteresis can cause discrete changes in adsorption amount of CO2. In this thesis, these 

problems were solved by applying several numerical techniques. My study is the first to simulate the 

process with stepwise and hysteresis adsorption isotherms. Note that the operating conditions, such as 

adsorption time, desorption time, and desorption pressure, were systematically determined for a fair 

evaluation. 

The results of the process simulation revealed the following. First, the CO2 recovery rate highly 

depends on feed pressure and temperature. By analyzing the mechanism how the recovery rate is 

determined, I proposed a simple and useful equation to estimate the recovery rate from feed pressure 

and temperature without running the simulation. Second, due to the high CO2 selectivity of ELM-11, 
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the purity of recovered CO2 is very high (>99%). Third, ELM-11 shows superior CO2 recovery, 

productivity, and power consumption compared to zeolite 13X, a conventional adsorbent. In particular, 

the stepwise desorption isotherm shortens the desorption time, and productivity is about 4.5 times 

higher than zeolite 13X. The above results demonstrate that the CO2 separation process using ELM-

11 is promising. 

On the other hand, various studies have applied mathematical programming to optimize the 

economics of CCUS systems. One of such approaches is a resource-constrained project scheduling 

(RCPS) method, which optimizes system schedules under resource constraints, such as workforces 

and funds. As far as I know, this method has not yet been applied to CCUS systems. Among the RCPS 

methods, Critical Path Method (CPM) is a popular method and has been used for various systems 

scheduling, such as building construction projects, factory management, etc. CPM assumes that each 

task in the system has a given duration of processing time, which can be reduced by allocating the cost. 

In the system, the optimum cost allocation is obtained by solving an optimization problem in which 

the decision variable is cost and the objective function is the minimization of the project completion 

time. Since the classical CPM assumes that the task durations are fixed values, it cannot account for 

uncertainties in task durations. This can be a bottleneck for applications in CCUS, which are expected 

to include duration uncertainties in tasks such as generating electricity from natural energy, 

transporting synthesized fuel from the recovered CO2, running CO2 adsorption processes, etc. 
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Therefore, the optimization results can be unreliable if the conventional CPM is applied without 

resolving this critical problem. 

I proposed an advanced CPM, which can account for the uncertainty in task durations by expressing 

them using histograms obtained from historical operation data. I proposed three formulations, all of 

which have their advantages. The first, Task-Oriented Formulation, has two different ways to improve 

the task durations by allocating costs and can find more flexible ways of allocating costs than the 

conventional CPM, which has only one way to improve the durations. However, this method requires 

many decision variables and takes a long time to solve the optimization problem. The second, Path-

oriented Formulation, significantly decreases the number of decision variables compared to Task-

Oriented Formulation, instead of limiting the improving ways of task durations to one. The third, Path-

oriented Formulation with local search, further reduces the number of decision variables by applying 

the local search method to Path-Oriented Formulation. This method does not guarantee an optimal 

solution depending on a range of local searches. The three methods above involve trade-offs between 

computation time, flexibility in cost allocation methods, and solution accuracy. They should be chosen 

according to the size of the target system. Note that my formulation of the optimization problem is 

mixed-integer linear programming (MILP), which can be solved by an algorithm that guarantees a 

solution, such as the branch and bound method. 

  In conclusion, this thesis provides important insights into the realization of CCUS systems to 

improving the economics. The CO2 separation process with the flexible MOF allows high productivity, 
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high product purity, and low power consumption. Furthermore, the proposed RCPS methods for 

designing and operating CCUS systems, which takes into account the uncertainty in task durations, 

maximizes the productivity of the systems under the cost constraints. 

 

Equation Chapter (Next) Section 1  
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Chapter 1 Introduction 

1.1 Global warming and carbon capture technologies 

Global warming is the dominant scientific consensus that the human-induced greenhouse effect 

causes it.1,2 Intergovernmental Panel on Climate Change (IPCC) has published a special report, "Global 

warming of 1.5 ℃," which includes extensive information from previous studies.3 The report states 

that the increase in global temperatures due to human activities reached about 1.0 ℃ in 2017 compared 

to pre-industrial ages. If it continues to increase at its current rate, it is likely to reach 1.5 ℃ between 

2030 and 2052. The temperature increases above 1.5 ℃ is expected to cause the following problems 

and cause severe damage to human society: damage to buildings and humans from typhoons and 

rainfall; droughts and the resulting food shortages; reduction in habitable areas due to sea level rise; 

and an increase in heat stroke patients due to high temperatures. 

Limiting global warming to 1.5 ℃ will require limiting the cumulative global anthropogenic CO2 

emissions.3 It is estimated that anthropogenic CO2 emissions from pre-industrial times to 2017 

amounted to about 2200 ± 320 GtCO2, and that future CO2 emissions need to be kept below 420 GtCO2 

to achieve a 66% chance of limiting the warming to 1.5 ℃. Since current global emissions are 42±3 

GtCO2 per year, the remaining budget is being consumed. Considering a pathway of emissions, it is 

estimated that the global CO2 emissions need to be reduced to a net zero around 2050. 

Carbon capture and storage (CCS) is an approach to reducing CO2 emissions. CCS is a system that 

extracts high-purity CO2 from industrial sources using gas separation, transports it to underground 
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reservoirs such as oil and gas fields or offshore storage, and finally isolates it for long-term storage. 

According to an International Energy Agency (IEA) report in 2013, CCS contributes significantly to 

reducing emissions from processes in power generation and industrial applications (steel, cement, oil 

refining, biofuels, etc.) by implementing 3,000 CCS projects around the world, with annual storage of 

7,000 Mt.4 However, CCS is expensive and limited for large scale implementation, despite its potential 

to reduce large amounts of CO2 with solid government incentives and regulations. The high cost of 

CCS is primarily caused by capture and compression, which accounts for 75% of the total cost of CCS. 

Therefore, there is a need to develop more efficient CO2 separation and compression technologies.5 

Another approach, carbon capture and utilization (CCU) technology, is a system that converts 

captured CO2 into valuable products as a renewable carbon resource rather than permanently 

sequestering it. Utilizing CO2 as a resource to produce valuable products is seen as a potential longer-

term solution than sequestration. CO2 can be converted into fuels, fine chemicals, pharmaceuticals, 

polymers, etc. Although CCU has significant advantages over CCS, the thermodynamic stability of 

CO2 makes it necessary to develop technologies to convert CO2 and use it for chemical reactions. 

While both CCS and CCU contribute to reducing CO2 emissions, the combined concept is called 

carbon capture utilization and storage (CCUS) and is known as the next-generation mechanism for 

managing CO2 emissions. 

 CO2 emissions from the use of fossil fuels have a significant impact on global warming.6 The sector 

with the highest CO2 emissions is fossil fuel power plants, which account for about one-third of total 



10 
 

anthropogenic CO2 emissions.7 However, this power generation is essential for the society, and fossil 

fuel-based power plants are responsible for 80 % of the world's energy supply, with coal-fired power 

plants providing as much as 42 %.8 Fossil fuels will continue to be a major energy source for at least 

the next 50 years, and thus advanced fossil fuel low-carbon technologies such as CCUS are needed to 

limit the severe effects of global warming while maintaining people's livelihoods. 

 

1.2 CO2 separation systems 

Post-combustion, pre-combustion and oxy-combustion 

There are three known processes for CO2 separation and recovery: post-combustion, which 

separates CO2 after combustion; pre-combustion, which separates CO2 before combustion; and oxy-

combustion, which separates CO2 during combustion by burning it in pure oxygen.5 In post-

combustion, CO2 is separated and recovered from the flue gas generated from boilers in power plants, 

blast furnaces, etc. The post-combustion CO2 separation technologies include chemical absorption, 

physical absorption, membrane separation, and deep-cooling separation. In pre-combustion, H2, CO, 

and CO2 are generated by steam reforming of natural gas or partial oxidation of coal, and the CO2 is 

separated from the fuel gas before combustion. The physical absorption and adsorption methods are 

typically used as CO2 recovery technologies for pre-combustion. In oxy-combustion,  coal is burned 

using a mixture of high-purity oxygen and recycled flue gas. The CO2 concentration in the exhaust gas 

is enriched to about 95%, and more than 90% of the CO2 can be recovered. Among the above 
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technologies, this study focuses on post-combustion, which has the advantage of installation in existing 

thermal power plants and factories. Considering that fossil fuel power generation is the largest source 

of CO2 emissions, it is the most urgent technology to be developed. 

 

Absorption separation 

 The most mature CO2 separation method is solvent absorption.9 Chemical absorption with amine 

solvents such as aqueous ammonia, monoethanolamine (MEA), diethanolamine (DEA), N-methyl 

diethanolamine (MDEA), and alkaline solvents such as Ca(OH)2 and NaOH are commonly used for 

post-combustion capture in various industries, including cement, steel, power plants, and oil 

refining.10–12 The MEA absorption method is particularly selective for CO2, yielding products with 

CO2 concentrations greater than 95%.7,13 

Although the absorption method has a high collection efficiency, it requires a large amount of 

energy for solvent regeneration.9 Other challenges include solvent degradation, equipment corrosion, 

and amine evaporation.13,14 On the other hand, absorbents that solve the above problems are being 

developed: a material called phase separation solvent has been proposed as an alternative to 

conventional solvents for CO2 recovery for its ability to reduce the heat of solvent regeneration by up 

to 50%.15,16 A material called CO2-selective adsorbents absorbs only CO2 without absorbing water, 

which eliminates the water desorption process.17 
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Membrane separation 

Membrane separation is a technology that employs polymer membranes to separate CO2 using 

pressure difference as the driving force. Since membrane separation does not require the regeneration 

of solvents and adsorbents required by absorption and adsorption methods, it is theoretically the most 

energy-efficient CO2 separation process.18 CO2 separation membranes are selected to have high 

permeability for CO2 but low permeability for the other components involved. Well-known CO2-

permeable polymeric membranes for post-combustion applications are PolarisTM and PIM.19,20 Other 

advantages of membrane technology are the following: simplicity, suitability for retrofitting to existing 

power plants, requiring only little maintenance, and environmental-friendliness.21 However, 

challenges include the limited development of durable membrane supports with large surface areas, 

and impurities in the gas stream clogging the membranes. 

 

Adsorption separation 

The adsorption separation process utilizes the properties of adsorbent materials, which are porous 

materials, to adsorb specific molecules. Various adsorbents have been evaluated for CO2 capture from 

pre-combustion and post-combustion flue gas. Examples of adsorbents include: conventional porous 

materials such as zeolites, carbon-based materials (activated carbon, carbon nanotubes, carbon 

nanofibers, graphene, etc.), molecular sieves, MOFs, porous polymer networks (PPN), covalent 

organic frameworks (COFs).22 
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An advantage of the adsorption separation process is the possibility of energy savings for separation 

because the binding force between the adsorbent and the adsorbent is smaller than that of absorption. 

On the other hand, it is necessary to consider degradation of adsorbents due to water, NOx, and SOx. 

Zeolite 13X is currently in commercial use for CO2 removal in air separation processes, but the 

adsorption capacity of zeolite 13X decreases when it co-adsorbs with water. Other challenges include 

the difficulty of rapidly changing pressure and temperature in large-scale adsorption processes, unlike 

in lab-scale experiments, requiring the development of operating methods for the large-scale operation. 

The effects of gas impurities on the capacity, selectivity, and stability of adsorption processes also need 

to be studied.13 

There are two main categories of adsorption processes: pressure swing adsorption (PSA) and 

temperature swing adsorption (TSA). The PSA process is a cyclic adsorption process and is considered 

an energy and cost-effective option for CO2 separation from post-combustion flue gas.23,24 The PSA 

process has been applied to various separation applications, and there are currently at least several 

hundred thousand PSA units installed worldwide.25 Examples range from small-scale applications, 

mainly medical oxygen generators and air brake drying systems, to medium and large-scale 

applications such as H2 purification and air fractionation. The PSA process has been considered 

promising for CO2 separation in large-scale operations. There have been studies investigating PSA 

both in pre-combustion and post-combustion.26,27 On the other hand, the TSA process for CO2 capture 

has yet to be implemented on a large scale due to the high energy requirements for adsorbent 
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regeneration and long cooling step times. New approaches could solve these scale-up challenges, such 

as hollow fiber adsorbents with cooling media.28,29  

The PSA process separates target components by increasing and decreasing the pressure in the 

system (pressure swing). Figure 1-1 shows the adsorption isotherms of gases A and B on an adsorbent. 

The PSA process mainly consists of the two operations shown below. Operation (1): putting a mixture 

of gases A and B into a container containing adsorbent and pressurizing it to the extent indicated by 

light blue arrows, the amount of gas A and B adsorbed increases by the amount indicated from bottom 

to top of the gray arrows, respectively. Operation (2): reducing the pressure by the amount indicated 

by the dark blue arrows, gases A and B are desorbed by the amount indicated from the bottom to the 

top of the gray arrows, respectively. The gases desorbed by this operation contain a larger amount of 

gas A.  

 

Figure 1-1. Adsorption isotherms for a PSA process 
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The PSA process employs a vacuum pump in case desorption pressure below atmospheric pressure 

is required. This process using a vacuum pump is called the vacuum pressure swing adsorption (VPSA) 

process. This process is also notable for its potential for low energy requirements for CO2 

separation.12,30–33 Zeolites and activated carbon beads have been investigated over the past several 

decades.34–36 

The efficiency and economics of PSA/TSA processes largely depend on the properties of adsorbents, 

process design, and operating factors.37,38 Criteria for efficient adsorbents for large-scale separations 

include high working capacity and selectivity, low cost, low regeneration requirements, long-term 

stability, and fast adsorption kinetics. The design and operating conditions also affect process 

performance: cycle configuration, number of steps, cycle time, operating pressure or temperature, and 

number of beds. Although CO2 separation by adsorption processes is expected to achieve high 

economic efficiency, they have not yet been adequately developed on a large scale.18 Developing novel 

adsorption separation processes using high-performance adsorbents is required. It should be noted that 

the performance of the adsorbent in a separation process cannot be evaluated as static data such as 

adsorption isotherms, and a dynamic evaluation must be performed using process model.  Furthermore, 

the process design, configuration, and optimization need to be determined by considering the 

characteristics of the adsorbent.22 
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1.3 Adsorbent materials 

Adsorbents are classified by their composition, pore size, and separation mechanism. Separation 

mechanisms include physisorption, chemisorption, and molecular sieving.18 Here, I discuss 

physisorption. Physisorption is adsorption caused by intermolecular forces. Since it shows less entropy 

change before and after adsorption than chemisorption, it has the following advantages: low heat of 

adsorption, fast mass transfer, and less energy required for desorption. There are two types of these 

adsorbents, crystalline and amorphous. Crystalline adsorbents have a very narrow pore size 

distribution due to their definite positions of atoms, while amorphous adsorbents have a wider pore 

size distribution due to their random distribution of atoms. Zeolites and metal–organic frameworks 

(MOFs) are crystalline microporous adsorbents, while carbon-based materials are amorphous 

microporous adsorbents. Both classes of adsorbents have been widely investigated for their properties 

and potential as CO2 adsorbents.12 

 

Carbon-based materials 

Carbon-based materials are also considered promising adsorbents for CO2 capture due to their low 

cost, high surface area, high adaptability to pore structure modification and surface functionalization, 

and relatively easy regeneration.39 However, because CO2 cohesive force on the carbon-based material 

is weak, they are sensitive to temperature change and have relatively low selectivity. For this reason, 

approaches to increase the interaction between adsorbate and adsorbent to improve CO2 selectivity 
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have been investigated, including single-walled carbon nanotubes (CNTs),40 multi-walled CNTs,41,42 

ordered mesoporous carbons,43 microporous carbons,44 etc. The idea in the studies is to increase the 

surface area of the carbon adsorbent by forming different structures and adjusting the pore structure. 

 

Zeolites 

Zeolites are porous crystalline aluminosilicates of SiO4 and AlO4 tetrahedra regularly bound together 

via oxygen atoms.39 The crystal lattice is open, with molecular-sized pores into which molecules can 

enter. The adsorption and gas separation properties of zeolites highly depend on the size, charge density, 

and distribution of exchangeable cations (Na+, K+, Ca2+, Mg2+, etc.) present within the porous 

structure.45 The mechanism of CO2 adsorption on zeolites has been studied by various groups, and it 

has been shown that CO2 is physisorbed through ion-dipole interactions.46,47 

 Zeolites have shown encouraging results for separating CO2 from gas mixtures and could be used 

in the pressure swing adsorption (PSA) process. Gas separation by zeolites depends on the structure 

and composition of the framework and cationic form.48 Inui et al. investigated the adsorption behavior 

of various zeolites in the PSA process and claimed that CHA and 13X were the most appropriate for 

CO2 separation.49 Krishnamurthy et al. reported a pilot test of a CO2 separation process using a 7-step 

PSA with zeolite 13X that showed high performance.50 
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Amine-functionalized adsorbents 

Amine-functionalized adsorbents are solid adsorbents in which organic amines are impregnated or 

grafted onto various porous supports such as activated carbon, zeolite, and silica. These adsorbents 

benefit from the high CO2 adsorption capacity of amines while reducing the problems of liquid amine 

adsorbents, such as high regeneration energy and erosion.51 

The properties required for the amine supports are not to degrade at relatively high temperatures 

and not to react with the amine during the functionalization. Also, it is necessary to optimize additional 

properties (specific surface area, porosity, pore volume, etc.) for adsorption and desorption 

performance. Supports with a larger specific surface area can be impregnated with more amines, 

leading to a higher adsorption capacity. Porosity and pore volume enable gas molecules to diffuse 

within the supports. These properties increase the adsorption capacity of CO2 as well as desorption 

rate. Hence, the choice of supports significantly affects the performance of the adsorbent.52 

There are new strategies to functionalize polymeric compounds such as porous polymers53,54 and 

metal–organic frameworks55 with amine-functionalized linkers. Yaghi et al. functionalized IRMOF-

74-III with primary or secondary amines.56 

Amine-functionalized solid adsorbents are highly resistant to moisture. In many cases, moisture 

increases the CO2 adsorption capacity yet keeps the regeneration temperature in the same range.57,58 

This is advantageous in post-combustion CO2 capture processes since the flue gas from power plants 

also contains moisture. On the other hand, it is also reported that the following issues need to be 
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overcome for practical application in industrial scales: long-term thermal stability during the 

regeneration process; and degradation due to oxidation. 

 

Metal–organic frameworks 

Metal–organic frameworks (MOFs) have attracted attention as a new class of crystalline porous 

materials due to their unique structural properties such as high surface area (up to 6200 m2g-1), high 

porosity (up to 90%) and low crystal density, as well as high thermal and chemical stability.59–61  MOFs 

are materials in which organic ligands bind metal or metal oxide corners. The major advantage of 

MOFs over conventional porous materials is that the material can be tailored to specific applications 

by choosing the metal and organic ligands species.62 Currently, over 12,000 of MOFs are registered in 

the Cambridge Structural Database, and some of them have been confirmed to be stable porous 

materials. However, this is only a portion of the potential materials, as the metal ions and the organic 

ligands vary widely. There are subsets of MOFs, including isoreticular MOFs (IRMOFs), zeolite 

imidazolate frameworks (ZIFs), and zeolite-like MOFs (ZMOFs).59 Currently, these materials are 

being investigated for industrial applications. In particular, research using MOFs as a material for CO2 

separation and recovery has been active in recent years.11,60,63 

 

Flexible MOFs 

Among many of these materials, flexible MOFs have attracted significant attention for CO2 capture 



20 
 

due to their unique property of adsorption-induced structural change called “gate-opening/closing” 

phenomena during adsorption and desorption.64–66 This phenomenon occurs when the CO2 pressure 

exceeds a specific value called gate pressure, and CO2 rapidly pries open the space between the layers 

causing adsorption. Due to this property, flexible MOFs show large working capacity, high selectivity, 

and stepwise or sigmoidal adsorption isotherms. Unlike conventional adsorbents, flexible MOFs do 

not have trade-offs between selectivity and other performance metrics. Moreover, the flexible MOFs 

have “intrinsic thermal management capabilities”,67,68 where the exothermic heat by adsorption is 

partially offset by the endothermic expansion of the host framework during gate-opening. The opposite 

phenomenon occurs during gate-closing: endothermic heat by guest desorption is partially offset by 

the shrinkage of the host framework. Due to this unique phenomenon, flexible MOFs may be used 

under nearly isothermal conditions, avoiding loss of working capacity by the heat of adsorption and 

desorption. One of the most promising flexible MOFs is elastic layer-structured metal–organic 

framework-11 (ELM-11), which was first reported by Li and Kaneko.69 This material has been 

confirmed to have a large working capacity of CO2 compared to other flexible MOFs70 and investigated 

by many researchers.71–76 

On the other hand, sigmoidal isotherms of flexible MOFs cause a problem of slipping-off, where 

the target gas CO2 at a lower concentration than the gate pressure slips through and exit the adsorption 

column without being captured. This slipping-off phenomenon was first reported by Horike et al. and 

is known to reduce the recovery rate of CO2.
77 To solve this problem, Hiraide et al. proposed a two-
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stage VPSA process,78 in which a column packed with a flexible MOF is connected to another column 

packed with a conventional MOF. In this approach, the second column captures CO2 that slips off from 

the first column. A detailed evaluation by dynamic simulation is essential for CO2 separation capability 

and cost estimation in VPSA processes, but the complex gas adsorption behavior of flexible MOFs has 

limited further analysis. 

 Flexible MOFs have been found to exhibit isotherms with hysteresis,79,80 which is the difference 

between the adsorption and desorption isotherms. In an adsorbent with hysteresis, there exists an 

infinite number of equilibrium states which depend on the history of adsorption and desorption cycles. 

A detailed description of the hysteresis and how to model the isotherms are given in this study. The 

isotherm hysteresis of flexible MOFs has not been implemented within dynamic VPSA simulation, 

although sigmoidal adsorption isotherms have been modeled for other adsorption systems.81 Remy et 

al.82 and Hefti et al.83 modeled sigmoidal isotherms of MOFs without hysteresis. In addition, Štěpánek 

et al.84 and Hefti and Mazzotti85 modeled water adsorption isotherms on various porous materials, 

which are hysteretic due to capillary condensation. However, reports on process modeling using 

flexible MOFs with hysteresis cannot be found. 

 

1.4 Process simulation with partial differential algebraic equations (PDAEs) 

 Process simulation is the computer representation of a process using physical property data and a 

mathematical model. The mathematical model often consists of partial differential algebraic equations 
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(PDAEs) containing mass balance equations, heat balance equations, adsorption rate equations, etc. 

The process simulation requires a dynamic model that takes kinetics into account, enabling the 

evaluation of process performance and the exploration of optimal operating and design conditions. 

 There are two primary computational methods for solving PDAEs in PSA process simulations. One 

is to discretize the spatial domain and transform PDAEs into differential algebraic equations (DAEs) 

only with respect to time. This method is called single discretization (SD).86 The other is to discretize 

space and time in parallel and transform PDAEs into nonlinear algebraic equations (NLAEs). This 

method is called the full discretization (FD).87 Most advanced numerical integration solvers use the 

SD method, which has become the dominant approach for PSA process simulation.88 

 Dynamic simulation of adsorption processes with flexible MOFs is numerically challenging. The 

PDAEs are difficult to solve due to rapid and discrete non-differentiable changes in the system. In 

particular, dynamic models with discrete changes are called hybrid systems and are known to be 

computationally difficult to solve.89,90 In this work, the sigmoidal isotherm with hysteresis of flexible 

MOFs causes rapid and discrete changes. Because of this problem, adsorption processes considering 

hysteresis have rarely been studied in the past. While flexible MOFs are considered promising 

candidates for highly efficient CO2 separation, the lack of computational approaches has not allowed 

model-based analysis. 

 Solutions to the above challenging PDAEs have been investigated. The pseudo-transient 

continuation method (PTC) is a technique used to solve DAEs where the initial values are far from the 
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solution.91 This method introduces transient behavior of the solution until it approaches a steady state, 

which avoids abrupt changes in the solution and helps convergence.92 The method has been used 

successfully to solve aerodynamics,93 magnetohydrodynamics,94 and circuit simulations.95 The PTC 

method has also been used in chemical engineering, including simulation and optimization of heat 

exchanger models,96 and distillation models.97 

 

1.5 Decision-making methods for CCUS systems 

 While CCS systems can play an important role in achieving a low-carbon global society, there are 

cost challenges; Grimaud and Rouge pointed out that the high cost of CCS necessitates economic 

incentives or a carbon tax to promote its deployment, especially in the power generation sector.98 On 

the other hand, by combining CCU with CCS and utilizing the captured CO2 for various valued 

applications, it may be possible to simultaneously generate electricity from fossil fuels while reducing 

CO2 emissions  offsetting the costs with revenues. However, due to the variety of technologies involved, 

development of CCUS systems is complex with spatial, temporal, and other inherent technology issues 

to be considered.99 Many studies have been conducted to analyze these factors to make decisions on 

how to achieve CCUS: Huang et al. conducted a techno-economic analysis of CCS;100 Arestra and 

Dibenedetto reviewed CO2 utilization options;101 Bruhn et al. investigated the integration of CCU into 

the CCS context.102 Frederick et al. summarized extensive research on optimization and decision-

making methods for planning CCUS systems.99 
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 Mathematical programming is one of the established methods in operations research for decades 

which is a systematic method for handling the complex decision-making problems .103 This method 

determines system parameters so that the objective functions are optimized under some constraints. 

Mathematical programming methods are classified by the form of their formulation, and the algorithm 

applied to solve the problem differ depending on the classification. Linear programming (LP) is a class 

of optimization problems consisting of only linear algebraic equations and is generally easy to solve. 

On the other hand, non-linear programming (NLP) is another class of optimization problems with 

nonlinear equations, and solving NLP problems is generally more complex.  

 Various CCUS optimization methods using mathematical programming have been studied in the 

past. The first application of mathematical programming to CCUS was in 1987 for CO2 allocation 

problems in enhanced oil recovery using an integer programming model.104 A review by Huang et al. 

introduces some optimization models to address the techno-economic problems in CCS.100 Bai and 

Wei,105 and Mavrotas et al.106 developed multi-objective optimization approaches to select CO2 capture 

options that consider both costs and CO2 emission reductions. Tekiner et al. proposed mixed integer 

linear programming (MILP) using various energy demand scenarios generated by Monte Carlo 

simulations.107 Tan et al. proposed an integer linear program (ILP) to minimize CO2 emissions, with 

electricity demand as a constraint.108 A MILP model with a similar objective was also developed by 

Pękala et al.109 Al-Mohannadi and Linke proposed a cost minimization problem, considering the CO2 

network.110 
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 To my knowledge, there is no study that applies resource constrained project scheduling (RCPS) 

methods to CCUS. The RCPS methods optimizes the production schedule with resource constraints, 

such as manpower and budget. Among these methods, the Critical Path Method (CPM), which is a 

network-based method, have been widely applied. This method identifies the longest path, which 

allows us to find the critical path that must be shortened so that the completion time of the whole 

project can be shortened.111 The CPM is one of the most well-known techniques in the RCPS method, 

and advanced techniques based on CPM have been proposed.112 A review of previous CPM-based 

approaches is presented in Chapter 4. The CPM-based approaches can be applied to CCUS systems to 

optimize their overall scheduling and productivity.  

 

1.6 Contribution of this thesis 

 In this thesis, I propose the following two approaches to improve the design and operation of CCUS 

systems. The first approach is presented in Chapters 2 and 3 where I present a model-based analysis 

for a VPSA process using one of the flexible MOFs, ELM-11, with sigmoidal isotherms and hysteresis. 

Based on experimental uptake data, models of adsorption and desorption isotherms are developed, and 

their parameters are estimated. By incorporating the resulting isotherm models into a rigorous PDAE 

model, a simulation of the VPSA process is developed. The numerical challenges to solve the PDAE 

models, including sigmoidal and hysteresis isotherms, are resolved with the proposed numerical 

approaches. Sensitivity analysis for feed pressure and temperature is performed using this simulation 
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to identify optimal operating conditions. Furthermore, a comparison with zeolite 13X, a common CO2 

adsorbent, is also conducted to confirm the advantages of ELM-11. The findings suggest that the VPSA 

process using ELM-11 is a promising candidate among CO2 adsorption processes. The contributions 

of these chapters are as follows: the VPSA process with the adsorbent showing the step-type hysteresis 

adsorption isotherms was solved for the first time. I demonstrate various advantages of the adsorbent 

which leads to efficient the VPSA operation. In addition, is the numerical techniques for the 

challenging problem has the potential to  be applied to other computationally complex PDAE systems. 

 The second approach is presented in Chapter 4, which presents an advanced  CPM technique with 

stochastic durations. The conventional CPM assumes that task durations are fixed values, which is not 

applicable to CCUS systems that have uncertainty in task durations. For this problem, I propose an 

advanced CPM approach, where task durations are expressed as discrete histograms obtained from 

historical operation data, that maximizes the probability that all tasks are completed within a given 

completion time by improving the task durations on the critical path. I propose two reformulations of 

the problem as a mixed-integer linear programming problem: one based on tasks, and the other based 

on paths. In addition, I propose an iterative method to solve the problem efficiently by reducing the 

number of binary variables. Finally, I demonstrate efficiency of our proposed methods in some case 

studies. This method contributes to the development of the RCPS field as a novel project management 

framework and  improving the economics of the CCUS systems. 

Equation Chapter (Next) Section 1 
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Chapter 2 Modeling adsorption/desorption isotherms 

 

2.1 Preparations for the isotherms modeling 

In this section, as preparation to explain my modeling approaches for adsorption isotherms, past 

studies on ELM-11 and details of our experiments are described. 

 

2.1.1 Past studies on ELM-11 

 The chemical formula of ELM-11 is [Cu(bpy)2(BF4)2]n, which can be obtained by removing water 

molecules from the crystal lattice of {[Cu(bpy)(H2O)2(BF4)2](bpy)}n. Blake et al. determined the 

crystal structure by single crystal X-ray structure analysis.113 ELM-11 has a two-dimensional layered 

structure, with bpy molecules bridging two Cu ions in the x-y plane, forming a square lattice by their 

continuous repetition. This layered structure has no apparent voids: the interlayer space is 0.458 nm, 

which is not enough space for molecules to enter from the side. The interlayer spaces get wider when 

molecules are adsorbed: in the CO2 adsorbed form, the spaces become 0.578 nm.114 Hence, CO2 

adsorption enlarges the space by 0.120 nm (26%). Such an expansion is rare in crystals. This unique 

gating phenomenon was revealed by detailed synchrotron radiation experiments.75 

 In porous materials, various gas adsorption isotherms have been observed, depending on surface 

properties, pore size, and the properties of gas molecules, and these are classified into six types by 

IUPAC.115 On the other hand, the adsorption isotherms of ELM-11 cannot be classified into the IUPAC 

types where the gas adsorption amount in the low-pressure region is almost zero, and the adsorption 

amount sharply increases at a certain pressure.114 
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The high selectivity of ELM-11 was investigated by Hiraide et al:67 they used GCMC simulations 

to determine the amount of CO2/N2 (10:90) gas mixture adsorbed and found that the selectivity was 

135. Compared to the selectivities of common adsorbents which are around 10, the selectivity of ELM-

11 is extremely high. This high selectivity is because the gate-opened structure has an significantly 

higher affinity for CO2 than for N2. 

 

2.1.2 Experimental 

The pre-ELM-11 sample, a hydrated precursor of ELM-11, was synthesized using the protocol 

reported by Kondo et al.75 after some modifications: a methanol solution of 4,4’-bipyridine (3.20 M, 

200 mL) was added to an aqueous solution of Cu(II) tetrafluoroborate (0.87 M, 368 mL) for 2 hours 

with vigorous stirring at room temperature. After additional stirring (1 hour), the reaction mixture was 

filtrated, and the filter cake was washed with water three times. 

 Isotherm data of ELM-11 were obtained using BELSORP HP (MicrotracBEL Corp.) equipped with 

a refrigerated/heating circulator (Julabo USA, Inc., FP-50MA). Before the isotherm measurement, the 

pre-ELM-11 sample was heated at 110 °C for 30 hours to convert it into ELM-11 and 110 °C for 5 

minutes before each measurement.  

Three datasets were obtained using three different batches of synthesized ELM-11. The first dataset, 

Dataset 1, was obtained by measuring CO2 isotherms for adsorption and desorption at the temperature 

range from -10 °C to 25 °C. The second dataset is for N2 adsorption isotherm at 0 °C. Finally, Dataset 

3 was obtained at 0 °C, where the desorption branch of the isotherm was measured from an arbitrary 
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pressure within the pressure range showing gate-adsorption. The experiments were conducted by my 

collaborator, Nippon Steel Corporation. 

 

2.2 Modeling sigmoidal adsorption/desorption isotherms and hysteresis 

In this section, modeling approaches for isotherms of ELM-11 are discussed. ELM-11 is known for 

its hysteresis phenomenon, which causes the isotherm trajectory to change between adsorption and 

desorption. Four isotherm trajectories shown in Figure 2-1 (a) are examples of isotherm hysteresis. 

The isotherm (i) is for a monotonically increasing CO2 partial pressure from origin, or a clean state, 

and the isotherm (ii) is for a monotonically decreasing CO2 partial pressure from a saturated state. 

These two isotherms are exceptional cases starting from a clean or saturated state, and are called 

primary isotherms in this paper. The trajectories (iii) and (iv), called secondary isotherms, are 

isotherms in which adsorption and desorption switch at intermediate points between clean and 

saturated, as indicated by circles, respectively: (iii) shows an isotherm where adsorption is switched to 

desorption at the point shown by the light-blue circle, and (iv) shows an isotherm where desorption is 

switched to adsorption at the point shown by the orange circle. Moreover, when adsorption and 

desorption switch again on the trajectories of second-order isotherms, the isotherm takes a new higher-

order trajectory. Thus, the adsorption equilibrium depends on the history of adsorption and desorption 

cycles, and there is an infinite number of isotherms for hysteretic adsorbents, which makes it 

challenging to analyze in an adsorption process.  
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2.2.1 Modeling sigmoidal shape of primary isotherms 

I model the sigmoidal shape of primary isotherms using the approach by Hefti et al. eliminating 

some insensitive parameters to fit our data.83 I assume imaginary adsorption isotherms shown in Figure 

2-1 (b); the lower isotherm nL is an imaginary adsorption isotherm where the gate is always closed 

regardless of the CO2 partial pressure, and adsorption occurs only around the outer framework of ELM-

11. On the other hand, the upper isotherm nU is an imaginary isotherm where the gate is always open, 

and adsorption occurs only inside the framework. Because the actual amount of CO2 adsorbed is given 

by the sum of these two amounts, the isotherm nj is expressed by the following equation: 

  ( ) ( )U L 1 , ads,des .j j jn n w n w j= + − =      (2-1) 

Note that j is mode of isotherms, and wj = [0, 1] is a weighting function that describes the ratio of gates 

opened to the total number of gates in the ELM-11 structure. 

 The isotherms nL, nU in Eq. (2-1) are represented by the following equations: 

Figure 2-1. Adsorption and desorption isotherms of ELM-11: (a) hysteresis given by primary and 

secondary isotherms; (b) modeling approach for sigmoidal isotherm using imaginary isotherms. 
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where bL, bU
∞, bH, and EU are parameters for the imaginary adsorption isotherms; 

2COp  is partial 

pressure of CO2; T is temperature. Since the lower isotherm nL is very small, approximating nL to a 

linear isotherm is found to be sufficient. Note that nU is always larger than nL at any CO2 partial 

pressure. The weighting function wj in Eq. (2-1) is described as the cumulative log-logistic function 

as: 
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where χj is a parameter for the weighting function; pstep,j(T) is step pressure of isotherm j at temperature 

T, which determines the position of the step where the isotherms rise. The temperature dependence of 

pstep,j(T) for ELM-11 was experimentally confirmed by Hiraide et al.72 The step pressure pstep,j(T) is 

expressed by the following equation, which is also proposed by Sinha et al:28 
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1 1
exp ,( )

j

j j
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p
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T p

T T

  
= − −   
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  (2-6) 

where pstep0,j is the step pressure of isotherm j at a reference temperature T0 = 273.15 [K]; Hstep,j is the 

enthalpy of the phase transitions. 
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2.2.2 Modeling secondary and higher-order isotherms 

 I describe the isotherm trajectories that depend on the history of adsorption and desorption cycles. 

I refer to the secondary and higher-order adsorption isotherms as ndes→ads and the desorption isotherms 

as nads→des.  

 The proposed approach is illustrated in Figure 2-2, where secondary isotherms are given by 

vertically compressing the primary isotherms. The equilibrium follows the branched trajectory ndes→ads 

shown as the orange line in Figure 2-2 (a) when desorption is carried out until reaching Point A, and 

then adsorption occurs. I obtain the secondary isotherm ndes→ads by vertically compressing the primary 

isotherm nads from the bottom to the top as follows: 

  
( )sat switch

des ads ads switch

sat

,
n n

n n n
n

→

 −
=  + 

 

  (2-7) 

where nswitch is the amount of CO2 adsorbed at the time of the switching operation between desorption 

and adsorption; nsat is a saturated amount of CO2 adsorbed. The ratio (nsat - nswitch)/nsat is the ratio of 

gates not yet opened to the total number of gates in the ELM-11 structure. Note that ndes→ads is 

consistent with nads when nswitch = 0, i.e., when desorption is completed until reaching the clean state 

and then switched to adsorption. This modeling approach is the same as in Hefti and Mazzotti, who 

modeled the hysteretic isotherms by capillary condensation in the physisorption of water vapor.85 

 Similarly, the equilibrium follows the trajectory nads→des shown as a light-blue line in Figure 2-2 (b) 

when adsorption is carried out until reaching Point B, and then desorption occurs. I obtain the 

secondary isotherm in the same manner as Eq. (2-7) by vertically compressing the primary isotherm 
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ndes, but this time from the top to the bottom, as follows: 

  switch
ads des des

sat

.
n

n n
n

→

 
=  

 

    (2-8) 

The ratio (nswitch/nsat) gives the ratio of gates that are not closed to the total number of gates in the 

ELM-11 structure. Note that nads→des is consistent with ndes when nswitch = nsat, i.e., when adsorption is 

switched to desorption after saturation. 

 

2.2.3 Modeling isotherm hysteresis in VPSA simulation, and N2 isotherm 

In this study, it is assumed that the adsorption/desorption isotherm is given by ndes→ads for the 

pressurization and adsorption steps and nads→des for the depressurization and desorption steps in the 4-

step VPSA process. From this assumption, the hysteresis of the adsorption isotherm for CO2 is 

expressed by the following equation: 

  ( )
2CO des ads ads desmode 1 mode ,q n n→ →

 =  +  −                                     (2-9) 

Figure 2-2. Modeling secondary and higher-order isotherms: 

(a) adsorption isotherm; (b) desorption isotherm. 
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where mode is a binary variable; 
2COq   is equilibrium amount of CO2 adsorbed. 

2COq   is equal to the 

adsorption isotherm ndes→ads when mode = 1, and the desorption isotherm nads→des when mode = 0. The 

following equation determines this binary variable: 

  press ads

press ads press ads depress des

1  if 0
mode ,

0  if  

t t t

t t t t t t t

  +
= 

+   + + +

                         (2-10) 

where t is time since each cycle started; tpress, tads, tdepress, tdes are pressurization, adsorption, 

depressurization, desorption time, respectively. 

 The adsorption isotherm of N2 is approximated by the temperature-independent linear model shown 

in the following equation. 

    
2 2 2N N N ,q b p =   (2-11) 

where 
2Nb  is a temperature-independent parameter;  

2Nq   is equilibrium amount of N2 adsorbed; 
2Np  

is partial pressure of N2. 

 

2.3 Parameter estimation and fitting results  

This section shows estimation results of the isotherm parameters included in Eqs. (2-1)–(2-6) and 

(2-11) for Datasets 1–3 shown in Figure 2-3 and Figure 2-4. The isotherm parameters for CO2 were 

obtained separately for each dataset to consider the minor differences among the three batches. The 

isotherm of N2, where the amount adsorbed is very small and differences among the batches are 

probably negligible, was assumed to be common for all datasets. The least-squares method was used 

for the estimation. 
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Estimated parameters at different temperatures from Dataset 1 are shown in Figure 2-3 and Table 

2-1. The coefficients of determination (R2) are shown in Table 2-2. Figure 2-3 and the values of R2 

show that the model matches the experimental data well.  

The fitting for Dataset 2 is shown in Figure 2-4 (a). The estimated value of the parameter 
2Nb  is 

3.05×10-5 molN2/(kgads･kPa). The value of R2 is 0.987, indicating that this model also describes the 

data well.  

The fitting for Dataset 3 is shown in Figure 2-4 (b) and (c), and the estimated parameters are shown 

in Table 2-3. In this case, the weighting function wj is expressed by the following equation: 
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   (2-12) 

where vj [-] is a parameter in Hefti et al.83 In fitting the model to the data to Dataset 3, I did not fix vj 

to one but found the optimal value by parameter estimation. The values of R2 for primary adsorption, 

desorption isotherms and the four secondary desorption isotherms are 1.00, 0.996, and 0.933, 

respectively. This result shows that the model can also describe the secondary desorption isotherm well. 
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Table 2-1 Estimated parameters for CO2 adsorption/desorption isotherms using Dataset 1 

Parameters Values 

bL 9.15×10-4 [molCO2/(kgads･kPa)] 

bU
∞ 4.22×10-8 [kPa-1] 

bH 0 [molCO2/(kgads･kPa)]* 

nU
∞ 3.92 [molCO2/kgads] 

EU 34.1 [kJ/molCO2] 

χads 0.0405 [-] 

χdes 0.0329 [-] 

pstep0,ads 34.8 [kPa] 

pstep0,des 24.3 [kPa] 

Hstep,ads -23.3 [kJ/molCO2] 

Hstep,des -22.2 [kJ/molCO2] 

* Due to the limited number of high-pressure isotherm 

data, the value could not be estimated and was set to zero. 

 

Table 2-2 Coefficients of determination R2 for Dataset 1 

Temperature [K] 
R2 for adsorption 

isotherms 

R2 for desorption 

isotherms 

263.15 0.986 0.993 

268.15 0.996 0.996 

273.15 0.995 0.994 

278.15 0.991 0.997 

283.15 0.998 0.997 

288.15 0.998 0.994 

293.15 0.995 0.991 

298.15 0.992 0.983 
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Table 2-3 Estimated parameters from Dataset 3 

Parameters Values 

bL 1.02×10-3 [molCO2/(kgads･kPa)] 

bU
∞ 4.85×10-6 [kPa-1] 

bH 3.33×10-3 [molCO2/(kgads･kPa)] 

nU
∞ 3.01 [molCO2/kgads] 

EU 28.7 [kJ/molCO2] 

vads 4.17 [-] 

vdes 3.91 [-] 

χads 0.0414 [-] 

χdes 0.0456 [-] 

pstep0,ads 30.6 [kPa] 

pstep0,des 21.7 [kPa] 

Hstep,ads -25.0 [kJ/molCO2] 

Hstep,des -25.0 [kJ/molCO2] 
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Figure 2-3. Fitting of primary isotherms at temperature 263.15–298.15 K for 

Dataset 1: (a) 263.15 K; (b) 268.15 K; (c) 273.15 K; (d) 278.15 K; (e) 283.15 

K; (f) 288.15 K; (g) 293.15 K; (h) 298.15 K. 
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2.4 Concluding remarks 

 In this chapter, adsorption isotherms of ELM-11 are modeled based on the data provided by my 

collaborator, Nippon Steel Corporation. First, the stepwise adsorption isotherms of ELM-11 were 

modeled using two imaginary Langmuir adsorption isotherms and a weighting function, in the same 

approach as Hefti et al.83 Furthermore, the hysteresis of the isotherms was modeled by compressing 

the primary isotherms using the ratio between CO2 adsorption amount when switching operations and 

saturated CO2 adsorption amount, as proposed by Hefti and Mazzotti.85 These models show good 

fitting to Dataset 1‒3. In addition, the mode switching adsorption/desorption isotherms in the VPSA 

process was modeled by the logic condition (2-10). 

Equation Chapter (Next) Section 1 

  

Figure 2-4. Isotherm model fitting: (a) N2 isotherm for Dataset 2; (b) primary isotherms and 

secondary desorption isotherms of CO2 for Dataset 3; (c) magnified plot of  in 15‒40 kPa for 

Dataset 3. 
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Chapter 3 VPSA process simulation 

 

This chapter describes the VPSA process simulations performed in this study. It presents process 

description, modeling assumptions, model equations, operating conditions, techniques for the 

calculations, and simulation results. 

 

3.1 Process descriptions 

In this study, a rigorous dynamic model is developed for the VPSA process using ELM-11, as well 

as zeolite 13X,  which was chosen to compare its performance against ELM-11 as a conventional and 

well-known adsorbent, as employed in recent studies.21,37 This process is for CO2 separation from the 

post-combustion flue gas, and it is assumed that water and SOx in this gas is removed in a pretreatment 

step. 

A simple 4-step VPSA cycle is employed as shown in Figure 3-1. In the pressurization step (Step 

1), mixed gas of CO2 and N2 is supplied from the inlet at the bottom of the column until the desired 

pressure is reached. In this step, the gas outlet at the top of the column is closed. In Step 2, the 

adsorption step, the mixed gas is kept being injected from the inlet while the outlet is opened to release 

N2 rich gas. In Step 3, the depressurization step, the inlet is opened and the column is depressurized to 

atmospheric pressure. In Step 4, the desorption step, the pressure is reduced using a vacuum pump to 

collect the CO2 product from the bottom of the column. Steps 1 to 4 above are repeated in a cyclic 

manner until the process reaches a cyclic steady state. Note that the column is assumed to be externally 
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covered by a jacket whose temperature is kept constant at Twall. 

The VPSA process considered in this study is a simple process that consists only of a single bed, 

where the cycle does not involve rinse and purge steps. The rinse operation reduces the productivity 

by re-injecting the product but is necessary for processes using conventional adsorbents to achieve 

sufficient product purity.117 Furthermore, the purge operation reduces the product purity by injecting 

N2 during the desorption step but is necessary for the conventional processes to desorb CO2 to a 

sufficient degree.118 These inefficient operations can be eliminated by using ELM-11 because the 

adsorbent effectively desorbs CO2 when the pressure is lowered owing to the sigmoidal desorption 

isotherm. 

It is also assumed that ELM-11 is supported on a binder and packed in the column as pellets. Since 

flexible MOFs have substantial volume changes due to the structural change by adsorption, employing 

a rigid binder would inhibit the structural change and thus reduce their adsorption amount.68 Because 

of this problem, the binder must be a flexible material. As a material that satisfies such a property, 

cellulose can be used as demonstrated by Kajiro et al.119 I chose this material with a weight ratio of 

1:3 between cellulose to ELM-11, which was reported in this patent. The pellet packing density (1030 

kg/m3) is the sum of the packing densities of ELM (771 kgads/m
3) and cellulose (259 kg/m3). Similar 

binders for flexible MOFs are reported using an adsorption sheet and methylcellulose,120,121 which was 

experimentally confirmed to have sufficient mechanical strength. 
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3.2 Modeling assumptions 

In our model, the following assumptions were made. Note that Assumptions 9–11 were applied 

only for ELM-11. 

1. The gas phase follows the ideal gas law. 

2. Radial variations of temperature, pressure, and concentration are neglected. 

3. Axial thermal dispersion occurs only through the gas.  

4. Between the gas and the adsorbents, thermal equilibrium is established. 

5. Mass transfer rate between gas and adsorbent phases is expressed by the linear driving force (LDF) 

model.  

6. Mass transfer coefficient and thermal conductivity are constant regardless of temperature. 

7. Physical properties of adsorbents, such as density, do not change with temperature. 

8. Pressure drop is given by the Ergun equation. 

Figure 3-1. Four-step cycle of the VPSA process. 

Step 1

pressurization

N2 rich gas

CO2
product 
gas

Step 2 

adsorption

Step 3 

depressurization

Step 4 

desorption

CO2 / N2

mixture
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9. Rate-determining step of mass transfer is the structural change of ELM-11 for adsorption of CO2. 

10. Two parameters for nitrogen adsorption that have not been measured or reported in the past are 

determined as follows: adsorption heat 
2NH  is assumed to be the same as that of CO2, and mass 

transfer coefficient 
2Nk   is assumed to be the same as that of zeolite 13X. This assumption is 

employed as a conservative estimate for heat balance equations; the potentially overestimated heat 

of adsorption for N2 may underestimate the working capacity for ELM-11. In the mass balance 

equations, on the other hand, the temperature dependence of the N2 isotherm, which is determined 

by the heat of adsorption, was ignored. The influence of this simplification is confirmed to be 

negligible, since the amount of N2 adsorbed is small (about one-hundredth of CO2). 

11. The switching of adsorption and desorption isotherms by hysteresis is determined by Eq. (2-10). 

 

Assumption 3 assumes the thermal diffusion through the adsorbent is much smaller than that 

through the gas. This assumption is reasonable for ELM-11 because the binder is cellulose, with low 

thermal conductivity. The same assumption was used by Schell et al.,122 who reported precombustion 

CO2 capture by PSA using activated carbon.  

Assumption 5 for ELM-11 was confirmed by Fujiki et al. They performed breakthrough 

experiments to verify that the adsorption rate of ELM-11 can be modeled by the LDF model.123 Kondo 

et al. conducted adsorption experiments at 273–303 K temperatures using a laboratory-designed 

volumetric apparatus and fitted the transient data to the double-exponential and LDF models.124 The 
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results showed that the adsorption rate is proportional to the driving force 
2 2CO COq q −   and both 

models show reasonable agreement.  

For Assumption 6, Kondo et al. reported that the mass transfer coefficient increases at lower 

temperatures,124 but I use the value at 298 K consistently throughout this study as a conservative 

estimate. To verify this assumption, I analyzed the sensitivity for the mass transfer coefficient. I 

compared two cases changing the different mass transfer coefficients: the first case has the mass 

transfer coefficient at 298 K (
2COk = 0.0454 [1/s]); the other case has the same mass transfer coefficient 

as zeolite 13X (
2COk = 0.0220 [1/s]). These two cases are at 298 K and a feed pressure of 1300 kPa (the 

details are shown as Case 1 and Case 2 in Table 3-8). There, the desorption time takes the same value, 

350 s. It can be seen that the influence by employing the different mass transfer coefficients for ELM-

11 is insignificant; recovery increases only by 2.6%, purity decreases only by 0.1%, BSF increases 

only by 7%, and power consumption decreases only by 2.4%. These changes are negligible in the 

comparison between zeolite 13X and ELM-11. Nevertheless, measurement and further verification of 

the mass transfer rate are desired. 

Based on Assumption 9, the mass transfer coefficient measured by Kondo et al. is for the structural 

change of ELM-11 for adsorption of CO2, which is assumed to be equal to the overall mass transfer 

coefficient of CO2, 
2COk  . To verify this assumption, I analyzed the rate-determining step of CO2 

adsorption of ELM-11 by examining the contribution of the gas-film mass transfer to the overall mass 

transfer. The gas-film mass transfer coefficient kg [m/s] was obtained as kg = 0.0533 [m/s] using the 
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equation estimated by Wakao and Funazkri125, in a case which total pressure, temperature, and molar 

flow rate are given as 1000 kPa, 298 K, and 0.198 mol/s, respectively. The diffusion coefficient 

between CO2 and N2 in the equation was calculated using the method by Fuller et al.126 

 From the above value of kg, I can confirm that the gas-film mass transfer is sufficiently fast. The 

overall mass transfer coefficient 
2COk  in the LDF model is expressed as follows: 

 
2CO

s g

1
[1/ s],

1
k

k H k
=

+
   (3-1) 

where ks [1/s] is the mass transfer coefficient for the structural change of ELM-11 and entering of CO2 

into it, kg [m
3/(kgads･s)] is the gas-film mass transfer coefficient, and H [m3/kgads] is Henry's constant. 

The above equation is applicable under the following two assumptions: first, there is no CO2 

accumulation in the gas-film; and Henry's law 
2 2CO COq Hc=  , where 

2COc   [molCO2/m
3] is 

concentration of CO2, is satisfied in the film. Henry's constant is obtained as H = 0.0771 [m3/kgads] 

using one point of the adsorption isotherm that is close to saturation (
2COq , 

2COc ) = (3.11 molCO2/kgads, 

40.4 molCO2/m
3). On the other hand, ks = 0.0454 [1/s] at 298 K gas temperature as reported by Kondo 

et al.124 Using the above values, the values 1/ks and H/kg in the above equation are obtained as 1/ks = 

22.0 [s] and H/kg = 0.866 [s]. It indicates that the mass transfer in the gas film is sufficiently fast 

compared to that for the structural change of ELM-11. I also assume that diffusion in the cellulose 

binder, which is a highly porous material, is sufficiently fast, and thus the structural change of ELM-

11 is the rate-determining step. 
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Assumption 11 was made to mitigate the numerical difficulty in solving the PDAE model. This 

simplification may lead to some model error if local adsorption occurs in the desorption step, or local 

desorption occurs in the adsorption step, which cannot be verified in our study due to the numerical 

difficulty. The same assumption was made by Hefti and Mazzotti, and Štěpánek et al.84,85 

 

3.3 Model equations 

3.3.1 Overall equations 

A similar model of partial differential algebraic equations (PDAEs) to that of Ko et al.35  is 

employed as shown in Table 3-1. The model equations are implemented within the gPROMS modeling 

environment (Process System Enterprise). The centered finite difference method (CFDM) is used to 

discretize the spatial domain. The method of lines is used to solve the resulting system of the 

differential algebraic equations (DAEs). A DAE solver in gPROMS, SRADAU, is used to solve the 

model equations. 
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Table 3-1 Model equations for the VPSA simulation 

Component 

mass balance 
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Ergun 
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( ) ( )
2

bed bed

gas2 3 3

p bed p bed

1 1
150 1.75

4 2

P u
u u

z R R

 


 

− −
− = +


 (3-4) 

LDF model ( )*i
i i i

q
k q q

t


= −


 (3-5) 

Heat balance 

equation 

 

( )

2

bed gas g pellet s gas g bed 2

ads wall

bed

2
0

p p p L

i

i

i

T T T
C C C u K

t z z

q
T

t R
H

h
T

    



  
+ + −

  


− + − =




 (3-6) 
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3.3.2 Parameters 

The physical properties and design parameters, as well as the references for obtaining each value, 

are given in Table 3-2. 

Table 3-2 Design and physical property parameters 

Common for ELM-11 and zeolite 13X ELM-11 only 

Parameters Values References Parameters Values References 

Rp 1.20×10-3 [m] This study ρads 771 [kgads/m
3] This study 

εbed 0.348 [-] This study ρpellet 
1.03×103 

[kg/m3] 
This study* 

Rbed 2.50×10-2 [m] This study Cps 1010 [J/(kg･K)] 3, 4 

L 1.00 [m] This study 
2COk  0.0454 [1/s] 5 

Cpg 996 [J/(kg･K)] 127,128 
2Nk  0.110 [1/s] 

This study 

(Assumption 10) 

DL 1.08×10-4 [m2/s] 129 
2COH  -25.4 [kJ/mol] 67 

KL 
0.0220 

[J/(m･s･K)] 130 
2NH  -25.4 [kJ/mol] 

This study 

(Assumption 10) 

μ 
1.72×10-5 

[kg/(m･s)] 
131,132 zeolite 13X only 

ρwall 7800 [kg/m3] 35 Parameters Values References 

h 60 [J/(m2･s･K)] 35 ρads 
1.06×103 

[kgads/m
3] 

35 

   ρpellet 
1.06×103 

[kg/m3] 
35 

   Cps 504 [J/(kg･K)] 35 

   
2COk  0.0210 [1/s] 133 

   
2Nk  0.110 [1/s] 133 

   
2COH  -35.0 [kJ/mol] 133 

   
2NH  -23.0 [kJ/mol] 133 

* The density of ELM-11 pellet is estimated from experimentally measured true density values of ELM-

11 and cellulose (1570 kgads/m
3, and 1600 kg/m3,134 respectively) and the assumed porosity of the 

column εbed, 0.348. Since ELM-11 is not porous in the closed state, the internal porosity of ELM-11 

was ignored. 
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3.3.3 Performance indicators 

 This study evaluates the performance of the process using the following four indicators: the 

recovery rate and purity of the product CO2 gas recovered, bed size factor, and power consumption in 

electricity. 

 

CO2 recovery and purity 

The CO2 recovery rate and CO2 product purity are obtained as follows. The following equation gives 

the CO2 recovery: 

 
product

Recovery ,
feed

=    (3-7) 

where feed [molCO2] is the amount of CO2 feed gas in one cycle at a cyclic steady state, and product 

[molCO2] is the amount of CO2 product gas in the cycle. The CO2 product purity is given as: 

 ,
pr

P
od

i
uc

pr

+

odu

m

ct
u

u
r

r
ty

t i p ity
=    (3-8) 

where impurity [molN2] is the amount of N2 gas in the CO2 product in the cycle. The above product, 

feed, and impurity can be obtained from the equations shown in Table 3-3. 
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Table 3-3 Mole flux variables at each operating step 
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Step 3 
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Bed size factor 

One of the performance indicators, bed size factor (BSF) [kgads/TPDCO2], is reciprocal of the 

amount of CO2 obtained from the adsorbent per unit weight and unit time, and is expressed by the 

following equation: 

  
2

6
ads cycle

ads 2

CO

10
BSF kg /TPDCO ,

product 24 3600

m t

Mw


= 

 
  (3-9) 

where mads [kgads] is weight of adsorbent packed in the column without cellulose, which is a binder; 

tcycle [s] is cycle time; product [molCO2/cycle] is the amount of CO2 product in one cycle at a cyclic 

steady state.  
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Power consumption 

One of the performance indicators, power consumption [GJe/tonCO2], is the amount of electrical 

energy for compressing and vacuuming per recovered unit weight of CO2, which is given by the 

following equation: 

 

 

press ads press ads depress des

press ads depress

2

e 2

compressor vacuum
0
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1
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t t t
dt dt

Mw

+ + + +

+ +

 = + 
  

  (3-10) 

where 
2COMw  [g/molCO2] is molecular weight of CO2, and its value is 44.01; product [molCO2] is the 

amount of CO2 product in one cycle at a CCS; Powercompressor [kW] and Powervacuum [kW] are the 

electrical power consumption for the compressor and the vacuum pump, respectively, which are given 

by: 
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where ηcompressor and ηvacuum are the efficiency of the compressor and the vacuum pump, respectively. 

Specific values of these parameters are given in Sections 3.4.2 and 3.4.3. Note that the power 

consumption of the compressor can be a pessimistic value: ehe energy to pressurize the feed gas may 

partially be supplied by recovered mechanical energy from the exhaust gas released during the 

adsorption and depressurization steps, where the pressure remains high, if a turbine is installed.135,136 
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 Some of the operations in this study require energy to cool the gas and column to ambient 

temperature or below, but the cooling energy is not taken into account; the flue gas temperature needs 

to be reduced, where the compression heat may need to be removed. For example, in the case with a 

temperature of 263 K and a feed pressure of 516 kPa, the amount of compression heat to be removed 

is 0.742 GJ/tonCO2. However, the cooling energy for the feed gas may be saved substantially by heat 

exchange with the exhaust gas emitted in the adsorption and depressurization steps as well as with the 

recovered gas.137  

 

3.4 Operational conditions 

3.4.1 Boundary conditions 

 The boundary conditions are shown in Table 3-4. The boundary condition dP/dz|z = 0 = (Pfeed – 

Pdes)/tads in Step 1 indicates that the inlet pressure changes linearly from Pdes to Pfeed over tads seconds. 

The purpose of this boundary condition is to help convergence in solving PDAEs by changing the inlet 

pressure gradually. The value of dP/dz|z = 0 in Steps 3 and 4 is set for the same reason. Similarly, a 

numerical buffer, Step 5, is implemented as a technique to help the convergence. More details are given 

in Section 3.5.1. 
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Table 3-4 Boundary conditions 

Step 1 

Pressurization 

Step 2 

Adsorption 

Step 3 

Depressurization 

Step 4 

Desorption 

Step 5 

Numerical 

buffer  

feed,0i iz
y y

=
=  feed,0i iz

y y
=
=  

0

0i

z

y

z =


=


 

0

0i

z

y

z =


=


 

0

0i

z

y

z =


=


 

0i

z L

y

z =


=


 0i

z L

y

z =


=


 0i

z L

y

z =


=


 0i

z L

y

z =


=


 0i

z L

y

z =


=


 

feed0z
T T

=
=  feed0z

T T
=
=  

0

0
z

T

z =


=


 

0

0
z

T

z =


=


 

0

0
z

T

z =


=


 

0
z L

T

z =


=


 0

z L

T

z =


=


 0

z L

T

z =


=


 0

z L

T

z =


=


 0

z L

T

z =


=


 

0

0
z

u

z =


=  

0

0
z

u

z =


=


 

0

0
z

u

z =


=


 

0

0
z

u

z =


=


 

0

0
z

u

z =


=


 

0
z L

u
=
=  outletz L

u u
=
=  0

z L
u

=
=  0

z L
u

=
=  0

z L
u

=
=  

( )feed des

0 adsz

P PP

z t=

−
=


 feed0z

P P
=
=  

( )atm feed

0 depressz

P PP

z t=

−
=


 

In the first ttrans 

seconds,* 

( )des atm

0 trans

.
z

P PP

z t=

−
=


 

Afterward, 

des0
.

z
P P

=
=  

0

0
z

P

z =


=


 

0
z L

P

z =


=


 0

z L

P

z =


=


 0

z L

P

z =


=


 0

z L

P

z =


=


 0

z L

P

z =


=


 

* ttrans [s] is transition time for the column inlet pressure from atmospheric pressure to desorption 

pressure. 
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3.4.2 Common parameters for all cases 

Operating condition parameters employed commonly in all simulation cases are shown in Table 

3-5. The four parameters were determined empirically: pressurization time (tpress), depressurization 

time (tdepress), transition time (ttrans), and molar flow rate at the outlet (Qoutlet). The step times, tpress, 

tdepress, and ttrans would be determined by the performance of the hardware, such as the vacuum pump, 

compressor, as well as pipe inner diameters. It was found that assigning larger values to tdepress and ttrans 

avoid rapid pressure changes and thus improves numerical stability. Shortening these values by 

employing a potentially advanced numerical scheme will be our future work. The compressor 

efficiency was determined based on the data reported by Campbell.138 A two-stage compressor may be 

used in high-pressure operations. 

Table 3-5 Operational condition parameters for all cases 

Parameters Values 

yi,feed 
0.80 (i = N2), 

0.20 (i = CO2) 

tpress 30 [s] 

depress 100 [s] 

ttrans 300 [s] 

Qoutlet 0.0477 [mol/s] 

ηcompressor 0.750 [-] 
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3.4.3 Vacuum pump efficiency 

The efficiency of the vacuum pump was determined using the empirical model for the ELRS-60 

vacuum water-ring pump at 420 rpm.139 In this model, the efficiency is expressed as a function of 

desorption pressure. Figure 3-2 shows the efficiency values versus desorption pressure. 

 

3.4.4 Adsorption time 

The following algorithm is used to determine the adsorption time. In this algorithm, the adsorption 

step continues until the CO2 partial pressure at the outlet reaches a target value, 
2CO , tarp  (Figure 3-3 (a)). 

Step 1.  Run the adsorption step for 10 seconds. 

Step 2.  If the CO2 partial pressure at the outlet is above 
2CO , tarp , the adsorption step is terminated.   

Otherwise, return to Step 1. 

The foot CO2 pressure pfoot,ads is used as the value of 
2CO , tarp  for ELM-11, while 25 kPa is used for 

zeolite 13X. These values of 
2CO , tarp  were chosen to achieve sufficiently high recovery for ELM-11 

and purity for zeolite 13X.  

Figure 3-2. Vacuum pump efficiency against desorption 
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3.4.5 Desorption time 

 The following algorithm is used to determine the desorption time. In this algorithm, the desorption 

step continues until the amount of CO2 adsorbed at the column inlet reaches a target value 
2CO , tarp  

(Figure 3-3 (b)).  

Step 1.  Run the desorption process for 50 seconds. 

Step 2.  If the amount of CO2 adsorbed at the column inlet is below 
2CO , tarp , the desorption step is 

terminated. Otherwise, return to Step 1. 

It was also assumed that the desorption time cannot be shorter than 300 seconds. 

 The target value 
2CO , tarp  is expressed using desorption ratio rd as follows: 

 ( )
2CO ,tar d eq,ads d eq,des1 ,q r q r q= + −    (3-13) 

where 
2

CO feed, CO feed2 2

eq,ads CO
p y P

q q 

=
=  [molCO2/kgads] is equilibrium amount of CO2 adsorbed during the 

adsorption step, and 
2

CO des2

eq,des CO
p P

q q 

=
=   [molCO2/kgads] is equilibrium amount of CO2 adsorbed 

during the desorption step. To obtain the optimal value of rd that maximizes the CO2 recovery rate, the 

grid search method is used as shown in Section 3.6.5. 

 



57 
 

 

 

3.4.6 Desorption pressure 

 The desorption pressure, one of the operational conditions, is determined using foot CO2 pressures, 

pfoot,ads(T) and pfoot,des(T), defined as threshold values of the CO2 pressure at the foot of the adsorption 

and desorption isotherms at a certain temperature T, respectively. These parameters are the pressures 

at which the amount of CO2 adsorbed reaches 2% of the saturated amount nU
∞, as shown in Figure 3-4. 

To avoid an impractically long desorption time to reach the equilibrium, the desorption pressure should 

be smaller than pfoot,des(Twall). I empirically chose the desorption pressure value as Pdes = 0.55 

pfoot,des(Twall). 

Column length

(a)

Column length

(b)

Figure 3-3. Time transitions in the column: (a) CO2 partial pressure at the outlet 

approaching ; (b) amount of CO2 adsorbed at the inlet approaching . 

Figure 3-4. Foot CO2 pressures, pfoot,ads and 

CO2 pressure
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3.4.7 Operation method to increase purity for zeolite 13X 

Unlike ELM-11, zeolite 13X adsorbs N2, resulting in lower CO2 purity in the product gas when the 

same operations as above are implemented. To compare the performance under similar purity values, 

the VPSA process using zeolite 13X is assumed to discard the gas that comes out during the first 300 

seconds of the desorption step, where the N2 concentration is high so that the CO2 product purity of 

99% is achieved. 

 

3.4.8 Determination of cyclic steady state (CSS) 

In this paper, the VPSA process is assumed to be in CSS when the following conditions are met: 

The squared errors of temperature T [K], mole fraction yi [-], and amount adsorbed qi [mol/kgads] at the 

end of the cycle compared to the values in a previous cycle are smaller than tolerances, εT, εy, and εq, 

respectively. 
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     (3-14) 

The tolerances are chosen as follows: (εT, εy, εq) = (10-3, 10-5, 10-5). 
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3.5 Techniques for converging the PDAEs 

 ELM-11 shows sigmoidal adsorption isotherms and hysteresis, which causes a sudden change in 

CO2 adsorption amount and partial pressure. This makes converge in solving PDAEs difficult. To 

address this problem, the following numerical techniques presented were employed. 

 

3.5.1 Artificial buffer step 

To handle the numerical difficulty in solving the PDAEs, an artificial buffer step, Step 5, is considered 

as shown in Table 3-4. This is a step to smoothen the change in the mole fraction yi from Step 4 to Step 

1, where the numerical solver often fails. In this step, I approximate the dynamics in the column by 

replacing the component mass balance (Eq. (3-2)) and overall mass balance (Eq. (3-3)) by the 

following equations, respectively: 

 
end,  feed, 

buffer

,
i ii

y yy

t t

−
=


      (3-15) 

 0,
P

t


=


   (3-16) 

where yend,i [-] is mole fraction of component i at the end time of Step 4; tbuffer [s] is numerical buffer 

time (10 seconds). Note that the influence of this step on the CO2 mass balance is negligible, since the 

amount of CO2 that remains in the column during this step is very small and the duration is short. 
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3.5.2 Continuation in adsorption isotherms 

 Another technique is based on the pseudo transient continuation, which is a technique for solving 

PDAEs where the initial values are far from the solutions.88 In order to slow the slope of the 

adsorption/desorption isotherms, imaginary linear isotherms q*
linear,j [molCO2/kgads] (j = (ads, des)), 

are used at the beginning of the simulation, and they are transitioned to the actual adsorption isotherm 

q*
actual,j [molCO2/kgads] over tshift seconds (see Figure 3-5): 
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1 if Time
,

Time   if  0 Time

min 0, ,

j j

j j

j

q q x q x

t
x

t t

n
q p p

p p

   (3-17) 

where x [-] is binary variable to switch between q*
linear,j and q*

actual,j; Time [s] is total time; tshift [s] is 

shifting time from the linear isotherms to the actual isotherms (3000 seconds).  

 

 

Figure 3-5. Adsorption/desorption isotherms transition over time 

Transition over 

seconds
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3.6 Simulation results 

In this section, the results of the simulations are shown under various operating conditions, such as 

different temperatures and feed pressures. Note that the adsorption isotherms of ELM-11 are known to 

show “double-step” at low temperatures and high CO2 partial pressures,67 but it does not occur under 

the operating conditions shown in this paper. For example, according to the data measured by Ichikawa 

et al., the double-step occurs at a CO2 partial pressure of 980 kPa at a temperature of 273 K.80 The 

maximum CO2 partial pressure in our operations is 400 kPa, which is much smaller than the value. 

 

3.6.1 Ambient temperature 

This section shows results for cases where the feed gas and column wall temperature are set to the 

ambient temperature of 298.15 K, while the feed pressure is varied. The four performance indicators 

of the process are calculated for seven different feed pressures, and the results are shown in Figure 3-6. 

This figure shows significant changes in the CO2 recovery rate, BSF, and power consumption by 

changing the feed pressure. 

Figure 3-6 (a) shows that recovery rate can be increased substantially by employing a higher feed 

pressure. To reduce the slipping-off, the partial pressure of CO2 must exceed the foot CO2 pressure 

pfoot,ads sufficiently. Therefore, the extent to which the feed CO2 pressure exceeds pfoot,ads significantly 

influences the recovery rate. For example, in Case 3, the feed CO2 pressure is 
2feed,COp  = Pfeedyi,feed = 

400 × 0.20 = 80 kPa, which is only about 1.2 times higher than pfoot,ads(298.15 K) of 67 kPa. At such a 
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low partial pressure of CO2, most of the CO2 fed to the column slips through, resulting in a low 

recovery rate of only 25.5%. On the other hand, the feed CO2 pressure 
2feed,COp  in Case 4 is 200 kPa, 

which is 3.0 times higher than pfoot,ads(298.15 K) and thus causes stronger adsorption, resulting in a 

significantly higher recovery rate of 67.8%.  

Based on the slipping-off mechanism, I attempt to estimate the recovery rate can by a linear 

approximation formula as follows: 

 2

2

feed,CO foot,ads wall

feed,CO

( )
Estimated recovery 100[%],

p p T

p

−
=       (3-18) 

where the numerator, 
2feed,CO foot,ads wall( )p p T−  , is the amount of CO2 adsorbed that exceeds the foot 

pressure at Twall to the feed partial pressure 
2feed,COp  . Figure 3-6 (b) shows a plot to validate the 

estimation given by (3-18), which shows the formula gives reasonable estimation. The slight deviation 

between the two is caused by the adsorption/desorption heat, which causes a shift in the foot CO2 

pressure. From the equation of the recovery estimation, it can be seen that increasing the feed pressure 

or decreasing the foot CO2 pressure are effective approaches to increase the recovery rate. This strategy 

can be a simple and useful approach when analyzing the slipping-off problem of flexible MOFs.  

Figure 3-6 (a) also shows that the product purity of CO2 gas is high in all cases, especially in cases 

where the feed pressure exceeds 850 kPa, showing values of over 99.0%. That is because ELM-11 

hardly adsorbs N2, and most of the recovered gas is CO2. However, in Case 3, the purity value of 92.0% 

was relatively small because the feed pressure is low, and the amount of CO2 adsorbed in the column 

is small. 
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Increasing the feed pressure is not necessarily the optimum in terms of the power consumption per 

unit weight of CO2 recovered. Figure 3-6 (c) shows that the power consumption is the lowest when the 

feed pressure is 700 kPa. This optimum is found in the balance of CO2 yield and power consumption 

for the compressor. If the feed pressure is higher than 700 kPa, the compressor power consumption is 

significantly large, increasing the sum of power consumption. 

Figure 3-6 (d) shows that BSF changes significantly as a function of feed pressure, showing a 9-

fold difference between Cases 3 and 4, which can be explained by two effects. One is the difference in 

the volume of CO2 fed per cycle. The volume of CO2 fed per cycle is proportional to the adsorption 

time. Therefore, the difference in the volume is due to the timing of stopping the adsorption process 

when the CO2 partial pressure at the outlet exceeds a certain threshold, as described in Section 3.4.4; 

in Case 3, the amount of CO2 adsorbed is small due to the low feed pressure, resulting in the outlet 

CO2 partial pressure reaching the threshold early and ending the adsorption process. The other effect 

that influences BSF is the recovery rate; a higher recovery rate increases the amount of CO2 processed 

per unit weight of adsorbent. 

 These cases include extrapolation of the isotherm model, which is based on data up to 298 K, 

towards the higher temperature region because the adsorbent may be heated due to the heat of 

adsorption. However, the effect of this extrapolation towards higher temperature on our simulation is 

probably insignificant; in the next section, the optimal operations are shown to be in a lower-

temperature range, and thus the extrapolation is unnecessary under those optimal conditions. 
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Figure 3-6. Performance indicators change with feed pressure at ambient temperature: 

(a) recovery rate and purity; (b) recovery rate vs. recovery estimation given by Eq. 

(3-18); (c) power consumption; (d) BSF. 
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3.6.2 Influence of temperature 

Relationship between power consumption against operating temperature is shown in Figure 3-7. 

In this analysis, the feed pressure, 
2feed,COp , was determined by Eq. (3-18) so that the estimated 

recovery is 80.0%. Figure 3-7 shows that the lower the temperature, the greater the recovery. At a 

temperature of 263 K, a recovery rate of 84.5% is achieved. 

In Figure 3-7, the lower the temperature, the lower the power consumption for the compressor 

becomes. This is because lowering the temperature reduces the foot CO2 pressure, pfoot,ads, and thus 

the feed pressure
2feed,COp  can be reduced without sacrificing the recovery, as seen in Eq. (3-18). 

Reduction in 
2feed,COp  has a substantial effect on the power consumption of the compressor. For 

example, by decreasing the temperature from 298 K to 263 K, the power consumption can be 

lowered by 44% (from 2.36 GJe/tonCO2 to 1.33 GJe/tonCO2) because the feed pressure can be 

reduced from 1800 kPa to 516 kPa.  

On the other hand, lowering the temperature increases the power consumption for the vacuum 

pump, as can also be seen in Figure 3-7. This is because an even lower pressure (deep vacuum) is 

needed to carry out desorption at lower temperatures. A deep vacuum operation sacrifices the 

efficiency of the vacuum pump, and increases its power consumption. For example, by decreasing 

the temperature from 298 K to 263 K, the desorption pressure must be reduced from 26.4 kPa to 

8.14 kPa, where the efficiency of the vacuum pump reduces from 0.520 to 0.298. This substantial 
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decrease in the pump efficiency leads to an increase in the power consumption from 0.16 

GJe/tonCO2 to 0.52 GJe/tonCO2. 

The sum of power consumption of the compressor and the vacuum pump is the lowest when 

the temperature is at 263 K (1.33 GJe/tonCO2). It should be noted that the optimal temperature 

found above is based on the assumptions for the efficiency of the compressor and vacuum pump. 

Furthermore, the additional energy needed to cool the adsorption column and supplied gas is not 

taken into account. The operating temperature should be decided carefully considering these 

uncertainties. Finally, lowering the operating temperature further to below 263 K may give an even 

lower power consumption, which I do not pursue in this study due to the lack of isotherm data.  
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3.6.3 Comparison with zeolite 13X 

This section discusses a comparison between ELM-11 and zeolite 13X. The adsorption 

isotherm for zeolite 13X is shown in Figure 3-8. The isotherm model and its parameters were taken 

from the temperature-dependent Sips model shown by Park et al.133 The detailed operating 

conditions and results are shown in Table 3-8 in Section 3.6.7 (Case 4 is for ELM-11 and Case 5 

is for zeolite 13X).  

Figure 3-7. Power consumption as a function of feed and column wall 

temperature. Blue, orange, and black scripts in brackets are feed 

pressure, desorption pressure, and recovery rate, respectively. 
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 Figure 3-9 (a) shows that the desorption step is shorter for ELM-11 than for zeolite 13X (350 

s for ELM-11 vs. 1450 s for zeolite 13X) because ELM-11 has a higher mass transfer rate between 

the gas and adsorbent phases. The faster mass transfer in ELM-11 is caused by the greater driving 

force 
2 2CO COq q −  of the LDF model because for ELM-11, 

2COq  is always nearly zero during the 

desorption step, owing to the sigmoidal isotherm shape. Note that in another case study in Section 

3.2, the mass transfer coefficient of ELM-11 was set to the same value as zeolite 13X. It was found 

that the faster mass transfer of ELM-11 is not due to the difference in the mass transfer coefficient, 

but due to the difference in the driving force. 

Additionally, the influence of the temperature drop during the desorption step, which lowers 

the driving force for zeolite 13X, is less significant for ELM-11. Figure 3-10 illustrates the 

desorption isotherms of zeolite 13X and ELM-11 during the desorption step: the light-blue lines 

are the isotherms at the temperature Tlow that was lowered by the desorption heat, and the purple 

lines are the isotherms at the ambient temperature Tamb (Tlow < Tamb). As shown in Figure 3-10 (a), 

the driving force, 
2 2 rCO C tO , aqq −  of the zeolite 13X decreases as the temperature decreases to Tlow, 

and thus the desorption rate becomes slower. On the other hand, as shown in Figure 3-10 (b), the 

driving force of ELM-11 remains nearly constant because of the sigmoidal shape of the isotherm; 

the equilibrium adsorption amount at Pdes remains nearly zero even at the lower temperature Tlow. 
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The temperature dependence of the driving force causes the significant difference in the desorption 

time between zeolite 13X and ELM-11. 

Figure 3-9 (a) also shows the BSF for ELM-11, 145 kgds/TPDCO2, is much smaller than that 

for zeolite 13X, 677 kgads/TPDCO2. The difference is caused by four factors in Eq. (3-9): 1. the 

shorter desorption time (300 s for ELM-11 vs. 1450 s for zeolite 13X), 2. a larger amount of CO2 

product in one cycle (5.20 molCO2 for ELM-11 vs. 4.21 molCO2 for zeolite 13X), 3. higher 

recovery rate (67.8% for ELM-11 vs. 55.9% for zeolite 13X, as shown in Figure 3-9 (b)), and 4. a 

smaller amount of adsorbent in the column (771 kgads/m
3 for ELM-11 vs. 1060 kgads/m

3 for zeolite 

13X. 

Figure 3-9 (c) shows that the sum of power consumption of ELM-11, 1.92 GJe/tonCO2, is lower 

than that of zeolite 13X, 3.17 GJe/tonCO2. The lower power consumption of ELM-11 for the 

vacuum pump, 0.150 GJe/tonCO2, is because of the relatively high desorption pressure, 26.4 kPa, 

which allows the vacuum pump to be operated at high efficiency, ηvacuum = 0.52. This efficient 

vacuum operation compensates the greater power consumption for the compressor to deliver the 

higher feed pressure of 1000 kPa. On the other hand, the larger power consumption of zeolite 13X 

for the vacuum pump, 2.51 GJe/tonCO2, can be explained by the low desorption pressure, 3.30 kPa, 

which is needed to achieve the sufficient working capacity. At this low pressure, the efficiency of 
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the vacuum pump ηvacuum is as low as 0.16. Such an inefficient operation cannot be compensated 

by the relatively low power consumption by the compressor at the feed pressure of 250 kPa.  

 

  

Figure 3-9. Comparison between ELM-11 and zeolite 13X at 298 K: (a) BSF and 

desorption time; (b) recovery and purity; (c) power consumption for compressor and 

vacuum pump. 
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Figure 3-11 shows CO2 partial pressure and temperature profiles inside the column during the 

pressurization and adsorption steps, comparing ELM-11 and zeolite 13X. Due to the following 

properties of the sigmoidal adsorption isotherm, ELM-11 has sharp distributions: when CO2 is fed 

to the column, only the part of CO2 whose partial pressure exceeds the foot CO2 pressure pfoot,ads 

is adsorbed near the inlet, and the rest slips off. This property of slipping-off causes the saturated 

adsorption zone to gradually expand from the inlet while keeping the adsorption amount behind 

the zone low. On the other hand, zeolite 13X has a flat distribution as shown in the figure. This is 

because the adsorption occurs even at a relatively low partial pressure due to its Type-I isotherm, 

and thus adsorption occurs simultaneously throughout the column from the inlet to the outlet. 

Another reason is that the adsorption rate is lower than ELM-11 due to the smaller driving force 

2 2CO COq q − caused by the large amount of CO2 adsorbed in the column at the starting time of 

Figure 3-10. Temperature change effects on desorption time: (a) zeolite 13X 

with reduction in driving force; (b) ELM-11 without reduction in driving force. 
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cycles. Note that the profiles at t = 0 s are different between those for zeolite 13X and ELM-11 

because of the cyclic steady states; the profiles at t = 0 are determined by t = tcycle, in the previous 

cycle, where the two adsorbents show substantially different temperatures. 

Figure 3-11 (a) and (b) show the internal CO2 partial pressure profiles, where the influence of 

the isotherm shapes appears distinctively. Figure 3-11 (a) shows that because of the slipping-off, 

the CO2 partial pressure for ELM-11 is always nearly flat near the column outlet, which elevates 

due to temperature increase as the adsorption operation continues. Figure 3-11 (b) shows that the 

partial pressure profile of CO2 for zeolite 13X is flatter than that of ELM-11. 

Figure 3-11 (c)–(f) show that the temperature change of ELM-11 is relatively small despite its 

large dynamic working capacity of CO2: for example, the dynamic working capacities of ELM-11 

and zeolite 13X at z = 0.50 m are 1.6 molCO2/kgads and 1.0 molCO2/kgads, respectively, while the 

temperature changes at the beginning of pressurization step and the end of adsorption step are 34 

K and 28 K, respectively. This indicates that ELM-11 has a smaller ratio of temperature change to 

the dynamic working capacity of CO2. This is because the CO2 adsorption heat of ELM-11 is small 

due to the “intrinsic thermal management capabilities”,67 and the N2 adsorption heat of ELM-11 is 

almost negligible due to the small amount of N2 adsorbed. 

Note that the performance of the process may be highly dependent on the design and operation. 

Lu et al. experimentally investigated the CO2 capture from gas with 15% CO2 concentration using 
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zeolite 13X in a three-bed, eight-step VPSA process which involved purge, rinse, and pressure 

equalization steps. The results showed 73–82% purity and 85–95% recovery with a power 

consumption of 1.8–2.1 GJe/tonCO2.
140 Krishnamurthy studied the basic four-step VSA process 

from gas with 15% CO2 concentration using zeolite 13X and showed that 95.9 ± 1% purity, 

86.4 ± 5.6% recovery with a productivity of 1.17 ± 0.07 TPDCO2/m
3

ads and power consumption of 

1.70 ± 0.13 GJe/tonCO2, which are measured in pilot plant experiments.50 It should be noted that 

the comparison of ELM-11 and zeolite 13X in this study used a single-bed process to highlight the 

differences in the fundamental properties of the adsorbents. 

I also note that the comparison above is based on some assumptions, which must be verified in 

future studies. In particular, the mass and heat transfer properties of ELM-11 are still being 

investigated. The value of the mass transfer coefficient 
2COk  was taken from Kondo et al.,124 which 

was relatively insensitive to the simulation result, as shown in 3.2. The value used in this study 

was a conservative estimate, where the true value may be several times larger at low temperatures. 

Besides, the internal temperature profiles shown in Figure 3-11 (c) and (d) may be influenced by 

the axial thermal conductivity KL, which was assumed to be dominated by the heat transfer in the 

gas phase. Further experimental investigations into heat and mass transfer are expected to confirm 

the potential advantages of ELM-11. 
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Figure 3-11. Profiles inside the column during pressurization and adsorption steps in cycle steady 

states: (a) CO2 partial pressure for ELM-11; (b) CO2 partial pressure for zeolite 13X; (c) amount 

of CO2 adsorbed for ELM-11; (d) amount of CO2 adsorbed for zeolite 13X; (e) temperature for 

ELM-11; (f) temperature for zeolite 13X. Vertical double-headed arrows at 0.5 m show changes 

from the beginning until the end of the steps. 
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3.6.4 Lower temperature, 273 K 

The results in Section 3.6.2 indicate that ELM-11 performs better at lower temperatures, hence 

the cases at 273 K are shown in this section. The performance indicators are shown in Figure 3-12 

and Table 3-6 below, while the feed pressure is varied. Figure 3-12 shows similar trends to the 

results shown in Figure 3-6; while the recovery rate and BSF depend highly on the feed pressure, 

the product purity is always high in all cases. As for the power consumption, Case 6, with the feed 

pressure of 200 kPa, shows the optimum value, 1.00 GJe/tonCO2. However, this case has a low 

recovery rate of 36.2%, suggesting that higher feed pressure may need to be employed. For 

example, in Case 7, with the feed pressure of 300 kPa, the power consumption remains low and is 

close to the optimum value, while the recovery ratio is substantially higher and BSF is significantly 

lower. 
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Table 3-6 Results for different feed pressure at temperature 273 K 

Pfeed [kPa] 

Recovery 

rate of 

CO2 [%] 

Purity of 

product 

CO2 [%] 

BSF 

[kgads/TPDCO2] 

Power 

consumption 

[GJe/tonCO2] 

180 27.9 92.6 802 1.06 

200 (Case 6) 36.2 94.4 705 1.00 

300 (Case 7) 61.4 98.3 287 1.02 

525 78.3 99.6 142 1.25 

700 81.4 99.9 125 1.41 

900 83.4 99.9 121 1.57 

Figure 3-12. Performance indicators against feed pressure at temperature 273 K: 

(a) recovery rate and purity; (b) power consumption; (c) BSF. 
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3.6.5 Results for different desorption ratio rd 

The influence of desorption ratio rd defined in Eq. (3-13) on the process performance indicators 

is shown in Figure 3-13 and Table 3-7. From Figure 3-13 (a) and (d), the optimal recovery rate is 

given at rd = 0.40 for ELM-11 and at rd = 0.01 for zeolite 13X. These optimal values of rd also 

minimize the power consumption, as shown in Figure 3-13 (b) and (e). From Figure 3-13 (c) and 

(f), the BSFs are not the minimum at the optimal values of rd, but remain nearly constant over the 

range I investigated: BSF varied from 118 to 128 kgads/TPDCO2 (7.8% difference) for ELM-11, 

and from 541 to 677 kgads/TPDCO2 (20% difference) for zeolite 13X. The convex trend of BSF 

against rd can be explained by the influence of the desorption time and the recovery rate. 
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Figure 3-13. Results for different desorption ratio rd: (a) recovery rate and purity for ELM-11; (b) 

power consumption for ELM-11; (c) BSF for ELM-11; (d) recovery rate and purity for zeolite 13X; 

(e) power consumption for zeolite 13X; (f) BSF for zeolite 13X. 
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Table 3-7 Results for different desorption ratios rd. Optimal values of recovery rate of CO2, BSF 

and power consumption are indicated by asterisks (*) 

ELM-11 

Desorption 

ratio rd [-] 

Desorption 

time 

tdes [s] 

Recovery 

rate of 

CO2 [%] 

Purity of 

product 

CO2 [%] 

BSF 

[kgads/TPDCO2] 

Power 

consumption 

[GJe/tonCO2] 

0.10 550 69.2 99.5 220 2.17 

0.20 450 70.8 99.6 167 2.13 

0.30 400 71.6 99.7 143 2.11 

0.40  350 71.8* 99.8 128 2.10* 

0.50 300 71.5 99.9 118* 2.11 

zeolite 13X 

Desorption 

ratio rd [-] 

Desorption 

time 

tdes [s] 

Recovery 

rate of 

CO2 [-] 

Purity of 

product 

CO2 [-] 

BSF 

[kgads/TPDCO2] 

Power 

consumption 

[GJe/tonCO2] 

0.01  1450 55.9* 99.3 677 3.17* 

0.03 1050 53.8 99.3 568 3.24 

0.05 850 51.9 99.2 541* 3.34 

0.10 600 45.3 98.9 549 3.67 

0.20 350 21.0 97.3 1136 6.86 
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3.6.6 Simulation results for 127 cases 

Figure 3-14 shows all 127 simulation points conducted in this study and Table 3-8 shows the 

operating conditions and performance indicators for all cases with the optimal desorption ratios rd 

maximizing the recovery rate. The United States Department of Energy (US-DOE) target recovery 

90% can be achieved at low temperatures and high feed pressure. To achieve high recovery in an 

energy-efficient operation, a two-stage VPSA process, in which a column packed with a flexible 

MOF is connected to another column packed with a conventional MOF, has been proposed by 

Hiraide et al.78 
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Figure 3-14. All 127 simulation points showing relationships among feed pressure, 

temperature, desorption ratio and recovery rate 
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Table 3-8 Operating conditions and performance indicators for all cases 

  Operating conditions Performance indicators 

Adsorbent 

Tfeed, 

Twall 

[K] 

Pfeed 

[kPa] 

pfoot,ads 

[kPa] 

Pdes 

[kPa] 

ηvacuum 

[-] 
tads [s] tdes [s] rd [-] 

Recovery 

rate of 

CO2 [%] 

Purity of 

product 

CO2 [%] 

BSF 

[kgads/TPDCO2] 

Power consumption 

(compressor, 

vacuum pump) 

[GJe/tonCO2] 

ELM-11 263 516 20.1 8.14 0.298 340 750 0.2 84.5  99.7  147  1.33 (0.809, 0.525) 

ELM-11 263 700 20.1 8.14 0.298 390 850 0.1 87.2  99.8  138  1.50 (0.975, 0.527) 

ELM-11 263 1000 20.1 8.14 0.298 370 750 0.2 88.8  99.9  128  1.72 (1.20, 0.518) 

ELM-11 263 1500 20.1 8.14 0.298 450 1000 0.01 91.1  99.9  128  1.99 (1.47, 0.521) 

ELM-11 273 762 29.6 11.8 0.371 370 500 0.2 83.8  99.9  110  1.50 (1.11, 0.385) 

ELM-11 273 1000 29.6 11.8 0.371 380 500 0.2 85.6  99.9  105  1.67 (1.29, 0.383) 

ELM-11 273 1500 29.6 11.8 0.371 430 800 0.1 87.7  99.9  121  1.92 (1.58, 0.337) 

ELM-11 278 916 35.4 14 0.407 330 900 0.3 79.8  99.8  179  1.57 (1.34, 0.230) 

ELM-11 278 1500 35.4 14 0.407 410 1250 0.1 84.7  99.9  174  1.90 (1.67, 0.232) 

ELM-11 278 2000 35.4 14 0.407 420 1250 0.1 86.3  99.9  166  2.12 (1.89, 0.230) 

ELM-11 288 500 49.6 19.5 0.472 160 400 0.5 58.2  98.7  272  1.39 (1.24, 0.152) 

ELM-11 288 1300 49.6 19.5 0.472 340 600 0.3 78.1  99.8  138  1.89 (1.73, 0.164) 

ELM-11 288 2000 49.6 19.5 0.472 400 700 0.2 82.2  99.9  126  2.22 (2.06, 0.165) 

ELM-11 

(Case 3) 
298 400 67 26.4 0.52 60 300 0.5 25.5  92.0  1333 2.55 (2.44, 0.113) 

ELM-11 298 550 67 26.4 0.52 130 300 0.4 47.4  97.4  467 1.83 (1.70, 0.129) 

ELM-11 298 700 67 26.4 0.52 130 300 0.4 58.1  98.8  272 1.79 (1.65, 0.128) 

ELM-11 298 850 67 26.4 0.52 190 300 0.4 64.4  94.4  181 1.84 (1.69, 0.146) 
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ELM-11 

(Case 4) 
298 1000 67 26.4 0.52 240 300 0.5 67.8  99.7  145 1.92 (1.77, 0.150) 

ELM-11 298 1150 67 26.4 0.52 280 300 0.5 70.0  99.8  126 2.02 (1.87, 0.152) 

ELM-11 

(Case 1) 
298 1300 67 26.4 0.52 290 350 0.4 71.8  99.8  128 2.10 (1.95, 0.144) 

ELM-11 298 1500 67 26.4 0.52 320 350 0.4 73.5  1.0  117  2.21 (2.06, 0.157) 

ELM-11 298 1800 67 26.4 0.52 340 400 0.3 75.4  99.9  115  2.36 (2.20, 0.160) 

ELM-11 298 2000 67 26.4 0.52 350 400 0.3 76.3  99.9  111  2.45 (2.29, 0.160) 

ELM-11 

(Case 2) 
298 1300 67 26.4 0.52 250 350 0.4 73.7  99.7  137 2.05 (1.90, 0.157) 

zeolite 13X 

(Case 5) 
298 250 - 3.3 0.16 230 1450 0.01 55.9  99.3  677 3.17 (0.656, 2.51) 
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3.7 Concluding remarks 

 In this chapter, a 4-step VPSA process using ELM-11 was evaluated by simulation with PDAEs. 

The process is simple without a rinse or purge steps since ELM-11 desorbs almost 100% of CO2 in the 

desorption step. The process evaluation indicators considered in this chapter were CO2 recovery, purity, 

BSF, and power consumption. Important operating conditions (adsorption time, desorption time, 

desorption pressure, and vacuum pump efficiency) were systematically determined to find appropriate 

values. Also, I solved the numerical issues in solving the PDAEs by using the artificial buffer step and 

the continuation. These methods can be applied to other numerically challenging process simulations 

in other studies. 

From the results of the process simulation presented in Section 3.6, the following insights were 

obtained. Section 3.6.1 shows the results at the ambient temperature of 298 K. It is mentioned that the 

CO2 recovery rate highly depends on feed pressure. Also, the recovery estimation equation (Eq.(3-18)) 

is proposed based on the slipping-off mechanism. Section 3.6.2 presents the results at various 

temperatures ranging from 263 K to 298 K. It is shown that the lower the temperature, the lower the 

foot CO2 pressure and the higher the CO2 recovery. It was also found that at lower temperatures, the 

compressor power can be saved because of the easier adsorption at lower feed pressure, but the vacuum 

pump power is higher because of the lower pressure required for desorption. Section 3.6.3 compares 

ELM-11 with zeolite 13X, a conventional adsorbent. Due to the shape of isotherms, desorption rate of 

ELM-11 was much higher than that of zeolite 13X. Also, the power consumption and CO2 recovery 
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rate were found to be more efficient for ELM-11. Section 3.6.4 provides a detailed analysis at the low 

temperature of 273 K. Section 3.6.5 examines the effect of the parameter rd on the process performance. 

Section 3.6.6 analyzes the process performance in 127 cases. Among the cases, the maximum CO2 

recovery was 91.1%, meeting the criteria set by the US-DOE. The above multi-angle analysis clarified 

the advantages of ELM-11 and the operating conditions to improve the process performance. 

Equation Chapter (Next) Section 1 
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Chapter 4 Advanced critical path method with stochastic durations 

 

4.1 Preparation 

4.1.1 Project management and critical path 

Network-based methods have been applied to many project management problems. A project is a 

set of activities with objectives and completion deadlines. Various projects such as production,141 

construction,142,143 system development144 can be modeled as networks, which can be handled by 

advanced management techniques. In many cases, completing projects in deadlines is the most critical 

requirement. For example, meeting the delivery date of a product, which is set as a deadline, is a critical 

constraint for many manufacturing systems. To satisfy such an important constraint, effective 

management of the systems is crucial.  

The Critical path method (CPM) and the Project evaluation and review technique (PERT) are 

widely used as network-based methods for project management, which were proposed for the first time 

in 1950s.111,145 The project network is expressed with an arrow diagram as shown in Figure 4-1, where 

i is a task. In this figure, an activity is expressed as a node and a sequence of activities is expressed as 

an arc. Note that there are two equivalent expressions of the arrow diagram. In the activity on node 

type, activities with given durations are expressed as nodes. On the other hand, in the activity on arc 

type, they are expressed as arcs.146 These two types of expressions are equivalent, and I employ the 

former type consistently in this thesis.  
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Figure 4-1. Arrow diagram 

 

Here I show an example of a CCUS system in Figure 4-2. The CCUS system have has six tasks; 

Task 1 is renewable energy generation from photovoltaic or wind power generation; Task 2 is water 

electrolysis using the energy generated by Task 1; Task 3 is power generation by a power plant; Task 

4 is a CO2 capture process from the flue gas of the power plant; Task 5 is a process to synthesize 

methane from H2 produced in Task 2 and CO2 recovered in Task 4; Task 6 is transportation of methane 

synthesized in Task 5 using pipelines or tank trucks; and finally, Task s is a source node which is the 

starting stage of the process, and Task e is a sink node which is the completion of the process. In this 

study, any system has a single source s and a single sink e. These source and sink are treated as dummy 

tasks that have no duration. It should be noted that many different expressions can be made by adding 

dummy nodes that are all equivalent. Note that the network diagram in Figure 4-2 is not handled as a  

case study in this thesis. 

In a project network, the tasks must be completed sequentially. Firstly, in sequential tasks i → (i + 

1), the task (i + 1) cannot begin before the other task i finishes. In the example in Figure 4-3, Task 2, 

Task 4, and Task 6 cannot begin before Task 1, Task 3, and Task 5 finish, respectively. Secondly, if a 

task has a junction where several tasks are connected, the task cannot begin before all jointed tasks 

finish; an example is Task 5 in Figure 4-3.   

i i+1

node

arc
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The completion time of the process, process completion time, is determined by the critical path. 

Here, a path is a sequence of tasks from the source to sink. Figure 4-3 shows the durations for each 

task, and paths for the system shown in Figure 4-2. The system has two paths; one is s → Task 1 → 

Task 2 → Task 5 → Task 6 → e (Path 1); the other is s → Task 3 → Task 4  → Task 5 → Task 6 → e 

(Path 2). The path that has the longest duration is called the critical path. Here I assume that each task 

duration is given as t1 = 60; t2 = 40; t3 = 40; t4 = 40, t5 = 50; t6 = 60, where ti is given duration of task 

i. In this case, the critical path is Path 1 since the sum of task durations on Path 1, t1 + t2 + t5 + t6 = 210, 

is larger than that of Path 2, t2 + t3 + t5 + t6 = 190. Therefore, the process completion time is also 210, 

which is the duration of the critical path, and the duration of Task 3 and Task 4 do not influence the 

process completion time. Thus, the process completion time can be shortened by reducing the task 

durations on the critical path (Path 1). 

Figure 4-2. Example of a simple CCUS system 

Modeled

4

s

1

3

2

65 e

Start

Power plant

Energy

generation

CO2 capture

Water

electrolysis

Methane

synthesis

Transport

systems

End

(Consumers)

Methane synthesis Transport systems

Consumers

Power plant CO2 capture

H2

Energy

Electrolysis

Energy

Product CO2



89 
 

 

Figure 4-3. Task durations and paths 

 

The PERT/CPM methods have been powerful techniques also for many chemical engineering 

problems.147,148 For example, in batch chemical processes where multiple tasks can be expressed as a 

project network, finding the capital investment strategy to optimize the scheduling can be formulated 

as a CPM problem. Furthermore, the PERT method can be applied to scheduling problems such as 

estimating uncertain completion times in chemical processes. These problems that can be handled by 

the PERT and CPM methods exist in many process industries such as steel, pharmaceuticals, 

semiconductor, and food. In addition, the PERT and CPM methods have been applied to construction 

of chemical plants as previously reported.149 

 

4.1.2 Handling uncertainty in critical path method 

In the classical PERT/CPM methods, task durations are handled as fixed values. However, actual 

task durations in many real applications have uncertainty influenced by unpredictable reasons such as 

weather, human resources, equipment failure, traffic conditions, etc. To represent realistic project 
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management scenarios, handling uncertainty is often crucial, and various modifications have been 

proposed for the classical PERT/CPM methods. Here I classify approaches for modeling uncertainty 

in task or path durations into the following four classes: fixed time (Figure 4-4 (a)), fuzzy numbers 

(Figure 4-4 (b)), probability distribution (Figure 4-4 (c)), and histogram (Figure 4-4 (d)). 

 

 

Figure 4-4. Four classes of modeling uncertainty in duration 

 

The first approach is to regard task durations using a few representative values (point estimate) 

shown in Figure 4-4 (a). A common approach in this class is the three-point estimation method, where 

the distributions of the task durations are approximated by the following three values―the most likely 
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value, most optimistic value, and most pessimistic value. The classical PERT method employs this 

method.145 However, it has been reported that approximations based on this approach may deviate 

from the true distributions.150 

The second approach is to regard task durations as fuzzy numbers (Figure 4-4 (b)), which is 

proposed by Zadeh for the first time.151 Fuzzy number expresses uncertainty by using the membership 

function which shows degree of confidence that the duration is. The scheduling methods that use fuzzy 

numbers have been proposed by Sadjadi et al.,152 Kaur and Kumar,153 Xu et al.,154 Chen and Hsueh.155  

The third approach is to assume the task durations follow some known continuous distribution 

functions (Figure 4-4 (c)). In the method that Golenko-Ginzburg and Gonik proposed, task durations 

are assumed to follow normal or beta distributions.156 Dodin proposed a way to determine the 

probability distribution functions of the longest path in stochastic networks.157 Hajdu and Bokor 

analyzed how types of probability distribution, like beta distribution or triangle distribution etc., of 

tasks affect the probability distribution of the entire project network.150 

The fourth approach is to handle task or path durations as histograms (Figure 4-4 (d)). The methods 

that handle task or path durations as discrete values have been proposed by Herroelen and Leus,158 and 

Bruni et al.159 Since the actual data of task or path durations is given as discrete values, handling the 

data histograms without approximation can be an advantage. My model employs this approach for the 

CCUS systems, where histograms of task durations can be obtained from historical operation data. 
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4.1.3 Considering time-cost trade off 

An important difference between the CPM and the PERT is to consider time-cost trade off or not. 

In the CPM, task or path durations can be improved (shortened) by allocating cost to the tasks or paths, 

where the costs are limited resources such as human resources or utilities. Figure 4-5 shows an example 

of improvement of probability distribution of duration. By allocating cost, the expected value and 

dispersion of the distribution in Figure 4-5 become smaller. The CPM methods find the most effective 

way to allocate limited costs to the process. On the other hand, the PERT does not consider the time-

cost trade-off and analyzes the whole duration or total cost of the process. In the following discussion, 

various methods that consider time-cost trade off or not are discussed in further detail. 

  

Figure 4-5. Improvement of duration 

 

Various formulations considering time-cost trade-off have been proposed for the objective function. 

Kelley and Walker set the objective function as minimizing the project completion time or total 

allocation cost.111 Xu et al. proposed four optimization problems with different objective functions 

such as minimizing total allocating cost.154 On the other hand, Hasuike aimed to maximize an 
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approximation for the project completion probability within a target completion time.160 In my model, 

a similar objective function is employed as Hasuike’s method, where the probability is maximized, 

while I evaluate the objective function without approximation.  

In time-cost trade off problem, there are two approaches to model improvement of task or path 

durations by allocating costs to tasks or paths. The first approach is continuous improvement per 

allocating costs, which assumes task or path durations decrease continuously in proportion to allocated 

costs. In this approach, the relationship between the allocated cost and reduction of task (or path) 

durations must be modeled as a continuous function to formulate an optimization problem.111,154,160 

The other approach employs discrete improvement per allocating costs, which assumes task or path 

durations have discrete candidates by allocating some cost. In this approach, the relationship between 

the allocated cost and reduction of task (or path) durations must be modeled as a discrete function to 

formulate an optimization problem.161 

Various scheduling methods that do not consider time-cost trade-off have been proposed. These 

methods generally have a single objective to estimate some indicators of the target project. The 

classical PERT method aims to estimate the project completion time.145 Bruni et al. proposed a way to 

estimate minimum makespan that probability or “reliability level” of project completion is larger than 

a constant.159 Ke and Liu proposed three ways to estimate, such as minimum cost expectation value or 

probability that the cost exceeds the budget.162 In addition, Hajdu and Bokor proposed a way to 
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estimate how the shape of the distribution function of each task duration affects the project completion 

time.150 

 

4.1.4 Solution approaches 

I also classify the project scheduling methods with uncertainty based on the solution approaches. 

These problems can be solved either by a heuristic or deterministic algorithm. Due to the difficulty of 

the CPM problems with uncertainty, many heuristic approaches have been proposed. Heuristic 

algorithms are often used for finding approximate solutions when a short computational time is desired, 

or the problems is difficult to be formulated as a deterministic problem. Such approaches include the 

Monte Carlo simulation,163 genetic algorithm,164 and combining these two numerical techniques.162,165 

On the other hand, in deterministic approaches, the exact solution can be found without an 

approximation. Examples include Linear Programming (LP) by Kelley and Walker,111 LP using fuzzy 

parameters by Kaur and Kumar,153  and Mixed-Integer Linear Programming (MILP) by Bruni et al.159 

 

4.1.5 Advantages of proposed method 

In this thesis, I propose a method based on deterministic optimization in which the task durations 

are handled as histograms considering the time-cost trade off. The proposed approach has the following 

three advantages. Firstly, the operation data can be handled without approximation and losing 

information by handling task durations as histograms. Secondly, I consider time-cost trade off and find 



95 
 

the optimal cost allocation that maximizes the project completion probability within a given 

completion time. Note that I consider two kinds of improvement of task durations to enable more 

flexible modeling, while past studies consider only a single way to improve task durations.111,154,160 

Thirdly, by formulating the problem as a MILP problem that a deterministic algorithm can solve, the 

exact solution can be found without an approximation in contrast to the heuristic approaches where 

only an approximate solution can be found.  

The following discussions in Section 4 are organized as follows. In Section 4.2, I discuss the 

classical CPM problem and how to handle uncertainty as a background. In Section 4.3, I describe our 

assumptions in our problem formulation. In Section 4.4, I propose a new approach called Task-

Oriented Formulation. In Section 4.5, I reformulate the same problem to decrease the computational 

time. In Section 4.6, I propose an iterative local search method to shorten the computational time. In 

Section 4.7, I show examples. 
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4.2 Problem descriptions 

4.2.1 CPM without uncertainty 

The CPM is a method to find the critical path in a process. This approach can also identify the most 

efficient improvement to reduce the process completion time. In this thesis, task durations are assumed 

to be shortened by allocating cost to the tasks, where the costs are limited resources such as human 

resources or utilities. The duration ti of task i is assumed to be shortened (improved) linearly, where 

proportionality constant λi of a duration of task i, per additional cost ci for all tasks iW. Note that W 

= {1,2, …, n} is the set of tasks except for source and sink, and n is the number of tasks except for 

source and sink. The duration of task i after cost allocation is ti ‒ λici, i W. Since the process 

completion time is equal to the longest path duration, 

( )Processcompletion time max .
j j

i i i
j V

i p i p

t c


 

  
= − 

  
    (4-1) 

where j is a path from source to sink; r is the number of paths from source to sink; V = {1,2, …, r} is 

the set of all paths from source to sink. The CPM problems without uncertainty, which aim to minimize 

the process completion time, are generally formulated as min-max problem which assumes that task 

durations are reduced linearly with additional cost.  

Minimize : max

s.t.

0 ,   

j j

i i i
j V

i p i p

i

i W

U

i i

t c

c C

c c i W




 



  
− 

  



  

 


                  (4-2) 

where pj is the set of tasks except for dummy tasks on path jV; ci
U is the crash cost (maximum cost) 

of task i; C is the maximum total cost. These sets W, V, pj and parameters ti, λi, ci
U, iW above are 

assumed to be known. On the other hand, ci, which is allocated cost of task iW, is a decision variable. 
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Generally, this problem can be formulated as Linear Programming (LP).111 

The classical CPM problem without uncertainty assumes that the task durations are known and 

constant. However, many task durations in the CCUS systems are subject to uncertainty. For example, 

power generation using renewable energy is affected by weather conditions; transportation by tanker 

truck is affected by traffic conditions; and steel and chemical processes, which are sources of CO2 

emissions, have different task durations depending on the product species. To consider the uncertainties 

in task durations, the classical CPM typically uses the average or mean of task duration or three-point 

estimation values to represent the distribution of the task duration based on best-case, most likely, and 

worst-case estimates. However, these approaches cannot fully utilize the information of the task 

duration distributions. 

 

4.2.2 CPM with uncertainty 

In this study, I expand the concept of the CPM without uncertainty, and define “CPM with 

uncertainty” as follows: I formulate a problem to maximize the probability of finishing all tasks by a 

given target completion time Г. Here, I define a vector of allocating some cost to task i as ci, assuming 

the maximum total cost is given as C. Additionally, the duration of task i has a probability distribution 

illustrated in Figure 4-6, which can be improved by allocating some cost. 
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Figure 4-6. Probability distribution of duration of task i 

 

Under these assumptions, the problem is generally formulated as 

 Maximize : Pr Process completion time                   (4-3) 

s.t. ,
i W

C


 ic                            (4-4) 

,   i W  U

i i
0 c c                                                           (4-5) 

where ic  is L1 norm of the vector of allocating cost ci , ci
U  is a vector of the crash cost (maximum 

cost) of task i. In this formulation, the objective function (4-3) is the probability of finishing all tasks 

by a target completion time Г; generally, calculating the objective function (4-3) requires multi-

dimensional integrations and convolutions, which are complicated operations that require the 

information of all paths.166 Furthermore, to handle the task durations in the continuous time domain, it 

is necessary to model the probability distributions as some functional forms, which may require 

approximation. In this study, I avoid these two problems by discretizing the time domain, and 
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converting this problem into a Mixed-Integer Linear Programming (MILP) problem, as described in 

the next section.  

 

4.3 Assumption for proposed methods 

4.3.1 Obtaining discrete probability from operation data 

In this thesis, the operation data is handled as discrete probability distributions, which avoids 

approximating the probability distribution to functional forms. Bruni used discrete data for the same 

motivation.159 In our work, historical operation data is assumed to be available. Such data is an 

accumulated record of task durations, which can be shown graphically as histograms. This assumption 

does not require any approximation to probability distribution functions; thus, the solution is expected 

to be more accurate. I also assume that the duration of each task is independent (i.e. the duration of 

task i does not influence that of another task i’, i ≠ i’ ). 

To generate discretized distribution from the operation data, I discretize the duration of task i using 

an index ki. Using this index, histograms of task distributions are discretized as illustrated in Figure 

4-7. Here, ki is an integer which takes a value between 0 and m, and I define a set of all realizations of 

ki as A. 

 0,1,2, , 1, .A m m= −                                                       (4-6) 

The duration of task i without cost allocation, which is given as 
( )ik

it , is uncertain and treated as a 

random variable and the scenario (realization) is specified by the integer ki. As a result of the 

discretization, 
( )ik

it  has multiple scenarios; 
( ) ( ) ( ) ( )0 1 1

,  ,    ,   ,  
m m

i i i it t t t
−

 (see Figure 4-7). Note that one 

realization of the discrete random variables from Task 1 to n as 
( ) ( ) ( )( )1 2

1 2, , , nk

n

k k
t t t  corresponds to 
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a scenario that duration of task i is within 
( ) ( )1i ik k

i i it t t
−
   for all tasks iW, where ti is duration of 

task i (expression as a continuous variable), 
( )ik

it


 is a certain realization of the 
( )ik

it . Note that the 

number of all scenarios is mn, which is a large number. 

It should also be noted that the normalized distribution obtained from such data approaches the 

probability distribution as the historical record becomes larger with repeated operations. Figure 4-7 is 

an illustration of the normalized distributions. I divide duration of task i into m bins, which gives 

parameters of the probability 
( )i

i

k




 that satisfies 
( ) ( )i

i
kk

i it t


= : 

( ) ( ) ( )

( )

( )

Pr[ ]

[ ]
,

[ ]

i i
i

i

i

i

k kk

i i

k

i i

k

i i

k A

i t t

N t

N t


 





= =

=


                                                          (4-7) 

where 
( )

[ ]ik

i iN t  is defined as the number of samples within 
( ) ( )1i ik k

i i it t t
−
  , which is obtained from 

the historical operation data. 

  

Figure 4-7. Normalized histogram of duration of task i 
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4.3.2 Approaches to improve task durations 

Improvement (or shortening) task durations can be performed in a number of different ways, and 

outcomes can be difficult to predict. Some examples of such improvement are increasing the number 

of operators; preparing a training manual for operators. In CO2 adsorption processes, task durations 

can be reduced by using adsorbents with fast mass transfer, as shown in Section 3.6.3. Some examples 

in chemical industries include upgrading the catalyst in a reactor and increasing the pump capacity in 

a liquid transport unit. As a result of such improvement measures, the task durations can be shortened, 

and the profile of the probability distributions (or histograms of the task duration data) may change 

significantly. It would not be easy to model and predict the change in probability distributions. 

In this study, I use simple approaches to model the improvement of task durations by using two 

parameters, the expected value (mean) and dispersion (variance) of the probability distributions. The 

first approach is to decrease the expected value of task durations linearly per additional cost while 

keeping the shape of the distribution, as shown in Figure 4-8 (a). This approach shifts the entire 

distribution horizontally: 

( ) ( )
, ,

i
i

k k
i i M i M it t c= −                                                  (4-8) 

where 
( )ik

it  is improved duration of task i by cost allocation; cM,i is allocating cost to reduce expected 

value of task duration; λM,i is the decrease rate of 
( )ik

it  per additional cost, which is assumed to be 

constant. I call this approach as improvement of expected value. 

The second approach to improve the task duration is to narrow the dispersion while keeping the 

expected value of the distribution constant (Figure 4-6 (b)). In this approach, the task duration 
( )ik

it  

of task i after improvement is written as 

( ) ( ) ( )( )ave

, ,

i
i i

k k k
i i i i D i D it t t t c= − −                                           (4-9) 

where cD,i is allocating cost to reduce dispersion of task duration; and λD,i is the proportionality constant 
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of dispersion per additional cost; ti
ave is average duration of task i without improvement, where I define 

as:  

( ) ( )

( )
ave , .

i i

i

i

i

k k

i i

k A

i k

i

k A

t N

t i W
N





= 




                                               (4-10) 

I call this approach as improvement of dispersion. 

While the improvement of expected value is used commonly by Kelley and Walker,111 and Xu et 

al,154 the improvement of dispersion is unique and other papers have not considered this approach. My 

proposed framework can handle both approaches. I demonstrate the benefit of the dispersion 

improvement in a case study in Section 4.7. 

 

Figure 4-8. Improvement of duration of task i 
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4.4 Task-Oriented Formulation 

In this section, I propose a reformulation strategy for the problem given by the CPM without 

uncertainty (4-3)-(4-5) into a MILP problem. This formulation is referred to as the Task-Oriented 

Formulation, while I discuss another reformulation called as Path-Oriented Formulation in Section 4.5. 

 

4.4.1 Preparation for Task-Oriented Formulation 

To avoid the complex operation in evaluating the objective function with convolution introduced 

by Kamburowski,166 I convert the objective function (4-3) into a simple linear equation. From (4-7) I 

express the joint probability that all tasks finish within the shaded bins in Figure 4-9 as the 

multiplication of probabilities 
( )ik

i


 for all tasks i W  : 

   ( ) ( ) ( ) ( ) ( )1 2

1 2Pr , .
i n

i
k k k kk

i i nt t i W   
    

=  = 
 

  (4-11) 

i.e. Eq.(4-11) is the probability that each task i finishes in 
( ) ( )i

i
kk

i it t


=  for iW. Here, it should be 

noted that there are a large number of combinations for the realizations of indices ki in the random 

variables 
( )ik

it , 

      ( )1 2, , , .n

nk k k A               (4-12) 

In this work, I assign binary variables 
( )  1 2, , ,

0,1nk k k
x   that enumerate all possible realizations of 

the random variables. I consider a logic condition such that each of these random variables becomes 

positive only if the process completion time is equal to or shorter than T: 

( )1 2, , , 1 if Project completion time
.

0 otherwise
nk k k

x


= 


            (4-13) 
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 Using Eq. (4-11) and (4-13), I rewrite Eq. (4-3) in a discretized form as follows: 

                    

 

( ) ( )

( )

( )

( ) ( ) ( )

( )

( )

1 2

1 2

1 2 1 2

1 2

, , ,

, , ,

, , ,

1 2

, , ,

Pr Project completion time

Pr ,

.

i n
i

n
n

n n

n
n

k k k kk

i i

k k k A

k k k k k k

n

k k k A

t t i W x

x  

   

   

     

   



 
= =  

 

=





                        (4-14) 

Here, instead of using the complex operations in calculating the Eq. (4-3) in the continuous time 

domain, I discretize the time domain and rely on the logic condition in Eq. (4-13). I implement this 

logic constraint within a framework of integer programming as shown below. 
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Figure 4-9. Concept of Eq. (4-11) 
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4.4.2 Task-Oriented Formulation 

The optimization problem given in Eq. (4-3) - (4-5) can be reformulated into the following form 

using Eq. (4-13) and (4-14). Firstly, I show overall formulation and then discuss each constraint. 

 

Task-Oriented Formulation (TOF) 

               
( ) ( ) ( )

( )

( )1 2 1 2

1 2

, , ,

1 2

, , ,

Maximize: n n

n
n

k k k k k k

n

k k k A

x  


          (4-15) 

                s.t.  
( ) ( )1 2, , ,

1 2{0,1}, , , ,nk k k n

nx k k k A             (4-16) 

  

( ) ( )
( )

ave1 2, , ,( ) ( )

, , , ,

1 2

, ,

, , ,

ni i

j j j

k k kk k

i M i M i i i D i D i

i p i p i p
n

n

t x c t t c j V

k k k A

 
  

 
− − −    

 
 



     (4-17) 

        
, ,M i D i

i W i W

c c C
 

+                                                            (4-18) 

      
, ,

, ,

0 ,    

0 ,    ,

U

M i M i

U

D i D i

c c i W

c c i W

  

  
                                                       (4-19) 

In this problem, the decision variables are 
( )1 2, , , nk k k

x  as well as the allocating costs 

,

,

,
M i

D i

c

c

 
=  
 

i
c        (4-20) 

where the costs cM,i and cD,i, which are two improving approaches are introduced in Section 4.3.2, are 

vector elements of allocating cost ci defined in (4-4) in this formulation. It can be seen that Equations 

(17) can be given by substituting (18) into Equation (3). 

It is critical to note that eq. (4-17) is a constraint for the duration of path j that realize the logic 
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condition (4-13). Here I recall 
( )ik

it , which is the duration after improvement from 
( )ik

it . Since  

is a result of two kinds of improvement; the improvement of expected value (4-8) and the improvement 

of dispersion (4-9), 
( )ik

it  can be written as 

( )
( )( ) ( ) ave

, , , , .
i

i i
k k k

i i M i M i i i D i D it t c t t c = − − −         (4-21) 

Here summing (4-21) over all tasks on path j gives 

            
( )

( )( ) ( ) ave

, , , , .
i

i i

j j j j

k k k
i i M i M i i i D i D i

i p i p i p i p

t t c t t c 
   

= − − −         (4-22) 

Using (4-22), I express the process completion time as the maximum value of 
( )i

j

k

i
i p

t
 : among all 

paths j V , 

( )
(Project completion time) max

i

j

k

i
j V

i p

t




=          (4-23) 

From (4-23), when 
( )i

j

k

i
i p

t
  is below the target completion time   for all paths, jV, the process 

completion time must be below   because the 
( )i

j

k

i
i p

t
  that satisfy (4-23) is also below T: 

( )

(Project completion time )

, .
i

j

k

i

i p

t j V


 

  
             (4-24) 

Substituting (4-22) into the bottom inequality in (4-24) gives 

( )( ) ( ) ave

, , , , , .i i

j j j

k k

i M i M i i i D i D i

i p i p i p

t c t t c j V 
  

− − −           (4-25) 

Here I note (4-17) can be obtained by multiplying binary variables 
1 2( , , , )nk k k

x  to the first term of 

(4-25). If the left hand side of (4-25) is over  , the binary variables 
1 2( , , , )nk k k

x  become zero because 

the constraint (4-17) can be satisfied only when 
1 2( , , , )nk k k

x  are zero. On the other hand, if the left 

( )ik

it
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hand side of (4-25) is below Г, the binary variables 
1 2( , , , )nk k k

x  can take either value, but the number 

of positive binary variables 
1 2( , , , )nk k k

x  is maximized since the objective function (4-15) should be 

maximized. From the discussion above, the logic condition (4-13) is rewritten to the constraints (4-17). 

Note that the problem size of the above formulation TOF is very large due to the large number of 

binary variables 
1 2( , , , )nk k k

x . The number of the binary variables 
1 2( , , , )nk k k

x  is mn because they are 

defined as enumerations (k1, k2, …, kn)An of all possible random variables 
( )ik

it , iW. In the next 

section, I show another formulation that reduces the problem size. 

 

4.5 Path-Oriented Formulation 

I show an alternative formulation to (4-3)‒(4-5) that has a smaller number of decision variables 

than TOF. The large number of decision variables in TOF was due to the large number of discretized 

bins for task durations. In the reformulation given below, I reduce the decision variables by considering 

the duration of each path, instead of each task. This reduction in the problem size is possible because 

the number of all paths in a process is significantly smaller than the total number of tasks. Note that in 

this reformulation, I only consider the improvement of the expected value (4-8) ignoring the 

improvement of dispersion (4-9) (i.e. cD,i = 0,  iW). 
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4.5.1 Preparation for Path-Oriented Formulation 

Firstly I rewrite Eq. (4-3) in case ignoring the improvement of dispersion. Since ignoring the 

improvement of dispersion, the improved duration 
( )ik

it  is expressed as (4-8). By substituting (4-8) 

into (4-24), I obtain 

 

( )
, ,

Pr Project completion time

Pr , .i

j j

k

i M i M i

i p i p

t c j V
 

 

 
= −    

  
 

          (4-26) 

While (4-26) is important since it is another expression of the objective function (4-3), here I 

introduce some definitions that help rewriting (4-3) using (4-26) in a useful form. At first, I define 

discrete time to describe path durations as 
( )jv

T , jV in which the index vj for the random variable is 

within a set M : 

 , {0,1,2, , 1, }jv M M l l = −              (4-27) 

where l is the longest bin number of vj, jV. Here I define critical duration of path j that is equivalent 

with the target completion time Г after allocating costs cM,i, , iW as 

 
( )crit

, , .j

j

v

M i M i

i p

T c


− =                 (4-28) 

Here I define a parameter 
( )1 2, , , rv v v

h
  

 which is the probability that sum of task durations 
( )i

j

k

ii p
t

  

is smaller than 
( )jv

T


  for all paths  jV: 

 
( ) ( ) ( )1 2, , ,

Pr , ,
r j

i

j

v v v vk

i

i p

h t T j V
   



 
=   

  
           (4-29) 

 ( )1 2, , , ,r

rv v v M                   (4-30) 
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where vj´ is the index for a given realization of the random variable 
( )jv

T


. By substituting (4-28) into 

(4-29), 

( ) ( ) ( )

( )

1crit 2crit crit crit, , ,

, ,

Pr ,

Pr , .

r ji

j

i

j j

v v v vk

i

i p

k

i M i M i

i p i p

h t T j V

t c j V



 

 
=   

  

 
= −    

  



 

         (4-31) 

By substituting (4-26) into (4-31), I can rewrite (4-3) by using 
( )1 2, , , rv v v

h  as 

 
 
( )1crit 2crit crit, , ,

Pr Project completion time

.rv v v
h

 

=
                    (4-32) 

Note that the parameters 
( )1 2, , , rv v v

h  is calculated by summing the probability (4-11). It is defined 

in (4-29) that 
( )1 2, , , rv v v

h
  

 is the probability that the following condition is satisfied: 

 
( ) ( )

, .
j

i

j

vk

i

i p

t T j V




                 (4-33) 

Here I define a set 
( )1 2, , , rv v v

H
  

, which includes all (k1, k2, …, kn) that satisfies the condition (4-33) 

as follows: 

        

( )
( )

( ) ( )

( )

1 2, , ,

1 2

1 2

, , , | , ,

, , , .

r ji

j

v v v vkn

n i

i p

r

r

H k k k A t T j V

v v v M

   



  
=    
  

   


      (4-34) 

Using the set defined in (4-34), 
( )1 2, , , rv v v

h
  

 can be rewritten as 

            ( ) ( ) ( )

( )
( )

1 2

, , ,1 2

1 2

, , ,

, , ,

Pr , .
r i

i

v v vr

n

v v v kk

i i

k k k H

h t t i W
  

   



 
= =  

 
         (4-35) 
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Finally, by substituting (4-11) into (4-35), I obtain 

            
( ) ( ) ( ) ( )

( )
( )

1 2
1 2

, , ,1 2

1 2

, , ,

1 2

, , ,

.
r

n

v v vr

n

v v v k k k

n

k k k H

h   
  

  



=          (4-36) 

This calculation to prepare the parameters 
( )1 2, , , rv v v

h  should be executed before solving optimization 

problems shown in POF. 

 

4.5.2 Path-Oriented Formulation 

From the discussion above, (4-3)‒(4-5) can be reformulated into an even simpler form. Firstly I 

show the overall reformulation and discuss the objective function and constraints later. The 

correspondence between two formulations, the CPM without uncertainty and the Path-Oriented 

Formulation is as follows: (4-3)→{(4-37), (4-38), (4-39), (4-42)}, (4-4)→(4-40), (4-5)→(4-41). 

Path-Oriented Formulation (POF) 

( ) ( )

( )

1 2 1 2

1 2

, , , , , ,

, , ,

Maximize: r r

r
r

v v v v v v

v v v M

h z


                                     (4-37) 

( )

( )

1 2

1 2

, , ,

, , ,

s.t. 1,r

r
r

v v v

v v v M

z


=                  (4-38) 

( ) ( )1 2, , ,

, , , ,j r

j

v v v v

M i M i

i p

T z c j V


 −              (4-39) 

, ,M i

i W

c C


                      (4-40) 

, ,0 ,    .U

M i M ic c i W                     (4-41) 

( ) ( )1 2, , ,

1 2{0,1}, , , , .rv v v r

rz v v v M                                         (4-42) 
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where 
( )  1 2, , ,

0,1rv v v
z   are binary variables that enumerate all possible realizations of the random 

variables. Decision variables are the binary variables 
( )1 2, , , rv v v

z  and allocating costs of task i as cM,i. 

I consider a logic condition such that only one of the binary variables 
( )  1 2, , ,

0,1rv v v
z   

becomes positive when the condition (4-28) is satisfied, and other binary variables become zero: 

 
( ) ( ) ( )crit

1 2, , , 1 if , .
0 otherwize

j j
r

v v
v v v T T j Vz


    = = 



                                    (4-43) 

By multiplying 
( )1 2, , , rv v v

h   to 
( )1 2, , , rv v v

z   and summing them for all combinations of realization of 

indices ( )1 2, , , rv v v  , 
( )1crit 2crit crit, , , rv v v

h  can be expressed as 

 
( ) ( )

( )

( )1crit 2crit crit1 2 1 2

1 2

, , ,, , , , , ,

, , ,

,rr r

r
r

v v vv v v v v v

v v v M

h z h


=                               (4-44) 

which is obtained from the logic condition (4-43). By substituting (4-44) into (4-32), it can be shown 

that Eq.(4-3) is equivalent with (4-37): 

 
( )

( ) ( )

( )

1crit 2crit crit

1 2 1 2

1 2

, , ,

, , , , , ,

, , ,

Pr[Project completion time ]

,

r

r r

r
r

v v v

v v v v v v

v v v M

h

h z


 

=

= 

                                                (4-45) 

while satisfying the logic condition (4-43). 
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The logic condition (4-43) is satisfied in the optimal solution of the POF. The mathematical proof 

is given in the following. Firstly, I show a condition that the binary variables 
( )1 2, , , rv v v

z  satisfies. 

Here note that from the (4-29), which is the definition of 
( )1 2, , , rv v v

h , it is obvious that the 
( )1 2, , , rv v v

h  

increases monotonically as the index j of random variables vj, jV increases: 

 
( ) ( )1 2 1 2, , , , , , , , 1, ,

, .j r j rv v v v v v v v
h h j V

+
                               (4-46) 

Therefore, to maximize the objective function (4-37) under the constraint (4-38), the following 

condition must be satisfied: 

                    
( ) ( )1 2 1 2, , , , , , , , 1, ,

, .j r j rv v v v v v v v
z z j V

+
     (4-47) 

Secondly, from Eq. (4-28), I have: 

                      
( )eff

crit

, , crit

crit

if

if , .

if

j

j

j j
v

M i M i j j

i p

j j

v v

T c v v j V

v v




  


− =  = 
  

   (4-48) 

Finally, from Eq. (4-47), Eq. (4-48) and the constraint (4-38), the following condition is satisfied under 

the constraints (4-39): 

                          
( )1 2

crit
, , ,

crit

crit

0 if

1 if , .

0 if

r

j j
v v v

j j

j j

v v

z v v j V

v v

  

 


= = 
 

    (4-49) 

It can be seen that Eq.(4-49) is equivalent with (4-43). From the discussions above, it is proved that 

Eq.(4-43) is satisfied at the optimal solution of POF. 
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4.6 Path-Oriented Formulation with Local Search Algorithm 

In this section, a local search method for POF is proposed in order to further reduce decision 

variables and constraints of POF. I denote the Path-Oriented Formulation with Local Search 

Algorithm proposed in this section as (POF, Local Search). In contrast, I call the original POF as (POF, 

Strict). 

 

4.6.1 Concept of (POF, Local Search) 

 A comparison between (POF, Strict) and (POF, Local Search) is illustrated in Figure 4-10. Note 

that the formulation (POF, Strict) finds certain indices of discrete random variables (v1
*, v2

*, …, vr
*) 

that corresponds to the optimal solution of (POF, Strict) that satisfies 
( )* * *

1 2, , ,
1

rv v v
z = . This method 

uses the full search from all candidates of (v1
*, v2

*, …, vr
*). On the other hand, in (POF, Local Search), 

I limit the search within a local region and consider a limited number of candidates for (v1
*, v2

*, …, 

vr
*). After this local search, I search the neighboring regions until the algorithm terminates. 

Note that as shown in Figure 4-10, the search range of (POF, Strict) for all paths is expressed as 

(4-30). On the other hand, in (POF, Local Search), the limited search range on path j is around (v1
ref, 

v2
ref, …, vr

ref) that is a realization of some combination of the indices: 

  ref ref ref ref ref, , 1, , 1, , ,j j j j j jM v v v v v = − − + +                    (4-50) 

where β is a parameter. Using (4-50), the narrowed candidates of index for discrete random variables 

discrete random variables is given by: 

 ( )1 2 1 2, , , .r rv v v M M M                        (4-51) 
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If the set given by (4-51) contains (v1
*, v2

*, …, vr
*), (POF, Local Search) can find the optimal solution. 

Note that the local search method does not guarantee global optimality. Since the candidates of the 

binary variable 
( )* * *

1 2, , , rv v v
z  is limited, the global optimal solution may not be found if it lies outside 

the search region. This disadvantage must be weighed carefully against the advantage of the 

significantly shorter computational time as demonstrated in our case study.  

 

  

Figure 4-10. Comparison between the (POF, Strict) and (POF, Local Search) 
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4.6.2 Detailed algorithm of (POF, Local Search) 

The flow chart of this algorithm is shown in Figure 4-11. In Steps 1 and 2, an initial guess to set 

the search range (4-51) is obtained. Step 3 is to prepare parameters to be used in Step 4, which is the 

step to solve POF where the search range is narrowed down. In Step 5, the optimality is checked by 

comparing the value of the objective function. 

 

 

Figure 4-11. Flow chart of the algorithm of (POF, Local Search) 
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Step 1 

In this step, I find one realization of allocating costs (cM,1
ref, cM,2

ref, …, cM,n
ref) as a reference solution 

to find an initial guess to set the search range. Here I attempt to use the solution of the CPM without 

uncertainty shown in (4-2) as the realization of allocating costs (cM,1
ref, cM,2

ref, …, cM,n
ref). In this study, 

I assume that the fixed task duration ti in (4-2) is calculated by ti = ti
ave. 

 

Step 2 

In this step, I decide the reference realization of the indices as (v1
ref, v2

ref, …, vr
ref) for 

( ) ( ) ( )ref ref ref
21

1 2, , , 
rv v

r

v
T T T 
 
 

. Using this reference realization, the search range can be determined as 

shown in (4-50).  To find the optimal solution, the candidates for search (4-51) must contain (v1
*, v2

*, 

…, vr
*). Therefore, the realization (v1

ref, v2
ref, …, vr

ref), which is at the center of the search range, needs 

to be sufficiently close to (v1
*, v2

*, …, vr
*). However, (v1

*, v2
*, …, vr

*) cannot be found without 

executing POF and find optimal cost allocation (cM,1
*, cM,2

*, …, cM,n
*). Here, I attempt to use  (cM,1

ref, 

cM,2
ref, …, cM,n

ref) and set (v1
ref, v2

ref, …, vr
ref) to satisfy a similar condition to (4-28) as 

           
( )

, ,

ref refarg .j

j j

v

j M i

i

M

p

j
v

v T c


 
= − =  

 
 

   (4-52) 

 

Step 3 

In this step, the problem POF is prepared where the search range is narrowed down. Firstly I 

construct the local search range around the reference indices (v1
ref, v2

ref, …, vr
ref) as given in (4-50), 

where the candidates of discrete random variables is given by (4-51). Similarly with (4-34), here I 
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define a set of (k1, k2, …, kn) that satisfies the condition (4-33) for the indices (4-51) where the search 

range is narrowed down:  

      

( )
( ) ( ) ( ) ( ) ( )

( )

1 2
1

1

, , ,

1 1

1 2 1 2

, , | , , ,

, , , .

r
i i r

r

v v v k v k vn

n i i r

i p i p

r r

H k k A t T t T

v v v M M M

  

 

 
=    
 

      

 
   (4-53) 

Additionally, I calculate the probability (4-29) where the search range is narrowed down: 

                    

( ) ( ) ( )

( )
( )

1 2

1 2

, , ,

, , ,

1 2

Pr , ,

for , , , .

r j
i

j

r

v v v vk

i j

i p

v v v

n

h t T j V

k k k H

   



  

 
=   

  




        (4-54) 

 

Step 4 

I solve the following problem, which is a modification to POF: 

 

( ) ( )

( )

( ) ( )
( ) ( )

( )
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1 2 1 2

1 2 1 2

1 2

1 2
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1 2 1 2

, , , , , ,

, , ,

, , ,

1 2 1 2

, , ,

, ,

, , ,

, , ,

,

, ,

Maximize:

s.t. {0,1}, , , ,

, ,

1,

,

0 ,    

r r

r r

r

j r

j

r

r r

v v v v v v

v v v M M M

v v v

r r

v v v v

j M i M i

i p

v v v

v v v M M M

M i

i W

U

M i M i

h z

z v v v M M M

T z c j V

z

c C

c c i W



   



   





    

 −   

=



  









.

        (4-55) 

 

where in contrast to POF, the range of possible index of random variables (4-30) is replaced by the 

narrowed range (4-51). Note that the optimal solution of (4-55) may be different from the optimal 

solution of POF; only if the search range (4-51) contains (v1
*, v2

*, …, vr
*) I obtain 

( )1crit 2cri t crit, , , rv v v
h   as 

the objective value. Even if (4-55) cannot find the optimal solution of POF, by executing (4-55) I can 
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find equivalent or better candidate where the objective value is higher compared to the reference value 

( )ref ref ref
1 2, , , rv v v

h . 

 

Step 5 

This step is to decide whether the search in Step 3 is sufficient by comparing the objective function. 

If the binary variables 
( )1 2, , , rv v v

z  is the same as those in the previous execution of Step 4, I terminate 

the algorithm. If the solution is changed, return to Step 3 with new reference indices (v1
ref, v2

ref, …, 

vr
ref) which is the solution of Step 4. 

 

4.7 Case studies 

In this section, I present some examples to demonstrate the proposed methods. I compare the 

following three approaches: the CPM without uncertainty, the proposed formulation TOF and POF. 

 

4.7.1 Example 1 

In this example, I consider a simple CCUS system shown in Figure 4-12, which shows the structure 

as well as the normalized distribution of each task. Table 4-1 shows the historical data for task duration 

( )
[ ]ik

i iN t , and the sum of samples 
( )

[ ]i

i

k

i i

k A

N t


  for all tasks. Note that 
( )

[ ]ik

i iN t  is introduced in 

Section 3.1. For simplicity, I express
( )

[ ]ik

i iN t  as 
( ) ( )

[ ] .i ik k

i i iN t N=  
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In this example, I assume that the widths of all bins is constant. Thus, I have 

 
( ) ( ) ( )1

, 1,2,  ,4 .i ik k

i it t a i
−
= =−                                          (4-56) 

Additionally, I set a = 5, and the widths of all bins are equally spaced. Table 4-2 shows other parameters. 

The maximum total cost and process completion time are given as follows: C = 250 and Г = 100. 

 

  

Figure 4-12. A CCUS system of Example 1  
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Table 4-1 Historical operation data for Example 1 

Task i 
( )1

iN  
( )2

iN
 ( )3

iN
 ( )4

iN
 ( )5

iN
 ( )6

iN
 ( )7

iN
 ( )8

iN
 ( )9

iN
 ( )10

iN
 

( )i

i

k

i

k A

N


  

1 2 10 20 30 26 18 4 - - - 110 

2 6 16 29 20 2 3 15 31 21 7 150 

3 15 17 18 18 18 18 16 - - - 120 

4 7 36 23 15 9 5 3 2 - - 100 

 

Table 4-2  Parameters of the system in Example 1 

Task i 
( )0

it   ,M i   
,

U

M ic   ,D i  
,

U

D ic  

1 15 0.24 40 0.020  30 

2 15 0.15 125 0.015  40 

3 45 0.20  125 0.010  40 

4 25 0.090  100 0.020  30 

 

  



122 
 

Table 4-3  Results of example 1 

 
CPM without 

uncertainty 

TOF 

w/o dispersion 

improvement 

with dispersion 

improvement 

# of decision 

variables 
9 3924 3928 

# of constraints 20 7849 7857 

Task i ,M ic  ,M ic  ,M ic  ,D ic  

1 40.00 40.00 40.00 10.00 

2 61.80 80.00 1.040 40.00 

3 48.20 30.00 25.27 3.685 

4 100.0 100.0 100.0 30.00 

Probability 

finished by   
N/A (0.8652) 0.9070 0.9444 

Computational 

time 
<1s 17s 1027s 

 

Table 4-3 shows the results for Example 1 by the conventional approach, CPM without uncertainty 

and the proposed approach, TOF. In this example, I use the original formulation of the CPM without 

uncertainty shown in Eq. (4-2), where task duration ti, iW is fixed values while in this example task 

durations are given as the historical operation data in Table 4-1. In this study, I use the average duration 

ti
ave defined in Eq.(4-10) in place of the duration ti as ti = ti

ave, iW. On the other hand, for the TOF, 

the proposed formulation in Section 4.4.2, I implemented two approaches in this example: without 

(w/o) dispersion improvement and with dispersion improvement. In the former approach, I do not 

consider improvement of dispersions (cM,i = 0, iW) to compare it against the conventional approach 
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based on the same degree of freedom. In the latter approach of TOF, I consider both improvements, 

expected values and dispersions. 

I implemented these approaches on a desktop personal computer with a core i7, 3.4GHz processor. 

I used Numerical Optimizer from NTT DATA Mathematical Systems Inc. (Tokyo, Japan). The 

algorithm in this solver is based on the branch-and-bound method.  

The CPM without uncertainty leads to a low value of the objective function, 0.8652, compared to 

the one calculated by the proposed methods. This value was calculated by simply applying to the 

optimal cost allocations obtained by the CPM without uncertainty to the original problem that includes 

the uncertainty of task durations. This result indicates ignoring the problem uncertainty leads to poor 

cost allocation when task durations are uncertain. 

Here note that the objective value of TOF with dispersion improvement, 0.9444, is even higher 

than that of (TOF) without dispersion improvement, 0.9070; this difference is the result of the higher 

degrees of freedom by the improvement in the dispersion of task duration histograms. 

The advantages in the objective values discussed above are obtained at a cost of significantly longer 

computational time. In this example, the CPM without uncertainty needed only a short computational 

time (< 1s) because the problem size is very small. In contrast, TOF without dispersion improvement 

needed a significantly longer computational time, 17 s, and that for TOF with dispersion improvement 

is even two orders of magnitudes larger, 1027 s, because of the complexity of algorithm. From this 
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result, I see that considering improvement of dispersion in addition to improvement of expected value 

of task duration histograms makes the problem much more difficult to solve. 

I also analyze the optimal solution of TOF without uncertainty, and note that the allocation cost 

cD,2, which is the improved dispersion of Task 2, is the highest among all allocation costs cD,i, iW. 

This is because the dispersion of the task duration histogram in Task 2 is significantly larger than that 

of other tasks (see Figure 4-12), and thus improving this wide profile of task duration is effective. 

 

4.7.2 Example 2 

To further observe the influence of the problem size of the proposed methods TOF, (POF, Strict) 

and (POF, Local Search), I apply these methods to another example that has a larger number of tasks 

and paths. Another CCUS system of Example 2 is shown in Figure 4-13, and historical operation data 

are given in Table 4-4 and Table 4-5. In this problem, I set the maximum total cost C and the process 

completion time Г as follows: C = 350 and Г = 180. 
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Figure 4-13. A CCUS system of Example 2 
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Table 4-4  Historical operation data for Example 2 

Task i 
( )1

iN  
( )2

iN
 ( )3

iN
 ( )4

iN
 ( )5

iN
 ( )6

iN
 ( )7

iN
 ( )8

iN
 ( )9

iN
 ( )10

iN
 

( )i

i

k

i

k A

N


  

1 7 27 54 81 72 49 10 - - - 300 

2 38 42 45 45 45 45 40 - - - 300 

3 12 42 32 6 9 56 82 48 13 - 300 

4 116 69 44 28 19 11 8 5 - - 300 

5 12 32 57 39 3 6 31 62 43 15 300 

6 6 40 102 105 40 7 - - - - 300 

7 32 41 53 58 50 42 24 - - - 300 

 

Table 4-5  Parameters of the system in Example 2 

Task i 
( )0

it  ,M i  
,

U

M ic  

1 40 0.15 75 

2 30 0.15 125 

3 35 0.20  100 

4 35 0.25  150 

5 60 0.15  175 

6 30 0.15  75 

7 25 0.10  50 

 

  



127 
 

Table 4-6  Results of Example 2 

 
TOF 

w/o dispersion 

improvement 
(POF, Strict) 

(POF, Local Search) 

Search range 𝛽 = 2 

# of decision variables 2469614 14307 132 

# of constraints 7408815 42914 410 

Task i ,M ic   ,M ic  ,M ic  

1 

2 

3 

4 

5 

6 

7 

- 

- 

- 

- 

- 

- 

- 

75.00 

0.000 

75.74 

20.59 

67.65 

75.00 

36.03 

75.00 

0.000 

100.0 

15.00 

76.67 

33.33 

50.00 

Probability finished by 

  
N/A (0.8635) 0.8635 0.8635 

Calculation time of 
( )1 2, , , rv v v

h  < 24h 95s 
5s  

(Sum for two 

iterations) 

Calculation time to 
solve 

< 24h 29s 
1s < 

(Sum for two 

iterations) 

 

Table 4-6 shows the solutions and computational statistics for Example 2. Note that TOF without 

dispersion improvement in this table is the same method introduced in Example 1; (POF, Strict) in this 

table is the Path-Oriented Formulation shown in Section 4.5; (POF, Local Search) is the Path-

Oriented Formulation with Local Search Algorithm shown in Section 4.6. It should be noted that (POF, 

Strict) and (POF, Local Search) can only consider improvement of expected value, and thus I compare 
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TOF without dispersion improvement, not with dispersion improvement. In addition, note that the 

complex calculation of 
( )1 2, , , rv v v

h  that appears in (4-29) and (4-54), which must be performed before 

solving the optimization problems for (POF, Strict) and (POF, Local Search), requires a significant 

amount of computational time; the computational time for this parameter is shown as “Calculation 

time of ” in this table.  

I compare the problem sizes and computational times in these three methods. It can be seen that 

TOF has the largest number of decision variables, 2469614, and constraints, 7408815. In contrast, 

(POF, Strict) has a significantly smaller number of decision variables, 14307, and constraints, 42914, 

than TOF. Furthermore, (POF, Local Search) has an even smaller number of decision variables and 

constraints than other two methods. The numbers of decision variables, 132, and constraints 410, are 

for the first iteration, out of the total of the two iterations. Due to the large number of variables and 

constraints, TOF cannot be solved in 24 hours. In contrast, (POF, Strict) and (POF, Local Search) can 

be solved much faster than TOF, in which calculation time of (POF, Strict) is 29 seconds and that of 

(POF, Local Search) is below 1 second. Note that the actual calculation time of (POF, Strict) and (POF, 

Local Search) is the sum of “Calculation time of h” and “Calculation time to solve”, where (POF, 

Strict) needed 95 + 29 = 134 seconds and (POF, Local Search) needed only about 5~6 seconds. These 

computational times are significantly smaller than that for TOF. 

It can be seen in Table 4-6 that while the objective values in (POF, Strict) and (POF, Local Search) 

are the same, 0.8635, the optimal cost allocations found by these two methods are significantly 

( )1 2, , , rv v v
h
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different. This non-uniqueness of the optimal solution is due to Eq. (4-28), where many different 

combinations of the allocating cost ci, iW exist that gives a single value of . 

I can also find a general rule for cost allocations about tasks that are in series without any branching 

or merging: in this example, Task 2 and 3. In the optimal solution, the allocating cost on Task 2 is zero 

(cM,2 = 0) in both (POF, Strict) and (POF, Local Search), while for Task 3, which is the subsequent 

task to Task 2, a significant amount of cost is allocated. This is because the cost coefficient for Task 3, 

λM,3 = 0.20, is higher than that for Task 2, λM,2 = 0.15. Since the improvement of either task has the 

same influence on the process completion time, improving Task 3, which has the greater benefit for a 

given cost than Task 2, should be pursued. 

 

4.8 Concluding remarks and future work 

In this chapter, proposed an advanced CPM technique that maximizes the process completion 

probability within a target completion time, which can utilize historical data from systems to handle 

uncertain task durations. My method has three main advantages; handling the operation data without 

approximation; considering the time-cost trade off by two kinds of improvement of task duration; 

finding the optimal solution by formulating the problem as MILP. I proposed two formulations: Task-

Oriented Formulation (TOF), and Path-Oriented Formulation (POF). Furthermore, I proposed the 

Path-oriented Formulation with Local Search, which applies the local search algorithm to POF and 

shortens the computational time. In addition, I applied these three formulations to two examples and 

demonstrated the effectiveness of our approach. 

( )critjv
T
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To address more practical issues, the following are potential room for improvements in the proposed 

approaches. Firstly, I will apply a real-time optimization method to my proposed formulations. There 

have been considerable advances in real-time data acquisition techniques in recent years, so historical 

operation data can be obtained in real-time easily. However, in implementing such real-time 

optimization approaches, the validity of the improvement model should be examined carefully; various 

formulations including our formulations have proportionality constants for improving duration of tasks 

per additional costs,111,154,160 which are approximations based on experience. The real-time operation 

data may be utilized to realize a successive optimization and modeling approach, where the optimal 

solution is implemented and then the proportionality constant is updated in an alternate and iterative 

manner in real time. In such an iterative optimization and modeling approach, the Total cost C can be 

divided and distributed to each time period. 

Secondly, in POF, we needed to ignore the improvement in dispersion, which is considered only in 

TOF. Considering the improvement of dispersion allow to model variety of possible improvements. 

The concept of the improvement of dispersion to POF should also be extended to the local search 

method.  

Thirdly, the problem I reformulated is a single-objective optimization problem; however, 

scheduling problems in actual CCUS systems have several objectives: minimizing total allocating cost; 

maximizing quality of products; maximizing probability of finishing the processes by deadline etc. 

Tavana et al. proposed a multi-objective optimization problem for project scheduling, where task 
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durations are fixed values.167 To my knowledge, the multi-objective optimization problem with 

stochastic task durations expressed as discrete distributions has not been proposed.  

 

Equation Chapter (Next) Section 1 

  



132 
 

Chapter 5 Conclusions 

 In this thesis, I have proposed and demonstrated the following two approaches to improve the 

design and operation methods for CCUS systems. In Chapters 2 and 3, many potential advantages are 

quantified for a flexible MOF in a CO2 adsorption process using a rigorous process model. One of the 

most promising flexible MOFs, ELM-11, was considered in our case studies to evaluate the 

performance indicators, such as purity, recovery, BSF, and power consumption. An isothermal model 

of ELM-11 was proposed to develop a mathematical model based on the adsorption data, and the 

parameters are estimated by a least-squares method. The isotherm model was integrated within a 

dynamic VPSA process model employing a simple 4-step cycle without rinse and purge operations to 

estimate the performance indicators. 

The results found that CO2 purity is always high because of the high selectivity of ELM-11. To 

improve the recovery rate, increasing the feed pressure and lowering the operating temperature can 

overcome the slipping-off problem known in flexible MOFs. In addition, a formula to estimate 

recovery was proposed from the feed and foot CO2 pressures without performing simulations, which 

will be useful also for other flexible MOFs that show sigmoidal adsorption isotherms. The relationship 

between power consumption and operating temperature was also investigated. For a given recovery 

rate, lowering the operating temperature lowers the power consumption by the compressor but 

increases the power consumption of the vacuum pump. Under this trade-off relationship, it was found 

that the low-temperature operation of 263 K to 273 K minimizes the sum of the two sources of power 
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consumption. However, careful consideration must also be given to cooling energy in the sub-ambient 

operations to find the optimal operation. 

The advantages of ELM-11 were also confirmed through a comparison with zeolite 13X. The higher 

CO2/N2 selectivity of ELM-11 provides a significantly higher purity. Furthermore, the BSF of ELM-

11 can be substantially smaller than that of zeolite 13X because of the larger working capacity and 

higher mass transfer rate based on the LDF model. The high product purity, throughput, and energy 

efficiency found in this study will pave the way for demonstration of large-scale CO2 separation. The 

promising properties of flexible MOFs over zeolites revealed in this study also encourage future 

research on other practical applications of this material such as hydrocarbon separations.168 

In Chapter 4, I extended the conventional CPM to apply the RCPS method to schedule CCUS 

systems with uncertain task durations. The proposed method uses histograms obtained from historical 

operation data to represent the task durations. The formulation is MILP, which has the advantage of 

guaranteeing an optimal solution in the search range by using the branch-and-bound method. I 

proposed three formulations with trade-offs between computation time, cost allocation flexibility, and 

solution accuracy. TOF has more ways to improve the processing time with cost allocation than the 

conventional CPM and can propose flexible ways of cost allocation. However, this formulation 

requires a decision variable for every combination of the histograms of task durations, which makes 

the problem large; in Example 2, the system had 2,469,614 decision variables for 7 tasks. The 

formulation (POF, Strict) significantly reduces the number of decision variables compared to TOF, 
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instead of limiting the ways of cost allocation. In the example, the number of decision variables in 

POF is 14,307, which is 1/173 of that of TOF. The formulation (POF, Local Search) further reduces 

the number of decision variables by applying the local search method to (POF, Strict). In the example, 

the number of decision variables in (POF, Local Search) is 132, which is 1/18,700 of that of TOF. This 

method requires less computation time, but the optimal solution is not guaranteed depending on the 

range of the local search. 
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Nomenclature 

 

Notations for Chapter 2 and 3 

bL imaginary adsorption isotherm parameter for CO2 [molCO2/(kgads･kPa)] 

bU  temperature-dependent value for imaginary CO2 adsorption isotherm [kPa-1] 

bU
∞ imaginary adsorption isotherm parameter for CO2 [kPa-1] 

bH imaginary adsorption isotherm parameter for CO2 [molCO2/(kgads･kPa)] 

2Nb  temperature-independent adsorption isotherm parameter for N2 [molN2/(kgads･kPa)] 

Cpg heat capacity of gas [J/(kg･K)] 

Cps  heat capacity of solid [J/(kg･K)] 

DL axial dispersion coefficient [m2/s] 

EU imaginary adsorption isotherm parameter for CO2 [kJ/molCO2] 

feed amount of CO2 feed gas [molCO2] 

h heat transfer coefficient [J/(m2･s･K)] 

Hstep,j enthalpy of the phase transitions [kJ/molCO2] 

i  component 

impurity amount of N2 gas in the product [molN2] 

j  mode of hysteretic isotherms 

ki  overall mass transfer coefficient of component i [1/s] 

KL axial thermal conductivity [J/(m･s･K)] 
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L column length [m] 

mads weight of adsorbent packed in the column without binder [kg], (mads = ρadsRbed
2πL) 

2COMw  molecular weight of CO2 [g/molCO2] 

mode binary variable for mode of hysteretic isotherms [-] 

nL imaginary adsorption isotherm where the gate is always close [molCO2/kgads] 

nU imaginary adsorption isotherm where the gate is always open [molCO2/kgads] 

nj  adsorption/desorption isotherms of CO2 [mol/kgads] 

nU
∞ saturated amount of CO2 adsorption [molCO2/kgads] 

ndes→ads secondary or higher-order adsorption isotherm [molCO2/kgads] 

nads→des secondary or higher-order desorption isotherm [molCO2/kgads] 

nsat  saturated amount of CO2 adsorption [molCO2/kgads] 

nswitch amount of CO2 adsorbed at switched point [molCO2/kgads] 

2COp  partial pressure of CO2 [kPa] 

2Np  partial pressure of N2 [kPa] 

pfeed,i feed partial pressure of component i [kPa] 

2CO ,tarp  target partial pressure of CO2 during adsorption step [kPa] 

pstep,j step pressure of isotherm j [kPa] 

pstep0,j step pressure of isotherm j at reference temperature [kPa] 

pfoot,ads foot CO2 pressure for adsorption isotherm at reference temperature [kPa] 
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pfoot,des foot CO2 pressure for adsorption isotherm at reference temperature [kPa] 

Patm atmospheric pressure [kPa] 

Pdes desorption pressure [kPa] 

Pfeed feed gas pressure [kPa] 

Powercompressor electrical power consumption for the compressor [kW] 

Powervacuum  electrical power consumption for the vacuum pump [kW] 

product amount of CO2 product in one cycle at a cyclic steady state [molCO2] 

qi amount of component i adsorbed [mol/kgads] 

qi
* equilibrium amount of component i adsorbed [mol/kgads] 

2CO ,tarq  target amount of CO2 adsorbed during desorption step [molCO2/kgads] 

qeq,ads equilibrium amount of CO2 adsorbed during adsorption step [molCO2/kgads] 

qeq,des equilibrium amount of CO2 adsorbed during desorption step [molCO2/kgads] 

Qoutlet molar flow rate at the outlet [mol/s] 

rd  desorption ratio [-] 

R gas constant [J/(mol･K)] 

Rp particle radius [m] 

Rbed bed radius [m] 

t time since each cycle started [s] 

tpress pressurization time [s]  



138 
 

tads adsorption time [s] 

tdepress depressurization time [s] 

tdes  desorption time [s] 

ttrans transition time from atmospheric pressure to desorption pressure [s], which is used to design 

a pressure boundary condition in Step 4 (see Table 3-4). 

tcycle cycle time [s] 

T temperature [K] 

T0 reference temperature [K] 

Tamb ambient temperature [K] 

Tfeed feed temperature [K] 

Twall column wall temperature [K] 

u gas velocity [m/s] 

uoutlet gas velocity at the outlet [m/s] 

wj weighting function [-] 

yi,feed feed mole fraction of component i [-] 

z axial position in column [m] 

vj weighting function parameter [-] 

χj  parameter for the weighting function wj [-] 

εbed  bed void [-] 
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εT  tolerance for temperature [K2] 

εy  tolerance for mole fraction [-] 

εq  tolerance for adsorption amount [(mol/kgads)
2] 

ρads adsorbent density without binder [kgads/m
3] 

ρpellet pellet density [kg/m3] 

ρwall wall density [kg/m3] 

μ gas viscosity [kg/(m･s)] 

ηcompressor efficiency of compressor [-] 

ηvacuum efficiency of vacuum pump [-] 

γ heat capacity ratio [-] 
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Notations for Chapter 4 

 

INDICES 

s  Source task 

e  Sink task 

i  Task 

j  Path from source to sink 

ki  Index of random variable ( )ik

it  

vj  Index of random variable 
( )jv

T  

ki′  Realization of integer ki 

vj′  Realization of integer vj 

vjcrit Realization of integer vj that satisfies Eq.(4-28) 

vj
*  Realization of integer vj that corresponds to the optimal solution of Path-Oriented 

Formulation proposing in Section 4.5 

vj
ref Realization of integer vj for local search method in Section 4.6 

 

SETS 

W  Set of tasks except for source and sink 

V  Set of paths 

pj  Set of tasks on path j except for dummy tasks 

A  Set of realizations for ki, iW 
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M  Set of realizations for vj, jV 

jM  Set of realizations for the local search method 

E   Set of arcs in process network 

( )1 2, , , rv v v
H   Set that includes all (k1, k2, …, kn) satisfying condition 

( ) ( )
,ji

j

vk

i j

i p

t T j V


   

( )1 2, , , rv v v
H  Set that includes all (k1, k2, …, kn) satisfying condition 

( ) ( )
,ji

j

vk

i j

i p

t T j V


   for the 

local search method  

 

PARAMETERS 

n   Number of tasks 

r   Number of paths 

ci
U   Crash cost of task i 

ci
U   Vector of the crash cost of task i 

C   Maximum total cost 

Г   Target process completion time 

( )i

i

k
   Probability in bin ki 

( )
[ ]ik

i iN t  Number of samples within 
( ) ( )1i ik

i i i

k
t t t

−
   

Г   Target process completion time 

λi Proportionality constant for reducing duration of task i per additional cost in classical CPM 

formulation 
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λM,i Proportionality constant for reducing expected value of duration of task i per additional 

cost in proposing formulations 

λD,i Proportionality constant for dispersion of duration of task i per additional cost in proposing 

formulations 

ti
ave  Average duration of task i without improvement 

( )ik

it   Duration of task i without improvement in discretized form 

( )jv
T   Discretized time 

( )1 2, , , rv v v
h  Probability that sum of task durations 

( )i

j

k

i

i p

t


  is smaller than 
( )jv

jT  for  

all paths, jV 

β   Search range in the local search method 

cM,i
ref  Realization of allocating cost on task i for the local search method as a reference value 

cM,i
*  Optimal value of cM,i of the Path-Oriented Formulation in Section 4.5 

a   Bin width for histograms in case studies 
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