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Preface

This thesis studies Macdonald-Koornwinder polynomials through the representation theory of affine
Hecke algebras, mainly focusing on the structure of Koornwinder polynomials and their behavior under
parameter specialization.

Macdonald-Koornwinder polynomials are multivariable q-orthogonal polynomials associated to each
affine root system, which integrate Macdonald polynomials introduced by Macdonald [M87] in the late
1980s and Koornwinder polynomials introduced by Koornwinder [Ko92] in the early 1990s. Here, the
word “affine root system” means that in the sense of Macdonald [M71, M03]. Macdonald-Koornwinder
polynomials appear in various branches of mathematics such as integrable systems, representation theory
and mathematical physics, and form an important research subject in recent years.

Today, Macdonald-Koornwinder polynomials are formulated by the Macdonald-Cherednik theory,
which is based on the representation theory of affine Hecke algebras. This theory was first developed for
untwisted affine root systems by Cherednik [C92a, C95a, C95b, C95c]. By the works of Noumi [N95], Sahi
[Sa99, Sa00], Stokman [St00] and others, the Macdonald-Cherednik theory is extended to non-reduced
affine root systems, particularly to the type (C∨

n , Cn) in the sense of Macdonald [M71, M03], and that
one can recover Koornwinder polynomials as Macdonald polynomials of type (C∨

n , Cn).
Koornwinder polynomials, the main object of this thesis, are q-orthogonal polynomials associated to

the affine root systems of type (C∨
n , Cn). Let us only introduce the symbol for them, and refer to § 1.3.1

for the precise explanation. Koornwinder polynomials (precisely speaking, the symmetric Koornwinder
polynomials) are Laurent polynomials of n-variable, attached to partitions λ (dominant weights of type
Cn), and have six complex or formal parameters q, t, tn, t0, un, u0 (if n = 1, then we omit t and have five
parameters). In this thesis, the monic symmetric Koornwinder polynomial of variable x = (x1, . . . , xn)
attached to λ is denoted as

Pλ(x) = Pλ(x; q, t, tn, t0, un, u0).

The five parameters t, tn, t0, un, u0 will be called the Hecke parameter of Koornwinder polynomials.

Abstract of Chapter 1

In Chapter 1, we give an introduction to Macdonald-Koornwinder polynomials. Since these polynomials
are multivariate analogue of one-variable q-hypergeometric orthogonal polynomials, we start with § 1.1
a brief recollection on hypergeometric orthogonal polynomials and their q-analogues. The total picture
of these orthogonal families are depicted in Askey scheme of hypergeometric orthogonal polynomials
(Figure 1.1.1) and its q-analogue (Figure 1.1.2). Among the q-hypergeometric orthogonal polynomials in
Figure 1.1.2, we focus on Askey-Wilson polynomials, whose properties will be explained in detail. Askey-
Wilson polynomials form one of the “mother” classes of q-hypergeometric orthogonal polynomials, and,
as will be explained in § 1.3.1, Koornwinder polynomials are multivariate analogue of Askey-Wilson
polynomials.

Next, we turn to the multivariate orthogonal polynomials. In § 1.2, we give a brief recollection the
well-known three families of orthogonal symmetric polynomials, namely Schur polynomials sλ(x) (§1.2.1),
Jack polynomials Pλ(x;β) (§1.2.2), and Macdonald symmetric polynomials Pλ(x; q, t) (§1.2.3). The last
ones are 2-parameter generalization of the others, and these orthogonal families sit in the following
degeneration scheme.

Macdonald Pλ(x; q, t)
t=qβ , q→1

// Jack Pλ(x;β)
β=1

// Schur sλ(x)
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Macdonald symmetric functions Pλ(x; q, t) can be regarded as the Macdonald polynomial associated to
the affine root system of type A. As mentioned in the beginning, there are analogous orthogonal families
associated to other affine root systems, and they are now called Macdonald-Koornwinder polynomials.
A unified formulation is established after the development of representation theoretic approach using the
(double) affine Hecke algebras, and it is called the Macdonald-Cherednik theory.

We give an overview of this theory in § 1.3.1, and refer to [C05, H06, M03, St20] for the concise
explanation.

In this thesis, we do not explain the Macdonald-Cherednik theory for arbitrary affine root systems,
but treat the theory only for type (C∨

n , Cn), i.e., the theory for Koornwinder polynomials. In § 1.3.2
and § 1.3.3, we will explain in detail how to define Koornwinder polynomials though the representation
theory of affine Hecke algebra associated to the non-reduced affine root system (C∨

n , Cn).
Below is the picture of relations among various orthogonal systems treated in Chapter 1 (which will

also appear in the later chapters). The two arrows mean that the target is the multivariate analogue of
the source.

q-hypergeometric § 1.1 Macdonald-Koornwinder § 1.2

Askey-Wilson § 1.1.3 Koornwinder
§ 1.3.1

Rogers (1.2.6) Macdonald(An−1)
§ 1.2

continuous q-Hermite

q-Laguerre

continuous q-Jacobi

Abstract of Chapter 2

Chapter 2 is based on the author’s paper [Ya22]. We consider Littlewood-Richardson coefficients cνλ,µ
of Koornwinder polynomials Pλ, that is the structure constants of the product in the invariant ring
K[x±1]W0 :

PλPµ =
∑
ν

cνλ,µPν .

Hereafter we call cνλ,µ LR coefficients for simplicity.
Let us recall what is known in the case of type A. The classical LR coefficients are the structure

constants of the product sλsµ =
∑

ν c
ν
λ,µsν of Schur polynomials sλ (1.2.1) in the ring of symmetric

polynomials. Regarding Schur polynomials sλ as the characters of the irreducible representation Vλ
of the general linear group, we can interpret the coefficient cνλ,µ as the multiplicity of the irreducible
decomposition of the tensor product representation Vλ ⊗ Vµ. For Hall-Littlewood polynomials, which
are t-deformations of Schur polynomials, we can also consider the LR coefficients cνλ,µ, and some explicit
formulas are known. See [Ma95, Chap. II, (4.11)] for example.

Although Macdonald polynomial of type A is a q-deformation of Hall-Littlewood polynomial, no
explicit formula for the corresponding LR coefficient cνλ,µ had been unknown for a long time. In [Ma95,
Chap. VI, §6], Macdonald derived some combinatorial formulas for Pieri coefficients using arms and legs
of Young diagrams. Here Pieri coefficients mean the LR coefficients cνλ,µ with λ the one-row type (k) or

the one-column type (1l), where the weights are identified with Young diagrams or partitions.
On the LR coefficients of Macdonald polynomials, Yip [Yi12] made a great progress. Using alcove

walks, an explicit formula of cνλ,µ is given in [Yi12, Theorem 4.4] for the Macdonald polynomials of
untwisted affine root systems. Moreover, a simplified formula [Yi12, Corollary 4.7] is derived in the case
λ is equal to a minuscule weight. In particular, this simplified formula recovers Macdonald’s formula for
Pieri coefficients of type A [Yi12, Theorem 4.9]. In Yip’s study, the key ingredient is the notion of alcove
walks, originally introduced by Ram [Ra06]. We will explain the relevant notations and terminology in
§ 2.1.
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The main result of Chapter 2 is the following Theorem A, which is a natural (C∨
n , Cn)-type analogue

of Yip’s alcove walk formulas for LR coefficients in [Yi12, Theorem 4.4]. Let us prepare the necessary
notations and terminology for the explanation.

Let A be the fundamental alcove of the extended affine Weyl groupW (see (2.1.1)). Given an element
w ∈W , we take a reduced expression w = si1 · · · sir . Given a bit sequence b = (b1, . . . , br) ∈ {0, 1}r and
an element z ∈W , we call a sequence of alcoves of the form

p =
(
p0 := zA, p1 := zsb1i1A, p2 := zsb1i1 s

b2
i2
A, . . . , pr := zsb1i1 · · · s

br
ir
A
)

an alcove walk of type −→w := (i1, . . . , ir) beginning at zA. We denote by Γ(−→w , z) the set of such alcove
walks. See Example 2.1.0.1 of alcove walks.

For an alcove walk p, we call the transition pk−1 → pk the k-th step of p. The k-th step of p is called
a folding if bk = 0 where the bit sequence b corresponds to the alcove walk p (see Table 2.1.1).

In our main result, we use a colored alcove walk introduced by Yip [Yi12]. It is an alcove walk
equipped with the coloring of folding steps by either black or gray. We denote by ΓC

2 (
−→w , z) the set of

colored alcove walks whose steps belong to the dominant chamber C ⊂ V := Rn.

Theorem A (Theorem 2.2.4.2). Let λ, µ ∈ Λ+ be dominant weights, Wµ be the stabilizer of µ in the
finite Weyl group W0 (see (1.3.38)), and Wµ be the complete system of representatives of W0/Wµ such
that the shortest length element in each the quotient class (see (2.2.11)). Let also Wλ(t) be the Poincaré
polynomial of the stabilizer Wλ (see (1.3.41)). We take a reduced expression of the element w(λ) ∈ W
in (1.3.36). Then we have

PλPµ =
1

t
− 1

2
wλ Wλ(t)

∑
v∈Wµ

∑
p∈ΓC

2 (
−−−→
w(λ)−1,(vw(µ))−1)

ApBpCpP−w0.wt(p).

Here w0 ∈W0 is the longest element, and the weight wt(p) ∈ Λ is determined from the element e(p) ∈W
corresponding to the end of the colored alcove walks p as in (2.2.14). The coefficients Ap, Bp and Cp are
factorized, and we have

Ap :=
∏

a∈w(µ)−1L(v−1,v−1
µ )

ρ(a), Bp :=
∏

a∈L(t(wt(p))w0,e(p))

ρ(−a).

Here the term ρ(α) is given by

ρ(a) :=


t
1
2
1− t−1qsh(−a)tht(−a)

1− qsh(−a)tht(−a)
(a 6∈W.an)

t
1
2
n
(1 + t

1
2
0 t

− 1
2

n q
1
2 sh(−a)t

1
2 ht(−a))(1− t−

1
2

0 t
− 1

2
n q

1
2 sh(−a)t

1
2 ht(−a))

1− qsh(−a)tht(−a)
(a ∈W.an)

,

qsh(a) := q−k, tht(a) :=
∏

γ∈Rs
+
t
1
2 ⟨γ

∨,α⟩ ∏
γ∈Rℓ

+
(t0tn)

1
2 ⟨γ

∨,α⟩ (a = α+ kc ∈ S),

where we used Rs
+ := {εi ± εj | 1 ≤ i < j ≤ n} and Rℓ

+ := {2εi | 1 ≤ i ≤ n}. For the notation L, see
(2.1.3) in § 2.1. Finally the term Cp is given by Cp =

∏r
k=1 Cp,k with the factor Cp,k determined from

the k-th step of the alcove walk p in Proposition 2.2.3.2. Here we display the relevant formulas for Cp,k:

ψ±
i (z) := ∓

t
1
2 − t− 1

2

1− z±1
(i = 1, . . . , n− 1),

ψ±
0 (z) := ∓

(u
1
2
n − u

− 1
2

n ) + z±
1
2 (u

1
2
0 − u

− 1
2

0 )

1− z±1
, ψ±

n (z) := ∓
(t

1
2
n − t

− 1
2

n ) + z±
1
2 (t

1
2
0 − t

− 1
2

0 )

1− z±1
,

ni(z) :=
1− tz
1− z

1− t−1z

1− z
(a ∈W.ai, i = 1, . . . , n− 1),

n0(z) :=
(1− u

1
2
nu

1
2
0 z

1
2 )(1 + u

1
2
nu

− 1
2

0 z
1
2 )

1− z
(1 + u

− 1
2

n u
1
2
0 z

1
2 )(1− u−

1
2

n u
− 1

2
0 z

1
2 )

1− z
(a ∈W.a0),

nn(z) :=
(1− t

1
2
n t

1
2
0 z

1
2 )(1 + t

1
2
n t

− 1
2

0 z
1
2 )

1− z
(1 + t

− 1
2

n t
1
2
0 z

1
2 )(1− t−

1
2

n t
− 1

2
0 z

1
2 )

1− z
(a ∈W.an).

Note that the term Ap actually depends only on v ∈Wµ, which corresponds to the beginning of the
colored alcove walk p.
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Abstract of Chapter 3

Chapter 3 is based on the collaboration paper [YY22] with S. Yanagida. The contents of [YY22] can be
divided into two parts:
• Classification of parameter specializations of Koornwinder polynomials
• Re-derivation of Ram-Yip type formulas of Macdonald polynomials.

The author contributed mainly to the latter part.
The motivation of Chapter 3 is the comment by Macdonald given at [M03, p.12, (5.17)]: The Mac-

donald polynomials associated to all the subsystems of type (C∨
n , Cn) can be obtained by specializing the

five Hecke parameters of the Koornwinder polynomial in the way respecting the orbits of the extended
affine Weyl group acting on the affine root systems. Seemingly, the detailed explanation of such param-
eter specialization is not given in literature. The aim of Chapter 3 is to clarify this point. The result is
as follows.

Theorem B (Propositions 3.1.3.1, 3.1.4.1–3.1.4.9). For each type X listed in Table 0.0.1 and for each
(not necessarily) dominant weight µ of type Cn, the specialization of the Noumi parameters in the (non-
symmetric) Koornwinder polynomial with weight µ yields the (non-symmetric) Macdonald polynomial
with µ of type X in the sense of Definition 1.3.1.1.

reduced t t0 tn u0 un non-reduced t t0 tn u0 un
Bn § 3.1.4 tl 1 ts 1 ts (BCn, Cn) § 3.1.4 tm t2l tstl 1 ts/tl
B∨

n § 3.1.4 ts 1 t2l 1 1 (C∨
n , BCn) § 3.1.4 tm ts tstl ts ts/tl

Cn § 3.1.3 ts t2l t2l 1 1 (B∨
n , Bn) § 3.1.4 tm 1 tstl 1 ts/tl

C∨
n § 3.1.4 tl ts ts ts ts

BCn § 3.1.4 tm t2l ts 1 ts
Dn § 3.1.4 t 1 1 1 1

Table 0.0.1: Specialization table

Hereafter we refer Table 0.0.1 as the specialization table.
In § 3.2, as a verification of the specializing Table 0.0.1, we check the obtained specializations by

using explicit formulas of Macdonald-Koornwinder polynomials. We focus on Ram-Yip type formu-
las [RY11, OS18] which were mentioned before. These formulas give explicit description of the coef-
ficients in the monomial expansion of non-symmetric Macdonald-Koornwinder polynomials Eµ(x) =
Eµ(x; q, t, t0, tn, u0, un) as a summation of terms over the so-called alcove walks, the notion introduced
by Ram [Ra06]. We do this check for Ram-Yip formulas of type B,C and D in the sense of [RY11]. The
check is done just in case-by-case calculation, but since the situation is rather complicated due to the
notational problem of affine root systems and parameters, we believe that it has some importance. The
result is as follows.

Theorem C (Propositions 3.2.1.5, 3.2.2.4 and 3.2.3.5). For each µ ∈ PCn , we have

Eµ(x; q, t
RY
m , 1, tRYl , 1, tRYl ) = EB,RY

µ (x; q, tRYm , tRYl ),

Eµ(x; q, t
RY
m , 1, tRYs , 1, 1) = EC,RY

µ (x; q, tRYs , tRYm ),

Eµ(x; q, t, 1, 1, 1, 1) = ED,RY
µ (x; q, t).

Here the left hand sides denote specializations of the non-symmetric Koornwinder polynomials Eµ(x),
and the right hand side denotes the non-symmetric Macdonald polynomials of type B,C and D in the
sense of [RY11]. For the detail, see the beginning of §3.2 for the explanation. Comparing these identities
with the specialization Table 0.0.1, we find that EB,RY

µ (x) is equivalent to the polynomial of type Bn,

EC,RY
µ (x) is to that of type C∨

n , and E
D,RY
µ (x) is to that of type Dn in the sense of Definition 1.3.1.1.

Abstract of Chapter 4

Chapter 4 is based on the proceeding draft [YY] of the author’s talk in the conference “Recent develop-
ments in Combinatorial Representation Theory” at RIMS, Kyoto University held in November 7th–11th,
2022, written with S. Yanagida.
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The purpose of Chapter 4 is to give a review of the bispectral correspondence [vMS09, vM11, St14]
between quantum affine Knizhnik-Zamolodchikov equations and the eigenvalue problems of Macdonald
type, delivered in § 4.1 and § 4.2. We also study the relation of the bispectral correspondence and the
parameter specialization explained in Chapter 3, and it is fulfilled in § 4.3.

Rank one review of bispectral correspondence

The first part (§ 4.1, § 4.2) is devoted to the review of the bispectral correspondence between quantum
affine Knizhnik-Zamolodchikov (QAKZ for short) equations and Macdonald-type eigenvalue problems,
established by the works [vM11, vM11, St14].

Let us begin with the recollection on the original Cherednik’s correspondence. We refer to [C05,
§1.3] for an exposition of this correspondence. In [C92b], Cherednik introduced his QAKZ equations for
arbitrary reduced root systems (in the sense of Bourbaki [B68b]) and for the type GLn. Let H = H(k, q)
be the affine Hecke algebra of the concerning root systems, and let T := HomGroup(Λ,C×) be the
algebraic torus associated to the weight lattice Λ. Then the QAKZ equations are q-difference equations for
functions of torus variable t ∈ T valued in a (left) H-module M satisfying certain conditions. In [C92a],
Cherednik constructed a correspondence between solutions of the QAKZ equations for the principal
series representation Mγ with central character γ ∈ T , and eigenfunctions of the q-difference operators
of Macdonald type.

Cherednik’s correspondence for the type GLn is now described as

χ+ : SOLqKZ(k, q)γ −→ SOLMac(k, q)γ . (∗)

A bispectral analogue of Cherednik’s correspondence is investigated by van Meer and Stokman
[vMS09] for type GL, who introduced the bispectral QAKZ equations using Cherednik’s duality anti-
involution ∗ : H→ H of the double affine Hecke algebra (DAHA) H (see (1.3.9)). The bispectral QAKZ
equations are consistent systems of q-difference equations for functions on the product torus T × T , and
splits up into two subsystems. Denoting by (t, γ) ∈ T × T the variable, we have:
• The first subsystem only acts on t, and for a fixed γ, the equations in t are Cherednik’s QAKZ

equations for the principal series representation Mγ of the affine Hecke algebra H ⊂ H.
• For a fixed t ∈ T , the equations in γ are essentially the QAKZ equations for Mt−1 of the image
H∗ ⊂ H.

This argument can be extended to arbitrary reduced and non-reduced root systems, as done by van Meer
[vM11] for reduced types and by Takeyama [T10] for the non-reduced type (C∨

n , Cn).
After the build-up of bispectral QAKZ equations, it is rather straightforward, except for one issue, to

make an analogue of Cherednik’s construction of correspondence to the bispectral eigenvalue problems
of Macdonald-type. Mimicking (∗), the resulting bispectral correspondence is depicted as

χ+ : SOLbqKZ(k, q) −→ SOLbMac(k, q).

The issue here is the existence of (some nice) asymptotic free solutions of the bispectral QAKZ equations,
i.e., non-emptiness of the source, which was carefully done for type GLn in [vM11, §5, Appendix]. The
same argument works with minor modification for reduced and non-reduced root types (see [St14, §3]).

In §4.1 and §4.2, we give a review of the bispectral correspondence explained so far, focusing on type
A1 and type (C∨

1 , C1), respectively.

Specializing parameters in the rank one bispectral problems

The second part (§ 4.3) is a complement of the first part, and is also a continuation of Chapter 3 (the
paper [YY22]) on the parameter specialization of Macdonald-Koornwinder polynomials. There we classify
all the specializations based on the affine root systems appearing as subsystems of the type (C∨

n , Cn)
system. The obtained parameter specializations are compatible with degenerations of the Macdonald-
Koornwinder inner product to the subsystem inner products.

In the rank one case § 3.1.6 ([YY22, §2.6]), where the concerned polynomials are Askey-Wilson
polynomials, we discovered four ways of specialization of the type (C∨

1 , C1) parameters to recover the
type A1. Table 0.0.2 is the excerpt from Table 3.1.1.
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type Dynkin orbits Hecke parameters

(C∨
1 , C1)

0 1

∗ ∗
O1 tO2 tO3 tO4 k0 k1 l0 l1Askey-Wilson

A1
0 1

O1 1 t 1 t
O3 t 1 t 1

Rogers O2 1 t2 1 1
O4 t2 1 1 1

Table 0.0.2: Type A1 subsystems in (C∨
1 , C1) and parameter specializations

In § 4.3, we study the relation between our parameter specializations and the bispectral correspon-
dence. To begin with, let us recall that the bispectral correspondence is built using the duality anti-
involution ∗ of the DAHA H. As reviewed in § 4.2.1 (4.2.16), the duality anti-involution ∗ of H affects
on the Hecke parameters in the way

(k∗1 , k
∗
0 , l

∗
1, l

∗
0) = (k1, l1, k0, l0).

Then, we see from Table 4.0.1 that the specialization corresponding to the orbit O2 is the only one which
is compatible with the bispectral correspondence reviewed in the first part. Under this specialization,
we establish the following commutative diagram (Theorem 4.3.1.2).

SOL
(C∨

1 ,C1)
bqKZ SOLbAW

SOLA1

bqKZ SOLbMR

χ
(C∨

1 ,C1)

+

sp sp

χ
A1
+

Acknowledgements. The author would like to thank my advisor Shintarou Yanagida for reviewing the
manuscript several times, giving useful advice and for your dedication and guidance. He would also like
to thank Masatoshi Noumi for the explanation on the Macdonald-Cherednik theory and Koornwinder
polynomials given in the master course in Kobe University and also thank Satoshi Naito for his important
comments. He would like to thank Takeshi Ikeda for listening to my research and encouraging me.
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Chapter 1

Macdonald-Koornwinder
polynomials

1.0 Global notation

Let us explain the notation used throughout in this thesis.
• We denote by Z the ring of integers, by N = Z≥0 := {0, 1, 2, . . .} the set of non-negative integers,
by Q the rational number field, by R the real number field, and by C the complex number field.

• We denote by δi,j the Kronecker delta on a set I 3 i, j.
• We denote by e or 1 the unit of a group.
• We denote C× := C \ {0}, regarded as the multiplicative group.
• We denote an action of a group G on a set S by g.s for g ∈ G and s ∈ S, and denote the G-orbit

of s by G.s or by Gs.
• A ring or an algebra means a unital associative one unless otherwise stated.
• For a commutative ring k and a family of commutative variants x = (x1, x2, . . .), we denote by
k[x±1] the Laurent polynomial ring k[x±1

1 , x±1
2 , . . .].

• Linear spaces will be those over the complex number field C unless otherwise stated, and we
denote by Hom(V,W ) and End(V ) the linear spaces of C-linear homomorphisms V → W and of
endomorphisms V → V . We also denote by ⊗ the standard tensor product ⊗C over C.

1.1 Hypergeometric orthogonal polynomials and the q-analogue

In this section, we give a brief review of one-variable hypergeometric orthogonal polynomials and their
q-analogue. The main references are [KLS10], [GR04], [青 13] and [三 04].

1.1.1 Hypergeometric notation

We begin with the Gauss hypergeometric series [三 04, p.363]. It is defined using the factorial symbol
(α)n := α(α+ 1) · · · (α+ n− 1) as

2F1

[
α, β

γ
; z

]
:=

∞∑
n=0

(α)n(β)n
n!(γ)n

zn.

We have the following generalization, called the generalized hypergeometric series [三 04, p.363]:

s+1Fs

[
α1, · · · , αs+1

β1, · · · , βs
; z

]
:=

∞∑
n=0

(α1)n · · · (αs+1)n
n!(β1)n · · · (βs)n

zn.

We use Gasper and Rahman’s notation [GR04] for q-shifted factorials

(x; q)∞ :=

∞∏
n=0

(1− xqn), (x1, . . . , xr; q)∞ :=

r∏
i=1

(xi; q)∞, (1.1.1)
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which are understood as complex numbers if they converge (e.g., if x, xi, q ∈ C and |q| < 1), and as
formal series of q otherwise. For n ∈ N, we set

(x; q)n :=
(x; q)∞

(xqn+1; q)∞
, (x1, . . . , xr; q)n :=

r∏
i=1

(xi; q)n. (1.1.2)

We also use the symbol in [GR04] of the basic hypergeometric series

r+1φr

[
a1, . . . , ar+1

b1, . . . , br
; q, z

]
:=

∞∑
n=0

(a1, . . . , ar+1; q)n
(q, b1, . . . , br; q)n

zn.

1.1.2 One-variable orthogonal polynomials

Let us recall here the definition of a one-variable orthogonal polynomial. Take a function w(z) such that∫ b

a

w(z)dz > 0.

For one-variable polynomial functions f(z) and g(z) defined on the closed interval [a, b], the inner product
is determined as follows:

〈f, g〉 :=
∫ b

a

f(z)g(z)w(z)dz.

When a family {pn(z)}n∈N of polynomials satisfies the following property, it is called an orthogonal
polynomial system and w(x) is called a weight function.
(1) pn(z) is a polynomial of degree n.
(2) 〈pm(z), pn(z)〉 = 0 (m 6= n).
Wilson polynomials and Racah polynomials have the most parameters among all one-variable hyper-

geometric orthogonal polynomials. It is known that by specializing them appropriately, we can obtain
various one-variable hypergeometric orthogonal polynomials. These polynomials and the specialization
behavior are summarized in the Askey scheme Figure 1.1.1, cited from.

There is also known a q-analogue of the Wilson polynomial, called the Askey-Wilson polynomial
[KLS10, p.415–419], [青 13, p.126–141], which is the q-hypergeometric orthogonal polynomial with the
most parameters. By appropriately specializing the Askey-Wilson polynomial, various q-analogue of
Jacobi polynomials can be recovered. The degenerate scheme is given in Figure 1.1.2, called the q-Askey
scheme.

Wilson

yy ��

##

Racah

�� $$

4F3(4)

Continuous
dual Hahn

��

Continuous
Hahn

zz
��

""

Hahn

zz �� ##

dual Hahn

{{ ��

3F2(3)

Meixner-
Pollaczek

%%

,,

Jacobi

��

��

##

Pseudo
Jacobi

Meixner

uu ��

Krawtchouk

zz

ss

2F1(2)

Laguerre

$$

Bessel Charlier

{{

1F1/2F0(1)

Hermite 2F0(0)

Figure 1.1.1: Askey scheme of hypergeometric orthogonal polynomials [KLS10, p.182]
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Askey-Wilson

�� �� ((

��

q-Racah

xx
�� ''

4φ3(4)

Continuous
dual q-Hahn

��

Continuous
q-Hahn

��

Big
q-Jacobi

�� ��
��

q-Hahn

{{
��

��
��

��

dual q-Hahn

�� ��

3φ2(3)

AI-Salam
-Chihara

�� %%

q-Meixner
-Pollaczec

��

Continuous
q-Jacobi

��

Big
q-Laguerre

��
--

Little
q-Jacobi

��
�� ))

q-Meixner

�� && ,,

Quantum
q-Krawtchouk

))

q-Krawtchouk

�� ��

Affine
q-Krawtchouk

ss

Dual
q-Krawtchouk

��

2φ1(2)

Continuous
big q-Hermite

��

Continuous
q-Laguerre

��

Little
q-Laguerre

q-Laguerre

��

q-Bessel

||

q-Charlier

tt

Al-Salam
-Carlitz I

��

Al-Salam
-Carlitz II

��

1φ1/2φ0(1)

Continuous
q-Hermite

Stieltjes
-Wigert

Discrete
q-Hermite I

Discrete
q-Hermite II

2φ0(0)

Figure 1.1.2: Askey scheme of q-hypergeometric orthogonal polynomials [KLS10, p.412]

1.1.3 Askey-Wilson polynomials and its specialization

We will now introduce Askey-Wilson polynomials, continuous q-Jacobi polynomials [KLS10, p.463] and
Jacobi polynomials [青 13,三 04], as an example of a one-variable hypergeometric orthogonal polynomials
and its q-analogues.

Askey-Wilson polynomials

Askey-Wilson polynomials [AW85] are q-hypergeometric orthogonal polynomials of one-variable equipped
with extra parameters (a, b, c, d), which recover various q-analogue of Jacobi polynomials by specialization
of the parameters.
(1) Explicit formula:

Pl(z; a, b, c, d; q) = Pl(z) :=
(ab, ac, ad; q)l

al
4φ3

[
q−l, abcdql−1, ax, a/x

ab, ac, ad
; q, q

]
(l ∈ N).

with z := (x+ x−1)/2.
(2) Orthogonality: For generic parameters a, b, c, d ∈ C,∫ 1

−1

Pm(z)Pn(z)
w(z)

2π
√
1− z2

dz = 0, m 6= n,

where the weight function w(z) is given by

w(z) :=

∏∞
k=0(1− (2z2 − 1)qk + q2k)

h(z, a)h(z, b)h(z, c)h(z, d)
, h(z, α) :=

∞∏
k=0

(1− 2αzqk + α2q2k).

(3) 3-term recursive relation:

2xP̃l(z) = AlP̃l+1(z) +
(
a+ a−1 − (Al + Cl)

)
P̃l(z) + ClP̃l−1(z),

P̃l(z) :=
al(abcd; q)l

(ab, ac, ad; q)l
Pl(z; q, a, b, c, d),

Al :=
(1− abql)(1− acql)(1− adql)(1− abcdql−1)

a(1− abcdq2l−1)(1− abcdq2l)
,

Cl :=
a(1− ql−1)(1− bcql−1)(1− bdql)(1− cdql−1)

(1− abcdq2l−2)(1− abcdq2l−1)
.
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Remark 1.1.3.1. Jacobi polynomials can be recovered by specializing the Askey-Wilson parameters as
follows [KLS10]:

(a, b, c, d)→ (q(2α+1)/4, q(2α+3)/4,−q(2β+1)/4,−q(2β+3)/4), q → 1.

Continuous q-Jacobi polynomials

Continuous q-Jacobi polynomials can be recovered by specializing the Askey-Wilson parameters as fol-
lows:

(a, b, c, d)→ (q(2α+1)/4, q(2α+3)/4,−q(2β+1)/4,−q(2β+3)/4).

(1) Explicit formula:

P
(α,β)
l (z; q) = Pl(z; q) :=

(qα+1; q)l
(q; q)l

4φ3

[
q−l, ql+α+β+1, q

1
2α+

1
4x, q

1
2α+

1
4x−1

qα+1, q
1
2 (α+β+1), − q 1

2 (α+β+2)
; q, q

]
(l ∈ N).

with z := (x+ x−1)/2.
(2) Orthogonality: For parameters α ≥ − 1

2 , β ≥ −
1
2 ,∫ 1

−1

Pm(z; q)Pn(z; q)
w(z)

2π
√
1− z2

dz = 0, m 6= n,

where the weight function w(z) is given by

w(z) :=
h(z, 1)h(z,−1)h(z, q 1

2 )h(z,−q 1
2 )

h(z, q
1
2α+

1
4 )h(z, q

1
2α+

3
4 )h(z,−q 1

2β+
1
4 )h(z,−q 1

2β+
3
4 )
, h(z, α) :=

∞∏
k=0

(1− 2αzqk + α2q2k).

(3) 3-term recursive relation:

2xP̃l(z; q) = AlP̃l+1(z; q) +
(
q

1
2α+

1
4 + q−

1
2α−

1
4 − (Al + Cl)

)
P̃l(z) + ClP̃l−1(z; q),

P̃l(z) :=
(qα+1; q)l
(q; q)l

Pl(z; q),

Al :=
(1− ql+α+1)(1− ql+α+β+1)(1 + ql+

1
2 (α+β+1))(1 + ql+

1
2 (α+β+2))

q
1
2α+

1
4 (1− q2l+α+β+1)(1− q2l+α+β+2)

,

Cl :=
q

1
2α+

1
4 (1− ql)(1− ql+β)(1− ql+ 1

2 (α+β))(1 + ql+
1
2 (α+β+1))

(1− q2l+α+β)(1− q2l+α+β+1)
.

Remark 1.1.3.2. Jacobi polynomials can be recovered by specializing q → 1[KLS10]:

Jacobi polynomials

(1) Explicit formula:

P
(α,β)
l (z) :=

(α+ 1)l
l!

2F1

[
−l, α+ β + l + 1

α+ 1
;
1− z
2

]
(l ∈ N). (1.1.3)

(2) Orthogonality: The weight function w(z) given by

w(z) := (1− z)α(1− z)β .

In other words, the following holds:∫ 1

−1

P (α,β)
m (z)P (α,β)

n (z)(1− z)α(1− z)βdz = 0 (m 6= n).

(3) 3-term recursive relation:

AlP
(α,β)
l (z) = BlP

(α,β)
l−1 (z) + ClP

(α,β)
l−2 (z), (P

(α,β)
−1 (z) := 0)

Al := 2l(l + α+ β)(2l + α+ β − 2),

Bl := (2l + α+ β − 1)
(
(2l + α+ β)(2l + α+ β − 2)z + α2 − β2

)
,

Cl := −2l(l + α− 1)(n+ β − 1)(2l + α+ β).
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1.2 Macdonald symmetric polynomials

So far, we have discussed one-variable hypergeometric orthogonal polynomials and their q-analogues. In
particular, we explained the “mother” family of Askey-Wilson polynomials. As we will explain in §1.3.1,
the multivariate version of Askey-Wilson polynomial is formulated as the Macdonald polynomial associ-
ated to the non-reduced affine root system of type (C∨

n , Cn), and is called the Koornwinder polynomial.
Before introducing Macdonald polynomials associated to arbitrary affine root systems, we explain in this
section the proto-typical theory of Macdonald symmetric polynomials, which can be regarded as the
Macdonald polynomials of type GL. The main references for this section are [M87, Ma95].

1.2.1 Schur polynomials

Let x = (x1, . . . xn) be a family of independent indeterminates. The symmetric group Sn acts on the
polynomial ring C[x] := C[x1, . . . , xn] by permuting the x′is, and we denote

C[x]Sn := {f(x) ∈ C[x] | w(f(x)) = f(x) for all w ∈ Sn}

for the subring of symmetric polynomials in C[x]. We denote by

Λ+ := {λ = (λ1, . . . , λn) ∈ Zn | λ1 ≥ · · · ≥ λn ≥ 0}

the set of dominant weights of type An (the reduced irreducible root system in the sense of Bourbaki
[B68b]). The dominance order ≥ on Λ+ is defined as follows:

λ ≥ µ ⇐⇒
∑n

i=1 λi =
∑n

i=1 µi and
∑r

i=1 λi ≥
∑r

i=1 µi for all r = 1, . . . , n− 1. (1.2.1)

For a dominant weight λ ∈ Λ, the monomial symmetric polynomial mλ(x) is defined by

mλ(x) :=
∑

µ∈Sn.λ

xµ1

1 · · ·xµn
n (1.2.2)

where Sn acts on Λ+ by permuting its components. Then, {mλ(x)}λ∈Λ+
is a C-basis of C[x]Sn .

For a dominant weight λ ∈ Λ+, Schur polynomial sλ(x) is the symmetric polynomial defined by

sλ(x) :=
det(x

λj+n−j
i )1≤i,j≤n

det(xn−j
i )1≤i,j≤n

∈ C[x]Sn . (1.2.3)

The following is a list of remarkable properties of Schur polynomials.
• Combinatorial explicit formula: n-semi-standard tableaux of Young diagram D(λ) corresponding

to a partition λ = (λ1, . . . , λl) of length at most n are those in which 1, 2, . . . , n are written in each
box of D(λ) with the following rules.

– The entries in each row are weakly increasing.
– The entries in each column are strictly increasing.

For example, if n = 7 and λ = (4, 2, 1), then the following are 7-semi-standard tableaux.

1 1 2 4

2 4

3

,

2 2 2 3

3 5

7

We denote by SSTn(λ) the set of the all n-semi-standard tableaux of D(λ). Then, Schur polyno-
mials yield the following formula

sλ(x1, . . . , xn) =
∑

T∈SSTn(λ)

xT , xT =

n∏
i=1

x
#{i’s in T}
i .

• {sλ(x)}λ∈Λ+
is an orthogonal basis of C[x]Sn : For λ, µ ∈ Λ+,

1

n!

∫
T

sλ(x)sµ(x)∆(x)dx = 0 (λ 6= µ)
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with

T := {x ∈ Cn | |x1| = · · · = |xn| = 1}, dx :=

n∏
i=1

dxi

2π
√
−1xi

and the weight function ∆ given by

∆(x) :=
∏
i ̸=j

(1− xi/xj).

• Triangular expansion: For λ ∈ Λ+, Then

sλ(x) = mλ(x) +
∑
λ>µ

Kλ,µmµ(x) (Kλ,µ ∈ Z)

where > is the dominance order (1.2.1).
• Small example:

s(1)(x) = s1(x), s(2)(x) = m(2)(x) +m(1,1)(x),

s(3)(x) = m(3)(x) +m(2,1)(x) +m(1,1,1)(x),

s(2,1)(x) = m(2,1)(x) +m(13)(x).

1.2.2 Jack polynomials

Jack polynomials are symmetric polynomials Pλ(x;β), indexed by dominant weights λ ∈ Λ+ and de-
pending on parameter β ∈ C, which form a β-deformed family of Schur polynomials. Jack polynomials
do not have a simple explicit formula like Schur polynomials (§1.2.1), but they are uniquely characterized
by the following two conditions:
• Triangular expansion: For λ ∈ Λ+, we have

Pλ(x;β) = mλ(x) +
∑
λ>µ

cλ,µ(β)mµ(x) (cλ,µ(β) ∈ C)

where the order ≤ is dominance order.
• Differential eigen-equation: The (gauged) Calogero-Sutherland differential operator

DJack :=
β−1

2

n∑
i=1

x2i
∂2

∂x2i
+

∑
1≤i ̸=j≤n

x2i
xi − xj

∂

∂xi
(β > 0). (1.2.4)

has Jack polynomials as eigenfunctions. More precisely, for each λ ∈ Λ+, the polynomial Pλ(x;β)
satisfies the differential eigen-equation

DJackPλ(x;β) = Pλ(x;β)cλ

with eigenvalue cλ given by

cλ :=
β−1

2

n∑
i=1

λi(λi − 1)−
n∑

i=1

(i− 1)λi + (n− 1)

n∑
i=1

λi.

We list some properties of Jack polynomial.
• {Pλ(x;β)}λ∈Λ+ is an orthogonal basis of C[x]Sn : For λ, µ ∈ Λ+,

1

n!

∫
T

Pλ(x;β)Pµ(x;β)∆(x;β)dx = 0 (λ 6= µ)

with

T := {x ∈ Cn | |x1| = · · · = |xn| = 1}, dx :=

n∏
i=1

dxi

2π
√
−1xi

and the weight function ∆ given by

∆(x;β) :=
∏
i̸=j

(1− xi/xj)β , −π < θi ≤ π, θ1 < · · · < θn < θ1 + 2π, arg(1) = 0,

where θi := arg(xi) and (1− xi/xj)β := eβ log(1−xi/xj) = elog|1−xi/xj |+i arg(1−xi/xj).
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• Relationship with other polynomials:
– Pλ(x;β = 0) = mλ(x) (monomial symmetric polynomials (1.2.2))
– Pλ(x;β = 1) = sλ(x) (Schur polynomials § 1.2.1)
– Pλ(x;β = 1

2 ) = Zonal polynomials associated to GL(n)/ SO(n) [Ma95, §VII].
– Pλ(x;β = 2) = Zonal polynomials associated to GL(2n)/ Sp(n) [Ma95, §VII].

– Pl(x;β) = P
(α=β,β)
l (x) (Jacobi polynomials (1.1.3)) (n = 1, l ∈ N).

• Small example:

P(1)(x;β) = m1(x), P(2)(x;β) = m(2)(x) +
2β

1 + β
m(1,1)(x),

P(3)(x;β) = m(3)(x) +
3β

2 + β
m(2,1)(x) +

6β2

(1 + β)(2 + β)
m(1,1,1)(x),

P(2,1)(x;β) = m(2,1)(x) +
6β

1 + 2β
m(13)(x).

1.2.3 Macdonald symmetric polynomials

In this part we briefly discuss Macdonald symmetric polynomials. Macdonald symmetric polynomials
Pλ(x; q, t) are a family of multivariate q-orthogonal symmetric polynomials introduced by I. G. Macdonald
in late 1980s [M87], and the family is a generalization of Schur and Jack polynomials. Macdonald
polynomials, like the Jack polynomials, are uniquely characterized by of the following two conditions.
• Triangular expansion: For λ ∈ Λ+, Then

Pλ(x; q, t) = mλ(x) +
∑
λ>µ

dλ,µ(q, t)mµ(x) (dλ,µ(q, t) ∈ C)

where the order ≤ is dominance order.
• q-difference eigen-equation: The Macdonald-Ruijsenaars q-difference operator [R87, Ma95] is given

by

DMac :=

n∑
i=1

∏
j ̸=i

txi − xj
xi − xj

Tq,xi
, (1.2.5)

where Tq,xi
denotes the q-shift operator:

(Tq,xif)(x1, . . . , xi, . . . , xn) = f(x1, . . . , qxi, . . . , xn), f(x) ∈ C[x].

Then, for each λ ∈ Λ+, the polynomial Pλ(x; q, t) satisfies the eigen-equation

DMacPλ(x; q, t) = Pλ(x; q, t)cλ

with eigenvalue cλ given by

cλ :=

n∑
i=1

qλitn−1.

We list some properties of Macdonald symmetric polynomial.
• {Pλ(x; q, t)}λ∈Λ+ is an orthogonal basis of C[x]Sn : For λ, µ ∈ Λ+,

1

n!

∫
T

Pλ(x; q, t)Pµ(x; q, t)∆(x; q, t)dx = 0 (λ 6= µ)

with

T := {x ∈ Cn | |x1| = · · · = |xn| = 1}, dx :=

n∏
i=1

dxi

2π
√
−1xi

and the weight function ∆ given by

∆(x; q, t) :=
∏

1≤i<j≤n

(xi/xj ; q)∞(xj/xi; q)∞
(txi/xj ; q)∞(txj/xi; q)∞

.
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• Relationship with other polynomials:
– Pλ(x; q = t) = sλ(x) (Schur polynomials § 1.2.1)
– limq→1 Pλ(x; t = qβ) = Pλ(x;β) (Jack polynomials § 1.2.2)

• A1 cases: For l ∈ Λ+ = N, we have

Pl(x; q, t) = xl2φ1

[
t, q−l

q1−l/t
; q,

q

tx2

]
, (1.2.6)

which is also called Rogers polynomial.
• Small example:

P(1)(x; q, t) = m1(x), P(2)(x; q, t) = m(2)(x) +
(1 + q)(1− t)

1− qt
m(1,1)(x),

P(3)(x; q, t) = m(3)(x) +
(1− q3)(1− t)
(1− q)(1− q2t)

m(2,1)(x) +
(1− q2)(1− q3)(1− t)2

(1− q)2(1− qt)(1− q2t)
m(1,1,1)(x),

P(2,1)(x; q, t) = m(2,1)(x) +
(1− t)(2 + q + t+ 2qt)

1− qt2
m(13)(x).

1.3 Macdonald-Koornwinder polynomials

Macdonald symmetric functions Pλ(x; q, t) reviewed in the previous § 1.2 can be regarded as the Mac-
donald polynomial of type GLn (or type A affine root system). As mentioned in the beginning, there are
analogous orthogonal families associated to other affine root systems, and they are now called Macdonald-
Koornwinder polynomials. A unified formulation is established after the development of representation
theoretic approach using the (double) affine Hecke algebras [C92a, C95a, C95b, C95c, C97a, N95, Sa99,
Sa00, St00, vD96], and it is called the Macdonald-Cherednik theory. There are now several versions of
such formulation, and we give an overview in § 1.3.1. We refer to [C05, H06, M03, St20] for the concise
explanation.

In this thesis, we only use the Macdonald-Cherednik theory for the non-reduced affine root system
of type (C∨

n , Cn), i.e., the theory for Koornwinder polynomials. In § 1.3.2 and § 1.3.3, we will explain in
detail how to define Koornwinder polynomials though the representation theory of affine Hecke algebra
associated to the non-reduced affine root system (C∨

n , Cn). Let us explain the organization of this part. In
§1.3.2, we explain the root system R of type Cn and the affine root system of type (C∨

n , Cn). In §1.3.3, we
introduce the affine Hecke algebraH of type (C∨

n , Cn), and review the basic representation constructed by
Noumi [N95]. Then we introduce the double affine Hecke algebra H of type (C∨

n , Cn), and explain the non-
symmetric Koornwinder polynomials Eλ (Fact 1.3.3.2). Finally we introduce Koornwinder polynomials
Pλ in § 1.3.3 (Fact 1.3.3.4).

1.3.1 Overview of the Macdonald-Cherednik theory

In [M87], Macdonald introduced families of multivariate q-orthogonal polynomials associated to var-
ious root systems, which are today called the Macdonald polynomials. Each family has additional
t-parameters corresponding to the Weyl group orbits in the root system. The family of Macdonald
symmetric polynomials, explained in § 1.2, is the GLn-version of these families. Following this work,
in [Ko92], Koornwinder introduced a multivariate analogue of Askey-Wilson polynomial, having addi-
tional five parameters aside from q, which is today called the Koornwinder polynomial. It was also
shown in [Ko92] that by specializing these five parameters, we can obtain the Macdonald polynomials of
type (BCn, Bn) and (BCn, Cn) in the sense of [M87]. Today, these families of multivariate q-orthogonal
polynomials are called the Macdonald-Koornwinder polynomials [C05, H06, M03, St20].

After the development of the representation theoretic approach [C92a, C95a, C95b, C95c, C97a, N95,
Sa99, Sa00, St00, vD96] using the (double) affine Hecke algebras, there appeared several versions of
unified formulation of the Macdonald-Koornwinder polynomials [C05, H06, M03, St20]. These studies
are now called the Macdonald-Cherednik theory.

The specialization argument given by Koornwinder in [Ko92] is now understood in a more general
form. First, after the studies in [N95, Sa99, Sa00, St00, vD96], the Koornwinder polynomial can be
formulated as the Macdonald polynomial associated to the affine root system of type (C∨

n , Cn) in the
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sense of [M03]. See also [St04, St20] for the relevant explanation. Then, as mentioned in [M03, p.12,
(5.17)], the Macdonald polynomials associated to all the subsystems of type (C∨

n , Cn) can be obtained
by specializing the five parameters of the Koornwinder polynomial in the way respecting the orbits of
the extended affine Weyl group acting on the affine root systems. See also the comment in [H06, 6.19].

However, it seems that the detailed explanation of the specialization argument is not given in litera-
ture. The aim of this paper is to clarify this point.

What troubled the authors in the early stages of the study is that there are tremendously many
notations for the affine root systems and the parameters of Macdonald-Koornwinder polynomials, and
that even for the work [M87] and the book [M03] both by Macdonald, there seems no explicit comparison
in literature. To the authors’ best knowledge, in the present writing this paper, the most general
framework of the theory of Macdonald-Koornwinder polynomials is given by Stokman [St20], which is
based on the approach of Haiman [H06]. It treats uniformly the four classes of Macdonald-Koornwinder
polynomials: GLn, the untwisted case, the twisted case, and the Koornwinder case. The formulation by
Macdonald in [M03] treats the latter three cases along this classification.

Although it would be the best to work in the framework of [St20], we gave up to do so due to the
following reasons. First, since we are interested in the specialization of Koornwinder polynomials, we
may ignore GLn case, and the formulation of [M03] will be enough. Second, we are also motivated by
Ram-Yip type formulas of non-symmetric Macdonald-Koornwinder polynomials [RY11, OS18], and will
check our specialization argument in the level of those formulas. The calculations in the check are based
on the recent paper [Ya22] by the second named author, which mainly follows the notation in [M03]. Let
us mention that some specialization arguments are given in [St20, Example 9.3.28, Remark 9.3.29].

After these considerations, we decided to use the notation in the following literature:
(1) [M03] for affine root systems.
(2) [N95] for the parameters of Koornwinder polynomials.
Let us explain (1) in detail. We use the word “affine root system” in the sense of [M03, §1.2], which

originates in [M71]. The word “irreducible finite root system” means an irreducible root system in [M03].
We also denote by ∨ the dualizing of finite and affine root systems. Then, as explained in [M03, §1.3],
similarity classes of irreducible affine root systems are divided into three cases:
• reduced and of the form S(R) with R an irreducible finite root system.
• reduced and of the form S(R)∨ with R an irreducible finite root system.
• non-reduced and of the form S1 ∪ S2 with S1 and S2 reduced affine root systems.

The appearing R is one of the types An, Bn, Cn, Dn, BCn, E6, E7, E8, F4 and G2. According to the
type of R, we say
• S(R) is of type X if R is of type X,
• S(R)∨ is of type X∨ if R is of type X,
• a non-reduced system S1 ∪ S2 is of type (X,Y ) if S1 and S2 are of type X and Y , respectively.

We refer [M03, (1.3.1)–(1.3.18))] for explicit descriptions of these irreducible affine root systems, although
some of them will be displayed in the main text.

As explained in [M03, §1.4], Macdonald developed a unified formulation to associate a family of
q-orthogonal polynomials to each of the following pairs (S, S′) of irreducible affine root systems.
(a) (S, S′) = (S(R), S(R∨)) with R an irreducible finite root system.
(b) S = S′ = S(R)∨ with R an irreducible finite root system.
(c) S = S′ is non-reduced of type (X,Y ).

For each pair (S, S′), we have the associated non-symmetric [M03, §5.2] and symmetric [M03, §5.3]
Macdonald polynomials. For the reference in the main text, let us introduce:

Definition 1.3.1.1. We call the non-symmetric and symmetric Macdonald polynomials associated to
(S, S′) in the class (a), (b) and (c) the non-symmetric and symmetric Macdonald polynomials of type X,
X∨ and (X,Y ), respectively.

1.3.2 Affine root system of type (C∨
n , Cn)

In this part, we describe the affine root system (C∨
n , Cn) by which we can define Koornwinder polynomials

from the viewpoint of affine Hecke algebras.
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Root systems for type Cn

We consider the n-dimensional real Euclidean space (V, 〈·, ·〉) with

V =
n⊕

i=1

Rεi, 〈εi, εj〉 = δi,j .

The set R of roots is given by

R := {±εi ± εj | i 6= j} ∪ {±2εi | i = 1, . . . , n} ⊂ V. (1.3.1)

For each root α ∈ R, we denote the associated coroot by α∨ := 2α/〈α, α〉 ∈ V . The set R∨ of coroots is
given by

R∨ := {α∨ | α ∈ R} = {±εi ± εj | i 6= j} ∪ {±εi | i = 1, . . . , n} ⊂ V. (1.3.2)

We use the following choice of the subset R+ ⊂ R of positive roots and the subset R∨
+ ⊂ R∨ of positive

coroots.

R+ := {εi ± εj | i < j} ∪ {2εi | i = 1, . . . , n} , R∨
+ := {εi ± εj | i < j} ∪ {εi | i = 1, . . . , n} ,

We have R = R+ t −R+ and R∨ = R∨
+ t −R∨

+. The simple roots ai ∈ R (i = 1, . . . , n) are given by

a1 := ε1 − ε2, . . . , an−1 := εn−1 − εn, an := 2εn.

The coroots for simple roots are

a∨1 = ε1 − ε2, . . . , a∨n−1 = εn−1 − εn, a∨n = εn.

We call a∨i simple coroots.
For α ∈ R, we write sα the reflection by the hyperplane Hα := {x ∈ V | 〈α∨, x〉 = 0} in V . That is,

sα.x := x− 〈α∨, x〉α, x ∈ V.

We write si := sαi
for i = 1, . . . , n. The finite Weyl group W0 is defined to be the subgroup of GL(V )

generated by s1, . . . , sn. As an abstract group, W0 is a Coxeter group with generators s1, . . . , sn and
relations

s2i = 1 (i = 1, . . . , n),

sisj = sjsi (|i− j| > 1),

sisi+1si = si+1sisi+1 (i = 1, . . . , n− 2),

sn−1snsn−1sn = snsn−1snsn−1.

Next we introduce notation for weights of the root system of type Cn. For i = 1, . . . , n, we define
ωi := ε1 + · · · + εi ∈ V , and call them the fundamental weights. Then we have 〈a∨i , ωj〉 = δi,j for
i, j = 1, . . . , n. We define the root lattice Q and the weight lattice Λ by

Q :=

n⊕
i=1

Zai ⊂ Λ :=

n⊕
i=1

Zωi =

n⊕
i=1

Zεi ⊂ V. (1.3.3)

The action of W0 ⊂ GL(V ) on V preserves the weight lattice Λ. We denote this action by λ 7→ w.λ for
w ∈W0 and λ ∈ Λ.

Affine root system of type (C∨
n , Cn)

Here we introduce the notation for the affine root system of type (C∨
n , Cn) in the sense of Macdonald

[M03], following Chapter 1 of loc. cit.
Let F be the space of affine real functions on V , which is identified with real vector space V ⊕Rc by

the map (u 7→ 〈v, u〉+ r) 7→ v + rc for u, v ∈ V and r ∈ R. Using the gradient map

· : F −→ V, v + rc := v, (1.3.4)
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we extend the inner product 〈·, ·〉 on V to a positive semi-definite bilinear form on F by 〈f, g〉 := 〈f, g〉
for f, g ∈ F . We define the affine root system S = S(C∨

n , Cn) of type (C∨
n , Cn) in the sense of [M03,

(1.3.18)] and [Sa00] by

S(C∨
n , Cn) := {±εi +

k

2
c,±2εi + kc | k ∈ Z, i = 1, . . . , n} ∪ {±εi ± εj + kc | k ∈ Z, 1 ≤ i < j ≤ n} ⊂ F.

(1.3.5)

We also define the subset S+ ⊂ S of positive roots by

S+ :={α+ kc, α∨ +
k

2
c | α ∈ R+, α

∨ ∈ R∨
+, k ∈ N}

∪ {α+ kc, α∨ +
k

2
c | α ∈ R−, α

∨ ∈ R∨
−, k ∈ N \ {0}}.

(1.3.6)

We then have S = S+ t S− with S− := −S+. We also denote the set S := R ∪R∨, and denote the set

S+ := R+ ∪R∨
+, S− := −S+. (1.3.7)

We denote by t(Λ) = {t(λ) | λ ∈ Λ} the abelian group with relations t(λ) t(µ) = t(λ+ µ) (λ, µ ∈ Λ).
We define the action of t(Λ) on F by

t(λ).(µ+mc) := µ+ (m− 〈µ, λ〉)c, µ+mc ∈ F.

The relation of w ∈W0 and t(λ) ∈ t(Λ) in the group GL(F ) is then given by w t(λ)w−1 = t(w.λ). The
subgroup W ⊂ GLR(F ) generated by t(Λ) and W0 is called the extended affine Weyl group. That is,

W := t(Λ)oW0 ⊂ GLR(F ). (1.3.8)

The action of the element s := t(ε1)s2ϵ1 ∈W on Λ is given by s.ε1 = c−ε1 and s.εi = εi (i = 2, . . . , n),
which is the same as the reflection s0 := sa0 with respect to the hyperplane Ha0

:= {x ∈ V | 〈a∨0 , x〉 = 0}
for the affine root a0 := c − 2ε1 ∈ S. For each a ∈ S, we denote the associated affine coroot by
a∨ := 2a/〈a, a〉 ∈ S. As an abstract group, W is a Coxeter group with generators s0, s1, . . . , sn and
relations

s2i = 1 (i = 0, . . . , n),

sisj = sjsi (|i− j| > 1),

sisi+1si = si+1sisi+1 (i = 1, . . . , n− 2),

sisi+1sisi+1 = si+1sisi+1si (i = 0, n− 1).

We define the length `(w) of an element w ∈ W to be the length of the reduced expression of w by the
generators s0, . . . , sn. We also denote by ≼B the corresponding Bruhat order. The reduced expressions
of t(εi) (i = 1, . . . , n) are given by

t(ε1) = s0s1 · · · sn−1snsn−1 · · · s2s1,
t(ε2) = s1s0s1 · · · snsn−1 · · · s2,
t(εi) = si−1 · · · s0s1 · · · snsn−1 · · · si,
t(εn) = sn−1 · · · s1s0s1 · · · sn.

(1.3.9)

1.3.3 Koornwinder polynomials

Affine Hecke algebras of type (C∨
n , Cn) and polynomial representations

Recall the affine root system S of type (C∨
n , Cn) and the extended affine Weyl group W explained in

§1.3.2. Let {ta | a ∈ S} be parameters satisfying the condition ta = ta′ for a′ ∈W.a. Since the W -orbits
in S are given by

W.ai =W.a∨i (i = 1, . . . , n− 1), W.an, W.a0, W.a
∨
n , W.a

∨
0 ,
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we can replace the family {ta} by

(tai
= ta∨

i
, tan

, ta0
, ta∨

n
, ta∨

0
) = (t, tn, t0, un, u0). (1.3.10)

We will also denote t1, . . . , tn−1 := t. Now we set the base field K as

K := Q(q
1
2 , t

1
2 , t

1
2
0 , t

1
2
n , u

1
2
0 , u

1
2
n ), (1.3.11)

and all the linear spaces, their tensor products, and the algebras will be those over K unless otherwise
stated.

The extended affine Hecke algebra H = H(q, t
1
2
i ) is the associative algebra generated by T0, T1, . . . , Tn

subject to the following relations.

(Ti − t
1
2
i )(Ti + t

− 1
2

i ) = 0 (i = 0, . . . , n),

TiTj = TjTi (|i− j| > 1, (i, j) 6∈ {(n, 0), (0, n)}), (1.3.12)

TiTi+1Ti = Ti+1TiTi+1 (i = 1, . . . , n− 2), (1.3.13)

TiTi+1TiTi+1 = Ti+1TiTi+1Ti (i = 0, n− 1). (1.3.14)

The relations (1.3.12)–(1.3.14) are called the braid relations.
Given an element w ∈W together with a reduced expression w = si1 · · · sir , we define Y w ∈ H by

Y w := T
ε(b1)
i1

· · ·T ε(br)
ir

, bk := si1si2 · · · sik−1
(aik) (k = 1, . . . , r), (1.3.15)

where the map ε : S → {±1} is defined by

ε(a) :=

{
+1 (a ∈ S−)

−1 (a ∈ S+)
, a ∈ S.

The decomposition of Y w by Ti’s is independent of the choice of a reduced expression of w. By the
relations of H, we find that the family {Y w | w ∈W} is mutually commutative [N95, §2].

As explained in [M03, §3], we can calculate Y t(ϵi) using the reduced expression of t(εi) in (1.3.9).
The result is

Y t(ϵ1) = T0 · · ·TnTn−1 · · ·T1,
Y t(ϵ2) = T−1

1 T0 · · ·Tn−1TnTn−1 · · ·T2,
Y t(ϵi) = T−1

i−1 · · ·T
−1
1 T0 · · ·Tn−1TnTn−1 · · ·Ti,

Y t(ϵn) = T−1
n−1 · · ·T

−1
1 T0T1 · · ·Tn.

(1.3.16)

Now we denote by

K[Y ±1] = K[Y ±1
1 , . . . , Y ±1

n ] ⊂ H, Yi := Y t(ϵi) (i = 1, . . . , n)

the ring of Laurent polynomials in Y1, . . . , Yn. Then we have an isomorphism H ' H0 ⊗K[Y ±1], where
H0 is the Hecke algebra of the finite Weyl group W0. The latter is the subalgebra of H generated by
T1, . . . , Tn.

Next we review the basic representation of the affine Hecke algebra H introduced by Noumi [N95].
Let K(x) = K(x1, . . . , xn) be the field of rational functions with n variables. Then the mapping

Ti 7−→ t
1
2
i + t

− 1
2

i

1− tixi/xi+1

1− xi/xi+1
(si − 1) (i = 1, . . . , n− 1),

T0 7−→ t
1
2
0 + t

− 1
2

0

(1− u
1
2
0 t

1
2
0 q

1
2x−1

1 )(1 + u
− 1

2
0 t

1
2
0 q

1
2x−1

1 )

1− qx−2
1

(s0 − 1),

Tn 7−→ t
1
2
n + t

− 1
2

n
(1− u

1
2
n t

1
2
nxn)(1 + u

− 1
2

n t
1
2
nxn)

1− x2n
(sn − 1)

(1.3.17)
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defines a ring homomorphism ρ : H → End(K(x)). Moreover its image is contained in the endomorphism
algebra EndK(K[x±1]) ⊂ EndK(K(x)) of the Laurent polynomials. We call ρ the basic representation of
H. Hereafter we identify H and its image under ρ, and regard H as a subalgebra of EndK(K[x±1]). The
right hand sides of (1.3.17) are q-difference operators called Dunkl operators of type (C∨

n , Cn).
Let us give a simplified description of (1.3.17). Using

ui :=


1 (i = 1, . . . , n− 1)

u0 (i = 0)

un (i = n)

, xai :=


xi/xi+1 (i = 1, . . . , n− 1)

qx−2
1 (i = 0)

x2n (i = n)

,

we can rewrite Ti’s as

Ti = t
1
2
i + t

− 1
2

i

(1− u
1
2
i t

1
2
i x

ai
2 )(1 + u

− 1
2

i t
1
2
i x

ai
2 )

1− xαi
(si − 1), (1.3.18)

where we identified the left and right hand sides in (1.3.17) as claimed before. Let us further define the
rational functions ci(z), di(z) ∈ K(z) by

ci(z) := t
− 1

2
i

(1− u
1
2
i t

1
2
i z

1
2 )(1 + u

− 1
2

i t
1
2
i z

1
2 )

1− z
, di(z) := t

1
2
i − ci(z) =

(t
1
2
i − t

− 1
2

i ) + (u
1
2
i − u

− 1
2

i )z
1
2

1− z
.

(1.3.19)

Then we can rewrite (1.3.17) or (1.3.18) as

Ti = t
1
2
i + ci(x

ai)(si − 1) = t
1
2
i si + di(x

ai)(1− si) = ci(x
ai)si + di(x

ai). (1.3.20)

For later use, we calculate the action of the element Y a on 1 in the basic representation for an affine
root a = α+ kc ∈ S (α ∈ S, k ∈ Z). Let us define

qsh(α+kc) := q−k, tht(α+kc) :=
∏

γ∈Rs
+
t
1
2 ⟨γ

∨,α⟩ ∏
γ∈Rℓ

+
(t0tn)

1
2 ⟨γ

∨,α⟩. (1.3.21)

Here Rs
+ := {εi ± εj | 1 ≤ i < j ≤ n} denotes the set of positive short roots, and Rℓ

+ := {2εi | 1 ≤ i ≤ n}
denotes the set of of positive long roots. Then we can check

Y a1 = qsh(a)tht(a). (1.3.22)

See also [St00, Proposition 4.5] for a more general formula.
Finally we recall the Lusztig relations in the basic representations of affine Hecke algebra. For each

weight λ = (λ1, . . . , λn) ∈ Λ, we define xλ ∈ K[x±1] by

xλ := xλ1
1 · · ·xλn

n ∈ K[x±1]. (1.3.23)

Fact 1.3.3.1 (Lusztig relations, [L89, Proposition 3.6]). For i = 0, . . . , n and λ ∈ Λ, we have

Tix
λ − xsi.λTi = di(x

ai)(xλ − xsi.λ),

where the rational function di(z) is defined by (1.3.19).

Double affine Hecke algebras and non-symmetric Koornwinder polynomials

Next we review the double affine Hecke algebra H of type (C∨
n , Cn) and the non-symmetric Koornwinder

polynomials Eλ(x), following [M03], [Sa99] and [Sa00].
As in the previous part, we regard H as a K-subalgebra of EndK(K[x±1]) by the basic representation

(1.3.17). We define the double affine Hecke algebra H ⊂ EndK(K[x±1]) as the K-subalgebra generated
by K[x±1], H(W0) and K[Y ±1]. Thus

H :=
〈
K[x±1], H0, K[Y ±1]

〉
⊂ EndK(K[x±1]).

21



As in the case of untwisted affine root systems, the algebra H has the Cherednik anti-involution ∗ : H→ H
[Sa99, §4]:

x∗i = Y −1
i , Y ∗

i = x−1
i , T ∗

i = Ti (i = 1, . . . , n),

(t∗, t∗n, t
∗
0, u

∗
n, u

∗
0) = (t, tn, un, t0, u0).

(1.3.24)

On the element T0 the anti-involution acts as T ∗
0 = T−1

s2ϵ1
x−1
1 . In fact, we have T0 = Y1T

−1
s2ϵ1

and

Ts2ϵ1 = T1 · · ·TnTn−1 · · ·T1 by (1.3.16).

Next we introduce the x- and Y -intertwiners for H following [M03, §5.6]. Let H̃ be the coefficient
extension of H by rational functions of x’s and Y ’s. In other words, we set

H̃ :=
〈
K(x), H0, K(Y )

〉
⊂ EndK(K(x)). (1.3.25)

Here K(x) and K(Y ) are the fields of rational functions of xi and Yi (i = 1, . . . , n) respectively. For

i = 0, . . . , n, we define Sx
i ∈ H̃ by

Sx
i := Ti + ϕ+

i (x
ai = T−1

i + ϕ−
i (x

ai), (1.3.26)

where

ϕ±
i (z) := ∓

(t
1
2
i − t

− 1
2

i ) + z±
1
2 (u

1
2
i − u

− 1
2

i )

1− z±1
∈ K(z). (1.3.27)

We call Sx
i the x-intertwiners.

Let us explain some basic properties of x-intertwiners. Recalling the rational function di(z) in (1.3.19)
and the expression of Ti in (1.3.20), we have

ϕ+
i (z) = di(z), Sx

i = Ti − di(xai) = ci(x
ai)si. (1.3.28)

For each weight λ ∈ Λ, we have

Sx
i x

λ = xsi(λ)Sx
i (1.3.29)

by the Lusztig relations (Fact 1.3.3.1). Moreover, by [M03, (5.5.2)], the x-intertwiners Sx
i (i = 0, . . . , n)

satisfy the same braid relations as (1.3.12)–(1.3.14):

Sx
i S

x
j = Sx

j S
x
i (|i− j| > 1),

Sx
i S

x
i+1S

x
i = Sx

i+1S
x
i S

x
i+1 (i = 1, . . . , n− 2),

Sx
i S

x
i+1S

x
i S

x
i+1 = Sx

i+1S
x
i S

x
i+1S

x
i (i = 0, n− 1).

(1.3.30)

Given an element w ∈W , choose a reduced expression w = si1 · · · sip , and set

Sx
w := Sx

i1 · · ·S
x
ip ∈ H̃. (1.3.31)

By the braid relations, Sx
w is independent of the choice of a reduced expression of w.

Next we introduce Y -intertwiners. First, note that the anti-involution ∗ can be extended to H̃. In
fact, H̃ is the Ore localization of the non-commutative algebra H by the commutative subalgebras K[x±1]
and K[Y ±1], and ∗ is an isomorphism on these commutative subalgebras. We denote the extension of ∗
to H̃ by same symbol ∗. Now we define the Y -intertwiners SY

i ∈ H̃ by

SY
i := (Sx

i )
∗ = Ti + ψ+

i (Y
−ai) = T−1

i + ψ−
i (Y

−ai) (i = 1, . . . , n),

SY
0 := (Sx

0 )
∗ = T ∗

0 + ψ+
0 (qY

2
1 ) = (T ∗

0 )
−1 + ψ−

0 (qY
2
1 ),

(1.3.32)

where the symbols ψ±
i (z) denote the following functions:

ψ±
i (z) := ϕ±1

i (z) = ∓ t
1
2 − t− 1

2

1− z±1
(i = 1, . . . , n− 1),

ψ±
0 (z) := ∓

(u
1
2
n − u

− 1
2

n ) + z±
1
2 (u

1
2
0 − u

− 1
2

0 )

1− z±1
,

ψ±
n (z) := ∓

(t
1
2
n − t

− 1
2

n ) + z±
1
2 (t

1
2
0 − t

− 1
2

0 )

1− z±1
.

(1.3.33)
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Note that we have ψ±
i (Y

−ai) =
(
ϕ±
i (x

ai)
)∗
, where ∗ is the extended anti-involution.

We can deduce properties of SY
i ’s from those of Sx

i ’s. For example, applying the anti-involution ∗ to
the relation (1.3.29), we have

SY
i Y

λ = Y siλSY
i (1.3.34)

for each i = 0, . . . , n and λ ∈ Λ. We can also see that SY
i ’s satisfy the same braid relations as (1.3.30).

For an element w ∈W , we can define SY
w ∈ H̃ by choosing a reduced expression w = si1 · · · sip and

SY
w := SY

i1 · · ·S
Y
ip ∈ H̃. (1.3.35)

It is well-defined by the braid relations of SY
i ’s.

Finally we explain the non-symmetric Koornwinder polynomials. For each weight µ ∈ Λ, we regard
t(µ)W0 ⊂W by the decompositionW = t(P )oW0 in (1.3.8). Then we define w(µ) ∈W by the following
description:

w(µ) is the shortest element among t(µ)W0 ⊂W . (1.3.36)

In the case µ = εi, i = 1, . . . , n, the element w(εi) is given by

w(εi) = si−1 · · · s0. (1.3.37)

Now we have:

Fact 1.3.3.2 ([Sa99, §6], [St00, Theorem 4.8]). For µ ∈ Λ, the element

Eµ(x) := SY
w(µ)1 ∈ K(x)

belongs to K[x±1]. We call it the non-symmetric Koornwinder polynomial associated to µ.

By (1.3.34), Eµ(x) is a simultaneous eigenfunction of the family
{
Y λ | λ ∈ Λ

}
of Dunkl operators.

Note that our normalization of Eµ(x) is different from that in [Sa99, St00]. In loc. cit., the coefficient of
xµ is normalized to be 1.

Koornwinder polynomials

Now we introduce Koornwinder polynomials by symmetrizing non-symmetric Koornwinder polynomials.
First, we define the set Λ+ ⊂ Λ of dominant weights by

Λ+ := {µ ∈ Λ | 〈a∨i , µ〉 ≥ 0, i = 1, . . . , n} .

For a weight µ ∈ Λ, we denote the stabilizer of µ in the finite Weyl group W0 by

Wµ := {w ∈W0 | w.µ = µ} ⊂W0, (1.3.38)

and denote the longest element among Wµ by

wµ ∈Wµ. (1.3.39)

Next, using the notations in § 1.3.2 and § 1.3.3, we define tw ∈ K for each w ∈W by

tw :=
∏

a∈L(w)

ta ∈ K. (1.3.40)

Here {ta | a ∈ S} is the W -invariant family of parameters (1.3.10), K is the base field (1.3.11), and
L(w) ⊂ S is given by (2.1.2). If w = si1 · · · sir ∈W is a reduced expression, then we have tw = ti1 · · · tir .
For a dominant weight µ ∈ Λ+, we define the Poincaré polynomial Wµ(t) ∈ K of the stabilizer Wµ by

Wµ(t) :=
∑

u∈Wµ

tu. (1.3.41)
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Lemma 1.3.3.3. For each element µ ∈ Λ+, we have

∑
u∈Wµ

( ∏
a∈L(e,u)

t
1
2
a
1− tht(−a)t−1

a

1− tht(−a)

)( ∏
a∈L(u,wµ)

t
− 1

2
a

1− tht(−a)ta
1− tht(−a)

)
= t

− 1
2

wµ Wµ(t).

For a proof, see [Yi12, Lemma 3.4].
Next we define the symmetrizer U by

U :=
∑

w∈W0

t
− 1

2
w0wTw. (1.3.42)

By [M03, (5.5.9)], we then have

UTi = Ut
1
2
i , TiU = t

1
2
i U (i = 1, . . . , n). (1.3.43)

Hereafter we denote the ring of W0-invariant Laurent polynomials by

K[x±1]W0 :=
{
f ∈ K[x±1] | w.f = f, w ∈W0

}
.

Here W0 acts on xλ (1.3.23) by the action on the weight λ. Also recall that for each µ ∈ Λ+ ⊂ Λ we
defined w(µ) ∈ t(µ)W0 ⊂W by (1.3.36).

Fact 1.3.3.4 ([St00, Theorem 6.6]). For each dominant weight λ ∈ Λ+, the element

Pλ(x) :=
1

t
− 1

2
wµ Wλ(t)

USY
w(λ)1 =

1

t
− 1

2
wλ Wµ(t)

UEλ(x) ∈ K(x)

belongs to K[x±1]W0 . We call Pλ(x) the (monic) Koornwinder polynomial associated to λ.

Note that the coefficient of xλ in Pλ(x) is 1 since the coefficient of the top term xλ in USY
w(λ)1 is

t
− 1

2
wλ Wλ(t). To emphasize the root system (C∨

n , Cn), we call Pλ(x) the Koornwinder polynomial of rank
n or of type (C∨

n , Cn).
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Chapter 2

Littlewood-Richardson coefficients

Chapter 2 is based on the author’s publication [Ya22].

2.0 Introduction

As explained in Preface, Abstract of Chapter 2, the theme of this chapter is the Littlewood-Richardson
coefficients cνλ,µ of Koornwinder polynomials Pλ, that is the structure constants of the product in the

invariant Laurent polynomial ring K[x±1]W0 of the finite Weyl group W0 of type Cn:

PλPµ =
∑
ν

cνλ,µPν .

Hereafter we call cνλ,µ LR coefficients for simplicity.
The main result of this chapter is Theorem 2.2.4.2, which is a natural (C∨

n , Cn)-type analogue of Yip’s
alcove walk formulas for LR coefficients in [Yi12, Theorem 4.4]. Let us prepare the necessary notations
and terminology for the explanation. See also the explanation of Theorem A in Preface.

Let us explain the outline of proof of Theorem A. We denote by Eµ(x) ∈ K[X±1] the non-symmetric
Koornwinder polynomials [Sa99, St00], which was introduced in § 1.3.2. We need the following two
properties.
• {Eµ(x) | µ ∈ Λ} is a K-basis of K[x±1].
• Pµ(x) is obtained by symmetrizing Eµ(x) (Fact 1.3.3.2). More precisely, using the symmetrizer U

in (1.3.42), we have

Pµ(x) =
1

t
− 1

2
wµ Wµ(t)

UEµ(x).

The outline of proof is a straight (C∨
n , Cn)-type analogue of Yip’s derivation in [Yi12]. The argument

can be divided into four steps, and below we explain them abbreviating some coefficients and ranges of
summations.
(i) For dominant weights λ, µ ∈ Λ+, we derive an expansion formula

xµEλ(x) =
∑
p∈ΓC

cpEϖ(p)(x)

of the product of the non-symmetric Koornwinder polynomial Eλ(x) and the monomial xµ (Corol-
lary 2.2.1.5). Here the index set ΓC consists of alcove walks belonging to the dominant chamber
C. The symbol $(p) ∈ Λ+ will be given in (2.2.7).

(ii) We use Ram-Yip type formula (Fact 2.2.3.1), an expansion formula for the non-symmetric Koorn-
winder polynomials in terms of monomials:

Eµ(x) =
∑
p∈Γ

fpt
1
2

d(p)x
wt(p).

This formula was derived by Orr and Shimozono [OS18], based on the work of Ram and Yip [RY11]
on the same type formula for the untwisted affine root systems.
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(iii) Using (i) and (ii), we can calculate the product of the non-symmetric Koornwinder polynomial

Eµ(x) and the Koornwinder polynomial Pλ(x) in an extension H̃ of the double affine Hecke algebra
H, and express it as a sum over alcove walks (2.2.17). Then we can rewrite it as a sum over colored
alcove walks and have (Proposition 2.2.3.2):

Eµ(x)Pλ(x) =
∑

v∈Wλ

∑
p∈ΓC

2

ApCpEϖ(p)(x).

(iv) Theorem A is obtained by symmetrizing Eµ(x) in (iii) and switching λ↔ µ.

Organization

In § 2.1, we introduce alcove walks for type (C∨
n , Cn), slightly modifying the original alcove walks intro-

duced by Ram and Yip [RY11]. In §2.2, we derive our main Theorem 2.2.4.2. previously explained, and
the organization of § 2.2 follows that. In § 2.3, we derive several corollaries of the main Theorem 2.2.4.2.
In §2.3.1, we discuss the case of rank n = 1, that is the case of Askey-Wilson polynomials. In particular,
we give a simplified formula for the Pieri coefficient (Proposition 2.3.1.3), and recover the recurrence
formula of Askey-Wilson polynomials in [AW85] from our Pieri formula (Remark 2.3.1.4). In § 2.3.2,
we discuss the Hall-Littlewood limit q → 0, and show that LR coefficients are somewhat simplified
(Proposition 2.3.2.1). In § 2.3.3 we display examples of LR coefficients in the case of rank n = 2.

Notation and terminology

In Table 2.0.1 below, we collect several symbols concerning Weyl groups which might be confusing.

R (1.3.1) the set of roots in the finite root system of type Cn.
Λ :=

⊕n
i=1 Zεi (1.3.3) the weight lattice of type Cn.

W = t(Λ)oW0 (1.3.8) the extended affine Weyl group of type Cn.
Wµ ⊂W0 (1.3.38) the stabilizer of weight µ ∈ Λ in the finite Weyl group W0.
Wµ (2.2.11) the distinguished complete system of representatives of W0/Wµ.
Wµ(t) (1.3.41) the Poincare polynomial of Wµ.
wµ (1.3.39) the longest element of the stabilizer Wµ.
vµ (2.2.12) the longest element of Wµ.
w(µ) (1.3.36) the shortest element among t(µ)W0 ⊂W .

Table 2.0.1: Symbols concerning Weyl groups

2.1 Alcove walks

Alcove walks are introduced by Ram [Ra06] as analogue of Littelmann paths for affine Hecke algebras.
They are valuable combinatorial objects, and used in Ram-Yip type formula [RY11, OS18] for non-
symmetric Macdonald-Koornwinder polynomials, and in Yip’s formula [Yi12] for Littlewood-Richardson
rules of Macdonald polynomials in the untwisted affine root systems. In this part we introduce the
notation of alcove walks which will be used throughout in the text. Basically we follow the notations in
[Yi12, §2.2], but make slight modifications.

Let us regard an affine root a = α+ kc ∈ S (α ∈ S, k ∈ 1
2Z) as an affine linear function on V by

a(v) = 〈α, v〉+ k (v ∈ V ).

An alcove is defined to be a connected component of the complement V \
⋃

a∈S Ha of the hyperplanes
Ha := {x ∈ V | a(x) = 0}. The fundamental alcove A is the alcove given by

A := {x ∈ V | ai(x) > 0 (i = 0, . . . , n)} . (2.1.1)

Its boundary consists of the hyperplanes Ha0 ,Ha1 , . . . , Han . Note that the mapping

W 3 w 7−→ wA ∈ π0(V \
⋃

a∈S Ha)
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is a bijection. An alcove wA is surrounded by n + 1 hyperplanes, say Hγi (γi ∈ S+; i = 0, . . . , n). We
call the intersection Hγi ∩ wA an edge of the alcove wA, where wA denotes the closure with respect to
the Euclidean topology. Note that each hyperplane Hγi

separates wA and another alcove vA, which can
be written as v = wsj for some j = 0, . . . , n. Then the edge Hγi

∩wA is just the intersection wA∩wsjA,
and has two sides, which we call the wA-side and the wsjA-side.

Given an alcove wA, we give a sign ± to each of the two sides on an edge of wA. Let Hγi
(i = 0, . . . , n)

be the hyperplanes surrounding wA. By renaming the indices i if necessary, we can assume that the
hyperplane Hγi separates wA and wsiA. Then using the projection γi 7→ γi in (1.3.4) and the symbols
S± in (1.3.7), we set the signs by the following rule.
• If γi ∈ S+, then the wA-side of Hγi

∩ wA is assigned by + and the wsiA-side is by −.
• If γi ∈ S−, then wA-side is assigned by − and the wsiA-side is by +.

See Figure 2.1.1 for the assignment in the rank 2 case.

Ha0
Ha2

Ha1

A

s2A

s1A

s0AO

( 12 , 0) =
1
2ω1

( 12 ,
1
2 ) =

1
2ω2

+−

+
−

+−

Figure 2.1.1: Signs for the edges of the fundamental alcove A in the rank 2 case

Given an element w ∈W and a reduced expression w = si1 · · · sir , we define a subset L(w) ⊂ S by

L(w) :=
{
ai1 , si1ai2 , . . . , si1 · · · sir−1air

}
. (2.1.2)

The set {Ha | a ∈ L(w)} consists of the hyperplanes separating A and wA. Given elements v, w ∈ W
and their reduced expressions, we also set

L(v, w) := (L(v) ∪ L(w)) \ (L(v) ∩ L(w)). (2.1.3)

The set {Ha | a ∈ L(v, w)} consists of the hyperplanes separating vA and wA. If v ≼B w, where ≼B is
the Bruhat order explained at the line before (1.3.9), then we have

L(v, w) = v.L(e, v−1w) = v.L(v−1w). (2.1.4)

Let us again given w ∈W and a reduced expression w = si1 · · · sir . Then the mapping

{0, 1}r 3 (b1, . . . , br) 7−→ sb1i1 · · · s
br
ir
∈ {v ∈W | v ≼B w}

is a surjection. Let us given extra v, w ∈ W such that v ≼B w. We can write v = sb1i1 · · · s
br
ir

with
b = (b1, . . . , br) ∈ {0, 1}r. We then consider the following sequence p of alcoves.

p =
(
p0 := zA, p1 := zsb1i1A, p2 := zsb1i1 s

b2
i2
A, . . . , pr := zsb1i1 · · · s

br
ir
A
)
.

The sequence p is called an alcove walk of type −→w = (i1, . . . , ir) beginning at zA, and we denote by
Γ(−→w , z) the set of alcove walks of this kind. The symbol −→w emphasizes that we choose a reduced
expression w = si1 · · · sir .
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Example 2.1.0.1 (Alcove walks in the rank 2 case). For w = s1s2s1s0 and z = e ∈ W , the two alcove
walks

p1 := (A,A, s2A, s2s1A, s2s1s0A), p2 := (A, s1A, s1s2A, s1s2s1A, s1s2s1s0A) ∈ Γ(−→w , z)

are shown in Figure 2.1.2, where the gray region is the fundamental alcove A, and the number i = 0, 1, 2
on a hyperplane means that it belongs to the W -orbit of Hai

.

2

01

2

2

2

0

0

0

1

1

O 1
2ω1

1
2ω2

2

01

22

2

0 0 0

0 211

O 1
2ω1

1
2ω2

Figure 2.1.2: Alcove walks p1 and p2

For an alcove walk p ∈ Γ(−→w , z) and k = 1, . . . , r, the transition pk−1 → pk is called the k-th step of p.
The k-th step is called a crossing if bk = 1, and called a folding if bk = 0. The correspondence between
the bit bk and the k-th step is shown in Table 2.1.1, where we denote by vk−1 ∈ W the element such
that pk−1 = vk−1A.

bk 1 0
crossing folding

pk−1 pk pk−1 = pk vk−1sikA

Table 2.1.1: Correspondence between bits and steps

Let us again given z, w ∈ W with a reduced expression w = si1 · · · sir . For an alcove walk p =
(zA, . . . , zsb1i1 · · · s

br
ir
A) ∈ Γ(−→w , z), we define e(p) ∈W by

e(p) := zsb1i1 · · · s
br
ir
. (2.1.5)

Thus e(p) corresponds to the end of p. We also define hk(p) ∈ S for k = 1, . . . , r so that the chosen root

hk(p) is positive. Denote v := sb1i1 · · · s
bk−1

ik−1
for simplicity, so that we have pk−1 = vA. Then we define

hk(p) := the affine root such that the corresponding hyperplane Hhk(p) separates vA and vsikA.
(2.1.6)

Furthermore, we call the k-th step of p ∈ Γ(−→w , z) an ascent if zsb1i1 · · · s
bk−1

ik−1
≼B zsb1i1 · · · s

bk
ik
, and call it a

descent if zsb1i1 · · · s
bk−1

ik−1
≽B zsb1i1 · · · s

bk
ik
. We denote the set of descent steps of p by

des(p) := {k = 1, . . . , r | the k-th step is a descent} . (2.1.7)

Recalling the sign on an edge of an alcove (see Figure 2.1.1 for an example), we can classify each step
of an alcove walk p into four types as in Table 2.1.2, where we used the symbol vk−1 ∈ W such that
pk−1 = vk−1A.
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Using this classification, we define ϕ±(p) ⊂ {1, . . . , r} by

ϕ+(p) := {k | the k-th step of p is a positive folding} ,
ϕ−(p) := {k | the k-th step of p is a negative folding} ,

(2.1.8)

and define ξdes(p) ⊂ {1, . . . , r} by

ξdes(p) := {k | the k-th step of p is a crossing and k ∈ des(p)} . (2.1.9)

Note that we fix a reduced expression w = si1 · · · sir in the definitions of ϕ±(p) and ξdes(p).

positive crossing negative crossing positive folding negative folding

− +

pk−1 pk

+ −

pk−1 pk

+ −

pk−1 = pk vk−1sikA

− +

pk−1 = pk vk−1sikA

Table 2.1.2: Classification of steps in alcove walks

2.2 Littlewood-Richardson coefficients

Yip [Yi12, Theorem 4.4] derived a combinatorial explicit formula of LR coefficients for Macdonald poly-
nomials Pλ(x) in the case of untwisted affine root systems. In this section, we derive a (C∨

n , Cn)-analogue
of Yip’s formula. The outline of the derivation is quite similar to Yip’s proof [Yi12, §§3.1–4.1], but we
need non-trivial adjustments in each step.

2.2.1 Products of non-symmetric Koornwinder polynomials and monomials

In [Yi12, Theorem 3.3], Yip derived an expansion formula for the product of the monomial xµ and
the non-symmetric Macdonald polynomial Eλ(x) in the case of untwisted affine root systems. In this
subsection, we give its (C∨

n , Cn)-type analogue (Corollary 2.2.1.5).

We will use the notations in § 1.3.3. In particular, H̃ is the extension (1.3.25) of the double affine

Hecke algebra H of type (C∨
n , Cn), S

Y
i ∈ H̃ is the Y -intertwiner (1.3.32), and SY

w for w ∈ W is the
product of SY

i ’s (1.3.35). We also denote the Bruhat order in W by ≼B .
As a preparation of Proposition 2.2.1.3, we derive a product formula of the Y -intertwiners.

Proposition 2.2.1.1. For w ∈W and i = 0, . . . , n, we have the following relations in H̃.
(i) If w ≼B siw, then S

Y
i S

Y
w = SY

siw.
(ii) If w ≽B siw, then S

Y
i S

Y
w = ni(Y

−ai)SY
siw, where

n0(Y
a) :=

(1− u
1
2
nu

1
2
0 Y

a
2 )(1 + u

1
2
nu

− 1
2

0 Y
a
2 )

1− Y a

(1 + u
− 1

2
n u

1
2
0 Y

a
2 )(1− u−

1
2

n u
− 1

2
0 Y

a
2 )

1− Y a
(a ∈W.a0),

ni(Y
a) :=

1− tY a

1− Y a

1− t−1Y a

1− Y a
(a ∈W.ai, 0 < i < n),

nn(Y
a) :=

(1− t
1
2
n t

1
2
0 Y

a
2 )(1 + t

1
2
n t

− 1
2

0 Y
a
2 )

1− Y a

(1 + t
− 1

2
n t

1
2
0 Y

a
2 )(1− t−

1
2

n t
− 1

2
0 Y

a
2 )

1− Y a
(a ∈W.an).

Proof. Fix w ∈ W and choose a reduced expression w = si1 · · · sir . By the definitions (1.3.35), (1.3.32)
and the equation (1.3.28), we have

SY
w = SY

i1 · · ·S
Y
ir = (T ∗

i1 + ψ+
i1
(Y −ai1 )) · · · (T ∗

ir + ψ+
ir
(Y −air ))

= c∗i1(Y
−ai1 )si1 · · · c∗ir (Y

−air )sir = c∗i1(Y
−b1) · · · c∗ir (Y

−br )w.
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Here we set bk := si1 · · · sik−1
(aik) (k = 1, . . . , r) and

c∗i (z) :=



u
− 1

2
n

(1− u
1
2
nu

1
2
0 z

1
2 )(1 + u

1
2
nu

− 1
2

0 z
1
2 )

1− z
(i = 0),

t−
1
2
1− tz
1− z

(0 < i < n),

t
− 1

2
n

(1− t
1
2
n t

1
2
0 z

1
2 )(1 + t

1
2
n t

− 1
2

0 z
1
2 )

1− z
(i = n).

Since w = si1 · · · sir is a reduced expression, we have bk ∈ S+ for k = 1, . . . , r, where S+ ⊂ S denotes
the set of positive affine roots (1.3.6). The product SY

i (i = 0, . . . , n) and SY
w is now calculated as

SY
i S

Y
w = c∗i (Y

−ai)sic
∗
i1(Y

−b1) · · · c∗ir (Y
−br )w. (2.2.1)

If `(siw) = `(w) + 1, then the equation (2.2.1) becomes SY
i S

Y
w = SY

siw. If `(siw) = `(w)− 1, then there
exists k ∈ {1, . . . , r} such that si(bk−1) ∈ S+ and si(bk) ∈ S−. Since we have bk = ai, the equation
(2.2.1) becomes

SY
i S

Y
w = c∗i (Y

−ai)sic
∗
i1(Y

−b1) · · · c∗ir (Y
−br )w

= c∗i (Y
−ai)c∗i1(Y

−si(b1)) · · · c∗ik−1
(Y −si(bk−1))sic

∗
ik
(Y −ai) · · · c∗ir (Y

−br )w

= c∗i (Y
−ai)c∗i (Y

ai)ci1(Y
−si(b1)) · · · ̂c∗ik(Y

ai) · · · c∗ir (Y
−si(br))siw = c∗i (Y

−ai)c∗i (Y
ai)SY

siw.

Here the symbol ̂ denotes skipping the term. Then the consequence follows from the equality
c∗i (Y

−ai)c∗i (Y
ai) = ni(Y

−ai), which can be checked by a direct calculation.

The same discussion shows the following statement.

Corollary 2.2.1.2. For w ∈W and i = 0, . . . , n. we have the following relations in H̃
(i) If w ≼B wsi, then S

Y
wS

Y
i = SY

wsi .
(ii) If w ≽B wsi, then S

Y
wS

Y
i = SY

wsini(Y
−ai), where ni(Y

−ai) is given in Proposition 2.2.1.1.

Next we recall the notations on alcove walks in § 2.1. Given z, w ∈ W together with a reduced
expression z = sir · · · si1 , we defined the set Γ(−→z , w) of alcove walks of type −→z = (ir, . . . , i1) beginning
at wA. For an alcove walk p = (p0, . . . , pr) ∈ Γ(−→z , w), the k-th step means the the transition from pk−1

to pk, which is classified into the four types in Table 2.1.2.
Now we define xz ∈ H for z ∈W with a chosen reduced expression z = sir · · · si1 . Let q be the alcove

walk given by
q := (zA, zsi1A, zsi1si2A, . . . , zsi1 · · · sirA = A) ∈ Γ(−→z −1, z).

Here −→z −1 :=
−−→
z−1 = (i1, . . . , ir). Then we define xz by

xz := (T ∗
ir )

ϵr · · · (T ∗
i1)

ϵ1 , (2.2.2)

where T ∗
i ∈ H as in (1.3.24), and we set εk := 1 if the k-th step is a positive crossing, and εk := −1 if the

k-th step is a negative crossing according to the classification in Table 2.1.2.

Proposition 2.2.1.3. Given z, w ∈W with a chosen reduced expression z = sir · · · si1 , we have

xzSY
w =

∑
p∈Γ(−→z −1,w−1)

SY
e(p)−1gp(Y )np(Y )

in H̃, where e(p) ∈W is the element (2.1.5), and the terms gp(Y ) and np(Y ) are given by

gp(Y ) :=
∏

k∈φ−(p)

(
−ψ−

ik
(Y −hk(p))

) ∏
k∈φ+(p)

(
−ψ+

ik
(Y −hk(p))

)
,

np(Y ) :=
∏

k∈ξdes(p)

nik(Y
−hk(p)).

Here hk(p) is given by (2.1.6), ϕ+(p) and ϕ−(p) are by (2.1.8), ξdes(p) is by (2.1.9), ψ±
i (z) = (ϕ±

i (z))
∗

is by (1.3.33), and ni(z) is given in Proposition 2.2.1.1.
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Proof. We show the statement by induction on the length of z ∈W . If `(z) = 0, that is z = e, then the
right hand side consists only of the term for p = (p0 = wA), so that it is equal to SY

w , and we have the
relation.

Next we assume z 6= e and that the result holds for any element w ∈W such that `(w) < `(z).
Fix a reduced expression of z, and write it as z = siζ, ζ = sir · · · si1 . By the hypothesis, we can write

xzSY
w = (T ∗

i )
ϵxζSY

w =
∑

p∈Γ(
−→
ζ −1,w−1)

(T ∗
i )

ϵSY
e(p)−1gp(Y )np(Y ). (2.2.3)

Here ε ∈ {±1} is the sign determined by z. Let us calculate the rightmost side. Take an element

p = (w−1A, w−1sϵ1i1A, . . . , w
−1sϵ1i1 · · · s

ϵr
ir
A) ∈ Γ(

−→
ζ −1, w−1).

Since we have (T ∗
i )

±1 = SY
i − ψ

±
i (Y

−ai) by the definition (1.3.24) of T ∗
i , the term contributed by p

becomes

(T ∗
i )

ϵSY
e(p)−1gp(Y )np(Y ) = (SY

i − ψϵ
i (Y

−ai))SY
e(p)−1gp(Y )np(Y )

= SY
i S

Y
e(p)−1gp(Y )np(Y ) + (−ψϵ

i (Y
−ai))SY

e(p)−1gp(Y )np(Y )

= SY
i S

Y
e(p)−1gp(Y )np(Y ) + SY

e(p)−1(−ψϵ
i (Y

−e(p)ai))gp(Y )np(Y ).

In the last equality we used (1.3.34). We treat the two terms in the last line separately.
For the first term SY

i S
Y
e(p)−1gp(Y )np(Y ), we further divide the argument into two cases according to

the Bruhat order.
(i) The case e(p)−1 ≼B sie(p)

−1. By Proposition 2.2.1.1, we have SY
i S

Y
e(p)−1 = SY

sie(p)−1 = Se(p1)−1 ,
where the alcove walk

p1 = (w−1A, w−1sϵ1i1A, . . . , w
−1sϵ1i1 · · · s

ϵr
ir
A, w−1sϵ1i1 · · · s

ϵr
ir
sϵiA) ∈ Γ(−→z , w−1) (2.2.4)

is an extension of p by a crossing (Table 2.1.2). By the hypothesis e(p)−1 ≼B sie(p)
−1, the last

step of p1 is an ascent, and we have ϕ+(p1) = ϕ+(p), ϕ−(p1) = ϕ−(p) and ξdes(p1) = ξdes(p). Thus
we have gp(Y )np(Y ) = gp1

(Y )np1
(Y ) and SY

i S
Y
e(p)−1gp(Y )np(Y ) = Se(p1)−1gp1

(Y )np1
(Y ).

(ii) The case e(p)−1 ≽B sie(p)
−1. By Proposition 2.2.1.1, we have

SY
i S

Y
e(p)−1 = ni(Y

−ai)SY
sie(p)−1 = ni(Y

−ai)SY
e(p1)−1 = SY

e(p1)−1ni(Y
−e(p1)ai).

Here p1 ∈ Γ(−→z , w−1) is the same as (2.2.4), but in this case the last step is a descent crossing, and
the hyperplane crossed by the last step is He(p1)ai

since

hr+1(p1) = −e(p)(ai) = −e(p1)si(ai) = e(p1)ai.

We then have ξdes(p1) = ξdes(p) ∪ {r + 1} and np1
(Y ) = np(Y )ni(Y

−hr+1(p1)). Combining them
with ϕ+(p1) = ϕ+(p) and ϕ−(p1) = ϕ−(p), we have ni(Y

−e(p1)ai)gp(Y )np(Y ) = gp1
(Y )np1

(Y ).
Hence also in this case, we have SY

i S
Y
e(p)−1gp(Y )np(Y ) = Se(p1)−1gp1(Y )np1(Y ).

Taking the summation over p, we therefore have∑
p∈Γ(

−→
ζ −1,w−1)

SY
i S

Y
e(p)−1gp(Y )np(Y ) =

∑
p1∈Γ(−→z −1,w−1),

the last step is a crossing

SY
e(p1)−1gp1(Y )np1(Y ). (2.2.5)

Next we consider the term SY
e(p)−1(−ψϵ

i (Y
−e(p)ai))gp(Y )np(Y ). We make a similar argument as

in the first term, and here we use the alcove walk p2 ∈ Γ(−→z , w−1) which is an extension of p by a
folding. We have e(p2) = e(p), ϕ+(p2) = ϕ+(p) ∪ {r + 1} and ξdes(p2) = ξdes(p). Using p2 we have
SY
e(p)−1(−ψϵ

i (Y
−e(p)ai))gp(Y )np(Y ) = SY

e(p2)−1gp2
(Y )np2

(Y ). We therefore have∑
p∈Γ(

−→
ζ −1,w−1)

SY
e(p)−1(−ψϵ

i (Y
−e(p)ai))gp(Y )np(Y ) =

∑
p2∈Γ(−→z −1,w−1),

the last step is a folding

SY
e(p2)−1gp2(Y )np2(Y ). (2.2.6)

By (2.2.3) and (2.2.5), (2.2.6), we have xzSY
w =

∑
p∈Γ(−→z −1,w−1) S

Y
e(p)−1gp(Y )np(Y ). Hence the induc-

tion step is proved.
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The definition (2.2.2) of xz for z ∈ W and the definition (1.3.23) of xµ for µ ∈ Λ are consistent in
the following sense. Recall that we denote by t(µ) ∈ t(Λ) ⊂W the element associated to µ ∈ Λ.

Lemma 2.2.1.4. We have xt(µ) = xµ for µ ∈ Λ. In particular, we have xt(ϵi) = xi for i = 1, . . . , n.

Proof. It is enough to show the latter half. By (1.3.16), we have

Y −1
i = T−1

i · · ·T−1
n−1T

−1
n T−1

n−1 · · ·T
−1
1 T−1

0 T1 · · ·Ti−1 (i = 1, . . . , n).

Applying the anti-involution ∗ (1.3.24) to these.

xi = (Y −1
i )∗ = T ∗

i−1 · · ·T ∗
1 (T

∗
0 )

−1(T ∗
1 )

−1 · · · (T ∗
n−1)

−1(T ∗
n)

−1(T ∗
n−1)

−1 · · · (T ∗
i )

−1.

On the other hand, we can calculate xt(ϵi) directly by Definition (2.2.2), and can check xi = xt(ϵi).

We denote the dominant chamber for the weight lattice by

C := {x ∈ V | 〈α∨, x〉 > 0, α ∈ R+} .

As for the fundamental alcove A (2.1.1), we have A ⊂ C.
Let v, w ∈ W , and choose a reduced expression v = si1 · · · sir of v. If an alcove walk p ∈ Γ(−→v , w)

satisfies e(p)−1A ⊂ C, where e(p) ∈ W is the element (2.1.5), then using the W -valued function w( ) in
(1.3.36), we define $(p) ∈ Λ+ by the relation

e(p)−1 = w($(p)). (2.2.7)

Also we define ΓC(−→v , w) ⊂ Γ(−→v , w) by

ΓC(−→v , w) := {p = (p0, . . . , pr) ∈ Γ(−→v , w) | pi ∈ C, ∀ i = 0, . . . , r} . (2.2.8)

Using these symbols, we have the following corollary of Proposition 2.2.1.3.

Corollary 2.2.1.5 (c.f. [Yi12, Corollary 4.1]). Let λ and µ be elements in Λ, and fix a reduced expression
t(λ) = sir · · · si1 . Then we have

xλEµ(x) =
∑

p∈ΓC(
−−−→
t(−λ),w(µ)−1)

gpnpEϖ(p)(x),

gp :=
∏

k∈φ−(p)

(
−ψ−

ik
(qsh(−hk(p))tht(−hk(p)))

) ∏
k∈φ+(p)

(
−ψ+

ik
(qsh(−hk(p))tht(−hk(p)))

)
,

np :=
∏

k∈ξdes(p)

nik(q
sh(−hk(p))tht(−hk(p))).

Proof. We apply xzSY
w =

∑
p∈Γ(−→z −1,w−1) S

Y
e(p)−1gp(Y )np(Y ) in Proposition 2.2.1.3 to z = t(λ) and

w = w(µ). Since xt(λ) = xλ by Lemma 2.2.1.4, we have

xλSY
w(µ) =

∑
p∈Γ(

−−−→
t(−λ),w(µ)−1)

SY
e(p)−1gp(Y )np(Y ).

Taking the product of each side with 1 and using the definition of the non-symmetric Koornwinder
polynomial Eµ(x) (Fact 1.3.3.2) and the equality Y β1 = qsh(β)tht(β) in (1.3.22), we have

xλEµ(x) =
∑

p∈Γ(
−−−→
t(−λ),w(µ)−1)

gpnpS
Y
e(p)−11.

Next we consider the condition under which the factor nik(q
sh(−hk(p))tht(−hk(p))) in np vanishes. By the

definition of the factor (Proposition 2.2.1.1), the condition is qsh(−hk(p))tht(−hk(p)) = t±1 (ik = 1, . . . , n−1)
and qsh(−hk(p))tht(−hk(p)) = t±1

0 t±1
n (ik = n). Then by the definition (2.1.6) of hk(p), the alcove walk

p that contributes to the summation is contained in the dominant chamber C. Now the consequence
follows from the definition of Eµ(x) and and that (2.2.7) of $(p).
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2.2.2 Some lemmas

In this subsection we prepare some lemmas for the symmetrizer U and the Koornwinder polynomials
Pλ(x), which are (C∨

n , Cn)-type analogue of [Yi12, Proposition 3.6].

Lemma 2.2.2.1 (c.f. [Yi12, Proposition 3.6 (a)]). The symmetrizer U (1.3.42) has the following expres-
sion.

U =
∑

w∈W0

SY
w

∏
a∈L(w−1,w−1

0 )

b(Y −a),

b(Y −a) :=


t
1
2
1− t−1Y −a

1− Y −a
(a 6∈W0.an)

t
1
2
n
(1 + t

1
2
0 t

− 1
2

n Y − a
2 )(1− t−

1
2

0 t
− 1

2
n Y − a

2 )

1− Y −a
(a ∈W0.an)

. (2.2.9)

Here L(v, w) ⊂ S is given by (2.1.3), and w0 ∈W0 is the longest element (1.3.39).

Proof. By the definition of U and the definition (1.3.35) of the Y -intertwiner SY
w , we can expand U as

U =
∑

w∈W0

SY
w bw(Y ), bw(Y ) ∈ K(Y ).

For the longest element w0 ∈ W0, the coefficient of Tw0
in U is 1, and thus we have bw0

(Y ) = 1.
We calculate the term bw(Y ) for w ∈ W0 \ {w0} by induction on the length `(w). Assume bv(Y ) =∏

a∈L(v−1,w−1
0 ) b(Y

−a) for any element v ∈ W0 satisfying `(v) > `(w). By the equality UTi = Ut
1
2
i

(i = 1, . . . , n) in (1.3.43) and the definition (1.3.32) of SY
i , we have∑

w∈W0

SY
w bw(Y )t

1
2
i = Ut

1
2
i = UTi =

∑
w∈W0

SY
w bw(Y )Ti =

∑
w∈W0

SY
w bw(Y )(SY

i − ψ+
i (Y

−ai)). (2.2.10)

Now note that for w 6= w0 there exists an index i = 1, . . . , n such that w ≼B v := wsi. Taking this
index i and comparing the coefficients of SY

w in the equality (2.2.10) with the help of (1.3.34) and

Corollary 2.2.1.2, we have bv(Y )t
1
2
i = bw(si.Y )− bv(Y )ψ+

i (Y
−ai). Here bw(si.Y ) is obtained from bw(Y )

by replacing Y λ with Y si.λ. Then by the definition (1.3.33) of ψ+
i (z) we have

bw(Y )/bv(si.Y ) = t
1
2
i + ψ+

i (Y
−si.ai) = t

1
2
i + ψ+

i (Y
ai)

=

t
1
2
i

1−t−1Y −ai

1−Y −ai
(0 < i < n)

t
1
2
n

(1+t
1
2
0 t

− 1
2

n Y − an
2 )(1−t

− 1
2

0 t
− 1

2
n Y − an

2 )
1−Y −an (i = n)

,

so that it is equal to b(Y −ai). On the other hand, by (2.1.4) we have L(w−1, w−1
0 ) = si.L(v−1, w−1

0 )t{ai}.
Thus we have bw(Y ) = bv(si.Y )b(Y −ai) =

∏
a∈L(w−1,w−1

0 ) b(Y
−a).

We can apply the argument of the proof to the stabilizer Wµ ⊂ W0 for a dominant weight µ ∈ Λ+

instead of W0. As a result, we have the following claim.

Corollary 2.2.2.2. For each µ ∈ Λ+, we have∑
u∈Wµ

t
− 1

2
wµuTu =

∑
w∈Wµ

SY
w

∏
a∈L(w−1,w−1

µ )

b(Y −a).

Here b(Y −a) ∈ K(Y ) is given by (2.2.9).

For a dominant weight µ ∈ Λ+, we denote by

Wµ ⊂W0 (2.2.11)
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the complete system of representatives of the quotient set W0/Wµ consisting of the shortest elements.
We also denote by

vµ ∈Wµ (2.2.12)

its longest element.
Now let us recall the element w(µ) ∈ t(µ)W0 ⊂W in the (1.3.36). We then have the following lemma

for the Koornwinder polynomial Pµ(x) (Fact 1.3.3.4) and the non-symmetric Koornwinder polynomial
Eµ(x) (Fact 1.3.3.2).

Lemma 2.2.2.3 (c.f. [Yi12, Proposition 3.6 (b)]). For λ ∈ Λ+ we have

Pλ(x) =
∑

v∈Wλ

[ ∏
a∈w(λ)−1L(v−1,v−1

λ )

ρ(a)
]
Ev.λ(x),

ρ(a) :=


t
1
2
1− t−1qsh(−a)tht(−a)

1− qsh(−a)tht(−a)
(a 6∈W.an)

t
1
2
n
(1 + t

1
2
0 t

− 1
2

n q
1
2 sh(−a)t

1
2 ht(−a))(1− t−

1
2

0 t
− 1

2
n q

1
2 sh(−a)t

1
2 ht(−a))

1− qsh(−a)tht(−a)
(a ∈W.an)

,

where sh(β) and ht(β) for β ∈ S are given by (1.3.21).

Proof. We write Lemma 2.2.2.1 as

U =
∑

w∈W0

SY
w b(w−1,w−1

0 )(Y ), b(w−1,w−1
0 )(Y ) :=

∏
a∈L(w−1,w−1

0 )

b(Y −a).

Since Wλ consists of representatives of W0/Wλ, there exist v ∈ Wλ and u ∈ Wλ uniquely such that
w = vu. Using Corollary 2.2.2.2, we have

U =
∑

w∈W0

SY
w b(w−1,w−1

0 )(Y ) =
[ ∑
v∈Wλ

SY
v b(v−1,v−1

λ )(Y )
][ ∑

u∈Wλ

SY
u b(u−1,w−1

λ )(Y )
]

=
[ ∑
v∈Wλ

SY
v b(v−1,v−1

λ )(Y )
][ ∑

u∈Wλ

t
− 1

2
wλuTu

]
.

In the second equality, we used the factorization of b-function, which follows from the equation on
the third line of [M03, §.5, p.122]. Note that our b-function is written as c(x) in [M03, §.4, (4.2.2)]. The
product with SY

w(λ)1 gives

USY
w(λ)1 =

[ ∑
v∈Wλ

SY
v b(v−1,v−1

λ )(Y )
][ ∑

u∈Wλ

t
− 1

2
wλuTu

]
SY
w(λ)1 = t

− 1
2

wλ Wλ(t)
∑

v∈Wλ

SY
v b(v−1,v−1

λ )(Y )SY
w(λ)1,

(2.2.13)

where in the second equality we used the Poincaré polynomial (1.3.41) and the relation (Tuf)1 = t
1
2
u f

for u ∈ W0 and f ∈ K[x±1] satisfying u(f) = f . The latter relation is shown as follows. If sif = f for

some i = 1, . . . , n, then we have (Ti − t
1
2
i )f = ci(x

ai)(si − 1)f = 0, and so Tif = t
1
2
i f . Now the relation

follows by induction on the length of u ∈W0.
Let us continue the calculation (2.2.13). Note that we have vw(λ) = w(v.λ) for v ∈ Wλ. By this

relation and (1.3.34), each term in the right hand side of (2.2.13) becomes

SY
v b(v−1,v−1

λ )(Y )SY
w(λ)1 = SY

v S
Y
w(λ)b(v−1,v−1

λ )(w(λ)
−1.Y )1 =

(
SY
w(v.λ)1

)(
b(v−1,v−1

λ )(w(λ)
−1.Y )1

)
.

Here b(v−1,v−1
λ )(w(λ)

−1.Y ) is obtained from b(v−1,v−1
λ )(Y ) by replacing Y µ with Y w(λ)−1.µ. Now let us

recall the equality Y a1 = qsh(a)tht(a) in (1.3.22). Then we have b(Y −a)1 = ρ(a), and therefore

b(v−1,v−1
λ )(w(λ)

−1.Y )1 =
∏

a∈L(v−1,v−1
λ )

(
b(Y −w(λ)−1.a)1

)
=

∏
a∈w(λ)−1L(v−1,v−1

λ )

ρ(a).
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By summing over v ∈Wλ we have

USY
w(λ)1 = t

− 1
2

wλ Wλ(t)
∑

v∈Wλ

[ ∏
a∈w(λ)−1L(v−1,v−1

λ )

ρ(a)
]
Ev.λ(x),

Now the result follows from the definition of Pλ(x) (Fact 1.3.3.4).

2.2.3 Ram-Yip type formula and its application

In [Yi12, Theorem 4.2], Yip derived an expansion formula Eµ(x)Pλ(x) =
∑

ν a
ν
λ,µEν(x) for the product

of the non-symmetric Macdonald polynomial Eµ(x) and the Macdonald polynomial Pλ(x) in the case of
untwisted affine root systems. In this subsection, we give its (C∨

n , Cn)-type analogue, i.e., an expansion
formula for the product of the non-symmetric Koornwinder polynomial and the Koornwinder polynomial
(Proposition 2.2.3.2).

As a preparation, we explain the explicit formula of non-symmetric Macdonald polynomials via alcove
walks, established by Ram and Yip [RY11] for reduced affine root systems. Their argument is designed
to work in general systems, including (C∨

n , Cn)-type, and the details were clarified by Orr and Shimozono
[OS18]. Let us call these alcove-walk explicit formulas Ram-Yip type formulas. We focus on the Ram-Yip
type formula of non-symmetric Koornwinder polynomials.

We prepare the necessary notations for the explanation. Let us given v, w ∈ W and a reduced
expression of w. For an alcove walk p ∈ Γ(−→w , z), we denote the decomposition of the element e(p) ∈W
(2.1.5) with respect to the presentation W = t(Λ)oW0 by

e(p) = t(wt(p)) d(p), d(p) ∈W0, wt(p) ∈ Λ. (2.2.14)

Fact 2.2.3.1 ([RY11, Theorem 3.1], [OS18, Theorem 3.13]). For µ ∈ Λ, let w(µ) be the shortest element
among t(µ)W0 ⊂W (1.3.36), and fix its reduced expression w(µ) = si1 · · · sir . Then we have

Eµ(x) =
∑

p∈Γ(
−−−→
w(µ),e)

fpt
1
2

d(p)x
wt(p),

fp :=
∏

k∈φ+(p)

ψ+
ik
(qsh(−βk)tht(−βk)))

∏
k∈φ−(p)

ψ−
ik
(qsh(−βk))tht(−βk)),

where we set βk := sir · · · sik+1
(air ) for k = 1, . . . , r.

Next we introduce some notations necessary for Proposition 2.2.3.2, which are basically the ones in
[Yi12, §4.1]. Let us given v, w ∈ W and a reduced expression v = si1 · · · sir . Recall the set ΓC(−→v , w) of
alcove walks belonging to the dominant chamber C as in (2.2.8). Consider an alcove walk in ΓC(−→v , w)
together with coloring of all the folding steps by either black or gray. We call such a data a colored alcove
walk, and denote by

ΓC
2 (
−→v , w) (2.2.15)

the set of colored alcove walks arising from alcove walks in ΓC(−→v , w).
For a colored alcove walk p ∈ ΓC

2 (
−→v , w), we denote by

p∗ ∈ Γ(−→v −1, w−1e(p)) (2.2.16)

the uncolored alcove walk obtained by straightening all the gray folding steps of p, by reversing the
order, and by translation so that it ends at e(p∗) = e ∈ W . More explicitly, for a colored positive walk
p ∈ ΓC

2 (
−→v , w) with

p = (wA,wsb1i1A, . . . , ws
b1
i1
· · · sbrirA),

we define p̃k for k = 1, . . . , r as follows, according to whether the k-th step pk−1 = wsb1i1 · · · s
bk−1

ik−1
A →

pk = wsb1i1 · · · s
bk
ik
A is a gray folding step or not:

p̃k :=

{
wsb1i1 · · · s

bk−1

ik−1
sikA (pk−1 → pk is a gray folding step)

pk (otherwise)
.
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Thus we obtain a new uncolored alcove walk p̃ = (p̃0, . . . , p̃r) ∈ Γ(−→v , w), which was called the one
obtained “by straightening all the gray foldings”. Next we denote by (c1, . . . , cr) ∈ {0, 1}r the bit
sequence corresponding to p̃. In other words, we have p̃ = (wA, . . . , wsc1i1 · · · s

cr
ir
A). Now the alcove walk

p∗ is obtained by reversing the order of p̃ and translating the start to w−1e(p̃). Explicitly, we have

p∗ := (sc1i1 · · · s
cr
ir
A, sc1i1 · · · s

cr−1

ir−1
A, . . . , sc1i1A,A).

Proposition 2.2.3.2 (c.f. [Yi12, Theorem 4.2]). For a weight µ ∈ Λ, we take a reduced expression
w(µ) = sir · · · si1 of w(µ) ∈ t(µ)W0 ⊂W . Then for any dominant weight λ ∈ Λ+ we have

Eµ(x)Pλ(x) =
∑

v∈Wλ

∑
p∈ΓC

2 (
−−−→
w(µ)−1,(vw(λ))−1)

ApCpEϖ(p)(x).

Here Wλ is given by (2.2.11), and the term Ap is given with the help of ρ(a) in Lemma 2.2.2.3 by

Ap :=
∏

a∈w(λ)−1L(v−1,v−1
λ )

ρ(a),

ρ(a) :=


t
1
2
1− t−1qsh(−a)tht(−a)

1− qsh(−a)tht(−a)
(a 6∈W.an)

t
1
2
n
(1 + t

1
2
0 t

− 1
2

n q
1
2 sh(−a)t

1
2 ht(−a))(1− t−

1
2

0 t
− 1

2
n q

1
2 sh(−a)t

1
2 ht(−a))

1− qsh(−a)tht(−a)
(a ∈W.an)

.

The term Cp is given by Cp :=
∏r

k=1 Cp,k, whose factor Cp,k is determined by the k-th step of p as
follows.

Cp,k :=



1 the k-th step of p is a positive crossing∏
k∈ξdes(p)

nik(q
sh(−hk(p))tht(−hk(p))) a negative crossing

−ψ+
ik
(qsh(−hk(p))tht(−hk(p))) a gray positive folding

−ψ−
ik
(qsh(−hk(p))tht(−hk(p))) a gray negative folding

ψ+
ik
(qsh(−bk)tht(−bk)) a black folding and the k-th step of p∗ is positive

ψ−
ik
(qsh(−bk)tht(−bk)) a black folding and the k-th step of p∗ is negative

,

where ni(Y
a) is given by Proposition 2.2.1.1, ψ±

ik
(z) is given by (1.3.33) and hk(p) is given by (2.1.6).

We also used bk := si1 · · · sir−1
(air ) for k = 1, . . . r. Finally $(p) is given by (2.2.7).

Note that the term Ap actually depends only on v ∈Wµ, which corresponds to the beginning of the
colored alcove walk p.

Proof. On the Ram-Yip type formula Eµ(x) =
∑

h∈Γ(
−−−→
w(µ),e)

fht
1
2

d(h)x
wt(h) (Fact 2.2.3.1), let us act

USY
w(λ)1 from the left. Then we have

Eµ(x)US
Y
w(λ)1 =

[ ∑
h∈Γ(

−−−→
w(µ),e)

fht
1
2

d(h)x
wt(h)

]
USY

w(λ)1 =
∑

h∈Γ(
−−−→
w(µ),e)

fhx
e(h)USY

w(λ)1.

Here the second equality follows from the definition (2.2.14) of wt(h) and d(h), as well as from the

relation TiU = t
1
2
i U in (1.3.43). Moreover, by Lemma 2.2.2.3 and using the notation in its proof, we have

Eµ(x)US
Y
w(λ)1 =

∑
h∈Γ(

−−−→
w(µ),e)

fhx
e(h)

[
t
− 1

2
wλ Wλ(t)

∑
v∈Wλ

SY
v b(v−1,v−1

λ )(Y )SY
w(λ)1

]
= t

− 1
2

wλ Wλ(t)
∑

v∈Wλ

∑
h∈Γ(

−−−→
w(µ),e)

fhS
Y
v S

Y
w(λ)b(v−1,v−1

λ )(w(λ)
−1.Y )1

= t
− 1

2
wλ Wλ(t)

∑
v∈Wλ

Ap

∑
h∈Γ(

−−−→
w(µ),e)

fhx
e(h)SY

vw(λ)1.

(2.2.17)
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Here we set Ap := b((vw(λ))−1,t(−w0λ)) =
∏

a∈w(λ)−1L(v−1,v−1
λ ) ρ(a). As for the factor fhx

e(h)SY
vw(λ)1 in

the final line of (2.2.17), denoting z := (vw(λ))−1 and using Proposition 2.2.1.3 and Corollary 2.2.1.5,
we have

fhx
e(h)SY

vw(λ)1 = fh
∑

q∈Γ(
−−→
e(h)−1,z)

SY
e(q)−1nq(Y )gq(Y )1 = fh

∑
q∈ΓC(

−−→
e(h)−1,z)

nqgqEϖ(q)(x). (2.2.18)

We will rewrite this sum over uncolored alcove walks in ΓC(
−−→
e(h)−1, z) as a sum over colored alcove walks

in ΓC
2 (
−−−→
w(µ)−1, z).

Let us given an uncolored alcove walk q ∈ ΓC(
−−→
e(h)−1, z). Since q is an alcove walk of type

−−→
e(h)−1,

which is one of type
−−−→
w(µ)−1, we can compare the bit sequence of q with the bit sequence of h. In this

comparison, if the k-th step of q is a folding and the k-th step of h is a crossing, then we color the k-th
folding step of q by gray. Otherwise we color it by black. Thus we obtain a colored alcove walk, which is

denoted by p. Note that we have p ∈ ΓC
2 (
−−−→
w(µ)−1, z). Then each term of the right hand side in (2.2.18)

is equal to
fhnqgqEϖ(q)(x) = fp∗npgpEϖ(p)(x),

where p∗ is given by (2.2.16). We can also express fp∗ using βk = si1 · · · sik−1
(aik) as

fp∗ =
∏

k∈φ+(p∗)

ψ+
ik
(qsh(−bk)tht(−bk))

∏
k∈φ−(p∗)

ψ−
ik
(qsh(−bk)tht(−bk)).

As a result, the last line of (2.2.17) is rewritten by a sum over p ∈ ΓC
2 (
−−−→
w(µ)−1, z).

Divided by the factor t
− 1

2
wλ Wλ(t), the left hand side of (2.2.17) is equal to Eµ(x)Pλ(x). Thus we have

Eµ(x)Pλ(x) =
∑

v∈Wλ

Ap

∑
h∈Γ(

−−−→
w(µ),e)

fh
∑

q∈ΓC(
−−→
e(h)−1,z)

nqgqEϖ(q)(x)

=
∑

v∈Wλ

Ap

∑
p∈ΓC

2 (
−−−→
w(µ)−1,z)

fp∗gpnpEϖ(p)(x).

We obtain the result by collecting the terms from fp∗ , gp and np which depend only on the k-th step of

p ∈ ΓC
2 (
−−−→
w(µ)−1, z) and denoting them by Cp,k.

2.2.4 Littlewood-Richardson coefficients for Koornwinder polynomials

In this subsection, we derive our main Theorem 2.2.4.2 on LR coefficients of Koornwinder polynomials.
We start with a preliminary lemma. Recall the complete system Wλ of representatives of W0/Wλ in

(2.2.11) and the element w(λ) ∈ t(λ)W0 in (1.3.36).

Lemma 2.2.4.1 (c.f. [Yi12, Proposition 3.7]). Let λ ∈ Λ+. If v ∈Wλ satisfies vw(λ) ≽B w(λ), then we
have

USY
v S

Y
w(λ)1 =

[ ∏
a∈L(w(λ)−1,(vw(λ))−1)

ρ(−a)
]
USY

w(λ)1,

where ρ(a) is defined in Lemma 2.2.2.3.

Proof. Recall the equality UTi = Ut
1
2
i for i = 1, . . . , n in (1.3.43). Therefore we have

USY
i S

Y
w 1 = U

(
T ∗
i + ψ+

i (Y
−ai)

)
SY
w 1 = USY

w

(
t
1
2
i + ψ+

i (q
sh(−w−1ai)tht(−w−1ai))

)
1.

Assume that v ∈ Wλ satisfies vw(λ) ≽B w(λ), and take a reduced expression v = si1 · · · sir . Using the
above relation, we expand the product USY

v S
Y
w(λ)1 = USY

i1
· · ·SY

ir
SY
w(λ)1 in order. We have

USY
v S

Y
w(λ)1 = U(t

1
2
i1
+ ψ+

i1
(Y −ai1 ))SY

si1v
SY
w(λ)1 = USY

si1v
(t

1
2
i1
+ ψ+

i1
(Y −sir ···si2 (ai1

)))SY
w(λ)1
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= U(t
1
2
i1
+ ψ+

i1
(Y −sir ···si2 (ai1

)))(t
1
2
i2
+ ψ+

i2
(Y −ai2 ))SY

si1si2v
SY
w(λ)1

= · · ·

= U
[ r∏
j=1

(
t
1
2
ij
+ ψ+

ij
(Y −w(λ)−1sir ···sij+1

aij )
)]
SY
w(λ)1

= USY
w(λ)

[ r∏
j=1

(
t
1
2
ij
+ ψ+

ij
(Y −w(λ)−1sir ···sij+1

aij )
)]
1 = USY

w(λ)

[ ∏
a∈L(w(λ)−1,(v.w(λ))−1)

ρ(−a)
]
1.

Therefore the claim is obtained.

We prepare some symbols to state the main theorem. For µ ∈ Λ, the orbit W0.µ contains a unique
dominant weight. We denote it by

µ+ ∈W0.µ ∩ Λ+. (2.2.19)

Let us also recall the set ΓC
2 (
−→v , w) of colored alcove walks defined in (2.2.15).

Theorem 2.2.4.2. Let us given dominant weights λ, µ ∈ Λ+. Choose a reduced expression w(λ) =
sir · · · si1 of the shortest element w(λ) ∈ t(λ)W0 in (1.3.36). Then we have

Pλ(x)Pµ(x) =
1

t
− 1

2
wλ Wλ(t)

∑
v∈Wµ

∑
p∈ΓC

2 (
−−−→
w(λ)−1,(vw(µ))−1)

ApBpCpP−w0.wt(p)(x).

Here Ap :=
∏

a∈w(µ)−1L(v−1,v−1
µ ) ρ(a) with ρ(a) given in Proposition 2.2.3.2. The term Cp is the same as

that in Proposition 2.2.3.2, and wt(p) ∈ Λ is defined by (2.2.14). The term Bp is defined by

Bp :=
∏

a∈L(t(wt(p))w0,e(p))

ρ(−a).

Proof. The strategy is to calculate the product of Koornwinder polynomials by acting the symmetrizer
U to each side of the equation in Proposition 2.2.3.2.

For a colored alcove walk p ∈ ΓC
2 (
−−→
w(λ)−1, (vw(µ))−1), let z ∈ W0 be the shortest element among

{z ∈W0 | z.$(p)+ = $(p)}. Note that we have w($(p)+)
−1 = w(−w0$(p)+). Since e(p) ∈ t(wt(p))W0

by the definition of wt(p), w(−w0$(p)+) is the shortest element among t(wt(p))W0. By Lemma 2.2.4.1,
we then have

UEϖ(p)(x)1 = USY
z S

Y
w(ϖ(p)+)1 =

[ ∏
a∈L(t(wt(p))w0,e(p))

ρ(−a)
]
P−w0.wt(p)(x).

By Proposition 2.2.3.2 and this equality, we have

Pλ(x)Pµ(x) =
1

t
− 1

2
wλ Wλ(t)

UEλ(x)Pµ(x)1

=
1

t
− 1

2
wλ Wλ(t)

∑
v∈Wµ

∑
p∈ΓC

2 (
−−−→
w(λ)−1,(vw(µ))−1)

ApBpCpP−w0.wt(p)(x).

Hence the claim is obtained.

2.3 Special cases of Littlewood-Richardson coefficients

In Theorem 2.2.4.2, we derived an explicit formula of the LR coefficient cνλ,µ in the product Pλ(x)Pµ(x) =∑
ν c

ν
λ,µPν(x) of Koornwinder polynomials using alcove walks. In this section, we discuss several special-

izations of the formula.
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2.3.1 Askey-Wilson polynomials

As mentioned in § 1.3.1, Koornwinder polynomials in the rank one case are nothing but Askey-Wilson
polynomials. In this case LR coefficients of Askey-Wilson polynomials are expected to be simpler than
the general rank case in Theorem 2.2.4.2.

As a preparation, we summarize the data of the root system of rank 1. We consider the Euclid space
V = Rε∨ of dimension 1 and its dual space V ∗ = Rε. The root system of type C1 is R = {±2ε} ⊂ V ∗,
the simple root is a1 = 2ε, and the fundamental weight is ω = ε. The weight lattice is Λ = Zε ⊂ V ∗,
and the set of dominant weights is Λ+ = Nε. The finite Weyl group W0 is the group of order two
generated by s1 := sa1

, and the longest element of W0 is w0 = s1. The affine root system of rank 1 is
S =

{
±2ε+ kc,±ε+ k

2 c | k ∈ Z
}
with a0 = c− 2ε, and the extended affine Weyl group W is the group

generated by s1 and s0 := sa0
. The decomposition W = t(Λ)oW0 (1.3.8) is the semi-direct product of

t(Λ) = 〈t(ε1) = s0s1〉 ' Z2 and W0 = 〈s1〉 ' Z/2Z.
We denote by

Pl(x) = Pl(x; q, t0, t1, u0, u1)

the Askey-Wilson polynomial associated to the dominant weight λ = lω = lε (l ∈ N). Note that it has
five parameters.

First, we consider the simplest case. Following the case of type A, we call the LR coefficients cνλ,µ
with λ or µ equal to a minuscule weight Pieri coefficients. Since the weight ω1 is the unique minuscule
weight in the root system of type Cn, we consider the case λ = ω for the rank one case.

Let us write down explicitly the Askey-Wilson polynomial P1(x) = Pω(x). In the following calcula-
tion, we need an explicit form of the term ρ(a) (a ∈ S) in Proposition 2.2.3.2 and Theorem 2.2.4.2. The
result is:

ρ(a) := t
1
2
1

(1 + q
k
2 t

1
2
0 t

− 1
2

1 (t0t1)
− j

2 )(1− q k
2 t

− 1
2

0 t
− 1

2
1 (t0t1)

− j
2 )

1− qk(t0t1)−j
(a = 2jε+ kc ∈ S). (2.3.1)

Lemma 2.3.1.1. The Askey-Wilson polynomial associated to the minuscule weight ω is

P1(x) = x+ x−1 + ρ(2c− a1)ψ−
0 (qt0t1) + t

1
2
1 ψ

+
0 (qt0t1) + ψ+

1 (q
2t0t1)ψ

−
0 (qt0t1).

Here ψ±
k (z) (k = 0, 1) is given by (1.3.33) with n = 1. Explicitly, we have

ψ±
0 (z) := ∓

(u
1
2
1 − u

− 1
2

1 ) + z±
1
2 (u

1
2
0 − u

− 1
2

0 )

1− z±1
, ψ±

1 (z) := ∓
(t

1
2
1 − t

− 1
2

1 ) + z±
1
2 (t

1
2
0 − t

− 1
2

0 )

1− z±1
. (2.3.2)

Proof. Below we use the word non-symmetric Askey-Wilson polynomials to mean non-symmetric Koorn-
winder polynomials (Fact 1.3.3.2) in the rank 1 case. By Lemma 2.2.2.3, we can rewrite P1(x) as a linear
combination of non-symmetric Askey-Wilson polynomials Ek(x) = Ekω(x), k ∈ Z. The result is

P1(x) = ρ(2c− a1)E1(x) + E−1(x).

Next, using the Ram-Yip type formula (Fact 2.2.3.1), we can expand E1(x) and E−1(x) by monomials.
The results are

E1(x) = t
1
2
1 x+ ψ−

0 (qt0t1), E−1(x) = x−1 + t
1
2
1 ψ

+
0 (qt0t1) + t

1
2
1 ψ

+
1 (q

2t0t1)x+ ψ+
1 (q

2t0t1)ψ
−
0 (qt0t1).

By these formulas, we have

P1(x) = x−1+(t
1
2
1 ρ(2c−a1)+t

1
2
1 ψ

+
1 (q

2t0t1))x+ψ
−
0 (qt0t1)ρ(2c−a1)+t

1
2
1 ψ

+
0 (qt0t1)+ψ

+
1 (q

2t0t1)ψ
−
0 (qt0t1).

By a direct calculation, the coefficients of x is shown to be

t
1
2
1 ρ(2c− a1) + t

1
2
1 ψ

+
1 (q

2t0t1) = 1.

Therefore the claim is obtained.
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Remark 2.3.1.2. Let us replace the Noumi parameters (q, t0, t1, u0, u1) with the original parameters
(q, a, b, c, d) of Askey-Wilson polynomials in [AW85]. The correspondence of parameters can be rewritten
as

(q, t0, t1, u0, u1) = (q,−q−1ab,−cd,−a/b,−c/d).

Using this correspondence and the relation abcd = qt0tn, we can rewrite P1(x) as

P1(x) = x+ x−1 +
πs− s′

1− π
, π := abcd, s := a+ b+ c+ d, s′ := a−1 + b−1 + c−1 + d−1.

We can then compare P1(x) with the original Askey-Wilson polynomials pn(z) in [AW85, p.5]. By loc.
cit., we have p1(z) = 2(1− π)z + πs− s′, and thus

(1− π)P1(x) = p1
(
(x+ x−1)/2

)
.

Therefore they coincide up to the normalization factor.

Proposition 2.3.1.3. For a dominant weight λ = lω ∈ Λ+, l ∈ N, we have

P1(x)Pl(x) = Pl+1(x) + FlPl(x) +GlPl−1(x),

Fl := ρ(−2lc+ a1)(−ψ−
0 (q

2l+1t0t1) + ψ−
0 (qt0t1)) + ρ(2lc− a1)(−ψ+

0 (q
2l−1t0t1) + ψ+

0 (qt0t1)),

Gl := ρ(2lc− a1)ρ(−2(l − 1)c+ a1)n0(q
2l−1t0t1).

Here ρ(a) is given by (2.3.1), ψ±
0 (z) is given by (2.3.2), and n0(z) is given in Proposition 2.2.1.1 with

n = 1. Explicitly, the last one is given by

n0(z) :=
(1− u

1
2
1 u

1
2
0 z

1
2 )(1 + u

1
2
1 u

− 1
2

0 z
1
2 )

1− z
(1 + u

− 1
2

1 u
1
2
0 z

1
2 )(1− u−

1
2

1 u
− 1

2
0 z

1
2 )

1− z
.

Proof. By Theorem 2.2.4.2, we have

Pλ(x)Pµ(x) =
1

t
− 1

2
wλ Wλ(t)

∑
v∈Wµ

∑
p∈ΓC

2 (
−−−→
w(λ)−1,(vw(µ))−1)

ApBpCpP−w0.wt(p)(x)

for dominant weights λ, µ ∈ Λ+. We apply this equation to the case λ = ω and µ = lω. In this case
the stabilizer Wµ ⊂W0 in (1.3.38) is Wµ = {e}, and the complete system Wµ (2.2.11) of representatives
of W0/Wλ is W lω = {e, s1}. As for the shortest element w(ν) ∈ t(ν)W0 given in (1.3.36), we have by
t(ω) = s0s1 that w(ω) = s0 and w(lω) = (s0s1)

l−1s0.

First, we calculate the denominator t
− 1

2
wω Wω(t). As for the longest element wλ ∈ Wλ in (1.3.39), we

have wω = e. Thus, by recalling the definition (1.3.40) of tw (w ∈W ), we have t
− 1

2
wω Wω(t) = t

− 1
2

e te = 1.
Next, as for the sum in the right hand side, we calculate the case v = s1. The set of alcove walks

is then ΓC
2 (
−−→
w(λ)−1, (vw(µ))−1) = ΓC

2 (
−→s0 , t(lω)). In the upper half of Table 2.3.1, we display the alcove

walks p therein together with the corresponding terms Ap, Bp and Cp. In the table we denote by H0

and H1 the hyperplanes in the W -orbits of Ha0
and Ha1

respectively. We also denote a black folding by
a solid line, and a gray folding by a dotted line.

Next we study the case v = e. The set of alcove walks is ΓC
2 (
−−→
w(λ)−1, (vw(µ))−1) = ΓC

2 (
−→s0 , w(lω)),

and in the lower half of Table 2.3.1 we display the alcove walks p therein together with the corresponding
terms Ap, Bp and Cp.

The claim is obtained by collecting the above calculations.

Remark 2.3.1.4. Continuing Remark 2.3.1.2, we rewrite the result in Proposition 2.3.1.3 in terms of
the original parameters (q, a, b, c, d) of Askey-Wilson polynomials. The result is

P1(x)Pl(x) = Pl+1(x) + FlPl(x) +Gl−1Pl−1(x), (2.3.3)

where the factors Fl and Gl are given by

Fl :=
fl + (πs′ − s)

1− π
, fl := ql−1 (1 + q2l−1π)(qs+ πs′)− ql−1(1 + q)π(s+ qs′)

(1− q2l−2π)(1− q2lπ)
,
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v = s1
p∗ p Ap Bp Cp

H1 H0

e

H1 H0

t(lω)

1 1 1

H1 H0

t(lω)

1 ρ(−2lc+ a1) −ψ−
0 (q

2l+1t0t1)

H1 H0

e

H1 H0

t(lω)

1 ρ(−2lc+ a1) ψ−
0 (qt0t1)

v = e
p∗ p Ap Bp Cp

H1 H0

e

H1 H0 H1 H0

t(lω)t((l − 1)ω)

ρ(2lc− a1) ρ(−(2l − 2)c+ a1) n0(q
2l−1t0t1)

H1 H0 H1 H0

t(lω)t((l − 1)ω)

ρ(2lc− a1) 1 −ψ+
0 (q

2l−1t0t1)

H1 H0

e

H1 H0 H1 H0

t(lω)t((l − 1)ω)

ρ(2lc− a1) 1 ψ−
0 (qt0t1)

Table 2.3.1: Colored alcove walks in Proposition 2.3.1.3
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Gl :=
glγl−1

γ1γl
, gl := (1− ql) (1− q

l−1ab)(1− ql−1ac)(1− ql−1ad)(1− ql−1bc)(1− ql−1bd)(1− ql−1cd)

(1− q2l−2π)(1− q2l−1π)
,

π := abcd, s := a+ b+ c+ d, s′ := a−1 + b−1 + c−1 + d−1,

γl := (ql−1π; q)l = (1− ql−1π)(1− qlπ) · · · (1− q2l−2π).

In the case l = 0, we have ρ(−a1) = 0, and thus F1 = 0. If we define pl(z) by the relation Pl(x) =
γ−1
l pl((x+ x−1)/2), then the relation (2.3.3) can be rewritten as

2zpl(z) = hlpl+1(z) + flpl(z) + glpl−1(z), hl :=
1− ql−1π

(1− q2l−1π)(1− q2lπ)
, p0(z) = 1, p−1(z) = 0.

This recurrence formula is nothing but the one in [AW85, (1.24)–(1.27)]. Thus pl coincides with the
original Askey-Wilson polynomial in [AW85], and in particular, it can be expressed as a q-hypergeometric
series.

So far we studied Pieri coefficients. Next we study the general LR coefficients for Askey-Wilson
polynomials.

Corollary 2.3.1.5. For dominant weights lω and mω in (h∗Z)+, l,m ∈ N, we have

Plω(x)Pmω(x) =
∑
v∈W0

∑
p∈ΓC

2 (
−−−−−−−−→
t((l−1)ω)s0,t(mω)s1v)

AAW
p BAW

p CpPwt(p)(x),

where the terms AAW
p and BAW

p are given by

AAW
p :=

{
ρ(2mc− a1) (v = e)

1 (v = s1)
, BAW

p :=

{
ρ(−`(e(p))c+ a1) (`(e(p)) ∈ 2Z)
1 (`(e(p)) /∈ 2Z)

with ρ(a) in Proposition 2.3.1.3, and Cp is given in Theorem 2.2.4.2.

Proof. We apply the formula

Pλ(x)Pµ(x) =
1

t
− 1

2
wλ Wλ(t)

∑
v∈Wµ

∑
p∈ΓC

2 (
−−−→
w(λ)−1,(vw(µ))−1)

ApBpCpP−w0.wt(p)(x)

in Theorem 2.2.4.2 to the case λ = lω and µ = mω. Similarly as in Proposition 2.3.1.3, we have
Wlω = {e} and Wmω = {e, s1} = W0. Using t(lω) = (s0s1)

l and t(mω) = (s0s1)
m, we have w(lω) =

t(lω)s1 = (s0s1)
l−1s0 and w(mω) = (s0s1)

m−1s0. Therefore the range of the sum of alcove walks in the
right hand side becomes

ΓC
2 (
−−→
w(λ)−1, (vw(µ))−1) = ΓC

2 (
−−−−−−−−−→
t((l − 1)ω)s0, t(mω)s1v) (v ∈W0).

As for the denominator t
− 1

2
wlωWlω(t), we have by wlω = e that t

− 1
2

wlωWlω(t) = t
− 1

2
e te = 1.

Now we study the factors Ap and Bp, and want to reduce the ranges of the products. First, as for
the product Ap =

∏
a∈L((vw(µ))−1,t(−w0µ))

ρ(a), the longest element w0 ∈ W0 is s1 and t(µ) = (s0s1)
l =

w(µ)−1s0. Thus, in the case v = e, we have

L((vw(µ))−1, t(−w0µ)) = L(w(µ)−1, t(µ)) = {2mc− a1} .
In the case v = s1, we have

L((vw(µ))−1, t(−w0µ)) = L(w(µ)s1, t(µ)) = L(t(µ), t(µ)) = ∅.
Hence Ap is equal to AAW

p in the claim.
Next we consider the product Bp =

∏
a∈L(t(wt(p))w0,e(p))

ρ(−a). we separate the argument according

to whether the length `(e(p)) of e(p) is even or odd. In the case `(e(p)) is even, there is k ∈ N such that
e(p) = (s0s1)

n = t(kω), 0 ≤ k ≤ m. In this case, the range of the product is

L(t(wt(p))w0, e(p)) = L(t(kω)s1, t(kω)) = {2kc− a1} .
In the case `(e(p)) is odd, there is k ∈ N such that we can write e(p) = (s0s1)

k−1s0 = t(kω)s1, 1 ≤ k ≤ m.
Thus the range of the product is

L(t(wt(p))w0, e(p)) = L(t(kω)s1, t(kω)s1) = ∅.
Therefore Bp is equal to BAW

p in the claim.
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2.3.2 Hall-Littlewood limit

In the case of type An, the specialized Macdonald polynomials PAn

λ (x; q = 0, t) coincide with Hall-
Littlewood polynomials. Motivated by this fact, Yip calls in [Yi12, §4.5] the specialized Macdonald
polynomials in the untwisted cases at q = 0 Hall-Littlewood polynomials, and derived a simplified formula
of LR coefficients. Following Yip’s terminology, let us call the specialized Koornwinder polynomials

Pλ(x; t) := Pλ(x; q = 0, t0, t, tn, u0, un)

the Hall-Littlewood limit.

Proposition 2.3.2.1 (c.f. [Yi12, Corollary 4.13]). Let us given dominant weights λ, µ ∈ Λ+ and a
reduced expression w(λ) = sir · · · si1 of the shortest element w(λ) (1.3.36). Then we have

Pλ(x; t)Pµ(x; t) =
1

t
− 1

2
wλ Wλ(t)

∑
v∈Wµ

∑
p∈ΓC

+(
−−−→
w(λ)−1,(vw(µ))−1)

Fp(t)P−w0.wt(p)(x; t),

Fp(t) :=
∏

a∈L((vw(µ))−1,t(−w0µ))

t
1
2
a

∏
a∈L(t(wt(p))w0,e(p))

t
− 1

2
a

×
∏

k∈φ+(p), aik
̸∈W.a0

(t
− 1

2
aik
− t

1
2
aik

)
∏

k∈φ+(p), aik
∈W.a0

(u
− 1

2
n − u

1
2
n ).

Here ΓC
+(
−−→
w(λ)−1, (vw(µ))−1) is the subset of ΓC(

−−→
w(λ)−1, (vw(µ))−1) consisting of alcove walks whose

foldings are positive.

Proof. We denote the coefficient in Theorem 2.2.4.2 by

ap(q, t) := ApBpCp.

First, we show that if ap(0, t) 6= 0 for a colored alcove walk p ∈ ΓC
2 (
−−→
w(λ)−1, (v.w(µ))−1), then all the

foldings of p are gray and positive. We assume that the k-th step of p is a gray negative folding. Then,
as for the factor Cp,k = −ψ−

ik
(qsh(−hk(p))tht(−hk(p))) we have Cp,k|q=0 = 0. In fact, we have

ψ−
ik
(z) =

(t
1
2
ik
− t−

1
2

ik
) + z−

1
2 (u

1
2
ik
− u−

1
2

ik
)

1− z−1
=
z(t

1
2
ik
− t−

1
2

ik
) + z

1
2 (u

1
2
ik
− u−

1
2

ik
)

1− z
,

and by substituting z = qsh(−hk(p))tht(−hk(p)) and q = 0 we have Cp,k|q=0 = 0. Thus we showed that no

gray negative folding contributes to ap(0, t).
Next we show that black foldings of p don’t contribute to ap(0, t). Note that there exists an alcove

walk l ∈ Γ(
−−→
w(λ), e) whose steps are crossings since we fixed a reduced expression of w(λ). Moreover all

the steps of l are positive. Then we find that any alcove walk in ΓC
2 (
−−→
w(λ), e) \ {l} has a negative folding.

In other words, if an alcove walk p ∈ ΓC
2 (
−−→
w(λ)−1, (vw(µ))−1) has a black folding, then p∗ in (2.2.16) has

at least one negative folding. Then, as for the factor Cp,k = −ψ−
ik
(qsh(−βk)tht(−βk)), we have Cp,k|q=0 = 0

by a direct calculation. Thus, no black folding contributes to ap(0, t).
By the discussion so far, we find that neither colored folding contributes to ap(0, t). Thus, the set of

alcove walks effective to the sum is
{
p ∈ ΓC(

−−−→
w(µ)−1, (v.w(λ))−1) | ϕ(p) = ϕ+(p)

}
.

Specializing q = 0 in Ap, Bp and Cp, we have

Ap|q=0 =
∏

a∈L((vw(µ))−1,t(−w0µ))

t
1
2
a , Bp|q=0 =

∏
a∈L(t(wt(p))w0,e(p))

t
− 1

2
a ,

Cp|q=0 =
∏

k∈φ+(p), aik
̸∈W.a0

(t
− 1

2
aik
− t

1
2
aik

)
∏

k∈φ+(p), aik
∈W.a0

(u
− 1

2
n − u

1
2
n ).

Therefore the claim is obtained.
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2.3.3 Examples in rank 2

Finally, as explicit examples of LR coefficients in Theorem 2.2.4.2, we calculate the product Pλ(x)Pµ(x)
of Koornwinder polynomials of rank 2.

We write down the root system of rank 2. The root system of type C2 is

R := {±ε1 ± ε2} ∪ {±2ε1,±2ε2} ⊂ V ∗ := Rε1 ⊕ Rε2,

the simple roots are a1 = ε1 − ε2 and a2 = 2ε2, and the fundamental weights are ω1 = ε1 and
ω2 = ε1 + ε2. The weight lattice is Λ = Zε1 + Zε2 ⊂ V ∗, and the set of dominant weights is
Λ+ = {λ1ε1 + λ2ε2 ∈ h∗Z | λ1 ≥ λ2 ≥ 0}. The finite Weyl group W0 is the hyper-octahedral group of
order 8 generated by s1 := sa1 and s2 := sa2 . The longest element of W0 is w0 = s1s2s1s2 = s2s1s2s1.

The affine root system of type (C∨
2 , C2) is

S =
{
±2εi + kc,±εi +

1

2
kc | k ∈ Z, i = 1, 2

}
∪ {±ε1 ± ε2 + kc | k ∈ Z} ,

and the affine simple root is a0 = c − 2ε1. The extended affine Weyl group W is generated by s1, s2
and s0 := sa0 , and the decomposition W = t(Λ) o W0 (1.3.8) is a semi-direct product of t(Λ) =

〈t(ε1), t(ε2)〉 ' Z2 andW0 = 〈s1, s2〉 ' {±1}2oS2. The elements t(ε1) and t(ε2) have reduced expressions
t(ε1) = s0s1s2s1 and t(ε2) = s1s0s1s2 respectively.

In this setting we apply Theorem 2.2.4.2 to the case λ = ω1 and µ = ω2. The result is as follows.

Proposition 2.3.3.1. For Koornwinder polynomials of rank 2, we have

Pω1
(x)Pω2

(x) = Pω1+ω2
(x) + FPω2

(x) +GPω1
(x),

F := ρ(−2c+ (ε1 + ε2))ρ(−2c+ 2ε1)ρ(−(ε1 − ε2))(−ψ−
0 (q

3t0t1) + ψ−
0 (qt0t1))

G := ρ(2c− (ε1 + ε2))ρ(2c− 2ε2)ρ(−2ε2)ρ(−c+ (ε1 + ε2))n0(qt0t1)

Proof. Applying Theorem 2.2.4.2 to n = 2, λ = ω1 and µ = ω2, we have

Pω1
(x)Pω2

(x) =
1

t
− 1

2
wω1

Wω1(t)

∑
v∈Wω2

∑
p∈ΓC

2 (
−−−−→
w(ω1)−1,(vw(ω2))−1)

ApBpCpP−w0.wt(p)(x).

We have Wω1
= {e, s2}, Wω2 = {e, s2, s1s2, s2s1s2} and w(ω1) = s0, w(ω2) = s0s1s0. The denominator

t
− 1

2
wω1

Wω1(t) can be calculated with the help of wω1 = s2 as t
− 1

2
wω1

Wω1(t) = t
− 1

2
s2 (te + ts2) = t

− 1
2

2 + t
1
2
2 .

Next we consider the term ApBpCp. The alcove walk p∗ associated to p ∈ ΓC
2 (
−−−→
w(ω1)

−1, (vw(ω2))
−1)

is given by either p∗1 or p∗2 in Table 2.3.2.

p∗1 p∗2

2

01 1

2O ω1
1
2ω1

1
2ω2

2

01 1

2O ω1
1
2ω1

1
2ω2

Table 2.3.2: Classification of p∗

Let us calculate the term Ap =
∏

a ρ(a). The range of the product is

w(µ)−1L(v−1, v−1
µ ) = L

(
(vw(ω2))

−1, t(−w0ω2)
)
,

and according to v ∈Wω2 = {e, s2, s1s2, s2s1s2} it is given by

L
(
(vw(ω2))

−1, t(−w0ω2)
)
=


{2c− 2ε1, 2c− (ε1 + ε2), 2c− 2ε2} (v = e)

{2c− (ε1 + ε2), 2c− 2ε2} (v = s2)

{2c− 2ε2} (v = s1s2)

∅ (v = s2s1s2).
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Then we have

Ap =


ρ(2c− 2ε1)ρ(2c− (ε1 + ε2))ρ(2c− 2ε2) (v = e)

ρ(2c− (ε1 + ε2))ρ(2c− 2ε2) (v = s2)

ρ(2c− 2ε2) (v = s1s2)

1 (v = s2s1s2)

.

For each v ∈Wω2 and the corresponding colored alcove walks p, we calculate Bp and Cp. The results
are shown in Tables 2.3.3–2.3.6. The symbol in the column of p such as X11 and X12 refers to the
corresponding picture in Figure 2.3.1.

The claim is now obtained by summing the terms ApBpCpP−w0wt(p)(x).

p∗ p Bp Cp −w0wt(p)
p∗1 X11 ρ(−2ε2)ρ(−c+ (ε1 + ε2)) n0(qt0t1) ω1

X12 ρ(−(ε1 − ε2)) −ψ+
0 (qt0t1) ω2

p∗2 X2 ρ(−(ε1 − ε2)) ψ+
0 (qt0t1) ω2

Table 2.3.3: Colored alcove walks in the case v = e

p∗ p Bp Cp −w0wt(p)
p∗1 Y11 ρ(−2ε2)ρ(−2c+ 2ε1)ρ(−c+ (ε1 + ε2)) n0(qt0t1) ω1

Y12 ρ(−(ε1 − ε2))ρ(−2c+ 2ε1) −ψ+
0 (qt0t1) ω2

p∗2 Y2 ρ(−(ε1 − ε2))ρ(−2c+ 2ε1) ψ+
0 (qt0t1) ω2

Table 2.3.4: Colored alcove walks in the case v = s2

p∗ p Bp Cp −w0wt(p)
p∗1 Z11 1 1 ω1 + ω2

Z12 ρ(−2c+ (ε1 + ε2))ρ(−2c+ 2ε1)ρ(−(ε1 − ε2)) −ψ−
0 (q

3t0t1) ω2

p∗2 Z2 ρ(−2c+ (ε1 + ε2))ρ(−2c+ 2ε1)ρ(−(ε1 − ε2)) ψ−
0 (qt0t1) ω2

Table 2.3.5: Colored alcove walks in the case v = s1s2

p∗ p Bp Cp −w0wt(p)
p∗1 W11 ρ(2c− 2ε2) 1 ω1 + ω2

W12 ρ(−2c+ 2ε2)ρ(−2c+ (ε1 + ε2))ρ(−2c+ 2ε1)ρ(−(ε1 − ε2)) −ψ−
0 (q

3t0t1) ω2

p∗2 W2 ρ(−2c+ 2ε2)ρ(−2c+ (ε1 + ε2))ρ(−2c+ 2ε1)ρ(−(ε1 − ε2)) ψ−
0 (qt0t1) ω2

Table 2.3.6: Colored alcove walks in the case v = s2s1s2
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1
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1 2

1
2ω2

ω1

ω2

Y11 Y12 Y2

2 1

0

2 1

ω2

ω1

2 1

0

2 1

ω2

ω1

2 1

0

2 1

ω2

ω1

Z11 Z12 Z2

2

01

2

1

ω2 ω1 + ω2

ω1 +
1
2ω2

2

01

2

1

ω2 ω1 + ω2

ω1 +
1
2ω2

2

01

2

1

ω2 ω1 + ω2

ω1 +
1
2ω2

W11 W12 W2

2

01 1

2ω2 ω1 + ω2

3
2ω2

2

01 1

2ω2 ω1 + ω2

3
2ω2

2

01 1

2ω2 ω1 + ω2

3
2ω2

Figure 2.3.1: Colored alcove walks in Proposition 2.3.3.1
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Chapter 3

Specialization of Koornwinder
polynomials

Chapter 3 is based on the publication [YY22], co-authored with S. Yanagida.

3.0 Introduction

In [M03, p.12], Macdonald gives a comment that the affine root system of type (C∨
n , Cn) has as its

subsystem all the non-reduced affine root systems and the classical affine root systems of type Bn,
B∨

n , Cn, C
∨
n , BCn and Dn. Also, at [M03, (5.17)], he comments that an appropriate specialization

of parameters in the Koornwinder polynomials yields the Macdonald polynomials associated to the
corresponding subsystem. Seemingly, the detailed explanation of such parameter specialization is not
given in literature. The aim of this chapter is to clarify this point.

We will use the notation of parameters (other than q) of Koornwinder polynomials introduced by
Noumi in [N95]:

t, t0, tn, u0, un. (3.0.1)

Let us call them the Noumi parameters for distinction. The details will be explained in § 3.1.2.
Now we can explain the main result of this chapter.

Theorem 3.0.0.1 (Propositions 3.1.3.1, 3.1.4.1–3.1.4.9). For each type X listed in Table 3.0.1 and
for each (not necessarily) dominant weight µ of type Cn, the specialization of the Noumi parameters
in the (non-symmetric) Koornwinder polynomial with weight µ yields the (non-symmetric) Macdonald
polynomial with µ of type X in the sense of Definition 1.3.1.1.

reduced t t0 tn u0 un non-reduced t t0 tn u0 un
Bn §3.1.4 tl 1 ts 1 ts (BCn, Cn) §3.1.4 tm t2l tstl 1 ts/tl
B∨

n §3.1.4 ts 1 t2l 1 1 (C∨
n , BCn) §3.1.4 tm ts tstl ts ts/tl

Cn §3.1.3 ts t2l t2l 1 1 (B∨
n , Bn) §3.1.4 tm 1 tstl 1 ts/tl

C∨
n §3.1.4 tl ts ts ts ts

BCn §3.1.4 tm t2l ts 1 ts
Dn §3.1.4 t 1 1 1 1

Table 3.0.1: Specialization table

Hereafter we refer Table 3.0.1 as the specialization table.
Let us explain how to read Theorem Theorem 3.0.0.1 and the specialization Table 3.0.1 in the case

of type Cn. The associated Macdonald polynomial has the parameters q and two kinds of t’s. The latter
correspond to the two orbits of the extended affine Weyl group acting on the affine root system of type
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Cn, and we denote them by ts and tl. Using them, we denote the symmetric Macdonald polynomial of
type Cn by PC

µ (x; q, ts, tl) with dominant weight µ. See § 3.1.3 for the detail of these symbols for type
Cn. We also have the Koornwinder polynomial Pµ(x; q, t, t0, tn, u0, un) with the same dominant weight,
whose detail will be explained in § 3.1.2. Then, specializing the Noumi parameters as indicated in the
type Cn row in Table 3.0.1, we obtain PC

µ (x; q, ts, tl). In other words, the following identity holds.

PC
µ (x; q, ts, tl) = Pµ(x; q, ts, t

2
l , t

2
l , 1, 1). (3.0.2)

See Proposition 3.1.3.1 for the detail of type Cn.
We derive each of the specializations in §3.1.3 and §3.1.4, as indicated in the specialization Table 3.0.1.

Our argument is based on the fact that each family of Macdonald-Koornwinder polynomials is uniquely
determined by the inner product. Thus, the desired specialization will be obtained by studying the
degeneration of the weight function of the inner product, which is actually described in the formula
[M03, (5.1.7)]. See (3.1.27) for the precise statement. As commented at [M03, (5.1.7)], all we have to do
is to take care the correspondence of the orbits of the extended affine Weyl group.

In § 3.2, as a verification of the specializing Table 3.0.1, we check the obtained specializations by
using explicit formulas of Macdonald-Koornwinder polynomials. We focus on Ram-Yip type formulas
[RY11, OS18] which were mentioned before. These formulas give explicit description of the coefficients
in the monomial expansion of non-symmetric Macdonald-Koornwinder polynomials as a summation of
terms over the so-called alcove walks, the notion introduced by Ram [Ra06]. We do this check for
Ram-Yip formulas of type B,C and D in the sense of [RY11]. The check is done just in case-by-case
calculation, but since the situation is rather complicated due to the notational problem of affine root
systems and parameters, we believe that it has some importance. The result is as follows.

Theorem 3.0.0.2 (Propositions 3.2.2.4, 3.2.1.5 and 3.2.3.5). For each µ ∈ PCn , we have

Eµ(x; q, t
RY
m , 1, tRYl , 1, tRYl ) = EB,RY

µ (x; q, tRYm , tRYl ),

Eµ(x; q, t
RY
m , 1, tRYs , 1, 1) = EC,RY

µ (x; q, tRYs , tRYm ),

Eµ(x; q, t, 1, 1, 1, 1) = ED,RY
µ (x; q, t).

Here the left hand sides denote specializations of the non-symmetric Koornwinder polynomials Eµ(x),
and the right hand side denotes the non-symmetric Macdonald polynomials of type B,C and D in the
sense of [RY11]. For the detail, see the beginning of §3.2 for the explanation. Comparing these identities
with the specialization Table 3.0.1, we find that EB,RY

µ (x) is equivalent to the polynomial of type Bn,

EC,RY
µ (x) is to that of type C∨

n , and E
D,RY
µ (x) is to that of type Dn in the sense of Definition 1.3.1.1.

3.1 Specialization table of Koornwinder polynomials

The aim of this section is to give the detail of the specialization Table 3.0.1. As explained in §3.0, we use
the affine root systems in the sense of Macdonald [M71, M03]. Our main system is that of type (C∨

n , Cn),
which will be denoted by S. See (1.3.5) for the precise definition. According to the list of affine root
systems in [M03, §1.3], those in Table 3.0.1 are subsystems of S. Explicitly, the following types are the
subsystems of type (C∨

n , Cn).

Bn, B
∨
n , Cn, C

∨
n , Dn BCn, (BCn, Cn), (C

∨
n , BCn), (B

∨
n , Bn). (3.1.1)

The details of these subsystems will be explained in § 3.1.3 and § 3.1.4.

3.1.1 Affine root system of type (C∨
n , Cn)

Let n ∈ Z≥2, and E be the n-dimensional Euclidean space with inner product 〈·, ·〉. We take and fix an
orthonormal basis {εi | i = 1, 2, . . . , n} of E. Thus, we may identify E = (V, 〈·, ·〉) with V = ⊕n

i=1Rεi. Let
F be the R-linear space of affine linear functions E → R. The inner product 〈·, ·〉 yields the isomorphism
F

∼−→ V ⊕ Rc, where c is the constant function c(v) = 1 for any v ∈ V . Hereafter we identify F and
V ⊕ Rc by this isomorphism.
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We denote by S the affine root system of type (C∨
n , Cn) in the sense of [M03, §1.3, (1.3.18)]. Thus,

S is a subset of F = V ⊕ Rc given by

S = O1 tO2 t · · · tO5,

O1 := {±εi + rc | 1 ≤ i ≤ n, r ∈ Z}, O2 := 2O1, O3 := O1 +
1
2c, O4 := 2O3 = O2 + c,

O5 := {±εi ± εj + rc | 1 ≤ i < j ≤ n, r ∈ Z}.
(3.1.2)

An element of S is called an affine root, or just a root. Following the choice of [Ya22], we consider the
affine roots

a0 := −2ε1 + c, aj := εj − εj+1 (1 ≤ j ≤ n− 1), an := 2εn. (3.1.3)

They form a basis of S in the sense of [M03, §1.2]. Obviously we have

1
2a0 ∈ O3, a0 ∈ O4, aj ∈ O5 (1 ≤ j ≤ n− 1), 1

2an ∈ O1, an ∈ O2.

Below is the Dynkin diagram cited from [M03, (1.3.18)]. The mark ∗ above the index i implies that
ai,

1
2ai ∈ S.

0 1 2 n− 1 n

∗ ∗

In fact, the description (3.1.2) gives the orbit decomposition of S by the action of the extended affine
Weyl group. For the explanation, we need to introduce more symbols.

The inner product 〈·, ·〉 on V is extended to F = V ⊕ Rc by

〈v + rc, w + sc〉 := 〈v, w〉, v, w ∈ V, r, s ∈ R.

For a non-constant function f ∈ F \ Rc, we define sf ∈ GLR(F ) by

F 3 g 7−→ sf (g) := g − 〈g, f∨〉f, f∨ := 2
⟨f,f⟩f.

It is the reflection with respect to the hyperplane Hf := f−1({0}) ⊂ V . Now we consider the subset

R := {±εi ± εj | 1 ≤ i < j ≤ n} ∪ {±2εi | 1 ≤ i ≤ n} ⊂ S ∩ V, (3.1.4)

which is in fact the finite root system of type Cn. Among the affine roots ai in (3.1.3), those except a0
belong to R, which are the simple roots of type Cn. Then the finite Weyl group W0 is the subgroup

W0 := 〈si (i = 1, 2, . . . , n)〉 ⊂ GLR(V ), si := sai . (3.1.5)

Note that each element in W0 is an isometry for the inner product 〈·, ·〉.
Next, for v ∈ V , we define t(v) ∈ GLR(F ) by

F 3 f 7−→ t(v)(f) := f − 〈f, v〉c. (3.1.6)

Then, for w ∈W0, we have

w t(v)w−1 = t(wv). (3.1.7)

Let PCn ⊂ F be given by

PCn
:= Zε1 ⊕ Zε2 ⊕ · · · ⊕ Zεn, (3.1.8)

which is in fact the weight lattice of the finite root system of type Cn. Then,

t(PCn
) := {t(µ) | µ ∈ PCn

} ⊂ GLR(F ) (3.1.9)

is isomorphic to the additive group PCn
. Viewing (3.1.7) as an action of W0 on t(PCn

), we can take the
semigroup of (3.1.5) and (3.1.9) to obtain the extended affine Weyl group W of type (C∨

n , Cn):

W := t(PCn)oW0 ⊂ GLR(F ). (3.1.10)
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It acts on S by permutation [M03, (1.4.6), (1.4.7)], and the orbits are given in (3.1.2) [M03, 1.5].
Let us also give a description of W as an abstract group. We set

s0 := t(ε1)s2ϵ1 ∈W. (3.1.11)

Then W has a presentation with generators

W = 〈s0, s1, . . . , sn〉 (3.1.12)

and the following relations.

s2i = 1 (0 ≤ i ≤ n),
sisj = sjsi (|i− j| > 1),

sjsj+1sj = sj+1sjsj+1 (1 ≤ j ≤ n− 2),

sisi+1sisi+1 = si+1sisi+1si (i = 0, n− 1).

(3.1.13)

Hereafter the length `(w) of w ∈ W indicates that for a reduced expression in terms of the generators
{si}ni=0. For later use, we write down a reduced expression of t(εi):

t(εi) = si−1si−2 · · · s1s0s1s2 · · · snsn−1sn−2 · · · si+1si (1 ≤ i ≤ n). (3.1.14)

Let us also introduce FZ ⊂ F by

FZ := PCn
⊕ 1

2Zc. (3.1.15)

Then we have S ⊂ FZ. We write down the action of W on FZ:

s0(εi) =

{
c− ε1 (i = 1)

εi (i 6= 1)
, sj(εi) =


εj (i = j + 1)

εj + 1 (i = j)

εi (i 6= j, j + 1)

(1 ≤ j ≤ n− 1),

sn(εi) =

{
−εn (i = n)

εi (i 6= n)
, sk(c) = c (0 ≤ k ≤ n).

By these formulas, we can check the orbit decomposition (3.1.2) directly.
Closing this part, we recall the positive and negative parts of S. Let us write S as

S = {±εi + 1
2rc, ±2εi + rc | 1 ≤ i ≤ n, r ∈ Z} ∪ {±εi ± εj + rc | 1 ≤ i < j ≤ n, r ∈ Z}.

It has the decomposition S = S+ t S− with the sets S± of positive and negative roots, respectively.
To describe S±, let us recall the decomposition of the finite root system R of type Cn (see (3.1.4)) into
positive and negative roots:

R = R+ tR−, R+ := {2εi | 1 ≤ i ≤ n} ∪ {εi ± εj | 1 ≤ i < j ≤ n} ⊂ R, R− := −R+.

Then, the sets S± are given by

S+ := {a+ rc, a∨ + 1
2rc | a ∈ R+, r ∈ N} ∪ {a+ rc, a∨ + 1

2rc | a ∈ R−, r ∈ N}, S− := −S+.

Using (3.1.3), we have ai ∈ S+ for each i = 0, 1, . . . , n. Moreover we have

S+ =

n∑
i=0

Nai \ {0}. (3.1.16)

We also define S, S± ⊂ S by

S := S+ t S−, S+ := {εi, 2εi | 1 ≤ i ≤ n} ∪ {εi ± εj | 1 ≤ i < j ≤ n} , S− := −S+. (3.1.17)

Then, any a ∈ S can be presented as a = a+ rc with a ∈ S and r ∈ 1
2Z, and we denote

a := a ∈ S. (3.1.18)
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3.1.2 Parameters, weight function and Koornwinder polynomials

In this subsection, we explain the parameters and the weight function for type (C∨
n , Cn), and introduce

the symmetric and non-symmetric Koornwinder polynomials. As for the parameters of Koornwinder
polynomials, we mainly use the Noumi parameters in [N95], as mentioned in § 3.0. Due to the necessity
in the specialization argument, we also give a summary of the comparison of the Noumi parameters with
those given by Macdonald in [M03], which we will refer as the Macdonald parameters.

We begin with explanation on the parameters in [M03]. Let us write again the W -orbits (3.1.2) in
S = O1 t · · · tO5 and the affine roots ai in (3.1.3):

O1 := {±εi + rc | 1 ≤ i ≤ n, r ∈ Z}, O2 := 2O1, O3 := O1 +
1
2c, O4 := 2O3 = O2 + c,

O5 := {±εi ± εj + rc | 1 ≤ i < j ≤ n, r ∈ Z}.
a0 := −2ε1 + c, aj := εj − εj+1 (1 ≤ j ≤ n− 1), an := 2εn,
1
2a0 ∈ O3, a0 ∈ O4, aj ∈ O5 (1 ≤ j ≤ n− 1), 1

2an ∈ O1, an ∈ O2.

We attach a parameter kr ∈ R to each W -orbit as

kr ←→ Or (r = 1, 2, . . . , 5), (3.1.19)

and define the label k [M03, §1.5] as a map on given by

k : S −→ R, k(a) := kr for a ∈ Or. (3.1.20)

Let q ∈ R be chosen, and define the set of parameters as

{qk(a) | a ∈ S} = {qk1 , qk2 , . . . , qk5}. (3.1.21)

We call qkr ’s the Macdonald parameters. These are used in the formulation of Koornwinder polynomials
in [M03].

As mentioned at (3.0.1) and in the beginning of this §3.1.2, in the following argument, we will mainly
use the Noumi parameters

t, t0, tn, u0, un

introduced in [N95]. As will be shown in § 3.1.2 below, we have the following relation between the
Macdonald parameters and the Noumi parameters.

(q2k1 , q2k2 , q2k3 , q2k4 , qk5) = (tnun,
tn
un
, t0u0,

t0
u0
, t). (3.1.22)

Restating by (3.1.19), the Noumi parameters and the W -orbits correspond in the way

tnun ←→ O1, tn/un ←→ O2, t0u0 ←→ O3, t0/u0 ←→ O4, t←→ O5. (3.1.23)

Now we introduce the base field for (non-symmetric) Koornwinder polynomials. Adding the square

t1/2, t
1/2
i , u

1/2
i of the Noumi parameters and the new parameter q1/2, we define the base field K to be the

rational function field

K := Q(q
1
2 , t

1
2 , t

1
2
0 , t

1
2
n , u

1
2
0 , u

1
2
n ). (3.1.24)

Next, following [M03, §5.1], we explain the weight function for (non-symmetric) Koornwinder poly-
nomials. Using the exponent e in the sense of [M03, (1.4.5)], which is given by e = 1 in our (C∨

n , Cn)
case, we set c0 := e−1 ·

∑n
i=0 ai =

1
2c. Here we used the affine roots ai in (3.1.3). Also, using L := PCn ,

we set

Λ := L⊕ Zc0 = PCn ⊕ 1
2Z = ⊕n

i=1Zεi ⊕ 1
2Z.

Note that we have S ⊂ Λ. For each f = µ+ rc0 ∈ Λ, we define

ef := eµqr/e = eµqr. (3.1.25)
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Then, for the label k in (3.1.20), we define the weight function ∆S,k [M03, (5.1.7)] as

∆S,k :=
∏

a∈S+

∆a =
∏

a∈S+

1− qk(2a)ea

1− qk(a)ea
. (3.1.26)

Here we used S+ in (3.1.16) and set k(2a) := 0 if 2a /∈ S. As explained in [M03, (5.1.14)], we can rewrite
∆S,k as

∆S,k =

4∏
r=1

∏
a∈S+∩Or

∆α ·
∏

a∈S+∩O5

∆α =
∏

α∈R+
s

(e2α, qe−2α; q)∞∏4
r=1(vre

α, v′re
−α; q)∞

·
∏

α∈R+
l

(eα, qe−α; q)

(qk5eα, qk5+1e−α; q)∞
.

Here R+
s and R+

l are the set of positive and short roots in the finite root system R of type Cn, respectively.
Explicitly, we have

R+
s := {εi | 1 ≤ i ≤ n}, R+

l := {εi ± εj | 1 ≤ i < j ≤ n}.

We also used the following 4× 2 parameters v1, . . . , v4 and v′1, . . . , v
′
4.

(v1, . . . , v4) := (qk1 ,−qk2 , qk3+
1
2 ,−qk4+

1
2 ). (v′1, . . . , v

′
4) := (qk1+1,−qk2+1, qk3+

1
2 ,−qk4+

1
2 ).

Finally, as mentioned in the last part of [M03, (5.1.7)], the following relation holds for each subsystem
S0 of the affine root system S.

∆S,k|k(a)−k(2a)=0 (a/∈S0) = ∆S0,k. (3.1.27)

For the complete set of the subsystems S0 in S, see the comment in the beginning of this § 3.1.
The weight function ∆S,k defines an inner product on the space

K[x±1] = K[x±1
1 , x±1

2 , . . . , x±1
n ], xi := eϵi

of the n-variable Laurent polynomials, where in the last part we used (3.1.25). Then, by [M03, §5.2], we
have the family of non-symmetric Koornwinder polynomials

Eµ(x) = Eµ(x; q, t, t0, tn, u0, un) ∈ K[x±1], µ ∈ PCn
, (3.1.28)

as a unique orthogonal basis of the inner product on K[X±1] satisfying the triangular property. Moreover,
by [M03, §5.3], for a dominant weight µ in PCn , we have the symmetric Koornwinder polynomial

Pµ(x) = Pµ(x; q, t, t0, tn, u0, un) ∈ K[x±1]W0 . (3.1.29)

Derivation of (3.1.22)

Let us derive the relation (3.1.22) between the Macdonald and Noumi parameters. We use the notation
of the affine Hecke algebra given in [M03, Chapter 4]. We make one modification: The base field K is
enlarged so that it contains τi’s and τ ′i ’s defined blow, and q1/2 (in the version of [M03], it contains q
but doesn’t q1/2).

Let q be a real number such that 0 < q < 1, and K be a subfield of R containing q1/2. We denote by
H the affine Hecke algebra associated to the extended affine Weyl group W of (3.1.10) in the sense of
[M03, 4.1]. It is an associative K-algebra generated by

H = 〈T0, T1, . . . , Tn〉 (3.1.30)

with certain defining relations, for which we refer [Ya22, (2.2.3)–(2.2.5)].

Remark 3.1.2.1. We give another description of the affine Hecke algebra H. As a K-linear space, it
has the form

H = H0 ⊗K K[Y t(ϵj) | j = 1, 2, . . . , n] ' H0 ⊗K KPCn
, (3.1.31)
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where H0 denotes the Hecke algebra associated to the finite Weyl group W0 of type Cn (see (3.1.5)),
and KPCn denotes the group algebra of the additive group PCn . The commuting elements Y t(ϵj)’s are
defined in [M03, §3.2], and using the reduced expressions (3.1.14), we have the following relations between
Y t(ϵj)’s and the generators Ti’s in (3.1.30).

Y t(ϵj) = T−1
j−1 · · ·T

−1
1 T0 · · ·Tn−1TnTn−1 · · ·Tj .

Note that the ordering of Ti’s is opposite of those in some literature, for example [Sa99, §2.2, p.399], [I03,
§3.1, p.312] and [Chi21]. This discrepancy is reflected on the triangular property of the (non-symmetric)
Koornwinder polynomials. Namely, the choices of the ordering on the space K[x±1] and K[x±1]W0 ,
where the (non-symmetric) Koornwinder polynomials live, are in opposite between ours and those other
literature.

Recall the Macdonald parameters qk1 , qk2 , . . . , qk5 in (3.1.20). Following [M03, (4.4.3)], we introduce
the additional parameters κi, κ

′
i ∈ K for i = 0, 1, . . . , n as

k1 = k(an) =
1
2 (κn + κ′n), k2 = k(2an) =

1
2 (κn − κ

′
n),

k3 = k(a0) =
1
2 (κ0 + κ′0), k4 = k(2a0) =

1
2 (κ0 − κ

′
0), k5 = k(aj) = κj = κ′j (1 ≤ j ≤ n− 1).

We also introduce τi, τ
′
i ∈ K for i = 0, 1, . . . , n by

τi := qκi/2, τ ′i := qκ
′
i/2.

By definition, we have

qk1 = τnτ
′
n, qk2 = τn/τ

′
n, qk3 = τ0τ

′
0, qk4 = τ0/τ

′
0, qk5 = τjτ

′
j (1 ≤ j ≤ n− 1). (3.1.32)

Using the parameters τi and τ ′i , we explain the basic representation β of H [M03, (4.3.10)], which
actually goes back to Lusztig [L89]. It is a faithful representation in the group algebra A = KL of
L := Q∨

Cn
= QBn = PCn given by

β : H ↪−→ EndK(KPCn
), β(Ti) := τisi + bi(1− si) (0 ≤ i ≤ n), (3.1.33)

where, expressing the element of KPCn
corresponding to α ∈ PCn

as eα, the function bi is defined by

bi = b(τi, τ
′
i ;x

αi) :=
τi − τ−1

i + (τ ′i − τ ′i
−1

)xαi/2

1− xαi
, (3.1.34)

xαi :=


xi/xi+1 = eϵi−ϵi+1 (1 ≤ i ≤ n− 1)

qx−2
1 = qe−2ϵ1 (i = 0)

x2n = e2ϵn (i = n)

.

Here the symbol b(t, u; z) is borrowed from [M03, (4.2.1)], and the symbol xαi is from [Ya22]. Note that
the representation β is well defined although the function bi does not belong to the group algebra KPCn .

The relation of the Macdonald and Noumi parameters is obtained by the comparison between the
realizations of the basic representation in [M03] and [N95]. Slightly extending the Noumi parameters as

t0, tn, u0, un, tj := t, uj := 1 (j = 1, 2, . . . , n− 1),

we define the function di(z) for i = 0, 1, . . . , n as

di(z) :=
t
1/2
i − t−1/2

i + (u
1/2
i − u−1/2

i )z1/2

1− z
.

Then, comparing [N95, p.52] and [M03, §4.3] (see also [Ya22, (2.2.8)–(2.2.11)]), we have the relation

bi = di(x
αi). (3.1.35)

This relation (3.1.35) yields the correspondence

(τ0, τn, τ
′
0, τ

′
n, τj = τ ′j) = (t

1
2
0 , t

1
2
n , u

1
2
0 , u

1
2
n , t

1
2 ). (3.1.36)

Combining it with (3.1.32), we obtain the relation (3.1.22).
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3.1.3 Specialization to affine root system of type Cn

As an illustration of deriving the specialization Table 3.0.1, we explain how to find the parameter
specialization for type Cn:

t t0 tn u0 un
Cn ts t2l t2l 1 1

As mentioned in §3.0, we need to observe the correspondence of the orbits of extended affine Weyl groups
of type (C∨

n , Cn) and of type Cn. So we start with the explanation on the description of the type Cn as
the affine root subsystem of the type (C∨

n , Cn).
Using the description (3.1.2) of the affine root system S of type (C∨

n , Cn), let us consider the following
subset SC of S.

SC := OC
s tOC

l , OC
l := O2 tO4 = {±2εi + r | 1 ≤ i ≤ n, r ∈ Z},

OC
s := O5 = {±εi ± εj + r | 1 ≤ i < j ≤ n, r ∈ Z}.

(3.1.37)

It is the affine root system of type Cn in the sense of [M03, §1.3, (1.3.4)]. The following gives a basis
{aC0 , aC1 , . . . , aCn } of SC in the sense of [M03, §1.2].

aC0 := 2a0 = −2ε1 + 1, aCj := aj = εj − εj+1 (1 ≤ j ≤ n− 1), aCn := 2an = 2εn,

Here is the Dynkin diagram cited from [M03, (1.3.4)]:

0 1 2 n− 1 n

The description (3.1.37) gives the decomposition of the extended affine Weyl group WC . To describe it,
recall the finite Weyl groupW0 of type Cn in (3.1.5), which can be rewritten asW0 = 〈saC

1
, saC

2
, . . . , saC

n
〉.

We also denote by

L′ = P∨
Cn

= PBn
:= ⊕n

i=1Zεi ⊕ Z 1
2 (ε1 + · · ·+ εn) (3.1.38)

the weight lattice of finite root system of type Bn. Then W
C is given by

WC :=W0 n t(L′) =W0 n t(PBn
), (3.1.39)

and it acts on SC [M03, §1.4, (1.4.6), (1.4.7)]. The corresponding WC-orbits are given by the above OC
s

and OC
l [M03, §1.5]. By (3.1.37), we have aC0 , a

C
n ∈ O2 tO4 = OC

l and aCj ∈ O5 = OC
s (1 ≤ j ≤ n− 1).

Next, we explain the parameters for SC . Similarly as in § 3.1.2, we attach parameters kCs , k
C
l ∈ R to

the WC-orbits as

kCs ←→ OC
s , kCl ←→ OC

l , (3.1.40)

and define the label kC : SC → R in the same way as k : S → R in (3.1.20). We also denote

tCl := qk
C
l , tCs := qk

C
s (1 ≤ j ≤ n− 1), (3.1.41)

We now argue that under the specialization

(t, t0, tn, u0, un) 7−→
(
tCs , (t

C
l )

2, (tCl )
2, 1, 1

)
,

the non-symmetric Koornwinder polynomials degenerate into the non-symmetric Macdonald polynomials
of type Cn. Recalling that both polynomials are determined uniquely by the inner products, or by the
weight functions, we see that it is enough to check that the weight function ∆S,k in (3.1.26) of type
(Cn, Cn) degenerates to that of type Cn. The latter weight function is given by [M03, (5.1.7)]:

∆C = ∆SC ,kC :=
∏

a∈(SC)+

1− qkC(2a)ea

1− qkC(a)ea
.
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Here (SC)+ ⊂ SC is the set of positive roots with respect to the basis {aC0 , aC1 , . . . , aCn }, i.e., (SC)+ :=∑n
i=0 NaCi \ {0}, and kC : SC → R is the extension of the label kC (see (3.1.40)) by kC(2a) := 0 (a /∈ S).

Recalling (3.1.27), we have

∆S,k|k(a)−k(2a)=0 (a∈S\SC) = ∆SC ,k.

Thus, the desired specialization is given by

k(a)− k(2a) 7−→ 0 (a ∈ S \ SC), k(a)− k(2a) 7−→ kC(a) (a ∈ SC). (3.1.42)

Since (3.1.37) yields S \ SC = O1 tO3, S
C = OC

s tOC
l , O

C
s = O5 and OC

l = O2 tO4, the map (3.1.42)
can be rewritten in terms of k1, k2, . . . , k5 and kCs , k

C
l as

k1 − k2, k3 − k4 7−→ 0, k2, k4 7−→ kCl . k5 7−→ kCs .

Using (3.1.22) and (3.1.41), and assuming u0, un > 0, we can further rewrite it as

(tnun)/
tn
un
, (t0u0)/

t0
u0
7−→ 1, t0

u0
, tn

un
7−→ (tCl )

2, t 7−→ tCs

⇐⇒ (t, t0, tn, u0, un) 7−→
(
tCs , (t

C
l )

2, (tCl )
2, 1, 1

)
. (3.1.43)

Now we suppress the superscript C in tCs and tCl , and denote by

EC
µ (x; q, ts, tl), µ ∈ PCn

the non-symmetric Macdonald polynomial of type Cn (Definition 1.3.1.1). Similarly, for a dominant
µ ∈ PCn

, we denote by PC
µ (x; q, ts, tl) the symmetric Macdonald polynomials of type Cn . Then the

conclusion of this § 3.1.3 is:

Proposition 3.1.3.1. For any µ ∈ PCn
, we have

EC
µ (x; q, ts, tl) = Eµ(x; q, ts, t

2
l , t

2
l , 1, 1).

Also, for a dominant weight µ, we have

PC
µ (x; q, ts, tl) = Pµ(x; q, ts, t

2
l , t

2
l , 1, 1).

The following table shows the comparison of the correspondence (3.1.23) between the Noumi param-
eters and the W -orbits with that (3.1.40) between the parameters of type Cn and the WC-orbits.

Type (C∨
n , Cn) Type Cn

tnun ←→ O1

t0u0 ←→ O3

tn/un ←→ O2 tCl ←→ Ol = O2 tO4t0/u0 ←→ O4

t←→ O5 tCs ←→ Os = O5

Remark 3.1.3.2. One may wonder whether it is possible to see the specialization (3.1.43) on the level
of affine Hecke algebras. To clarify the point, let us denote by HC the affine Hecke algebra associated to
the group WC (3.1.39) in the sense of [M03, 4.1]. It is an associative algebra over K ⊂ R (see § 3.1.2),
and as a K-linear space, it has the form HC = H0 ⊗K K[Y λ′

C | λ′ ∈ PBn ] ' H0 ⊗K KPBn by [M03,
(4.2.7), (4.3.1)]. Here we used similar notation as in (3.1.31). In particular, H0 is the Hecke algebra
associated to the finite Weyl group W0 of type Cn, and the part K[Y λ′

C | λ′ ∈ PBn
] is a commutative

subalgebra. Also, following [M03, (4.4.2)], we define τC,i = τ ′C,i := qk
C
r /2, where r := s (ai ∈ OC

s ) and

r := l (ai ∈ OC
l ). Then, using the function (3.1.34) with the parameters τC,i and τ

′
C,i instead of τi and

τ ′i , we have a faithful HC-module

βC : HC ↪−→ EndK(KPCn).

which is the basic representation of type Cn. The basic representations β (3.1.33) and βC sit in the
following diagram.
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H HC

EndK(KPCn
) EndK(KPCn

)

β βC

One can see that the specialization (3.1.43) maps β(Tj) 7→ βC(Tj) (1 ≤ j ≤ n− 1), but the images of
β(Ti) is not equal to β

C(Ti) for i = 0, n. Thus, it is unclear whether we can see the specialization on the
level of affine Hecke algebras H and HC .

3.1.4 Specialization to other subsystems

For all the subsystems of the affine root system S of type (C∨
n , Cn), we can make similar arguments as

in § 3.1.3, which will yield the specialization Table 3.0.1. In this subsection, we list all the arguments
except type Cn which is already done. Let us write again the specialization table:

reduced t t0 tn u0 un non-reduced t t0 tn u0 un
Bn § 3.1.4 tl 1 ts 1 ts (BCn, Cn) § 3.1.4 tm t2l tstl 1 ts/tl
B∨

n § 3.1.4 ts 1 t2l 1 1 (C∨
n , BCn) § 3.1.4 tm ts tstl ts ts/tl

Cn § 3.1.3 ts t2l t2l 1 1 (B∨
n , Bn) § 3.1.4 tm 1 tstl 1 ts/tl

C∨
n § 3.1.4 tl ts ts ts ts

BCn § 3.1.4 tm t2l ts 1 ts
Dn § 3.1.4 t 1 1 1 1

A remark is in order on the treatment of the type BCn and the non-reduced systems. As we have
seen in § 3.1.2, the argument on the specialization to type Cn used the extended affine Weyl group of
of type Cn. In contrast, as commented at the beginning of §5.1 and (5.1.7) in [M03], we don’t have
the extended affine Weyl groups (or the affine Hecke algebras) associated to the type BCn and the non-
reduced systems, so we cannot follow the argument in §3.1.2. However, the (non-symmetric) Macdonald
polynomials for non-reduced systems are defined as the specialization of Koornwinder polynomials in
[M03], and thus the situations are easier than reduced systems.

Type Bn

For n ∈ Z≥3, the following subset SB ⊂ S forms the affine root system of type Bn in the sense of [M03,
§1.3, (1.3.2)].

SB := OB
s tOB

l , OB
s := O1 = {±εi + r | 1 ≤ i ≤ n, r ∈ Z},

OB
l := O5 = {±εi ± εj + r | 1 ≤ i < j ≤ n, r ∈ Z}.

(3.1.44)

0

1

2 n− 1 n

Using the symbol L′ = P∨
Bn

= PCn = ⊕n
i=1Zεi in [M03, 1.4], the extended affine Weyl group is given by

WB :=WB
0 n t(L′) =WB

0 n t(PCn
) 'W.

HereWB
0 denotes the Weyl group of the finite root lattice Bn. The groupW

B acts on SB by permutation,
and the WB-orbits are given by OB

s and OB
l . We attach parameters kBs and kBl to the WB-orbits as

OB
s ←→ kBs , OB

l ←→ kBl ,

and define the label kB by

kB : SB −→ R, kB(a) := kBs (a ∈ OB
s ), kB(a) := kBl (a ∈ OB

l ).

Mimicking the relation (3.1.22), we introduce the parameters of type Bn by

tBs := qk
B
s , tBl := qk

B
l . (3.1.45)
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They correspond to the WB-orbits as tBs ↔ OB
s and tBl ↔ OB

l .
The weight function of type Bn is given by

∆B = ∆SB ,kB :=
∏

a∈(SB)+

1− qkB(2a)ea

1− qkB(a)ea
.

Then, (3.1.27) yields

∆S,k|k(a)−k(2a)=0 (a∈S\SB) = ∆SB ,k.

Thus the desired specialization is given by

k(a)− k(2a) 7−→ 0 (a ∈ S \ SB), k(a)− k(2a) 7−→ kB(a) (a ∈ SB).

By (3.1.44), we have S \ SB = O2 t O3 t O4, S
B = OB

s t OB
l , OB

s = O1 and OB
l = O5. Then, we can

rewrite the specialization in terms of k1, . . . , k5 and kBs , k
B
l as

k2 − 0, k3 − k4, k4 − 0 7−→ 0, k1 7−→ kBs , k5 7−→ kBl .

Using (3.1.22) and (3.1.45), and assuming t0, u0 > 0, we have

tn
un
, (t0u0)/

t0
u0
, t0

u0
7−→ 1, tnun 7−→ (tBs )

2, t 7−→ tBl

⇐⇒ (t, t0, tn, u0, un) 7−→
(
tBl , 1, t

B
s , 1, t

B
s

)
. (3.1.46)

Now we suppress the superscript B in the parameters, and denote by

EB
µ (x; q, ts, tl), µ ∈ PBn

:= ⊕n
i=1Zεi ⊕ 1

2 (ε1 + ε2 + · · ·+ εn)

the non-symmetric Macdonald polynomial of type Bn (Definition 1.3.1.1). Having that PCn ⊂ PBn , we
conclude:

Proposition 3.1.4.1. For any µ ∈ PCn
, we have

EB
µ (x; q, ts, tl) = Eµ(x; q, tl, 1, ts, 1, ts).

Also, for a dominant weight µ, we have

PB
µ (x; q, ts, tl) = Pµ(x; q, tl, 1, ts, 1, ts)

for the symmetric Macdonald polynomials of type Bn.

Remark 3.1.4.2. We can make a similar observation as in Remark 3.1.3.2. Let us denote by HB the
affine Hecke algebra for the extended Weyl group WB in the sense of [M03, Chap. 4]. As a linear space
over the base field K, we have HB ' H0 ⊗K KPCn

' H. Denoting by βB the basic representation of
HB , we have the following diagram.

H HB

EndK(KPCn
) EndK(KPBn

)

β βB

As in Remark 3.1.3.2, we can that the specialization (3.1.46) maps β(Tj) 7→ βB(Tj) for j = 1, 2, . . . , n−1,
but the images of β(Ti) is not equal to β

B(Ti) for i = 0, n.
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Type B∨
n

For n ∈ Z≥3, the following subset SB∨ ⊂ S forms the affine root system of type B∨
n in the sense of [M03,

§1.3, (1.3.3)].

SB∨
:= OB∨

l tOB∨

s , OB∨

l := O2 = {±2εi + 2r | 1 ≤ i ≤ n, r ∈ Z},

OB∨

s := O5 = {±εi ± εj + r | 1 ≤ i < j ≤ n, r ∈ Z}.
(3.1.47)

0

1

2 n− 1 n

Using the symbol L = L′ = P∨
Bn

= PCn = ⊕n
i=1Zεi in [M03, 1.4], the extended affine Weyl group is given

by

WB∨
:=WB

0 n t(L′) =WB
0 n t(PCn) 'W.

It acts on SB∨
, and the WB∨

-orbits are OB∨

s and OB∨

l . We attach parameters to these orbits as

kB
∨

s ←→ OB∨

s , kB
∨

l ←→ OB∨

l ,

and define the label kB
∨
: SB∨ → R as before. We also introduce another set of parameters as

tB
∨

l := τ2B∨,n = qk
B∨
n , tB

∨

s := τ2B∨,j = qk
B∨
j (0 ≤ i ≤ n− 1). (3.1.48)

They correspond to the WB∨
-orbits as tB

∨

s ↔ OB∨

s and tB
∨

l ↔ OB∨

l .
The weight function of type B∨

n is given by

∆B∨
= ∆SB∨ ,kB∨ :=

∏
a∈(SB∨ )+

1− qkB∨
(2a)ea

1− qkB∨ (a)ea
.

Then, (3.1.27) yields

∆S,k|k(a)−k(2a)=0 (a∈S\SB∨ ) = ∆SB∨ ,k.

Thus the specialization from type (C∨
n , Cn) to type B∨

n is given by

k(a)− k(2a) 7−→ 0 (a ∈ S \ SB∨
), k(a)− k(2a) 7−→ kB(a) (a ∈ SB).

By (3.1.47), we have S \ SB∨
= O1 tO3 tO4, S

B∨
= OB∨

s tOB∨

l , OB∨

s = O5 and OB∨

l = O2. Then the
above specialization can be written as

k1 − k2, k3 − k4, k4 − 0 7−→ 0, k2 7−→ kB
∨

l , k5 7−→ kB
∨

s .

Using (3.1.22) and (3.1.48), and assuming t0, un, u0 > 0, we can further rewrite it as

(tnun)/
tn
un
, (t0u0)/

t0
u0
, t0

u0
7−→ 1, tn/un 7−→ (tB

∨

l )2, t 7−→ tB
∨

s

⇐⇒ (t, t0, tn, u0, un) 7−→
(
tB

∨

s , 1, (tB
∨

l )2, 1, 1
)
.

Now we suppress the superscript B∨ in the parameters, and denote by

EB∨

µ (x; q, ts, tl), µ ∈ P∨
Bn

= PCn

the non-symmetric Macdonald polynomial of type B∨
n (Definition 1.3.1.1). The conclusion of this §3.1.4

is:

Proposition 3.1.4.3. For any µ ∈ PCn , we have

EB∨

µ (x; q, ts, tl) = Eµ(x; q, ts, 1, t
2
l , 1, 1).
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Type C∨
n

For n ∈ Z≥2, the following subset SC∨ ⊂ S forms the affine root system of type C∨
n in the sense of [M03,

§1.3, (1.3.5)].

SC∨
:= OC∨

s tOC∨

l , OC∨

s := O1 tO3 = {±εi + 1
2r | 1 ≤ i ≤ n, r ∈ Z},

OC∨

l := O5 = {±εi ± εj + r | 1 ≤ i < j ≤ n, r ∈ Z}.
(3.1.49)

0 1 2 n− 1 n

Using L = L′ = P∨
Cn

= PBn
= ⊕n

i=1Zεi ⊕ 1
2 (ε1 + · · ·+ εn), the extended affine Weyl group is given by

WC∨
:=W0 n t(L′) =W0 n t(PBn) =WC .

TheWC∨
-orbits on SC∨

are OC∨

s and OC∨

l . We define the label kC
∨
: SC∨ → R using the correspondence

kC
∨

s ←→ OC∨

s , kC
∨

l ←→ OC∨

l .

Mimicking the relation (3.1.22), we define another set of parameters as

tC
∨

s := qk
C∨
s , tC

∨

l := qk
C∨
l . (3.1.50)

They correspond to the WC∨
-orbits as tC

∨

s ↔ OC∨

s and tC
∨

l ↔ OC∨

l .
The weight function is given by

∆C∨
= ∆SC∨ ,kC∨ :=

∏
a∈(SC∨ )+

1− qkC∨
(2a)ea

1− qkC∨ (a)ea
.

Then (3.1.27) yields

∆S,k|k(a)−k(2a)=0 (a∈S\SC∨ ) = ∆SC∨ ,k.

Thus the specialization to type C∨
n is given by

k(a)− k(2a) 7−→ 0 (a ∈ S \ SC∨
), k(a)− k(2a) 7−→ kB(a) (a ∈ SB).

By (3.1.49), we have S \ SC∨
= O2 tO4, S

C∨
= OC∨

s tOC∨

l , OC∨

s = O1 tO3 and OC∨

l = O5. Then we
can rewrite the above specialization as

k2 − 0, k4 − 0 7−→ 0, k1, k3 7−→ kC
∨

s , k5 7−→ kC
∨

l .

Using (3.1.22) and (3.1.50), we can rewrite it as

tn
un
, t0

u0
7−→ 1, tnun, t0u0 7−→ (tC

∨

s )2, t 7−→ tC
∨

l

⇐⇒ (t, t0, tn, u0, un) 7−→
(
tC

∨

l , tC
∨

s , tC
∨

s , tC
∨

s , tC
∨

s

)
.

We suppress the superscript C∨ in the parameters, and denote by

EC∨

µ (x; q, ts, tl), µ ∈ P∨
Cn

= PBn

the non-symmetric Macdonald polynomial of type C∨
n (Definition 1.3.1.1). Noting that PCn

⊂ PBn
, we

have the conclusion:

Proposition 3.1.4.4. For any µ ∈ PCn
, we have

EC∨

µ (x; q, ts, tl) = Eµ(x; q, tl, ts, ts, ts, ts).
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Type BCn

For n ∈ Z≥1, the following subset SBC ⊂ S forms the affine root system of type BCn in the sense of
[M03, §1.3, (1.3.6)].

SBC := OBC
s tOBC

m tOBC
l , OBC

s := O1 = {±εi + r | 1 ≤ i ≤ n, r ∈ Z},
OBC

l := O4 = {±2εi + 2r + 1 | 1 ≤ i ≤ n, r ∈ Z},
OBC

m := O5 = {±εi ± εj + r | 1 ≤ i < j ≤ n, r ∈ Z}.
(3.1.51)

Hereafter we assume n ≥ 2 to make the argument compatible with that so far. The Dynkin diagram is
then given by

0 1 2 n− 1 n
(3.1.52)

Recall the comment in the beginning of this § 3.1.4. We will not introduce a new extended affine
Weyl group, but consider the group W of type (C∨

n , Cn) (see (3.1.10)). It acts on S
BC , and the W -orbits

are given by OBC
s , OBC

m and OBC
l . Hence, we already have the correspondence between the Macdonald

parameters of type (C∨
n , Cn) and the W -orbits on SBC . Let us denote

tBC
s := qk1 , tBC

m := qk5 , tBC
l := qk4 , (3.1.53)

which correspond to the W -orbits OBC
s , OBC

m and OBC
l , respectively.

Following [M03, (5.1.77)], we define the weight function ∆SBC ,k of type BCn to be the specialization
of ∆S,k of type (C∨

n , Cn). In other words, we take the right hand side of (3.1.27) as the definition:

∆BC = ∆SBC ,k := ∆S,k|k(a)−k(2a)=0 (a∈S\SBC) .

By (3.1.51), we have S \SBC = O2 tO3 and SBC = OBC
s tOBC

m tOBC
l = O1 tO5 tO4. Them, we can

see that the specialization to type BCn is given by

k2 − 0, k3 − k4 7−→ 0.

Using (3.1.22) and (3.1.53), we can rewrite it as

tn
un
, (t0u0)/

t0
u0
7−→ 1, tnun 7−→ (tBC

s )2, t0
u0
7−→ (tBC

l )2, t 7−→ tBC
m

⇐⇒ (t, t0, tn, u0, un) 7−→
(
tBC
m , (tBC

l )2, tBC
s , 1, tBC

s

)
.

Now we suppress the superscript BC in the parameters, and denote by

EBC
µ (x; q, ts, tm, tl), µ ∈ PCn

the non-symmetric Macdonald polynomial of type BCn (Definition 1.3.1.1). Then the conclusion is:

Proposition 3.1.4.5. For any µ ∈ PCn , we have

EBC
µ (x; q, ts, tm, tl) = Eµ(x; q, tm, t

2
l , ts, 1, ts).

Type Dn

For n ∈ Z≥4, the following subset SD ⊂ S forms the affine root system of type Dn in the sense of [M03,
§1.3, (1.3.7)].

SD := O5 = {±εi ± εj + r | 1 ≤ i < j ≤ n, r ∈ Z}. (3.1.54)

0

1

2 n− 2

n− 1

n
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Using the Weyl group WD
0 and the weight lattice

L′ = PDn
:= Zε1 ⊕ · · · ⊕ Zεn ⊕ Z 1

2 (ε1 + · · ·+ εn) (3.1.55)

of the finite root system of type Dn, the extended affine Weyl group is given by

WD :=WD
0 n t(L′) =WD

0 n t(PDn
). (3.1.56)

It acts on SD by permutation, and there is a unique orbit. Attaching kD ∈ R to this unique orbit, we
define the label by kD(a) := kD (a ∈ SD), and introduce

tD := qk
D

. (3.1.57)

The weight function is given by

∆D = ∆SD,kD :=
∏

a∈(SD)+

1− qkB(2a)ea

1− qkB(a)ea
.

The relation (3.1.27) yields

∆S,k|k(a)−k(2a)=0 (a∈S\SD) = ∆SD,k.

Thus, the specialization to type Dn is given by

k(a)− k(2a) 7−→ 0 (a ∈ S \ SD), k(a)− k(2a) 7−→ kD(a) (a ∈ SD).

By (3.1.54), we have S \ SD = O1 t · · · t O4 and SB = O5. Then, we can rewrite the specialization in
terms of k1, . . . , k5 and kD as

k2 − 0, k3 − k4, k4 − 0 7−→ 0, k1 7−→ kBs , k5 7−→ kBl .

Using (3.1.22) and (3.1.57), we have

tnun, tn/un, t0u0, t0/u0 7−→ 1, t 7−→ tD ⇐⇒ (t, t0, tn, u0, un) 7−→
(
tD, 1, 1, 1, 1

)
.

We suppress the superscript D in the parameters, and denote by

ED
µ (x; q, t), µ ∈ PDn

the non-symmetric Macdonald polynomial of type Dn (Definition 1.3.1.1). Since PCn ⊂ PDn , we have:

Proposition 3.1.4.6. For any µ ∈ PCn
, we have

ED
µ (x; q, t) = Eµ(x; q, t, 1, 1, 1, 1).

Type (BCn, Cn)

For n ∈ Z≥ 1, the following subset SBC,C ⊂ S forms the affine root system of type (BCn, Cn) in the
sense of [M03, §1.3, (1.3.15)].

SBC,C := OBC,C
s tOBC,C

m tOBC,C
l ,

OBC,C
s := O1 = {±εi + r | 1 ≤ i ≤ n, r ∈ Z},

OBC,C
l := O2 tO4 = {±2εi + r | 1 ≤ i ≤ n, r ∈ Z},

OBC,C
m := O5 = {±εi ± εj + r | 1 ≤ i < j ≤ n, r ∈ Z}.

(3.1.58)

0 1 2 n− 1 n

∗
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The diagram is for n ≥ 2, and hereafter we assume this condition. The mark ∗ above the index n implies
that there is a basis {aBC,C

i }ni=0 such that aBC,C
n , 2aBC,C

n ∈ SBC,C . There are three W -orbits OBC,C
s ,

OBC,C
m and OBC,C

l . We introduce the parameters

tBC,C
s := qk1 , tBC,C

m := qk5 , tBC,C
l := qk2 , (3.1.59)

which correspond to the W -orbit OBC,C
s , OBC,C

m and OBC,C
l , respectively.

Similarly as in the previous §3.1.4, the weight function ∆SBC,C ,k of type (BCn, Cn) is defined by the
specialization of ∆S,k as

∆BC,C = ∆SBC,C ,k := ∆S,k|k(a)−k(2a)=0 (a∈S\SBC,C) .

By (3.1.58), we have S \ SBC,C = O3, O
BC,C
l = O2 t O4, which implies that the specialization to type

(BCn, Cn) is given by

k3 − k4 7−→ 0, k2 7−→ k4.

Using (3.1.22) and (3.1.59), and assuming u0 > 0, we can rewrite it as

(t0u0)/
t0
u0
7−→ 1, tnun 7−→ (tBC,C

s )2, tn
un
, t0

u0
7−→ (tBC,C

l )2, t 7−→ tBC,C
m

⇐⇒ (t, t0, tn, u0, un) 7−→
(
tBC,C
m , (tBC,C

l )2, tBC,C
s tBC,C

l , 1, tBC,C
s /tBC,C

l

)
.

We suppress the superscript BC,C in the parameters, and denote by

EBC,C
µ (x; q, ts, tm, tl), µ ∈ PCn

the non-symmetric Macdonald polynomial of type (BCn, Bn) (Definition 1.3.1.1). The conclusion of this
§ 3.1.4 is:

Proposition 3.1.4.7. For any µ ∈ PCn
, we have

EBC,C
µ (x; q, ts, tm, tl) = Eµ(x; q, tm, t

2
l , tstl, 1, ts/tl).

Type (C∨
n , BCn)

For n ∈ Z≥1, the following subset SC∨,BC ⊂ S forms the affine root system of type (BCn, Cn) in the
sense of [M03, §1.3, (1.3.16)].

SC∨,BC := OC∨,BC
s tOC∨,BC

m tOC∨,BC
l ,

OC∨,BC
s := O1 tO3 = {±εi + 1

2r | 1 ≤ i ≤ n, r ∈ Z},

OC∨,BC
l := O2 = {±2εi + 2r | 1 ≤ i ≤ n, r ∈ Z},

OC∨,BC
m := O5 = {±εi ± εj + r | 1 ≤ i < j ≤ n, r ∈ Z}.

(3.1.60)

Hereafter we assume n ≥ 2. Then the Dynkin diagram is given by

0 1 2 n− 1 n

∗

There are three W -orbits OC∨,BC
s , OC∨,BC

m and OC∨,BC
l , and the parameters are defined to be

tC
∨,BC

s := qk1 , tC
∨,BC

m := qk5 , tC
∨,BC

l := qk2 . (3.1.61)

The weight function of type (C∨
n , BCn) is defined by

∆C∨,BC = ∆SC∨,BC ,k := ∆S,k|k(a)−k(2a)=0 (a∈S\SC∨,BC) .

By (3.1.60), we have S \ SC∨,BC = O4 and OC∨,BC = O1 tO3, which implies that

k4 − 0 7−→ 0, k1 7−→ k3
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give the desired specialization. Using (3.1.22) and (3.1.61), we can rewrite it as

t0/u0 7−→ 1, t0u0, tnun 7−→ (tC
∨,BC

s )2, tn/un 7−→ (tC
∨,BC

l )2, t 7−→ tC
∨,BC

m

⇐⇒ (t, t0, tn, u0, un) 7−→
(
tC

∨,BC
m , tC

∨,BC
s , tC

∨,BC
s tC

∨,BC
l , tC

∨,BC
s , tC

∨,BC
s /tC

∨,BC
l

)
.

We suppress the superscript C∨, BC in the parameters, and denote by

EC∨,BC
µ (x; q, ts, tm, tl), µ ∈ PCn

the non-symmetric Macdonald polynomial of type (C∨
n , BCn) (Definition 1.3.1.1). The conclusion of this

§ 3.1.4 is:

Proposition 3.1.4.8. For any µ ∈ PCn
, we have

EC∨,BC
µ (x; q, ts, tm.tl) = Eµ(x; q, tm, ts, tstl, ts, ts/tl).

Types (C2, C
∨
2 ) and (B∨

n , Bn)

The affine root systems of type (C2, C
∨
2 ) and of type (B∨

n , Bn) with n ∈ Z≥3 in the sense of [M03, §1.3,
(1.3.17)] are given by the following subset SB∨,B ⊂ S.

SB∨,B :=OB∨,B
s tOB∨,B

m tOB∨,B
l ,

OB∨,B
s := O1 = {±εi + r | 1 ≤ i ≤ n, r ∈ Z},

OB∨,B
l := O2 = {±2εi + 2r | 1 ≤ i ≤ n, r ∈ Z},

OB∨,B
m := O5 = {±εi ± εj + r | 1 ≤ i < j ≤ n, r ∈ Z}.

(3.1.62)

In the case n ≥ 3, the Dynkin diagram is given by

0

1

2 n− 1 n

∗

The W -orbits are OB∨,B
s , OB∨,B

m and OB∨,B
l . The corresponding parameters are defined to be

tB
∨,B

s := qk1 , tB
∨,B

m := qk5 , tB
∨,B

l := qk2 . (3.1.63)

The weight function ∆SB∨,B ,k is defined by

∆B∨,B = ∆SB∨,B ,k := ∆S,k|k(a)−k(2a)=0 (a∈S\SB∨,B) .

By (3.1.62), we have S \ SB∨,B = O3 tO4, which implies that

k3 − k4, k4 − 0 7−→ 0

gives the specialization to type (C2, C
∨
2 ) and (B∨

n , Bn). Using (3.1.22) and (3.1.63), we can rewrite it as

t0u0, t0/u0 7−→ 1, tnun 7−→ (tB
∨,B

s )2, tn/un 7−→ (tB
∨,B

l )2, t 7−→ tB
∨,B

m

⇐⇒ (t, t0, tn, u0, un) 7−→
(
tB

∨,B
m , 1, tB

∨,B
s tB

∨,B
l , 1, tB

∨,B
s /tB

∨,B
l

)
.

We suppress the superscript B∨, B in the parameters, and denote by

EB∨,B
µ (x; q, ts, tm, tl), µ ∈ PCn

the non-symmetric Macdonald polynomial of types (C2, C
∨
2 ) and (B∨

n , Bn) (Definition 1.3.1.1). The
conclusion of this § 3.1.4 is:

Proposition 3.1.4.9. For any µ ∈ PCn
, we have

EB∨,B
µ (x; q, ts, tm.tl) = Eµ(x; q, tm, 1, tstl, 1, ts/tl).
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3.1.5 Relation to Koornwinder’s specializations in admissible pairs

As mentioned in § 3.0, in the original theory [M87], Macdonald used admissible pairs to formulate his
family of multivariate orthogonal polynomials for general root systems. Here, an admissible pair means
a pair (R,S) of root systems satisfying the following conditions.
• Both R and S span the common finite-dimensional Euclidean space V .
• S is a reduced.
• The Weyl groups are identical, i.e., WR =WS .
In [Ko92, §6.1], Koornwinder obtained Macdonald polynomials of the admissible pairs

(R,S) = (RBCn , SBn), (RBCn , SCn)

by specializing the parameters in his polynomials. The parameters in [Ko92] are denoted as

a, b, c, d, t, q,

and we call them the Koornwinder parameters. The finite root systems RBCn
, SBn

and SCn
are

RBCn
:= {±εi | 1 ≤ i ≤ n} t {±2εi | 1 ≤ i ≤ n} t {±εi ± εj | 1 ≤ i < j ≤ n},

SBn
:= {±εi | 1 ≤ i ≤ n} t {±εi ± εj | 1 ≤ i < j ≤ n},

SCn
:= {±εi | 1 ≤ i ≤ n} t { 12 (±εi ± εj) | 1 ≤ i < j ≤ n}. (3.1.64)

Using them, the specializations in [Ko92, §6.1] are described as

(RBCn , SBn) : (a, b, c, d, t, q) 7−→ (q1/2,−q1/2, aBb1/2B ,−b1/2B , tB , q), (3.1.65)

(RBCn , SCn) : (a, b, c, d, t, q) 7−→ (aCb
1/2
C , qaCb

1/2
C ,−b1/2C ,−qb1/2C , tC , q

2). (3.1.66)

There are only given these results in [Ko92, §6.1] . We guess that they are derived by the comparison of
the weight functions of inner products, as we did in the previous § 3.1.3 and § 3.1.4.

In [N95, p.54], Noumi gave the correspondence between the Noumi parameters q, t, t0, tn, u0, un and
the Koornwinder parameters a, b, c, d, t, q. The correspondence is that q and t are common, and

(t0, tn, u0, un) = (−cd/q,−ab,−c/d,−a/b).

We can then rewrite the specialization (3.1.65) to the admissible pair (RBCn , SBn) as

(t, t0, tn, u0, un) 7−→ (tB , 1, aBbB , 1, aB).

Thus, setting tB = tB
∨,B

m , aB = tB
∨,B

s /tB
∨,B

l and bB = (tB
∨,B

l )2, we see that it coincides with the
specialization to type (B∨

n , Bn) in § 3.1.4.
Let us remark that a similar rewriting of the specialization (3.1.66) to the admissible pair (RBCn

, SCn
)

does not have a corresponding one in Table 3.0.1. It seems to be due to that the root system SCn in
(3.1.64) cannot be treated in the formulation of [M03].

3.1.6 The rank one case

This subsection is added after the referee comments. We would like to appreciate the referees’ suggestions.
As explained in the beginning of §3.1.1, the argument so far assumes the rank n ≥ 2. The purpose of

this §3.1.6 is to study the excluded case n = 1. As mentioned in the beginning of §2.0, the Koornwinder
polynomial is designed to give a multi-variable analogue of the Askey-Wilson polynomial. So it is natural
to study what our specialization argument yields in the rank one case. The argument is similar to the
previous one, so we only give an outline.

Let E = (Rε, 〈·, ·〉) be the 1-dimensional Euclidean space with basis ε, and F be the R-linear space of
affine linear functions on E. We identify F

∼−→ Rε⊕ Rc by the inner product 〈·, ·〉 as in the rank n ≥ 2
case (§ 3.1.1). The affine root system of type (C∨

1 , C1) is the subset S = SC∨
1 ,C1 ⊂ E given by

S = O1 tO2 tO3 tO4, O1 := ±ε+ Zc, O2 := 2O1, O3 := O1 +
1
2c, O4 := 2O3 = O2 + c.
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We take the basis { 12a0, a0,
1
2a1, a1} of S with a0 := −2ε+ c and a1 := 2ε. The Dynkin diagram of S is

shown in the next line, where the mark ∗ has the same meaning as in the rank n ≥ 2 case.

0 1

∗ ∗

Next, as in (3.1.5), we denote the simple reflections by s0 := sa0
and s1 := sa1

, and define the finite
Weyl group by W0 := 〈s0〉 ⊂ GLR(F ). The extended affine Weyl group is defined by W := t(PL)oW0 ⊂
GLR(F ), where P := Zε ⊂ F is the weight lattice “of type C1”. Then we haveW = 〈s0, s1〉 as in (3.1.12),
and the subsets O1, O2, O3, O4 ⊂ S are W -orbits of 1

2a1, a1,
1
2a0, a0, respectively.

We attach parameters k1, k2, k3, k4 to theseW -orbits under the correspondence ki ↔ Oi as in (3.1.19).
Choosing q ∈ R with 0 < q < 1, we set k : S → R by k(a) := ki for a ∈ Oi as in (3.1.20). We call

{qk(a) | a ∈ S} = {qk1 , qk2 , qk3 , qk4}

the set of Macdonald parameters as in (3.1.21). We also have the Noumi parameters t0, t1, u0, u1, which
correspond to the Macdonald parameters by the relation

(q2k1 , q2k2 , q2k3 , q2k4) = (t1u1,
t1
u1
, t0u0,

t0
u0
). (3.1.67)

We define the base field to be K := Q(q
1
2 , t

1
2
0 , t

1
2
1 , u

1
2
0 , u

1
2
1 ) as in (3.1.24).

By the general theory [M03, §§5.2–5.3], we have the one-variable symmetric Laurent polynomial

Pl(x) = Pl(x; q, t0, t1, u0, u1) ∈ K[x±1]W0

for each dominant weight λ = lε ∈ Λ+ := Nε, where W0 = 〈s1〉 ' Z/2Z acts on K[x±1] by s1(x) = x−1.
The Laurent polynomial Pl(x) (l ∈ N) is equal to the Askey-Wilson polynomial [AW85]. Let us briefly
explain the correspondence, referring to [N95, §3], [St00], [NS04] and [M03, §§6.4–6.6] for the detail. We
use Gasper and Rahman’s notation [GR04] for q-shifted factorials (1.1.1) and q-hypergeometric series

s+1φs

[
a1, · · · , as+1

b1, · · · , bs
; q, z

]
:=

∞∑
k=0

(a1; q)k · · · (as+1; q)k
(b1; q)k · · · (bs; q)k

zk

(q; q)k
.

The Askey-Wilson polynomial is now defined to be

pl
(
1
2 (x+ x−1); q, a, b, c, d

)
:=

a−l(ab, ac, ad; q)l
(abcd; q)l

· 4φ3
[
q−l, ql−1abcd, ax, a/x

ab, ac, ad
; q, q

]
. (3.1.68)

Although the form (3.1.68) is asymmetric with respect to the parameters a, b, c, d, the polynomial actually
has the parameter symmetry, which can be seen from the recurrence relation [AW85, (1.24)–(1.27)]. See
also [Ya22, §4, Remark 4.1.2] for the relation between the recurrence relation and the Yip-type formula
of Littlewood-Richardson coefficients of Koornwinder polynomials and the reduction to the rank one
Askey-Wilson case. Using (x; q)l := (x; q)∞/(q

lx; q)∞ for l ∈ N, we have the correspondence [AW85, p.5]

pl
(
1
2 (x+ x−1); q, a, b, c, d

)
= 2l(abcdql−1; q)l · Pl(x; q, t0, t1, u0, u1),

where the Askey-Wilson parameters a, b, c, d correspond to the Macdonald parameters by

(a, b, c, d) = (q
1
2 t

1
2
0 u

1
2
0 ,−q

1
2 t

1
2
0 u

− 1
2

0 , t
1
2
1 u

1
2
1 ,−t

1
2
1 u

− 1
2

1 ).

Combining it with (3.1.67), we see that the Askey-Wilson parameters correspond to the W -orbits in S
by (a, b, c, d)↔ (O3, O4, O1, O2).

We now turn to the specialization argument. We list up the subsystems of S = SC∨
1 ,C1 and the cor-

responding specialization rules in Table 3.1.1. The Dynkin diagrams are borrowed from [M03, §1.3].The
“Noumi” column shows the specialization of the Noumi parameters t0, t1, u0, u1 in the same way as the
specialization Table 3.0.1. The “Askey-Wilson” column shows the specialization of the Askey-Wilson
parameters.
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type Dynkin orbits Noumi Askey-Wilson

(C∨
1 , C1)

0 1

∗ ∗
O1 tO2 tO3 tO4 t0 t1 u0 u1 a b c d

Askey-Wilson

(C∨
1 , BC1)

0 1

∗
O1 tO2 tO3 ts tstl ts ts/tl q

1
2 ts −q 1

2 ts −tl
(BC1, C1)

0 1

∗
O1 tO2 tO4 t2l tstl 1 ts/tl q

1
2 tl −q 1

2 tl ts −tlcont. q-Jacobi

BC1
0 1

O1 tO4 t2l ts 1 ts q
1
2 tl −q 1

2 tl ts −1

A1
0 1

O1 1 t 1 t q
1
2 −q 1

2 t −1
O3 t 1 t 1 q

1
2 t −q 1

2 1 −1
Rogers O2 1 t2 1 1 q

1
2 −q 1

2 t −t
O4 t2 1 1 1 q

1
2 t −q 1

2 t 1 −1

Table 3.1.1: Subsystems of (C∨
1 , C1) and parameter specializations

The specialization rules for the types (C∨
1 , BC1), (BC1, C1) and BC1 are obtained by making n = 1

and deleting the t column in the specialization Table 3.0.1. We can obtain the type A1 by a similar
argument as the reduced subsystems of (C∨

n , Cn), noting that we have four embeddings SA1 ↪→ SC∨
1 ,C1

as indicated in the “orbits” column in Table 3.1.1.

Table 3.1.1 yields the degeneration scheme
(Figure 3.1.1) of q-hypergeometric orthogonal
polynomials which respects the embeddings of
affine root systems into (C∨

1 , C1). Our degen-
eration scheme seems to be new.
For comparison, let us recall the Askey
scheme of q-hypergeometric orthogonal poly-
nomials (also called the q-Askey scheme, see
[KLS10, p.413] for example). It shows the
classification and the behavior under parame-
ter specializations of q-hypergeometric orthog-
onal polynomials. Among those polynomials,
we could only find the continuous q-Jacobi poly-
nomial and the Rogers polynomial in our Fig-
ure 3.1.1 at this moment. As we will explain
below, the former appears naturally, but the
appearance of the Rogers polynomial is tricky.
It might be possible that all the polynomials
in our Figure 3.1.1 can be expressed as those
in the q-Askey scheme. However, according to
the quite different forms of our scheme and the
q-Askey scheme, we can say that the parameter
specializations taken in the q-Askey scheme do
not necessarily respect the affine root system
structures.

(C∨
1 , C1)

Askey-Wilson

(C∨
1 , BC1) (BC1, C1)

continuous
q-Jacobi

BC1

A1

O1

A1

O2

Rogers

A1

O3

A1

O4

Figure 3.1.1: Root-theoretic degeneration
scheme of Askey-Wilson polynomial

Remark 3.1.6.1. Recently, Koornwinder [Ko] proposed new degeneration schemes of q-hypergeometric
orthogonal polynomials, called q-Verde-Star and q-Zhedanov schemes. These schemes looks quite differ-
ent from ours, and the relation is unclear at this moment,

Among the specialized polynomials appearing in Table 3.1.1 and Figure 3.1.1, the type (BC1, C1) is

essentially the same with the continuous q-Jacobi polynomial P
(α,β)
l (x; q) [KLS10, §14.10]. The relation

with the Askey-Wilson polynomial is given by

P
(α,β)
l (x; q) = (const.) · pn(x; q, q

1
2α+

1
4 , q

1
2α+

3
4 ,−q 1

2β+
1
4 ,−q 1

2β+
3
4 ).

The appearance of P
(α,β)
l (x; q) is natural in view of the fact discovered by Koornwinder [Ko92, p.195] that
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the polynomial P
(α,β)
l (x; q) is the Macdonald symmetric polynomial of the admissible pair R = S = BC1

(see § 3.1.5), which corresponds to the non-reduced affine root system (BC1, C1).
Let us also recall that the Macdonald symmetric polynomial of type A1 is essentially equal to the

Rogers or the continuous q-ultraspherical polynomial Cn(x; a|q). See [M03, §6.3], [GR04, §7.4] and
[KLS10, §14.10.1] for the detail. The generating function is given by

∞∑
l=0

Cl(x; a|q)yl = (ayz, ay/z; q)∞
(tz, t/z; q)∞

with x = (z + z−1)/2. The Rogers polynomials are obtained by specializing parameters of the Askey-
Wilson polynomials in several different ways. One of them is shown in [KLS10, p.420, (14.1.20)]:

Cl(x; a|q) = (const.) · pl(x; q, a,−a, aq
1
2 ,−aq 1

2 ),

which seems to be the most famous one, but does not appear in our Table 3.1.1. However, there is
another one which we learned from [Ro21, (6.5b)]:

Cl(x; a
2|q2) := (const.) · pl(x; q, a,−a, q

1
2 ,−q 1

2 ). (3.1.69)

This relation appears in the third embedding SA1
∼−→ O2 ⊂ SC∨

1 ,C1 of type A1 in Table 3.1.1. Indeed, the
embedded SA1 is identified with the orbit O2 of long roots, so the shift parameter qA for the embedded
system should be the square of the parameter q for the ambient system SC∨

1 ,C1 , and we have the parameter
q2 in the Rogers polynomial and the parameter q in Askey-Wilson polynomial as in (3.1.69).

3.2 Specialization in Ram-Yip type formula

In this section, we give a partial check of the specialization Table 3.0.1 in the level of Ram-Yip type
formulas. Precisely speaking, we show that the non-symmetric Koornwinder polynomial degenerates to
the non-symmetric Macdonald polynomials of types B,C,D in the sense of [RY11] by the specializations
given in Table 3.0.1, using explicit Ram-Yip type formulas of those polynomials. In this section, we use
the notation in

Let us explain what we mean by the word Ram-Yip type formulas. In [RY11], Ram and Yip derived
explicit formulas of non-symmetric Macdonald polynomials of reduced affine root systems using alcove
walks. Their argument is designed to work in general setting, and the details are later given by Orr and
Shimozono in [OS18], which derives among many results an explicit formula of the non-symmetric Koorn-
winder polynomial. We call all of these formulas Ram-Yip type formulas of non-symmetric Macdonald
polynomials.

A caution is now in order. The realization of affine root systems in [RY11] is different from our default
one in [M03]. For distinction, we denote by SX,RY the affine root system of type X used in [RY11], and
call the non-symmetric Macdonald polynomials of type X treated in loc. cit. the polynomial of Ram-Yip
type X.

Let us summarize the results given in this § 3.2 in the following Table 3.2.1,

t t0 tn u0 un
BRY

n § 3.2.2 tRYm 1 tRYl 1 tRYl
Bn tl 1 ts 1 ts
CRY

n § 3.2.1 tRYm 1 tRYs 1 1

B∨
n ts 1 t2l 1 1

Dn § 3.2.3 t 1 1 1 1

Table 3.2.1: Specialization table for Ram-Yip formulas

As mentioned above, we treat the types Bn, Cn and Dn in the sense of [RY11], each in §3.2.2, §3.2.1
and § 3.2.3, respectively. Since the types Bn and Cn have discrepancy from those in our default [M03],
we use the symbols BRY

n and CRY
n in Table 3.2.1. The type Dn has no discrepancy, and we use the
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symbol Dn. The B
RY
n row in Table 3.2.1 indicates the specialization of the Noumi parameters to obtain

the non-symmetric polynomial of Ram-Yip type Bn. More explicitly, denoting the latter by EB,RY
µ (x),

we have
Eµ(x; q, t

RY
m , 1, tRYl , 1, tRYl ) = EB,RY

µ (x; q, tRYm , tRYl ).

This equality will be shown in Proposition 3.2.2.4. The Bn row in Table 3.2.1 is a copy from the
specialization Table 3.0.1, which we give in the intention of checking the specialization argument in
§3.1.3 and §3.1.4. As for the other types, Table 3.2.1 claims that the type Dn is clean, but that the type
CRY

n (Ram-Yip type Cn) is a little confusing, which turns out to correspond to the type B∨
n in the sense

of [M03].

3.2.1 Ram-Yip type Cn

In this subsection, we show that the Ram-Yip formula of the non-symmetric Macdonald polynomial
of type Cn in the sense of [RY11] can be obtained from the Ram-Yip type formula of type (C∨

n , Cn)
(Fact 2.2.3.1) by the corresponding specialization in Table 3.2.1:

t0 = u0 = un = 1.

See Proposition 3.2.1.5 for the precise statement.
A caution on the notation is in order. In [RY11], the Ram-Yip formula for what they call type Cn

is derived using the affine root system of type C∨
n in the sense of loc. cit. As mentioned before, it turns

out that both the polynomial and the root system are different from those in [M03]. For distinction, we
denote by EC,RY

µ (x) and SC∨,RY the polynomial and the system treated in [RY11], and call them the
Macdonald polynomial of Ram-Yip type Cn and the affine root system of Ram-Yip type C∨

n , respectively.

Affine root system of Ram-Yip type C∨
n

We start with the explanation on the system SC∨,RY. Let S be the affine root system of type (C∨
n , Cn)

in (3.1.2). The affine root system SC∨,RY of Ram-Yip type C∨
n is the subset of S given by

SC∨,RY :=O1 tO5

={±εi + rc | 1 ≤ i ≤ n, r ∈ Z} t {±εi ± εj + rc | 1 ≤ i < j ≤ n, r ∈ Z},
(3.2.1)

where we used the W -orbits in (3.1.2). The basis of SC∨,RY in [RY11] is given by

aC
∨,RY

0 := −(ε1 + ε2) + c, aC
∨,RY

j := aj = εj − εj+1 (j = 1, . . . , n− 1), aC
∨,RY

n := εn.

Note that we have aC
∨,RY

j = aj in (3.1.3), but the other two roots are different from those in (3.1.3).
Next, we turn to the extended affine Weyl group. The refections associated to the above basis are

denoted by

sC
∨

0 := s
aC∨,RY
0

, si = s
aC∨,RY
i

(i = 1, . . . , n), (3.2.2)

where we used si ∈ W0 in (3.1.5). Note that we have the common sn although aC
∨,RY

n 6= an. We also
consider the automorphism group ΩC∨,RY of the extended Dynkin diagram of type Bn:

0

1

2 3 n− 1 n

Explicitly, using the weight lattice PBn = ⊕n
i=1Zεi ⊕ Z 1

2 (ε1 + · · ·+ εn) of type Bn in (3.1.38), we have

ΩC∨,RY := P∨
Cn
/Q∨

Cn
= PBn

/QBn
=

〈
πC∨

|
(
πC∨)2

= e
〉
.

The generator πC∨
flips the diagram by transposing the vertices 0↔ 1. Then, the extended affine Weyl

group WC∨,RY is defined to be the subgroup of GLR(V ) generated by the reflections in (3.2.2) and πC∨
.

In other words, we have
WC∨,RY :=

〈
sC

∨

0 , s1, . . . , sn, π
C∨〉

.
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As an abstract group, WC∨,RY is presented by these generators with the following relations.

πC∨
sC

∨

0 = s1π
C∨
, si

2 = (sC
∨

0 )2 = (πC∨
)2 = e (1 ≤ i ≤ n),

sC
∨

0 s1 = s1s
C∨

0 , sisj = sjsi (|i− j| > 1, (i, j) /∈ {(0, 2), (2, 0)}),

sC
∨

0 s2s
C∨

0 = s2s
C∨

0 s2, sisi+1si = si+1sisi+1 (1 ≤ i ≤ n− 2),

snsn−1snsn−1 = sn−1snsn−1sn.

(3.2.3)

In the second line, we abusively denoted s0 := sC
∨

0 . Let us write down the action of WC∨,RY on
FZ = PCn

⊕ 1
2Z in (3.1.15).

sC
∨

0 (εi) =


c− ε2 (i = 1)

c− ε1 (i = 2)

εi (i 6= 1, 2)

, sj(εi) =


εj (i = j + 1)

εj + 1 (i = j)

εi (i 6= j, j + 1)

(1 ≤ j ≤ n− 1),

sn(εi) =

{
−εn (i = n)

εi (i 6= n)
, πC∨

(εi) =

{
c− ε1 (i = 1)

εi (i 6= 1)
.

We can see from this action that WC∨,RY preserves SC∨,RY ⊂ S, and the description SC∨,RY = O1 tO5

in (3.2.1) is actually the decomposition into WC∨,RY-orbits.
In fact, as the following lemma shows, the group WC∨,RY is identical to W in (3.1.10).

Lemma 3.2.1.1. The following gives a group isomorphism ϕC : W
∼−→WC∨,RY.

ϕC(si) := si (1 ≤ i ≤ n), ϕC(s0) := πC∨
.

In particular, we have the following relations of subgroups in GLR(FZ), FZ = V ⊕ Rc.

W =WC∨,RY = t(PCn
)nW0.

Proof. We regard W as the group with the presentation 〈s0, s1, . . . , sn〉 in (3.1.12). Since ϕC(s0s1s0) =
πC∨

s1π
C∨

= sC
∨

0 , we have the surjectivity of the homomorphism ϕ∨ up to well-definedness. Thus, it is
enough to show that the defining relations (3.1.13) of W are mapped by ϕC to those (3.2.3) of WC∨,RY.
The non-trivial parts are those containing s0 ∈ W . As for the fourth relation s0s1s0s1 = s1s0s1s0 in
(3.1.13), the application of ϕC yields

ϕC(s0s1s0s1) = ϕC(s1s0s1s0) ⇐⇒ πC∨
s1π

C∨
s1 = s1π

C∨
s1π

C∨
⇐⇒ sC

∨

0 s1 = s1s
C∨

0 ,

which is in the third line of (3.2.3). The other relations are similarly checked.

For later use, we write down the reduced expression of t(εi) ∈WC∨,RY for i = 1, 2, . . . , n.

t(ε1) = πC∨
s1 · · · snsn−1 · · · s1

t(ε2) = πC∨
sC

∨

0 s1 · · · snsn−1 · · · s2
t(εi) = πC∨

si−1 · · · s2sC
∨

0 s1 · · · snsn−1 · · · si (3 ≤ i ≤ n).

(3.2.4)

Ram-Yip formula of non-symmetric Macdonald polynomials of Ram-Yip type Cn

Recalling the WC∨,RY-orbit decomposition SC∨,RY = O1 t O5 in (3.2.1), we take parameters in the
correspondence

tRYs ←→ O1, tRYm ←→ O5.

For each µ ∈ PCn
, we have the non-symmetric Macdonald polynomial of Ram-Yip type Cn, which is

then denoted by

EC,RY
µ (x) = EC,RY

µ (x; q, tRYs , tRYm ) ∈ KC,RY[x
±1], KC,RY := Q

(
q

1
2 , (tRYs )

1
2 , (tRYm )

1
2

)
.

Below we explain the explicit formula of EC,RY
µ (x) given in [RY11].
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For each a = α+ rc ∈ SC∨,RY ⊂ PCn ⊕ Rc, we define qsh
C(a) and tht

C(a) by

qsh
C(α+rc) := q−r, tht

C(α+rc) := (tRYs )⟨ρ
C
s ,α⟩(tRYm )⟨ρ

C
m,α⟩, ρCs :=

n∑
i=1

εi, ρCm =

n∑
i=1

(n− i)εi. (3.2.5)

We also denote the fundamental alcove of SC∨,RY by

AC∨,RY :=
{
x ∈ V | aC

∨,RY
i (x) ≥ 0, i = 0, 1, . . . , n

}
.

Then we have AC∨,RY = A∪ s0A, where A is the fundamental alcove (2.1.1) and s0 is the 0-th reflection

associated to a0 = −2ε1 + c ∈ S (3.1.3), both of type (C∨
n , Cn). Note that a0 6= aC

∨,RY
0 , so that the

corresponding hyperplanes and reflections are different. See Figure 3.2.1 for the case n = 2.

H
aC∨,RY
0 H

aC∨,RY
2

H
aC∨,RY
1

Ha0

A s0A

O

( 12 , 0) =
1
2ω1

( 12 ,
1
2 ) =

1
2ω2

(1, 0) = ω1

AC∨,RY = A ∪ s0A

Figure 3.2.1: The fundamental alcove AC∨,RY of Ram-Yip type C2

Finally, for each µ ∈ PCn
, we denote the shortest element in the coset t(µ)W0 by

wC(µ) ∈WC∨,RY. (3.2.6)

Finally, we denoted by ΓC(
−→w , z) the set of all alcove walks with start z ∈WC∨,RY of type −→w .

Fact 3.2.1.2 ([RY11, Theorem 3.1]). Let µ ∈ PCn
be arbitrary, and take a reduced expression wC(µ) =

(πC∨
)ksi1 · · · sir with k ∈ {0, 1}, using the abbreviated symbols in (3.2.3). Then, we have

EC,RY
µ (x) =

∑
p∈ΓC(

−−−→
w(µ),e)

fCp t
1
2

d(p)x
wt(p),

fCp :=
∏

k∈φ+(p)

(ψC
ik
)+(qsh

C(−βk)tht
C(−βk))

∏
k∈φ−(p)

(ψC
ik
)−(qsh

C(−βk)tht
C(−βk)),

where βk := sirsir−1
· · · sik+1

(aC
∨,RY

ir
) for k = 1, 2, . . . , r, and (ψC

i )
±(z) for i = 0, 1, . . . , n is given by

(ψC
i )

±(z) := ± (tRYm )−
1
2 − (tRYm )

1
2

1− z±1
(0 ≤ i ≤ n− 1), (ψC

n )
±(z) := ± (tRYs )−

1
2 − (tRYs )

1
2

1− z±1
. (3.2.7)

Specialization to type Cn

In this part, we check that the specialization t0 = u0 = un = 1 of the Ram-Yip type formula for the
non-symmetric Koornwinder polynomial Eµ(x) (Fact 2.2.3.1) is equal to the Ram-Yip formula for the
non-symmetric Macdonald polynomial EC,RY

µ (x) of Ram-Yip type Cn (Fact 3.2.1.2). Using (3.1.28), we
denote the specialized non-symmetric Koornwinder polynomial by

Esp,C
µ (x) = Esp,C

µ (x; q, t, tn) := Eµ(x; q, t, 1, tn, 1, 1). (3.2.8)
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We denote by

Γ0(
−−−→
w(µ), e) ⊂ Γ(

−−−→
w(µ), e)

the subset consisting of alcove walks without folding by s0. We first show that under the specialization

t0 = u0 = un = 1, the summation over Γ(
−−−→
w(µ), e) in Fact 2.2.3.1 reduces to that over Γ0(

−−−→
w(µ), e).

Lemma 3.2.1.3. Let µ ∈ PCn be arbitrary, and take a reduced expression w(µ) = si1 · · · sir for the
element w(µ) ∈W given in (1.3.36). Then

Esp,C
µ (x) =

∑
p∈Γ0(

−−−→
w(µ),e)

fpt
1
2

d(p)x
wt(p),

fp :=
∏

k∈φ+(p)

(ψsp,C
ik

)+(qsh(−βk)tht(−βk))
∏

k∈φ−(p)

(ψsp,C
ik

)−(qsh(−βk))tht(−βk)),

where we used

(ψsp,C
i )±(z) := ± t

− 1
2 − t 1

2

1− z±1
(i = 1, . . . , n− 1), (ψsp,C

n )±(z) := ± t
− 1

2
n − t

1
2
n

1− z±1
. (3.2.9)

Proof. The specialization u0 = un = 1 yields ψ±
0 (z) = 0 by (1.3.33). Thus, no folding step by s0 appear

in the summation in Fact 2.2.3.1. Also, a direct calculation shows that under t0 = 1, ψ±
i (z) is equal to

(ψsp,C
i )±(z) for i = 1, . . . , n.

Comparing (3.2.7) and (3.2.9), we have

(ψsp,C
i )±(z)

∣∣∣
t=tRY

m

= (ψC
i )

±(z), (ψsp,C
n )±(z)

∣∣∣
tn=tRY

s

= (ψC
n )

±(z). (3.2.10)

Hence, to check the identification of EC,RY
µ (x) with Esp,C

µ (x), it is enough to construct a bijection

Γ0(
−−−→
w(µ), e) −→ ΓC(

−−−−→
wC(µ), e)

between the sets of alcove walks.

Lemma 3.2.1.4. For any µ ∈ PCn
, take a reduced expression w(µ) = si1 · · · siℓ of the element w(µ) ∈W

in (1.3.36), and set

I := {r ∈ {1, 2, . . . , `} | ir 6= 0} = {k1 < k2 < · · · < ks} (s ≤ `),

J :=
{
(b1, b2, . . . , bℓ) ∈ {0, 1}ℓ | bi = 1 (i /∈ I)

}
.

Also, define θC : J → {0, 1}s by

J 3 (b1, b2, . . . , bℓ) 7−→ (bk1
, bk2

, . . . , bks
) ∈ {0, 1}s .

Then the following statements hold.
(1) The length of wC(µ) ∈W (C∨,RY) is |I| = s, and we can write wC(µ) by

wC(µ) =

{
sj1sj2 · · · sjs (s ∈ 2N)
πC∨

sj1sj2 · · · sjs (s /∈ 2N)

with some jr’s, where we used the abbreviation in (3.2.3).
(2) The map θC : J → {0, 1}s induces a bijection

θ̃C : Γ0(
−−−→
w(µ), e) −→ ΓC(

−−−−→
wC(µ), e),

p = (A, sb1i1A, . . . , s
b1
i1
· · · sbℓiℓA) 7−→

{
(AC , s

bk1
j1
AC , . . . , s

bk1
j1
· · · sbks

js
AC) (s ∈ 2N)

(πC∨
AC , π

C∨
s
bk1
j1
AC , . . . , π

C∨
s
bk1
j1
· · · sbks

js
AC) (s /∈ 2N)

.
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(3) For any p ∈ Γ0(
−−−→
w(µ), e), we have

wt(p) = wt
(
θ̃C(p)

)
, d(p) = d

(
θ̃C(p)

)
.

Proof. (1) It is enough to show ϕC(w(µ)) = wC(µ) for any µ ∈ PCn
. First, we can see ϕC(w(εi)) =

wC(εi) by the comparison between the reduced expressions (1.3.9) and (3.2.4). Since ϕC is a group
isomorphism by Lemma 3.2.1.1, we see that ϕC(w(µ)) = wC(µ) for any µ ∈ PCn .

(2) It is an immediate consequence of the item (1) and the bijectivity of θ.

(3) We want to show that for any p ∈ Γ0(
−−−→
w(µ), e), expressing e(p) = t(wt(p)) d(p), wt(p) ∈ PCn

,

d(p) ∈ W0, we would have ϕC(e(p)) = t
(
wt(θ̃C(p))

)
d
(
θ̃C(p)

)
. For any i = 1, 2, . . . , n, we have

ϕC(t(εi)) = t(εi) by the comparison of (3.1.14) with (3.2.4). Thus we have t(wt(p)) = t(wt(θ̃C(p)))

for any p, which means wt(p) = wt(θ̃C(p)). On the other hand, since ϕC
∣∣
W0

= idW0
, we have

d(p) = d(θ̃C(p)) for any p. Thus the statement is proved.

Combining this lemma with (3.2.10), we obtain the desired identification

Esp,C
µ (x; q, t = tRYm , tn = tRYs ) = EC,RY

µ (x; q, tRYs , tRYm ).

The definition (3.2.8) of Esp,C
µ (x) yields:

Proposition 3.2.1.5. For any µ ∈ PCn
, we have

Eµ(x; q, t
RY
m , 1, tRYs , 1, 1) = EC,RY

µ (x; q, tRYs , tRYm ).

Comparing this result with the specialization Table 3.0.1, we see that it corresponds to type B∨
n .

Thus, the Macdonald polynomial of Ram-Yip type Cn is the Macdonald polynomial of type B∨
n in the

sense of Definition 1.3.1.1.

3.2.2 Ram-Yip type Bn

The Ram-Yip formula of non-symmetric Macdonald polynomial of type Bn is derived in [RY11] using
the affine root system of type B∨

n in the sense of loc. cit. In this subsection, we give a similar argument
as in the previous § 3.2.1 to type Bn, and show that under the specialization

tn = un, t0 = u0 = 1

we can recover the non-symmetric Macdonald polynomial of type Bn in the sense of [RY11] from the
non-symmetric Koornwinder polynomial.

We will use similar terminologies on the affine root system and the non-symmetric Macdonald poly-
nomials as in § 3.2.1. We denote by SB∨,RY and EB,RY

µ (x) those considered in [RY11] for type B, and
call them the affine root system of Ram-Yip type B∨

n and the Macdonald polynomial of Ram-Yip type
Bn, respectively.

Affine root system of Ram-Yip type B∨
n

Using the symbols in (3.1.2), the affine root system SB∨,RY of Ram-Yip type is given by

SB∨,RY :=(O2 tO4) tO5

={±2εi + r | 1 ≤ i ≤ n, r ∈ Z} t {±εi ± εj + r | 1 ≤ i < j ≤ n, r ∈ Z}.
(3.2.11)

The choice of the basis in [RY11] is given by

aB
∨,RY

0 := a0 = −2ε1 + c, aB
∨,RY

j := aj = εj − εj+1 (j = 1, . . . , n− 1), aB
∨,RY

n := an = 2εn,

where ai’s are in (3.1.3). Thus, the associated reflections are saB∨
i

= si in (3.1.5) and (3.1.11).
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We turn to the explanation of the extended affine Weyl group. Let ΩB∨ be the automorphism group
of the extended Dynkin diagram of type Cn:

1 2 2 2 2 1

Explicitly, we have
ΩB∨ := P∨

Bn
/Q∨

Bn
= PCn/QCn = 〈πB∨

| (πB∨
)2 = e〉.

Then, the extended affine Weyl group WB∨,RY is the subgroup of GLR(V ), V = ⊕n
i=1Rεi given by

WB∨,RY :=
〈
s0, s1, . . . , sn, π

B∨〉
.

As an abstract group, WB∨,RY has a presentation with these generators and the following relations.

s2i = 1 (i = 0, . . . , n),

sisj = sjsi (|i− j| > 1),

sisi+1si = si+1sisi+1 (i = 1, . . . , n− 2),

sisi+1sisi+1 = si+1sisi+1si (i = 0, n− 1),

πB∨
si = sn−i+1π

B∨
(i = 0, 1, . . . , n).

Let us write down the action of WB∨,RY on FZ = PCn
⊕ 1

2Zc (3.1.15).

s0(εi) =

{
c− ε1 (i = 1)

εi (i 6= 1)
, sj(εi) =


εj (i = j + 1)

εj + 1 (i = j)

εi (i 6= j, j + 1)

(j = 1, . . . , n− 1),

sn(εi) =

{
−εn (i = n)

εi (i 6= n)
, πB∨

(εi) =
1

2
c− εn−i+1

We can see from this action that WB∨,RY acts on SB∨,RY, and the description SB∨,RY = O1 t O5 in
(3.2.11) is actually the decomposition into WB∨,RY-orbits.

The group WB∨,RY also has the following descriptions.

WB∨,RY = ΩB∨ oW = t(PBn
)oW0, PBn

:= Zε1 ⊕ · · · ⊕ Zεn ⊕ Z 1
2 (ε1 + · · ·+ εn), (3.2.12)

where we used t in (3.1.6). For later use, we write down reduced expressions of t(εi)’s.

t(εi) = si−1 · · · s1s0s1 · · · snsn−1 · · · si (i = 1, 2, . . . , n),

t
(
1
2 (ε1 + · · ·+ εn)

)
= πB∨

(sn · · · s1) · · · (snsn−1)sn.
(3.2.13)

Ram-Yip formula of non-symmetric Macdonald polynomial of type Bn

Next we consider the parameters for Macdonald polynomials. Recalling theWB∨,RY-orbit decomposition
SB∨,RY = O5 t (O2 tO4) in (3.2.11), we take parameters tRYm and tRYl in the correspondence

tRYm ←→ O5, tRYl ←→ O2 tO4.

We have the non-symmetric Macdonald polynomial of Ram-Yip type Bn for µ ∈ PBn
in (3.1.38), which

is then denoted by

EB,RY
µ (x) = EB,RY

µ (x; q, tRYm , tRYl ) ∈ KB,RY[x
±1], KB,RY := Q

(
q

1
2 , (tRYm )

1
2 , (tRYl )

1
2

)
.

For each a = α+ rc ∈ SB∨,RY, we define qsh
B(a) and tht

B(a) by

qsh
B(α+rc) := q−r, tht

B(α+rc) := t
⟨ρB

m,α⟩
m t

⟨ρB
l ,α⟩

l , ρBm :=

n∑
i=1

(n− i)εi, ρBl := 1
2

n∑
i=1

εi. (3.2.14)
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We denote the fundamental alcove of Ram-Yip type B∨
n by

AB∨,RY :=
{
x ∈ V | aB

∨

i (x) ≥ 0, i = 0, 1, . . . , n
}
.

See Figure 3.2.2 for the case n = 3. We have AB∨,RY = A in (2.1.1).

1
2ε1

1
2ε2

1
2ε3

O
AB∨,RY

Figure 3.2.2: The fundamental alcove of Ram-Yip type B∨
3

We also denote by wB(µ) ∈WB∨,RY the shortest element of the coset t(µ)WB∨,RY. Finally, ΓB(
−→w , z)

denotes the set of alcove walks with start z ∈WB∨,RY of type −→w ,

Fact 3.2.2.1 ([RY11, Theorem 3.1]). Let µ ∈ PBn be arbitrary, and take a reduced expression wB(µ) =
(πB∨

)ksi1si2 · · · sir , k ∈ {0, 1}. Then we have

EB,RY
µ (x) =

∑
p∈ΓB(

−−−→
w(µ),e)

fBp t
1
2

d(p)x
wt(p),

fBp :=
∏

k∈φ+(p)

(ψB
ik
)+(qsh

B(−βk)tht
B(−βk))

∏
k∈φ−(p)

(ψB
ik
)−(qsh

B(−βk)tht
B(−βk)),

where βk := sir · · · sik+1
(aBir ) for k = 1, 2, . . . , r, and (ψB

i )±(z) for i = 0, 1, . . . , n is given by

(ψB
j )±(z) := ± (tRYm )−

1
2 − (tRYm )

1
2

1− z±1
(1 ≤ j ≤ n− 1),

(ψB
i )±(z) := ± (tRYl )−

1
2 − (tRYl )

1
2

1− z±1
(i = 0, n).

(3.2.15)

Specialization to type Bn

In this part, we check that the specialization tn = un, t0 = u0 = 1 of Eµ(x) in Fact 2.2.3.1 is equal
to EB,RY

µ (x) in Fact 3.2.2.1. Using (3.1.28), we denote the specialized non-symmetric Koornwinder
polynomial by

Esp,B
µ (x) = Esp,B

µ (x; q, t, tn) := Eµ(x; q, t, 1, tn, 1, tn). (3.2.16)

Lemma 3.2.2.2. The map si 7→ si (i = 0, . . . , n) defines an injective group homomorphism W ↪→
WB∨,RY.

Proof. Obvious from the structure WB∨,RY = ΩB∨ oW in (3.2.12).

Lemma 3.2.2.3. For any µ ∈ PCn
, take a reduced expression w(µ) = si1si2 · · · sir of the element

w(µ) ∈W in (1.3.36). Then, we have

Esp,B
µ (x) =

∑
p∈Γ(

−−−→
w(µ),e)

fpt
1
2

d(p)x
wt(p),

fp :=
∏

k∈φ+(p)

(ψsp,B
ik

)+(qsh(−βk)tht(−βk))
∏

k∈φ−(p)

(ψsp,B
ik

)−(qsh(−βk)tht(−βk)),

where βk := sirsir−1
· · · sik+1

(air ) for k = 1, 2, . . . , r, and (ψsp,B
i )±(z) for i = 0, 1, . . . , n is given by

(ψsp,B
j )±(z) := ± t

− 1
2 − t 1

2

1− z±1
(1 ≤ j ≤ n− 1), (ψsp,B

i )±(z) := ± t
− 1

2
n − t

1
2
n

1− z±1
(i = 0, n). (3.2.17)
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Proof. A direct calculation with tn = un and t0 = u0 = 1 yields the result.

Since PCn
⊂ PBn

, we have:

Proposition 3.2.2.4. For any µ ∈ PCn , the following equality holds.

Eµ(x; q, t
RY
m , 1, tRYl , 1, tRYl ) = EB,RY

µ (x; q, tRYm , tRYl ). (3.2.18)

Proof. By (3.2.16), it is enough to show Esp,B
µ (x; q, tRYm , tRYl ) = EB

µ (x; q, tRYm , tRYl ). Comparing (3.2.15)
and (3.2.17), we have

(ψsp,B
j )±(z)

∣∣∣
t=tRY

m

= (ψB
j )±(z), (ψsp,B

i )±(z)
∣∣∣
tn=tRY

l

= (ψB
i )±(z).

The embedding W ↪→WB∨,RY in Lemma 3.2.2.2 implies that we have Γ(
−−−→
w(µ), e) = ΓB(

−−−→
w(µ), e) for any

µ ∈ PBn
∩ PCn

= PCn
. Then, the result follows from Lemma 3.2.2.3.

Comparing this result with the specialization Table 3.0.1, we see that the specialization (3.2.18)
corresponds to type Bn. Thus, the Macdonald polynomial of Ram-Yip type Bn is the Macdonald
polynomial of type Bn in the sense of Definition 1.3.1.1.

3.2.3 Ram-Yip type Dn

By Proposition 3.1.4.6, we know that the specialization

tn = un = t0 = u0 = 1

yields the non-symmetric Macdonald polynomial ED
µ (x) of type Dn. In this subsection, we reprove it by

using the Ram-Yip formula of type Dn, in which case there is no discrepancy between [M03] and [RY11],
so we use our default notation for the affine root system and the non-symmetric Macdonald polynomials
based on [M03].

Ram-Yip affine root system of type D

Recall the affine root system SD of type Dn given in (3.1.54):

SD := O5 = {±εi ± εj + r | 1 ≤ i < j ≤ n, r ∈ Z}.

A basis given by

aD0 := −ε1 − ε2 + c, aDj := aj = εj − εj+1 (1 ≤ j ≤ n− 1), aDn := εn−1 + εn.

Denoting sDn := saD
n
, the finite Weyl group is given by WD

0 :=
〈
s1, . . . , sn−1, s

D
n

〉
' {±1}n−1oSn. Also,

recall the weight lattice PDn in (3.1.55):

PDn
:= Zε1 ⊕ · · · ⊕ Zεn ⊕ Z 1

2 (ε1 + · · ·+ εn)

and the extended affine Weyl group WD = WD
0 n t(PDn

) in (3.1.56). The group WD has another
description:

WD = 〈sD0 , s1, . . . , sn−1, s
D
n , π

D
1 , π

D
n−1, π

D
n 〉. (3.2.19)

Here πD
1 , πD

n−1 and πD
n denotes the generators of the automorphic group

ΩD := PDn/QDn = 〈πD
0 = e, πD

1 , π
D
n−1, π

D
n 〉

of the extended Dynkin diagram of type Dn:

0

1

2 3 n− 2

n− 1

n
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As an abstract group, WD is presented by the generators (3.2.19) and the following relations.

s2i = (sD0 )2 = e,

sD0 s1 = s1s
D
0 , sn−1s

D
n = sDn sn−1, sisj = sjsi (|i− j| > 1),

sD0 s2s
D
0 = s2s

D
0 s2, sDn sn−2s

D
n = sn−2s

D
n sn−2, sisi+1si = si+1sisi+1 (i = 1, . . . , n− 2),

πD
1 s0 = s1π

D
1 , πD

n−1s
D
0 = sn−1π

D
n−1, πD

n s
D
0 = sDn π

D
n ,

πD
n−1s1 = snπ

D
n−1, πD

n s1 = snπ
D
n , πD

n−1si = sn−iπ
D
n−1 (i = 2, . . . , n− 2),

πD
n si = sn−iπ

D
n (i = 2, . . . , n− 2), (πD

1 )2 = (πD)2 = (πD
n )2 = e (i = 1, . . . , n).

(3.2.20)
Although it will not be used explicitly, let us write down the action of WD on FZ (3.1.15).

sD0 (εi) =


c− ε2 (i = 1)

c− ε1 (i = 2)

εi (i 6= 1, 2)

, sj(εi) =


εj (i = j + 1)

εj + 1 (i = j)

εi (i 6= j, j + 1)

(j = 1, . . . , n− 1),

sDn (εi) =


−εn (i = n− 1)

−εn−1 (i = n)

εi (i 6= n− 1, n)

, πD
n (εi) =

1

2
c− εn−i+1 (i = 0, . . . , n),

πD
1 (εi) =

{
c− ε1 (i = 1)

εi (i 6= 1)
, πD

n−1(εi) =

{
1
2c+ εn (i = 1)
1
2c− εn−i+1 (i 6= 1)

.

We also write down reduced expressions of t(εi) ∈WD:

t(ε1) = πD
1 , t(ε2) = πD

1 s
D
0 s1, t(εi) = πD

1 si−1 · · · s2sD0 s1 · · · si−1 (i = 3, . . . , n). (3.2.21)

Ram-Yip formula of non-symmetric Macdonald polynomial of type D

There is a unique WD-orbit on the affine root system SD, i.e., O5, and correspondingly we set the
parameter

t←→ O5.

See also (3.1.57). For µ ∈ PDn
, the non-symmetric Macdonald polynomial of type Dn is denoted by

ED
µ (x) = ED

µ (x; q, t).

For each a = α+ rc ∈ SD, we define shD(a) and htD(a) by

qsh
D(α+rc) := q−r, tht

D(α+rc) := t⟨ρ
D,α⟩, ρD =

n∑
i=1

(n− i)εi. (3.2.22)

We also denote by wD(µ) ∈ WD the shortest element in the coset t(µ)WD
0 . For µ = εi, i = 1, 2, . . . , n,

they are given by

wD(ε1) = πD
1 , wD(ε2) = πD

1 s
D
0 , wD(εi) = πD

1 si−1 · · · s2sD0 (3 ≤ i ≤ n). (3.2.23)

The fundamental alcove of type Dn is denoted by

AD :=
{
x ∈ V | aDi (x) ≥ 0, i = 0, 1, . . . , n

}
.

Finally, we denote by ΓD(−→w , z) the set of all alcove walks with start z ∈WD of type −→w ,

Fact 3.2.3.1 ([RY11, Theorem 3.1]). For µ ∈ PDn
, take a reduced expression wD(µ) = πD

j si1 · · · sir of

the element wD(µ) ∈WD with some j ∈ {0, 1, n− 1, n}. Then we have

ED
µ (x) =

∑
p∈ΓD(

−−−→
w(µ),e)

fDp t
1
2

d(p)x
wt(p), (3.2.24)
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fDp :=
∏

k∈φ+(p)

(ψD
ik
)+(qsh

D(−βk)tht
D(−βk)))

∏
k∈φ−(p)

(ψD
ik
)−(qsh

D(−βk))tht
D(−βk)),

where βk := sir · · · sik+1
(aDir ) for k = 1, 2, . . . , r, and (ψD

i )±(z) for i = 0, 1, . . . , n is given by

(ψD
i )±(z) := ± t

− 1
2 − t 1

2

1− z±1
.

For distinction, we denote by ED,RY
µ (x; q, t) the right hand side of (3.2.24).

Specialization to type Dn

In this part, we specialize tn = un = t0 = u0 = 1 in Eµ(x) in Fact Fact 2.2.3.1, and show that it is equal
to ED,RY

µ (x) in Fact Fact 3.2.3.1. We denote the specialized Koornwinder polynomial by

Esp,D
µ (x; q, t) := Eµ(x; q, t, 1, 1, 1, 1). (3.2.25)

Let Γ0,n(
−−−→
w(µ), e) ⊂ Γ(

−−−→
w(µ), e) be the subset consisting of alcove walks without folding by s0 or sn.

Lemma 3.2.3.2. For any µ ∈ PCn , take a reduced expression w(µ) = si1si2 · · · sir of the element
w(µ) ∈W in (1.3.36). Then we have

Esp,D
µ (x) =

∑
p∈Γ0,n(

−−−→
w(µ),e)

fpt
1
2

d(p)x
wt(p),

fp :=
∏

k∈φ+(p)

(ψsp,D
ik

)+(qsh(−βk)tht(−βk))
∏

k∈φ−(p)

(ψsp,D
ik

)−(qsh(−βk)tht(−βk)),

(ψsp,D
i )±(z) := ± t

− 1
2 − t 1

2

1− z±1
(i = 1, 2, . . . , n− 1).

Proof. The specialization t0 = tn = u0 = un = 1 in (1.3.33) yields ψ±
0 (z) = ψ±

n (z) = 0. Thus the folding
steps by s0 or sn does not appear in the summation of Fact Fact 2.2.3.1.

Thus, it is enough to construct a bijection Γ0,n(
−−−→
w(µ), e)→ ΓD(

−−−−→
wD(µ), e).

Lemma 3.2.3.3. The following gives an injective group homomorphism ϕD :W →WD.

ϕD(s0) = πD
1 , ϕD(si) = si (1 ≤ i ≤ n− 1), ϕD(sn) = e.

Proof. We can check that the relations (3.1.13) of W are mapped by ϕD to those (3.2.20) ofWD. Indeed,
as for the final relation s0s1s0s1 = s1s0s1s0 in (3.1.13), we have

ϕD(s0s1s0s1) = ϕD(s1s0s1s0) ⇐⇒ πD
1 s1π

D
1 s1 = s1π

D
1 s1π

D
1 ⇐⇒ sD0 s1 = s1s

D
0 ,

which is in the second line of (3.2.20). The other relations can be checked similarly.

Lemma 3.2.3.4. For any µ ∈ PCn
, take a reduced expression w(µ) = si1si2 · · · siℓ of the element

w(µ) ∈W in (1.3.36), and set

I0 := {r ∈ {1, 2, . . . , `} | ir 6= 0} , In := {r ∈ {1, 2, . . . , `} | ir 6= n} ,

I := I0 ∪ In = {k1 < k2 < · · · < ks} (s ≤ `), J :=
{
(b1, b2, . . . , bℓ) ∈ {0, 1}ℓ | bi = 1 (i /∈ I)

}
.

Using them, define θD : J → {0, 1}s by

J 3 (b1, b2, . . . , bℓ) 7−→ (bk1
, bk2

, . . . , bks
) ∈ {0, 1}s .

(1) The length of wD(µ) ∈WD is equal to |I| = s, and

wD(µ) =

{
sj1sj2 · · · sjs (|I0| ∈ 2Z)
πD
1 sj1sj2 · · · sjs (|I0| /∈ 2Z)

.
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(2) The map θD : J → {0, 1}s induces a bijection

θ̃D : Γ0,n(
−−−→
w(µ), e)→ ΓD(

−−−−→
wD(µ), e),

(A, sb1i1A, . . . , s
b1
i1
· · · sbℓiℓA) 7−→

{
(AD, s

bk1
j1
AD, . . . , s

bk1
j1
· · · sbks

js
AD) (|I0| ∈ 2Z)

(πD
1 AD, π

D
1 s

bk1
j1
AD, . . . , π

D
1 s

bk1
j1
· · · sbks

js
AD) (|I0| /∈ 2Z)

.

(3) For any p ∈ Γ0,n(
−−−→
w(µ), e), we have wt(p) = wt(θ̃D(p)), d(p) = d(θ̃D(p)).

Proof. (1) It is enough to show ϕD(w(µ)) = wD(µ) for any µ ∈ PCn
. By the reduced expressions

(1.3.37) and (3.2.23), we have ϕD(w(εi)) = wD(εi) for each i = 1, 2, . . . , n. Then, since ϕD is a
group homomorphism by Lemma Lemma 3.2.3.3, we find the desired equality.

(2) It is an immediate consequence of (1) and the bijectivity of θ̃D.

(3) Similarly as (1), we have ϕD(t(εi)) = t(εi) for each i = 1, 2, . . . , n, and thus t(wt(p)) = t(wt(θ̃D(p)))

for each p ∈ Γ0,n(
−−−→
w(µ), e), which implies wt(p) = wt(θ̃D(p)). As for the remaining ϕD(d(p)) =

d(θ̃D(p)), since ϕD(sn) = e and ϕD preserves s1, s2, . . . , sn−1, the specialization tn = 1 yields
td(p) = t

d(θ̃D(p))
, which givers the consequence.

Thus we have Esp,D
µ (x; q, t) = ED,RY

µ (x; q, t) for any µ ∈ PCn
⊂ PDn

. Using (3.2.25), we have the
conclusion:

Proposition 3.2.3.5. For any µ ∈ PCn
, the following equality holds.

Eµ(x; q, t, 1, 1, 1, 1) = ED,RY
µ (x; q, t).

3.3 Concluding remarks

The original motivation of our study on specialization is to find some explicit formula of symmetric
Macdonald-Koornwinder polynomials, bearing in mind the Macdonald tableau formula [Ma95, Chap.
VI, (7.13), (7.13’)] for type GLn. Certain progress has been developed for such tableau formulas of type
B,C,D and (C∨

n , Cn) by the recent papers [FH+15, HS18, HS20], although the connection to Ram-Yip
type formulas seems to be still unclear.

Another interesting theme is the t = ∞ limit. By Sanderson [San00] and Ion [I03], it is known

that the graded character of the level one (thin) Demazure module of an affine Lie algebra of type X
(r)
l ,

X = A,D,E, is equal to the non-symmetric Macdonald polynomial of the corresponding type specialized

at t = ∞ if X
(r)
l 6= A

(2)
2l , and equal to non-symmetric Koornwinder polynomial specialized at t = ∞

in A
(2)
2l . There are vast amount of literature on this topic from representation-theoretic, combinatoric,

and geometric points of view. For example, Orr and Shimozono [OS18] studied the relation of the limits
and quantum Bruhat graphs. Let us also mention the article [Chi21] by Chihara, where the Demazure

specialization for type A
(2)
2l is identified with the graded character of a Demazure slice of the same type

A
(2)
2l .
Returning to out study, it would be interesting to find a concrete connection between our argument

and the argument given in [Chi21]. Let us close this paper by a naive explanation on why the non-
symmetric Koornwinder polynomial is related to the representation theory of the affine Lie algebra of

type A
(2)
2l . According to [I03, §3.2] and [Chi21, §1.5], one considers the specialization of the Noumi

parameters

(t, t0, tn, u0, un) = (t, t, t, 1, t). (3.3.1)

Here we exchanged the specialized value of (t0, u0) and (tn, un) in loc. cit., due to the numbering of roots
explained below. Comparing (3.3.1) and the specialization Table 3.0.1, we find that (3.3.1) is included
as the case tm = t2l = ts = t in the BCn specialization of § 3.1.4:

t t0 tn u0 un
BCn tm t2l ts 1 ts
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Let us write again the Dynkin diagram (3.1.52) of the affine root system of type BCn:

0 1 2 n− 1 n

This is in fact the Dynkin diagram for the affine Lie algebra of type A
(2)
n for even n [Ka90, p.55, §4.8,

Table Aff 2], with the numbering of the roots 0, 1, . . . , n reversed. Thus, very naively speaking, we can
read the result of Ion on the Koornwinder specialization [I03, §3] from our specialization Table 3.0.1.
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Chapter 4

Bispectral correspondence of QAKZ
equations and Macdonald-type
eigenvalue problems

Chapter 4 is based on the proceeding draft [YY] of the author’s talk in the conference “Recent develop-
ments in Combinatorial Representation Theory” at RIMS, Kyoto University held in November 7th–11th,
2022, written with S. Yanagida.

4.0 Introduction

As mentioned in Preface, Abstract of Chapter 4, the purpose of this chapter is to give a review of the
bispectral correspondence between QAKZ (quantum affine Knizhnik-Zamolodchikov) equations and the
eigenvalue problems of Macdonald type, and to study the relation of the bispectral correspondence and
the parameter specialization explained in Chapter 3.

Rank one review of bispectral correspondence

The first part (§ 4.1, § 4.2) is devoted to the review of the bispectral correspondence between QAKZ
solutions and Macdonald-type eigenvalue problems, established by the works [vM11, vM11, St14].

Let us begin with the recollection on the original Cherednik’s correspondence. We refer to [C05,
§1.3] for an exposition of this correspondence. In [C92b], Cherednik introduced his QAKZ equations
for arbitrary reduced root systems and for the type GLn. Let H = H(k, q) be the affine Hecke algebra
of the concerning root systems, and let T := HomGroup(Λ,C×) be the algebraic torus associated to the
weight lattice Λ. Then the QAKZ equations are q-difference equations for functions of torus variable
t ∈ T valued in a (left) H-module M satisfying certain conditions. In [C92a], Cherednik constructed
a correspondence between solutions of the QAKZ equations for the principal series representation Mγ

with central character γ ∈ T , and eigenfunctions of the q-difference operators of Macdonald type.
Below we explain the correspondence for the type GLn. In this case, we can identify Λ = Zn and put

t = (t1, . . . , tn), γ = (γ1, . . . , γn) ∈ T . Let SOLMac(k, q)γ be the eigenspace of the Macdonald-Ruijsenaars
q-difference operators of type GLn, i.e.

SOLMac(k, q)γ :=
{
f(t) ∈M(T ) | Lt

pf(t) = p(γ)f(t), ∀p ∈ C[T ]Sn
}
,

where M(T ) is the set of meromorphic functions on T , and Lt
p denotes the Macdonald-Ruijsenaars q-

difference operator [R87, Ma95] associated to each symmetric polynomial p which acts on functions of t.
For example, to the first elementary symmetric polynomial e(z) = z1 + · · ·+ zn, the operator Lt

e is given
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by

Lt
e :=

n∑
i=1

∏
j ̸=i

kti − k−1tj
ti − tj

Tq,ti . (4.0.1)

Here we used the q-shift operator Tq,ti for i = 1, . . . , n:

(Tq,tif)(t1, . . . , tn) = f(t1, . . . , qti, . . . , tn), f(t) ∈M(T ).

Moreover, let SOLqKZ(k, q)γ be the QAKZ equations of type GLn, i.e.

SOLqKZ(k, q)γ :=
{
f(t) ∈ HM(T )

0 | Cγ
t(λ)(t)f(q

−λt) = f(t), λ ∈ Λ
}
,

where H0 = H0(k) is the finite Hecke algebra of type An−1 and H
M(T )
0 :=M(T ) ⊗C H0. We omit the

precise definition of the q-difference operators Cγ
t(λ)(t). We will explain in detail the case of type A1 and

(C∨
1 , C1) in § 4.1 and § 4.2, respectively.
Cherednik’s correspondence for the type GLn is now described as

χ+ : SOLqKZ(k, q)γ −→ SOLMac(k, q)γ . (∗)

A bispectral analogue of Cherednik’s correspondence is investigated by van Meer and Stokman
[vMS09] for type GL, who introduced the bispectral QAKZ equations using Cherednik’s duality anti-
involution ∗ : H→ H of the double affine Hecke algebra H (see (1.3.24)). The bispectral QAKZ equations
are consistent systems of q-difference equations for functions on the product torus T × T , and splits up
into two subsystems. Denoting by (t, γ) ∈ T × T the variable, we have:
• The first subsystem only acts on t, and for a fixed γ, the equations in t are Cherednik’s QAKZ

equations for the principal series representation Mγ of the affine Hecke algebra H ⊂ H.
• For a fixed t ∈ T , the equations in γ are essentially the QAKZ equations for Mt−1 of the image
H∗ ⊂ H.

This argument can be extended to arbitrary reduced and non-reduced root systems, as done by van Meer
[vM11] for reduced types and by Takeyama [T10] for the non-reduced type (C∨

n , Cn).
After the build-up of bispectral QAKZ equations, it is rather straightforward, except for one issue, to

make an analogue of Cherednik’s construction of correspondence to the bispectral eigenvalue problems
of Macdonald-type. Below we explain the case of type GLn again. Let SOLbMac(k, q) be the bispectral
eigenspace of the Macdonald-Ruijsenaars q-difference operators of type GLn, i.e.,

SOLbMac(k, q) :=

{
f(t, γ) ∈M(T × T )

∣∣∣∣ Lt
pf(t, γ) = p(γ)f(t, γ)

Lγ
ef(t, γ) = p(t)f(t, γ)

∀p ∈ C[T ]Sn

}
where M(T × T ) is the set of meromorphic function on T × T , and Lt

p, L
γ
p denote the Macdonald-

Ruijsenaars q-difference operators attached to each symmetric polynomial p, acting on functions of t and
γ, respectively. For the first elementary symmetric polynomial e(z) = z1 + · · ·+ zn, they are given by

Lt
e :=

n∑
i=1

∏
j ̸=i

kti − k−1tj
ti − tj

Tq,ti , Lγ
e :=

n∑
i=1

∏
j ̸=i

k−1γi − kγj
γi − γj

T−1
q,γi

.

Note that Lt
e is the same as (4.0.1), and the parameters q−1, k−1 in Lγ

p are the reciprocal of those in Lt
p.

Next, let SOLbqKZ(k, q) be the solution space of the bispectral QAKZ equations of type GLn, i.e.,

SOLbqKZ(k, q) :=

{
f(t, γ) ∈ HM(T×T )

0

∣∣∣∣ C(t(λ),e)(t, γ)f(q
−λt, γ) = f(t, γ)

C(e,t(µ))(t, γ)f(t, q
µγ) = f(t, γ)

∀λ, µ ∈ Λ

}
,

where H
M(T×T )
0 := M(T × T ) ⊗C H0. We omit the precise definitions of the q-difference operators

C(t(λ),e)(t, γ) and C(e,t(µ))(t, γ), and refer to §4.1 and §4.2 for the explanation for type A1 and (C∨
1 , C1).

Mimicking (∗), the resulting bispectral correspondence is depicted as

χ+ : SOLbqKZ(k, q) −→ SOLbMac(k, q).
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type Dynkin orbits Hecke parameters

(C∨
1 , C1)

0 1

∗ ∗
O1 tO2 tO3 tO4 k0 k1 l0 l1Askey-Wilson

A1
0 1

O1 1 t 1 t
O3 t 1 t 1

Rogers O2 1 t2 1 1
O4 t2 1 1 1

Table 4.0.1: Type A1 subsystems in (C∨
1 , C1) and parameter specializations

The issue here is the existence of (some nice) asymptotic free solutions of the bispectral QAKZ equations,
i.e., non-emptiness of the source, which was carefully done for type GLn in [vM11, §5, Appendix]. The
same argument works with minor modification for reduced and non-reduced root types (see [St14, §3]).

In Chapter 4, we give a review of the bispectral correspondence explained so far. Since the corre-
spondence itself looks rather abstract, we decided to concentrate on the rank one cases and give detailed
computations.
• In §4.1, we treat the reduced root system of type A1. The corresponding Macdonald-Koornwinder
polynomials are the Rogers polynomials.

• In § 4.2, we treat the non-reduced root system of type (C∨
1 , C1). The corresponding polynomials

are the Askey-Wilson polynomials.
The GL2 case could be included, but it is essentially the same with A1, and we will not treat it.

Specializing parameters in the rank one bispectral problems

The second part (§ 4.3) is a complement of the first part, and is also a continuation of the paper
[YY22] on the parameter specialization of Macdonald-Koornwinder polynomials. There we classify all the
specializations based on the affine root systems appearing as subsystems of the type (C∨

n , Cn) system. The
obtained parameter specializations are compatible with degenerations of the Macdonald-Koornwinder
inner product to the subsystem inner products.

In the rank one case [YY22, §2.6], where the concerned polynomials are Askey-Wilson polynomials, we
discovered four ways of specialization of the type (C∨

1 , C1) parameters to recover the type A1. Table 4.0.1
is the excerpt from [YY22, §2.6, Table 2].

In § 4.3, we study the relation between our parameter specializations and the bispectral correspon-
dence. To begin with, let us recall that the bispectral correspondence is built using the duality anti-
involution ∗ of the DAHA H. As reviewed in § 4.2.1 (4.2.16), the duality anti-involution ∗ of H affects
on the Hecke parameters in the way

(k∗1 , k
∗
0 , l

∗
1, l

∗
0) = (k1, l1, k0, l0).

Then, we see from Table 4.0.1 that the specialization corresponding to the orbit O2 is the only one which
is compatible with the bispectral correspondence reviewed in the first part. Under this specialization,
we establish the following commutative diagram (Theorem 4.3.1.2).

SOL
(C∨

1 ,C1)
bqKZ SOLbAW

SOLA1

bqKZ SOLbMR

χ
(C∨

1 ,C1)

+

sp sp

χ
A1
+

Notation and terminology

We use the notation in § 1.0, and Gasper-Rahman basic hypergeometric notation explained in § 1.1.1.
Let us write down the latter again. Using q-shifted factorials (1.1.1):

(x; q)∞ :=

∞∏
n=0

(1− xqn), (x1, . . . , xr; q)∞ :=

r∏
i=1

(xi; q)∞,
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the basic hypergeometric series is given by

r+1φr

[
a1, . . . , ar+1

b1, . . . , br
; q, z

]
:=

∞∑
n=0

(a1, . . . , ar+1; q)n
(q, b1, . . . , br; q)n

zn. (4.0.2)

We will also use the q-binomial coefficient[
β

n

]
q

:=
(qβ−n+1; q)n

(q; q)n
(4.0.3)

for β ∈ C and n ∈ N. Note that we have
[
m
n

]
q
= (q;q)m

(q;q)n (q;q)m−n
for m,n ∈ N with m ≥ n.

4.1 Type A1

4.1.1 Extended affine Hecke algebra

Here we recall the extended affine Hecke algebra of type A1 and the basic representation.

The extended affine Weyl group of type A1

We start with the recollection of the extended affine Weyl group of the affine root system of type A1.
For the detail, see [M03, §1, §2, §6.1], [vMS09, §2.1] and [vM11, §2.1].

Remark 4.1.1.1. Let us remark in advance that we work in the untwisted affine root system [M03,
(1.4.1)], although [vM11] works in the twisted affine system [M03, (1.4.2)]. Since we only consider the
type A1, there is no essential difference, but there are a few notational differences. For instance, we define
the extended affine Weyl group W to be the semi-direct product W0 n t(P ) using the weight lattice P ,
although in [vM11] it is defined to be W0 n t(P∨) using the coweight lattice P∨.

We consider the one-dimensional real Euclidean space (V, 〈·, ·〉) with

V = Rα, 〈α, α〉 = 2. (4.1.1)

Let F be the space of affine real functions on V , which is identified with real vector space V ⊕ Rc by
the map (u 7→ 〈v, u〉 + r) 7→ v + rc for u, v ∈ V and r ∈ R. Using the gradient map D : F → V ,
v + rc 7→ v, we extend the inner product 〈·, ·〉 on V to a positive semi-definite bilinear form on F by
〈f, g〉 := 〈D(f), D(g)〉 for f, g ∈ F .

Let S(A1) := {±α+nc | n ∈ Z} ⊂ F be the affine root system S(A1) in the sense of Macdonald [M03].
A basis of S(A1) is given by {a1 := α, a0 := c− α}, and the associated simple reflections si : V → V for
i = 0, 1 are given by

si(v) := v − ai(v)D(a∨i ) (v ∈ V ), (4.1.2)

where a∨i := 2ai/〈ai, ai〉 = ai ∈ F . Explicitly, we have

s1(rα) = −rα, s0(rα) = (1− r)α (r ∈ R). (4.1.3)

We denote by W0 ⊂ O(V, 〈·, ·〉) the subgroup generated by s1. It is the Weyl group of the irreducible
root system R(A1) = {±α} of type A1 in the sense of Bourbaki, and as an abstract group, we have
W0 = 〈s1 | s21〉 ∼= S2, the symmetric group of degree 2. Let us also denote the fundamental weight and
the weight lattice of the root system R(A1) by

$ := 1
2α, Λ := Z$ ⊂ V.

Then the W0-action (4.1.3) preserves Λ.
We denote by t(Λ) := {t(λ) | λ ∈ Λ} the abelian group with relations t(λ) t(µ) = t(λ+µ) for λ, µ ∈ Λ.

The group t(Λ) acts on V by translation:

t(λ)v = v + λ (λ ∈ L, v ∈ V ). (4.1.4)
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Then the extended affine Weyl group W of S(A1) is defined to be the semi-direct product group

W :=W0 n t(Λ) (4.1.5)

which acts on V faithfully. In other words, the group W is determined by W0 and t(Λ), and by the
additional relations

s1 t(λ)s1 = t(s1(λ)) (λ ∈ Λ) (4.1.6)

with s1(λ) given by (4.1.3).
The groupW is generated by s1, s0 and t($). It is convenient to introduce u := t($)s1. By (4.1.6), we

have u2 = t($) t(s1($)) = t($) t(−$) = e. Also, by (4.1.6) and (4.1.3), we can check s0(v) = us1u(v)
for any v ∈ V . Thus, as an abstract group, W is generated by s1, s0, u with defining relations

s21 = s20 = u2 = e, us1 = s0u. (4.1.7)

For later use, we write down a few relations in W .

t($) = us1 = s0u, t(−$) = s1u = us0. (4.1.8)

t(α) = t(2$) = us1us1 = s0s1. (4.1.9)

The extended affine Hecke algebra of type A1

Here we recall the extended affine Hecke algebra H associated to the affine root system S(A1). For the
detail, see [M03, §4, §6.1] and [vM11, §2.2, §2.3]. Hereafter we fix nonzero complex numbers k ∈ C×.

Remark 4.1.1.2. Our parameter k correspond to τ in [M03].

Definition 4.1.1.3. The extended affine Hecke algebra of type A1, denoted by

H = H(k) = HA1(k),

is the C-algebra generated by T1, T0 and U with fundamental relations

(Ti − k)(Ti + k−1) = 0 (i = 1, 0), U2 = 1, UT1 = T0U. (4.1.10)

By comparing (4.1.7) and (4.1.10), we see that H is a deformation of the group ring C[W ] of the
extended affine Weyl group W of S(A1) explained above.

In order to attach an element Tw ∈ H to each w ∈ W , let us recall from [M03, §2.2] that we have
the length function and reduced expressions in W . The group W is an extension of the affine Weyl
group WS := 〈s1, s0 | s21, s20〉 of S(A1) by the automorphism u of the Dynkin diagram of S(A1), so that
any element w ∈ W can be written as w = w′ur with w′ ∈ WS and r ∈ {0, 1}. The group WS is a
Coxeter group, so that it has the length function `(·) and reduced expression of each element. Now, let
w′ = si1 · · · sil be a reduced expression in WS with l = `(w′). Then we define the length of w ∈W to be
`(w) := `(w′) = l, and call the expression w = si1 · · · silur ∈W a reduced expression of w.

Now, for w ∈W , take a reduced expression w = si1 · · · silur and define

Tw := Ti1 · · ·TilUr ∈ H.

Then Tw is independent of the choice of reduced expression. By convention we have Te = 1, the unit of
the ring H.

Next we introduce the Dunkl operator to be

Y := UT1 ∈ H. (4.1.11)

By (4.1.10), Y is invertible and

Y −1 = T−1
1 U = (T1 − k + k−1)U.
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Also note that these can be regarded as deformations of the translations t(±$) ∈ W given in (4.1.8).
Let us also define

Y λ := Y l ∈ H (λ = l$ ∈ Λ, l ∈ Z).

In particular, we have

Y α = Y 2ϖ = Y 2 = UT1UT1 = T0T1, (4.1.12)

which corresponds to (4.1.9). We denote by C[Y ±1] ⊂ H the ring of Laurent polynomials in Y . We have
an isomorphism of C-linear spaces

H ∼= H0 ⊗ C[Y ±1], (4.1.13)

where

H0 = H0(k) := CTe + CTs1 = C+ CT1 (4.1.14)

is the subalgebra of H generated by T1. We call H0 the finite Hecke algebra of type A1.

The basic representation and the double affine Hecke algebra of type A1

Next, we review the basic representation of the extended affine Hecke algebraH = H(k), mainly following
[M03, §6.1]. See also [C05, Theorem 3.2.1] and references therein.

Below we choose and fix a parameter q1/2 ∈ C×. The extended affine Weyl group W acts on the ring
of Laurent polynomials

C[x±1], x := eα/2 (4.1.15)

by letting the generators s1, s0, u operate as

(s1,qf)(x) = f(x−1), (s0,qf)(x) = f(qx−1), (uqf)(x) = f(q1/2x−1), (4.1.16)

where we indicated the dependence on q explicitly.
Now, using the parameter k ∈ C×, and define b(x; k), c(x; k) ∈ C(x) by

c(x; k) :=
k−1 − kx
1− x

, b(x; k) := k − c(x; k) = k − k−1

1− x
. (4.1.17)

Then, denoting x1 := x2 and x0 := qx−2, we have an algebra embedding

ρk,q : H(k) ↪−→ End(C[x±1]), (4.1.18)

ρk,q(Ti) := c(xi; k)si,q + b(xi; k) = k + c(xi; k)(si,q − 1), ρk,q(U) := uq. (4.1.19)

Note that the image is in End(C[x±1]) ( End(C(x)). We call ρk,q the basic representation of H(k).
Using the basic representation ρk,q, we introduce:

Definition 4.1.1.4. The double affine Hecke algebra (DAHA) of type A1, denoted as

H = H(k, q) = HA1(k, q),

is defined to be the subalgebra of End(C[x±1]) generated byX±1 := (the multiplication operator by x±1)
and the image ρk,q

(
H(k)

)
.

As an abstract algebra, the DAHA H of type A1 is presented with generators T1, U,X and relations

(T1 − k)(T1 + k−1) = 0, U2 = 1, T1XT1 = X−1, UXU = q1/2U−1. (4.1.20)

See [M03, §4.7] and [C05] for the detail. The map ρk,q of (4.1.18) extends to the embedding ρk,q : H ↪→
End(C[x±1]).
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We have the Poincaré-Birkhoff-Witt type decomposition of H as a C-linear space:

H ∼= C[X±1]⊗H0 ⊗ C[Y ±1]. (4.1.21)

This decomposition is compatible with H ∼= H0⊗C[Y ±1] in (4.1.13) under the identification of H = H(k)
with the faithful image ρk,q

(
H
)
⊂ End(C[x±1]). Below we often identify X±1 and x±1, and denote the

decomposition (4.1.21) as H = C[x±1]⊗H0 ⊗ C[Y ±1].
Let us also recall the duality anti-involution introduced by Cherednik ([C95c], [M03, (4.7.6)]). It is

the unique C-algebra anti-involution

∗ : H(k, q) −→ H(k∗, q), h 7−→ h∗ (4.1.22)

such that, denoting by Xλ := (the multiplication operator by xl) for λ = l$ ∈ Λ, l ∈ Z, we have

T ∗
1 = T1, (Y λ)∗ = X−λ, (Xλ)∗ = Y −λ (λ ∈ Λ), k∗ = k.

Here and hereafter we use the redundant symbol k∗ for the comparison with type (C∨
1 , C1) (see (4.2.15)).

Finally, we denote by

H(k)∗ ⊂ H(k∗, q) = H(k, q) (4.1.23)

the image of H(k) ⊂ H(k, q) under the duality anti-involution ∗. Then H(k)∗ is equal to the subalgebra
of H(k, q) generated by the finite Hecke algebra H0(k) (see (4.1.14)) and X±1 = x±1.

4.1.2 Bispectral quantum Knizhnik-Zamolodchikov equation

Let us explain the bispectral qKZ equation of the affine root system S(A1), mainly following [vM11,
§3.2]. Hereafter we fix the parameters q1/2, k ∈ C×, and consider the basic representation ρk,q : H(k) ↪→
End(C[x±1]) of the affine Hecke algebra H(k) in (4.1.18) and the DAHA H(k, q) in Definition 4.1.1.4.

The affine intertwiners of type A1

Following [C05, §1.3], [vMS09, §2.3] and [vM11, Proposition 3.3], we introduce the affine intertwines
of type A1. Corresponding to the generators s1, s0, u of the extended Weyl group W (and T1, T0, U of

H(k)), we define S̃1, S̃0, S̃u ∈ End(C[x±1]) by

S̃i = S̃i(k, q) := di(x; k, q)si,q (i = 1, 0), S̃u = S̃u(q) := uq, (4.1.24)

where si,q and uq are the operators in (4.1.16), and the function di(x) is given by

di(x) = d(xi; k, q) := k−1 − kxi, x1 := x2, x0 := qx−2. (4.1.25)

The elements S̃1, S̃0 and S̃u belong to the subalgebra H ⊂ End(C[x±1]) since

S̃i = (1− xi)(ρk,q(Ti)− k) + k−1 − kxi, S̃u = ρk,q(U) (4.1.26)

More generally, for each w ∈ W , taking a reduced expression w = sj1 · · · sjlur with j1, . . . , jl, r ∈ {0, 1},
we define the element S̃w ∈ H by

S̃w := dj1(x) · (sj1dj2)(x) · · · · · (sj1 · · · sjl−1
djl)(x) · wq. (4.1.27)

Here we used the action of si’s on functions in x and the operator wq, both given in (4.1.16). Note that

this definition includes (4.1.24) by setting S̃0 = S̃s0 and S̃1 = S̃s1 . The element S̃w ∈ H is independent
of the choice of reduced expression w = sj1 · · · sjlur, since

dw(x) := dj1(x) · (sj1dj2)(x) · · · · · (sj1 · · · sjl−1
djl)(x) (4.1.28)

depends only on w [M03, (2.2.9)]. Moreover, by [vM11, Proposition 3.3 (ii)], we have

S̃w = S̃j1 · · · S̃jl S̃
r
u. (4.1.29)

We call the elements S̃w in (4.1.27) the affine intertwiners of type A1.

Remark 4.1.2.1. Our affine intertwines are obtained from those in [vM11] by replacing k, x with
k−1, x−1. We made this replacement to simplify the comparison with the type (C∨

1 , C1) discussed in
§ 4.3.
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The double extended Weyl group

Extending the representation space C[x±1] of the basic representation ρk,q (see (4.1.15) and (4.1.18)),
we introduce

L := C[x±1]⊗ C[ξ±1] = C[x±1, ξ±1]. (4.1.30)

We sometimes call x the geometric variable and ξ the spectral variable.

Remark 4.1.2.2. The papers [vMS09, vM11, St14] considered (for a root system of arbitrary type) the
ring L′ := C[T×T ] ∼= C[T ]⊗C[T ] of regular functions on the product T×T , where T := HomGroup(Λ,C×)
is the algebraic torus associated to the lattice Λ. In loc. cit., the value of t ∈ T at λ ∈ Λ is written as
tλ ∈ C×, and a point of T × T is denoted by (t, γ) ∈ T × T . For the type A1 we are considering, the
lattice is Λ = Z$, and there is a natural identification L′ ∼= L given by (t 7→ tϖ) 7→ x and (γ 7→ γϖ) 7→ ξ.
The geometric and spectral variables x, ξ are called the coordinate (functions) of T × T in loc. cit. The
formulas and arguments given in the following text are obtained from those in loc. cit. by replacing
f(t, γ) ∈ L′ with f(x, ξ) ∈ L.

Then the DADA H = H(k, q) in Definition 4.1.1.4 has a structure of an L-module by

(f ⊗ g)h := f(X) · h · g(Y ) (4.1.31)

for f = f(x) ∈ C[x±1] ⊂ L, g = g(ξ) ∈ C[ξ±1] ⊂ L and h ∈ H. Here X ∈ H denotes the multiplication
operator by x (see Definition 4.1.1.4), and Y ∈ H = ρk,q(H) ⊂ H denotes the Dunkl operator (4.1.11).
The · in the right hand side means to take the multiplication of the ring H. Note that the PBW type
decomposition (4.1.21) yields the natural L-module isomorphism

H ∼= HL
0 := L⊗H0, (4.1.32)

where in the right hand side L acts on the first tensor component L by ring multiplication.
We turn to the introduction of the double extended Weyl group W, following [vMS09, §3.1] and

[vM11, §3.2]. Let ι denote the nontrivial element of the group Z2 := Z/2Z. We define the group W as
the semi-direct product

W := Z2 n (W ×W ), (4.1.33)

where ι ∈ Z2 acts on the product W ×W of the extended affine Weyl group W by

ι(w,w′) = (w′, w)ι (w,w′ ∈W ).

The group W acts on L as follows. We define an involution � : W →W by

w⋄ := w, t(λ)⋄ := t(−λ) (4.1.34)

for w ∈W0 and λ ∈ Λ. Then the W-action on L is given by

(wf)(x) := (wqf)(x), (w′g)(ξ) := ((w′⋄)qg)(ξ), (ιF )(x, ξ) = F (ξ−1, x−1) (4.1.35)

for w ∈W =W × {e} ⊂W, w′ ∈W = {e} ×W ⊂W and f = f(x), g = g(ξ), F = F (x, ξ) ∈ L. Here wq

denotes the W -action in (4.1.16).

Remark 4.1.2.3. The element ι ∈ W is designed to be consistent with the duality anti-involution ∗
(4.1.22) and the actions of W and H on L.

Now, following [vMS09, §3.1] and [vM11, §3.2], we define σ̃(w,w′), σ̃ι ∈ End(H) by

σ̃(w,w′)(h) := S̃w · h · (S̃w′)∗, σ̃ι(h) := h∗ (h ∈ H). (4.1.36)

Here ∗ denotes the anti-involution (4.1.22), and · denotes the multiplication of the ring End(C[x±1]) (or

the composition of operators on C[x±1]). The action is well defined since S̃w ∈ H.

Fact 4.1.2.4 ([vMS09, Lemma 3.2], [vM11, Lemma 3.5]). For h ∈ H, f ∈ L and w,w′ ∈W , we have

σ̃(w,w′)(fh) = ((w,w′)f)σ̃(w,w′)(h), σ̃ι(fh) = (ιf)σ̃ι(h). (4.1.37)
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The cocycles

Below we denote the field of meromorphic functions of variables x and ξ by

K :=M(x, ξ),

and set

HK
0 := K⊗H0. (4.1.38)

An element f ∈ HK
0 is regarded as a meromorphic function of x, ξ valued in H0 ⊂ EndC(C[x±1]). Also,

we have a C-linear isomorphism HK
0
∼= K⊗L H by (4.1.32), and f ∈ HK

0 can be expressed as

f =
∑

w∈W0

fwTw, fw ∈ K. (4.1.39)

The W-action on L given by (4.1.35) naturally extends to that on K. Now the group W acts on HK
0 by

wf :=
∑

w∈W0

(wfw)Tw (4.1.40)

for f =
∑

w∈W0
fwTw ∈ HK

0 and w ∈W.
By Fact 4.1.2.4, we can extend the maps σ̃(w,w′) and σ̃ι uniquely to C-linear endomorphisms of

HK
0
∼= K⊗L H such that the formulas (4.1.37) are valid for f ∈ K and h ∈ HK

0 . We denote them by the
same symbols σ̃(w,w′), σ̃ι ∈ EndC(H

K
0 ).

Fact 4.1.2.5 ([vMS09, Theorem 3.3], [vM11, Theorem 3.6]). There is a unique group homomorphism

τ : W −→ GLC(H
K
0 )

satisfying

τ(w,w′)(f) = dw(x)
−1dw′(ξ−1)−1 · σ̃(w,w′)(f), τ(ι)(f) = σ̃ι(f) (4.1.41)

for w,w′ ∈W and f ∈ HK
0 . Here we used the function dw given by (4.1.28), and · denotes the K-action

given by (4.1.31). Moreover, we have

τ(w)(gf) = wgτ(w)(f)

for g ∈ K, f ∈ HK
0 and w ∈W.

Remark 4.1.2.6. In [vM11, Theorem 3.6], the action of τ(w,w′) is written using d⋄w′(Y ), which is equal
to dw′(Y −1) according to [vMS09, Proof of Lemma 3.2].

Now we recall a terminology of non-abelian group cohomology. Let G be a group, and M be a
G-group. We denote by mg ∈ M the action of g ∈ G on m ∈ M . Then, a (1-)cocycle means a map
z : G→M such that z(g1g2) = z(g1)z(g2)

g1 for any g1, g2 ∈ G.
Recall that W acts on HK

0 by (4.1.40). This action makes the group GLK(H
K
0 ) into a W-group by

(w, A) 7−→ wAw−1 (w ∈W, A ∈ GLK(H
K
0 )).

Fact 4.1.2.7 ([vMS09, Corollary 3.4], [vM11, Corollary 3.8]). The map

w 7−→ Cw := τ(w)w−1 (4.1.42)

is a cocycle of W with values in the W-group GLK(H
K
0 ). In other words, for any w,w′ ∈ W, we have

Cw ∈ GLK(H
K
0 ) and

Cww′ = CwwCw′w−1. (4.1.43)

Note that the cocycles Cw depend on the parameters (k, q). Also note that, by the natural isomor-
phism

GLK(H
K
0 )
∼= K⊗GLC(H0), (4.1.44)

we can regard an element Cw ∈ GLK(H
K
0 ) as a meromorphic function of x, ξ valued in GLC(H0). To

stress this point, we denote it as

Cw(x, ξ). (4.1.45)
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The bispectral bispectral quantum KZ equations of type A1

Let us focus on the cocycles associated to the translations in W, i.e., the elements in the subgroup

t(Λ)× t(Λ) ⊂W ×W ⊂W.

Recalling Λ = Z$, we denote

Cl,m := C(t(lϖ),t(mϖ)) (l,m ∈ Z). (4.1.46)

Definition 4.1.2.8 ([vMS09, Dfn. 3.7], [vM11, Dfn. 3.9], [St14, Dfn. 3.2]). Using (4.1.45) and (4.1.46),
we call the system of q-difference equations

Cl,m(x, ξ)f(q−lx, qmξ) = f(x, ξ) (l,m ∈ Z)

for f ∈ HK
0 the bispectral quantum KZ equations (the bqKZ equations for short) of type A1. The solution

space is denote by

SOLA1

bqKZ(k, q) := {f ∈ H
K
0 | f satisfies the bqKZ equations of type A1}.

Remark 4.1.2.9. The solution space is denoted by SOL in [vMS09, vM11], and by Kk,q in [St14]. Our
symbol is a modification of the notation SolQAKZ in [C05, Theorem 1.3.8].

The cocycle values

As before, let H = H(k) be the affine Hecke algebra of type A1, H0 = H0(k) be the subalgebra of H
generated by T1, and HK

0 := K ⊗ H0. We can write down the cocycles C1,0 and C0,1 by the following
representations of the affine Hecke algebra H and its duality anti-involution image H∗ (see (4.1.23)).

Definition 4.1.2.10. HK
0 has the following left H-module structure and the right H∗-module structure:

We define an algebra homomorphism ηL : H → EndK(H
K
0 ) by

ηL(A)
( ∑
w∈W0

fwTw

)
:=

∑
w∈W0

fw(ATw) (A ∈ H), (4.1.47)

using the expression (4.1.39) of an element of HK
0 . We also define an algebra anti-homomorphism

ηR : H∗ → EndK(H
K
0 ) by

ηR(A)
( ∑
w∈W0

fwTw

)
:=

∑
w∈W0

fw(TwA) (A ∈ H∗). (4.1.48)

Remark 4.1.2.11. The map ηL was introduced in [vMS09, §4.1] and [vM11, §4.1], denoted by η, under
the name of the formal principal series representation of H, since it is a formal version of the principal
series representation used in [C92c, C94]. We borrowed the symbol ηR from [T10, §4.2].

Lemma 4.1.2.12 (c.f. [vM11, (5.3)]). Regarding the cocycles C1,0, C0,1 as GL(H0)-valued meromorphic
functions of x, ξ (see (4.1.45)), we have

C1,0(x, ξ) = RL
0 (x0)ηL(U), (4.1.49)

C0,1(x, ξ) = RR
0 (ξ

′
0)ηR(U

∗), (4.1.50)

where we denoted x0 := qx−2, ξ′0 := qξ2 and

RL
i (z) := c(z, k)−1

(
ηL(Ti)− b(z; k)

)
= c(z; k)−1

(
ηL(Ti)− k

)
+ 1,

RR
i (z) := c(z, k∗)−1

(
ηR(T

∗
i )− b(z; k∗)

)
= c(z; k∗)−1

(
ηR(T

∗
i )− (k∗)−1

)
+ 1,

using c(z; k), b(z; k) in (4.1.17) and the duality anti-involution ∗ in (4.1.22). We also used the redundant
notation k∗ = k.
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Proof. We first calculate C1,0 = C(t(ϖ),e) = τ(t($), e) (t($), e)−1. We have t($) = us1 = s0u by (4.1.8).

Then, using (4.1.42) and (4.1.41), for any element f =
∑

w∈W0
fwTw ∈ HK

0 (fw ∈ K), we have

C1,0f = τ(s0u, e) (s0u, e)
−1

( ∑
w∈W0

fwTw

)
= τ(s0u, e)

( ∑
w∈W0

(
(s0u, e)

−1fw
)
Tw

)
= ds0u(x)

−1σ̃(s0u,e)

( ∑
w∈W0

(s0u, e)
−1fwTw

)
= ds0u(x)

−1
( ∑
w∈W0

(
(s0u, e)(s0u, e)

−1fw
)
S̃s0uTw

)
= ds0u(x)

−1
( ∑
w∈W0

fwS̃s0uTw

)
.

Now, by (4.1.26), we have

S̃s0u = S̃0S̃u =
(
(1− x0)(ρk,q(T0)− k) + k−1 − kx0

)
ρk,q(U).

On the other hand, (4.1.28) and (4.1.25) yield ds0u(x) = k−1 − kx0, and by (4.1.17), we have

ds0u(x)
−1(1− x0) = c(x0; k)

−1. (4.1.51)

Then, using Definition 4.1.2.10, we have

C1,0f =
(
c(x0; k)

−1(ηL(T0)− k−1) + 1
)
ηL(U)(f),

which yields (4.1.49).
Similarly, the action of C0,1 on f =

∑
w∈W0

fwTw ∈ HK
0 is computed as

C0,1f = τ(e, s0u)(e, s0u)
−1

( ∑
w∈W0

fwTw

)
= ds0u(ξ

−1)−1 ·
( ∑
w∈W0

fwTwS̃
∗
s0u

)
,

where · denotes the K-action (see (4.1.31)). By (4.1.24) and (4.1.26), we have

S̃∗
s0u = S̃∗

uS̃
∗
0 = ρk,q(U)∗

(
(ρk,q(T0)

∗ − k)(1− q−1Y −2) + k−1 − kq−1Y −2
)
.

Now recall that a function g(ξ) acts on H0 by the right multiplication of g(Y ) (see (4.1.31)). Then, by
(4.1.51) and Definition 4.1.2.10, we have

C0,1f =
(
(ηR(T

∗
0 )− k)c(qY 2; k)−1 + 1

)
ηR(U

∗)(f),

which yields (4.1.50).

Remark 4.1.2.13. A few comments on Lemma 4.1.2.12 are in order.
(1) By [vM11, Remark 4.4], we have

C(e,w)(x, ξ) = CιC(w,e)(ξ
−1, x−1)Cι (4.1.52)

for any w ∈ W , where we used the notation (4.1.45). The result of Lemma 4.1.2.12 is consistent
with this equality.

(2) As shown in [vMS09, Lemma 4.3], the rational function

Ri(z) := c(z, k)−1
(
ηL(Ti)− b(z; k)

)
valued in End(H0) satisfies the Yang-Baxter equation R0(z)R1(zz

′)R0(z
′) = R1(z

′)R0(zz
′)R1(z).

In the terminology [C05, §1.3.6], Ri(z) is called the baxterization of Ti.

For later use, let us cite the following two facts.

Fact 4.1.2.14 ([vM11, Lemma 5.1]). Let A := C[x−1] ⊂ L = C[x±1, ξ±1], and Q0(A) be the subring of
the quotient field Q(A) = C(x) consisting of rational functions which are regular at x−1 = 0. Considering
Q0(A)⊗ C[ξ±1] as a subring of C(x, ξ), we have

C1,0 ∈ (Q0(A)⊗ C[ξ±1])⊗ End(H0). (4.1.53)
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Moreover, setting C
(0)
1,0 := C1,0|x−1=0 ∈ C[ξ±1]⊗ End(H0), we have

C
(0)
1,0 = kηL(T1Y

−1T−1
1 ). (4.1.54)

Similarly, defining B := C[ξ] ⊂ L, and Q0(B) ⊂ Q(B) to be the subring consisting of rational functions
which are regular at ξ = 0, we have

C0,1 ∈ (C[x±1]⊗Q0(B))⊗ End(H0).

Moreover, setting C
(0)
0,1 := C0,1|ξ=0 ∈ C[x±1]⊗ End(H0), we have

C
(0)
0,1 = k∗ηR(T1Y

−1T−1
1 ).

Proof. We only show the statements for C1,0 using Lemma 4.1.2.12. Let us denote A(x) ≈ A0 if A(x) =
A0 +O(x−1) by expansion in terms of x−1. Then we have c(x0; k) = c(qx−2; k) ≈ k, and the expression
(4.1.49) yields

C1,0 ≈ C(0)
1,0 :=

(
k(ηL(T0)− k) + 1

)
ηL(U) = kηL(T1Y

−1T−1
1 ),

where we used T0U = UT1 and T−1
1 = T1 − k + k−1 in H = H(k) from (4.1.10), and Y −1 = T−1

1 U from
(4.1.11). Thus we have (4.1.53) and (4.1.54).

For the next fact, note that we have S̃∗
w ∈ H ⊂ H for all w ∈W0.

Fact 4.1.2.15 ([vMS09, Lemma 4.2]). For w ∈W0, we set

τw := ηL(S̃
∗
w−1)Te ∈ C[{e} × T ]⊗H0 ⊂ HK

0 .

Then the following statements hold.
(1) {τw | w ∈ W0} is a K-basis of HK

0 consisting of simultaneous eigenfunctions for the ηL-action of
C[Y ±1] ⊂ H on HK

0 .
(2) For p ∈ C[T ] and w ∈W0, we have

ηL(p(Y ))(γ) τw(γ) = (w−1p)(γ) τw(γ)

as H0-valued regular functions in γ ∈ T .

We close this subsection with:

Lemma 4.1.2.16. The cocycles C2,0 and C0,2 are given by

C2,0 = RL
0 (x0)R

L
1 (x

′
1), C0,2 = RR

0 (ξ
′
0)R

R
1 (ξ

′
1)

Here we used the notation of Lemma 4.1.2.12: x0 := qx−2, ξ′0 := qξ2 and

RL
i (z) := c(xi, k)

−1
(
ηL(Ti)− b(xi; k)

)
= c(xi; k)

−1
(
ηL(Ti)− k

)
+ 1,

RR
i (z) := c(ξi, k

∗)−1
(
ηR(T

∗
i )− b(ξi; k∗)

)
= c(ξi; k

∗)−1
(
ηR(T

∗
i )− (k∗)−1

)
+ 1.

We further used x′1 := q2x−2 and ξ′1 := q2ξ2.

Proof. It is a consequence of the cocycle relation (4.1.43) and a similar calculation of Lemma 4.1.2.12.
We omit the detail.

4.1.3 Bispectral Macdonald-Ruijsenaars equations

As in the previous § 4.1.2, we fix generic complex numbers q1/2 and k.
We consider the crossed product algebra (the smash product algebra)

DW
q := WnC(x, ξ),
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where W acts as field automorphisms on C(x, ξ) by (4.1.35), and also the subalgebra Dq of DW
q defined

by
Dq :=

(
t(Λ)× t(Λ)

)
nC(x, ξ) ⊂ DW

q ,

where t(Λ) × t(Λ) is regarded as a subgroup of W ×W ⊂ W. The subalgebra Dq is identified with the
algebra of q-difference operators on C(x, ξ). We can expand each D ∈ DW

q as

D =
∑
w∈W

fww =
∑

s∈W0×W0

Dss (4.1.55)

with fw ∈ C(x, ξ) and Ds =
∑

t∈t(Λ)×t(Λ) gtst ∈ Dq. Then we define the restriction map Res: DW
q → Dq

to be the C(x, ξ)-linear map

Res(D) :=
∑

s∈W0×W0

Ds. (4.1.56)

Next, we introduce two realizations of the basic representation ρ of H. One is given by

ρx1/k,q : H(1/k) −→ DW
q (4.1.57)

which is the map ρ1/k,q from (4.1.18), regarded as an algebra homomorphism from H(1/k) to the

subalgebra C(x)[W × {e}] of DW
q . The other is given by

ρξk,1/q : H(k) −→ DW
q (4.1.58)

defined as the map ρk,1/q from (4.1.18), regarded as an algebra homomorphism from H(1/k) to the

subalgebra C(ξ)[{e} ×W ] of DW
q .

Definition 4.1.3.1. For h ∈ H(1/k), we define

Dx
h := ρx1/k,q(h) ∈ DW

q .

Also, for h′ ∈ H(k), we define

Dξ
h′ := ρξk,1/q(h

′) ∈ DW
q .

Remark 4.1.3.2. Our choice (4.1.57) and (4.1.58) of the basic representations affects the parameters in
the bispectral correspondence (4.1.66) of quantum Knizhnik-Zamolodchikov and Macdonald-Ruijsenaars
equations. Our argument is equivalent to [vMS09, §6.2] and [vM11, §6.1], and opposite to [St14, Definition
2.17]. See Definition 4.2.3.1 for the (C∨

1 , C1) case.

Let C[z±1]W0 denote the ring of Laurent polynomials of variable z which are invariant under the
W0-action s1(z) := z−1. Using the restriction map Res in (4.1.56), we introduce:

Definition 4.1.3.3. For p ∈ C[z±1]W0 , we define Lx
p , L

ξ
p ∈ Dq by

Lx
p = Lx

p(k, q) := Res(Dx
p(Y )), Lξ

p = Lξ
p(k, q) := Res(Dξ

p(Y )), (4.1.59)

where we regard p(Y ) ∈ H(1/k) for Lx
p , and p(Y ) ∈ H(k) for Lξ

p.

Since we have C[z±1]W0 ∼= C[z + z−1], it is natural to introduce:

Definition 4.1.3.4. We denote p1 := z + z−1, the generator of the invariant ring C[z±1]W0 .

Using the function c(·; k) in (4.1.17), we can write down

Lx
p1
, Lξ

p1
∈ Dq ⊂ End

(
C(x, ξ)

)
.

Let us denote the action of w ∈W on functions of x given in (4.1.16) as

wx ∈ End(C(x)) ⊂ End
(
C(x, ξ)

)
.

92



Explicitly, for f = f(x) ∈ C(x), we have

(sx0f)(x) := f(qx−1), (sx1f)(x) = f(x−1), (uxf)(x) = f(q1/2x−1), (t($)xf)(x) = f(q1/2x).
(4.1.60)

Recall that it is compatible with ρx1/k,q in (4.1.57). We also denote by

wξ ∈ End(C(ξ)) ⊂ End
(
C(x, ξ)

)
the action on functions g = g(ξ) ∈ C(ξ). It is given by

(sξ0g)(ξ) := g(q−1ξ−1), (sξ1g)(ξ) = g(ξ−1), (uξg)(ξ) = g(q−1/2ξ−1), (t($)ξg)(ξ) = g(q−1/2ξ),
(4.1.61)

and is compatible with ρξk,1/q in (4.1.58).

Proposition 4.1.3.5. We have

Lx
p1
(k, q) = A(x)Tq1/2,x +A(x−1)Tq−1/2,x, Lξ

p1
(k, q) = A∗(ξ−1)Tq1/2,ξ +A∗(ξ)Tq−1/2,ξ (4.1.62)

with

A(z) := c(z2; k) =
k−1 − kz2

1− z2
, A∗(z) := c(z2; k∗) = A(z).

Here we used the redundant notation k∗ = k for the comparison with (C∨
1 , C1) case (Proposition 4.2.3.2).

Proof. Let us compute Lx
p1

= Res(Dx
Y+Y −1). Since Y = UT1 and u = t($)s1, using (4.1.10) and (4.1.19),

we have

Dx
Y+Y −1 = ρx1/k,q(UT1 + T−1

1 U)

=
(
t($)xsx1

)(
k−1 + c(x2; k−1)(sx1 − 1)

)
+

(
k + c(x2; k−1)(sx1 − 1)

)(
t($)xsx1

)
.

Then, using

Res
(
t($)xsx1

)
= t($)x, Res

(
t($)xsx1(s

x
1 − 1)

)
= 0,

Res
(
(sx1 − 1) t($)xsx1

)
= t(−$)x − t($)x,

k + k−1 − c(x2; k−1) = c(x2; k) and c(x2; k−1) = c(x−2; k), we have

Res(Dx
Y+Y −1) = k−1 t($)x + k t($)x + c(x2; k−1)(t(−$)x − t($)x)

=
(
k + k−1 − c(x2; k−1)

)
t($)x + c(x2; k−1) t(−$)x

= c(x2; k) t($)x + c(x−2; k) t(−$)x.

By (4.1.60), we obtain the first half of (4.1.62).
For Lξ

p1
, we replace (x, k, q) in Lx

p1
with (ξ, k−1, q−1) and calculate

Lξ
p1
(k, q) = c(ξ2; k−1) t(−$)ξ + c(ξ−2; k−1) t($)ξ = c(ξ−2; k) t(−$)ξ + c(ξ2; k) t($)ξ.

Then, by (4.1.61), we obtain the second half of (4.1.62).

Remark 4.1.3.6. By the expression (4.1.17) of c(·; k) and (4.1.60), the formula of Lx
p1
∈ Dq in (4.1.62)

can be rewritten by

Lx
p1
(k, q) =

kx− k−1x−1

x− x−1
Tq1/2,x +

k−1x− kx−1

x− x−1
Tq−1/2,x,

where Tq,x denotes the q-shift operator acting on a function f in x as (Tq,xf)(x) = f(qx). Similarly, for
Lξ
p1
, recalling t($)ξ = T−1

q1/2,ξ
from (4.1.61), we have

Lξ
p1
(k, q) =

k−1ξ − kξ−1

ξ − ξ−1
Tq1/2,ξ +

kξ − k−1ξ−1

ξ − ξ−1
Tq−1/2,ξ.
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Now let us recall the Macdonald q-difference operator of type GL2 [Ma95, Chap. VI], or the two-variable
trigonometric Ruijsenaars operator [R87]:

DMR(x1, x2; q, t) :=
tx1 − x2
x1 − x2

Tq,x1
+
tx2 − x1
x2 − x1

Tq,x2

The specialization DMR(x, x
−1; q, t) is essentially equal to the Macdonald q-difference operator of type

A1 (see [M87, (9.13)] and [M03, §6.3]). Comparing these operators, we have

Lx
p1
(k, q) = k−1DMR(x, x

−1; q1/2, k2),

Lξ
p1
(k, q) = kDMR(ξ, ξ

−1; q1/2, k−2) = k−1DMR(ξ
−1, ξ; q1/2, k2).

Lem42 In particular, using the action (4.1.35) of ι and noting ιTq,xι = Tq,ξ, we have

Lξ
p1

= ιLx
p1
ι.

See [vM11, Lemma 6.2] for a generalization of this relation.

Now we reach the main object in this § 4.1.3.

Definition 4.1.3.7. The following system of eigen-equations for f = f(x, ξ) ∈ K = M(x, ξ) is called
the bispectral Macdonald-Ruijsenaars equation of type A1, and the bMR equation for short.{

(Lx
p1
(k, q)f)(x, ξ) = p1(ξ

−1)f(x, ξ)

(Lξ
p1
(k, q)f)(x, ξ) = p1(x)f(x, ξ)

. (4.1.63)

The solution space is denoted as

SOLbMR(k, q) := {f ∈ K | f satisfies (4.1.63)}.

Remark 4.1.3.8. Continuing Remark 4.1.2.9, the solution space is denoted as BiSP in [vMS09, vM11].
Our symbol is a modification of SolMac in [C05, Theorem 1.3.8].

4.1.4 Bispectral qKZ/MR correspondence

The works [vMS09, vM11] established the following correspondence between the two solution spaces
SOLA1

bqKZ(k, q) (Definition 4.1.2.8) and SOLbMR(k, q) (Definition 4.1.3.7).

Definition 4.1.4.1. We define a K-linear function χ+ : H0 → C by

χ+(Tw) := kℓ(w) (4.1.64)

for the basis element Tw ∈ H0 (w ∈W0). It is extended to HK
0 as

χ+ : HK
0 −→ K,

∑
w∈W0

fwTw 7−→
∑

w∈W0

fwχ+(Tw), (4.1.65)

where we used the expression (4.1.39).

Remark 4.1.4.2. This is a bispectral analogue of the map tr in [C05, §1.3.4, Theorem 1.3.8].

Fact 4.1.4.3 ([vMS09, Theorem 6.16, Corollary 6.21], [vM11, Theorem 6.6]). Assume 0 < q < 1. Then
the map χ+ restricts to an injective F-linear W0-equivariant map

χ+ : SOLA1

bqKZ(k, q) −→ SOLbMR(k, q), (4.1.66)

where F is the subspace of K =M(x, ξ) defined by

F :=
{
f(x, ξ) ∈ K |

(
(t(λ), t(µ))f

)
(x, ξ) = f(x, ξ), ∀ (λ, µ) ∈ Λ× Λ

}
,

and W0 is the subgroup of W defined by

W0 := Z2 n (W0 ×W0) ⊂W.
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Remark 4.1.4.4. As mentioned in Remark 4.1.3.2, we follow the arguments in [vMS09, vM11] giving
the bispectral correspondence χ+ : SOLbqKZ(k, q)→ SOLbMR(k, q). The claim in [St14, Theorem 3.1] is
based on the correspondence χ+ : SOLbqKZ(1/k, q)→ SOLbMR(k, q), χ+(Tw) = k−ℓ(w).

Let us explain the outline of the proof. We abbreviate SOLbqKZ := SOLbqKZ(k, q) and SOLbMR :=
SOLbMR(k, q). The proof is divided into three parts.
(i) χ+ restricts to an F-linear W0-equivariant map χ+ : SOLbqKZ → K.
(ii) The image χ+(SOLbqKZ) is contained in SOLbMR.
(iii) χ+ : SOLbqKZ → SOLbMR is injective
We omit the part (iii), and refer to [vMS09, Corollary 6.21] for the detail. For the part (i), we give a
preliminary lemma.

Lemma 4.1.4.5 ([vMS09, Lemma 6.6]). For each w ∈W0 and F ∈ HK
0 , we have

χ+(CwF ) = χ+(F ).

Proof. First, we have χ+ ◦ Cι = χ+ since, for any w ∈ W0, the element Tw ∈ H0 ⊂ HK
0 satisfies

Cι(Tw) = Tw−1 . Second, since C(e,s1) = CιC(s1,e)Cι by Remark 4.1.2.13, (4.1.52), it is sufficient to show
χ+ ◦ C(s1,e) = χ+. But it is a consequence of

C(s1,e)h = c(x1; k, q)
−1(ηL(T1)− k)h+ h, χ+(T1) = k, χ+ ◦ ηL = ηL ◦ χ+ (4.1.67)

for any h ∈ H0.

Part (i) of the proof of Fact 4.1.4.3. We first show that χ+ restricts to an F-linear W0-equivariant map
SOLbqKZ → K. By (4.1.42), Lemma 4.1.4.5 and (4.1.35), for any f ∈ HK

0 and w ∈W0, we have

χ+(τ(w)f) = χ+(Cwwf) = χ+(wf) = w
(
χ+(f)

)
.

Hence χ+ is W0-equivariant. Then, by Definition 4.1.2.8, (4.1.64) and (4.1.65), we obtain the W0-
equivariant and F-linear map χ+ : SOLbqKZ → K by restriction.

The part (ii) of the proof consists of several arguments, and we may say that this part is one of the
main body of [vMS09]. It is further divided into the following steps.
• Describe of SOLbqKZ in terms of the basic asymptotically free solution Φ.
• Analyze the map χ+ using Φ.
The first step requires the following Fact 4.1.4.6 and Fact 4.1.4.8.

Fact 4.1.4.6 ([vMS09, §§5.1–5.2], [vM11, §5.2], [St14, §3.2]). Denote w0 := s1 ∈W0. Let

W(x, ξ) =W(x, ξ; k, q) ∈ K =M(x, ξ) (4.1.68)

be a meromorphic function satisfying the q-difference equations (quasi-periodicity)

W(ql/2x, ξ) = (k/ξ)lW(x, ξ) (l ∈ Z) (4.1.69)

and the self-duality

W(ξ−1, x−1; k∗, q) =W(x, ξ; k, q). (4.1.70)

Here we used the redundant notation k∗ = k for the comparison with the (C∨
1 , C1) case (4.2.51). Then,

there is a unique element Ψ ∈ HK
0 satisfying the following conditions (i)–(iii).

(i) We have the self-dual solution

Φ :=WΨ ∈ SOLbqKZ(k, q), ι(Φ) = Φ.

(ii) We have a series expansion

Ψ(t, γ) =
∑

m,n∈N

Km,nx
−2mξ2n (Kα,β ∈ H0)

for (x, ξ) ∈ B−1
ε × B with Bε being some open ball of radius ε > 0, which is normally convergent

on compact subsets of B−1
ε ×Bε.
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(iii) K0,0 = Tw0 .
The solution Φ is called the basic asymptotically free solution of the bqKZ equation in [vMS09, Definition
5.5], [vM11, Definition 5.5] and the self-dual basic Harish-Chandra series in [St14, Definition 3.8].

Remark 4.1.4.7. The functionW is designed so that the elementW(x, ξ)Tw0
=W(x, ξ)T1 is a solution

of the formal asymptotic form of the quantum KZ equation C(lϖ,e)(x, ξ)f(q
−l/2x, ξ) = f(x, ξ) in the

region |x| � 0. Indeed, noting that we are working in H(1/k), recall from (4.1.54) the asymptotic form
of C(ϖ,e) = C1,0 in this region:

C1,0 ≈ C(0)
1,0 = kηL(T1Y

−1T−1
1 ).

The definition (4.1.47) of the map ηL and the K-module structure (4.1.31) yield ηL(T1Y
−1T−1

1 )T1 =
Y −1T1 = ξ−1T1. Thus we have

C
(0)
1,0(x, ξ)

(
W(q−1/2x, ξ)T1

)
=W(x, ξ)T1 ⇐⇒ kξ−1W(q−1/2x, ξ)T1 =W(x, ξ)T1

⇐⇒ W(q−1/2x, ξ) = k−1ξW(t, γ),

which holds by (4.1.69). See also the argument in [vMS09, §5.1]. We give an example of such W in
Example 4.1.4.12.

Fact 4.1.4.8 ([vMS09, (5.18), Lem. 5.12, Prop. 5.13], [vM11, Prop. 5.12]). Denoting w0 := s1 ∈W0, we
define U ∈ EndK

(
HK

0

)
= K⊗ End

(
H0

)
by

U(k−ℓ(w)Tw0Tw−1) := τ(e, w)Φ (w ∈W0).

Then the following statements hold.
(1) U is an invertible End(H0)-valued solution of the bqKZ equation. In particular, under the natural

isomorphism K⊗ End(H0) ∼= EndK(H
K
0 ), we have U ∈ GLK(H

K
0 ).

(2) U ′ ∈ K⊗ End
(
H0

)
is an End

(
H0

)
-valued meromorphic solution of the bqKZ equation if and only

if U ′ = UF for some F ∈ F⊗ End
(
H0

)
.

(3) U ∈ GLK
(
HK

0

)
restricts to an F-linear isomorphism U : HF

0 → SOLbqKZ.
(4) {τ(e, w)Φ | w ∈W0} is an F-basis of SOLbqKZ.

We turn to the second step, which requires the following Fact 4.1.4.9–Fact 4.1.4.11.

Fact 4.1.4.9 ([vMS09, Lemma 6.5 (ii), (6.3)]). For F ∈ EndK
(
HK

0

)
, we denote by

φFχ,v := χ(Fv) ∈ K (4.1.71)

the matrix coefficient of F with respect to χ ∈ H∗
0 and v ∈ H0. Also, using U in Fact 4.1.4.8, we define

a twisted algebra homomorphism ϑ′ : Dq → End
(
EndK(H

K
0 )

)
by

ϑ′(f)F = fF, ϑ′(w)F = w(F )U−1(τ(w)U)

for f ∈ C(x, ξ), w ∈W and F ∈ EndK
(
HK

0

)
. Then we have the following.

(1) ϑ′ is an algebra homomorphism.
(2) For D =

∑
s∈W0

Dss ∈ DW
q (see (4.1.55)), we have

φϑ
′(D)U

χ,v =
∑
s∈W0

Ds(φ
C−1

s U
χ,v ). (4.1.72)

(3) If χ ∈ H∗
0 satisfies χ(CsU) = χ(U) for all s ∈W0, then we have

Res(D)(φUχ,v) = φϑ
′(D)U

χ,v

for any D ∈ DW
q and v ∈ H0.
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Fact 4.1.4.10 ([vMS09, Proposition 6.9]). For h ∈ H(1/k), we have

ϑ′(Dx
h)U = ηL(h

†)U, (4.1.73)

where † : H(1/k)→ H(k) is the unique algebra anti-isomorphism satisfying

T †
1 = T−1

1 , π† = π−1.

Similarly, for h′ ∈ H(k), we have

ϑ′(Dξ
h′)U = Cιι(ηL(h

′‡))CιU, (4.1.74)

where ‡ : H(k)→ H(k) is the unique algebra anti-involution satisfying

T ‡
1 = T1, π‡ = π−1.

Fact 4.1.4.11 ([vMS09, Lemma 6.10]). For p ∈ C[z±1]W0 , we have

p(Y )† = p(Y )‡ = p(Y −1).

Now we can explain:

Part (ii) of the proof of Fact 4.1.4.3. We want to show χ+(f) ∈ SOLbMR(k, q) for f ∈ SOLbqKZ(1/k, q).
By Fact 4.1.4.8 (2) and the F-linearity of χ+, it is enough to consider the case f = Uv with v ∈ H0(1/k).
Then χ+(f) = φUχ+,v by (4.1.71).

Let us check the first equality of (4.1.63), extending it to general p ∈ C[T ]W0 . By (4.1.59), we have

(Lx
pφ

U
χ+,v)(t, γ) =

(
Res(Dx

p(Y ))(φ
U
χ+,v)

)
(t, γ).

Now, by Lemma 4.1.4.5, χ+ satisfies the condition of Fact 4.1.4.9 (3). Then we have(
Res(Dx

p(Y ))(φ
U
χ+,v)

)
(t, γ) = φ

ϑ′(Dx
p(Y ))U

χ+,v (t, γ),

Then, by (4.1.73) in Fact 4.1.4.10 and by Fact 4.1.4.11, we have

φ
ϑ′(Dx

p(Y ))U
χ+,v (t, γ) = φηL(p(Y )†)U

χ+,v (t, γ) = φηL(p(Y −1))U
χ+,v (t, γ).

Finally, by Fact 4.1.2.15 and that p is W0-invariant, we have

φηL(p(Y −1))U
χ+,v (t, γ) = p(γ−1)φUχ+,v(t, γ).

Hence we have the desired equality (Lx
pχ+(f))(t, γ) = p(γ−1)χ+(f)(t, γ).

Similarly, we can prove the second equality of (4.1.63), using (4.1.74) instead of (4.1.73).

Example 4.1.4.12. We cite from [vMS09, vM11, St14] two examples of the function W in (4.1.68).
(1) We denote the Jacobi theta function with elliptic nome q by

θ(z; q) := (q, z, q/z; q)∞ =
∏
n∈N

(1− qn+1)(1− qnz)(1− qn+1/z),

using the q-shifted factorial (1.1.1). It enjoys the properties

θ(qx; q) = θ(x−1; q) = −x−1θ(x; q), θ(qx−1; q) = θ(x; q), (4.1.75)

Then, denoting

θ(z, z′; q) := θ(z; q)θ(z′; q), (4.1.76)

we define the meromorphic function WA1 of x, ξ by

WA1(x, ξ) =WA1(x, ξ; k, q) :=
θ(−q1/4xξ; q1/2)

θ(−q1/4kx,−q1/4k−1ξ; q1/2)
. (4.1.77)

By the above identities, it satisfies the properties (4.1.69) and (4.1.70). Let us write them again:

WA1(q±1/2x, ξ; k, q) = (k/ξ)±1WA1(x, ξ; k, q), (4.1.78)

WA1(ξ−1, x−1; k, q) =WA1(x, ξ; k∗, q). (4.1.79)

We used the redundant notation k∗ = k again for the comparison with the (C∨
1 , C1) case (4.2.56).
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(2) For later use, let us cite another function Ŵ ∈ K =M(x, ξ) from [St14, p.279]:

ŴA1(x, ξ) = ŴA1(x, ξ; k, q) :=
θ(−q1/4k−1xξ; q1/2)

θ(−q1/4x; q1/2)
. (4.1.80)

This function satisfies the q-difference equation

ŴA1(q±1/2x, ξ; k, q) = (k/ξ)±1ŴA1(x, ξ; k, q), (4.1.81)

but does not satisfy the self-duality.

Remark 4.1.4.13. We give a few comments on the function WA1 in Example 4.1.4.12 (1).
(1) The function WA1 is equivalent to G(t, γ) in [vM11, (5.8)], and equivalent to the function W

[St14, §3.2] with k replaced by k−1. This parameter difference comes from the choice of the basic
representation ρxk−1,q in [vMS09, vM11] and ρxk,q in [St14] (see Remark 4.1.3.2).

(2) Let us explain the function G(t, γ) in [vM11], and how to obtain the functionWA1(x, ξ) from it. We
use the torus T = HomGroup(Λ,C×), the notation tλ of the value of t ∈ T at λ ∈ Λ, the notation of
a point (t, γ) ∈ T ×T , the ring L′ = C[T ×T ] and the isomorphism L′ ∼= L = C[x±1, ξ±1] explained
in Remark 4.1.2.2. The outline is that G(t, γ) is defined to be an element of M(T × T ), i.e., a
meromorphic function on T × T , and the function WA1(x, ξ) is obtained from G(t, γ) under the
isomorphismM(T × T ) ∼=M(x, ξ) induced by L′ ∼= L.
Let ϑ = ϑA1 be the theta function associated to the weight lattice Λ = Z$ of type A1 in the sense
of Looijenga [L76]. It is a meromorphic function on the torus T := HomZ(Λ,C×), and the value at
a point t ∈ T is given by

ϑ(t) = ϑA1(t) :=
∑
λ∈Λ

q1/2⟨λ,λ⟩tλ (4.1.82)

Let us also denote w0 := s1 ∈W0 and

γ0 = γ∗0 := kα ∈ T,

which are borrowed from [St14, (2.3),(2.4)]. There the general types are treated in a uniform way
under the notation γ0,d for our γ∗0 . The symbol ∗ indicates the duality anti-involution (4.1.22).
Then, the meromorphic function G on T × T is defined to be

G(t, γ) :=
ϑ(t(w0γ)

−1)

ϑ(γ0t)ϑ((γ∗0)
−1γ)

. (4.1.83)

Next we explain how to obtainWA1(x, ξ) from G(t, γ). Using the coordinate x = (t 7→ tϖ), we can
rewrite the lattice theta function as

ϑ(t) =
∑
l∈Z

ql
2/4xl = θ(−q1/4x; q1/2).

Using the other coordinate ξ = (γ 7→ γϖ), we can also rewrite tw0(γ)
−1 as (tw0(γ)

−1)ϖ = (tγ)ϖ =
xξ, γ0t as (γ0t)

ϖ = k⟨α,ϖ⟩tϖ = kx, and (γ∗0)
−1γ as ((γ∗0)

−1γ)ϖ = k−⟨α,ϖ⟩γϖ = k−1ξ. Hence, we
obtain the function WA1(x, ξ).

4.1.5 Bispectral Macdonald-Ruijsenaars function of type A1

In this subsection, we give an explicit solution of the bispectral Macdonald-Ruijsenaars q-difference
equation of type A1, following [NSh] and [St14, §5.3]. One caution is that we work on

SOLbMR(1/k, q),

so that the reciprocal parameter k−1 is used in this subsection. As in the previous Fact 4.1.4.3, we
assume 0 < q < 1. Let us denote ν := q1/2.
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Let us write again the bispectral Macdonald-Ruijsenaars equation (4.1.63):{
(Lx

p1
f)(x, ξ) = (ξ + ξ−1)f(x, ξ)

(Lξ
p1
f)(x, ξ) = (x+ x−1)f(x, ξ)

. (4.1.84)

By Proposition 4.1.3.5 and Remark 4.1.3.6, the operators can be written as

Lx
p1

= L(x; k, q), Lξ
p1

= L(ξ; k−1, q−1), (4.1.85)

L(x; k, q) :=
k − k−1x−2

1− x−2
Tν,x +

k−1 − kx−2

1− x−2
T−1
ν,x . (4.1.86)

First, we consider the asymptotic form of the x-side q-difference equation(
Lx
p1
− (ξ + ξ−1)

)
f(x) = 0

in the region |x| � 1. From (4.1.86) (also recall Remark 4.1.3.6), the asymptotic form is

Lx
p1
≈ Lx

(∞) := kTν,x + k−1T−1
ν,x .

Similarly, in the region |ξ| � 1, we have

Lξ
p1
≈ Lξ

(0)
:= k−1Tν,ξ + kT−1

ν,ξ ,

Now recall the functions WA1(x, ξ; 1/k, q) and ŴA1(x, ξ; 1/k, q):

WA1(x, ξ; 1/k, q) =
θ(−ν1/2xξ; ν)

θ(−ν1/2k−1x,−ν1/2kξ; ν)
, ŴA1(x, ξ; 1/k, q) :=

θ(−ν1/2kxξ; ν)
θ(−ν1/2x; ν)

. (4.1.87)

Lemma 4.1.5.1. The sets {WA1(x, ξ±1; 1/k, q)} and {ŴA1(x, ξ±1; 1/k, q)} are bases of solutions of the
asymptotic q-difference equation (

Lx
(∞) − (ξ + ξ−1)

)
f(x) = 0.

Similarly, the sets {WA1(x±1, ξ; 1/k, q)} and {ŴA1(x±1, ξ; k1/, q)} are bases of solutions of(
Lξ
(0) − (x+ x−1)

)
g(ξ) = 0.

Proof. As seen before, we have T±1
ν,xf(x) = (kξ)∓1f(x) for f(x) := WA1(x±1, ξ; 1/k, q), so that these

functions are solutions of the x-side equation. Since the equation is second-order and these functions are
linear independent by the property of the Jacobi theta function θ(x; q), we have the x-side statement. The
ξ-side is shown similarly using T±1

ν,ξWA1(x, ξ; 1/k, q) = (x/k)∓1WA1(x, ξ; 1/k, q). The same argument

works for ŴA1 .

Next, let us recall Heine’s basic hypergeometric q-difference equation [GR04, Chap. 1, Exercise 1.13]:(
Dz

H(a, b, c; q)u
)
(z) = 0, (4.1.88)

where the operator Dz
H is given by

Dz
H(a, b, c; q) := z(c− abqz)∂2q +

(1− c
1− q

+
(1− a)(1− b)− (1− abq)

1− q
z
)
∂q +

(1− a)(1− b)
(1− q)2

(4.1.89)

with (∂qu)(z) :=
(
u(z)−u(qz)

)
/
(
(1−q)z

)
. A solution of (4.1.88) is given by Heine’s basic hypergeometric

function

u(z) = 2φ1

[
a, b

c
; q, z

]
, (4.1.90)

where we used the notation (4.0.2).
The following relation between the Macdonald q-difference operator of type A1 and Heine’s basic

hypergeometric q-difference equation is well known.
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Lemma 4.1.5.2 (c.f. [St14, Lemma 5.4]). Let W(x) be a meromorphic function in x satisfying

W(q±1/2x) = (kξ)∓1W(x). (4.1.91)

Then, the function f(x) =W(x)u(k−2qx−2) is a meromorphic solution of the q-difference equation

(Lx
p1
f)(x) = (ξ + ξ−1)f(x)

if and only if u(z) is a meromorphic solution of the q-difference equation

(Dz
H(k2, k2ξ2, qξ2)u)(z) = 0, z = k−2qx−2.

Proof. A direct computation yields that the operator Dz
H(a, b, c; q) in (4.1.89) is proportional to

D′(a, b, c; q) := (c/q − abz)T 2
q,z − (1 + c/q − (a+ b)z)Tq,z + (1− z).

If a/b = q/c, then D′(a, ac/q, c; q) = (c/q)(1− a2z)T 2
q,z − (1+ c/q)(1− az)Tq,z + (1− z). Hence, defining

D′′(a, c; q) := T−1
q,z

1

1− az
D′

z(a, ac/q, c; q) = cq−1 1− a2z/q
1− az/q

Tq,z +
1− z/q
1− az/q

T−1
q,z − (1 + c/q),

we have (Dz
H(a, ac/q, c; q)u)(z) = 0 ⇐⇒ (D′′(a, c; q)u)(z) = 0. If moreover z = k−2qx−2, a = k2 and

c = qξ2, then we have(
Dz

H(k2, k2ξ2, qξ2; q)u
)
(z) = 0 ⇐⇒

(
ξ−1D′′(k2, qξ2; q)u

)
(z) = 0

⇐⇒
(1− k2x−2

1− x−2
ξTq,z +

1− k−2x−2

1− x−2
ξ−1T−1

q,z − (ξ + ξ−1)
)
u(z) = 0.

On the other hand, by the expression (4.1.85) and the condition (4.1.91), we have(
(Lx

p1
− (ξ + ξ−1))f

)
(x) = 0

⇐⇒
(k − k−1x−2

1− x−2
k−1ξ−1T−1

q,z +
k−1 − kx−2

1− x−2
kξTq,z − (ξ + ξ−1)

)
u(z) = 0

⇐⇒
(1− k2x−2

1− x−2
ξTq,z +

1− k−2x−2

1− x−2
ξ−1T−1

q,z − (ξ + ξ−1)
)
u(z) = 0.

Thus we have the desired equivalence.

Now we give an explicit bispectral solution of (4.1.84).

Proposition 4.1.5.3 (c.f. [NSh, Theorems 2.1, 2.2, (3.13)], [St14, Cor. 5.5]). We denote ν := q1/2.
(1) Define the function fA1(x, ξ) by

fA1(x, ξ) = fA1(x, ξ; k, q) :=WA1(x, ξ; 1/k, q)ϕA1(x, ξ; k, q),

ϕA1(x, ξ) = ϕA1(x, ξ; k, q) :=
(qξ2; q)∞

(k−2qξ2; q)∞
2φ1

[
k2, k2ξ2

qξ2
; q,

q

k2x2

]
.

(4.1.92)

Here we used the function WA1(x, ξ; 1/k, q) in (4.1.87), and assumed
∣∣k−2qx−2

∣∣ < 1. Then fA1

satisfies the following properties.
(i) It is a solution of the bispectral problem (4.1.84).
(ii) It has the symmetry (the inversion invariance in [St14])

fA1(x, ξ) = fA1(x−1; ξ) = fA1(x, ξ−1).

(iii) It has the self-duality
fA1(x, ξ; k, q) = fA1(ξ−1;x−1; k∗, q),

using the redundant notation k∗ = k for the comparison with the (C∨
1 , C1) case.
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Recalling the W-action on K = M(T × T ) in (4.1.35), we express the subset of SOLbMR(1/k, q)
satisfying these properties as

SOLW∗

bMR(1/k, q) := {f ∈ SOLbMR(1/k, q) | (ii), (iii)}.

Thus, we can restate the claim as

fA1 ∈ SOLW∗

bMR(1/k, q).

(2) Defining ξl := k−1ν−l for l ∈ N, we have

fA1(x, ξl) = clP
A1

l (x),

cl :=
(−k)−lν−(

l+1
2 )

θ(−k2νl+ 1
2 ; ν)

(k−2q1−l; q)∞
(k−4q1−l; q)∞

, PA1

l (x) := xl2φ1

[
k2, q−l

k−2q1−l
; q,

q

k2x2

]
.

(4.1.93)

The function PA1

l (x) satisfies the following three conditions.
(i) It is an eigenfunction of the Macdonald-Ruijsenaars q-difference operator Lx

p1
of type A1.

(ii) It is a Laurent polynomial in x belonging to xlC[x−1], and is invariant under the replacement
x 7→ x−1.

Moreover, these conditions uniquely determine the function PA1

l (x) up to constant multiplication,
and the eigenvalue in (i) is p1(ξ

−1
l ) = ξ−1

l + ξl.

We will give an almost self-consistent proof, except the following equality (4.1.94).

Fact 4.1.5.4 ([NSh, (4.11)]). The function ϕA1(x, ξ) satisfies

ϕA1(x, ξ) =
(k2, qx−2ξ2; q)∞

(k−2qx−2, k−2qξ2; q)∞
2φ1

[
k−2qx−2, k−2qξ2

qx−2ξ2
; q, k2

]
(4.1.94)

under the condition |k| < 1. In particular, we have

ϕA1(x, ξ) = ϕA1(ξ−1;x−1). (4.1.95)

The equality (4.1.94) can be shown using Heine’s transformation formula for 2φ1 series [GR04, (1.4.1)].
See also [NSh, (4.10)] for the calculation.

Proof of Proposition 4.1.5.3. For (1), we follow the argument of [St14, Lemma 2.18]. Let us denote
WA1(x, ξ) :=WA1(x, ξ; 1/k, q) for simplicity, and recall the quasi-periodicity and the self-duality:

WA1(ξ−1, x−1) =WA1(x, ξ), WA1(νx, ξ) = (kξ)−1W(x, ξ). (4.1.96)

The first equality of (4.1.96) and (4.1.95) yield the self-duality (iii). The second equality of (4.1.96) is
nothing but the condition (4.1.91), so that Lemma 4.1.5.2 and (4.1.90) yield

Lx
p1
fA1(x, ξ) = (ξ + ξ−1)fA1(x, ξ) = p1(ξ

−1)fA1(x, ξ). (4.1.97)

On the other hand, (4.1.85) shows Lξ
p1

= L(ξ; k−1, q−1) = IL(ξ; k, q)I, where I is the operator g(ξ) 7→
(Ig)(ξ) := g(ξ−1) for a function g(ξ). Then, the self-duality (iii) and the eigen-property (4.1.97) imply

Lξ
p1
fA1(x, ξ) =

(
IL(ξ; k, q)I

)
fA1(ξ−1;x−1) = IL(ξ; k, q)fA1(ξ;x−1) = I

(
p1(x)f

A1(ξ;x−1)
)

= p1(x)f
A1(ξ−1;x−1) = (x+ x−1)fA1(x, ξ).

Hence (iii) holds.
Before showing (1) (ii), we show (2). The equality in the statement is a consequence of

WA1(x, ξl; 1/k, q) = (−ν−1/2k−1x)lν−(
l
2) = xlcl,

which can be checked using θ(x; q) = (q, x, q/x; q)∞. The condition (2) (i) is a consequence of (4.1.97).
The condition (2) (ii) can be checked by the formula 4.1.93 (see also Remark 4.1.5.5 (1)). The uniqueness
is well-known in the theory of Macdonald polynomials (see also Remark 4.1.5.5 (1)).

Now we show the remaining (1) (ii). By (2) (ii), we have fA1(x, ξl) = fA1(x−1; ξl) for any l ∈ N. Then,
applying the identity theorem in complex analysis to the analytic function g(ξ) := fA1(x, ξ)−fA1(x−1; ξ),
we have fA1(x, ξ) = fA1(x−1; ξ) for any ξ in the domain of definition. Combining it with the self-duality
(1) (iii), we have fA1(x, ξ) = fA1(x, ξ−1). Hence we have (1) (ii).
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Remark 4.1.5.5. Some comments on Proposition 4.1.5.3 are in order.
(1) Defining β ∈ C by k = νβ , the Laurent polynomial PA1

l is equal to

PA1

l (x) =

[
β + l − 1

l

]−1

q

∑
i+j=l

[
β + i− 1

i

]
q

[
β + j − 1

j

]
q

xi−j , (4.1.98)

where we used the q-binomial coefficient (4.0.3). It is nothing but the Macdonald symmetric poly-
nomial of type A1 [M03, (6.3.7)], and is proportional to the continuous q-ultraspherical polynomial,
or the Rogers polynomial. See [M03, §6.3, pp.156–157] for the detail.

(2) In [NSh], Noumi and Shiraishi gave an explicit bispectral solution f(x1, . . . , xn; s1, . . . , sn) of type
GLn. The above solution fA1(x, ξ) is obtained by specializing (x1, x2) = (x, x−1) and (s1, s2) =
(ξ, ξ−1) in the solution f(x1, x2; s1, s2) of type GL2. See also Stokman [St14, Corollary 5.5] for the
uniqueness of f(x1, x2; s1, s2).

Let us cite another bispectral solution.

Fact 4.1.5.6 ([St14, Theorem 4.6, (5.18)]). Define a meromorphic function EA1
+ (x, ξ) = EA1

+ (x, ξ; k, q) ∈
K =M(x, ξ) by

EA1
+ (x, ξ; k, q) :=

θ(−ν1/2k; ν)
θ(−ν1/2ξ; ν)

(k2ξ−2, k2; q)∞
(ξ−2, k4; q)∞

ŴA1(x, ξ; 1/k, q)2φ1

[
k2, k2ξ2

qξ2
; q,

q

k2x2

]
+ (ξ 7→ ξ−1)

=
θ(−ν1/2k,−ν1/2kxξ; ν)
θ(−ν1/2ξ,−ν1/2x; ν)

(k2ξ−2, k2; q)∞
(ξ−2, k4; q)∞

2φ1

[
k2, k2ξ2

qξ2
; q,

q

k2x2

]
+ (ξ 7→ ξ−1),

(4.1.99)

where the second term is obtained by replacing ξ in the first term with ξ−1. Then the function EA1
+

enjoys the following properties (i)–(iii).
(i) It is a solution of the bispectral problem (4.1.84).
(ii) It has the symmetry (the inversion invariance in [St14])

EA1
+ (x, ξ) = EA1

+ (x−1; ξ) = EA1
+ (x, ξ−1).

(iii) It has the self-duality
EA1
+ (x, ξ; k, q) = EA1

+ (ξ−1;x−1; k∗, q),

using the redundant notation k∗ = k for the comparison with the (C∨
1 , C1) case.

Recalling the W-action on K =M(x, ξ) in (4.1.35), we express the subset of SOLbMR(1/k, q) satisfying
these properties as

SOLW∗

bMR(1/k, q) := {f ∈ SOLbMR(1/k, q) | (ii), (iii)}.

Thus, we can restate the claim as
EA1
+ ∈ SOLW∗

bMR(1/k, q).

Following [St14], we call it the basic hypergeometric function of type A1.

Remark 4.1.5.7. Some comments on the function EA1
+ are in order.

(1) As explained right after [St14, Definition 2.19], we have the basic hypergeometric function of
arbitrary type. The reduced case, including the above EA1

+ (x, ξ; k, q), was introduced by Cherednik
[C97b, C09] under the name of global spherical function. The non-reduced case (type (C∨

1 , C1))
was introduced by Stokman [St03], and the uniform approach was discussed in [St14]. The GL2

type is written down in [St14, (5.18)], from which we can recover the A1 case.
(2) Although we take (4.1.99) as the definition of the basic hypergeometric function EA1

+ , the actual
statement of [St14, Theorem 4.6] is that E+ (of arbitrary type) has the c-function expansion with
respect to the self-dual basic Harish-Chandra series Φ (see Fact 4.1.4.6 for type A1), and defined
for generic η ∈ T . The c-function expansion is given in the form

E+(t, γ; k, q) =
∑

w∈W0

c(t, wγ; k, q)Φ(t, wγ; k, q).
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4.2 Type (C∨1 , C1)

We discuss the type (C∨
1 , C1), or the non-reduced type. See also [St14, §3, §5.2].

4.2.1 Extended affine Hecke algebra

First, we recall the affine root system of type (C∨
1 , C1) and the extended affine Weyl group, following

[M03, §1, §2, §6.4].
We consider the one-dimensional real Euclidean space (V, 〈·, ·〉) with

V = Rε, 〈ε, ε〉 = 1.

Similarly as in §4.1.1, we denote by F the space of affine real functions on V , and identify it with V ⊕Rc.
Using the gradient map D : F → V , we extend 〈·, ·〉 to F .

Let S(C∨
1 , C1) := {m(±ε+ 1

2n) | m ∈ {1, 2}, n ∈ Z} be the affine root system S(C∨
1 , C1) in the sense

of Macdonald [M03]. A basis is given by {a0 := 1
2c− ε, a1 := ε}, and the corresponding simple reflections

si : V → V for i = 0, 1 are given by the formula (4.1.2) with a∨i := 2ai/〈ai, ai〉 = 2ai ∈ F . Explicitly, we
have

s1(rε) = −rε, s0(rε) = (1− r)ε (r ∈ R). (4.2.1)

We denoteW0 := 〈s1〉 ⊂ O(V, 〈·, ·〉), which is isomorphic to S2. TheW0-action (4.2.1) on V preserves

Λ := Zε ⊂ V,

the coroot lattice of the root system R(C1) = {±2ε} generated by (2ε)∨ = ε. We also denote by
t(Λ) = {t(λ) | λ ∈ Λ} is the abelian group with relations t(λ) t(µ) = t(λ + µ) for λ, µ ∈ Λ. The group
t(Λ) acts on V by translation (4.1.4). Then, the extended affine Weyl group W of S(C∨

1 , C1) is defined
to be the subgroup of the isometries on (V, 〈·, ·〉) generated by W0 and t(Λ).

W :=W0 n t(Λ). (4.2.2)

In particular, we have the relation

s1 t(λ)s1 = t(s1(λ)) (λ ∈ Λ) (4.2.3)

with s1(λ) given by (4.2.1).
As an abstract group, W is generated by s0 and s1 with fundamental relations

s20 = s21 = e. (4.2.4)

The following relations hold in W .

t(ε) = s0s1, t(−ε) = s1s0. (4.2.5)

Compare the first relation with (4.1.9): denoting sA1
i (i = 0, 1) for the generators of the extended Weyl

group WA1 of S(A1), we have t(α) = sA1
0 sA1

1 .
Next, we recall the extended affine Hecke algebra H associated to the affine root system S(C∨

1 , C1).
For the detail, see [M03, §4, §6.4]. Hereafter we fix nonzero complex numbers k1, k0, l1, l0 and denote

k := (k1, k0), l := (l1, l0). (4.2.6)

The symbols k1 and k0 are borrowed from [NS04].

Remark 4.2.1.1. Our parameters (k1, k0, l1, l0) correspond to (t
1/2
1 , t

1/2
0 , l

1/2
1 , l

1/2
0 ) in [N95] and [T10].

Definition 4.2.1.2. The extended affine Hecke algebra H(k) is the C-algebra generated by T1 and T0
with fundamental relations

(Ti − ki)(Ti + k−1
i ) = 0 (i = 1, 0). (4.2.7)

In this § 4.2, we denote H := H(k) for simplicity.

103



As in §4.1.1, we denote by `(w) the length of w ∈W . If we have a reduced expression w = si1 · · · sil ,
ij ∈ {0, 1}, then `(w) = l. For such w ∈W , we set

Tw := Ti1 · · ·Til ∈ H.

Then Tw is independent of the choice of reduced expression. We also define Y ±1 ∈ H by

Y := T0T1, Y −1 := T−1
1 T−1

0 , (4.2.8)

which can be regarded as deformations of t(ε) ∈ W given in (4.2.5). As in the case of type A1 (§ 4.1.1),
the monomials in C[Y ±1] ⊂ H are denoted as Y λ := Y l for λ = lε ∈ Λ, l ∈ Z. We also have a C-linear
isomorphism H ∼= H0 ⊗ C[Y ±1], where

H0 := C+ CT1
is the subalgebra of H generated by T1.

Remark 4.2.1.3. Our choice (4.2.8) of the Dunkl operator Y follows [M03, §6.4], which is the opposite
of [N95, T10, St14]. The choice (4.2.8) is compatible with the choice for type A1 (see (4.1.12)).

Next, we review Noumi’s [N95] basic representation ρk,l,q of H = H(k). Choose and fix a parameter

q1/2 ∈ C×. The extended affine Weyl group W acts on the Laurent polynomial ring C[x±1] by

(s1,qf)(x) = f(x−1), (s0,qf)(x) = f(qx−1), (t(ε)qf)(x) = f(qx) = (Tq,xf)(x), (4.2.9)

where Tq,x denotes the q-shift operator on the variable x. Then, we have an algebra embedding

ρk,l,q : H(k) ↪−→ End(C[x±]), ρ(Ti) := c(xi; ki, li)si,q + b(xi; ki, li) (i = 1, 0) (4.2.10)

with x1 := x2, x0 := qx−2 and

c(z; k, l) := k−1 (1− klz1/2)(1 + kl−1z1/2)

1− z
, (4.2.11)

b(z; k, l) := k − c(z; k, l) = (k − k−1) + (l − l−1)z1/2

1− z
.

Here we understand x
1/2
1 = x and x

1/2
0 = q1/2x−1. We call ρk,l,q the basic representation of H(k).

Definition 4.2.1.4. The double affine Hecke algebra (DAHA) of type (C∨
1 , C1), denoted as

H = H(k, l, q) = H(C∨
1 ,C1)(k, l, q),

is defined to be the C-subalgebra of End(C[x±1]) generated by the multiplication operators by x±1 and
the image ρk,l,q(H(k)).

As an abstract algebra, the DAHA H of type (C∨
1 , C1) is presented with generators T1, T0, T

∨
1 , T

∨
0

and relations

(Ti − ki)(Ti + k−1
i ) = 0 (T∨

i − li)(T∨
i + l−1

i ) = 0 (i = 1, 0),

T∨
1 T1T0T

∨
0 = q−1/2.

(4.2.12)

See [Sa99], [NS04], [M03, §4.7] and [C05] for the detail. The symbols T∨
i are borrowed from [NS04]. To

recover Definition 4.2.1.4, we put

T∨
1 = X−1T−1

1 , T∨
0 = q−1/2T−1

0 X, (4.2.13)

by which we can extend the map ρk,l,q of (4.2.12) to the embedding ρk,l,q : H ↪→ End(C[x±1]).
Similarly as the type A1, we have the Poincaré-Birkhoff-Witt decomposition of H:

H ∼= C[X±1]⊗H0 ⊗ C[Y ±1], (4.2.14)
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and the duality anti-involution

∗ : H(k, l, q) −→ H(k∗, l∗, q), h 7−→ h∗, (4.2.15)

which is a unique C-algebra anti-involution determined by

T ∗
1 := T1, (Y λ)∗ := x−λ, (xλ)∗ := Y −λ

for λ ∈ Λ and

(k∗, l∗) = (k∗1 , k
∗
0 , l

∗
1, l

∗
0) := (k1, l1, k0, l0). (4.2.16)

We also denote by

H(k, l)∗ ⊂ End(C[x±1]) (4.2.17)

the image of H(k, l) ⊂ H(k, l, q) under the duality anti-involution ∗.

4.2.2 Bispectral quantum Knizhnik-Zamolodchikov equation

Let us explain the bispectral qKZ equation of the affine root system S(C∨
1 , C1), mainly following [T10,

§4.1, §4.2]. Hereafter we choose and fix k1, k0, l1, l0, q
1/2 ∈ C×, and consider the affine Hecke algebra

H = H(k), the basic representation ρk,l,q : H(k) ↪→ End(C[x±1]) and the DAHA H = H(k, l, q).

The affine intertwiners

Following [C05, §1.3] and [T10, §4.2], we introduce the affine intertwines of type (C∨
1 , C1). We set

x1 := x2, x0 := qx−2, and define S̃1, S̃0 ∈ End(C[x±1]) by

S̃i := di(x)si, di(x) = di(x; k, l, q) := k−1
i (1− kilix1/2i )(1 + kil

−1
i x

1/2
i ) (i = 0, 1). (4.2.18)

The elements S̃1 and S̃0 belong to the subalgebra H ⊂ End(C[x±1]) since

S̃i = (1− xi)ρk,l,q(Ti)− (ki − k−1
i )− (li − l−1

i )x
1/2
i . (4.2.19)

More generally, for each w ∈ W , taking a reduced expression w = sj1 · · · sjr with j1, . . . , jr ∈ {0, 1}, we
define the element S̃w ∈ H by

S̃w := dj1(x) · (sj1dj2)(x) · · · · · (sj1 · · · sjr−1djr )(x) · w, (4.2.20)

The element S̃w ∈ H is independent of the choice of reduced expression w = sj1 · · · sjr by the same
argument as the type A1 case, using

dw(x) := dj1(x) · (sj1dj2)(x) · · · · · (sj1 · · · sjr−1
djr )(x) (4.2.21)

Also, by [T10, §4.1], we have

S̃w = S̃j1 · · · S̃jr . (4.2.22)

We call the elements S̃w in (4.2.20) the affine intertwiners of type (C∨
1 , C1).

The double extended affine Weyl group

As in the case of type A1 (§ 4.1.2), let us consider the ring

L := C[x±1, ξ±1] ∼= C[x±1]⊗ C[ξ±1].

We can regard H as an L-module by

(f ⊗ g)h := f(x)h g(Y ) (4.2.23)
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for f = f(x) ∈ C[x±1], g = g(ξ) ∈ C[ξ±1] and h ∈ H, where x is understood as the multiplication
operator by x itself, and Y is the Dunkl operator. By the PBW type decomposition (4.2.14), we have
an L-module isomorphism

H ∼= HL
0 := L⊗H0. (4.2.24)

As in the case of type A1, we regard f(x, ξ) ∈ HL
0 as a function of x, ξ valued in H0.

The double extended Weyl group W is introduced in the same way (4.1.33) as the type A1 case. Let
ι denote the nontrivial element of the group Z2 := Z/2Z, and define W to be the semi-direct product
group

W := Z2 n (W ×W ),

with ι ∈ Z2 acting on W ×W by ι(w,w′) = (w′, w)ι for (w,w′) ∈W ×W .
The groupW acts on L in the same way as the type A1 (see §4.1.2). Define the involution � : W →W

by (4.1.34), i.e., w⋄ := w for w ∈W0 and t(λ)⋄ := t(−λ) for λ ∈ Λ. Then the W-action on L is given by

(wf)(x) := (wqf)(x), (w′g)(ξ) := ((w′⋄)qg)(ξ), (ιF )(x, ξ) = F (ξ−1, x−1) (4.2.25)

for w ∈W =W × {e} ⊂W, w′ ∈W = {e} ×W ⊂W and f = f(x), g = g(ξ), F = F (x, ξ) ∈ L. Here wq

denotes the W -action in (4.2.9).
We also define σ̃(w,w′), σ̃ι ∈ EndC(H) by

σ̃(w,w′)(h) := S̃whS̃
∗
w′ , σ̃ι(h) := h∗

for h ∈ H, where ∗ is the duality anti-involution (4.2.15). Then, as in Fact 4.1.2.4, we have

σ̃(w,w′)(fh) = ((w,w′)f)σ̃(w,w′)(h), σ̃ι(fh) = (ιf)σ̃ι(h) (4.2.26)

for h ∈ H, f ∈ L and w,w′ ∈W . The proof is essentially the same as Fact 4.1.2.4 ([vM11, Lemma 3.5]).

The cocycle

As in the case of type A1 (see (4.1.38)), we denote by

K :=M(x, ξ)

the meromorphic functions of variables x, ξ, and define

HK
0 := K⊗H0

∼= K⊗L H,

We can express an element f ∈ HK
0 as (4.1.39): f =

∑
w∈W0

fwTw ∈ HK
0 , fw ∈ K. The W-action (4.2.25)

on L naturally extends to that on K, and we have a W-action on HK
0 by the formula (4.1.40):

wf :=
∑

w∈W0

(wfw)Tw (4.2.27)

for f =
∑

w∈W0
fwTw ∈ HK

0 and w ∈W.

By the argument right before Fact 4.1.2.5, we have σ̃(w,w′), σ̃ι ∈ EndC(H
K
0 ) such that the formulas

(4.2.26) are valid for f ∈ K and h ∈ HK
0 . Then, similarly as Fact 4.1.2.5, we have:

Fact 4.2.2.1 ([T10, §4.2]). There is a unique group homomorphism τ : W→ GLC(H
K
0 ) satisfying

τ(w,w′)(f) = dw(x)
−1d∗w′(ξ−1)−1 · σ̃(w,w′)(f), τ(ι)(f) = σ̃ι(f)

for w,w′ ∈ W and f ∈ HK
0 . Here we denoted by d∗w′ the image of dw′ under the duality anti-involution

∗ in (4.2.17), and · denotes the L-action (4.2.23).

By the W-action (4.2.27) on HK
0 , we can regard GLK(H

K
0 ) as a W-group via the corresponding

conjugation action:
(w, A) 7−→ wAw−1 (w ∈W, A ∈ GLK(H

K
0 )).

Then, we have the following analogue of Fact 4.1.2.7.
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Fact 4.2.2.2 ([T10, §4.2]). The map

w 7−→ Cw := τ(w)w−1 (4.2.28)

is a cocycle of W with values in the W-group GLK(H
K
0 )
∼= K⊗GLC(H0).

We denote Cw(x, ξ) to stress that the cocycle can be regarded as a meromorphic function of x, ξ
valued in GLC(H0)

Definition 4.2.2.3. Denote Cl,m := C(t(lϵ),t(mϵ)) for l,m ∈ Z. The system of q-difference equations

Cl,m(x, ξ)f(q−lx, qmξ) = f(x, ξ) (l,m ∈ Z)

for f = f(x, ξ) ∈ HK
0 is called the bispectral quantum KZ equations (the bqKZ equations for short) of

type (C∨
1 , C1). We also denote

SOL
(C∨

1 ,C1)
bqKZ = SOL

(C∨
1 ,C1)

bqKZ (k, l, q) := {f ∈ HK
0 | f satisfies the bqKZ equations of type (C∨

1 , C1)}.

In this § 4.2, we abbreviate SOLbqKZ := SOL
(C∨

1 ,C1)
bqKZ .

Similarly as Lemma 4.1.2.12, we can compute the action of C1,0 and C0,1 on HK
0 . We define an

algebra homomorphisms ηL : H → EndK(H
K
0 ) by

ηL(A)
( ∑
w∈W0

fwTw

)
:=

∑
w∈W0

fw(ATw), (4.2.29)

for A ∈ H and f =
∑

w∈W0
fwTw ∈ HK

0 . Similarly, using the subspace H∗ ⊂ H in (4.2.17), we define an

algebra anti-homomorphism ηR : H∗ → EndK(H
K
0 ) by

ηR(A)
( ∑
w∈W0

fwTw

)
:=

∑
w∈W0

fw(TwA) (4.2.30)

for A ∈ H∗ and f =
∑

w∈W0
fwTw ∈ HK

0 .

Lemma 4.2.2.4. The cocycles C1,0, C0,1 ∈ GLK(H
K
0 )
∼= K⊗GL(H0), regarded as functions of x and ξ

are expressed as

C1,0 = RL
0 (x0)R

L
1 (x

′
1), C0,1 = RR

0 (ξ
′
0)R

R
1 (ξ

′
1), (4.2.31)

where we denoted x0 := qx−2, x′1 := q2x−2, ξ′0 := qξ2, ξ′1 := q2ξ2 and

RL
i (z) := ci(z)

−1
(
ηL(Ti)− bi(z)

)
=

ki

(1− kiliz1/2)(1 + kil
−1
i z1/2)

(
(1− z)ηL(Ti)− (ki − k−1

i )− (li − l−1
i )z1/2

)
,

RR
i (z) := c∗i (z)

−1
(
ηR(T

∗
i )− b∗i (z)

)
=

k∗i
(1− k∗i l∗i z1/2)(1 + k∗i (l

∗
i )

−1z1/2)

(
(1− z)ηR(T ∗

i )− (k∗i − (k∗i )
−1)− (l∗i − (l∗i )

−1)z1/2
)

for i = 0, 1, using the duality anti-involution ∗ in (4.2.15).

Proof. We denote by sxi and sξi for i = 0, 1 the action (4.2.25) of si in terms of variables x and ξ of
K =M(x, ξ). Explicitly, for f(x, ξ) ∈ K, we have

(sx1f)(x, ξ) = f(x−1, ξ), (sx0f)(x, ξ) = f(qx−1, ξ),

(sξ1f)(x, ξ) = f(x, ξ−1), (sξ0f)(x, ξ) = f(x, q−1ξ−1).

By a similar calculation as Lemma 4.1.2.12, the cocycle values for (s1, e) and (s0, e) are given by C(s1,e) =
RL

1 (x1) with x1 := x2 and C(s0,e) = RL
0 (x0), respectively. Then the cocycle condition gives

C1,0 = C(s0s1,e) = C(s0,e)(C(s1,e))
(s0,e) = RL

0 (x)
(
sx0R

L
1 (x1)

)
= RL

0 (x0)R
L
1 (x

′
1),
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where sx0 means the (s1, e)-action given in (4.2.25).
Next, using the duality anti-involution ∗ and the K-action (4.2.23), the cocycle values for (e, s1) and

(e, s0) are given by C(e,s1) = RL
1 (x1)

∗ = RR
1 (ξ

−2) and C(e,s0) = RL
0 (x0)

∗ = RR
0 (ξ

′
0) with ξ

′
0 = (x0)

∗ = qξ2.
Thus, we have

C0,1 = C(e,s0s1) = C(e,s0)(C(e,s1))
(e,s0) = RR

0 (ξ
′
0)
(
sξ0R

R
1 (ξ

−2)
)
= RR

0 (ξ
′
0)R

R
1 (ξ

′
1).

Remark 4.2.2.5. Some comments on Lemma 4.2.2.4 are in order.
(1) Explicitly, we have

C1,0 = J0(x)J1(x), C1,0 = K0(ξ)K1(ξ) (4.2.32)

with

J0(x) :=
k0

(1− k0l0q1/2x−1)(1 + k0l
−1
0 q1/2x−1)

·

·
(
(1− qx−2)ηL(T0)− (k0 − k−1

0 )− (l0 − l−1
0 )q1/2x−1

)
,

J1(x) :=
k1

(1− k1l1qx−1)(1 + k1l
−1
1 qx−1)

(
(1− q2x−2)ηL(T1)− (k1 − k−1

1 )− (l1 − l−1
1 )qx−1

)
,

K0(ξ) :=
l1

(1− l1l0q1/2ξ)(1 + l1l
−1
0 q1/2ξ)

(
(1− qξ2)ηR(T ∗

0 )− (l1 − l−1
1 )− (l0 − l−1

0 )q1/2ξ
)
,

K1(ξ) :=
k1

(1− k1k0qξ)(1 + k1k
−1
0 qξ)

(
(1− q2ξ2)ηR(T1)− (k1 − k−1

1 )− (k0 − k−1
0 )qξ

)
.

(2) As in Remark 4.1.2.13, we have

C(e,w)(x, ξ) = CιC(w,e)(ξ
−1, x−1)Cι (4.2.33)

for any w ∈W . The formulas (4.2.31) are compatible with 4.2.33.
(3) The formulas (4.2.31) are also consistent with the computation of C0,1 in the final paragraph of

[T10, §4.2]. Note that we are working on the different choice (4.2.8) of Y from loc. cit.

For later use, we give a (C∨
1 , C1)-analogue of Fact 4.1.2.14.

Lemma 4.2.2.6. Let A := C[x−1] ⊂ L = C[x±1, ξ±1], and Q0(A) be the subring of the quotient field
Q(A) = C(x) consisting of rational functions which are regular at x−1 = 0. Considering Q0(A)⊗C[ξ±1]
as subring of C(x, ξ), we have

C1,0 ∈ (Q0(A)⊗ C[ξ±1])⊗ EndH0. (4.2.34)

Moreover, setting C
(0)
1,0 := C1,0|x−1=0 ∈ C[ξ±1]⊗ EndH0, we have

C
(0)
1,0 = k1k0ηL(T1Y

−1T−1
1 ). (4.2.35)

Similarly, defining B := C[ξ] ⊂ L and Q0(B) ⊂ Q(B) = C(ξ) to be the subring consisting of rational
functions which are regular at the point ξ = 0, we have

C0,1 ∈ (C[x±1]⊗Q0(B))⊗ EndH0.

Moreover, setting C
(0)
0,1 := C0,1|ξ=0 ∈ C[x±1]⊗ EndH0, we have

C
(0)
0,1 = k1l1ηR(T1Y

−1T−1
1 ). (4.2.36)

Proof. We only show the statements for C1,0. By the expression (4.2.31) of C1,0, we have C1,0 ∈
(Q0(A)⊗ C[ξ±1])⊗ EndH0. To get (4.2.35), we compute

lim
x→∞

C1,0 =
(
lim
x→∞

J1(x)
)(

lim
x→∞

J0(x)
)
= k0(ηL(T0)− k0 + k−1

0 )k1(ηL(T1)− k1 + k−1
1 )

= k1k0ηL(T
−1
0 )ηL(T

−1
1 ) = k1k0ηL(T1Y T

−1
1 ).

Here we used T−1
i = Ti − ki + k−1

i from (4.2.7) and Y = T1T0 from (4.2.8).
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Let us also record the (C∨
1 , C1)-version of Fact 4.1.2.15.

Fact 4.2.2.7 (c.f. [vM11, Lemma 4.2]). For w ∈W0, we set

τw := ηL(S̃
∗
w−1)Te ∈ C[ξ±1]⊗H0 ⊂ HK

0 .

Then the following statements hold.
(1) {τw | w ∈W0} is a K-basis of HK

0 consisting of eigenfunctions for the ηL-action of C[Y ±1] ⊂ H on
HK

0 .
(2) For p ∈ C[ξ±1] and w ∈ W0, we have ηL(p(Y ))τw(ξ) = (w−1p)(ξ)τw(ξ) as H0-valued regular

functions in ξ.

The proof for the reduced type in [vM11] also works for the non-reduced type (C∨
1 , C1), so we omit

it.

4.2.3 Bispectral Askey-Wilson q-difference equation

As in § 4.1.3, we consider the crossed product algebra

DW
q := WnC(x, ξ)

where W acts on C(x, ξ) by (4.1.35), and also consider the subalgebra

Dq :=
(
t(Λ)× t(Λ)

)
nC(x, ξ) ⊂ DW

q ,

which is identified with the algebra of q-difference operators on C(x, ξ). We can expand D ∈ DW
q as

D =
∑
w∈W

fww =
∑

s∈W0×W0

Dss, (4.2.37)

where fw ∈ C(T × T ) and Ds =
∑

t∈t(Λ)×t(Λ) gtst ∈ Dq. We also use Res : DW
q → Dq given by

Res(D) :=
∑

s∈W0×W0

Ds. (4.2.38)

Next, following (4.1.57) and (4.1.58), we introduce two realizations of the basic representation of type
(C∨

1 , C1). Let us denote
(1/k, 1/l) := (1/k1, 1/k0, 1/l1, 1/l0).

Then, the first is given by the algebra homomorphism

ρx1/k,1/l,q : H(1/k) −→ C(x)[W × {e}] ⊂ DW
q (4.2.39)

given by the map ρ1/k,1/l,q in (4.2.10). The second is

ρξk∗,l∗,1/q : H(k∗) −→ C(ξ)[{e} ×W ] ⊂ DW
q . (4.2.40)

Then, recalling Definitions 4.1.3.1 and 4.1.3.3, let us introduce:

Definition 4.2.3.1. For h ∈ H(1/k) and h′ ∈ H(k∗), we define Dx
h, D

ξ
h′ ∈ DW

q by

Dx
h := ρx1/k,1/l,q(h), Dξ

h′ := ρξk∗,l∗,1/q(h
′).

Also, for an invariant polynomial p = p(z) ∈ C[z±1]W0 = C[z + z−1], we define Lx
p , L

ξ
p ∈ Dq by

Lx
p = Lx

p(k, l, q) := Res(Dx
p(Y )), Lξ

p = Lξ
p(k, l, q) := Res(Dξ

p(Y )), (4.2.41)

where we regarded p(Y ) ∈ H(1/k) for Lx
p , and p(Y ) ∈ H(k∗) for Lξ

p, and used the map Res in (4.2.38).
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As in Definition 4.1.3.4, we denote by p1(z) := z + z−1, which is the generator of the invariant
polynomial ring C[z±1]W0 . Then, similarly as in Proposition 4.1.3.5, we can compute Lx

p1
and Lξ

p1
using

the function c(z; t, l) in (4.2.11). Let us denote the action of w ∈W on functions of x given in (4.2.9) as
wx. It is compatible with ρx1/k,q in (4.2.39), and explicitly,

sx0(x) := qx−1, sx1(x) = x−1, t($)x(x) = q1/2x. (4.2.42)

We also denote by wξ the action on functions of ξ. It is compatible with ρξk,1/q in (4.2.40), and explicitly,

sξ0(ξ) := q−1ξ−1, sξ1(ξ) = ξ−1, t($)ξ(ξ) = q−1/2ξ. (4.2.43)

Proposition 4.2.3.2. We have

Lx
p1

= k1k0 + (k1k0)
−1 + (k1k0)

−2Dx
AW, Dx

AW := A(x)(Tq,x − 1) +A(x−1)(T−1
q,x − 1), (4.2.44)

Lξ
p1

= k1l1 + (k1l1)
−1 + (k1l1)

2Dξ
AW, Dξ

AW := A∗(ξ−1)(Tq,ξ − 1) +A∗(ξ)(T−1
q,ξ − 1) (4.2.45)

with

A(z) :=
(1− k1l1z)(1 + k1l

−1
1 z)(1− k0l0q−1/2z)(1 + k0l

−1
0 q−1/2z)

(1− z2)(1− q−1z2)
,

A∗(z) :=
(1− k1k0z)(1 + k1l

−1
1 z)(1− l1l0q−1/2z)(1 + l1l

−1
0 q−1/2z)

(1− z2)(1− q−1z2)
.

Proof. Let us compute Lx
p1

= Res(Dx
Y+Y −1). Since Y = T0T1 and s0 = t(ε)s1, using (4.2.7), (4.2.42) and

(4.2.10), we have

Dx
Y+Y −1 = ρx1/k,1/l,q(T0T1 + T−1

1 T−1
0 )

=
(
k−1
0 + c0(t(ε)

xsx1 − 1)
)(
k−1
1 + c1(s

x
1 − 1)

)
+
(
k1 + c1(s

x
1 − 1)

)(
k0 + c0(t(ε)

xsx1 − 1)
)

= k−1
1 k−1

0 + k−1
1 c0(t(ε)

xsx1 − 1) + k−1
0 c1(s

x
1 − 1) + c0(c

′
1 t(ε)

xsx1 − c1)(sx1 − 1)

+ k1k0 + k1c0(t(ε)
xsx1 − 1) + k0c1(s

x
1 − 1) + c1(c

′
0s

x
1 − c0)(t(ε)xsx1 − 1),

where wx is given by (4.2.42) and, using the function c in (4.2.11), we denoted

c1 := c(x2; k−1
1 , l−1

1 ), c′1 := t(ε)xsx1(c1),

c0 := c(qx−2; k−1
0 , l−1

0 ), c′0 := sx1(c0) = c(qx2; k−1
0 , l−1

0 ).

Then, using (c′0s
x
1 − c0)(t(ε)xsx1 − 1) = c′0 t(−ε)x − c′0sx1 − c0 t(ε)xsx1 + c0 and

Res(t(ε)xsx1 − 1) = t(ε)x − 1, Res(sx1 − 1) = 0,

we have

Res(Dx
Y+Y −1) = k−1

1 k−1
0 + k−1

1 c0(t(ε)
x − 1)

+ k1k0 + k1c0(t(ε)
x − 1) + c1(c

′
0 t(−ε)x − c′0 − c0 t(ε)x + c0)

= k1k0 + k−1
1 k−1

0 + c0(k1 + k−1
1 − c1)(t(ε)x − 1) + c1c

′
0(t(−ε)x − 1).

Now, using the identity

k1 + k−1
1 − c1 = k−1

1

(1− k1l1x)(1 + k1l
−1
1 x)

1− x2
= c(x2; k1, l1) = c(x−2; k−1

1 , l−1
1 ) = sx1(c1),

we have c0(k1 + k−1
1 − c1) = c0 · sx1(c1) = sx1(c

′
0c1). Then, by t(ε)x = Tq,x, we have

Lx
p1

= Res(Dx
Y+Y −1) = k1k0 + k−1

1 k−1
0 +

(
sx1(c

′
0c1)

)
(Tq,x − 1) + c′0c1(T

−1
q,x − 1).

Denoting A(x) := sx1(c
′
0c1), we obtain (4.2.44). The formula (4.2.45) of Lξ

p1
is obtained from Lx

p1
by

replacing (x, k0, k1, l0, l1, q) with (ξ, l−1
1 , k−1

1 , l−1
0 , k−1

0 , q−1).
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Remark 4.2.3.3 (c.f. [N95, pp.54–55]). The operators Dx
AW and Dξ

AW are equivalent to the Askey-
Wilson second order q-difference operator [AW85, (5.7)]:

DAW(z; a, b, c, d, q) := A+(z; a, b, c, d, q)(Tq,z − 1) +A+(z−1; a, b, c, d, q)(T−1
q,z − 1),

A+(z; a, b, c, d, q) :=
(1− az)(1− bz)(1− cz)(1− dz)

(1− z2)(1− qz2)
.

The precise relation with A(x), A∗(ξ) in (4.2.44), (4.2.45) is given by

A(x) = A+(x; a, b, c′, d′, q), A∗(ξ) = A+(ξ; a∗, b∗, c′∗, d′∗, q)

with the parameters

{a, b, c′, d′} := {k1l1,−k1l−1
1 , q−1/2k0l0,−q−1/2k0l

−1
0 },

{a∗, b∗, c′∗, d′∗} := {k−1
1 k−1

0 ,−k−1
1 k0, q

−1/2l−1
1 l−1

0 ,−q−1/2l−1
1 l0}.

The reciprocal parameter q−1 appearing above originates from our choice (4.2.8) of the Dunkl operator
Y . As mentioned in Remark 4.2.1.3, the choice in [N95, T10, St14] is the opposite, and for that choice,
the above construction of the q-difference operator on x which is equal to the original Askey-Wilson
operator Dx

AW(x; a, b, c, d, q).
The ordinary parameters and the dual parameters of Askey-Wilson polynomials are given as

{a, b, c, d} := {k1l1,−k1l−1
1 , q1/2k0l0,−q1/2k0l−1

0 },
{a∗, b∗, c∗, d∗} := {k1k0,−k1k−1

0 , q1/2l1l0,−q1/2l1l−1
0 }.

There are related by the duality anti-involution ∗ (see (4.2.15)) as

a∗ =
√
abcd/q, b∗ = ab/a∗, c∗ = ac/a∗, d∗ = ad/a∗.

By Remark 4.2.3.3, it is natural to name the bispectral problem as:

Definition 4.2.3.4. The following system of eigen-equations for f = f(x, ξ) ∈ K is called the bispectral
Askey-Wilson q-difference equation of type (C∨

1 , C1), and the bAW equation for short.{
(Lx

p1
f)(x, ξ) = p1(ξ

−1)f(x, ξ),

(Lξ
p1
f)(x, ξ) = p1(x)f(x, ξ).

(4.2.46)

The solution space is denoted as

SOLbAW(k, l, q) := {f ∈ K | f satisfies (4.2.3.4)}.

4.2.4 Bispectral qKZ/AW correspondence

Here we give a (C∨
1 , C1)-analogue of § 4.1.4, using the reciprocal parameters

(1/k, 1/l) := (1/k1, 1/k0.1/l1, 1/l0).

Similarly as in Definition 4.1.4.1, we define a K-linear function χ+ : H0(1/k)→ C by

χ+(Tw) := k
−ℓ(w)
1 (4.2.47)

for the basis element Tw ∈ H0(1/k) (w ∈W0). It is extended to H0(1/k)
K := K⊗L H0(1/k) as

χ+ : H0(1/k)
K −→ K,

∑
w∈W0

fwTw 7−→
∑

w∈W0

fwχ+(Tw). (4.2.48)

Below is a (C∨
1 , C1)-analogue of Fact 4.1.4.3.
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Theorem 4.2.4.1 (c.f. [St14, §3]). Assume 0 < q < 1. Then the map χ+ restricts to an injective F-linear
W0-equivariant map

χ+ : SOLbqKZ(1/k, 1/l, q) −→ SOLbAW(k, l, q),

where W0 is the subgroup of W defined by

W0 := Z2 n (W0 ×W0) ⊂W,

and F is the subspace of K =M(T × T ) defined by

F :=
{
f(t, γ) ∈ K |

(
(t(λ), t(µ))f

)
(t, γ) = f(t, γ), ∀ (λ, µ) ∈ Λ× Λ

}
.

The strategy of proof is the same as the type A1 (§4.1.4). Denoting SOLbqKZ := SOLbqKZ(1/k, 1/l, q)
and SOLbAW := SOLbAW(1/k, 1/l, q), we can divide the proof into three parts.
(i) χ+ restricts to an F-linear W0-equivariant map χ+ : SOLbqKZ → K.
(ii) The image χ+(SOLbqKZ) is contained in SOLbAW.
(iii) χ+ : SOLbqKZ → SOLbAW is injective
We write down the arguments of part (i) and the first half of part (ii). The rest arguments are similar
as the type A1, and we omit them.

Part (i) of the proof of Theorem 4.2.4.1. Similarly as Lemma 4.1.4.5, we have

χ+(CwF ) = χ+(F ) (4.2.49)

for each w ∈ W0 and F ∈ H0(1/k)
K. The proof is quite similar as Lemma 4.1.4.5, once we use

C(e,s1) = CιC(s1,e)Cι and replace the expression (4.1.67) of C(s1,e)h for h ∈ H0 by

C(s1,e)h = d(x2; 1/k1, 1/l1)
−1

(
(1− x2)ηL(T1)− (k−1

1 − k1)− (l−1
1 − l1)x

)
h.

Then, in the same way as §4.1.4, we can show that χ+ is W0-equivariant using (4.2.28), (4.2.49) and
(4.2.25), and that χ+ restricts to an F-linear map SOLbqKZ → K using Definition 4.2.2.3, (4.2.47) and
(4.2.48).

Similarly as the type A1, the part (ii) of the proof consists of two steps.
• Describe of SOLbqKZ in terms of the basic asymptotically free solution Φ.
• Analyze the map χ+ using Φ.

The second step is quite the same as the type A1, and we omit the detail. The first step requires the
following Proposition 4.2.4.2, which is a (C∨

1 , C1)-analogue of Fact 4.1.4.6, and a simple modification of
Fact 4.1.4.8.

Proposition 4.2.4.2. Denote w0 := s1 ∈W0. Let

W(x, ξ) =W(x, ξ; k, l, q) ∈ K =M(x, ξ)

be a meromorphic function satisfying the q-difference equations

W(qlx, ξ) = (k1k0ξ)
−lW(x, ξ) (l ∈ Z) (4.2.50)

and the self-duality

W(ξ−1, x−1; k∗, l∗, q) =W(x, ξ; k, l, q). (4.2.51)

Then, there is a unique element Ψ ∈ H0(1/k)
K satisfying the following conditions.

(i) We have
Φ :=WΨ ∈ SOLbqKZ.

(ii) We have a series expansion

Ψ(x, ξ) =
∑

m,n∈N

Km,nx
−mξnα (Kα,β ∈ H0)

for (x, ξ) ∈ B−1
ε ×Bε with Bε being some open ball of radius ε > 0, which is normally convergent

on compact subsets of B−1
ε ×Bε.
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(iii) K0,0 = Tw0 .
We call the solution Φ the basic asymptotically free solution of the bqKZ equation of type (C∨

1 , C1).

Let us give some preliminaries for the proof of Proposition 4.2.4.2. Given a functionW ∈ K satisfying
(4.2.50) and (4.2.51), we write

D1,0(x, ξ) :=W(x, ξ)−1C1,0(x, ξ)W(q−ϵx, ξ),

D0,1(x, ξ) :=W(x, ξ)−1C0,1(x, ξ)W(x, qϵξ),

which are regarded as End
(
H0(1/k)

)
-valued meromorphic functions in x, ξ. We have f ∈ H0(1/k)

K if
and only if g :=W(x, ξ)−1f satisfies the holonomic system of q-difference equations{

D1,0(x, ξ)g(q
−ϵx, ξ) = g(x, ξ)

D0,1(x, ξ)g(x, q
ϵξ) = g(x, ξ)

as End
(
H0(1/k)

)
-valued rational functions in x, ξ. Now recall from Lemma 4.2.2.6

A := C[x−1] ⊂ C[x±1], B := C[ξ] ⊂ C[ξ±1]

and

Q0(A) :=
{
f(x−1)/g(x−1) ∈ Q(A) | g(0) 6= 0

}
⊂ Q(A) = C(x),

Q0(B) := {f(ξ)/g(ξ) ∈ Q(B) | g(0) 6= 0} ⊂ Q(B) = C(ξ).

Lemma 4.2.4.3 (c.f. [vMS09, Lemma 5.2]). The operatorsD1,0 andD0,1 satisfy the following properties.
(1) D1,0 ∈ (Q0(A)⊗ B)⊗ End

(
H0(1/k)

)
and D0,1 ∈ (A⊗Q0(B))⊗ End

(
H0(1/k)

)
(2) Define D

(0)
1,0, D

(0)
0,1 ∈ End

(
H0(1/k)

)
by

D
(0)
1,0 := D1,0|x−1=0 , D

(0)
0,1 := D0,1|ξ=0 .

Then, denoting w0 := s1, we have

D
(0)
1,0(Tw0Tw) =

{
T1 (w = e)

0 (w = s1)
, D

(0)
0,1(Tw0Tw) =

{
T1 (w = e)

0 (w = s1)
. (4.2.52)

Proof. For the first half of (1), note that the q-difference equation (4.2.50) with λ = −ε yields

D1,0(x, ξ) =W(x, ξ)−1C1,0(x, ξ)W(q−1x, ξ) = k1k0ξC1,0(x, ξ), (4.2.53)

By the explicit expression of C1,0 (Lemma 4.2.2.4), we have D1,0 ∈ (Q0(A)⊗ B)⊗ End(H0).
For the second half, using (4.2.50) and (4.2.51), we have

D0,1(x, ξ) =W(C∨
1 ,C1)(x, ξ)−1C0,1(x, ξ)W(C∨

1 ,C1)(x, qξ) = (k1u1x)
−1C0,1(x, ξ).

By the explicit expression of C0,1 (Lemma 4.2.2.4), we have D0,1 ∈ (A⊗Q0(B))⊗ End(H0).
Next, we will show the first half of (2). By the above computation (4.2.53) and Lemma 4.2.2.6, we

have

D
(0)
1,0 = D1,0|x−1=0 = k1k0ξC

(0)
1,0 . (4.2.54)

Let us compute D
(0)
1,0(T1). Since ηL(T1Y

−1T−1
1 )(T1) = ξ−1T1, we have

D
(0)
1,0(T1) = k1k0ξC

(0)
1,0(T1) = ξηL(T1Y

−1T−1
1 )(T1) = T1,

using (4.2.35) with reciprocal parameters 1/k in the second equality. Hence we obtain D
(0)
1,0(T1) = T1.

For D
(0)
1,0(Te), note that τw := ηL(S̃

∗
w−1)Te (w ∈W0) form a K-basis of HK

0 (Fact 4.2.2.7) and η(Tw0
)τw ∈

B ⊗ End(H0). By Fact 4.2.2.7 and (4.2.35), we obtain

D
(0)
1,0(η(T1)τs1) = k1k0ξC

(0)
1,0(η(T1)τs1) = ξηL(T1Y

−1T−1
1 )(η(T1)τs1) = ξ2η(T1)τs1 .

as identities in B ⊗ End(H0). Specializing at ξ = 0, we obtain D
(0)
1,0(Te) = 0.

The second half of (2) can be shown similarly using (4.2.36). We omit the detail.
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Proof of Proposition 4.2.4.2. Lemma 4.2.4.3 implies that the operators D
(0)
1,0 and D

(0)
0,1 on H0(1/k, 1/l)

commute with each other. We denote the simultaneous eigenspace decomposition of H0(1/k, 1/l) as

H0(1/k, 1/l) =
⊕

(a,b)∈C2

H0[a, b], H0[a, b] :=
{
v ∈ H0 | D(0)

1,0(v) = av, D
(0)
0,1(v) = bv

}
Since H0(1/k, 1/l) is finite dimensional, the subset S ⊂ C2 for which H0[a, b] 6= 0 is finite. We also have
(1, 1) ∈ S and H0[1, 1] = CT1 by Lemma 4.2.4.3. Furthermore, a, b ∈ qN for all (a, b) ∈ S. Under these
conditions, the holonomic system of q-difference equations 4.2.52 admits a unique solution Ψ satisfying
the desired properties by the general theory developed in [vMS09, Theorem A.6].

Example 4.2.4.4. We give an example of the function W in Proposition 4.2.4.2. As in the case of type
A1 (Example 4.1.4.12 (1)), using the Jacobi theta function θ(z; q) := (q, z, q/z; q)∞, we define

W(C∨
1 ,C1)(x, ξ) =W(C∨

1 ,C1)(x, ξ; k, l) :=
θ(−q1/2xξ; q)

θ(−q1/2(k1k0)−1x,−q1/2k1l1ξ; q)
. (4.2.55)

It satisfies the q-difference equation (4.2.50) in the form

W(C∨
1 ,C1)(q±1x, ξ) = (k1k0ξ)

∓1W(C∨
1 ,C1)(x, ξ),

and the self-duality (4.2.51) in the form

W(C∨
1 ,C1)(γ−1, t−1; k∗, l∗) =W(C∨

1 ,C1)(t, γ; k, l). (4.2.56)

Here we used the duality anti-involution ∗ in (4.2.15).

Remark 4.2.4.5. As in the case of type A1 case (Remark 4.1.4.13), the function W(C∨
1 ,C1) is nothing

but the function G of Remark 4.1.4.13 (2) introduced by [vM11]:

G(t, γ) :=
ϑ(t(w0γ)

−1)

ϑ(γ0t)ϑ((γ∗0 )
−1γ)

whose lattice theta function ϑ(t) = ϑA1(t) is replaced by

ϑ(t) :=
∑
λ∈Λ

q⟨λ,λ⟩/2tλ, Λ = Zε,

and the parameters γ0, γ
∗
0 are replaced by

γ0 := (k1k0)
−ϵ, γ∗0 := (k1l1)

−ϵ ∈ T. (4.2.57)

4.2.5 Bispectral Askey-Wilson function

In this subsection, we cite from [St02, St14] an example of explicit solution of the bispectral Askey-Wilson
q-difference equation. As in the previous Theorem 4.2.4.1, we assume 0 < q < 1.

Let us write again the bispectral Askey-Wilson q-difference equation (4.2.46) for f(x, ξ) ∈ L =
C[x±1, ξ±1] for the reciprocal parameters SOLbAW(1/k, 1/l):{

(Lx
p1
f)(x, ξ) = (ξ + ξ−1)f(x, ξ)

(Lξ
p1
f)(x, ξ) = (x+ x−1)f(x, ξ)

. (4.2.58)

By Proposition 4.2.3.2 and Remark 4.2.3.3, the operators are given by

Lx
p1

= k1k0 + (k1k0)
−1 + (k1k0)

−1Dx
AW, Lξ

p1
= k1l1 + (k1l1)

−1 + (k1l1)D
ξ
AW, (4.2.59)

Dx
AW := DAW(x; a, b, c, d, q), Dξ

AW := DAW(ξ; (a∗)−1, (b∗)−1, (c∗)−1, (d∗)−1, q−1),

{a, b, c, d} := {k1l1,−k1l−1
1 , q1/2k0l0,−q1/2k0l−1

0 }, (4.2.60)

{a∗, b∗, c∗, d∗} := {k1k0,−k1k−1
0 , q1/2l1l0,−q1/2l1l−1

0 } (4.2.61)
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with

DAW(x; q, a, b, c, d) := A(x)(Tq,x − 1) +A(x−1)(T−1
q,x − 1),

A(x) :=
(1− ax)(1− bx)(1− cx)(1− dx)

(1− x2)(1− qx2)
. (4.2.62)

As mentioned in Remark 4.2.3.3, the q-difference operator Dx
AW was introduced by Askey and Wil-

son [AW85]. Using the symbol (x1, . . . , xr; q)l in (1.1.2), they showed that the basic hypergeometric
polynomial

Pl(x; a, b, c, d; q) :=
(ab, ac, ad; q)l

al
4φ3

[
q−l, abcdql−1, ax, a/x

ab, ac, ad
; q, q

]
(l ∈ N) (4.2.63)

is an eigenfunction of Dx
AW, and the eigenvalue is −(1− q−l)(1− ql−1abcd). This claim is restated as

Lx
p1
Pl(x; a, b, c, d; q) = (qla∗ + q−l(a∗)−1)Pl(x; a, b, c, d; q)

under the parameter correspondence (4.2.60) and (4.2.61) (c.f. [N95, p.55]). The Laurent polynomial
Pl(x; a, b, c, d; q) is called the Askey-Wilson polynomial.

In order to treat the bispectral problem (4.2.58), we need to consider non-polynomial eigenfunctions
of the Askey-Wilson second order q-difference operator DAW. In literature, such an eigenfunction is given
in terms of a very-well-poised 8φ7 series under the name of the Askey-Wilson function. Here we give a
brief review, and refer to [St02, §3] for more information.

Following Gasper and Rahman [GR04, (2.1.11)], we denote

8W7(a1; a4, a5, a6, a7, a8; q, z) := 8φ7

[
a1, qa

1/2
1 , − qa1/21 , a4, a5, a6, a7, a8

a
1/2
1 , − a1/21 , qa1

a4
, qa1

a5
, qa1

a6
, qa1

a7
, qa1

a8

; q, z

]
,

which is a very-well-poised basic hypergeometric series in the sense of [GR04, the line after (2.1.9)].
Then, the Askey-Wilson function φξ(x) = φξ(x; a, b, c, d; q) is defined by [St02, (3.1)]

φξ(x) :=
(qaxξ/d∗, qaξ/d∗x, qabc/d; q)∞

(a∗b∗c∗ξ, qξ/d∗, qx/d, q/dx, bc, qb/d, qc/d; q)∞
8W7(a

∗b∗c∗ξ/q; ax, a/x, a∗ξ, b∗ξ, c∗ξ; q, q/d∗ξ).

It satisfies the eigen-equation

(Lx
p1
φξ)(x) = (ξ + ξ−1)φξ(x), (4.2.64)

the self-duality

φξ(x; a, b, c, d; q) = φx(ξ; a
∗, b∗, c∗, d∗; q), (4.2.65)

and the symmetry (the inversion invariance in [St14])

φξ(x) = φξ(x
−1) = φξ−1(x). (4.2.66)

The properties (4.2.65) and (4.2.66) are the consequences of the equality [St14, (3.2)]:

φξ(x) =
(qabc/d; q)∞

(bc, qa/d, qb/d, qc/d, q/ad; q)∞
4φ3

[
ax, a/x, a∗ξ, a∗/ξ

ab, ac, ad
; q, q

]
+

(ax, a/x, a∗ξ, a∗/ξ, qabc/d; q)∞
(qx/d, q/dx, qξ/d∗, q/d∗ξ, ab, ac, bc, qa/d, ad/q; q)∞

4φ3

[
qx/d, q/dx, qξ/d∗, q/d∗ξ

qb/d, qc/d, q2/ad
; q, q

]
,

which can be shown by a form [GR04, (2.10.10)] of Bailey’s transformation formulas. The above equality
also yields

φξl(x) =
(qabc/d; q)∞

(bc, qa/d, qb/d, qc/d, q/ad; q)∞
4φ3

[
q−l, abcdql−1, ax, a/x

ab, ac, ad
; q, q

]
, ξl := (a∗)−1q−l,
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which is proportional to the Askey-Wilson polynomial Pl(x) (4.2.63).
Let us consider the asymptotic form of the Askey-Wilson q-difference equation

(
Lx
p1
−(ξ+ξ−1)

)
f(x) =

0 in the region |x| � 1. Since the functions A(x) and A(x−1) in (4.2.62) behave as A(x) ≈ (a∗)2 and
A(x−1) ≈ 1, we have the asymptotic form

Lx
p1
≈ a∗Tq,x + (a∗)−1T−1

q,x .

Now, recall the function W(C∨
1 ,C1)(x, ξ) given in (4.2.55):

W(C∨
1 ,C1)(x, ξ) =

θ(−νxξ; q)
θ(−νx/a∗,−νξa; q)

,

where ν := q1/2. By θ(qx; q) = −x−1θ(x; q), we have T±1
q,xW(C∨

1 ,C1)(x, ξ) = (a∗ξ)∓1W(C∨
1 ,C1)(x, ξ), which

implies that the set {W(C∨
1 ,C1)(x, ξ±1)} is a basis of solutions of the asymptotic q-difference equation(

a∗Tq,x + (a∗)−1T−1
q,x − (ξ + ξ−1)

)
f(x) = 0.

Similarly, the ξ-side asymptotic q-difference equation in the region |ξ| � 1 is given by

Lξ
p1
≈ aT−1

q,ξ + a−1Tq,ξ,

and since T±1
q,ξW(C∨

1 ,C1)(x, ξ) = (a/x)±1W(C∨
1 ,C1)(x, ξ), the set {W(C∨

1 ,C1)(x±1, ξ)} is a basis of solutions
of the asymptotic equation (

a−1Tq,ξ + aT−1
q,ξ − (x+ x−1)

)
g(ξ) = 0,

By the argument in § 4.2.4, we have a unique element Φ̂ := χ+(Φ) ∈ SOLbAW of the form Φ̂ =
W(C∨

1 ,C1)g, where g = g(x) has a convergent series expansion around |x| = ∞ with constant coefficient

being 1. By [St14, Proposition 5.2, (5.8)], Φ̂ is written down as

Φ̂(x, ξ) =W(C∨
1 ,C1)(x, ξ) · (qaξ/a

∗x, qbξ/a∗x, qcξ/a∗x, qa∗ξ/dx, d/x; q)∞
(q/ax, q/bx, q/dx, q2γ2/dx; q)∞

· 8W7(qξ
2/dx; qξ/a∗, qξ/d∗, b∗ξ, c∗ξ, q/dx; q, d/x).

Remark 4.2.5.1. Our solution Φ̂(x, ξ) is equivalent to the solution Φ̂η(t, γ) in [St14, (5.8)] up to quasi-
constant multiplication.

Now we cite a (C∨
1 , C1)-analogue of Fact 4.1.5.6.

Fact 4.2.5.2 (c.f. [St14, Proposition 5.2]). The function E(C
∨
1 ,C1)

+ (x, ξ) = E(C
∨
1 ,C1)

+ (x, ξ; k, l, q) given by

E(C
∨
1 ,C1)

+ (x, ξ) :=
(qaxξ/d∗, qaξ/d∗x, qa/d, q/ad; q)∞
(a∗b∗c∗ξ, qξ/d∗, qx/d, q/dx; q)∞

8W7(a
∗b∗c∗ξ/q; ax, a/x, a∗ξ, b∗ξ, c∗ξ; q, q/d∗x).

enjoys the following properties.
(i) It is a solution of the bispectral problem (4.2.58).
(ii) It has the symmetry

E(C
∨
1 ,C1)

+ (x, ξ) = E(C
∨
1 ,C1)

+ (x−1; ξ) = E(C
∨
1 ,C1)

+ (x, ξ−1).

(iii) It has the self-duality

E(C
∨
1 ,C1)

+ (x, ξ; k, l, q) = E(C
∨
1 ,C1)

+ (ξ−1;x−1, k∗, l∗, q). (4.2.67)

Thus, defining SOLW∗

bAW := {f ∈ SOLbAW | (ii), (iii)}, we have

E(C
∨
1 ,C1)

+ ∈ SOLW∗

bAW.

The function E(C
∨
1 ,C1)

+ is called the basic hypergeometric series of type (C∨
1 , C1).
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4.3 Specialization

In [YY22, §2.6], we introduced four embeddings of affine root systems of type A1 into type (C∨
1 , C1).

They are given by particular specializations of the parameters (k, l), and characterized to preserve the
Macdonald inner product under which the Macdonald-Koornwinder polynomials are orthogonal. Among
the four specializations, the one given by

(k, l) = (k, 1, 1, 1) (4.3.1)

has a special feature that it is also compatible with the duality anti-involution (4.2.15). In this section,
we show that this specialization yields the commutative diagram mentioned in Preface:

SOL
(C∨

1 ,C1)
bqKZ SOLbAW

SOLA1

bqKZ SOLbMR

χ
(C∨

1 ,C1)

+

sp sp

χ
A1
+

4.3.1 The bispectral qKZ equations

Recall the subalgebras HA1
0 (k) ⊂ HA1(k, q) and H

(C∨
1 ,C1)

0 (k) ⊂ H(C∨
1 ,C1)(k, l, q), both of which have the

basis {Te = 1, Ts1 = T1}. Let us identify these linear spaces, and denote it by H0. As in the previous
sections, let us use the notation K =M(x, ξ) and HK

0 = K⊗H0.
Then, the solution spaces of bispectral qKZ equations of type A1 and of type (C∨

1 , C1) (Defini-
tion 4.1.2.8 and Definition 4.2.2.3) can be expressed as

SOLA1

bqKZ(k, q) = {f ∈ H
K
0 | f satisfies the bqKZ equations of type A1},

SOL
(C∨

1 ,C1)
bqKZ (k, l, q) = {f ∈ HK

0 | f satisfies the bqKZ equations of type (C∨
1 , C1)}.

Then we can show:

Proposition 4.3.1.1. For the specialized parameters (k, l) = (k, 1, 1, 1), we have the relation

SOL
(C∨

1 ,C1)
bqKZ (k, 1, 1, 1, q) ⊂ SOLA1

bqKZ(k, q).

Proof. Denoting by cA1(z; k, q) := c(z : k, q) the function in (4.1.17), and by c(C
∨
1 ,C1)(z; k, l, q) := c(z :

k, l, q) the function in (4.2.11), we have

c(C
∨
1 ,C1)(z; k, 1, q) = cA1(z; k, q).

Then, comparing Lemma 4.1.2.16 and Lemma 4.2.2.4, we have

C
(C∨

1 ,C1)
1,0 (k, 1, 1, 1, q) = CA1

2,0(k, q), C
(C∨

1 ,C1)
0,1 (k, 1, 1, 1, q) = CA1

0,2(k, q), (4.3.2)

from which we have the claim.

Theorem 4.3.1.2. The specialization (4.3.1) yields the commutative diagram

SOL
(C∨

1 ,C1)
bqKZ (k, 1, 1, 1, q) SOLbAW(k, 1, 1, 1, q)

SOLA1

bqKZ(k, q) SOLbMR(k, q)

χ
(C∨

1 ,C1)

+

sp sp

χ
A1
+

(4.3.3)
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Proof. We saw the left vertical embedding in Proposition 4.3.1.1. Thus, it is enough to check that
the specialization maps the bispectral Askey-Wilson equation (4.2.46) to the bispectral Macdonald-
Ruijsenaars equation (4.1.63). Since (k1, k0, l1, l0) = (k, 1, 1, 1) yields the Askey-Wilson parameters
{a, b, c, d} = {k,−k, q1/2,−q1/2}, the specialization of the x-side equation is computed as

Lx
(C∨

1 ,C1)
(k, 1, 1, 1, q) = k + k−1 +

k − k−1x−2

1− x−2
(Tq,x − 1) +

k−1 − kx−2

1− x−2
(T−1

q,x − 1)

=
k − k−1x−2

1− x−2
Tq,x +

k−1 − kx−2

1− x−2
T−1
q,x = Lx

A1
(k, q2).

Note that the parameter q2 in type A1 is compatible with the relation (4.3.2). The ξ-side is similarly
checked directly, or by the compatibility of the duality anti-involution and the specialization.

So far we give a computational argument to show the commutative diagram (4.3.3). Let us give
another, more conceptual argument.

Lemma 4.3.1.3. There is an isomorphism of algebras

H(C∨
1 ,C1)(k, 1, 1, 1, q)

∼−−→ HA1(k, q).

Proof. Recall the presentations (4.1.20) of HA1 and (4.2.12) of H(C∨
1 ,C1). The former gives HA1(k, q) as

the quotient of the free algebra C〈T,U,X〉 by the relations

(T − k)(T + k−1) = 0, U2 = 1, TXT = X−1, UXU = q1/2X−1.

Under the specialization (k, l) = (k, 1, 1, 1), the latter gives H(C∨
1 ,C1)(k, 1, 1, 1, q) as the quotient of

C〈T1, T0, T∨
1 , T

∨
0 〉 by the relations

(T1 − k)(T1 + k−1) = 0, (T0)
2 = (T∨

1 )2 = (T∨
0 )2 = 1, T∨

1 T1T0T
∨
0 = q−1/2. (4.3.4)

Now, recalling (4.2.13), we find that the correspondence T1 = T , T0 = U and T∨
0 = q−1/2UX gives the

desired isomorphism

Since the bispectral correspondence χA1
+ is defined in terms of the DAHA HA1(k, q), the restric-

tion to the subalgebra H(C∨
1 ,C1)(k, 1, 1, 1, 1, q) will give the correspondence χ

(C∨
1 ,C1)

+ . Thus we have the
commutative diagram (4.3.3).

Remark 4.3.1.4. We leave it for a future study to give an explicit element in SOLbAW(k, 1, 1, 1, q) which
is mapped to SOLbMR(k, q) under the right vertical embedding sp in (4.3.3). Here we only give a clue to
find such an element. If the spectral variable ξ is specialized to ξl = k−1q−1/2 (see Proposition 4.1.5.3
(2)), we have

PA1

l (x; k2, q) := xl2φ1

[
k2, q−l

q1−l/k2
; q,

q

k2x2

]
=

1

(qlk2; q)l
Pl(x; k, 1, 1, 1; q) = P

(C∨
1 ,C1)

l (x; k, 1, 1, 1; q).

We expect that there is an element f(x, ξ) ∈ SOLbAW(k, 1, 1, 1, q) such that the specialized f(x, ξl) is

equal to P
(C∨

1 ,C1)
l (x; k, 1, 1, 1; q) and the image sp(f(x, ξl)) is equal to P

A1

l (x; t, q).
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