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Abstract

In this paper, we discuss optimal constants and extremisers of Kato-smoothing

estimates for the 2D and massless 3D Dirac equation. Smoothing estimates are

inequalities that express the smoothing effect of dispersive equations, and detailed

information regarding optimal constants and extremisers for wide classes of Kato-

smoothing estimates were given in the last several year by Bez-Saito-Sugimoto [9]

and Bez-Sugimoto [10]. This paper is a trial to generalize these previous results

to include the Dirac equation which is outside the framework of them.

1 Introduction

The estimates of the form∫
R

∫
Rd

∣∣ψ(D)eitϕ(D)f(x)
∣∣2w(x)dxdt ≤ C∥f∥2L2(Rd) (1.1)

for solutions to dispersive equations are often called smoothing estimates (Kato-

smoothing estimates). Kato [19] first deduced local version of them. This moti-

vated the works of Constantin and Saut [12], Sjölin [32] and Vega [36] followed

by established local smoothing estimates for Schrödinger equations including Ben-

Artzi and Devinatz [3, 4], Hoshiro [15, 16], Kenig, Ponce and Vega [22, 23, 24, 25,

26, 27], Linares and Ponce [28], Ruzhansky and Sugimoto [30], Sugimoto [34] and

Walther [38], various other works on the spacetime approach, including Ben-Artzi

and Nemirovsky [6] for the generalized relativistic Schrödinger equation and Ben-

Artzi [2] for the generalized classical wave equation. Recently, a general approach

to the global spacetime and smoothing estimates of evolution groups generated by

self-adjoint operators has been developed by Ben-Artzi, Ruzhansky and Sugimoto

[7]. This approach leads to similar estimates for various classes of pseudodifferen-

tial operators.

There are conventional representative studies on smoothing estimates (1.1). If

ϕ(D) = −∆, then eitϕ(D) is the free Schrödinger propagator, in which case it is

known that (1.1) holds in the following cases :

(A) ψ(D) = (1 + |D|2)1/4, w(x) = (1 + |x|2)−1 (d ≥ 3)

(B) ψ(D) = |D|a, w(x) = |x|2(a−1) (1− d
2
< a < 1

2
, d ≥ 2)

(C) ψ(D) = |D|1/2, w(x) = (1 + |x|2)−s (s > 1
2
, d ≥ 2).

Case (A) is due to Kato and Yajima [21]. See also Ben-Artzi and Klainerman

[5]. Case (B) is due to Kato and Yajima [21] for 0 ≤ a < 1
2
whenever d ≥ 3,

and 0 < a < 1
2
for d = 2. See also Ben-Artzi and Klainerman [5] for a different

approach, and Sugimoto [35], Vilela [37], Watanabe [40] for the full range 1− d
2
<
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a < 1
2
whenever d ≥ 2. Case (C) is due to Kenig, Ponce and Vega [22]. See also

Ben-Artzi and Klainerman [5] and Chihara [11].

The main concern of this paper is the optimal constant of smoothing estimates.

As for the case (B), it is known that

π22a−1Γ(1− 2a)Γ(d
2
+ a− 1)

Γ(1− a)2Γ(d
2
− a)

is the optimal constant, and the radial function is its extremiser. This result with

a = 0 and d ≥ 3 was first established by Simon [31], and Watanabe [40] extended

it to the full range of a and d. As for the case (C), Simon [31] showed that the

optimal constant is π
2
when s = 1 and d ≥ 3. As for the rest cases, the optimal

constant has remained open, but significant progress has been made in recent years

which are described below.

In estimate (1.1), the spatial weight w , the smoothing function ψ, and the

dispersion relation ϕ are assumed to be radial, and we reserve the notation

Cd(w , ψ, ϕ) := sup
f∈L2(Rd)

f ̸≡0

∫
R

∫
Rd

∣∣ψ(|D|)eitϕ(|D|)f(x)
∣∣2w(|x|)dxdt/∥f∥2L2(Rd) (1.2)

for the optimal constant. Then we know the following result :

Theorem 1.1. ([9, Theorem 1.1]) Let d ≥ 2. We have

Cd(w , ψ, ϕ) =
1

(2π)d−1
sup
k∈N0

sup
r>0

λk(r), (1.3)

where

λk(r) :=
∣∣Sd−2

∣∣rd−1ψ(r)2

|ϕ′(r)|

∫ 1

−1

Fw(r
2(1− t))pd,k(t)(1− t2)

d−3
2 dt. (1.4)

Here Fw is defined by the relation

ŵ(| · |)(ξ) = Fw(
1
2
|ξ|2)

and pd,k is the Legendre polynomial of degree k in d dimensions, which may be

defined in a number of ways, for example, via the Rodrigues formula,

(1− t2)
d−3
2 pd,k(t) = (−1)k

Γ(d−1
2
)

2kΓ(k + d−1
2
)

dk

dtk
(1− t2)k+

d−3
2 . (1.5)
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As a corollary of this result, we obtain that the optimal constant for the case (C)

with s > 1
2
and d ≥ 3 is

√
πΓ(s− 1

2
)

2Γ(s)

(See [9, Corollary 1.5]). The main purpose of this paper is to extend these results

on optimal constants to those for the free Dirac equation which is outside the

framework of Theorem 1.1.

We exhibit known facts on smoothing estimates for the Dirac equation. Let

d ≥ 2, and let N = 2[(d+1)/2]. The Dirac equation with mass m perturbed by the

potential V is expressed by{
(i∂t −H) u(x, t) = 0,

u(x, 0) = f(x) ∈ L2(Rd,CN)
(1.6)

where H = Hm + V , Hm = α · D + mβ =
∑d

j=1 αjDj + mβ and α1, α2, · · · , αd,

αd+1 = β are N × N Hermitian matrices satisfying αjαk + αkαj = 2δjkIN . Then

the solution is expressed as u(x, t) = e−itHf(x). The case when the potential V

vanishes is called the free Dirac equation. We express smoothing estimates for

equation (1.6) in the following form as (1.1) :∫
R

∫
Rd

∣∣ψ(D)e−itHf(x)
∣∣2w(x)dxdt ≤ C∥f∥2L2(Rd,CN ). (1.7)

It is known that (1.7) holds in the following cases when ψ(D) = 1 :

(D) H = Hm, w(x) = (1 + |x|2)−s (s > 1,m > 0, d = 3)

(E) H = H0 + V, w(x) = {|x|(1 + |log |x||)σ}−1 (σ > 1, d = 3)

(F) H = H1 + V, w(x) = (|x|
1
2
−ε + |x|)−2 (1

2
≫ ε > 0, d = 3)

(G) H = H0, w(x) = (1 + |x|2)−s|x|−2a (0 ≤ a < 1
2
, a+ s > 1

2
, d ≥ 2)

(H) H = Hm, w(x) = (1 + |x|2)−1+a|x|−2a (0 ≤ a < 1
2
,m > 0, d ≥ 3).

Case (D) is due to Ben-Artzi and Umeda [8]. Cases (E) and (F) are due to

D’Ancona and Fanelli [13], where V = V (x) is a singular 4 × 4 complex-valued

Hermitian matrix. Cases (G) and (H) are derived from the following uniform

resolvent estimates for Dirac operator :

sup
z∈C\R

∥∥(1 + | · |2)−
s
2 | · |−a(H0 − z)−1| · |−a(1 + |·|2)−

s
2

∥∥ ≤ Cs,a,

where 0 ≤ a < 1
2
, a+ s > 1

2
, d ≥ 2 , and

sup
z∈C\R

∥∥∥(1 + | · |2)
−1+a

2 | · |−a(Hm − z)−1| · |−a(1 + | · |2)
−1+a

2

∥∥∥ ≤ Ca,d,
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where 0 ≤ a < 1
2
,m > 0, d ≥ 3 (See [18, Theorems 4.2 and 4.3]). By these

estimates and the work of Kato [20, Lemma 3.6 and Theorem 5.1], we have cases

(G) and (H).

We should mention a new comparison principle established by Ben-Artzi, Ruzha-

nsky and Sugimoto [7] and Ruzhansky and Sugimoto [30], which relate smoothing

estimates for different type of equations. For example, by the argument in [30,

Section 8], we know that smoothing estimate (1.1) with ϕ(D) = −∆ (Schrödinger

eq.) and that with ϕ(D) =
√
−∆+m2 (relativistic Schrödinger eq.) are equivalent

to each other. Furthermore, by the spectral comparison principle in [7, Corollary

4.5], we know that smoothing estimate (1.7) with H = Hm (free Dirac eq.) is

derived from smoothing estimate (1.1) with ϕ(D) =
√
−∆+m2. Note that the

Dirac operator Hm is diagonalized as

U(D)HmU(D)−1 =

(
σ(D)IN

2
O

O −σ(D)IN
2

)
,

by the unitary operator

U(D) :=
1√
2

(√
1 +

m

σ(D)
IN +

√
1

σ(D)(σ(D) +m)
βα ·D

)
,

where σ(D) =
√
−∆+m2.

The objective of this paper is to investigate the optimal constant for (1.7).

We note that this problem remains open even for special cases. We consider the

free Dirac equation, i.e. H = Hm. The major difference between the smoothing

estimates (1.1) and (1.7) is that (1.1) is on L2(Rd) while (1.7) on L2(Rd,CN).

Also, the dispersion relation H = Hm in (1.7) is a matrix exponential that is

not a radial function, hence Theorem 1.1 cannot be directly applied to (1.7).

Our natural expectation is that Cd(w , ψ, ϕ) in (1.2) with ϕ(r) =
√
r2 +m2 is the

optimal constant of estimate (1.7) since the square of the Dirac operator Hm is

(−∆+m2)IN (See also Remark 2). Our first result (Theorem 2.1) says that it is

indeed the upper bound. But it is still unclear whether this upper bound is equal

to the optimal constant. Our second and third result (Theorems 2.2 and 2.3) says

that, it is incorrect in the case 2D and massless 3D. These main results will be

exhibited in Section 2 and proved in Section 3.
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2 Main results

In this section, we discuss the main results. The Fourier transform of f , repre-

sented by f̂ , is defined by

f̂(ξ) =

∫
Rd

f(x)e−ix·ξdx.

We assume that the spatial weight w and the smoothing function ψ in the smooth-

ing estimates (1.7) of free Dirac equation are as follows :

Assumption 1. w(| · |) : Rd\{0} → (0,∞) is assumed to be a positive and radial

function whose Fourier transform is well-defined on Rd\{0}, in which case we

write

ŵ(| · |)(ξ) = Fw(
1
2
|ξ|2) (2.1)

for some Fw : (0,∞) → C. It is assumed that Fw is locally bounded on (0,∞)

away from zero. Next, let ψ : [0,∞) → [0,∞). Furthermore, (w , ψ) are assumed

to be sufficiently regular to guarantee the continuity of λk : (0,∞) → R for each

fixed k ∈ N0, where

λk(r) :=
∣∣Sd−2

∣∣rd−2
√
r2 +m2 ψ(r)2

∫ 1

−1

Fw(r
2(1− t))pd,k(t)(1− t2)

d−3
2 dt. (2.2)

Here, pd,k is the Legendre polynomial of degree k in d dimensions defined in (1.5).

Also, we reserve the notation Cd(w , ψ,m) for the optimal constant in the smoothing

estimates (1.7) with H = Hm = α ·D +mβ :

Cd(w , ψ,m) := sup
f∈L2(Rd,CN )

f ̸≡0

∫
R

∫
Rd

∣∣ψ(|D|)e−it(α·D+mβ)f(x)
∣∣2w(|x|)dxdt/∥f∥2L2(Rd,CN ).

(2.3)

Now we are in a position to state our main results. The first one gives the upper

estimate for the optimal constant.

Theorem 2.1. ([17, Theorem 2.1]) Under Assumption 1, we have

Cd(w , ψ,m) ≤ 1

(2π)d−1
sup
k∈N0

sup
r>0

λk(r). (2.4)

There still remain the problem if the inequality (2.4) is indeed equality or not.

We gives a negative answer in the case 2D and massless 3D :
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Theorem 2.2. ([17, Theorem 2.2]) Let d = 2 and

λ̃k(r) :=
1

2

{
λ|k|(r) + λ|k+1|(r) +

m√
r2 +m2

∣∣λ|k|(r)− λ|k+1|(r)
∣∣} . (2.5)

Under Assumption 1, we have

C2(w , ψ,m) =
1

2π
sup
k∈Z

sup
r>0

λ̃k(r). (2.6)

Define

S̃k :=

{
r > 0

∣∣∣∣ λ̃k(r) = sup
ℓ∈Z

sup
s>0

λ̃ℓ(s)

}
,

and

K̃ :=
{
k ∈ Z

∣∣∣ ∣∣∣S̃k

∣∣∣ > 0
}
.

Then an extremiser exists if and only if K̃ is nonempty, in which case, all extrem-

isers can be expressed as

f̂ =
∑
k∈K̃

fk

with each fk of the form

fk(ξ) =
r−

1
2 eikθ√
2π

(
f̃
(k)
1 (r)

0

)
+
r−

1
2 ei(k+1)θ

√
2π

(
0

f̃
(k+1)
2 (r)

)
, (2.7)

where f̃
(k)
1 (r) and f̃

(k+1)
2 (r) are functions contained in L2(R+) such that

supp

{∣∣∣f̃ (k)
1

∣∣∣2 + ∣∣∣f̃ (k+1)
2

∣∣∣2} ⊆ S̃k

and they are expressed in the following form, where ϕ(r) =
√
r2 +m2 :

(i) In the case m = 0 : f̃
(k)
1 (r) and f̃

(k+1)
2 (r) are any functions.

(ii) In the case m > 0 :

f̃
(k+1)
2 (r) = r

ϕ(r)+m
f̃
(k)
1 (r) for λ|k|(r) > λ|k+1|(r),

f̃
(k)
1 (r) and f̃

(k+1)
2 (r) are any functions for λ|k|(r) = λ|k+1|(r),

f̃
(k)
1 (r) = − r

ϕ(r)+m
f̃
(k+1)
2 (r) for λ|k|(r) < λ|k+1|(r).
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Theorem 2.3. Let d = 3 and m = 0. Under Assumption 1, we have

C3(w , ψ, 0) =
1

(2π)2
sup
k∈N0

sup
r>0

λk(r) + λk+1(r)

2
. (2.8)

Define

S∗
k :=

{
r > 0

∣∣∣∣ λk(r) + λk+1(r)

2
= sup

ℓ∈N0

sup
r>0

λℓ(r) + λℓ+1(r)

2

}
,

and

K∗ := {k ∈ N0 | |S∗
k | > 0} .

Then an extremiser exists if and only if K∗ is nonempty, in which case, all ex-

tremisers can be expressed as

f̂ =
∑
k∈K∗

fk

with each fk of the form

fk(ξ) = r−1

k∑
n=−k

Y n
k (θ, φ)


f
(k,n)
1 (r)

f
(k,n)
2 (r)

f
(k,n)
3 (r)

f
(k,n)
4 (r)

+ r−1

k+1∑
n=−k−1

Y n
k+1(θ, φ)


f
(k+1,n)
1 (r)

f
(k+1,n)
2 (r)

f
(k+1,n)
3 (r)

f
(k+1,n)
4 (r)


(2.9)

where Y n
k are the spherical harmonics with d = 3 (See (3.21)), f

(k,n)
j (r) and

f
(k+1,n)
j (r) (j = 1, 2, 3, 4) are functions contained in L2(R+) such that

supp

{
k∑

n=−k

4∑
j=1

∣∣∣f (k,n)
j

∣∣∣2 + k+1∑
n=−k−1

4∑
j=1

∣∣∣f (k+1,n)
j

∣∣∣2} ⊂ S∗
k

and they are expressed in the following form :

(i) In the case λk−1(r) < λk+1(r) : f
(k,n+1)
j+1 =

√
k−n

k+n+1
f
(k,n)
j (j = 1, 3, −k ≤

n ≤ k − 1), f
(k,k)
j and f

(k,−k)
j+1 (j = 1, 3) are any functions.

(ii) In the case λk−1(r) = λk+1(r) : f
(k,n)
j (j = 1, 2, 3, 4, −k ≤ n ≤ k) are any

functions.

(iii) In the case λk(r) > λk+2(r) : f
(k+1,n)
j = −

√
k−n+1
k+n+2

f
(k+1,n+1)
j+1 (j = 1, 3, −k−

1 ≤ n ≤ k), f
(k+1,k+1)
j = f

(k+1,−k−1)
j+1 = 0 (j = 1, 3).

(iv) In the case λk(r) = λk+2(r) : f
(k+1,n)
j (r) (j = 1, 2, 3, 4, −k− 1 ≤ n ≤ k+ 1)

are any functions.
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Remark 1. In the case 2D and massless 3D, Theorems 2.2 and 2.3 say that

inequality (2.4) is not the equality in general. In fact, the massless 3D case is

obvious, and the 2D case is also easily seen from the fact that

λ̃k(r) <
1

2

{
λ|k|(r) + λ|k+1|(r) +

∣∣λ|k|(r)− λ|k+1|(r)
∣∣} = max

{
λ|k|(r), λ|k+1|(r)

}
.

Remark 2. As a matter of fact, Assumption 1 is exactly the same one as in

Theorem 1.1 with ϕ(r) =
√
r2 +m2. Since the square of the free Dirac operator

α · D + mβ gives (−∆ + m2)IN , it is natural that ϕ(r) =
√
r2 +m2 appears in

the smoothing estimates (1.7). If we put the dispersion relation ϕ(r) =
√
r2 +m2

in the smoothing estimates (1.1), this is the case of the Klein-Gordon equation.

The Klein-Gordon equation, like the Dirac equation, is one of the relativistic

Schrödinger equations. However, as can be seen from Theorems 1.1, 2.2 and 2.3,

the optimal constant of the Klein-Gordon equation is different from that of the

Dirac equation.

Remark 3. For λk(r) defined by (1.4), we know that for each k ∈ N and r > 0,

the following equation holds :

λk(r) = (2π)d
rψ(r)2

|ϕ′(r)|

∫ ∞

0

Jν(k)(rt)
2tw(t)dt,

where Jν(k) is the Bessel function of the first kind of order ν, and ν = k+ d−2
2

(See

[9]). From this fact, we know that λk(r), as defined by (1.4) and (2.2), is always

positive.

3 Proof of Main results

In this section, we prove Theorems 2.1, 2.2 and 2.3.

3.1 Preliminary

First, we present theorems which is necessary in this section. Let ξ ∈ Rd, and let

P (k,j)(ξ) (k ∈ N0, j ∈ {1, 2, · · · , ak}) be the homogeneous harmonic polynomials

of the degree k normalized on L2(Sd−1). The restriction of P (k,j) on Sd−1 is the

spherical harmonics of the degree k. Then we have the following decomposition :

Theorem 3.1. ([38, 3.6. Theorem]) Let

Nk(Rd) =

{
ak∑
j=1

P (k,j)(ξ)f
(k,j)
0 (|ξ|)|ξ|−k− d−1

2

∣∣∣∣∣ f (k,j)
0 ∈ L2(R+)

}
.
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Then the complete orthogonal decomposition

L2(Rn) =
∞⊕
k=0

Nk(Rd)

holds in the sense that

(a) each subspace Nk(Rd) is closed,

(b) Nk1(Rd) is orthogonal to Nk2(Rd) if k1 ̸= k2;

(c) every f ∈ L2(Rd) can be written as a sum

f =
∞∑
k=0

fk , fk ∈ Nk(Rd),

with convergence in L2(Rd).

From this theorem, any f ∈ L2(Rd) can be expressed as

f(ξ) =
∞∑
k=0

ak∑
j=1

P (k,j)( ξ
|ξ|)f

(k,j)
0 (|ξ|)|ξ|−

d−1
2 , f

(k,j)
0 ∈ L2(R+). (3.1)

We also use the following theorem, where pd,k is the Legendre polynomial of

degree k in d dimensions defined in (1.5).

Theorem 3.2. (Funk-Hecke ([9, Theorem 2.1] etc.)) Let d ≥ 2, k ∈ N0 and P be

a spherical harmonic of degree k. Then∫
Sd−1

F (θ · ω)P (ω)dσ(ω) = µkP (θ)

for any θ ∈ Sd−1 and any function F ∈ L1([−1, 1], (1− t2)
d−3
2 ). Here, the constant

µk given by

µk =
∣∣Sd−2

∣∣ ∫ 1

−1

F (t)pd,k(t)(1− t2)
d−3
2 dt.

3.2 Proof of Theorem 2.1

Let λ = supk∈N0
supr>0 λk(r), Aξ = α · ξ +mβ, and ξ ∈ Rd. Consider the linear

operator given by

(Sf)(x, t) = w(|x|)
1
2

∫
Rd

eix·ξψ(|ξ|)e−itAξf(ξ)dξ

10



for a CN -valued function f : Rd → CN , where e−itAξ is a matrix exponential

e−itAξ =
∞∑
k=0

(−it)k

k!
Ak

ξ .

Note that S is an operator from L2(Rd,CN) to L2(Rd+1,CN). By Plancherel’s

theorem we have

∥S∥2 = (2π)dCd(w , ψ,m). (3.2)

Hence, it is enough to show that ∥S∥2 ≤ 2πλ.

From the definitions of α and β, Ak
ξ is an N × N Hermitian matrix, hence we

have the expression of the adjoint operator S∗ :

(S∗g)(ξ) = ψ(|ξ|)
∫
Rd+1

w(|x|)
1
2 e−ix·ξeitAξg(x, t)dxdt.

Then by calculation, we have

(S∗Sf)(ξ) = ψ(|ξ|)
∫
Rd

(∫
R
eitAξe−itAηgξ(η)dt

)
dη, (3.3)

where gξ(η) = ŵ(| · |)(ξ − η)ψ(|η|)f(η). We set

I±(ξ) :=
1

2

IN ± 1√
|ξ|2 +m2

Aξ

 . (3.4)

Then I±(ξ) is an orthogonal projection, and any f ∈ L2(Rd,CN) is orthogonally

decomposed as

f(ξ) = I+(ξ)f(ξ) + I−(ξ)f(ξ), I+f ⊥ I−f.

We note that I+(ξ) and I−(ξ) are commutative. Since Aξ = α · ξ + mβ =√
|ξ|2 +m2{I+(ξ)− I−(ξ)}, we have

e−itAη = e−itϕ(|η|){I+(η)−I−(η)} = e−itϕ(|η|)I+(η)eitϕ(|η|)I−(η),

with ϕ(r) =
√
r2 +m2, hence, we have

e−itAηgξ(η) = e−itϕ(|η|)I+(η)eitϕ(|η|)I−(η) {I+(η)gξ(η) + I−(η)gξ(η)} .

Furthermore, since

eitϕ(|η|)I−(η)I+(η) =
∞∑
k=0

{itϕ(|η|)}k

k!
I−(η)

kI+(η) = I+(η),

eitϕ(|η|)I−(η)I−(η) =
∞∑
k=0

{itϕ(|η|)}k

k!
I−(η)

k+1 =
∞∑
k=0

{itϕ(|η|)}k

k!
I−(η) = eitϕ(|η|)I−(η),

11



we have

e−itAηgξ(η) = e−itϕ(|η|)I+(η)
{
I+(η) + eitϕ(|η|)I−(η)

}
gξ(η).

Similarly, we have :

eitAξe−itAηgξ(η) =
[
e−it{ϕ(|η|)−ϕ(|ξ|)}I+(ξ)I+(η) + e−it{ϕ(|η|)+ϕ(|ξ|)}I−(ξ)I+(η)

+ eit{ϕ(|η|)+ϕ(|ξ|)}I+(ξ)I−(η) + eit{ϕ(|η|)−ϕ(|ξ|)}I−(ξ)I−(η)
]
gξ(η).

Plugging it into (3.3) and by polar coordinate transformation η = rθ (r = |η|, θ =
η
|η|), we have

(S∗Sf)(ξ) = 2πψ(|ξ|)
∫
Sd−1

[ ∫ ∞

0

δ(ϕ(r)− ϕ(|ξ|))rd−1I+(ξ)I+(rθ)gξ(rθ)dr

+

∫ ∞

0

δ(ϕ(r) + ϕ(|ξ|))rd−1I−(ξ)I+(rθ)gξ(rθ)dr

+

∫ ∞

0

δ(ϕ(r) + ϕ(|ξ|))rd−1I+(ξ)I−(rθ)gξ(rθ)dr

+

∫ ∞

0

δ(ϕ(r)− ϕ(|ξ|))rd−1I−(ξ)I−(rθ)gξ(rθ)dr

]
dσ(θ), (3.5)

where we have used the fact∫
R
e−itsdt =

∫
R
eitsdt = 2πδ(s).

Here, ϕ(r) + ϕ(|ξ|) > 0 ( r ≥ 0, |ξ| > 0 ), if |ξ| > 0 then δ(ϕ(r) + ϕ(|ξ|)) = 0 for

any r ≥ 0. Therefore, the second and third terms on the right hand side of (3.5)

disappear and we have

(S∗Sf)(ξ) = 2πψ(|ξ|)
∫
Sd−1

∫ ∞

0

δ(ϕ(r)− ϕ(|ξ|))hξθ(r)drdσ(θ),

where

hξθ(r) := rd−1{I+(ξ)I+(rθ) + I−(ξ)I−(rθ)}gξ(rθ).

Since ϕ(r) =
√
r2 +m2 is injective and differentiable on r ∈ R+, we have∫ ∞

0

δ(ϕ(r)− ϕ(|ξ|))hξθ(r)dr =
hξθ(|ξ|)
|ϕ′(|ξ|)|

= |ξ|d−2
√

|ξ|2 +m2
{
I+(ξ)I+(|ξ|θ) + I−(ξ)I−(|ξ|θ)

}
ŵ(| · |)(ξ − |ξ|θ)ψ(|ξ|)f(|ξ|θ).

Using it and the fact ŵ(| · |)(ξ − |ξ|θ) = Fw(
1
2
|ξ − |ξ|θ|2) = Fw(|ξ|2(1− ξ

|ξ| · θ)), we
have

(S∗Sf)(ξ) = 2π|ξ|d−2
√

|ξ|2 +m2ψ(|ξ|)2×∫
Sd−1

Fw(|ξ|2(1− ξ
|ξ| · θ))

{
I+(ξ)I+(|ξ|θ) + I−(ξ)I−(|ξ|θ)

}
f(|ξ|θ)dσ(θ).
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Let J(r) = 2πrd−2
√
r2 +m2ψ(r)2. Since I±(ξ) is Hermitian, we have

(S∗Sf, f)L2(Rd,CN )

=

∫
Rd

J(|ξ|)
(∫

Sd−1

Fw(|ξ|2(1− ξ
|ξ| · θ))I+(|ξ|θ)f(|ξ|θ)dσ(θ)

)
I+(ξ)f(ξ)dξ

+

∫
Rd

J(|ξ|)
(∫

Sd−1

Fw(|ξ|2(1− ξ
|ξ| · θ))I−(|ξ|θ)f(|ξ|θ)dσ(θ)

)
I−(ξ)f(ξ)dξ. (3.6)

Applying spherical harmonic composition (3.1) to them, we have

I±(ξ)f(ξ) =
∞∑
k=0

ak∑
j=1

P (k,j)( ξ
|ξ|)|ξ|

− d−1
2 f

(k,j)
± (|ξ|), f

(k,j)
± ∈ L2(R+,CN). (3.7)

Then we have∫
Sd−1

Fw(|ξ|2(1− ξ
|ξ| · θ))I±(|ξ|θ)f(|ξ|θ)dσ(θ)

=
∞∑
k=0

ak∑
j=1

|ξ|−
d−1
2

(∫
Sd−1

Fw(|ξ|2(1− ξ
|ξ| · θ))P

(k,j)(θ)dσ(θ)

)
f
(k,j)
± (|ξ|)

=
∞∑
k=0

ak∑
j=1

|ξ|−
d−1
2 µk(|ξ|)P (k,j)( ξ

|ξ|)f
(k,j)
± (|ξ|) (3.8)

by Funk-Hecke theorem (Theorem 3.2), where

µk(r) =
∣∣Sd−2

∣∣ ∫ 1

−1

Fw(r
2(1− t))pd,k(t)(1− t2)

d−3
2 dt.

Since 2πλk(r) = J(r)µk(r) by (2.2), we have

J(|ξ|)
∫
Sd−1

Fw(|ξ|2(1− ξ
|ξ| · θ))I±(|ξ|θ)f(|ξ|θ)dσ(θ)

= 2π
∞∑
k=0

ak∑
j=1

|ξ|−
d−1
2 λk(|ξ|)P (k,j)( ξ

|ξ|)f±(|ξ|)

by (3.8). Therefore, we have∫
Rd

J(|ξ|)
(∫

Sd−1

Fw(|ξ|2(1− ξ
|ξ| · θ))I±(|ξ|θ)f(|ξ|θ)dσ(θ)

)
I±(ξ)f(ξ)dξ

= 2π
∞∑
k=0

ak∑
j=1

∫
Rd

|ξ|−(d−1)λk(|ξ|)P (k,j)( ξ
|ξ|)f

(k,j)
± (|ξ|)

∞∑
ℓ=0

aℓ∑
n=1

P (ℓ,n)( ξ
|ξ|)f

(ℓ,n)
± (|ξ|)dξ

= 2π
∞∑
k=0

ak∑
j=1

∞∑
ℓ=0

aℓ∑
n=1

∫ ∞

0

λk(r)

(∫
Sd−1

P (k,j)(θ)P (ℓ,n)(θ)dσ(θ)

)
f
(k,j)
± (r)f

(ℓ,n)
± (r)dr

= 2π
∞∑
k=0

ak∑
j=1

∫ ∞

0

λk(r)
∣∣∣f (k,j)

± (r)
∣∣∣2dr.
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Combining it with (3.6), we have

∥Sf∥2L2(Rd+1,CN ) = (S∗Sf, f)L2(Rd,CN )

= 2π
∞∑
k=0

ak∑
j=1

∫ ∞

0

λk(r)

(∣∣∣f (k,j)
+ (r)

∣∣∣2 + ∣∣∣f (k,j)
− (r)

∣∣∣2) dr (3.9)

≤ 2πλ
∞∑
k=0

ak∑
j=1

∫ ∞

0

(∣∣∣f (k,j)
+ (r)

∣∣∣2 + ∣∣∣f (k,j)
− (r)

∣∣∣2) dr
= 2πλ

(
∥I+f∥2L2(Rd,CN ) + ∥I−f∥2L2(Rd,CN )

)
= 2πλ∥f∥2L2(Rd,CN ).

The proof is complete.

3.3 Proof of Theorem 2.2

Let λ̃ = supk∈Z supr>0 λ̃k(r). By (3.2), it is enough to show that ∥S∥2 = 2πλ̃ for

the optimal constant (2.6). Since the spherical harmonics with d = 2 are expressed

as the Fourier series, (3.7) and (3.9) are expressed as follows :

I±(ξ)f(ξ) = r−
1
2

∑
k∈Z

eikθ√
2π
f
(k)
± (r), f

(k)
± ∈ L2(R+,C2), (3.10)

∥Sf∥2L2(R3,C2) = 2π
∑
k∈Z

∫ ∞

0

λ|k|(r)

(∣∣∣f (k)
+ (r)

∣∣∣2 + ∣∣∣f (k)
− (r)

∣∣∣2) dr, (3.11)

where ξ = (r sin θ, r cos θ). Now, we set

f(ξ) =

(
f1(ξ)

f2(ξ)

)
= r−

1
2

∑
k∈Z

eikθ√
2π

(
f̃
(k)
1 (r)

f̃
(k)
2 (r)

)
(3.12)

and rewrite (3.10) in terms of f̃
(k)
1 (r) and f̃

(k)
2 (r). In the case d = 2, Aξ = α·ξ+mβ

is represented by the Pauli matrices

α1 = σ1 =

(
0 1

1 0

)
, α2 = σ2 =

(
0 −i
i 0

)
, β = σ3 =

(
1 0

0 −1

)
, (3.13)

and by (3.4), we have

I±(ξ)f(ξ) =
1

2

(
(1± m

ϕ(r)
)f1(ξ)± r

ϕ(r)
e−iθf2(ξ)

(1∓ m
ϕ(r)

)f2(ξ)± r
ϕ(r)

eiθf1(ξ)

)
,
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where ϕ(r) =
√
r2 +m2. Plugging (3.12) into it, we have

I±(ξ)f(ξ) =
1

2
r−

1
2

∑
k∈Z

eikθ√
2π

(
(1± m

ϕ(r)
)f̃

(k)
1 (r)± r

ϕ(r)
f̃
(k+1)
2 (r)

(1∓ m
ϕ(r)

)f̃
(k)
2 (r)± r

ϕ(r)
f̃
(k−1)
1 (r)

)
.

From it and (3.10), we obtain

f
(k)
± (r) =

1

2

(
(1± m

ϕ(r)
)f̃

(k)
1 (r)± r

ϕ(r)
f̃
(k+1)
2 (r)

(1∓ m
ϕ(r)

)f̃
(k)
2 (r)± r

ϕ(r)
f̃
(k−1)
1 (r)

)
. (3.14)

Plugging it into (3.11), we have

∥Sf∥2L2(R3,C2) = 2π
∑
k∈Z

∫ ∞

0

[
1

2

{(
1 +

m2

ϕ(r)2

)
λ|k|(r) +

r2

ϕ(r)2
λ|k+1|(r)

} ∣∣∣f̃ (k)
1 (r)

∣∣∣2
+

rm

ϕ(r)2
(
λ|k|(r)− λ|k+1|(r)

)
Re f̃

(k)
1 (r)f̃

(k+1)
2 (r)

+
1

2

{(
1 +

m2

ϕ(r)2

)
λ|k+1|(r) +

r2

ϕ(r)2
λ|k|(r)

} ∣∣∣f̃ (k+1)
2 (r)

∣∣∣2]dr. (3.15)

For simplicity, let x = f̃
(k)
1 (r), y = f̃

(k+1)
2 (r),

a = ak(r) =
1

2

{(
1 +

m2

ϕ(r)2

)
λ|k|(r) +

r2

ϕ(r)2
λ|k+1|(r)

}
,

c = ck(r) =
rm

2ϕ(r)2
(
λ|k|(r)− λ|k+1|(r)

)
,

b = bk(r) =
1

2

{(
1 +

m2

ϕ(r)2

)
λ|k+1|(r) +

r2

ϕ(r)2
λ|k|(r)

}
and replace the integrand on the right hand side of (3.15) by a|x|2+2cRe xy+b|y|2.
We claim the following, where λ̃k = λ̃k(r) is defined by (2.5) :

Claim 1. (i) In the case c = 0, we have the identity

a|x|2 + 2cRe xy + b|y|2 = λ̃k(|x|2 + |y|2). (3.16)

(ii) In the case c ̸= 0, we have the inequality

a|x|2 + 2cRe xy + b|y|2 ≤ λ̃k(|x|2 + |y|2), (3.17)

where we have the equality if and only if y = r
ϕ(r)+m

x for λ|k|(r) > λ|k+1|(r)

and x = − r
ϕ(r)+m

y for λ|k|(r) < λ|k+1|(r).
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In fact, (3.16) is straightforward. As for (3.17), we set st = c (s, t ∈ R), then

a|x|2 + 2cRe xy + b|y|2 = a|x|2 + 2Re(sx)(ty) + b|y|2

≤ (a+ s2)|x|2 + (b+ t2)|y|2,

where we have the equality if and only if sx = ty. By taking s, t such that

a+ s2 = b+ t2 and st = c, we have Claim 1 (ii).

Applying Claim 1 to (3.15) :

∥Sf∥2L2(R3,C2) =

2π
∑
k∈Z

∫ ∞

0

{
ak(r)

∣∣∣f̃ (k)
1 (r)

∣∣∣2 + 2ck(r) Re f̃
(k)
1 (r)f̃

(k+1)
2 (r) + bk(r)

∣∣∣f̃ (k+1)
2 (r)

∣∣∣2} dr
≤ 2π

∑
k∈Z

∫ ∞

0

λ̃k(r)

{∣∣∣f̃ (k)
1 (r)

∣∣∣2 + ∣∣∣f̃ (k+1)
2 (r)

∣∣∣2} dr (3.18)

≤ 2πλ̃
∑
k∈Z

∫ ∞

0

{∣∣∣f̃ (k)
1 (r)

∣∣∣2 + ∣∣∣f̃ (k+1)
2 (r)

∣∣∣2} dr
= 2πλ̃∥f∥2L2(R2,C2).

Therefore, ∥S∥2 ≤ 2πλ̃. Next, by the Assumption 1 of λk(r) and the definition of

λ̃k(r), we have

∀ε > 0, ∃k0 ∈ Z, ∃r0 > 0, ∃δ > 0, |r − r0| < δ ⇒ λ̃k0(r) ≥ λ̃− ε.

Therefore, we choose f ∈ L2(R2,C2) in the form of

f(ξ) =
r−

1
2 eik0θ√
2π

(
f̃
(k0)
1 (r)

0

)
+
r−

1
2 ei(k0+1)θ

√
2π

(
0

f̃
(k0+1)
2 (r)

)
,

where f̃
(k0)
1 (r) and f̃

(k0+1)
2 (r) are such that∣∣∣f̃ (k0)

1

∣∣∣2 + ∣∣∣f̃ (k0+1)
2

∣∣∣2 ̸≡ 0, supp
(∣∣∣f̃ (k0)

1

∣∣∣2 + ∣∣∣f̃ (k0+1)
2

∣∣∣2) ⊂ (r0 − δ, r0 + δ),

f̃
(k0+1)
2 (r) = r

ϕ(r)+m
f̃
(k0)
1 (r) for λ|k|(r) ≥ λ|k+1|(r),

f̃
(k0)
1 (r) = − r

ϕ(r)+m
f̃
(k0+1)
2 (r) for λ|k|(r) < λ|k+1|(r).

Then, by Claim 1 and (3.18), we have

∥Sf∥2L2(R3,C2) = 2π

∫ r0+δ

r0−δ

λ̃k0(r)

{∣∣∣f̃ (k0)
1 (r)

∣∣∣2 + ∣∣∣f̃ (k0+1)
2 (r)

∣∣∣2} dr
≥ 2π(λ̃− ε)∥f∥2L2(R2,C2).
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Since ∥S∥2 = 2πλ̃. We have (2.6).

Regarding extremisers, it suffices to determine functions f such that

∥Sf∥2L2(R3,C2) = ∥S∥2∥f∥2L2(R2C2). Denote f by (3.12). Then, we have

∥f∥2L2(R2,C2) =
∑
k∈Z

∫ ∞

0

Fk(r)dr, (3.19)

∥Sf∥2L2(R3,C2) = 2πλ̃
∑
k∈Z

∫ ∞

0

Fk(r)dr,

where Fk(r) =
∣∣∣f̃ (k)

1 (r)
∣∣∣2 + ∣∣∣f̃ (k+1)

2 (r)
∣∣∣2. On the other hand, by (3.18) we have

∥Sf∥2L2(R3,C2) ≤ 2π
∑
k∈Z

∫ ∞

0

λ̃k(r)Fk(r)dr.

Therefore, we have

0 ≥ 2π
∑
k∈Z

∫ ∞

0

(λ̃− λ̃k(r))Fk(r)dr.

Since the integrand is nonnegative, for any k ∈ Z we have

(λ̃− λ̃k(r))Fk(r) = 0 a.e. r > 0. (3.20)

If k ̸∈ K̃, then by definition of K̃, we have λ̃ > λ̃k(r) = 0 a.e. r > 0, and hence

Fk(r) = 0 a.e. r > 0. Therefore, if K̃ is empty, then Fk(r) = 0 a.e. r > 0 for

any k ∈ Z. Hence, f ≡ 0 by (3.19), so there is no extremiser. Therefore, it is

a necessary condition for the existence of an extremiser that K̃ is nonempty set.

Furthermore, if suppFk ̸⊆ S̃k, (3.20) does not hold, so suppFk ⊆ S̃k must hold for

an extremiser to exist. Also, if Theorem 2.2 (ii) is not satisfied, then, by Claim 1

(ii) and (3.18), we have

∥Sf∥2L2(R3,C2) < ∥S∥2∥f∥2L2(R2,C2),

so f is not extremiser.

Conversely, if K̃ is nonempty, suppFk ⊆ S̃k and Theorem 2.2 (ii) is satisfied, if

f =
∑

k∈K̃ fk, with fk as in (2.7), then, by Claim 1 and (3.18), we have

∥Sf∥2L2(R3,C2) = 2π
∑
k∈Z

∫ ∞

0

λ̃k(r)Fk(r)dr

= 2π
∑
k∈K̃

∫
S̃k

λ̃k(r)Fk(r)dr

= 2πλ̃
∑
k∈K̃

∫
S̃k

Fk(r)dr

= ∥S∥2∥f∥2L2(R2,C2).

Therefore, the extremiser exists and it is expressed by f̂ =
∑

k∈K̃ fk.
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3.4 Proof of Theorem 2.3

Let λ∗ = 1
2
supk∈Z supr>0{λk(r) + λk+1(r)}. By (3.2), it is enough to show that

∥S∥2 = 2πλ∗ for the optimal constant (2.8). The spherical harmonics with d = 3

are expressed as R3 ∋ ξ = (r sin θ cosφ, r sin θ sinφ, r cos θ) as follows (See [1]):

Y n
k = Y n

k (θ, φ) =

√
(2k + 1)(k − n)!

4π(k + n)!
einφP n

k (cos θ), (3.21)

where k ∈ N0, n ∈ {−k,−k + 1, · · · , k − 1, k}, P n
k is the associated Legendre

polynomial. P n
k is expressed as follows :

P n
k (x) =

(−1)n

2kk!
(1− x2)n/2

dk+n

dxk+n
(x2 − 1)k.

By Y n
k , (3.7) and (3.9) are expressed as follows :

I±(ξ)f(ξ) = r−1

∞∑
k=0

k∑
n=−k

Y n
k f

(k,n)
± (r), f

(k,n)
± ∈ L2(R+,C4), (3.22)

∥Sf∥2L2(R4,C4) = 2π
∞∑
k=0

k∑
n=−k

∫ ∞

0

λk(r)

(∣∣∣f (k,n)
+ (r)

∣∣∣2 + ∣∣∣f (k,n)
− (r)

∣∣∣2) dr. (3.23)

Now, we set

f(ξ) =


f1(ξ)

f2(ξ)

f3(ξ)

f4(ξ)

 = r−1

∞∑
k=0

k∑
n=−k

Y n
k


f
(k,n)
1 (r)

f
(k,n)
2 (r)

f
(k,n)
3 (r)

f
(k,n)
4 (r)

 (3.24)

and rewrite f
(k,n)
± = f

(k,n)
± (r) of (3.22) in terms of f

(k,n)
j = f

(k,n)
j (r) (j = 1, 2, 3, 4).

In the case massless 3D, Aξ = α · ξ is expressed as follows :

αj =

(
O2 σj
σj O2

)
(j = 1, 2, 3),

where σj are the Pauli matrices (3.13), and by (3.4) with m = 0, we have

I±(ξ)f(ξ) =


f±1(ξ)

f±2(ξ)

f±3(ξ)

f±4(ξ)

 =
1

2


f1(ξ)± (sin θe−iφf4(ξ) + cos θf3(ξ))

f2(ξ)± (sin θeiφf3(ξ)− cos θf4(ξ))

f3(ξ)± (sin θe−iφf2(ξ) + cos θf1(ξ))

f4(ξ)± (sin θeiφf1(ξ)− cos θf2(ξ))

 .
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Plugging (3.24) into it, we have

I±(ξ)f(ξ) =
r−1

2

∞∑
k=0

k∑
n=−k

Y n
k


f
(k,n)
1 (r)± (sin θe−iφf

(k,n)
4 (r) + cos θf

(k,n)
3 (r))

f
(k,n)
2 (r)± (sin θeiφf

(k,n)
3 (r)− cos θf

(k,n)
4 (r))

f
(k,n)
3 (r)± (sin θe−iφf

(k,n)
2 (r) + cos θf

(k,n)
1 (r))

f
(k,n)
4 (r)± (sin θeiφf

(k,n)
1 (r)− cos θf

(k,n)
2 (r))

 .

(3.25)

To rewrite the right hand side of (3.25) into the form like (3.22), we write

Y n
k sin θe±iφ and Y n

k cos θ in the form of a linear combination of Y n
k . For this

purpose, we use the following recurrence properties for the associated Legendre

polynomial P n
k (See [14]):

xP n
k (x) =

1
2k+1

{
(k − n+ 1)P n

k+1(x) + (k + n)P n
k−1(x)

}
,

√
1− x2P n

k (x)

= 1
2k+1

{
(k − n+ 1)(k − n+ 2)P n−1

k+1 (x)− (k + n− 1)(k + n)P n−1
k−1 (x)

}
,

√
1− x2P n

k (x) =
−1

2k+1

{
P n+1
k+1 (x)− P n+1

k−1 (x)
}
,

(3.26)

where k ∈ N0, n ∈ {−k,−k + 1, · · · , k − 1, k} and P 0
−1 = 0. Plugging (3.26) into

Y n
k sin θe±iφ and Y n

k cos θ with x = cos θ, we have
Y n
k sin θe−iφ = a−n

k Y n−1
k+1 − an−1

k−1Y
n−1
k−1 ,

Y n
k sin θeiφ = −ankY n+1

k+1 + a−n−1
k−1 Y n+1

k−1 ,

Y n
k cos θ = bnkY

n
k+1 + bnk−1Y

n
k−1,

(3.27)

where a
n
k = a(k,n) =

√
(k+n+1)(k+n+2)
(2k+1)(2k+3)

,

bnk = b(k,n) =
√

(k+n+1)(k−n+1)
(2k+1)(2k+3)

.

Plugging it into (3.25), we have

f
(k,n)
±

=
1

2


f
(k,n)
1 ±

{
a−n−1
k−1 f

(k−1,n+1)
4 − ankf

(k+1,n+1)
4 + bnk−1f

(k−1,n)
3 + bnkf

(k+1,n)
3

}
f
(k,n)
2 ∓

{
an−1
k−1f

(k−1,n−1)
3 − a−n

k f
(k+1,n−1)
3 + bnk−1f

(k−1,n)
4 + bnkf

(k+1,n)
4

}
f
(k,n)
3 ±

{
a−n−1
k−1 f

(k−1,n+1)
2 − ankf

(k+1,n+1)
2 + bnk−1f

(k−1,n)
1 + bnkf

(k+1,n)
1

}
f
(k,n)
4 ∓

{
an−1
k−1f

(k−1,n−1)
1 − a−n

k f
(k+1,n−1)
1 + bnk−1f

(k−1,n)
2 + bnkf

(k+1,n)
2

}
 .

(3.28)
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Plugging (3.28) into (3.23), we have

∥Sf∥2L2(R4,C4) = 2π
∞∑
k=0

k∑
n=−k

∫ ∞

0

1

2

[
{
C(k,n)

∣∣∣f (k,n)
1

∣∣∣2 + 2D(k,n) Re f
(k,n)
1 f

(k,n+1)
2 + C(k,−n)

∣∣∣f (k,n)
2

∣∣∣2}
+

{
C(k,n)

∣∣∣f (k,n)
3

∣∣∣2 + 2D(k,n) Re f
(k,n)
3 f

(k,n+1)
4 + C(k,−n)

∣∣∣f (k,n)
4

∣∣∣2}]dr
= 2π

∞∑
k=0

∫ ∞

0

λk + λk+1

2

{∣∣∣f (k,k)
1

∣∣∣2 + ∣∣∣f (k,−k)
2

∣∣∣2 + ∣∣∣f (k,k)
3

∣∣∣2 + ∣∣∣f (k,−k)
4

∣∣∣2} dr
+ 2π

∞∑
k=1

k−1∑
n=−k

∫ ∞

0

1

2

{
Re tf

(k,n)
u A(k,n)f (k,n)

u +Re tf
(k,n)
ℓ A(k,n)f

(k,n)
ℓ

}
dr, (3.29)

where

C(k,n) = C(k,n)(r) = λk(r) +
k + n+ 1

2k + 1
λk+1(r) +

k − n

2k + 1
λk−1(r),

D(k,n) = D(k,n)(r) =

√
(k − n)(k + n+ 1)

2k + 1
(λk+1(r)− λk−1(r)) ,

f (k,n)
u =

(
f
(k,n)
1

f
(k,n+1)
2

)
, f

(k,n)
ℓ =

(
f
(k,n)
3

f
(k,n+1)
4

)
,

A(k,n) =

(
C(k,n) D(k,n)

D(k,n) C(k,−n−1)

)
.

(a) In the case λk+1 = λk−1 : we have the identity

Re tf
(k,n)
u A(k,n)f (k,n)

u = (λk + λk+1)
∣∣f (k,n)

u

∣∣2.
(b) In the case λk+1 ̸= λk−1 : The eigenvalues of A(k,n) are λk + λk±1. The

eigenvectors for λk + λk+1 are(√
k + n+ 1√
k − n

)
t, (t ∈ C)

and those for λk + λk−1 are( √
k − n

−
√
k + n+ 1

)
t, (t ∈ C).

Therefore, in the case λk+1 > λk−1, we have the inequality

Re tf
(k,n)
u A(k,n)f (k,n)

u ≤ (λk + λk+1)
∣∣f (k,n)

u

∣∣2,
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where we have the equality if and only if f
(k,n+1)
2 =

√
k−n

k+n+1
f
(k,n)
1 , and in the

case λk+1 < λk−1, we have the inequality

Re tf
(k,n)
u A(k,n)f (k,n)

u ≤ (λk + λk−1)
∣∣f (k,n)

u

∣∣2,
where we have the equality if and only if f

(k,n)
1 = −

√
k−n

k+n+1
f
(k,n+1)
2 .

By (a) and (b), We claim the following :

Claim 2. (i) In the case λk+1 > λk−1, we have the inequality

k−1∑
n=−k

1

2
Re tf

(k,n)
u A(k,n)f (k,n)

u ≤ λk + λk+1

2

k−1∑
n=−k

∣∣f (k,n)
u

∣∣2
=
λk + λk+1

2

k−1∑
n=−k

{∣∣∣f (k,n)
1

∣∣∣2 + ∣∣∣f (k,n+1)
2

∣∣∣2} ,
where we have the equality if and only if f

(k,n+1)
2 =

√
k−n

k+n+1
f
(k,n)
1 (−k ≤

n ≤ k − 1).

(ii) In the case λk+1 = λk−1, we have the identity

k−1∑
n=−k

1

2
Re tf

(k,n)
u A(k,n)f (k,n)

u =
λk + λk+1

2

k−1∑
n=−k

{∣∣∣f (k,n)
1

∣∣∣2 + ∣∣∣f (k,n+1)
2

∣∣∣2} ,
(iii) In the case λk+1 < λk−1, we have the inequality

k−1∑
n=−k

1

2
Re tf

(k,n)
u A(k,n)f (k,n)

u ≤ λk + λk−1

2

k−1∑
n=−k

{∣∣∣f (k,n)
1

∣∣∣2 + ∣∣∣f (k,n+1)
2

∣∣∣2} ,
where we have the equality if and only if f

(k,n)
1 = −

√
k−n

k+n+1
f
(k,n+1)
2 (−k ≤

n ≤ k − 1).

The same is true for
k−1∑
n=−k

1

2
Re tf

(k,n)
ℓ A(k,n)f

(k,n)
ℓ .
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We set λ∗k(r) =
1
2
{λk(r) + max{λk+1(r), λk−1(r)}}, applying Claim 2 to (3.29) :

∥Sf∥2L2(R4,C4)

= 2π
∞∑
k=0

∫ ∞

0

λk + λk+1

2

{∣∣∣f (k,k)
1

∣∣∣2 + ∣∣∣f (k,−k)
2

∣∣∣2 + ∣∣∣f (k,k)
3

∣∣∣2 + ∣∣∣f (k,−k)
4

∣∣∣2} dr
+ 2π

∞∑
k=1

k−1∑
n=−k

∫ ∞

0

1

2

{
Re tf

(k,n)
u A(k,n)f (k,n)

u +Re tf
(k,n)
ℓ A(k,n)f

(k,n)
ℓ

}
dr

≤ 2π
∞∑
k=0

k∑
n=−k

∫ ∞

0

λ∗k(r)

{
4∑

j=1

∣∣∣f (k,n)
j (r)

∣∣∣2} dr (3.30)

≤ 2πλ∗
∞∑
k=0

k∑
n=−k

∫ ∞

0

{
4∑

j=1

∣∣∣f (k,n)
j (r)

∣∣∣2} dr
= 2πλ∗∥f∥2L2(R3,C4).

Therefore, ∥S∥ ≤ 2πλ∗. Next, by the Assumption 1 of λk(r), we have

∀ε > 0, ∃k0 ∈ Z, ∃r0 > 0, ∃δ > 0, |r − r0| < δ ⇒ λk0(r) + λk0+1(r)

2
≥ λ∗ − ε.

Therefore, we choose f ∈ L2(R3,C4) in the form of

f(ξ) = r−1Y (k0,k0)(θ, φ)


f
(k0,k0)
1 (r)

0

0

0


are such that

f
(k0,k0)
1 (r) ̸≡ 0, supp f

(k0,k0)
1 ⊂ (r0 − δ, r0 + δ).

Then, by (3.29), we have

∥Sf∥2L2(R4,C4) = 2π

∫ r0+δ

r0−δ

λk0(r) + λk0+1(r)

2

∣∣∣f (k0,k0)
1 (r)

∣∣∣2
≥ 2π(λ∗ − ε)∥f∥2L2(R3,C4).

Since ∥S∥2 = 2πλ∗. Regarding extremisers, A(k0,n) and A(k0+1,n) have λk0 + λk0+1

as an eigenvalue, Claim 2 and (3.29), we have extremisers of the Theorem 2.3, as

we discussed in the same way as Theorem 2.2.
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