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Preface

This thesis studies Macdonald-Koornwinder polynomials through the representation theory of affine
Hecke algebras, mainly focusing on the structure of Koornwinder polynomials and their behavior under
parameter specialization.

Macdonald-Koornwinder polynomials are multivariable g-orthogonal polynomials associated to each

affine root system, which integrate Macdonald polynomials introduced by Macdonald | ] in the late
1980s and Koornwinder polynomials introduced by Koornwinder | | in the early 1990s. Here, the
word “affine root system” means that in the sense of Macdonald | , ]. Macdonald-Koornwinder

polynomials appear in various branches of mathematics such as integrable systems, representation theory
and mathematical physics, and form an important research subject in recent years.

Today, Macdonald-Koornwinder polynomials are formulated by the Macdonald-Cherednik theory,
which is based on the representation theory of affine Hecke algebras. This theory was first developed for

untwisted affine root systems by Cherednik [ , , , ]. By the works of Noumi [N95], Sahi
[ , ], Stokman [St00] and others, the Macdonald-Cherednik theory is extended to non-reduced
affine root systems, particularly to the type (C,C,) in the sense of Macdonald | , |, and that

one can recover Koornwinder polynomials as Macdonald polynomials of type (CY,Cy).

Koornwinder polynomials, the main object of this thesis, are g-orthogonal polynomials associated to
the affine root systems of type (CY,C,). Let us only introduce the symbol for them, and refer to §1.3.1
for the precise explanation. Koornwinder polynomials (precisely speaking, the symmetric Koornwinder
polynomials) are Laurent polynomials of n-variable, attached to partitions A (dominant weights of type
C),), and have six complex or formal parameters g, t, t,, to, tn, uo (if n =1, then we omit ¢ and have five
parameters). In this thesis, the monic symmetric Koornwinder polynomial of variable = (x1,...,2,)
attached to A is denoted as

Py(z) = P\(z;q,t,tn, to, Un, Ug)-

The five parameters t,t,,, tg, un, ug will be called the Hecke parameter of Koornwinder polynomials.

Abstract of Chapter 1

In Chapter 1, we give an introduction to Macdonald-Koornwinder polynomials. Since these polynomials
are multivariate analogue of one-variable g-hypergeometric orthogonal polynomials, we start with §1.1
a brief recollection on hypergeometric orthogonal polynomials and their g-analogues. The total picture
of these orthogonal families are depicted in Askey scheme of hypergeometric orthogonal polynomials
(Figure 1.1.1) and its g-analogue (Figure 1.1.2). Among the ¢-hypergeometric orthogonal polynomials in
Figure 1.1.2, we focus on Askey-Wilson polynomials, whose properties will be explained in detail. Askey-
Wilson polynomials form one of the “mother” classes of ¢-hypergeometric orthogonal polynomials, and,
as will be explained in § 1.3.1, Koornwinder polynomials are multivariate analogue of Askey-Wilson
polynomials.

Next, we turn to the multivariate orthogonal polynomials. In § 1.2, we give a brief recollection the
well-known three families of orthogonal symmetric polynomials, namely Schur polynomials sy (z) (§1.2.1),
Jack polynomials Py(z; 8) (§1.2.2), and Macdonald symmetric polynomials Py (z;q,t) (§1.2.3). The last
ones are 2-parameter generalization of the others, and these orthogonal families sit in the following
degeneration scheme.

Macdonald Py(z;q,t) ———— Jack Py(z;8) ———— Schur sy ()
t:qﬁ, q—1 B=1



Macdonald symmetric functions Py (z; g,t) can be regarded as the Macdonald polynomial associated to
the affine root system of type A. As mentioned in the beginning, there are analogous orthogonal families
associated to other affine root systems, and they are now called Macdonald-Koornwinder polynomials.
A unified formulation is established after the development of representation theoretic approach using the
(double) affine Hecke algebras, and it is called the Macdonald-Cherednik theory.

We give an overview of this theory in § 1.3.1, and refer to | , , , ] for the concise
explanation.

In this thesis, we do not explain the Macdonald-Cherednik theory for arbitrary affine root systems,
but treat the theory only for type (C)Y,C,), i.e., the theory for Koornwinder polynomials. In § 1.3.2
and §1.3.3, we will explain in detail how to define Koornwinder polynomials though the representation
theory of affine Hecke algebra associated to the non-reduced affine root system (C)Y,C,,).

Below is the picture of relations among various orthogonal systems treated in Chapter 1 (which will
also appear in the later chapters). The two arrows mean that the target is the multivariate analogue of
the source.

g-hypergeometric §1.1 Macdonald-Koornwinder § 1.2

‘Askey-Wilson § 1.1.3\—— Koornwinder

§1.3.1

continuous g-Hermite

continuous g-Jacobi

Macdonald(A,,_1)
§1.2

Rogers (1.2.6)

g-Laguerre

Abstract of Chapter 2

Chapter 2 is based on the author’s paper [ ]. We consider Littlewood-Richardson coefficients cX "
of Koornwinder polynomials Py, that is the structure constants of the product in the invariant ring
K[zT1]Wo:

PP, =Y & P,

Hereafter we call ¢§ , LR coefficients for simplicity.

Let us recall what is known in the case of type A. The classical LR coefficients are the structure
constants of the product sys, = >, ¢c§ s, of Schur polynomials sy (1.2.1) in the ring of symmetric
polynomials. Regarding Schur polynomials sy as the characters of the irreducible representation V)
of the general linear group, we can interpret the coefficient 5, as the multiplicity of the irreducible
decomposition of the tensor product representation V) ® V,,. For Hall-Littlewood polynomials, which
are t-deformations of Schur polynomials, we can also consider the LR coefficients c§ ,, and some explicit
formulas are known. See | , Chap. II, (4.11)] for example.

Although Macdonald polynomial of type A is a g-deformation of Hall-Littlewood polynomial, no
explicit formula for the corresponding LR coefficient S had been unknown for a long time. In | ,
Chap. VI, §6], Macdonald derived some combinatorial formulas for Pieri coefficients using arms and legs
of Young diagrams. Here Pieri coefficients mean the LR coefficients ¢ , with A the one-row type (k) or
the one-column type (1'), where the weights are identified with Young diagrams or partitions.

On the LR coefficients of Macdonald polynomials, Yip | | made a great progress. Using alcove
walks, an explicit formula of c5,, s given in [ , Theorem 4.4] for the Macdonald polynomials of
untwisted affine root systems. Moreover, a simplified formula | , Corollary 4.7] is derived in the case
A is equal to a minuscule weight. In particular, this simplified formula recovers Macdonald’s formula for
Pieri coeflicients of type A | , Theorem 4.9]. In Yip’s study, the key ingredient is the notion of alcove
walks, originally introduced by Ram | ]. We will explain the relevant notations and terminology in
§2.1.



The main result of Chapter 2 is the following Theorem A, which is a natural (C)Y, C},)-type analogue
of Yip’s alcove walk formulas for LR coefficients in | , Theorem 4.4]. Let us prepare the necessary
notations and terminology for the explanation.

Let A be the fundamental alcove of the extended affine Weyl group W (see (2.1.1)). Given an element
w € W, we take a reduced expression w = s;, - - - $;,.. Given a bit sequence b = (by,...,b,) € {0,1}" and
an element z € W, we call a sequence of alcoves of the form

p=(po=zA, p1 = zs?llA po = 25T s A, L. = 28! ---stA)

71 12 1 Tr

an alcove walk of type W = (i1,...,1,) beginning at zA. We denote by F(E?, z) the set of such alcove
walks. See Example 2.1.0.1 of alcove walks.

For an alcove walk p, we call the transition py_1 — pi the k-th step of p. The k-th step of p is called
a folding if by, = 0 where the bit sequence b corresponds to the alcove walk p (see Table 2.1.1).

In our main result, we use a colored alcove walk introduced by Yip [ ]. It is an alcove walk
equipped with the coloring of folding steps by either black or gray. We denote by 1"261(?7 z) the set of
colored alcove walks whose steps belong to the dominant chamber C' C V := R"™.

Theorem A (Theorem 2.2.4.2). Let A, € A4 be dominant weights, W, be the stabilizer of p in the
finite Weyl group W (see (1.3.38)), and W* be the complete system of representatives of W,/W,, such
that the shortest length element in each the quotient class (see (2.2.11)). Let also W (¢) be the Poincaré
polynomial of the stabilizer W) (see (1.3.41)). We take a reduced expression of the element w(\) € W
in (1.3.36). Then we have

1
PyP, = P Z Z ApoCpp—wowt(p)‘
Ll WALL) veW" perg @1 (o))
Here wg € W is the longest element, and the weight wt(p) € A is determined from the element e(p) € W

corresponding to the end of the colored alcove walks p as in (2.2.14). The coefficients A,, B, and C, are
factorized, and we have

Ap = 11 p(a), B,:= II p(—a).
aCw(p)~1L(v=tw,h) a€L(t(wt(p))wo.e(p))
Here the term p(«) is given by

11— tflqsh(fa)tht(fa)
(a) P pcamca (o Wan)
pla) = Lol 1 —a)sl ht(—a ~3,~% Llsh(—a);L ht(—a ’
t”% (1+t§tn2q2 h( )t2ht( ))(1—t02tn2q2 h( )tzht( )) (aEWan)

1— qsh(fa)tht(fa)

qsh(a) = qik’ tht(a) = H’yERi t%<7v7a> H’yERi (totn)%<7v70¢> (CL =+ kc € S),

where we used R} = {e; £¢; |1 <i<j<n} and Rﬁ = {2¢; | 1 <i<n}. For the notation L, see
(2.1.3) in §2.1. Finally the term C), is given by C,, = [[;_, Cp » with the factor C, ; determined from
the k-th step of the alcove walk p in Proposition 2.2.3.2. Here we display the relevant formulas for Cp j:

1 1
tz — ¢ 2 ‘
wf(Z):qu_iZﬂ (i=1,....,n-1),
PO U o ) Bl 0 W PO ot P Bt i ek %)
’lr/)O (Z) =+ +1 ’ djn (Z) =+ +1 ’
1-2 1—-2
1—tz1—t!
n;(z) = 17217;2 (aeWa;, i=1,...,n—1),
-z 1l-=z
(17uéu§z%)(1+uéu6%z%)(1+u;%u§z%)(17u;%ua%z%)
no(z) = (a € W.ap),
1-2 1—-=2
(L= 242 23) (14 1245 2 23) (L4 67 242 23) (1 — 6,245 2 23)
np(z) = 0 T 0 0 T 0 (a € W.ay).

Note that the term A, actually depends only on v € W#, which corresponds to the beginning of the
colored alcove walk p.



Abstract of Chapter 3

Chapter 3 is based on the collaboration paper [ ] with S. Yanagida. The contents of | ] can be
divided into two parts:

e Classification of parameter specializations of Koornwinder polynomials

e Re-derivation of Ram-Yip type formulas of Macdonald polynomials.

The author contributed mainly to the latter part.

The motivation of Chapter 3 is the comment by Macdonald given at | , p.12, (5.17)]: The Mac-
donald polynomials associated to all the subsystems of type (CY, C,,) can be obtained by specializing the
five Hecke parameters of the Koornwinder polynomial in the way respecting the orbits of the extended
affine Weyl group acting on the affine root systems. Seemingly, the detailed explanation of such param-
eter specialization is not given in literature. The aim of Chapter 3 is to clarify this point. The result is
as follows.

Theorem B (Propositions 3.1.3.1, 3.1.4.1-3.1.4.9). For each type X listed in Table 0.0.1 and for each
(not necessarily) dominant weight 4 of type C,,, the specialization of the Noumi parameters in the (non-
symmetric) Koornwinder polynomial with weight p yields the (non-symmetric) Macdonald polynomial
with p of type X in the sense of Definition 1.3.1.1.

reduced t to tn ug Un non-reduced [t to tan w0 un
B, §314]t 1 t; 1 ty | (BC,,Cn) §314 |ty & tsty 1 ts/t
BY §3.1.4 || ts 1 2 1 1 (CY,BC,) §31.4 | ty ts tst; ts ts/ty
Cp §3.1.3 || ts 2 2 1 1 (BY,By) §3.1.4 || t,, 1 tity 1 tg/ty
CY  §314 ||t ts te ts ts
BC, §314 | tm @ t, 1 i
D, §314{¢t 1 1 1 1

Table 0.0.1: Specialization table

Hereafter we refer Table 0.0.1 as the specialization table.

In § 3.2, as a verification of the specializing Table 0.0.1, we check the obtained specializations by
using explicit formulas of Macdonald-Koornwinder polynomials. We focus on Ram-Yip type formu-
las | ) ] which were mentioned before. These formulas give explicit description of the coef-
ficients in the monomial expansion of non-symmetric Macdonald-Koornwinder polynomials E,(z) =
E,(x;q,t,t0,tn, ug, un) as a summation of terms over the so-called alcove walks, the notion introduced
by Ram | ]. We do this check for Ram-Yip formulas of type B,C and D in the sense of | ]. The
check is done just in case-by-case calculation, but since the situation is rather complicated due to the
notational problem of affine root systems and parameters, we believe that it has some importance. The
result is as follows.

Theorem C (Propositions 3.2.1.5, 3.2.2.4 and 3.2.3.5). For each u € Pg, , we have

E#(m; q,t2Y7 17t?Y7 ]-athY) = EE’RY(x; q’tiYythY)’

Ep(z;q 1,687, 1,1) = EO™Y (2;¢, 685, 630),

m S

Eu(w;q,t,1,1,1,1) = EP™ (254, 1).

Here the left hand sides denote specializations of the non-symmetric Koornwinder polynomials E,, (z),
and the right hand side denotes the non-symmetric Macdonald polynomials of type B,C and D in the
sense of | ]. For the detail, see the beginning of §3.2 for the explanation. Comparing these identities
with the specialization Table 0.0.1, we find that EE’RY(.%') is equivalent to the polynomial of type B,
ECRY () is to that of type C), and EPRY (z) is to that of type D,, in the sense of Definition 1.3.1.1.

Abstract of Chapter 4

Chapter 4 is based on the proceeding draft [YY] of the author’s talk in the conference “Recent develop-
ments in Combinatorial Representation Theory” at RIMS, Kyoto University held in November 7th—11th,
2022, written with S. Yanagida.



The purpose of Chapter 4 is to give a review of the bispectral correspondence | , , ]
between quantum affine Knizhnik-Zamolodchikov equations and the eigenvalue problems of Macdonald
type, delivered in §4.1 and §4.2. We also study the relation of the bispectral correspondence and the
parameter specialization explained in Chapter 3, and it is fulfilled in §4.3.

Rank one review of bispectral correspondence

The first part (§4.1, §4.2) is devoted to the review of the bispectral correspondence between quantum
affine Knizhnik-Zamolodchikov (QAKZ for short) equations and Macdonald-type eigenvalue problems,
established by the works | , , ].

Let us begin with the recollection on the original Cherednik’s correspondence. We refer to [C05,
§1.3] for an exposition of this correspondence. In [ ], Cherednik introduced his QAKZ equations for
arbitrary reduced root systems (in the sense of Bourbaki | ]) and for the type GL,,. Let H = H(k,q)
be the affine Hecke algebra of the concerning root systems, and let T' := Homgroup(A, C*) be the
algebraic torus associated to the weight lattice A. Then the QAKZ equations are g-difference equations for
functions of torus variable ¢t € T valued in a (left) H-module M satisfying certain conditions. In [ I,
Cherednik constructed a correspondence between solutions of the QAKZ equations for the principal
series representation M, with central character v € T, and eigenfunctions of the g-difference operators
of Macdonald type.

Cherednik’s correspondence for the type GL,, is now described as

X+ SOLqKz(k, ‘1)7 — SOLMaC(k‘7 q),y. (>(<)

A bispectral analogue of Cherednik’s correspondence is investigated by van Meer and Stokman
[ ] for type GL, who introduced the bispectral QAKZ equations using Cherednik’s duality anti-
involution *: H — H of the double affine Hecke algebra (DAHA) H (see (1.3.9)). The bispectral QAKZ
equations are consistent systems of g-difference equations for functions on the product torus 7' x T, and
splits up into two subsystems. Denoting by (¢,v) € T x T the variable, we have:

e The first subsystem only acts on ¢, and for a fixed ~, the equations in ¢ are Cherednik’s QAKZ

equations for the principal series representation M, of the affine Hecke algebra H C H.
e For a fixed t € T, the equations in 7 are essentially the QAKZ equations for M;-1 of the image

H* C H.
This argument can be extended to arbitrary reduced and non-reduced root systems, as done by van Meer
[ ] for reduced types and by Takeyama [110] for the non-reduced type (C,/, Cy,).

After the build-up of bispectral QAKZ equations, it is rather straightforward, except for one issue, to
make an analogue of Cherednik’s construction of correspondence to the bispectral eigenvalue problems
of Macdonald-type. Mimicking (%), the resulting bispectral correspondence is depicted as

X+ SOLpqkz(k, ¢) — SOLpMac(k, q)-

The issue here is the existence of (some nice) asymptotic free solutions of the bispectral QAKZ equations,
i.e., non-emptiness of the source, which was carefully done for type GL,, in | , 85, Appendix|. The
same argument works with minor modification for reduced and non-reduced root types (see | , 83]).

In §4.1 and §4.2, we give a review of the bispectral correspondence explained so far, focusing on type
A and type (CY, C1), respectively.

Specializing parameters in the rank one bispectral problems

The second part (§4.3) is a complement of the first part, and is also a continuation of Chapter 3 (the
paper | ]) on the parameter specialization of Macdonald-Koornwinder polynomials. There we classify
all the specializations based on the affine root systems appearing as subsystems of the type (CY,C,)
system. The obtained parameter specializations are compatible with degenerations of the Macdonald-
Koornwinder inner product to the subsystem inner products.

In the rank one case § 3.1.6 (] , §2.6]), where the concerned polynomials are Askey-Wilson
polynomials, we discovered four ways of specialization of the type (C},C}) parameters to recover the
type A;. Table 0.0.2 is the excerpt from Table 3.1.1.



type H Dynkin ‘ orbits ‘ Hecke parameters

(C]\_/a Cl) * *
Askey-Wilson 0o 1 O1U0, 003004 | ko ki lo D
01 1 t 1 t
A 0o 1 O3 t t 1
Rogers =0 Os 1 2 1 1
Oy t? 1 1 1

Table 0.0.2: Type A; subsystems in (C},C;) and parameter specializations

In §4.3, we study the relation between our parameter specializations and the bispectral correspon-
dence. To begin with, let us recall that the bispectral correspondence is built using the duality anti-
involution * of the DAHA H. As reviewed in §4.2.1 (4.2.16), the duality anti-involution * of H affects
on the Hecke parameters in the way

( T,ké,li,l;) = (klallakmlo)-

Then, we see from Table 4.0.1 that the specialization corresponding to the orbit Os is the only one which
is compatible with the bispectral correspondence reviewed in the first part. Under this specialization,
we establish the following commutative diagram (Theorem 4.3.1.2).

(cy.cr)

SOL{Cis™ < SOLpaw

o] j

SOL?&KZ ‘T) SOLpMmR
+
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Chapter 1

Macdonald-Koornwinder
polynomials

1.0 Global notation

Let us explain the notation used throughout in this thesis.

e We denote by Z the ring of integers, by N = Z>¢ = {0,1,2,...} the set of non-negative integers,
by Q the rational number field, by R the real number field, and by C the complex number field.
We denote by d; ; the Kronecker delta on a set I > 1, j.

We denote by e or 1 the unit of a group.

We denote C* := C\ {0}, regarded as the multiplicative group.

We denote an action of a group G on a set S by g.s for g € G and s € S, and denote the G-orbit

of s by G.s or by Gs.

A ring or an algebra means a unital associative one unless otherwise stated.

e For a commutative ring k and a family of commutative variants x = (x1,x2,...), we denote by
k[z*'] the Laurent polynomial ring k[z!, 25!, .. ].

e Linear spaces will be those over the complex number field C unless otherwise stated, and we
denote by Hom(V, W) and End(V') the linear spaces of C-linear homomorphisms V' — W and of
endomorphisms V' — V. We also denote by ® the standard tensor product ®¢ over C.

1.1 Hypergeometric orthogonal polynomials and the g-analogue

In this section, we give a brief review of one-variable hypergeometric orthogonal polynomials and their
g-analogue. The main references are | I, [ I, | and | ].

1.1.1 Hypergeometric notation

We begin with the Gauss hypergeometric series | , p-363]. It is defined using the factorial symbol
(@)n =ala+1) - (a+n—1)as

o Fy [a;ﬂ;z} = ni_o;) Wz".

Y)n
We have the following generalization, called the generalized hypergeometric series | , -363]:

Qp, =, Qgq — (01)n - (Qst1)n

s+1E%s 2| = 2",

i [ Bi, -+, B ] ;, (B (Be)n

We use Gasper and Rahman’s notation | | for g-shifted factorials
(2;9)00 = H(lfxq"), (T1,. T Q)00 = H(Zi§Q)007 (1.1.1)
n=0 i=1



which are understood as complex numbers if they converge (e.g., if z,z;,¢ € C and |¢| < 1), and as
formal series of ¢ otherwise. For n € N, we set

(%39) oo -
Q) = ————, (T1,...,2pQ)p = Tiiq)n- 1.1.2
(5500 = ot (0 =G0 (1.1.2)
We also use the symbol in | ] of the basic hypergeometric series

0o
A1y ..y Qp41 (ala”'va’?“-i-l;Q)n n
19 $q, Z| = z
rt 'r|: bl, ey br :l Z (q,b1,~~,br;Q)n

1.1.2 One-variable orthogonal polynomials

Let us recall here the definition of a one-variable orthogonal polynomial. Take a function w(z) such that

/abw(z)dz > 0.

For one-variable polynomial functions f(z) and g(z) defined on the closed interval [a, b], the inner product
is determined as follows:

b
(f,9) 12/ f(2)g(z)w(z)dz.

When a family {p,(2)},cy of polynomials satisfies the following property, it is called an orthogonal
polynomial system and w(z) is called a weight function.

(1) pn(z) is a polynomial of degree n.

(2) (=) pu(2)) =0 (m # ).

Wilson polynomials and Racah polynomials have the most parameters among all one-variable hyper-
geometric orthogonal polynomials. It is known that by specializing them appropriately, we can obtain
various one-variable hypergeometric orthogonal polynomials. These polynomials and the specialization
behavior are summarized in the Askey scheme Figure 1.1.1, cited from.

There is also known a g-analogue of the Wilson polynomial, called the Askey-Wilson polynomial
[ , p-415-419], [ , p-126-141], which is the g-hypergeometric orthogonal polynomial with the
most parameters. By appropriately specializing the Askey-Wilson polynomial, various g-analogue of
Jacobi polynomials can be recovered. The degenerate scheme is given in Figure 1.1.2, called the g-Askey
scheme.

Wilson Racah 4F35(4)
Continuous | Continuous 3F2(3)

dual Hahn Hah>/ Hah>d<ual [—Iahn

g{fﬁjﬁ;&; Jacobi 1;::;%? Meixner  Krawtchouk 2F1(2)
l
Laguerre \ Bessel  Charlier 1F1/2Fo(1)
\ /
Hermite 2Fo(0)
Figure 1.1.1: Askey scheme of hypergeometric orthogonal polynomials | , p-182]
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Askey-Wilson g-Racah 103(4)

Continuous Continuous Big g ‘ : NE)
dual ¢-Hahn | — ¢Hahn an(‘bobl//(IHdlm\ dual g-Hahn 362(3)
Al-Salam  g-Meixner Continuous Big Little N, Quantum S Affine Dual Sb1(2
-Chihara  -Pollaczec g-Jacobi ¢-Laguerre __ g-Jacobi g-Meixner g-Krawtchouk g-Krawtchouk ¢-Krawtchouk ¢-Krawtchouk 201(2)
Continuous  Continuous Little FAGN. E . Al-Salam Al-Salam b1 /200(1
big g-Hermite  g-Laguerre qL(lgllV g-Charlier Corlitm 1 Corlitz T 1/260(1)
Continuous Stieltjes Discrete Discrete 260(0)
g-Hermite -Wigert g-Hermite I~ g-Hermite IT '
Figure 1.1.2: Askey scheme of g-hypergeometric orthogonal polynomials | , p-412]

1.1.3 Askey-Wilson polynomials and its specialization

We will now introduce Askey-Wilson polynomials, continuous g-Jacobi polynomials | , p-463] and
Jacobi polynomials | , |, as an example of a one-variable hypergeometric orthogonal polynomials
and its g-analogues.

Askey-Wilson polynomials

Askey-Wilson polynomials | | are g-hypergeometric orthogonal polynomials of one-variable equipped
with extra parameters (a, b, ¢, d), which recover various g-analogue of Jacobi polynomials by specialization
of the parameters.

(1) Explicit formula:

=1 ax, a/x.

b, ac, ad; !, abed
(ab,ac,adiq) | [q7, abedg 1q, 4| (LEN).

PZ(Z;a,b, c, da q) = PI(Z) = 4¢3

al ab, ac, ad

with z == (z +271)/2.
(2) Orthogonality: For generic parameters a, b, c,d € C,

' w(z) _
[1 Pm(z)Pn(z)mdz =0, m#n,

where the weight function w(z) is given by

[Tiso(1 — (222 —1)¢" + ¢**) = k 2 2k
w(z) = , h(z,a) = || (1 = 2az¢" + a®¢™").
h(z, )h(z, b)h(z, ¢)h(z, d) ,E e

(3) 3-term recursive relation:

20P,(2) = AiPia(2) + (a+a™' = (A4 +C) Pi(2) + CiPa (2),

! .
Az) = (bezifj’df)ql)l Pi(25q,0,b, c,d),
A= (1 —abg")(1 — acg')(1 — adq')(1 — abedq' ™)
a(l — abedg?—1)(1 — abedg?) ’
e W= d D —beg™ (1~ bdg ) (1 — edg' ")

(1 — abedg?—2)(1 — abedg?—1)

11



Remark 1.1.3.1. Jacobi polynomials can be recovered by specializing the Askey-Wilson parameters as
follows | I:

(a,b,c,d) — (qRo+D/4 gRat3)/4 _ @B+1)/4 _ 2B43)/4y ¢

Continuous ¢-Jacobi polynomials

Continuous ¢-Jacobi polynomials can be recovered by specializing the Askey-Wilson parameters as fol-

lows:
(a,b,c,d) — (q(20¢+1)/4’ q(2a+3)/4’ —q(25+1)/4, —q(2/3+3)/4).

(1) Explicit formula:

. -l ltat+B+1 jatg tati .1
@B\ o (@) ' q , 20V, grotagTh
Pl (Z7Q) _Pl(Z7Q) = Wﬁl 3 qa+1, q%(a+5+1)’ *q%(a+6+2) 34, q (ZEN)
with z == (z +z71)/2.
(2) Orthogonality: For parameters o > —%, 8> —%,
1
w(z)
Po(z;q9)P(z;q) ———=dz =0, m #n,
| Putsorio s .
where the weight function w(z) is given by
hz,lhz,flhz,q%hz,fq% i
w(z) = - la+i(h ) (la+§ )h( )Ag(Jrl ; ) R h(z,a) = H(l — 2azq" + a2¢%).
(2,q2°F1)h(z, g2 1) h(z, —q=PF7)h(z, —q2P*7) k=0

(3) 3-term recursive relation:
20Pi(21q) = APria(z) + (37 + 7307 — (4 + Q) B(e) + QP (330,

~ a+1.
Al = L i),

(1 — gat) (1 — giratBtl)(1 4 glta(atBrl)) (] 4 gt s (atht2)

Al =

)

q%“‘*‘%(l — PlatBHL) (] — g2ltatB+2)

g7t (1= g))(1 = ¢P) (1 — g2t (1 4 gt 3latitD)

Cr= (1 = g2iratBy(1 — g2lta+hil)

Remark 1.1.3.2. Jacobi polynomials can be recovered by specializing ¢ — 1] |:

Jacobi polynomials

(1) Explicit formula:

—La+p+l+1 1—2
T2

1
(a+ )12F1

P = a+l

(I €N). (1.1.3)
(2) Orthogonality: The weight function w(z) given by
w(z) = (1 —2)%(1 — 2)~.
In other words, the following holds:
1
/ PA () PR ()1 = 2)(1— 2)Pdz =0 (m #n).
—1
(3) 3-term recursive relation:
AP () = B (2) + G (), (PP (2) = 0)
A =2(l4+a+p)2+a+5—2),

Bi=Ql+a+8-1)(2+a+B)2+a+p—2)z+a*> -5,
Cr==2l+a—-1)(n+-1)20+a+p5).
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1.2 Macdonald symmetric polynomials

So far, we have discussed one-variable hypergeometric orthogonal polynomials and their g-analogues. In
particular, we explained the “mother” family of Askey-Wilson polynomials. As we will explain in §1.3.1,
the multivariate version of Askey-Wilson polynomial is formulated as the Macdonald polynomial associ-
ated to the non-reduced affine root system of type (CY,C,), and is called the Koornwinder polynomial.
Before introducing Macdonald polynomials associated to arbitrary affine root systems, we explain in this
section the proto-typical theory of Macdonald symmetric polynomials, which can be regarded as the
Macdonald polynomials of type GL. The main references for this section are | , ].

1.2.1 Schur polynomials

Let x = (x1,...2,) be a family of independent indeterminates. The symmetric group &,, acts on the
polynomial ring C[z] := C[zy, ..., z,] by permuting the zs, and we denote

Clz]®" = {f(z) € Clz] | w(f(x)) = f(z) for all w € &,,}
for the subring of symmetric polynomials in C[z]. We denote by
Ay ={A=\1,..., ) €Z" | A >--- > X, >0}

the set of dominant weights of type A, (the reduced irreducible root system in the sense of Bourbaki
[ ]). The dominance order > on A is defined as follows:

A>p = Yl =" mand Y N >>0 pforallr=1,...,n—1 (1.2.1)

For a dominant weight A € A, the monomial symmetric polynomial my(z) is defined by

my(x) = Z it e (1.2.2)
HES A

where S, acts on A} by permuting its components. Then, {m(z)}rea, is a C-basis of C[z]®".
For a dominant weight A € A1, Schur polynomial sy (z) is the symmetric polynomial defined by

Aj+n—j
det (2 y i
sxa(z) = (2} — Jigij<n € C[z]®. (1.2.3)
det(z; ™ )1<i,j<n

The following is a list of remarkable properties of Schur polynomials.

e Combinatorial explicit formula: n-semi-standard tableaux of Young diagram D()) corresponding
to a partition A = (A1,...,A;) of length at most n are those in which 1,2,...,n are written in each
box of D(A) with the following rules.

— The entries in each row are weakly increasing.
— The entries in each column are strictly increasing.
For example, if n =7 and A = (4,2, 1), then the following are 7-semi-standard tableaux.

2[4] 2[3]

)

’CO[\D»—A
i
’ﬂwm

We denote by SST,,(\) the set of the all n-semi-standard tableaux of D()\). Then, Schur polyno-
mials yield the following formula

n
T T #{i’sin T
salxyy ... xn) = E zh, = :Hmi{ 1

TESST, (N =1

e {sx(z)}ren, is an orthogonal basis of C[z]%: For A\, u € A4,

o | SEs@a@d =0 (2

13



with .
dx;
T = E(Cn _ = n:17 dr = -
e = =lonl=1h do= [
and the weight function A given by
Az) = H(l —x;/xj).
i#]
e Triangular expansion: For A € A, Then
sxa(@) =ma(x) + Y Kxumu(z) (Kxu €2)
A>p
where > is the dominance order (1.2.1).
e Small example:
say(x) = s1(z),  s2)(x) = me)(z) +ma 1 (x),
se3)(x) = mg)(x) + meo 1) (x) + m1,1)(2),
52,1)(x) = M1y (x) +masy(z).

1.2.2 Jack polynomials

Jack polynomials are symmetric polynomials Py (z;3), indexed by dominant weights A € A, and de-
pending on parameter 8 € C, which form a §-deformed family of Schur polynomials. Jack polynomials
do not have a simple explicit formula like Schur polynomials (§1.2.1), but they are uniquely characterized
by the following two conditions:

e Triangular expansion: For A € Ay, we have

Py(w; 8) = ma(x) + Y exu(B)mu(z)  (exu(B) € C)
A>p

where the order < is dominance order.
e Differential eigen-equation: The (gauged) Calogero—Sutherland differential operator

D7ack — zn: 52 + 0y 0 (B> 0). (1.2.4)

—x; Ox;
i 1<i#j<n Ti J ¢

has Jack polynomials as eigenfunctions. More precisely, for each A € A, the polynomial Py (x; 3)
satisfies the differential eigen-equation

D7Dy (3 8) = Pa(x; B)ea
with eigenvalue ¢y given by
IB n n n
'_TZ A== (—DXi+ -1 A
=1 =1 =1

We list some properties of Jack polynomial.
e {P\(x;8)}rea, is an orthogonal basis of C[z]": For A, u € A4,

o | PERR@aA@ A =0 (£
with .
TIZ{.’EE(C”||$1|:"':|$"‘:1}’ d.’EIZH dml

=1 27’(\/ 711’1
and the weight function A given by

A(z; B) = H(l —xifr;)P, —m <0<, 6 < <0, <6 +2m arg(l) =0,
it

where 0; := arg(z;) and (1 — x;/x;)P = eflosll=wi/zj) = elogll—ai/w;|+iarg(l—2:/z;),
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e Relationship with other polynomials:

— P,\(x B =0)=my(z) (monomial symmetric polynomials (1.2.2))
— Pi(z; B =1)= 3,\( ) (Schur polynomials §1.2.1)
— Py(z; 8 = 1) = Zonal polynomials associated to GL(n)/SO(n) [ , §VII].
— P\(z; 8= 2) Zonal polynomials associated to GL(2n)/ Sp(n) [ , §VII].
— P(z; ﬁ) = P 5B)( ) (Jacobi polynomials (1.1.3)) (n=1, [ € N).
e Small example:
2
Pay(@; B) =mi(z), Poy(z;B) =mp)(z) + Wm(l’l)(x)’
632

Py (x5 8) = mzy(w) + ———m,n(x) +

3 L
2+ 5 T )

6
P2y (x; B) = ma,1)(2) + ﬁm(la)(@,

1.2.3 Macdonald symmetric polynomials

In this part we briefly discuss Macdonald symmetric polynomials. Macdonald symmetric polynomials
Py(x; q,t) are a family of multivariate g-orthogonal symmetric polynomials introduced by I. G. Macdonald
in late 1980s [ |, and the family is a generalization of Schur and Jack polynomials. Macdonald
polynomials, like the Jack polynomials, are uniquely characterized by of the following two conditions.

e Triangular expansion: For A € Ay, Then

P)\(.’IJ; q, t) = mA("L‘) + Z d/\,ﬂ(qv t)m#(x) (d)\’lt(% t) € (C)
A>p

where the order < is dominance order.
e g-difference eigen-equation: The Macdonald-Ruijsenaars g-difference operator | , ] is given
by

DMac — ZH “’”:%' b (1.2.5)

i=1 i
where Ty ., denotes the g-shift operator:
(Tow [) (@1, iy ) = f(21, ..., qmi, ..., xy),  f(z) € Clz].
Then, for each A € A, the polynomial Py (x;q,t) satisfies the eigen-equation
DMacpy (z;q,t) = Px(x;q,t)cy

with eigenvalue c) given by

n
Cy = Z Qi
i=1

We list some properties of Macdonald symmetric polynomial.
e {P\(2;q,t)}rea, is an orthogonal basis of C[z]%": For A, € AL,

1 -
ol | P D P A5 0,0 =0 (A# )
with
T={reC"||t|==las| =1}, de=]]—#

=1 27‘[‘\/ _1371'

and the weight function A given by

Awat) = ] (/253 @)oo (75 /i5 @)oo

1<isjen T/ 255 @)oo (b5 /245 @)oo
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e Relationship with other polynomials:

— Py(z;9 =1t) = sx(x) (Schur polynomials §1.2.1)

— lim, Py(z;t = ¢°) = Pa(2;8) (Jack polynomials §1.2.2)
o A; cases: For [ € AL =N, we have

-1
Py(a; qyt)—x2¢1{ ’lql/t,q, q], (1.2.6)

which is also called Rogers polynomial.
e Small example:

1+ 1—1¢
Poy(w59,t) = mi(x), Poy(z;q,t) = mg)(z) + (lq)(qt)

N 1-¢*)(1—1) (1-¢*)1-¢*)(1—-1)?
Py (z;9,t) = me)(z) + mm(m)(m) + 1 —q2(1 —gt)(1 — ¢20) m11,1)(T),

(1
(I=t)(2+q+1t+2qt)
1 — qt2 (13)(.1‘)

m(1,1)(1’)7

Py (w5q,t) = ma1)(z) +

1.3 Macdonald-Koornwinder polynomials

Macdonald symmetric functions Py(z;q,t) reviewed in the previous § 1.2 can be regarded as the Mac-
donald polynomial of type GL,, (or type A affine root system). As mentioned in the beginning, there are
analogous orthogonal families associated to other affine root systems, and they are now called Macdonald-
Koornwinder polynomials. A unified formulation is established after the developmcnt of representation
theoretic approach using the (double) affine Hecke algebras | , , , , , ,

, , ], and it is called the Macdonald-Cherednik theory. There are now several versions of
such formulation, and we give an overview in §1.3.1. We refer to | , , , | for the concise
explanation.

In this thesis, we only use the Macdonald-Cherednik theory for the non-reduced affine root system
of type (CY,C,), i.e., the theory for Koornwinder polynomials. In §1.3.2 and §1.3.3, we will explain in
detail how to define Koornwinder polynomials though the representation theory of affine Hecke algebra
associated to the non-reduced affine root system (C)Y, C},). Let us explain the organization of this part. In
§1.3.2, we explain the root system R of type C,, and the affine root system of type (C)Y,C},). In §1.3.3, we
introduce the affine Hecke algebra H of type (C,, C,), and review the basic representation constructed by
Noumi [N95]. Then we introduce the double affine Hecke algebra H of type (C,/, C,,), and explain the non-
symmetric Koornwinder polynomials Fy (Fact 1.3.3.2). Finally we introduce Koornwinder polynomials
Py in §1.3.3 (Fact 1.3.3.4).

1.3.1 Overview of the Macdonald-Cherednik theory

In [ ], Macdonald introduced families of multivariate g-orthogonal polynomials associated to var-
ious root systems, which are today called the Macdonald polynomials. Each family has additional
t-parameters corresponding to the Weyl group orbits in the root system. The family of Macdonald
symmetric polynomials, explained in § 1.2, is the GL,-version of these families. Following this work,
in | ], Koornwinder introduced a multivariate analogue of Askey-Wilson polynomial, having addi-
tional five parameters aside from ¢, which is today called the Koornwinder polynomial. It was also
shown in | | that by specializing these five parameters, we can obtain the Macdonald polynomials of
type (BC,, By) and (BC,,C),) in the sense of | ]. Today, these families of multivariate g-orthogonal
polynomials are called the Macdonald-Koornwinder polynomials | , , , ].

After the development of the representation theoretic approach | , , , , , ,
] using the (double) affine Hecke algebras, there appeared several versions of

) )

umﬁed formulation of the Macdonald-Koornwinder polynomials [C05, , , ]. These studies
are now called the Macdonald-Cherednik theory.

The specialization argument given by Koornwinder in [ ] is now understood in a more general
form. First, after the studies in | , , , , ], the Koornwinder polynomial can be

formulated as the Macdonald polynomial associated to the affine root system of type (C)Y,C,) in the
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sense of [MO03]. See also | ) | for the relevant explanation. Then, as mentioned in | , p-12,
(5.17)], the Macdonald polynomials associated to all the subsystems of type (CY,C,) can be obtained
by specializing the five parameters of the Koornwinder polynomial in the way respecting the orbits of
the extended affine Weyl group acting on the affine root systems. See also the comment in [ , 6.19].

However, it seems that the detailed explanation of the specialization argument is not given in litera-
ture. The aim of this paper is to clarify this point.

What troubled the authors in the early stages of the study is that there are tremendously many
notations for the affine root systems and the parameters of Macdonald-Koornwinder polynomials, and
that even for the work [M&7] and the book [M03] both by Macdonald, there seems no explicit comparison
in literature. To the authors’ best knowledge, in the present writing this paper, the most general
framework of the theory of Macdonald-Koornwinder polynomials is given by Stokman [ ], which is
based on the approach of Haiman [HOG]. It treats uniformly the four classes of Macdonald-Koornwinder
polynomials: GL,,, the untwisted case, the twisted case, and the Koornwinder case. The formulation by
Macdonald in [MO03] treats the latter three cases along this classification.

Although it would be the best to work in the framework of [ ], we gave up to do so due to the
following reasons. First, since we are interested in the specialization of Koornwinder polynomials, we
may ignore GL,, case, and the formulation of | ] will be enough. Second, we are also motivated by
Ram-Yip type formulas of non-symmetric Macdonald-Koornwinder polynomials | , ], and will
check our specialization argument in the level of those formulas. The calculations in the check are based
on the recent paper [ ] by the second named author, which mainly follows the notation in [MO03]. Let
us mention that some specialization arguments are given in [ , Example 9.3.28, Remark 9.3.29].

After these considerations, we decided to use the notation in the following literature:

(1) [MO3] for affine root systems.
(2) [N95] for the parameters of Koornwinder polynomials.

Let us explain (1) in detail. We use the word “affine root system” in the sense of | , 81.2], which
originates in [M71]. The word “irreducible finite root system” means an irreducible root system in [M03].
We also denote by V the dualizing of finite and affine root systems. Then, as explained in | , §1.3],
similarity classes of irreducible affine root systems are divided into three cases:

e reduced and of the form S(R) with R an irreducible finite root system.

e reduced and of the form S(R)Y with R an irreducible finite root system.

e non-reduced and of the form S; U S5 with S; and S5 reduced affine root systems.

The appearing R is one of the types A,, By, Cn, Dy, BC,, Eg, E7, FEs, Fy and Gs. According to the
type of R, we say

e S(R) is of type X if R is of type X,

e S(R)Y is of type XV if R is of type X,

e a non-reduced system S; U S is of type (X,Y) if S; and Sy are of type X and Y, respectively.

We refer | , (1.3.1)—(1.3.18))] for explicit descriptions of these irreducible affine root systems, although
some of them will be displayed in the main text.
As explained in | , §1.4], Macdonald developed a unified formulation to associate a family of

g-orthogonal polynomials to each of the following pairs (.9, S’) of irreducible affine root systems.

(a) (S,8") = (S(R),S(RY)) with R an irreducible finite root system.

(b) S =S8"=S(R)V with R an irreducible finite root system.

(¢c) S =5 is non-reduced of type (X,Y).
For each pair (59,5’), we have the associated non-symmetric [M03, §5.2] and symmetric [M03, §5.3]
Macdonald polynomials. For the reference in the main text, let us introduce:

Definition 1.3.1.1. We call the non-symmetric and symmetric Macdonald polynomials associated to
(S, 5") in the class (a), (b) and (¢) the non-symmetric and symmetric Macdonald polynomials of type X,
XV and (X,Y), respectively.

1.3.2 Affine root system of type (C),C,)

In this part, we describe the affine root system (C,’, C,,) by which we can define Koornwinder polynomials
from the viewpoint of affine Hecke algebras.
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Root systems for type C,

We consider the n-dimensional real Euclidean space (V, (-, -)) with
V= @Rei, <€i7€j> :6i,j-
i=1

The set R of roots is given by
R:={xe+e¢ |i#j}U{X2|i=1,...,n}CV. (1.3.1)

For each root o € R, we denote the associated coroot by oV := 2a/{(a, ) € V. The set RV of coroots is
given by

RV ={a"|aeR}={te;+¢|i#j}U{xe|i=1,...,n}C V. (1.3.2)

We use the following choice of the subset R C R of positive roots and the subset RY C R of positive
coroots.

Ry ={e;te|i<jtu{2e|i=1,....,n}, RY={ezxeli<jlu{eli=1,...,n},
We have R = R, U—R, and RV = RY LI —RY. The simple roots a; € R (i = 1,...,n) are given by
A1 = €] — €9, .y Up_1 = €p_1 — €n, Ap = 2€,.
The coroots for simple roots are
=€n_1— €n, Ay = €.

Vv
a) =€ —€2, ..., Qp_q

We call a; simple coroots.
For @ € R, we write s, the reflection by the hyperplane H,, = {z € V' | (aV,x) = 0} in V. That is,

Sq-x =2 — (', 2)a, xEV.

We write s; == sq, for i = 1,...,n. The finite Weyl group Wy is defined to be the subgroup of GL(V)
generated by si1,...,8,. As an abstract group, Wy is a Coxeter group with generators si,...,s, and
relations

s2=1 (i=1,...,n),
sis; =s58; ([i—j] > 1),
5i8i418; = Sip18i8i41 (1=1,...,n—2),
Sn—15nSn—15n = SnSn—15nSn—1-
Next we introduce notation for weights of the root system of type C,. For i = 1,...,n, we define
w; =€ +---+¢ €V, and call them the fundamental weights. Then we have (a),w;) = ¢&;; for
i,7=1,...,n. We define the root lattice ) and the weight lattice A by

Q = éZaz CA:= éZwl = ézq cV. (133)
=1 =1 =1

The action of Wy € GL(V) on V preserves the weight lattice A. We denote this action by A — w.\ for
w e Wy and A € A.
Affine root system of type (C)/,C,,)

Here we introduce the notation for the affine root system of type (CY,C,) in the sense of Macdonald
[ ], following Chapter 1 of loc. cit.

Let F' be the space of affine real functions on V', which is identified with real vector space V & Rc by
the map (u — (v,u) + 1) +— v+ rcfor u,v € V and r € R. Using the gradient map

~: F—YV, vtrc=uv, (1.3.4)
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we extend the inner product (-,-) on V to a positive semi-definite bilinear form on F by (f, g) = (f,7)
for f,g € F. We define the affine root system S = S(C),C,) of type (C),C,) in the sense of [M03,
(1.3.18)] and | ] by

k
S(CY,Cy) = {*e; + c,j:2q+kc|k€Z,i:1,...,n}U{:|:qj:ej+kc|kGZ,l§i<j§n}CF.

(1.3.5)
We also define the subset S C S of positive roots by
k
St ={a+ke,a" + ¢ |a € Ry,a¥ € RY ke N}
y (1.3.6)
U{a+ke,a" + ¢ |a € R_,a” € RY, k€ N\ {0}}.

We then have S = S, LIS_ with S_ := —S,. We also denote the set S := RU R", and denote the set

§+ = R+ U Ri7 ?_ = —g_;'_. (137)

We denote by t(A) = {t(\) | A € A} the abelian group with relations t(A) t(u) = t(A+ p) (A, p € A).
We define the action of t(A) on F' by

t(A).(u+me) = p+ (m — (u,A))e, p+meceF.

The relation of w € Wy and t()\) € t(A) in the group GL(F) is then given by w t(A\) w™! = t(w.)\). The
subgroup W C GLg(F') generated by t(A) and Wy is called the extended affine Weyl group. That is,

W :=t(A) x Wy C GLg(F). (1.3.8)
The action of the element s := t(€1)s2., € W on A is given by s.e; = c—e€y and s.¢; = ¢; (i =2,...,n),
which is the same as the reflection sg = s,, with respect to the hyperplane H,, == {x € V | {ay, z > = O}
for the affine root ayg = ¢ — 2¢; € S. For each a € S, we denote the associated affine coroot by
a¥ = 2a/{a,a) € S. As an abstract group, W is a Coxeter group with generators s, s1,...,s, and
relations
s2=1 (i=0,...,n),
sisj =s580 ([i—jl>1),
SiSi+1Si = Si+15:iSi+1 (Z = 1, e, — 2),
SiSi+15iSi+1 = Si+15iSi+15: (’L = 0,77/ - ].)

We define the length ¢(w) of an element w € W to be the length of the reduced expression of w by the
generators sg,...,S,. We also denote by <p the corresponding Bruhat order. The reduced expressions
of t(e;) (¢ =1,...,n) are given by

€e1) = 081+ Su-18n a1 -+~ 5251,

t(€2) = 818081 " SnSn—1 """ 82, (139)
t(e;) = ©5081 " SpSpn—1""" Si,

t(En) ++ 818081 Sn.

1.3.3 Koornwinder polynomials
Affine Hecke algebras of type (C),C,,) and polynomial representations

n?

Recall the affine root system S of type (C),C,) and the extended affine Weyl group W explained in
§1.3.2. Let {t, | a € S} be parameters satisfying the condition ¢, = t,/ for «’ € W.a. Since the W-orbits
in S are given by

Wa; =W.a! (i=1,....,n—1), W.an, W.ag, W.a,\, W.a,

19



we can replace the family {t,} by
(tar = ta¥ sty tags tay s tay ) = (t,tn, to, Un, o). (1.3.10)

We will also denote t1,...,t,_1 :=t. Now we set the base field K as

-

1

1 1 1 1
K= Q(q?,t7,t2,t2,uZ , ul), (1.3.11)

-

and all the linear spaces, their tensor products, and the algebras will be those over K unless otherwise
stated. X

The extended affine Hecke algebra H = H(q,t?) is the associative algebra generated by To, T4, ..., T,
subject to the following relations.

(T~ )T+ 1) =
T =1T;T;
Tl =T Tl
LT TiTi =T T Ty

|Z—_j| > 1’(i7j) @?{(n,O),(O,n)}), (1'3-12)
i=1,...,n—2), (1.3.13)
i=0,n—1). (1.3.14)

The relations (1.3.12)—(1.3.14) are called the braid relations.
Given an element w € W together with a reduced expression w = s;, - -+ s;,, we define Y € H by

yw = et ~Ti(b"'), b == 84, Sin " Sip_y(ai) (B=1,...,71), (1.3.15)

1

where the map ¢ : S — {%1} is defined by

4+ (@eso)
g(a) = {_1 @e3,)’ acs.

The decomposition of Y by T;’s is independent of the choice of a reduced expression of w. By the
relations of H, we find that the family {Y* | w € W} is mutually commutative [N95, §2].

As explained in [ , §3], we can calculate Y*¢) using the reduced expression of t(¢;) in (1.3.9).
The result is

yHe) = 7y T, Ty - Ty,
ytle2) — TflTo T AT Ty -+ T,

yie) — -l T T, T Ty - T, (1.3.16)
ytlen) — Tnil1 .. TflToTl T,
Now we denote by
KY® ) =Ky, ..., Y cH, Y,=Y"%) (i=1,...,n)
the ring of Laurent polynomials in Yj,...,Y,,. Then we have an isomorphism H ~ Hy ® K[Y *!], where

Hy is the Hecke algebra of the finite Weyl group Wy. The latter is the subalgebra of H generated by
Ty,....,T,.

Next we review the basic representation of the affine Hecke algebra H introduced by Noumi [N95].
Let K(z) = K(z1,...,z,) be the field of rational functions with n variables. Then the mapping

L1 —tx/xi

1 _1
Ty —s 17 +1; 2 (si—1) (i=1,...,n—1),

1—ai/wip
b - uitiater )+ ug HHiabar)
Tor—t5 +1,° — (so — 1), (1.3.17)
1—gx]
3.3 3,3
T té +t;%(1—untnxn)(1+un tnxn)(sn—l)

— .2
1—zz
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defines a ring homomorphism p : H — End(K(x)). Moreover its image is contained in the endomorphism
algebra Endg (K[z*!]) C Endg(K(z)) of the Laurent polynomials. We call p the basic representation of
H. Hereafter we identify H and its image under p, and regard H as a subalgebra of Endy (K[z*1]). The
right hand sides of (1.3.17) are ¢-difference operators called Dunkl operators of type (C,,C.,).

Let us give a simplified description of (1.3.17). Using

1 (i=1,...,n-1) zifrip1 (i=1,...,n—1)
u; == ug (i=0) , o a%i={ qay? (i=0 ,
U, (i=mn) x2 (i=n
we can rewrite 7T;’s as
11 . 11
VORI B L Gl t;x?(i: U TR ), (1.3.18)

where we identified the left and right hand sides in (1.3.17) as claimed before. Let us further define the
rational functions ¢;(2),d;(z) € K(z) by

11, 11 T 1 1 N
C'L(Z) :t;%(]‘iuiztz?z2)(1+ui 2ti222), dl(z) :tiéfcz(z): (tzzitz 2)+(uz’27u1 2)22
-2 1—-2
(1.3.19)
Then we can rewrite (1.3.17) or (1.3.18) as
1 1
T, =12 +ci(x®)(s; — 1) =t2s; + di(x®)(1 — ;) = ¢; (%) s; + di (). (1.3.20)

For later use, we calculate the action of the element Y on 1 in the basic representation for an affine
root a=a+kceS (a€ S, keZ). Let us define

D | B Y (T (1:3.21)

Here R% = {e; £¢; | 1 <i < j <n} denotes the set of positive short roots, and R} = {2¢; | 1 <i < n}
denotes the set of of positive long roots. Then we can check

Vo] = qSh(a)tht(G)' (1.3.22)

See also | , Proposition 4.5] for a more general formula.
Finally we recall the Lusztig relations in the basic representations of affine Hecke algebra. For each
weight A = (A\1,...,\n) € A, we define 2* € K[z*!] by

o =) e K[zt (1.3.23)
Fact 1.3.3.1 (Lusztig relations, [.89, Proposition 3.6]). For i =0,...,n and A € A, we have
Tz — 25 = di(a%) (2> — 257),
where the rational function d;(z) is defined by (1.3.19).

Double affine Hecke algebras and non-symmetric Koornwinder polynomials

Next we review the double affine Hecke algebra H of type (C),Cy,) and the non-symmetric Koornwinder
polynomials E\(z), following [MO03], | ] and | ].

As in the previous part, we regard H as a K-subalgebra of Endg (K[z*!]) by the basic representation
(1.3.17). We define the double affine Hecke algebra H C Endg(K[z*!]) as the K-subalgebra generated
by Klz*1], H(Wy) and K[Y*!]. Thus

H = (Kz*!'], Hy, K[Y*']) C Endg(K[z*"]).
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As in the case of untwisted affine root systems, the algebra H has the Cherednik anti-involution x : H — H
[5a99, §4):
wi=Y", Yi=az', T;=T, (i=1,...,n),

1.3.24
(t*’t:’taruzaum = (tat’munathuO)~ ( )

On the element Tp the anti-involution acts as Tg = Ti.' 27*. In fact, we have Ty = Y1T.;' and

826, S$2eq
Ts,,, =T1- 1,11+ Tq by (1.3.16).
Next we introduce the x- and Y -intertwiners for H following [ , §5.6]. Let H be the coefficient
extension of H by rational functions of x’s and Y’s. In other words, we set
H := (K(z), Ho, K(Y)) C Endg(K(z)). (1.3.25)

Here K(z) and K(Y') are the fields of rational functions of x; and Y; (i = 1,...,n) respectively. For
i=0,...,n, we define S¥ € H by

ST =Ty + o (x% = T, + 7 (), (1.3.26)

where

o (2) =F c K(2). (1.3.27)
We call S¥ the x-intertwiners.

Let us explain some basic properties of z-intertwiners. Recalling the rational function d;(z) in (1.3.19)
and the expression of T; in (1.3.20), we have

o (2) = di(2), S¥ =T — di(z™) = ¢;(a")s;. (1.3.28)

For each weight A € A, we have
Szp = 5N ge (1.3.29)
by the Lusztig relations (Fact 1.3.3.1). Moreover, by | , (5.5.2)], the z-intertwiners S? (i =0,...,n)

satisfy the same braid relations as (1.3.12)—(1.3.14):
SPSy =5757 (li—j1>1),
SySE Sy =S85 SiSE, (i=1,...,n—2), (1.3.30)
SZ?CS;I?+1SZ?C f+1 = Sf—s—lsfsizﬂsf (i=0,n—1).
Given an element w € W, choose a reduced expression w = s;, -+ - s;,, and set
S5 =S¢ -+ 87 €. (1.3.31)

By the braid relations, S, is independent of the choice of a reduced expression of w.

Next we introduce Y -intertwiners. First, note that the anti-involution * can be extended to H. In
fact, H is the Ore localization of the non-commutative algebra H by the commutative subalgebras K[z
and K[Y*!], and # is an isomorphism on these commutative subalgebras. We denote the extension of *
to H by same symbol *. Now we define the Y-intertwiners S} € H by

SY = (ST =T+ o (Y ") =T 447 (V) (i=1,....m),

oye o N (1.3.32)
So = (55)" = To + g (a¥?) = (Tg) ™! + g (aY7),
where the symbols 1 (z) denote the following functions:
t3 — 3
VED) = E () = F el (=1...n-1),
1 L1 1
N B B [
o(2) =F = a (1.3.33)




Note that we have 9= (Y ~%) = (ap;t (gc‘“))*7 where * is the extended anti-involution.
We can deduce properties of S¥ ’s from those of S#’s. For example, applying the anti-involution * to
the relation (1.3.29), we have

SYYAr =vysirsY (1.3.34)

for each i = 0,...,n and A € A. We can also see that S} ’s satisfy the same braid relations as (1.3.30).

For an element w € W, we can define SY € H by choosing a reduced expression w = s;, -+ - s;, and

Sy =88 em (1.3.35)

It is well-defined by the braid relations of S} ’s.

Finally we explain the non-symmetric Koornwinder polynomials. For each weight y € A, we regard
t(u)Wo C W by the decomposition W = t(P) x Wy in (1.3.8). Then we define w(u) € W by the following
description:

w(p) is the shortest element among t(p)Wo C W. (1.3.36)
In the case u =¢;, i = 1,...,n, the element w(e;) is given by
w(€;) = Si—1 -+ So. (1.3.37)
Now we have:
Fact 1.3.3.2 (| , 86, [ , Theorem 4.8]). For u € A, the element

B(x) = SY(,1 € K(2)
belongs to K[z™1]. We call it the non-symmetric Koornwinder polynomial associated to ju.

By (1.3.34), E,,(z) is a simultaneous eigenfunction of the family {Y* | A € A} of Dunkl operators.
Note that our normalization of E, (z) is different from that in | , ]. In loc. cit., the coefficient of
x# is normalized to be 1.

Koornwinder polynomials

Now we introduce Koornwinder polynomials by symmetrizing non-symmetric Koornwinder polynomials.
First, we define the set Ay C A of dominant weights by

Ay ={peA|{a),u)>0,i=1,...,n}.

For a weight p € A, we denote the stabilizer of  in the finite Weyl group Wy by

W, ={we Wy |w.p=p} C W, (1.3.38)
and denote the longest element among W, by
wy, € Wy (1.3.39)
Next, using the notations in §1.3.2 and §1.3.3, we define ¢,, € K for each w € W by

tw=[[ ta€K (1.3.40)
Here {t, | a € S} is the W-invariant family of parameters (1.3.10), K is the base field (1.3.11), and

L(w) C Sisgiven by (2.1.2). Ifw =s;, ---s;. € W is a reduced expression, then we have t,, = t;, -- - t;,.
For a dominant weight 4 € Ay, we define the Poincaré polynomial W, (t) € K of the stabilizer W, by

W) =Y tu. (1.3.41)

ueW,
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Lemma 1.3.3.3. For each element p € A, we have
11— tht(fa)tgl 11— tht(fa)ta 1
Z ( H ta 1 _ ¢ht(—a) > < H ta” 1 _ ¢ht(—a) ) = luw),/ W (t).
ueW,, “a€L(e,u) a€L(u,wy)

For a proof, see | , Lemma 3.4].
Next we define the symmetrizer U by

U= tutTo. (1.3.42)
weWy
By [MO03, (5.5.9)], we then have
UT, =Ut?, TU=t:U (i=1,...,n). (1.3.43)

Hereafter we denote the ring of Wy-invariant Laurent polynomials by
KzF " == {f e Klz*'] |w.f = f, w € Wo}.

Here Wy acts on z* (1.3.23) by the action on the weight A. Also recall that for each € A, C A we
defined w(p) € t(pu)Wo C W by (1.3.36).

Fact 1.3.3.4 ([St00, Theorem 6.6]). For each dominant weight A € A, the element
1 . 1
P\(z) = — USyinl=—1 UE\(z) € K(x)
tws WA(t) wy Wa(t)

belongs to K[z*1]Wo. We call Py(z) the (monic) Koornwinder polynomial associated to .

Note that the coefficient of 2* in Py(z) is 1 since the coefficient of the top term z* in US) ;)1 is

t;% W(t). To emphasize the root system (C)Y,C,,), we call Py(x) the Koornwinder polynomial of rank
n or of type (CY,Ch).
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Chapter 2

Littlewood-Richardson coefficients

Chapter 2 is based on the author’s publication | ]

2.0 Introduction

As explained in Preface, Abstract of Chapter 2, the theme of this chapter is the Littlewood-Richardson
coeflicients S of Koornwinder polynomials Py, that is the structure constants of the product in the

invariant Laurent polynomial ring K[z=]W0 of the finite Weyl group Wy of type C,,:
P\P, = ZCK,MPU.

Hereafter we call ¢§ , LR coefficients for simplicity.

The main result of this chapter is Theorem 2.2.4.2, which is a natural (C), C,)-type analogue of Yip’s
alcove walk formulas for LR coeflicients in [ , Theorem 4.4]. Let us prepare the necessary notations
and terminology for the explanation. See also the explanation of Theorem A in Preface.

Let us explain the outline of proof of Theorem A. We denote by E,,(z) € K[X*!] the non-symmetric
Koornwinder polynomials | , ], which was introduced in § 1.3.2. 'We need the following two
properties.

o {E,(z) | p€ A} is a K-basis of K[zF!].

e P,(z) is obtained by symmetrizing F,,(x) (Fact 1.3.3.2). More precisely, using the symmetrizer U

in (1.3.42), we have

Pu(a) = ———UE,(x).

1
tw,? Wy(t)
The outline of proof is a straight (C,C,)-type analogue of Yip’s derivation in | ]. The argument
can be divided into four steps, and below we explain them abbreviating some coefficients and ranges of
summations.
(i) For dominant weights A\, u € Ay, we derive an expansion formula

2t Ey(z) = Z cpEpy ()

pere

of the product of the non-symmetric Koornwinder polynomial Ey(z) and the monomial z# (Corol-
lary 2.2.1.5). Here the index set I'C consists of alcove walks belonging to the dominant chamber
C'. The symbol w(p) € A4 will be given in (2.2.7).

(ii) We use Ram-Yip type formula (Fact 2.2.3.1), an expansion formula for the non-symmetric Koorn-
winder polynomials in terms of monomials:

Bu(@) =Y fotdge™ ™.
pel’

This formula was derived by Orr and Shimozono [ ], based on the work of Ram and Yip | ]
on the same type formula for the untwisted affine root systems.
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(iii) Using (i) and (ii), we can calculate the product of the non-symmetric Koornwinder polynomial
E,(z) and the Koornwinder polynomial Py(z) in an extension H of the double affine Hecke algebra
H, and express it as a sum over alcove walks (2.2.17). Then we can rewrite it as a sum over colored
alcove walks and have (Proposition 2.2.3.2):

Bu(@)Pr(x) = > Y AyCpEq) ().

veEW? per§

(iv) Theorem A is obtained by symmetrizing E,(x) in (iii) and switching A <> p.

Organization

In §2.1, we introduce alcove walks for type (C)Y,C,,), slightly modifying the original alcove walks intro-
duced by Ram and Yip | ]. In §2.2, we derive our main Theorem 2.2.4.2. previously explained, and
the organization of §2.2 follows that. In §2.3, we derive several corollaries of the main Theorem 2.2.4.2.
In §2.3.1, we discuss the case of rank n = 1, that is the case of Askey-Wilson polynomials. In particular,
we give a simplified formula for the Pieri coefficient (Proposition 2.3.1.3), and recover the recurrence
formula of Askey-Wilson polynomials in [ ] from our Pieri formula (Remark 2.3.1.4). In §2.3.2,
we discuss the Hall-Littlewood limit ¢ — 0, and show that LR coefficients are somewhat simplified
(Proposition 2.3.2.1). In §2.3.3 we display examples of LR coefficients in the case of rank n = 2.

Notation and terminology

In Table 2.0.1 below, we collect several symbols concerning Weyl groups which might be confusing.

R (1.3.1) | the set of roots in the finite root system of type C,,.
AN =@, Ze; (1.3.3) | the weight lattice of type C,,.
W =1t(A) x Wy (1.3.8) | the extended affine Weyl group of type C,.
W, Cc Wy (1.3.38) | the stabilizer of weight p € A in the finite Weyl group Wj.
W (2.2.11) | the distinguished complete system of representatives of Wy /W,,.
W, (t) (1.3.41) | the Poincare polynomial of W,,.
wy, (1.3.39) | the longest element of the stabilizer W,.
vy, (2.2.12) | the longest element of W*.
w(p) (1.3.36) | the shortest element among t(u)Wy C W.

Table 2.0.1: Symbols concerning Weyl groups

2.1 Alcove walks

Alcove walks are introduced by Ram | | as analogue of Littelmann paths for affine Hecke algebras.
They are valuable combinatorial objects, and used in Ram-Yip type formula | , | for non-
symmetric Macdonald-Koornwinder polynomials, and in Yip’s formula | ] for Littlewood-Richardson
rules of Macdonald polynomials in the untwisted affine root systems. In this part we introduce the
notation of alcove walks which will be used throughout in the text. Basically we follow the notations in
[ , §2.2], but make slight modifications.

Let us regard an affine root a = a+kc€ S (e € S, k € %Z) as an affine linear function on V' by

a(v) =(a,v)+k (veV).

An alcove is defined to be a connected component of the complement V'\ |J,.g Ha of the hyperplanes
H, ={x €V |a(z) = 0}. The fundamental alcove A is the alcove given by

A={zeV]a(x)>0(=0,...,n)}. (2.1.1)
Its boundary consists of the hyperplanes H,,, Hq,,- .., H,,. Note that the mapping
Wowr— wA e mo(V\Uyes Ha)
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is a bijection. An alcove wA is surrounded by n + 1 hyperplanes, say H,, (v € S4;i=0,..., n). We
call the intersection H,, NwA an edge of the alcove wA, where wA denotes the closure with respect to
the Euclidean topology. Note that each hyperplane H.,, separates wA and another alcove vA, which can

be written as v = ws; for some j = 0,...,n. Then the edge H.,, NwA is just the intersection wANws;A,
and has two sides, which we call the wA-side and the ws; A-side.
Given an alcove wA, we give a sign =+ to each of the two sides on an edge of wA. Let H,, (i =0,...,n)

be the hyperplanes surrounding wA. By renaming the indices 7 if necessary, we can assume that the
hyperplane H.,, separates wA and ws;A. Then using the projection «; — 7; in (1.3.4) and the symbols
Sy in (1.3.7), we set the signs by the following rule.

e If 7; € S, then the wA-side of H., NwA is assigned by + and the ws; A-side is by —.

o If 3; € S_, then wA-side is assigned by — and the ws; A-side is by +.
See Figure 2.1.1 for the assignment in the rank 2 case.

H,,

H,,

Figure 2.1.1: Signs for the edges of the fundamental alcove A in the rank 2 case
Given an element w € W and a reduced expression w = s;, - - s;,., we define a subset L(w) C S by
L(w) = {ail, SiyQigy vy Siy " -si,,,flai,,,} . (2.1.2)

The set {H, | a € L(w)} consists of the hyperplanes separating A and wA. Given elements v,w € W
and their reduced expressions, we also set

L(v,w) = (L(v) U L(w))\ (L(v) N L(w)). (2.1.3)

The set {H, | a € L(v,w)} consists of the hyperplanes separating vA and wA. If v <p w, where <p is
the Bruhat order explained at the line before (1.3.9), then we have

L(v,w) =v.L(e,v w) = v.L(v  w). (2.1.4)
Let us again given w € W and a reduced expression w = s;, ---s;,. Then the mapping
{0,117 (by,....by) > sV st e v e W | v <5 w}

bi .. gl with

is a surjection. Let us given extra v,w € W such that v xp w. We can write v = s i

b= (b1,...,b.) € {0,1}". We then consider the following sequence p of alcoves.
p=(po =24, p1 = zsfllA, Doy = zsfll sng, c, Pro= zsfll sz)
The sequence p is called an alcove walk of type W = (i1,...,1,) beginning at zA, and we denote by

D(W, 2) the set of alcove walks of this kind. The symbol @ emphasizes that we choose a reduced
expression w = §;, - -+ §;

e
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Example 2.1.0.1 (Alcove walks in the rank 2 case). For w = $1825159 and z = e € W, the two alcove
walks

p1 = (A5A752A75251Aa 52518014), b2 = (A, 5114,515214,51525114751825150/1) € F(ﬁ,z)

are shown in Figure 2.1.2, where the gray region is the fundamental alcove A, and the number i =0, 1, 2
on a hyperplane means that it belongs to the W-orbit of H,,.

L
1 2
p 5 W2 6 © < »
K &
<
0 9 1, 9 ) o

Z W1 Z Z O Z 1'

2W1

<_
D

Figure 2.1.2: Alcove walks p; and po

For an alcove walk p € F(ﬁ, z)and k= 1,...,r, the transition py_1 — py is called the k-th step of p.
The k-th step is called a crossing if by, = 1, and called a folding if by = 0. The correspondence between
the bit by and the k-th step is shown in Table 2.1.1, where we denote by vy_; € W the element such
that pp_1 = vp_1 A.

by 1 0
crossing folding
— —
Pk—1 Pk Pk—1 = Pk ’Uk,]_sikA

Table 2.1.1: Correspondence between bits and steps

Let us again given z,w € W with a reduced expression w = s;, ---s;,.. For an alcove walk p =
(zA, ..., 25" ~~s?;‘A) e I(W, z), we define e(p) € W by

1

e(p) == zs?ll . sfr (2.1.5)
Thus e(p) corresponds to the end of p. We also define hy(p) € S for k= 1,...,r so that the chosen root
b1 bk*l
i P sik,1

hi(p) is positive. Denote v = s for simplicity, so that we have p,_; = vA. Then we define

hx(p) == the affine root such that the corresponding hyperplane Hy, (,) separates vA and vs;, A.

(2.1.6)

Furthermore, we call the k-th step of p € I'(W, z) an ascent if zsi-’ll e 5?}’::11 <B zsfll e 5?:’ and call it a
descent if zs?ll e 5?::11 =B zsfl1 e Sf: We denote the set of descent steps of p by

des(p) == {k =1,...,7 | the k-th step is a descent} . (2.1.7)

Recalling the sign on an edge of an alcove (see Figure 2.1.1 for an example), we can classify each step
of an alcove walk p into four types as in Table 2.1.2, where we used the symbol vy_; € W such that

Pr—1 = Vk—14.
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Using this classification, we define ¢4 (p) C {1,...,7} by

¢+ (p) = {k | the k-th step of p is a positive folding} ,

2.1.8
w—(p) = {k | the k-th step of p is a negative folding} , ( )
and define €ges(p) C {1,...,7} by
€aes(p) == {k | the k-th step of p is a crossing and k € des(p)} . (2.1.9)
Note that we fix a reduced expression w = s;, - -+ 8;, in the definitions of ¢ (p) and &qes(p)-
positive crossing | negative crossing | positive folding \ negative folding
—[+ +] - +] - —[+
—> —> :I :I
Pk-1 Pk Pk-1 Pk Pk—1 =Pk | wvp_1s; A Pk—1 =Pk | vp_18;, A
Table 2.1.2: Classification of steps in alcove walks
2.2 Littlewood-Richardson coefficients
Yip | , Theorem 4.4] derived a combinatorial explicit formula of LR coefficients for Macdonald poly-
nomials Py (z) in the case of untwisted affine root systems. In this section, we derive a (C}/, C,,)-analogue
of Yip’s formula. The outline of the derivation is quite similar to Yip’s proof | , 883.1-4.1], but we

need non-trivial adjustments in each step.

2.2.1 Products of non-symmetric Koornwinder polynomials and monomials

In | , Theorem 3.3, Yip derived an expansion formula for the product of the monomial z# and
the non-symmetric Macdonald polynomial E)(z) in the case of untwisted affine root systems. In this
subsection, we give its (C)/, Cy,)-type analogue (Corollary 2.2.1.5).

We will use the notations in § 1.3.3. In particular, H is the extension (1.3.25) of the double affine
Hecke algebra H of type (CY,C,), SY € H is the Y-intertwiner (1.3.32), and SY for w € W is the
product of S}’s (1.3.35). We also denote the Bruhat order in W by <p.

As a preparation of Proposition 2.2.1.3, we derive a product formula of the Y-intertwiners.

Proposition 2.2.1.1. For w € W and i =0, ..., n, we have the following relations in H.
(i) If w <p s;w, then S} SY = SY .
(ii) If w =p s;w, then S¥Y SY = n;(Y~%)SY  where

S; W

(1 —uiudY2) (L +uiug 2Y %) (14+un 2ud Y2) (1 —up 2uy 2Y 2)

no(Y ) = 1_vea 1_vea (a € VV.CL())7
1—tyel1—t-lye
n(Y?) = T ve 1 va (a € W.a;, 0<i<n),
1 1 1 1 1 1 1 1
1—t2t2Y2) (1 +t2t, 2Y ) (1 4+t 2t2Y 2)(1 — tp 2t, 2Y 5
nﬂ(ya) — ( 0 2)( + 0 2)( + 0 2)( 0 2) (aewan).

1-Ye 1-Ye

Proof. Fix w € W and choose a reduced expression w = s;, - - - s;,.. By the definitions (1.3.35), (1.3.32)
and the equation (1.3.28), we have

SY = SY e SY = (T + (Y ) (T + 0 (Vo)
= (Y sy ] (Vs = (V) (Y

i1
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Here we set by, == 8;, -+ 84, _,(a;,) (k=1,...,r) and

I 17 EICRRT U B
1—-2
11—tz
=<tz 0<i<n),
() = 0<i<n)
b a1 4 het o
t;%(l—tntow)(l—i—tnto 27) (i = n).
1—-2
Since w = s;, - -+ s;,. is a reduced expression, we have b, € S for k =1,...,r, where Sy C S denotes
the set of positive affine roots (1.3.6). The product S} (i =0,...,n) and SY is now calculated as
SY Sy =i (Y™ %)s;cl, (Y=bry... c;. (Y=t )w. (2.2.1)

If /(s;w) = £(w) + 1, then the equation (2.2.1) becomes SY Sy = SY . If {(s;w) = (w) — 1, then there
exists k € {1,...,7} such that s;(by_1) € Sy and s;(b;) € S_. Since we have by = a;, the equation
(2.2.1) becomes

SY S

(Y™ )sics, (Y70) - (Y P )w

Ty

*(Y—ai)c* (Y—Si(bl)) .o cf (Y—si(bkfﬂ)sic;ﬂk (Y—ai) et (Y—br)w

G i1 i1 Qe

cF Y™ e (YO )ey, (Y2 OD) g (Yai) ) (Y00 ) s = ¢ (V)¢ (Y ) ST,

Here the symbol ~ denotes skipping the term. Then the consequence follows from the equality
(Y ~%)er (Y%) = n; (Y %), which can be checked by a direct calculation. O

The same discussion shows the following statement.

Corollary 2.2.1.2. For w € W and i =0,...,n. we have the following relations in H
(i) If w B ws;, then Sy SY =S¥ .
(ii) If w =p ws;, then SY SY = S};Sini(Y_af‘), where n,;(Y %) is given in Proposition 2.2.1.1.

Next we recall the notations on alcove walks in § 2.1. Given z,w € W together with a reduced
expression z = s;_---8;,, we defined the set F(?, w) of alcove walks of type 7 = (ipy-..,11) beginning
at wA. For an alcove walk p = (pg,...,pr) € I‘(?, w), the k-th step means the the transition from pg_;
to pg, which is classified into the four types in Table 2.1.2.

Now we define * € H for z € W with a chosen reduced expression z = s;_---s;,. Let ¢ be the alcove
walk given by

q= (24, zs; A, zs; 81, A, ..., z8i, --si A= A) e D(Z 7L, 2).

Here 71 := ZT{ = (i1,...,4,). Then we define 2* by
a® = (T7) - (T7), (2.2.2)

where T7 € H as in (1.3.24), and we set € := 1 if the k-th step is a positive crossing, and e := —1 if the
k-th step is a negative crossing according to the classification in Table 2.1.2.

Proposition 2.2.1.3. Given z,w € W with a chosen reduced expression z = s;_---s;,, we have
7Sy = > S -1 9p(Y)np(Y)
pel(Z~1,w=1)
in H, where e(p) € W is the element (2.1.5), and the terms gp(Y) and n,(Y") are given by

)= I (coro) T (meforon),

kep_(p) k€4 (p)

np(Y) = H ng, (Y @),

kegdes (p)

Here hy,(p) is given by (2.1.6), ¢ (p) and ¢_(p) are by (2.1.8), £4es(p) is by (2.1.9), ¥E(2) = (pF(2))*
is by (1.3.33), and n;(2) is given in Proposition 2.2.1.1.
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Proof. We show the statement by induction on the length of z € W. If £(z) = 0, that is z = e, then the
right hand side consists only of the term for p = (py = wA), so that it is equal to S, and we have the
relation.

Next we assume z # e and that the result holds for any element w € W such that ¢(w) < £(2).

Fix a reduced expression of z, and write it as z = $;¢, { = s;, - - - 84, . By the hypothesis, we can write

2*SY = (T7)atSY = S (TSN (Y (Y). (2.2.3)
per(¢-1w=1)

Here € € {£1} is the sign determined by z. Let us calculate the rightmost side. Take an element

%
p=(w A, w_lsf-llA, o, w s ~esirA) € T(C “Lw™h).

1

Since we have (T7)*' = §Y — (Y ~%) by the definition (1.3.24) of T}, the term contributed by p
becomes

(T7)°SY -1 9p(Y)np(Y) = (S — (Y =4))SY ) -1 gp (Y )y (Y)
= stzj(p)—lgp(Y)np(Y) + (_qﬁ(y_ai))Szj(p)flgp(y)np(y)
= 5) 5219V )p(Y) + 821 (=05 (V@) g, (V) (V).

In the last equality we used (1.3.34). We treat the two terms in the last line separately.
For the first term S Sg/(p),l gp(Y)n,(Y), we further divide the argument into two cases according to
the Bruhat order.
(i) The case e(p)~" <p sie(p)~". By Proposition 2.2.1.1, we have SY'SY 1 = SY )1 = Se(py)-1,
where the alcove walk

p1 = (w A, w_lsf-llA, o, w s e sir A, w s esirsiA) € F(?,w_l) (2.2.4)

1 11

is an extension of p by a crossing (Table 2.1.2). By the hypothesis e(p) ™! <5 s;e(p)~!, the last
step of p; is an ascent, and we have ¢4 (p1) = 1 (p), o—(p1) = v—(p) and Eges(P1) = Edes(p). Thus
we have gp(Y)np(Y) = 9p: (Y)npl (Y) and stﬁp)flgp(y)np(y) = Se(pl)*lgpl (Y)nm (Y)

(ii) The case e(p)~! =5 sie(p)~!. By Proposition 2.2.1.1, we have

SY Sy = ni(Y U )SY o = (Y4 SY o = S ana(Y P,

p1)

Here py € F(?, w™1) is the same as (2.2.4), but in this case the last step is a descent crossing, and
the hyperplane crossed by the last step is Hep,)q, since

hri1(p1) = —e(p)(a;) = —e(p1)si(a;) = e(p1)ai.

We then have &ges(p1) = Edes(p) U {r + 1} and n,, (V) = n,(Y)n;(Y "+ (P1)). Combining them

with @1 (p1) = ¢+ (p) and _(p1) = @ (p), we have n; (Y ~P)%)g, (Y)n, (V) = gp, (YV)ny, (Y).
Hence also in this case, we have SlYSz/(p)_lgp(Y)np(Y) = Se(pr)-19p, (Y )1p, (Y).
Taking the summation over p, we therefore have

ST TS g (V) (Y) = 3 STy 10s (Vg (V). (2.25)
PEF(?flwal) prel(Z Hw™t),
the last step is a crossing
Next we consider the term Szzp),l(—wf(Y_e(p)‘”))gp(Y)np(Y). We make a similar argument as
in the first term, and here we use the alcove walk ps € F(?,w_l) which is an extension of p by a
folding. We have e(p2) = e(p), p+(p2) = @+ (p) U {r + 1} and Eges(p2) = Eges(p). Using py we have
SY (=5 (Y ey g (Yn,(Y) = ng(pz)_lgm (Y)ny, (Y). We therefore have

e(p)~?

ST S (U (P g (V) (V) = 3 S (V) (¥). (2.26)

— — —
pel(C —1,w-1) p2€l(Z 1w,
the last step is a folding

By (2.2.3) and (2.2.5), (2.2.6), we have z*SY = 2 per(Z-1w-1) Sz(p),lgp(Y)np(Y). Hence the induc-
tion step is proved. O
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The definition (2.2.2) of z* for z € W and the definition (1.3.23) of «# for p € A are consistent in
the following sense. Recall that we denote by t(u) € t(A) C W the element associated to p € A.

Lemma 2.2.1.4. We have z'(*) = 2/ for y € A. In particular, we have z*(¢) = z; for i = 1,...,n.
Proof. It is enough to show the latter half. By (1.3.16), we have
v =17t o T Ty (=1, ,n).

Applying the anti-involution % (1.3.24) to these.

vy = (V) =T T (T) T ™ (T

i ) )T T ) T (1) T
On the other hand, we can calculate z'(¢) directly by Definition (2.2.2), and can check z; = zte) . O
We denote the dominant chamber for the weight lattice by
C={zxeV|(a',z) >0, a € R.}.

As for the fundamental alcove A (2.1.1), we have A C C.

Let v,w € W, and choose a reduced expression v = s;, ---s;, of v. If an alcove walk p € I‘(?, w)
satisfies e(p) "1 A C C, where e(p) € W is the element (2.1.5), then using the W-valued function w() in
(1.3.36), we define w(p) € Ay by the relation

e(p) ™! = w(w(p)). (2:2.7)
Also we define T°(¥,w) ¢ I(V,w) by
%", w) = {p= (po,...,pr) ET(T,w) | pi € C, Yi=0,...,7}. (2.2.8)

Using these symbols, we have the following corollary of Proposition 2.2.1.3.

Corollary 2.2.1.5 (c.f. | , Corollary 4.1]). Let A and p be elements in A, and fix a reduced expression
t(A) = s, -+ s;;,. Then we have
2 B, (z) = Z Gpp B p) (),

PETE (t(—N)w (i)~ 1)

gp = H (_w;k(qSh(—hk(P))tht(—hk(P)))) H (_ i:(qS'ﬂ(—hk(P))tht(—hk(P))))7
k€p_(p) k€p(p)

mpi= [ e (g Che Do)
k€&des(p)
Proof. We apply z*SY = D per(Z-1w-1) Sz/(p),lgp(Y)np(Y) in Proposition 2.2.1.3 to z = t(\) and

w = w(y). Since ' = z* by Lemma 2.2.1.4, we have

wASZ;(u) = Z Sz(p)—lgp(y)np(y)-
PEL(H(—2)w () 1)

Taking the product of each side with 1 and using the definition of the non-symmetric Koornwinder
polynomial E,(z) (Fact 1.3.3.2) and the equality Y#1 = ¢s"(®¢h*(8) in (1.3.22), we have

2 B, (z) = Z gpnpSz/(p)_l 1.
PET(H(— M), w(p) 1)

Next we consider the condition under which the factor n;, (¢**(="*®)¢ht(=hx(®)) in p , vanishes. By the
definition of the factor (Proposition 2.2.1.1), the condition is gsP(="# @) ht(=he(P)) — %1 (j, =1, ... n—1)
and @h(—he@Nht(heP) — 4E14EL (5 = p). Then by the definition (2.1.6) of hy(p), the alcove walk
p that contributes to the summation is contained in the dominant chamber C'. Now the consequence
follows from the definition of E,(x) and and that (2.2.7) of w(p). O
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2.2.2 Some lemmas

In this subsection we prepare some lemmas for the symmetrizer U and the Koornwinder polynomials

Py (z), which are (C), C,,)-type analogue of | , Proposition 3.6].
Lemma 2.2.2.1 (c.f. | , Proposition 3.6 (a)]). The symmetrizer U (1.3.42) has the following expres-
sion.

v=> sy I v,
weWo aE,C(w*l,wgl)
11—ty
tr— (a & Wo.ap)
. -y«
e T 3 B e Pou S ' (2.29)
1 n -2 — n )
tn (1+1 12—)(Y*a 0 $) (a € Wh.ay)

Here L(v,w) C S is given by (2.1.3), and wy € Wy is the longest element (1.3.39).

Proof. By the definition of U and the definition (1.3.35) of the Y-intertwiner SY , we can expand U as

U= > Sybu(Y), bu(Y)eK(Y).

weWy
For the longest element wy € Wy, the coefficient of T, in U is 1, and thus we have b,,(Y) = 1.
We calculate the term b,,(Y) for w € Wy \ {wp} by induction on the length ¢(w). Assume b,(Y) =
Haeﬁ(vfl,wgl)b(y_a) for any element v € Wy satisfying ¢(v) > ¢(w). By the equality UT; = Ut
(i=1,...,n) in (1.3.43) and the definition (1.3.32) of S}, we have

[N

i

ST SYb (V)2 = Ut =UT = 3 SYb,(VTi= 3 SEbu(Y)(SY — 47 (V")) (2.2.10)

weWy weWy weWy

Now note that for w # wq there exists an index ¢ = 1,...,n such that w <p v = ws;. Taking this
index i and comparing the coefficients of SY in the equality (2.2.10) with the help of (1.3.34) and

Corollary 2.2.1.2, we have b, (Y)ti% = by (8:.Y) — by (Y)Y;7 (Y =%). Here by,(s;.Y) is obtained from b,,(Y)
by replacing Y* with Y*-*. Then by the definition (1.3.33) of ¥ (z) we have

b (V) /by(5:.Y) = £2 4+ (Y 7500) = 42 4 5 (V™)

1 -1y —a;
21—t Y% .
A T (0<i<n)
= 1( % 7% L")( 7% 7% L") ’
5 (1+t5t Y 2 1—t t Y 2 .
2 0 'n 0 n —
i R (i =n)

so that it is equal to b(Y ~?). On the other hand, by (2.1.4) we have L(w™",wy ') = s;.L(v™ 1wy M) U{a;}.
Thus we have b, (Y) = b,(s;.Y)b(Y %) = Haeﬁ(w_l}wo—l) b(Y—2).
O

We can apply the argument of the proof to the stabilizer W, C Wy for a dominant weight p € AL
instead of Wy. As a result, we have the following claim.

Corollary 2.2.2.2. For each 4 € Ay, we have
_1
SotwTu= >S5y I byo.
ueWy weW, aeﬁ(wfl,w,jl)
Here b(Y ) € K(Y) is given by (2.2.9).
For a dominant weight u € A, we denote by

WH C W (2.2.11)
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the complete system of representatives of the quotient set W,/W,, consisting of the shortest elements.
We also denote by

v, € WH (2.2.12)

its longest element.
Now let us recall the element w(p) € t(u)Wo C W in the (1.3.36). We then have the following lemma

for the Koornwinder polynomial P,(x) (Fact 1.3.3.4) and the non-symmetric Koornwinder polynomial
E,(z) (Fact 1.3.3.2).

Lemma 2.2.2.3 (c.f. | , Proposition 3.6 (b)]). For A € A} we have

P2 = Y | I1 p(0)| Eura),

vEW acw(N)"1L(v L)

1 1— t*lqsh(fa)tht(fa)

1— qsh(—a)tht(—a) (a € W.a,)
a) = 1 )
p( ) (1 +t0t 2q2sh( a)tzht( a))( t_it_%q% sh(fa)t%ht(fa))
tn 1= ghC oo (a € Way)
where sh(3) and ht(8) for 8 € S are given by (1.3.21).
Proof. We write Lemma 2.2.2.1 as
U= > Sobw gy (V)s byt oty (Y) = I .

weWy acL(w=twyh)

Since W* consists of representatives of Wy /Wy, there exist v € W and u € W) uniquely such that
w = vu. Using Corollary 2.2.2.2, we have

U= Z S};b(w—l,wo*l)(y) = [ Z ngb(wl,ugl)(y)} [ Z S;/b(ufl,w;l)(y)}

weWy veEWA uEWy
Y

= [ Sty ][ 3 ).

veEWA u€Wy

In the second equality, we used the factorization of b-function, which follows from the equation on
the third line of | , §.5, p.122]. Note that our b-function is written as ¢(z) in [ , 8.4, (4.2.2)]. The
product with SZ( /\)1 gives

Y 4 _ Y —3 Y 4 _ % Y Y
USTonl = [ 30 80010y (]| 20 tabuTu] STl = tad Walt) D2 SVbg 1,00 (V)SE L,
veW u€EWx veWA
(2.2.13)

1
where in the second equality we used the Poincaré polynomial (1.3.41) and the relation (T, f)1 = t2 f
for u € Wy and f € K[z*!] satisfying u(f) = f. The latter relation is shown as follows. If s;,f = f for

some i = 1,...,n, then we have (T; — tz%)f =c¢i(z%)(s; —1)f =0, and so T} f = ti%f. Now the relation
follows by induction on the length of u € Wy.

Let us continue the calculation (2.2.13). Note that we have vw()\) = w(v.)\) for v € W*. By this
relation and (1.3.34), each term in the right hand side of (2.2.13) becomes

S0 01,01y (Y)Suonl = S0 Suin b1ty (@) TLY)L = (S 1) (D1 o1y (w(A) THY)1).

Here b, wr )(w()\)_l.Y) is obtained from b(v_l’v;l)(Y) by replacing Y# with Y*® ™" Now let us
recall the equahty Yol = ¢?(@¢ht@) in (1.3.22). Then we have b(Y ~*)1 = p(a), and therefore

oty @N L= T ) = II p(a).

ac€L(v=1uy"h) acw(N)~1L(v=1vih)

b
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By summing over v € W* we have

USEZ(/\)I:t;%W,\(t) Z [ H p(a)}Eq,_)\(x),

veEWA aEw()\)*l,C(vfl,v;l)

Now the result follows from the definition of Py(x) (Fact 1.3.3.4). O

2.2.3 Ram-Yip type formula and its application

In | ; Theorem 4.2], Yip derived an expansion formula E,(z)Py(z) =}, aX ,E,(z) for the product
of the non-symmetric Macdonald polynomial E, () and the Macdonald polynomial Py(z) in the case of
untwisted affine root systems. In this subsection, we give its (C,/, C,,)-type analogue, i.e., an expansion
formula for the product of the non-symmetric Koornwinder polynomial and the Koornwinder polynomial
(Proposition 2.2.3.2).

As a preparation, we explain the explicit formula of non-symmetric Macdonald polynomials via alcove
walks, established by Ram and Yip | ] for reduced affine root systems. Their argument is designed
to work in general systems, including (C), C,)-type, and the details were clarified by Orr and Shimozono
[ ]. Let us call these alcove-walk explicit formulas Ram-Yip type formulas. We focus on the Ram-Yip
type formula of non-symmetric Koornwinder polynomials.

We prepare the necessary notations for the explanation. Let us given v,w € W and a reduced
expression of w. For an alcove walk p € I'(, z), we denote the decomposition of the element e(p) € W
(2.1.5) with respect to the presentation W = t(A) x Wy by

e(p) = t(wt(p)) d(p), d(p) € Wo, wit(p) € A. (2.2.14)
Fact 2.2.3.1 ([ , Theorem 3.1], | , Theorem 3.13]). For € A, let w(u) be the shortest element
among t(u)Wy C W (1.3.36), and fix its reduced expression w(p) = s;, - -+ s;,.. Then we have
1
Eu(@ = Z fptj(p)xm(p)a

pGF(_#S e)
H 7/) 5h( Br) ¢ht(— ﬂk)) H 7/} hh( Br)) ht(— ﬂk))

kept(p) kep—(p)
where we set By, := s --- 54, ,(a;,) for k=1,...,r

Next we introduce some notations necessary for Proposition 2.2.3.2, which are basically the ones in
[ , §4.1]. Let us given v,w € W and a reduced expression v = s;, - - - 5;,. Recall the set T (¥, w) of
alcove walks belonging to the dominant chamber C' as in (2.2.8). Consider an alcove walk in Fc(ﬁ, w)
together with coloring of all the folding steps by either black or gray. We call such a data a colored alcove
walk, and denote by

r$(v,w) (2.2.15)

the set of colored alcove walks arising from alcove walks in 1"0(77 w).
For a colored alcove walk p € Fg(?, w), we denote by

p* e (T w e(p)) (2.2.16)

the uncolored alcove walk obtained by straightening all the gray folding steps of p, by reversing the
order, and by translation so that it ends at e(p*) = e € W. More explicitly, for a colored positive walk
p e 'S (¥, w) with

p= (wA,wsfllA,..., bl 8? " A),
we define pi for k = 1,...,r as follows, according to whether the k-th step pr_1 = u/sb1 fl’: llA —
PE = wsb1 e si’;‘A is a gray foldlng step or not:

5o = {wsfll sf::ll $i, A (pr—1 = pr is a gray folding step)

Dk (otherwise)
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Thus we obtain a new uncolored alcove walk 5 = (Po,...,pr) € I'(7,w), which was called the one
obtained “by straightening all the gray foldings”. Next we denote by (cl, ...y¢r) € {0,1}" the bit
sequence corresponding to p. In other words, we have p = (wA, ..., ws’ -+~ 57 A) Now the alcove walk
p* is obtained by reversing the order of p and translating the start to w (f)) Explicitly, we have

Pt = (s s A ST s AL STTALA).

7% erl ’ ’ 11

Proposition 2.2.3.2 (c.f. | , Theorem 4.2]). For a weight 4 € A, we take a reduced expression
w(p) = 84, -+ 8, of w(p) € t(u)Wo C W. Then for any dominant weight A € A we have
Eu(z)Pa(z) = ) > ApCyEg () ().

PEW perg (Wi -1 (vw(h) )
Here W is given by (2.2.11), and the term A, is given with the help of p(a) in Lemma 2.2.2.3 by
Ap = H p(a’)7
aEw()\)*lL'(vfl,vil)

11 —¢ L sh(fa)tht(fa)
t2 g
1— qs h(—a)¢ht(—a)

(a & W.an)

a) =
p( ) 1 t t 2 qz hh( a)tQ ht(—a) 1— t_%t_% %Sh(—a)t% ht(—a)
s+ )( q )

1— qsh( a)¢ht(—a)

(a € W.ay,)

The term C), is given by C), = [[;_, Cpx, whose factor C,j is determined by the k-th step of p as
follows.

1 the k-th step of p is a positive crossing
[ieeu.p) i (=@ ht(=hi(P))) 4 negative crossing
Co = 1/1+( Sh(_h"(p))tht(_h"(p))) a gray positive folding
) —; (¢ (=P (p)) ght(—hx(p))) a gray negative folding ’
77/1+( sh(=bx) ght(=br)) a black folding and the k-th step of p* is positive
¥, (g sh(=bi) ght(=bv)) a black folding and the k-th step of p* is negative

where n;(Y*) is given by Proposition 2.2.1.1, wi(z) is given by (1.3.33) and hy(p) is given by (2.1.6).
We also used b :==s;, -+ s;,._,(a;,) for k=1,...r. Finally w(p) is given by (2.2.7).

Note that the term A, actually depends only on v € W#, which corresponds to the beginning of the
colored alcove walk p.

Proof. On the Ram-Yip type formula E,(z) = heF(‘B 0 fhtd(h ¥t (M) (Fact 2.2.3.1), let us act
USZZ()\)l from the left. Then we have

Eu@USynt =1 D fatiua™@USTo1 = 3 S USEL.
heD(w(i).e) her (w(i),e)
Here the second equality follows from the definition (2.2.14) of wt(h) and d(h), as well as from the
relation T;U = ¢2U in (1.3.43). Moreover, by Lemma 2.2.2.3 and using the notation in its proof, we have

E@)USSol= S fa™ [ Wa(t) Y SYb 1 (V)Sh)1]

heT (w().e) vew?
_1 _
= twy W)\<t) Z Z fhsgsqf()\)b(v—l,v;l)(w()‘) 1'Y)1 (2.2.17)
VEW her(w(i.e)

UEW* hemm,e)
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Here we set Ap = b((vw(r)~1,t(—wor)) = Haew(,\)—lﬁ(v—l,ugl) p(a). As for the factor fj,z¢() S )\)1 in

the final line of (2.2.17), denoting 2z := (vw()\))~! and using Proposition 2.2.1.3 and Corollary 2.2.1.5
we have

fat WSl ol=Fn Y SlgenaMgWN1=fu Y negeFagp(@).  (22.18)
g€T(e(h)~1,2) q€rC (e(hf 1

We will rewrite this sum over uncolored alcove walks in Fc(e(4hS ~12) as a sum over colored alcove walks
in TS (w(p) 1, 2).
Let us given an uncolored alcove walk ¢ € Fc(e(4h;_1, z). Since ¢ is an alcove walk of type 6(75_1,

which is one of type w(u;_l7 we can compare the bit sequence of ¢ with the bit sequence of h. In this

comparison, if the k-th step of ¢ is a folding and the k-th step of h is a crossing, then we color the k-th
folding step of g by gray. Otherwise we color it by black. Thus we obtain a colored alcove walk, which is

denoted by p. Note that we have p € I'S' (w(i)~1, 2). Then each term of the right hand side in (2.2.18)
is equal to

Innq9qEw(q)(T) = fpenpgp B (p) (7)),

where p* is given by (2.2.16). We can also express f,- using Sy = s;, - -~ 8i,_, (@i, ) as

fp* _ H ,(/}ZJ): (qSh(_bk)tht(_bk)) H ,(/};k (qsll(—bk)tllt(—bk)>.

kepy (p*) kep_(p*)

As a result, the last line of (2.2.17) is rewritten by a sum over p € Fg(w(ﬂifl, z).
_1
Divided by the factor t.,2 W (t), the left hand side of (2.2.17) is equal to E,,(z)Px(z). Thus we have

EH(JZ)P/\(QT) = Z A;D Z fh Z nngEw(q) (Z‘)
vEWX  her(w(nfe)  qelC(e(h)-1,
= Z Ap Z fo Gpnp B (p) (2).

vEWR  perg (w(u) 1,2
We obtain the result by collecting the terms from f,-, g, and n, which depend only on the k-th step of
pE Fg(w(u;_l, z) and denoting them by C), . O

2.2.4 Littlewood-Richardson coefficients for Koornwinder polynomials

In this subsection, we derive our main Theorem 2.2.4.2 on LR coeflicients of Koornwinder polynomials.
We start with a preliminary lemma. Recall the complete system W?* of representatives of Wy /Wy in
(2.2.11) and the element w(A) € t(A\)Wp in (1.3.36).

Lemma 2.2.4.1 (cf. | , Proposition 3.7]). Let A € Ay. If v € W satisfies vw()\) =5 w()\), then we

have
USY STl = | II p(—a)|USY )L,
acL(w(N)~1,(vw(N))~1)

where p(a) is defined in Lemma 2.2.2.3.
1
Proof. Recall the equality UT; = Ut? for i = 1,...,n in (1.3.43). Therefore we have
1 _ -
USY SY1=U(T; + v (Y~%))SY1=USY (17 + o (¢hw ™ aghew ey,

Assume that v € W satisfies vw()\) =5 w()\), and take a reduced expression v = s;, --- ;.. Using the

above relation, we expand the product USY SY(A)I = US SB:SZ(A)l in order. We have

USY Skl = U(ts + ok (Y ))SY Sk 1=USY (t2 + o (Yo salw))) sy 1
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_ U(tzfl + wz-i; (stirv--siQ(ail)))(tZ + q/);: (Y*aiz))SY SB;(A)].

S,jl S,j2’L)

)1 (R )|
j=1

(s

= US?;O\) [H(ti Jr1/1;';(Y*w(x\)—lsir..-sifrlaij))}1 _ US?;(/\) { H p(fa)}l.
j=1 acL(w(N)=1,(v.w(X) 1)
Therefore the claim is obtained. O

We prepare some symbols to state the main theorem. For p € A, the orbit Wy.u contains a unique
dominant weight. We denote it by

fe € Wop N AL (2.2.19)
Let us also recall the set I'S (U, w) of colored alcove walks defined in (2.2.15).

Theorem 2.2.4.2. Let us given dominant weights A, € Ay. Choose a reduced expression w(\) =
8i,. -+ 8;, of the shortest element w(\) € t(A)Wy in (1.3.36). Then we have

1
Py\(z)P,(z) = — > > ApByCuP iy i) (T).
bl WAW) veW™ erg @1, (vuwtm)-1)

Here A, = Haew(#),lﬁ(v,lmgl) p(a) with p(a) given in Proposition 2.2.3.2. The term C, is the same as
that in Proposition 2.2.3.2, and wt(p) € A is defined by (2.2.14). The term B, is defined by

B, = H p(—a).

a€L(t(wt(p))wo,e(p))

Proof. The strategy is to calculate the product of Koornwinder polynomials by acting the symmetrizer
U to each side of the equation in Proposition 2.2.3.2.

For a colored alcove walk p € I‘g(w(*)\S’l, (vw(p))~1), let 2 € Wy be the shortest element among
{z € Wy | z.w(p)+ = w(p)}. Note that we have w(w(p);)~! = w(—wow(p)+). Since e(p) € t(wt(p))Wo
by the definition of wt(p), w(—wow(p)4+ ) is the shortest element among t(wt(p))Wy. By Lemma 2.2.4.1,
we then have

UBew(p)(2)1 = USY Sy (p).)! = [ 11 P | P ) ()
a€L(t(wt(p))wo,e(p))

By Proposition 2.2.3.2 and this equality, we have

1
P\(z)P,(x) = — UE\(z)P,(x)1
tws Wa(t)
1
=0 Z Z ApByCuPy wi(p) (T).
bl W) veWs Lerg @1, (o))
Hence the claim is obtained. O

2.3 Special cases of Littlewood-Richardson coefficients
In Theorem 2.2.4.2, we derived an explicit formula of the LR coefficient c§ , in the product Py (z)P,(z) =

IS MPV(I) of Koornwinder polynomials using alcove walks. In this secluion, we discuss several special-
izations of the formula.
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2.3.1 Askey-Wilson polynomials

As mentioned in §1.3.1, Koornwinder polynomials in the rank one case are nothing but Askey-Wilson
polynomials. In this case LR coefficients of Askey-Wilson polynomials are expected to be simpler than
the general rank case in Theorem 2.2.4.2.

As a preparation, we summarize the data of the root system of rank 1. We consider the Euclid space
V = ReY of dimension 1 and its dual space V* = Re. The root system of type C is R = {£+2¢} C V*,
the simple root is a; = 2¢, and the fundamental weight is w = €. The weight lattice is A = Ze C V*,
and the set of dominant weights is AL = Ne. The finite Weyl group Wy is the group of order two
generated by s; = s,,, and the longest element of Wy is wg = s1. The affine root system of rank 1 is
S = {:l:26 + ke, e+ gc | k€ Z} with ag = ¢ — 2¢, and the extended affine Weyl group W is the group
generated by s; and sg := s,,. The decomposition W = t(A) x Wy (1.3.8) is the semi-direct product of
t(A) = (t(e1) = sos1) ~ Z* and Wy = (s1) ~ Z/27.

We denote by

Pl(l') = PZ(I;(Lthtlaumul)

the Askey-Wilson polynomial associated to the dominant weight A = lw = le (I € N). Note that it has
five parameters.

First, we consider the simplest case. Following the case of type A, we call the LR coefficients cf ,
with A\ or p equal to a minuscule weight Pieri coefficients. Since the weight wy is the unique minuscule
weight in the root system of type C,,, we consider the case A = w for the rank one case.

Let us write down explicitly the Askey-Wilson polynomial P;(z) = P, (z). In the following calcula-
tion, we need an explicit form of the term p(a) (a € S) in Proposition 2.2.3.2 and Theorem 2.2.4.2. The
result is:

k1 _1 . k,—1 -1 _3i
(1+qzt5ty *(tot1) 2)(1 — g2ty °ty *(tot1) " 2)
1— gk (toth)™7

pla) = t? (a = 2je + ke € S). (2.3.1)

Lemma 2.3.1.1. The Askey-Wilson polynomial associated to the minuscule weight w is

Pi(z) =z 427"+ p(2c — a1 )y (qtot1) + 2 ¥g (qtotr) + i (qPtotr) vy (gtotr).

Here ¢ (z) (k = 0,1) is given by (1.3.33) with n = 1. Explicitly, we have

_ 1 _1 11 _1
- (63—t 2)+ 252 (88 —t,2)
Ui (2) = F — 1 L) =Ty . (232)

Proof. Below we use the word non-symmetric Askey-Wilson polynomials to mean non-symmetric Koorn-
winder polynomials (Fact 1.3.3.2) in the rank 1 case. By Lemma 2.2.2.3, we can rewrite P;(x) as a linear
combination of non-symmetric Askey-Wilson polynomials Ej(z) = Ejw(z), k € Z. The result is

Pi(z) = p(2¢c — a1)E1(z) + E_1(x).

Next, using the Ram-Yip type formula (Fact 2.2.3.1), we can expand E;(z) and E_;(x) by monomials.
The results are

1 1 1
Ey(z) =t}x + vy (qtot1), E_i(x) =" + 1297 (qtotr) + t2 0] (¢®totr)z + v (Ptot1)dg (qtotr).

By these formulas, we have

1 1 1
Py(z) = 27"+ (83 p(2e—ar) + 2 (¢totr))z 4+ (qtotr)p(2c—ar) + 13 9 (qtotr) +¢7 (¢ totr )¢y (qtots).
By a direct calculation, the coefficients of x is shown to be

t2p(2c — a1) + 297 (¢*tot1) = 1.

Therefore the claim is obtained. ]
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Remark 2.3.1.2. Let us replace the Noumi parameters (g, to,t1, ug,u1) with the original parameters
(g,a,b,c,d) of Askey-Wilson polynomials in | ]. The correspondence of parameters can be rewritten
as

(qa th tl; Uo, ul) = (Q7 7q71ab7 7Cda 7a/ba 7C/d)'
Using this correspondence and the relation abed = gtot,,, we can rewrite Py (x) as

/

Pz)=x+2 '+ 7rls—s , m=abed, s=a+b+c+d, s =at+b 4+ HdL
-
We can then compare P;(z) with the original Askey-Wilson polynomials p,(z) in | , p.5]. By loc.

cit., we have p;(z) = 2(1 — m)z + s — s/, and thus
(1—m)Pi(z) =pi((=z+ xil)/Q).
Therefore they coincide up to the normalization factor.
Proposition 2.3.1.3. For a dominant weight A =lw € A4, [ € N, we have
Py(x)Pi(z) = Prya(z) + FLP(x) + GiP (x),
Fy = p(=2le + a1) (=g (¢*Hotr) + ¢y (atotr)) + p(2le — ar)(=ug (6%~ otr) + ¥ (atotr)),
Gp = p(2lc — a1)p(=2(1 — 1)+ ay)no(g* ~Ltoty).
Here p(a) is given by (2.3.1), F(z) is given by (2.3.2), and ng(z) is given in Proposition 2.2.1.1 with
n = 1. Explicitly, the last one is given by

11 11y ~1 1y O
(- ufud=3) (Lt ufug 228) (L ug Fud28)(1 = up Pug 223)

1—=z2 1—=2

no(z) =

Proof. By Theorem 2.2.4.2, we have

1
Py(z)Pyu(z) = I Z Z ApBpCpP_ g et (p) (%)
bl WAE) veW” Lerg @1, (vuwtm)—1)

for dominant weights A, u € A,. We apply this equation to the case A = w and p = lw. In this case
the stabilizer W, C Wy in (1.3.38) is W), = {e}, and the complete system W*# (2.2.11) of representatives
of Wy /Wy is W = {e,s;}. As for the shortest element w(v) € t(v)Wy given in (1.3.36), we have by
t(w) = sps1 that w(w) = s and w(lw) = (sp51) " so.
_1
First, we calculate the denominator t,,2 W, (t). As for the longest element wy € W* in (1.3.39), we

have w,, = e. Thus, by recalling the definition (1.3.40) of t,, (w € W), we have t;é W, (t) = te_%te =1.

Next, as for the sum in the right hand side, we calculate the case v = s7. The set of alcove walks
is then Fg(w(—/\§4, (vw(p))™1) = TY (58, t(Iw)). In the upper half of Table 2.3.1, we display the alcove
walks p therein together with the corresponding terms A,, B, and C,. In the table we denote by Hy
and H; the hyperplanes in the W-orbits of H,, and H,, respectively. We also denote a black folding by
a solid line, and a gray folding by a dotted line.

Next we study the case v = e. The set of alcove walks is Fg(uJ(—)\S’l, (vw(p))~t) = TS (34, w(lw)),
and in the lower half of Table 2.3.1 we display the alcove walks p therein together with the corresponding
terms Ap, By, and C).

The claim is obtained by collecting the above calculations. O

Remark 2.3.1.4. Continuing Remark 2.3.1.2, we rewrite the result in Proposition 2.3.1.3 in terms of
the original parameters (g, a,b, ¢, d) of Askey-Wilson polynomials. The result is

P (2)P(z) = Py1(x) + FiP(z) + Gi-1P—1(z), (2.3.3)
where the factors F; and G; are given by

_ Ji+(ns' =) (A + ') (gs +78) — ¢ (1 + @) (s + gs')

Fy: =
l 1_n ) fl q (1 — q2l727f—)(1 — q217r) )

40



41

e t(lw)
1 —_—
H; Hy 1 1 1
t(lw)
Hy  Hy 1 p(—2lc+ ay) — (¢* M tot)
e t(lw)
=
Hy  Hoy 1 p(—2lc+ ay) ¥ (gtotr)
v=e
D Ap Bp Cp
t((1 — 1)w) t(lw)
%_
H, Hy H; Hy p(2lc —ay) | p(=(2l —2)c+ay) | no(g®ttoty)
t((1 — Dw) t(lw)
Ly
H, Hy  H, Ho p(2lc —aq) 1 —g (¢*'totn)
t((1 — Dw) t(lw)
—
H, Hy H, Hy p(2lc — ay) 1 Yo (qtot1)
Table 2.3.1: Colored alcove walks in Proposition 2.3.1.3




G I S (1-¢"tab)(1 = ¢ "ac)(1 = ¢' ad)(1 — ¢'"be) (1 — ¢~ 'bd)(1 — ¢'~'ed)
YT TR (1—¢#=2m)(1 - ¢*~'7) ’

/

mi=abed, s=a+b+c+d, s :=al+bl4ct+dL
= (i mg =1 - ¢ ') —g¢'m) - (1= ¢ ).

In the case | = 0, we have p(—a;) = 0, and thus F} = 0. If we define p;(z) by the relation Pj(z) =
v 'pi((z + 271)/2), then the relation (2.3.3) can be rewritten as

1-— ql’lw
22pi(2) = lupiy1(2) + fipi(2) + gipr-1(2),  hy = A= )1 = )’ po(2) =1, p-1(2) = 0.
This recurrence formula is nothing but the one in | , (1.24)—(1.27)]. Thus p; coincides with the
original Askey-Wilson polynomial in | ], and in particular, it can be expressed as a g-hypergeometric
series.

So far we studied Pieri coefficients. Next we study the general LR coefficients for Askey-Wilson
polynomials.

Corollary 2.3.1.5. For dominant weights lw and mw in (h}), I,m € N, we have
Pros(2) Py () = Y > AW BAW L Py (),
VEWO b (6((I— D)w)so,t (mw) sy v)
where the terms A;WV and B;‘W are given by
o [peme—a) =0 fe-leeta) (el € 22)
P 1 (v=s)" ' F
with p(a) in Proposition 2.3.1.3, and C, is given in Theorem 2.2.4.2.
Proof. We apply the formula

1
Pr(@)Pu() = —g— > > ApBpCp Py et (p) (%)
bl WA(E) veW™ g a1, (o))
in Theorem 2.2.4.2 to the case A\ = lw and p = mw. Similarly as in Proposition 2.3.1.3, we have
Wi, = {e} and W™ = {e,s;} = Wy. Using t(lw) = (sos1)! and t(mw) = (s¢51)™, we have w(lw) =
t(lw)sy = (5051)!"'so and w(mw) = (s9s1)™ 'so. Therefore the range of the sum of alcove walks in the
right hand side becomes

TS (N, (vw() ™) = T (E(( = Dw)so, timw)siv) (v € Wo).

As for the denominator t;é Wi, (t), we have by wj, = e that t;é Wi (t) = te_%te =1.

Now we study the factors A, and B,, and want to reduce the ranges of the products. First, as for
the product Ap = J[ ez (ww(u)-1,t(—wop)) P(@); the longest element wo € Wy is sy and t(p) = (sps1) =
w(p) " Lsg. Thus, in the case v = e, we have

L{(vw(u) ™" t(—wop)) = L{w(p) ™", 6(n)) = {2me — a1} .

In the case v = s1, we have

L((vw(p)) ™ t(~wop)) = Lw(p)si, t(w) = L(6(w), t(w)) = 0.
Hence A, is equal to A;‘W in the claim.

Next we consider the product B, = Haeﬁ(t(wt(p))wo)e(p)) p(—a). we separate the argument according
to whether the length £(e(p)) of e(p) is even or odd. In the case £(e(p)) is even, there is k € N such that
e(p) = (sos1)™ = t(kw), 0 < k < m. In this case, the range of the product is

L(t(wt(p))wo, e(p)) = L(t(kw)s1, t(kw)) = {2kec — a1} .
In the case £(e(p)) is odd, there is k € N such that we can write e(p) = (s951)* 1sg = t(kw)si, 1 < k < m.
Thus the range of the product is
L(t(wt(p))wo, e(p)) = L(t(kw)s1, t(kw)s1) = 0.

Therefore B, is equal to BI’)“W in the claim. O
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2.3.2 Hall-Littlewood limit

In the case of type A,, the specialized Macdonald polynomials Pf" (z;q = 0,t) coincide with Hall-
Littlewood polynomials. Motivated by this fact, Yip calls in | , 84.5] the specialized Macdonald
polynomials in the untwisted cases at ¢ = 0 Hall-Littlewood polynomials, and derived a simplified formula
of LR coefficients. Following Yip’s terminology, let us call the specialized Koornwinder polynomials

Py(z;t) == Pa(x;9 = 0,t0,t, 1y, ug, )
the Hall-Littlewood limit.

Proposition 2.3.2.1 (c.f. | , Corollary 4.13]). Let us given dominant weights A,z € A and a
reduced expression w(A) = s;, - -+ ;, of the shortest element w(A) (1.3.36). Then we have

1
Pr(z;t)Pu(3t) = —5——— >, > Fp(t) P wi(p) (23 1),
b WA(E) veW e @iy 1, (o) )

Fot) = 11 12 II £, 2

a€L((vw(w) = t(—wop))  a€L(t(wt(p))wo,e(p))

_1 1 _1 1
X 11 (ta? — 12, 11 (un? —u).

k€pi(p), ai, €W.ao k€p+(p), aiy, €W.ao

Here Fg(w(/\;’l, (vw(p))~1) is the subset of TC(w(A)~", (vw(x))~1) consisting of alcove walks whose
foldings are positive.

Proof. We denote the coefficient in Theorem 2.2.4.2 by
ap(gq,t) == ApBpC,.

First, we show that if a,(0,¢) # 0 for a colored alcove walk p € TS (w(\) =1, (v.w(p)) =), then all the
foldings of p are gray and positive. We assume that the k-th step of p is a gray negative folding. Then,
as for the factor C p = —1; (g (=he@)ht(=he(P))) we have Cpkly—o = 0. In fact, we have

1 1 1 1 _1 1 _1 1 1
1/)_ (Z) - (tlzk T tzkz) +z2 (uzzk T uik2) - Z(tfk - t’ik2) + 22 (ulzk T uikQ)
ik - - ’

1—z"1 1—=z

and by substituting z = ¢**(="+ @)t (=) and ¢ = 0 we have Cp,k|q:0 = 0. Thus we showed that no
gray negative folding contributes to a,(0,t).

Next we show that black foldings of p don’t contribute to a,(0,t¢). Note that there exists an alcove
walk [ € F(w()\;, e) whose steps are crossings since we fixed a reduced expression of w(\). Moreover all
the steps of [ are positive. Then we find that any alcove walk in T'S' (w()), €) \ {I} has a negative folding.
In other words, if an alcove walk p € T'S (w(A) ™!, (vw(p))~1) has a black folding, then p* in (2.2.16) has
at least one negative folding. Then, as for the factor Gy, = —1; (¢ (=5)) we have Gy x|, _ =0
by a direct calculation. Thus, no black folding contributes to a,(0,1).

By the discussion so far, we find that neither colored folding contributes to a,(0,t). Thus, the set of

alcove walks effective to the sum is {p € Fc(w(u;_l, (v.wN)™) [ e(p) = ¢+(p)}.
Specializing ¢ = 0 in A, B, and C), we have

Aplyeo = I1 t3, Byl_o= I1 22,

a€L((vw(p)) =t t(—wop)) a€L(t(wt(p))wo,e(p))
1 1 _1 1
Cply_o = 11 (ta? —t4,,) 11 (un® —uf).
k€pt(p), ai, W.ao k€pi(p), ai, €W.ag
Therefore the claim is obtained. O
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2.3.3 Examples in rank 2

Finally, as explicit examples of LR coefficients in Theorem 2.2.4.2, we calculate the product Py (z)P,(x)
of Koornwinder polynomials of rank 2.
We write down the root system of rank 2. The root system of type Cs is

R :={£e; T e} U{£2e;,+262} C V" :=Rey & Rey,

the simple roots are a1 = €; — €2 and as = 2¢5, and the fundamental weights are w; = €; and

wo = €1 + €. The weight lattice is A = Ze; + Zes C V™, and the set of dominant weights is

Ar = {Mier + Xaea €5 | A1 > Ao >0}, The finite Weyl group Wy is the hyper-octahedral group of

order 8 generated by s1 := 54, and sy = S4,. The longest element of Wy is wy = 51525152 = 52515251
The affine root system of type (Cy,C5) is

1
S:{i26i+kc,iei+§kc|kEZ,izl,Q}U{ielieg+kc\keZ},

and the affine simple root is ag = ¢ — 2¢;. The extended affine Weyl group W is generated by s1, s2
and sy = S4,, and the decomposition W = t(A) x Wy (1.3.8) is a semi-direct product of t(A) =
(t(€1), t(e2)) ~ Z2 and Wy = (51, s2) ~ {+1}*x&,. The elements t(e;) and t(e3) have reduced expressions
t(e1) = sps18251 and t(e2) = $1505182 respectively.

In this setting we apply Theorem 2.2.4.2 to the case A\ = w; and p = ws. The result is as follows.

Proposition 2.3.3.1. For Koornwinder polynomials of rank 2, we have
Pwl (l‘)sz (l‘) = Pw1+w2 (.Z‘) + Fsz (.’I}) + GPOJl (I),
F = p(=2c+ (e1 + €2))p(—2¢ + 2¢e1) p(—(e1 — €2)) (=g (¢ tot1) + 9g (atotr))
G = p(2c — (e1 + €2))p(2c — 2e2)p(—2€2)p(—c + (€1 + €2))no(qlot1)

Proof. Applying Theorem 2.2.4.2 to n =2, A = wy and p = wy, we have

1
Pw1 (x)Pu& (I) = T Z Z ApoCpP—wo.wt(p) (I)
b, W (£) vewes Perzc(w(m;_lx(vw(w))_l)

We have W, = {e,s2}, W2 = {e, s9, 8152, $25182} and w(w;) = sg, w(ws) = s9s150. The denominator
1 1 1 11
tw’ Wi, (t) can be calculated with the help of w,, = s2 as tw’ W, (t) = t5,” (te +ts,) =ty > +15.

Next we consider the term A,B,C),. The alcove walk p* associated to p € T'S (w(w1) ™!, (vw(ws)) 1)
is given by either p] or p3 in Table 2.3.2.

* *
D1 P2
1 1
W2 W2
(__
(0] N w1 @) N w1
W1 W1

Table 2.3.2: Classification of p*

Let us calculate the term A, =[], p(a). The range of the product is
w(p) 1L(v™, 11;1) = E((Uw(wg))fl,t(—wowg)),

and according to v € W2 = {e, s, 5182, $28182} it is given by

{2¢ — 2€1,2¢ — (€1 + €2),2¢ — 2€3} (v=re)
L((vw(ws)) ™", t(—wows)) = gz : ;6512;— el EZ _ Zig)
0 (U = 825152)
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Then we have

p(2¢ — 2€1)p(2¢ — (€1 + €2))p(2¢ — 2€3)

p(2¢c — (€1 + €2))p(2c — 2¢€2)
p(2¢ — 2¢3)
1

For each v € W2 and the corresponding colored alcove walks p, we calculate B, and C,. The results
are shown in Tables 2.3.3-2.3.6. The symbol in the column of p such as X;; and X5 refers to the
corresponding picture in Figure 2.3.1.

The claim is now obtained by summing the terms A, B,CpP_, wi(p)(T)- O
p* D B, Cp —wowt(p)
pi | Xu | p(=2e2)p(—c+ (e1 +€2)) | nolgtolr) w1
X1 p(=(e1 — €3)) —g (atot1) wa
ps | X2 p(—(e1 = €2)) Ug (gtotr) wa

Table 2.3.3: Colored alcove walks in the case v = ¢

p* b Bp Cp —wowt(p)
i | Y1 | p(—2e2)p(—2c+ 2€1)p(—c+ (1 + €2)) | nolqtot1) wy
Yio p(—(e1 — e2))p(—2c + 2¢1) g (qtot1) wa
P3| Y2 p(—(e1 — €2))p(—2c + 2¢61) g (qtot1) ws
Table 2.3.4: Colored alcove walks in the case v = s9
p* p Bp Cp *WOWt(p)
P | Zn 1 1 w1 + wo
Z1s | p(=2c+ (e1 + €2))p(—2c + 2e1)p(—(e1 — €2)) | —¥q (¢*tot1) wa
P5 | Zz | p(=2c+ (e1 4 €2))p(—2c + 2e1)p(—(e1 — €2)) | g (qtota) w2
Table 2.3.5: Colored alcove walks in the case v = 5159
p* D B, Cp —wowt(p)
pT | Wi p(2¢ — 2€3) 1 W1+ Wy
Wiz | p(=2¢+2e2)p(—2¢ + (&1 + €2))p(—2¢ + 2e1)p(—(e1 — €2)) | —¥q (¢°tot1) wa
ps | Wa | p(—2c+2€2)p(—2c+ (€1 + €2))p(—2¢ + 2€1)p(—(€1 — €2)) | g (qtotr) wa
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Figure 2.3.1: Colored alcove walks in Proposition 2.3.3.1




Chapter 3

Specialization of Koornwinder
polynomials

Chapter 3 is based on the publication | ], co-authored with S. Yanagida.

3.0 Introduction

In [ , p-12], Macdonald gives a comment that the affine root system of type (C),C,) has as its
subsystem all the non-reduced affine root systems and the classical affine root systems of type B,,
BY, Cy, CY, BC, and D,. Also, at | , (5.17)], he comments that an appropriate specialization
of parameters in the Koornwinder polynomials yields the Macdonald polynomials associated to the
corresponding subsystem. Seemingly, the detailed explanation of such parameter specialization is not
given in literature. The aim of this chapter is to clarify this point.

We will use the notation of parameters (other than ¢) of Koornwinder polynomials introduced by
Noumi in [N95]:

tat()?tn»anu’rr (301)

Let us call them the Noumi parameters for distinction. The details will be explained in §3.1.2.
Now we can explain the main result of this chapter.

Theorem 3.0.0.1 (Propositions 3.1.3.1, 3.1.4.1-3.1.4.9). For each type X listed in Table 3.0.1 and
for each (not necessarily) dominant weight u of type C,, the specialization of the Noumi parameters
in the (non-symmetric) Koornwinder polynomial with weight p yields the (non-symmetric) Macdonald
polynomial with p of type X in the sense of Definition 1.3.1.1.

reduced t to tn Uug Up non-reduced H t to tn Uy Up
B, §3.1.4 [t 1 ts 1 ts | (BC,,Cy) 8314 [[t, 7 tty 1 tg/t
BY §3.14|t, 1 2 1 1 |(CY,BC,) §3.14 |ty ts tst; ts ts/t
C, 8§13 t, 2 8 1 1 | (BB, 8§14 |ty 1 tt; 1  t5/ty
CY 8314 ||t ty ts ty ts
BC, 8314 || t, 7 ts 1 i
D, §3.1.4 |t 1 1 1 1

Table 3.0.1: Specialization table

Hereafter we refer Table 3.0.1 as the specialization table.

Let us explain how to read Theorem Theorem 3.0.0.1 and the specialization Table 3.0.1 in the case
of type C,,. The associated Macdonald polynomial has the parameters ¢ and two kinds of ¢’s. The latter
correspond to the two orbits of the extended affine Weyl group acting on the affine root system of type
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C,, and we denote them by t; and ¢;. Using them, we denote the symmetric Macdonald polynomial of
type C, by PMC(x;q, ts,t;) with dominant weight u. See §3.1.3 for the detail of these symbols for type
Cr. We also have the Koornwinder polynomial P, (z;q,t,to,tn, uo, uy) with the same dominant weight,
whose detail will be explained in § 3.1.2. Then, specializing the Noumi parameters as indicated in the
type C,, row in Table 3.0.1, we obtain PE (z;q,ts,t;). In other words, the following identity holds.

PC(w3q,ts, 1) = Pulas;q,ts, 17,17, 1,1). (3.0.2)

See Proposition 3.1.3.1 for the detail of type C,,.

We derive each of the specializations in §3.1.3 and §3.1.4, as indicated in the specialization Table 3.0.1.
Our argument is based on the fact that each family of Macdonald-Koornwinder polynomials is uniquely
determined by the inner product. Thus, the desired specialization will be obtained by studying the
degeneration of the weight function of the inner product, which is actually described in the formula
[ , (5.1.7)]. See (3.1.27) for the precise statement. As commented at | , (5.1.7)], all we have to do
is to take care the correspondence of the orbits of the extended affine Weyl group.

In § 3.2, as a verification of the specializing Table 3.0.1, we check the obtained specializations by
using explicit formulas of Macdonald-Koornwinder polynomials. We focus on Ram-Yip type formulas
[ , | which were mentioned before. These formulas give explicit description of the coefficients
in the monomial expansion of non-symmetric Macdonald-Koornwinder polynomials as a summation of
terms over the so-called alcove walks, the notion introduced by Ram [ ]. We do this check for
Ram-Yip formulas of type B,C and D in the sense of | ]. The check is done just in case-by-case
calculation, but since the situation is rather complicated due to the notational problem of affine root
systems and parameters, we believe that it has some importance. The result is as follows.

Theorem 3.0.0.2 (Propositions 3.2.2.4, 3.2.1.5 and 3.2.3.5). For each u € P¢,, we have
m )
By(wsq,tny 1,687, 1,1) = EQ™Y (24,85, 61,

Eu(x;q,t,1,1,1,1) = EP®Y (234, 1).

Eu(wq, L™ 1,47) = BF ™Y (w;q, 050, 4%),

Here the left hand sides denote specializations of the non-symmetric Koornwinder polynomials E,, (),
and the right hand side denotes the non-symmetric Macdonald polynomials of type B,C and D in the
sense of | ]. For the detail, see the beginning of §3.2 for the explanation. Comparing these identities
with the specialization Table 3.0.1, we find that EE’RY(x) is equivalent to the polynomial of type B,
EE’RY(x) is to that of type C}/, and EE’RY(x) is to that of type D,, in the sense of Definition 1.3.1.1.

3.1 Specialization table of Koornwinder polynomials

The aim of this section is to give the detail of the specialization Table 3.0.1. As explained in §3.0, we use
the affine root systems in the sense of Macdonald | , ]. Our main system is that of type (C,C),),
which will be denoted by S. See (1.3.5) for the precise definition. According to the list of affine root
systems in [ , §1.3], those in Table 3.0.1 are subsystems of S. Explicitly, the following types are the
subsystems of type (C),C)).

B,, B, C,, CY, D, BC,, (BC,,Cy), (C),BC,), (B),B,). (3.1.1)

n?

The details of these subsystems will be explained in §3.1.3 and §3.1.4.

3.1.1 Affine root system of type (CY,C,)

Let n € Z>5, and E be the n-dimensional Euclidean space with inner product (-,-). We take and fix an
orthonormal basis {¢; | i = 1,2,...,n} of E. Thus, we may identify E = (V, (-,-)) with V"= &!_;Re;. Let
F be the R-linear space of affine linear functions £ — R. The inner product (-, -) yields the isomorphism
F =5 V @ Re, where c is the constant function c¢(v) = 1 for any v € V. Hereafter we identify F and
V @ Re by this isomorphism.
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We denote by S the affine root system of type (CY,C,) in the sense of [M03, §1.3, (1.3.18)]. Thus,
S is a subset of F' =V & Rc given by
S=0,U0U---UO0Os,
O, = {:I:ei +rc ‘ 1<i<n, re Z}, 05 =201, O3 : =01 + %C, 04 =203 = 05 + ¢, (312)
Os ={xe;tej+rc|1<i<j<n,relZ}

An element of S is called an affine root, or just a root. Following the choice of | ], we consider the
affine roots

ag = —2e1+¢, aj=¢€¢—€1 (1<j<n—1), a,:=2e,. (3.1.3)
They form a basis of S in the sense of [MO03, §1.2]. Obviously we have

%aong, CL()EO4, a; € Os (1§j§n—1), %anEOl, an € Os.

Below is the Dynkin diagram cited from [MO03, (1.3.18)]. The mark % above the index ¢ implies that
1
a;, 3a; € 5.

e 0
0 1 2 n—1 71

In fact, the description (3.1.2) gives the orbit decomposition of S by the action of the extended affine
Weyl group. For the explanation, we need to introduce more symbols.
The inner product (-,-) on V is extended to F =V @ Re by

(v+re,w+sc) = (v,w), v,weV, rseck.
For a non-constant function f € F'\ Re, we define sy € GLg(F) by

FBgr—>Sf(g)::g7<g,fv>f, fv:: <f,2f>f

It is the reflection with respect to the hyperplane Hy := f~1({0}) C V. Now we consider the subset
Ri={fe+e|1<i<j<n}u{s2g|1<i<n}cSnV, (3.1.4)

which is in fact the finite root system of type C,,. Among the affine roots a; in (3.1.3), those except ag
belong to R, which are the simple roots of type C),. Then the finite Weyl group W is the subgroup

Wo = (s; (1=1,2,...,n)) C GLr(V), s; = Sq,. (3.1.5)

Note that each element in Wy is an isometry for the inner product (-, -).
Next, for v € V, we define t(v) € GLg(F) by

Fs fr—t)(f)=[f—(fve (3.1.6)
Then, for w € Wy, we have
w t(v) w = t(wo). (3.1.7)
Let Pc, C F be given by
Pc, =7€1 ®ZLex @ --- P ZLey, (3.1.8)

which is in fact the weight lattice of the finite root system of type C,,. Then,
t(Pe,) = {t(n) | n € Pc,} C GLg(F) (3.1.9)

is isomorphic to the additive group Pc, . Viewing (3.1.7) as an action of Wy on t(Pc, ), we can take the
semigroup of (3.1.5) and (3.1.9) to obtain the extended affine Weyl group W of type (CY,C,):

W = t(Pe, ) x Wo C GLg(F). (3.1.10)
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It acts on S by permutation [M03, (1.4.6), (1.4.7)], and the orbits are given in (3.1.2) [M03, 1.5].
Let us also give a description of W as an abstract group. We set

S0 = t(€1)82,, € W. (3.1.11)
Then W has a presentation with generators

W = (80,815 -+ 8n) (3.1.12)
and the following relations.

2
si=1

S;8; — 848;
T (3.1.13)
SjSj4+155 = Sj4+15555+1

SiSi4+18iSi4+1 = Si+1SiSi+15:

Hereafter the length ¢(w) of w € W indicates that for a reduced expression in terms of the generators
{si},. For later use, we write down a reduced expression of t(e;):

t(EZ) = 85;-15;—2""°51505152 """ SnSn—-15n—2 """ Si+15; (]. S 1 S n) (3114)
Let us also introduce Fyz C F' by
Fy = Pc, ® 1 Zc. (3.1.15)

Then we have S C Fy. We write down the action of W on Fy:

cma (i=1) G nmary _
so(ei) =14 _ (i£1)’ sj(ei) =q¢€+1 (i=)) (I<j<n-1),
1 & (i#5i+1)
sn(e) = {E—Gn EE;Z; , spc)=c (0<k<n).

By these formulas, we can check the orbit decomposition (3.1.2) directly.
Closing this part, we recall the positive and negative parts of S. Let us write S as

S:{iei+%rc,i26i+rc|1§i§n,r€Z}U{ieiiej+rc|1§i<j§n,7“€Z}.

It has the decomposition S = St LU S~ with the sets S* of positive and negative roots, respectively.
To describe S*, let us recall the decomposition of the finite root system R of type C,, (see (3.1.4)) into
positive and negative roots:

R:R+|_|R,, RJr:{261‘1§Z§TL}U{€Z:|:€]|1§Z<]§n}CR, R,I:—RJF.
Then, the sets Sy are given by
Sy={a+rc,a" +irclac€ Ry, reN}U{a+rc,a” +3rc|lace R, reN}, S_:=-85,.

Using (3.1.3), we have a; € ST for each i = 0,1,...,n. Moreover we have
Sy =Y Na;\ {0}. (3.1.16)
i=0

We also define S, S+ C S by

S=8,0U8_, S;p={e.2¢|1<i<n}U{e+e|1<i<j<n}, S_:=-5,. (3.1.17)
Then, any a € S can be presented as a = a + rc with a € S and r € %Z, and we denote

G=acS. (3.1.18)
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3.1.2 Parameters, weight function and Koornwinder polynomials

In this subsection, we explain the parameters and the weight function for type (C)Y,C,,), and introduce
the symmetric and non-symmetric Koornwinder polynomials. As for the parameters of Koornwinder
polynomials, we mainly use the Noumi parameters in [N95], as mentioned in §3.0. Due to the necessity
in the specialization argument, we also give a summary of the comparison of the Noumi parameters with
those given by Macdonald in [ ], which we will refer as the Macdonald parameters.

We begin with explanation on the parameters in | ]. Let us write again the W-orbits (3.1.2) in
S =01 U---UOs5 and the affine roots a; in (3.1.3):

Op ={xe;+rc|1<i<n,reZ}, Os:=20, 03::01—&—%07 04 =203 = 05 +c,
Os ={xe;xej+rc|1<i<j<n,relZ}

ap=—2e1+c¢, a;j=¢€—¢€41 (1<j<n—1), a,:=2€,

%a0603, ap €04, a; €05 (1<j<n—1), %aneOl, an € Os.

We attach a parameter k, € R to each W-orbit as

kr+— O, (r=1,2,...,5), (3.1.19)
and define the label & | , 81.5] as a map on given by
k:S—R, k(a) =k foracO,. (3.1.20)

Let ¢ € R be chosen, and define the set of parameters as
{"9 aeSY={¢", ¢, ... ¢} (3.1.21)

We call ¢*’s the Macdonald parameters. These are used in the formulation of Koornwinder polynomials
in [MO3].

As mentioned at (3.0.1) and in the beginning of this §3.1.2, in the following argument, we will mainly
use the Noumi parameters

tathtna Ug, Un

introduced in [N95]. As will be shown in § 3.1.2 below, we have the following relation between the
Macdonald parameters and the Noumi parameters.

(@, 6%, %%, ¢*™,¢") = (tpun, 2= toug, £2,1). (3.1.22)
Restating by (3.1.19), the Noumi parameters and the W-orbits correspond in the way
tply 01, tn/un — 02, toug <— 037 t()/U() — 04, t+—— 05. (3123)

Now we introduce the base field for (non-symmetric) Koornwinder polynomials. Adding the square
/2, t;/Q, u3/2 of the Noumi parameters and the new parameter ¢'/2, we define the base field K to be the

rational function field

1 1 11 1 1
K :=Q(qz,t2,t&,t2, ug,us). (3.1.24)
Next, following [ , 85.1], we explain the weight function for (non-symmetric) Koornwinder poly-
nomials. Using the exponent e in the sense of [M03, (1.4.5)], which is given by e = 1 in our (C)/,C},)

case, we set ¢o == e~ - > (a; = £c. Here we used the affine roots a; in (3.1.3). Also, using L := Pcn,
we set

A:=L&®Zcy=Pcn ®LZ =0 Ze d L7
Note that we have S C A. For each f = pu+rcg € A, we define

e =etqgle =etq. (3.1.25)
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Then, for the label k in (3.1.20), we define the weight function Agj [M03, (5.1.7)] as

1— qk(2a)ea

Asp= ] Aa= Tl 7@ (3.1.26)
aeSt a€St 1= g@e

Here we used ST in (3.1.16) and set k(2a) := 0 if 2a ¢ S. As explained in [M03, (5.1.14)], we can rewrite

AS,k as
4
(€°*,ge ™% @)ox (e, qe™%q)
ASJC:HHA@'HAQ:H 1 H k Fo+1lp—
r=1acS+nO, a€S+N0s acRT H7-=1(vrea,v7’ne*a;Q)oo acR (q se, ghstle Oé;Q)oo

Here R} and R;r are the set of positive and short roots in the finite root system R of type C,,, respectively.
Explicitly, we have

Rf={e|1<i<n}, R/ ={exe|l1<i<j<n}

We also used the following 4 x 2 parameters v1,...,v4 and vy, ..., V).
1 1 1 1
(01, yva) = (g, =g, ¢ T2 =g E) (v, 0)) = (@R gt g e gt ),
Finally, as mentioned in the last part of | , (5.1.7)], the following relation holds for each subsystem
S0 of the affine root system S.
ASklk(a)—k(2a)=0 (ags0) = Ds0k- (3.1.27)

For the complete set of the subsystems SY in S, see the comment in the beginning of this §3.1.
The weight function Ag j defines an inner product on the space
Kz = Kz o, . afl), o= e

of the n-variable Laurent polynomials, where in the last part we used (3.1.25). Then, by | , §5.2], we
have the family of non-symmetric Koornwinder polynomials

E,(x) = E,(x;q,t,t0,tn, uo, upn) € K[xil], uwe Po (3.1.28)

n?

as a unique orthogonal basis of the inner product on K[X *!] satisfying the triangular property. Moreover,
by | , 85.3], for a dominant weight p in P, , we have the symmetric Koornwinder polynomial

n?

Bu(x) = Py(;q,t,to, tn, uo, un) € Klz='70. (3.1.29)

Derivation of (3.1.22)

Let us derive the relation (3.1.22) between the Macdonald and Noumi parameters. We use the notation
of the affine Hecke algebra given in [ , Chapter 4]. We make one modification: The base field K is
enlarged so that it contains 7;’s and 7/’s defined blow, and q'/? (in the version of | ], it contains ¢
but doesn’t ¢'/2).

Let ¢ be a real number such that 0 < ¢ < 1, and K be a subfield of R containing ¢*/2. We denote by
H the affine Hecke algebra associated to the extended affine Weyl group W of (3.1.10) in the sense of
[ , 4.1]. Tt is an associative K-algebra generated by

H={(Ty,Ti,...,Tp) (3.1.30)
with certain defining relations, for which we refer | , (2.2.3)—(2.2.5)].

Remark 3.1.2.1. We give another description of the affine Hecke algebra H. As a K-linear space, it
has the form

H=Hyog K[Y") | j=1,2,...,n] ~ Hy®x KP¢ (3.1.31)

n)
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where Hj denotes the Hecke algebra associated to the finite Weyl group Wy of type C,, (see (3.1.5)),
and K Pg, denotes the group algebra of the additive group Pc,. The commuting elements Y*(¢i)’s are
defined in | , §3.2], and using the reduced expressions (3.1.14), we have the following relations between
Y*(€)’s and the generators Tj’s in (3.1.30).

ytle) — TJ:11 e TflTo Ty AT Ty -+ Ty

Note that the ordering of T;’s is opposite of those in some literature, for example | , §2.2, p.399], [103,
§3.1, p.312] and | ]. This discrepancy is reflected on the triangular property of the (non-symmetric)
Koornwinder polynomials. Namely, the choices of the ordering on the space K[z*!] and K[z*1]Wo,
where the (non-symmetric) Koornwinder polynomials live, are in opposite between ours and those other
literature.

Recall the Macdonald parameters ¢*1,¢*2, ... ¢* in (3.1.20). Following | , (4.4.3)], we introduce
the additional parameters k;,x; € K for i =0,1,...,n as

k1 = k(a,) = %(mn +h0), ke =k(2a,) = %(Km —KL),
1
2

ks = k(ao) = 3 (ko + Kkg),  ka = k(2a0) = %(no —Ky), ks =k(a;) =k; = I{;- (1<j<n-1).
We also introduce 7;, 7/ € K for i =0,1,...,n by
;= g/ T = q"é/Q.
By definition, we have
=1, =T, AP =T, =r/rh P =mr (1<ji<n-1). (3.1.32)
Using the parameters 7; and 7/, we explain the basic representation 8 of H [M03, (4.3.10)], which
actually goes back to Lusztig [1.89]. It is a faithful representation in the group algebra A = KL of
L= Qén = @p, = Pc, given by
B: H — Endg(KPs,), B(T)=risi +bi(1—s;) (0<i<n), (3.1.33)

where, expressing the element of K P, corresponding to a € Pe, as e®, the function b; is defined by

e ! gei/2
by = b(r, rl o) = B T (T T )t (3.1.34)
1 — g
Ii/ilii_;,_l = et (1 <i1<n-— 1)
Y = Q qry? = ge 2@ (i=0)
x2 = e2én (i=n)
Here the symbol b(t, u; z) is borrowed from [MO03, (4.2.1)], and the symbol % is from | ]. Note that

the representation [ is well defined although the function b, does not belong to the group algebra K P¢, .
The relation of the Macdonald and Noumi parameters is obtained by the comparison between the
realizations of the basic representation in | ] and [N95]. Slightly extending the Noumi parameters as

to, tn, Uo, Un, tj =1, u; =1 =1,2,...,n—1),

we define the function d;(z) for i =0,1,...,n as
dy() = B
B 1-=2
Then, comparing [N95, p.52] and | , §4.3] (see also | , (2.2.8)—(2.2.11)]), we have the relation
b; = d;(x®). (3.1.35)

This relation (3.1.35) yields the correspondence
1 1

1 1
/ / — 1 — 2 42 2 2
(7_07Tn77—077—na7_j - 7__7) - (to 7tn7u0 , Un

Combining it with (3.1.32), we obtain the relation (3.1.22).

D=

). (3.1.36)
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3.1.3 Specialization to affine root system of type C,

As an illustration of deriving the specialization Table 3.0.1, we explain how to find the parameter
specialization for type C),:

|t to tn ug uy
Col[ts &7 87 1 1

As mentioned in §3.0, we need to observe the correspondence of the orbits of extended affine Weyl groups
of type (CY,C,,) and of type C,. So we start with the explanation on the description of the type C,, as
the affine root subsystem of the type (C,C)).

Using the description (3.1.2) of the affine root system S of type (C), Cy,), let us consider the following
subset S¢ of S.

S =0°U0F, OF =0,U0,={42¢; +7|1<i<n,recZ},

c - (3.1.37)
Oy =05 ={f¢; e;+r|1<i<j<n,relZ}
It is the affine root system of type C,, in the sense of | , §1.3, (1.3.4)]. The following gives a basis
{a§,a§,...,al} of SC in the sense of [M03, §1.2].
ag = 2ag = —2¢; + 1, ajC =a;=¢—€4+1 (1<j<n-—1), a,CL = 2a,, = 2¢,,
Here is the Dynkin diagram cited from | , (1.3.4)]:
0 1 2 n—1 n

The description (3.1.37) gives the decomposition of the extended affine Weyl group W¢. To describe it,
recall the finite Weyl group Wy of type Cy, in (3.1.5), which can be rewritten as Wo = (s,0, 8,0, -+, 8a2)-
We also denote by

L' = Pgn = PBn = @?:1261' S¥) Z%(El + -+ En) (3138)

the weight lattice of finite root system of type B,,. Then W¢ is given by

WY =Wy x t(L') = Wy x t(Pp,), (3.1.39)
and it acts on S¢ | , §1.4, (1.4.6), (1.4.7)]. The corresponding W -orbits are given by the above OY
and Of [M03, §1.5]. By (3.1.37), we have af,a € O U104 = Of and af € O5 = O0F (1 < j<n-—1).

Next, we explain the parameters for S¢. Similarly as in §3.1.2, we attach parameters k¢, k” € R to
the WC-orbits as

kS «+— 0%, kf +— OF, (3.1.40)
and define the label k¢ : S© — R in the same way as k: S — R in (3.1.20). We also denote

€=t 1@ =g (1<j<n-1), (3.1.41)

S

We now argue that under the specialization
(tstos tny wo, un) — (¢, ()%, (¢7)%, 1,1),

the non-symmetric Koornwinder polynomials degenerate into the non-symmetric Macdonald polynomials
of type C},. Recalling that both polynomials are determined uniquely by the inner products, or by the
weight functions, we see that it is enough to check that the weight function Agy in (3.1.26) of type
(Ch, Cy) degenerates to that of type C,,. The latter weight function is given by | , (5.1.7)]:

C(2a)ea

c . 1-¢"
A ZAscykc — H W’



Here (S¢)* C S¢ is the set of positive roots with respect to the basis {a$,a$,...,aS}, ie., (SO)F =
Yo Naf \ {0}, and k¢ : S© — R is the extension of the label k¢ (see (3.1.40)) by k% (2a) =0 (a ¢ S).
Recalling (3.1.27), we have
Asvk|k(a)—k(2a):0 (a€S\SC) = Age .
Thus, the desired specialization is given by
k(a) —k(2a) — 0 (a € S\ SY), k(a)—k(2a) — k%(a) (a € S°). (3.1.42)

Since (3.1.37) yields S\ S = 0, U O3, S = 0 LOF, OFY = O5 and OF = O3 U Oy, the map (3.1.42)
can be rewritten in terms of k1, ko, ..., ks and k¢, klc as

ky — ko, ks —ky — 0, ko, ky — kC. ks — kS,
Using (3.1.22) and (3.1.41), and assuming ug, u, > 0, we can further rewrite it as

(tnun)/%a (tOUO)/% — 1v fo Lo — (th')27 t— tsc

uo’ Up

= (t,to,tn, uosun) — (5, (t7)% (t)2,1,1) . (3.1.43)
Now we suppress the superscript C in t¢ and ¢, and denote by
Eg(x;Qatsatl)7 ,UEPCn

the non-symmetric Macdonald polynomial of type C,, (Definition 1.3.1.1). Similarly, for a dominant
1 € Pc,, we denote by Pf (z;q,ts,t;) the symmetric Macdonald polynomials of type C,, . Then the
conclusion of this §3.1.3 is:

Proposition 3.1.3.1. For any u € Pg, , we have

ES(w5q,ts, 1) = Eula;q,ts, 17,17, 1,1).
Also, for a dominant weight u, we have
P/AC(:E;Q7tS’tl) = PH(£7Q7 tsatl27tl2> 17 1)

The following table shows the comparison of the correspondence (3.1.23) between the Noumi param-
eters and the W-orbits with that (3.1.40) between the parameters of type C,, and the W-orbits.

Type (Cyy,Cn) | Type Cy,
thlly, < 01
toug <— 03

tn/un < 09
to/Uo < Oy
t+— 05 tg — OS = 05

t?<—>0l202u04

Remark 3.1.3.2. One may wonder whether it is possible to see the specialization (3.1.43) on the level
of affine Hecke algebras. To clarify the point, let us denote by H® the affine Hecke algebra associated to
the group W (3.1.39) in the sense of [M03, 4.1]. Tt is an associative algebra over K C R (see §3.1.2),
and as a K-linear space, it has the form HS = Hy @y K[YQ | N € Pp,] ~ Hy ®x KPg, by | ,
(4.2.7), (4.3.1)]. Here we used similar notation as in (3.1.31). In particular, Hy is the Hecke algebra
associated to the finite Weyl group Wy of type C,,, and the part K [Yé‘/ | X € Pg,| is a commutative

subalgebra. Also, following | ; (4.4.2)], we define 7¢; = 70, = ¢*" /2, where r == s (a; € OF) and
r =1 (a; € Of). Then, using the function (3.1.34) with the parameters 7¢; and 7¢; instead of 7; and
7/, we have a faithful H“-module

BY: H® — Endg (K Pg,).

which is the basic representation of type C,. The basic representations 8 (3.1.33) and B¢ sit in the
following diagram.
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H H¢
[ [
Endg (K P, ) =—— Endg (K Pc,)
One can see that the specialization (3.1.43) maps B(T};) — B°(T;) (1 <j <n — 1), but the images of

B(T;) is not equal to B¢ (T;) for i = 0,n. Thus, it is unclear Whether we can see the specialization on the
level of affine Hecke algebras H and HC.

3.1.4 Specialization to other subsystems

For all the subsystems of the affine root system S of type (CY,C,), we can make similar arguments as
in §3.1.3, which will yield the specialization Table 3.0.1. In this subsection, we list all the arguments
except type C,, which is already done. Let us write again the specialization table:

reduced t to tn, Uy Up non-reduced H t to  tn Uy Unp
B, §314|lt 1 ts 1 ts | (BCnCn) 8314 [ tm & tsti 1 ts/ty
BY §314||ts 1 2 1 1 |(CY,BC,) 8314 | tm ts tsti ts ts/t
C, §3.13 || ts 2 7 1 1 (B, By) §3.1.4 || t,, 1 tst; 1 tg/ty
CY  §3.14 ||t ts ts ts ts
BC, §314 ||ty & ts 1 i
D, §314 (|t 1 1 1 1

A remark is in order on the treatment of the type BC, and the non-reduced systems. As we have
seen in § 3.1.2, the argument on the specialization to type C,, used the extended affine Weyl group of
of type Cy. In contrast, as commented at the beginning of §5.1 and (5.1.7) in | ], we don’t have
the extended affine Weyl groups (or the affine Hecke algebras) associated to the type BC,, and the non-
reduced systems, so we cannot follow the argument in §3.1.2. However, the (non-symmetric) Macdonald
polynomials for non-reduced systems are defined as the specialization of Koornwinder polynomials in
[ ], and thus the situations are easier than reduced systems.

Type B,
For n € Zs3, the following subset SB C S forms the affine root system of type B, in the sense of [
§1.3, (1.3.2)].
SP =0 U0, OF =0,={fe;+r|1<i<n, reZ},
Of =05 ={%e;+e;+r|1<i<j<n,recZ}
0

(3.1.44)

1
Using the symbol L' = Py = Pc, = ©f_,Ze¢; in [M03, 1.4], the extended affine Weyl group is given by
WB =WE x t(L') = WE x t(Pp,) ~ W.

Here W denotes the Weyl group of the finite root lattice B,,. The group W¥ acts on S¥ by permutation,
and the WB-orbits are given by OF and OZB. We attach parameters k2 and le to the WB-orbits as

OF «— k2, Of «— Kk,
and define the label k2 by
B.8B R, kB(a)=kP (acOP), kP(a)=kP (acOP).
Mimicking the relation (3.1.22), we introduce the parameters of type B,, by

tB = gk? 4B = g, (3.1.45)



They correspond to the W5-orbits as ¢t +» OF and tP < OF.
The weight function of type B,, is given by

1— qu(Qa)ea

1— qu(a)ea ’

AP = Agp 5 = H

Then, (3.1.27) yields

Aswklk(a)fk@a):o (a€S\SB) — Agb -
Thus the desired specialization is given by
k(a) — k(2a) — 0 (a € S\ SP), k(a)—k(2a) — kP(a) (a € SP).

By (3.1.44), we have S\ SB = O, U031 04, SP = OB U OE, OB = O; and OF = O5. Then, we can
rewrite the specialization in terms of ki, ..., ks and k2, kP as

ko —0, ks — kg, kg —0—— 0, kg — kB ks — EP.
Using (3.1.22) and (3.1.45), and assuming ¢y, ug > 0, we have

Z—Z, (touo)/% o 51 thu, — (52, t—tP

’U/(J

= (t,to,tn, uo, un) — (t7,1,t5,1,¢0). (3.1.46)

ylg by lg

Now we suppress the superscript B in the parameters, and denote by
Ef(x;q, ts,t1), WE Pp, =& Ze® t(er+ea+ - +6€)

the non-symmetric Macdonald polynomial of type B;,, (Definition 1.3.1.1). Having that Po, C Pp,, we
conclude:

Proposition 3.1.4.1. For any i1 € P, , we have

B (0,15, 10) = Bu(w;q,t1, 1,15, 1, ).
Also, for a dominant weight u, we have

PP (xz5q,ts,t1) = Pu(w;q,t,1,ts, 1, L)
for the symmetric Macdonald polynomials of type B,,.

Remark 3.1.4.2. We can make a similar observation as in Remark 3.1.3.2. Let us denote by H? the
affine Hecke algebra for the extended Weyl group W ¥ in the sense of | , Chap. 4]. As a linear space
over the base field K, we have H? ~ Hy ®x KPc, ~ H. Denoting by 2 the basic representation of
H?B, we have the following diagram.

H HB
[ [
EndK(KPC") — EndK (KPB" )

As in Remark 3.1.3.2, we can that the specialization (3.1.46) maps 3(T}) — BZ(T}) for j = 1,2,...,n—1,
but the images of 5(T}) is not equal to BZ(T;) for i = 0, n.
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Type B,

For n € Z>3, the following subset S¥ " C S forms the affine root system of type B, in the sense of |
§1.3, (1.3.3)].

S8 = 0P LOP", OF =0, ={£26+2r|1<i<n, relZl} (5.147
OB =05 ={te;te;+r|1<i<j<n,relZ}
0
2 nol n
1
Using the symbol L = L' = Py = Pc, = ®f_,Ze; in [M03, 1.4], the extended affine Weyl group is given

by
WB = WE x t(L)) = WE x t(Pg,) ~ W.
It acts on SB', and the W5 -orbits are OB" and OP". We attach parameters to these orbits as
kB« 0B, kP« oF,

and define the label k8" : $B” — R as before. We also introduce another set of parameters as
Vv Vv
P =1k, =g, 1B =1k =45 (0<i<n-1). (3.1.48)

They correspond to the W5 -orbits as t3” < OB and tle “ OlBV.
The weight function of type B, is given by

v
1— kB (2a)ea
AP = Agov v = ] g

EBY (a)pa
we (55 Y+ (a)e

1—¢q
Then, (3.1.27) yields
Asvk|k(a)7k(2a):0 (aeS\SBY) — Ast,k-
Thus the specialization from type (C)/,C,,) to type By is given by
k(a) — k(2a) — 0 (a€ S\ SB"), k(a) - k(2a) — kP(a) (a € 8P).

By (3.1.47), we have S\ S8 = O; LO3 L0y, S8 = 0B’ I_IOlBV7 OB" = 05 and Ole = Os. Then the

above specialization can be written as
ki — ko, ks — kg, ks —0— 0, ko — kP, ks— kB
Using (3.1.22) and (3.1.48), and assuming tg, u,,, 4o > 0, we can further rewrite it as
(tntin) /2=, (towo) /L2, 12— 1, by fu — (tP7)2, e tP
= (tytos by ug, un) — ((27,1,(tF )2 1,1).
Now we suppress the superscript BY in the parameters, and denote by
Efv(:c;q,ts,tl), IS Pgn = Pc,

the non-symmetric Macdonald polynomial of type B,/ (Definition 1.3.1.1). The conclusion of this §3.1.4
is:

Proposition 3.1.4.3. For any i € P¢,,, we have

\4
E} (z;q,ts,t1) = Bu(w; ¢, 1,17, 1,1).
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Type C,/

9

For n € Z>2, the following subset S ¢ S forms the affine root system of type CY in the sense of |
§1.3, (1.3.5)].
S =08 uof", 0 =000 ={+e+ir|1<i<n, reZ,
OF =05 ={te;te+r|1<i<j<n,reZ}

0 1 2 n—1 n
e 0

(3.1.49)

Using L = L' = Py = Pp, = &}, Ze; ® 1(e1+ -+ €,), the extended affine Weyl group is given by
W =Wy x t(L) = Wy x t(Pg,) = WC.
The WC" -orbits on S are OF" and OF". We define the label k€~ : S¢” — R using the correspondence

ST 09", kY« 0f".
Mimicking the relation (3.1.22), we define another set of parameters as
kS

v cVv
=

=gt Y=g (3.1.50)

They correspond to the WE -orbits as t€° < 0" and tlcv “ Olcv.
The weight function is given by

1— chv (2a) ef

cY _ —
A =Agev v =[] T e

ae(scY)+

Then (3.1.27) yields

AS,k'k(a)fk@a):O (a€S\SCV) = AsCW«
Thus the specialization to type C) is given by
k(a) — k(2a) — 0 (a€ S\ S°), k(a)— k(2a) —s k%(a) (a € SP).

By (3.1.49), we have S\ S€" = 0,04, S¢ = 0S¢ LOF", 0¢" = 0, U003 and OF " = Os. Then we
can rewrite the above specialization as

ko —0, ks — 00, ki, ks— kS ky—s kC.
Using (3.1.22) and (3.1.50), we can rewrite it as
oy ], toug — (t€7)2, s tC7
= (o by ug, up) — (¢ 187 17 47 4.
We suppress the superscript CV in the parameters, and denote by

2
EE (z;q.ts,t1), pePS =Pp,

the non-symmetric Macdonald polynomial of type C)Y (Definition 1.3.1.1). Noting that Po, C Pg,, we
have the conclusion:

Proposition 3.1.4.4. For any ;1 € P¢,, we have

EE (‘r;qatsvtl) = Eﬂ(x;qvtlvtsutsat57ts)~
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Type BC,
For n € Z>1, the following subset SP¢ C S forms the affine root system of type BC,, in the sense of
03, §1.3, (1.3.6)].
SBC .= 0BC L OBC LOBY, 0OBC =0, ={+e+r|1<i<n, rel},
OPC =0, ={£2¢; +2r +1|1<i<n, rcZ}, (3.1.51)
Oﬁc =05 ={x€e;x¢;+r|1<i<j<n,reZ}

Hereafter we assume n > 2 to make the argument compatible with that so far. The Dynkin diagram is
then given by

b5 LI (3.1.52)

Recall the comment in the beginning of this § 3.1.4. We will not introduce a new extended affine
Weyl group, but consider the group W of type (CY,C,,) (see (3.1.10)). It acts on SBC and the W-orbits
are given by OB¢. OB¢ and OlBC. Hence, we already have the correspondence between the Macdonald
parameters of type (C\Y,C,) and the W-orbits on SZC. Let us denote

thC=gM, 5% =qg", 1PC =g, (3.1.53)

which correspond to the W-orbits Ofc, OfLC and OlBC, respectively.
Following | , (5.1.77)], we define the weight function Agsc . of type BC,, to be the specialization
of Agy of type (C),Cy). In other words, we take the right hand side of (3.1.27) as the definition:

BC —
APY = Agse = Asak‘k(a)fk@a):o (a€S\SEC) "

By (3.1.51), we have S\ SBY = 051103 and SBC¢ = OB OB LOPY = O; UO5UO4. Them, we can
see that the specialization to type BC), is given by

kQ—O, ]fg—k4l—)0,
Using (3.1.22) and (3.1.53), we can rewrite it as

in (touo)/q% — 1, thup — (t'BC)27 1% — (tlBC)27 t— tvl‘?zc

Uy’ S

= (tto,tn, ug, un) — (B9, (tPC)?,¢5C 1,459,

Now we suppress the superscript BC' in the parameters, and denote by
Efc(x;q,ts,tm,tl), ne Po,
the non-symmetric Macdonald polynomial of type BC,, (Definition 1.3.1.1). Then the conclusion is:
Proposition 3.1.4.5. For any i1 € P, , we have
EPC(z5q,ts tm, 1) = Eu(@3 ¢, tm, 17, 1, 1, L),

Type D,

For n € Z>4, the following subset S C S forms the affine root system of type D,, in the sense of | ,
§1.3, (1.3.7)].

SP =05 ={xe;itej+r|1<i<j<n,recZ} (3.1.54)
0 n—1

2 n—2
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Using the Weyl group W and the weight lattice
L'=Pp, =71 @ ®Le, BLE(e1 4+ €) (3.1.55)
of the finite root system of type D,,, the extended affine Weyl group is given by
WP =WP wxt(L') = WP x t(Pp,). (3.1.56)

It acts on SP by permutation, and there is a unique orbit. Attaching k” € R to this unique orbit, we
define the label by k(a) := k" (a € SP), and introduce

=q" . (3.1.57)

The weight function is given by

The relation (3.1.27) yields

Asxk|k(a)—k(2a)=0 (a€S\SP) — Agp ;-
Thus, the specialization to type D,, is given by
k(a) —k(2a) — 0 (a € S\ SP), k(a)—k(2a) — kP(a) (a € SP).

By (3.1.54), we have S\ SP = O; U--- 10O, and SP = Os. Then, we can rewrite the specialization in
terms of k1, ..., ks and kP as

ko —0, kz — kg, kg — 00, ky — kB ksr— EP.
Using (3.1.22) and (3.1.57), we have
talin, tn/tn, tovo, to/uo —> 1, t—tP <= (t,to,tn, ug,u,) — (7, 1,1,1,1).
We suppress the superscript D in the parameters, and denote by
E?(x;q,t), pe Pp,
the non-symmetric Macdonald polynomial of type D,, (Definition 1.3.1.1). Since P¢, C Pp, , we have:
Proposition 3.1.4.6. For any i € P¢,,, we have
EP(w;q,t) = By(w;q,t,1,1,1,1).

Type (BC,,C,)

For n € Z> 1, the following subset SEYC C S forms the affine root system of type (BC,,C,) in the
sense of [M03, §1.3, (1.3.15)].

GBC.C ._ OSBC*CI_IOE,C’CUOIBC’C,

OBCC =0y = {ke;+r|1<i<n, reZl,

07%C = 0,10, = {£2¢; +7 |1 <i <n, r €L},
Oﬁch::Osz{ieiiej-H“l1§i<j§”vrez}'

(3.1.58)

*
et o]
0 1 2 n—1 1N
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The diagram is for n > 2, and hereafter we assume this condition. The mark % above the index n implies
that there is a basis {aBC’C n_o such that aB¢¢ 2¢2¢¢ € §BC.C There are three W-orbits OB¢:C,

%

OB%C and OlBC’C. We introduce the parameters
tBCC = gk ¢BC.C . gks tf;c,c = g"2, (3.1.59)

which correspond to the W-orbit OB¢:¢ OB and OZBC’C7 respectively.
Similarly as in the previous §3.1.4, the weight function Agsc.c j of type (BC,,Cy,) is defined by the
specialization of Agy as

ABC,C

= ASBC,CJg = AS,ky k(a)—k(2a)=0 (aES\SBC’C) .

By (3.1.58), we have S\ SB¢C = O3, OlBC’C = Oy U Oy4, which implies that the specialization to type
(BC,,C},) is given by

]4)3—]4)4'—)0, k2|—>k4.

Using (3.1.22) and (3.1.59), and assuming ug > 0, we can rewrite it as

(tPO)? thee

(touo)/% — 1, tyu, — (8902 oty

Un ' Uo

, t+—

) s (tﬁc,c, (tlBC’C)Q,th’CtlBC’C LtSBC,C/tlBC,C).

<~ (ta t07tn)u0; Un,

We suppress the superscript BC,C' in the parameters, and denote by
EEC’C(‘%;%tSatm,tl), ,lLGPCn

the non-symmetric Macdonald polynomial of type (BC,,, By,) (Definition 1.3.1.1). The conclusion of this
§3.1.4 is:

Proposition 3.1.4.7. For any u € Pg, , we have

n)

EEC,C(x; q,tsat’n’mtl) = E#(.’E; q,tm,t127tstl’ 17ts/tl).

Type (C,/, BCy,)

For n € Z>1, the following subset SC7BC = § forms the affine root system of type (BC,,C,) in the
sense of [M03, §1.3, (1.3.16)].

\4 \ Y \4
SC ,BC — OéC ,BC L OSL ,BC L Olc 7BC,

0F"BC = 01003 = {+e; + Lr|1<i<n, reZ},

v B (3.1.60)
O 77 =0={F2¢;+2r |1 <i<n, relZ},
OSJ»BC =05 ={xe;t¢;+r|1<i<j<n,reZ}l
Hereafter we assume n > 2. Then the Dynkin diagram is given by
*
e o}
0 1 2 n—1 7N
There are three W-orbits O¢"-B¢ 0C"-BC and OlCV’BC, and the parameters are defined to be
tSV,BC — q/ﬂ, trcr’LV’BC — qks7 thV,BC = qu. (3161)

The weight function of type (C)Y, BC,,) is defined by
cY.BC _ —
A - Ascv,qu = A57k|k(a)fk(2a):0 (a€S\SCY . BC) -
By (3.1.60), we have S\ S¢"-BC = 0, and O°"-BC = Oy U O3, which implies that

ki —0——0, kir— ks
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give the desired specialization. Using (3.1.22) and (3.1.61), we can rewrite it as

v v v
tgc ,BC)Q, tn/un — (th ,BC)Q t— tgl ,BC

cv,Bc ,cv,Bc ,cV,BC,CY,BC ,c¥,BC ,cV,BC ,,CY,BC
s POt 1S t 1S 1S /t ).

to/ug — 1, touo, tpun — ( )

— (t, t07 tn, Uo, un) — (

We suppress the superscript CV, BC in the parameters, and denote by
E;? ’Bc(x;q,tsvtmvtl)v /~L€PCn

the non-symmetric Macdonald polynomial of type (C,/, BC,,) (Definition 1.3.1.1). The conclusion of this
§3.1.4 is:

Proposition 3.1.4.8. For any u € Pg, , we have

n?

Y
ES ’BC(I;% ts,tm'tl) = EM(I; Qatmatsatstl,t57ts/tl)~

Types (C3,C5) and (BY, By,)

The affine root systems of type (C2,Cy') and of type (B)/, B,) with n € Z>3 in the sense of | , §1.3,
(1.3.17)] are given by the following subset $B"8 c §.

\% \% 2 BY B
SELB =08 BuolBuo P,

OSBV’B::Oli{iEi+T|1Si§n’ T’EZ},

BV 5 (3.1.62)
O 7 =0 ={F2¢; +2r |1 <i<n, r e}
OELV’B =05 ={xe;x¢;+r|1<i<j<n,reZ}
In the case n > 3, the Dynkin diagram is given by
0
*
0
2 n—1 n
1
The W-orbits are OEV’B , OELV’B and OZBV’B. The corresponding parameters are defined to be
tfv’B = ¢~ tflv’B =", th’B = ¢". (3.1.63)

The weight function Agzv 5 is defined by

BY.B )
A = Agsv.p = Agp

k(a)—k(2a)=0 (a€S\SBY.B) -
By (3.1.62), we have S\ SB"B = O3 U O, which implies that
k‘3—k‘4, k4—0’—>0

gives the specialization to type (C2,Cy') and (B,

n?

B,,). Using (3.1.22) and (3.1.63), we can rewrite it as

, tn/unl—)(tlB\/7B)2, t»—>tflv’B

BY,B BY,B,BY,B BY.,B ;,BY,B
AR I S R Y /67 7).

S S

touo, to/ug — 1, by, — (t5F)2

= (t,to, by, uo, un) — (

We suppress the superscript BY, B in the parameters, and denote by
BB B(xiq,ty,tm,ty), pe P,

the non-symmetric Macdonald polynomial of types (C2,Cy) and (B, B,) (Definition 1.3.1.1). The
conclusion of this §3.1.4 is:

Proposition 3.1.4.9. For any i € P¢,,, we have

\
EP B(25q,t, tmtt) = Bu(m; ¢, tm, 1 tety, 1,65 /8).
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3.1.5 Relation to Koornwinder’s specializations in admissible pairs

As mentioned in § 3.0, in the original theory [M87], Macdonald used admissible pairs to formulate his
family of multivariate orthogonal polynomials for general root systems. Here, an admissible pair means
a pair (R, S) of root systems satisfying the following conditions.

e Both R and S span the common finite-dimensional Euclidean space V.

e S is a reduced.

e The Weyl groups are identical, i.e., Wr = Wg.

In | , §6.1], Koornwinder obtained Macdonald polynomials of the admissible pairs

(R,S) = (Rpc,,SB,), (Rpc,,Sc,)
by specializing the parameters in his polynomials. The parameters in | | are denoted as
a,b,c,d,t,q,
and we call them the Koornwinder parameters. The finite root systems Rpc, , Sg, and Sc¢, are

Rpc, ={%e |1 <i<njuU{£2¢ [1<i<n}U{te te¢ |1<i<j<n},
Sp, ={fe|1<i<n}U{fe te |1<i<j<n},

Se, ={xe [1<i<n}u{5(+e £¢)|1<i<j<n} (3.1.64)
Using them, the specializations in [ , §6.1] are described as
(RBCna SBn) : (a7 bv ¢, d7 tv Q) — ((]1/27 —q1/2, aBblB/Qv _b}3/2; tBa Q)v (3165)
(RBCn y SCn) : (a7 b7 ¢, d7 t, Q) — (aCbIC/27 qa‘cbé/Zv _blc/Qv _qblc/27 to, q2) (3166)
There are only given these results in | , §6.1] . We guess that they are derived by the comparison of
the weight functions of inner products, as we did in the previous §3.1.3 and §3.1.4.
In | , p-54], Noumi gave the correspondence between the Noumi parameters ¢, t,tg, tn, o, un and

the Koornwinder parameters a, b, ¢, d,t,q. The correspondence is that ¢ and ¢ are common, and
(to, tn, uo, un) = (—ed/q, —ab, —c/d, —a/b).
We can then rewrite the specialization (3.1.65) to the admissible pair (Rpc, ,Sp, ) as
(t,to, tn,uo,un) — (tp,1,abp, 1,ap).

Thus, setting tg = t8 B, ap = tSBV’B/tlBV’B and bp = (tFV’B)Q, we see that it coincides with the
specialization to type (B)/, By,) in §3.1.4.

Let us remark that a similar rewriting of the specialization (3.1.66) to the admissible pair (Rpc,,, Sc,,)
does not have a corresponding one in Table 3.0.1. It seems to be due to that the root system S¢, in

(3.1.64) cannot be treated in the formulation of [MO03].

3.1.6 The rank one case

This subsection is added after the referee comments. We would like to appreciate the referees’ suggestions.

As explained in the beginning of §3.1.1, the argument so far assumes the rank n > 2. The purpose of
this §3.1.6 is to study the excluded case n = 1. As mentioned in the beginning of §2.0, the Koornwinder
polynomial is designed to give a multi-variable analogue of the Askey-Wilson polynomial. So it is natural
to study what our specialization argument yields in the rank one case. The argument is similar to the
previous one, so we only give an outline.

Let E = (Re, (-,-)) be the 1-dimensional Euclidean space with basis €, and F' be the R-linear space of
affine linear functions on E. We identify F' — Re & Re by the inner product (-,-) as in the rank n > 2
case (§3.1.1). The affine root system of type (CY,C}) is the subset § = St C E given by

S:Oll_IOQUOgl_IO4, O]_ ::ie—i—Zc, 02 12201, 03 ::Ol—i—%c, 04 Z:203=OQ+C.
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We take the basis {%ao, aop, %al, ap} of S with ag := —2¢ 4+ ¢ and a; := 2e. The Dynkin diagram of S is
shown in the next line, where the mark * has the same meaning as in the rank n > 2 case.

* *
O————0
0 1

Next, as in (3.1.5), we denote the simple reflections by s¢ := s4, and s; = s,,, and define the finite
Weyl group by Wy = (s9) C GLg(F). The extended affine Weyl group is defined by W := t(Pr) x Wy C
GLg(F), where P := Ze C F is the weight lattice “of type C;”. Then we have W = (sg, s1) as in (3.1.12),
and the subsets Oy, 02,03,04 C S are W-orbits of %al, ai, %ao, ag, respectively.

We attach parameters ki, ko, k3, k4 to these W-orbits under the correspondence k; <> O; asin (3.1.19).
Choosing ¢ € R with 0 < ¢ < 1, we set k: S — R by k(a) == k; for a € O; as in (3.1.20). We call

{d"@ aesy={d"d" ¢" ¢"}

the set of Macdonald parameters as in (3.1.21). We also have the Noumi parameters tg, t1, ug, u1, which
correspond to the Macdonald parameters by the relation

(qle,q2k27 q2k37 q2k4) — (t1U17 %’tOUO) 7%)) (3167)

1 1 1 1
We define the base field to be K := Q(q2,tZ,tZ,u2,u?) as in (3.1.24).
By the general theory | , §85.2-5.3], we have the one-variable symmetric Laurent polynomial

Pl($> = Pl(m;q7t07tlau07u1) S K[l'il]wo

for each dominant weight A\ = le € A, := Ne, where Wy = (s1) ~ Z/27Z acts on K[z*!] by s1(z) = 2~ 1.

The Laurent polynomial P;(z) (I € N) is equal to the Askey-Wilson polynomial | ]. Let us briefly
explain the correspondence, referring to [N95, §3], [St00], | ] and [MO03, §§6.4-6.6] for the detail. We
use Gasper and Rahman’s notation | ] for g-shifted factorials (1.1.1) and g-hypergeometric series
1é ai, -+, as+1 ] i ai; q (asy1; QO "
T by, o by —~ bl, -(bs,q)k (4 9)x

The Askey-Wilson polynomial is now defined to be

~!(ab, ac, ad; q);
(abed; q)i

p(3(x+aY) g, ab,c,d) == - 1b3

-1
[q , ¢~ abed, ax, a/x’q’ s (3.1.68)

ab, ac, ad

Although the form (3.1.68) is asymmetric with respect to the parameters a, b, ¢, d, the polynomial actually
has the parameter symmetry, which can be seen from the recurrence relation | , (1.24)—(1.27)]. See
also [ , 84, Remark 4.1.2] for the relation between the recurrence relation and the Yip-type formula
of Littlewood-Richardson coefficients of Koornwinder polynomials and the reduction to the rank one
Askey-Wilson case. Using (7;q); = (7;¢)oo/(¢'T; @)oo for I € N, we have the correspondence | , D-9]

pl(%(x + x_l); q,a, ba C, d) = 2l(ab6dql_1; q)l : Pl(.]?, Q7t07t17u0)u1)7

where the Askey-Wilson parameters a,b, c,d correspond to the Macdonald parameters by

bd %%%_Qt% 275;%—7517%
(a,b,¢,d) = (g2t ug, —q stuf, —tfuy ?).

Combining it with (3.1.67), we see that the Askey-Wilson parameters correspond to the W-orbits in S
by (a, b, C, d) Ad (03, 047 01, 02)

We now turn to the specialization argument. We list up the subsystems of S = SCY-C and the cor-
responding specialization rules in Table 3.1.1. The Dynkin diagrams are borrowed from | , §1.3].The
“Noumi” column shows the specialization of the Noumi parameters tg, t1, ug, u1 in the same way as the
specialization Table 3.0.1. The “Askey-Wilson” column shows the specialization of the Askey-Wilson
parameters.
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type H Dynkin ‘ orbits ‘ Noumi ‘ Askey-Wilson

(C¥7 Cl) ;:z 01 (] 02 (] 03 (] 04 to t1 () Uq a b C d
Askey-Wilson 0o 1

(CY,BCY) ﬁ 01 LU Oy U O3 ts tity ts  ts/t | q2ts  —q@ ts —f
(BCh,CY) * N N

cont. q—’Jacobi % O1 U0 U0y, tl2 tslg 1 ts/tl qzt;  —q2t; ts 1

BC, —— 01 U0, 2 te 1ty | ¢ty —qrty t, —1

A O, 1t 1 ¢ ¢z —qz t -1

' 0 1 O t1 ot 1 | ¢t —gp 1 -1

Rogers 0o 1 2 1 1 qz —qz  t  —t

04 2 1 1 1 | g2t —q3it 1 -1

Table 3.1.1: Subsystems of (C), C) and parameter specializations

The specialization rules for the types (CY, BC1), (BCi,C1) and BCy are obtained by making n = 1
and deleting the ¢ column in the specialization Table 3.0.1. We can obtain the type A; by a similar
argument as the reduced subsystems of (CY,C,,), noting that we have four embeddings S41 — 5610
as indicated in the “orbits” column in Table 3.1.1.

Table 3.1.1 yields the degeneration scheme
(Figure 3.1.1) of g-hypergeometric orthogonal
polynomials which respects the embeddings of
affine root systems into (CY,C7). Our degen-
eration scheme seems to be new. (cy,cy)

For comparison, let us recall the Askey Askey-Wilson
scheme of q-hypergeometric orthogonal poly-

nomials (also called the g-Askey scheme, see

[ , p.413] for example). It shows the (CY,BCh) (BC1,Ch)
classification and the behavior under parame- continuous
ter specializations of g-hypergeometric orthog- g-Jacobi
onal polynomials. Among those polynomials,
we could only find the continuous q-Jacobi poly-
nomial and the Rogers polynomial in our Fig-
ure 3.1.1 at this moment. As we will explain
below, the former appears naturally, but the

appearance of the Rogers polynomial is tricky. Ay Aq Ay Ay
It might be possible that all the polynomials 01 O, O3 O,
in our Figure 3.1.1 can be expressed as those Rogers

in the g-Askey scheme. However, according to
the quite different forms of our scheme and the  Figure 3.1.1:  Root-theoretic degeneration

g-Askey scheme, we can say that the parameter  gcheme of Askey-Wilson polynomial
specializations taken in the g-Askey scheme do

not necessarily respect the affine root system
structures.

Remark 3.1.6.1. Recently, Koornwinder [I[{o] proposed new degeneration schemes of ¢g-hypergeometric
orthogonal polynomials, called g-Verde-Star and ¢g-Zhedanov schemes. These schemes looks quite differ-
ent from ours, and the relation is unclear at this moment,

Among the specialized polynomials appearing in Table 3.1.1 and Figure 3.1.1, the type (BCy,C1) is

essentially the same with the continuous q-Jacobi polynomial Pl(a’ﬂ) (z;q) [ , §14.10]. The relation
with the Askey-Wilson polynomial is given by

PP (w5q) = (const.) - pu (2, q 2T H, ghotE —gaf+i _gaf+i),

The appearance of Pl(a’ﬁ ) (x; ) is natural in view of the fact discovered by Koornwinder | , p-195] that
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the polynomial PZ(Q’B ) (x; q) is the Macdonald symmetric polynomial of the admissible pair R = S = BC}
(see §3.1.5), which corresponds to the non-reduced affine root system (BC1, Cy).

Let us also recall that the Macdonald symmetric polynomial of type A; is essentially equal to the
Rogers or the continuous q-ultraspherical polynomial Cy(x;alq). See [ , §6.3], | , 87.4] and
[ , §14.10.1] for the detail. The generating function is given by

Ol z:alg l: (ayz,ay/z,q)oo
2 Clesalan’ = 2 e

with # = (2 + 271)/2. The Rogers polynomials are obtained by specializing parameters of the Askey-
Wilson polynomials in several different ways. One of them is shown in | , p-420, (14.1.20)]:

1 1
Cl(z;a"q) = (COHSt.) 'pl(x;(Laa 7a7aq237aq2)a

which seems to be the most famous one, but does not appear in our Table 3.1.1. However, there is
another one which we learned from | , (6.5b)]:

1 1

Cy(z;a®|¢?) = (const.) - py(z; q, a, —a, q2, —q2). (3.1.69)

This relation appears in the third embedding S4* = O, C SCYCr of type Ay in Table 3.1.1. Indeed, the
embedded S41 is identified with the orbit Oy of long roots, so the shift parameter g4 for the embedded
system should be the square of the parameter ¢ for the ambient system S Gy, , and we have the parameter
q? in the Rogers polynomial and the parameter q in Askey-Wilson polynomial as in (3.1.69).

3.2 Specialization in Ram-Yip type formula

In this section, we give a partial check of the specialization Table 3.0.1 in the level of Ram-Yip type
formulas. Precisely speaking, we show that the non-symmetric Koornwinder polynomial degenerates to
the non-symmetric Macdonald polynomials of types B, C, D in the sense of | ] by the specializations
given in Table 3.0.1, using explicit Ram-Yip type formulas of those polynomials. In this section, we use
the notation in

Let us explain what we mean by the word Ram-Yip type formulas. In | ], Ram and Yip derived
explicit formulas of non-symmetric Macdonald polynomials of reduced affine root systems using alcove
walks. Their argument is designed to work in general setting, and the details are later given by Orr and
Shimozono in | ], which derives among many results an explicit formula of the non-symmetric Koorn-
winder polynomial. We call all of these formulas Ram-Yip type formulas of non-symmetric Macdonald
polynomials.

A caution is now in order. The realization of affine root systems in | ] is different from our default
one in | ]. For distinction, we denote by SXRY the affine root system of type X used in | ], and
call the non-symmetric Macdonald polynomials of type X treated in loc. cit. the polynomial of Ram-Yip
type X.

Let us summarize the results given in this § 3.2 in the following Table 3.2.1,

t t() tn (%) Unp
BRY - g322 || ¢RY 1 Y 1 Y
B, 1ty 1t
CRY g321 || &Y 1 &Y 1 1
BY ts 1t 1 1
D, §323| ¢t 1 1 1 1

Table 3.2.1: Specialization table for Ram-Yip formulas

As mentioned above, we treat the types B, C,, and D,, in the sense of | ], each in §3.2.2, §3.2.1
and § 3.2.3, respectively. Since the types B,, and C,, have discrepancy from those in our default | 1,
we use the symbols BRY and CRY in Table 3.2.1. The type D, has no discrepancy, and we use the
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symbol D,,. The BRY row in Table 3.2.1 indicates the specialization of the Noumi parameters to obtain
the non-symmetric polynomial of Ram-Yip type B,. More explicitly, denoting the latter by EE’RY(JJ),
we have

Eu(miq, th 1L, 1,5) = EPRY (254,60, 1),

This equality will be shown in Proposition 3.2.2.4. The B, row in Table 3.2.1 is a copy from the
specialization Table 3.0.1, which we give in the intention of checking the specialization argument in
§3.1.3 and §3.1.4. As for the other types, Table 3.2.1 claims that the type D, is clean, but that the type
CRY (Ram-Yip type C,,) is a little confusing, which turns out to correspond to the type B in the sense
of [MO3].

3.2.1 Ram-Yip type C,

In this subsection, we show that the Ram-Yip formula of the non-symmetric Macdonald polynomial
of type C, in the sense of | ] can be obtained from the Ram-Yip type formula of type (C)/,C),)
(Fact 2.2.3.1) by the corresponding specialization in Table 3.2.1:

t():UO:unzl.

See Proposition 3.2.1.5 for the precise statement.

A caution on the notation is in order. In [ |, the Ram-Yip formula for what they call type Cj,
is derived using the affine root system of type C)Y in the sense of loc. cit. As mentioned before, it turns
out that both the polynomial and the root system are different from those in | ]. For distinction, we
denote by ES"Y (z) and SCRY the polynomial and the system treated in | ], and call them the
Macdonald polynomial of Ram-Yip type C,, and the affine root system of Ram-Yip type C)/, respectively.

Affine root system of Ram-Yip type C

We start with the explanation on the system SCYRY et S be the affine root system of type (CY,C,)
Vv
in (3.1.2). The affine root system S¢ -®Y of Ram-Yip type C is the subset of S given by

SCYRY .0, U O

3.2.1
={te+re|l<i<n,reZiU{tete;+rc|l<i<j<mn,relZ} ( )
where we used the W-orbits in (3.1.2). The basis of S¢ RY in [ ] is given by
aOC RY —(e1 +€2) + ¢, a]C RY a;j=¢—¢€641 (F=1,...,n—1), agv’RY = €p.
C\/

; RY a; in (3.1.3), but the other two roots are different from those in (3.1.3).
Next, we turn to the extended affine Weyl group. The refections associated to the above basis are
denoted by

Note that we have a

socv =8 cvmy, Si=S,.cvry (1=1,...,n), (3.2.2)
¢ ¢

i

where we used s; € Wy in (3.1.5). Note that we have the common s,, although agv’RY # a,. We also
Vv
consider the automorphism group Q¢ ®Y of the extended Dynkin diagram of type B,,:

0

o & o
1

\ 273 n—1 n
Explicitly, using the weight lattice Pp, = @' ,Z¢; ® Z%(q + -+ ¢€,) of type B, in (3.1.38), we have

QCRY P Q¢ =P, /QB, = <7TCv | (71'Cv)2 = e>.

The generator Tiach flips the diagram by transposing the vertices 0 <> 1. Then, the extended affine Weyl
group W RY s defined to be the subgroup of GLg(V) generated by the reflections in (3.2.2) and <.
In other words, we have

WO RY <sgv,51, ey sn,wcv>.
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As an abstract group, WCRY g presented by these generators with the following relations.

7 s§ = s s2=(s§ ) =" )2 =e (1<i<

: n),
sG s1= 5187 sis; = s;si ([i—j| > 1,(i,5) ¢ {(0,2),(2,0)}), (3.2.3)
ngSQSOCv = 5256’W527 8i8i418; = Si418iSi+1 (1 <i<n—2),
SpnSn—15nSn—1 = Sn—15nSn—15n-
In the second line, we abusively denoted sg = sOCV. Let us write down the action of WC RY on
Fy, = Pc, ® 1Z in (3.1.15).
c—e (i=1) € i=j+1)
s§ (e)=Rc—e (i=2) , sile)=1¢+1 (i=j) (1<j<n-—1),
€ (2#172) € (175]7.7—’_1)
—€n ) — v — ] — 1
sn(ez) _ € (Z n) , 7TC (61) _ c €1 (Z ) .
&  (i#n) € (i #1)

We can see from this action that W RY preserves SCYRY S, and the description SCTRY — 0,4 0;
in (3.2.1) is actually the decomposition into W -BY_orbits.
\
In fact, as the following lemma shows, the group W RY is identical to W in (3.1.10).

Lemma 3.2.1.1. The following gives a group isomorphism ¢¢: W = WO RY,
oCs))=s; (1<i<n), ¢(so)=n"".
In particular, we have the following relations of subgroups in GLg(F%), Fz =V @ Re.
W =W RY = (P ) x Wp.

Proof. We regard W as the group with the presentation (sg, s1,...,$,) in (3.1.12). Since gpc(soslso) =
7" €7 = socv, we have the surjectivity of the homomorphism ¢V up to well-definedness. Thus, it is
enough to show that the defining relations (3.1.13) of W are mapped by ¢ to those (3.2.3) of WC"-RY,
The non-trivial parts are those containing sg € W. As for the fourth relation sgs1s9s1 = s150515¢ in

(3.1.13), the application of ¢ yields

0% (s0515051) = 0% (s51505150) <= wcvsmcvsl = slwcvslﬂ'cv — sgvsl = slsgv,
which is in the third line of (3.2.3). The other relations are similarly checked. O
For later use, we write down the reduced expression of t(e;) € WERY for j = 1,2,....n.
C\/
tler) =7 81+ SpSp_1-- 81
t(62) = ﬂ_CV ngsl crr8pSp—1- 52 (324)

t(e;) = wcvsi_l~~szsgvsl~~~snsn_1~~si (3<i<n).

Ram-Yip formula of non-symmetric Macdonald polynomials of Ram-Yip type C,

Recalling the WERY _orbit decomposition S FY = Oy U Os in (3.2.1), we take parameters in the

COrreSpOndence
Y « 5 0, 'Y «— 0s.

For each p € Pc,, we have the non-symmetric Macdonald polynomial of Ram-Yip type C),, which is

then denoted by

n’?

1 1 1
B (x) = BPY (034,67 1)) € Kepy [, Kery = Q(¢2, (£57)2, () 7).

Below we explain the explicit formula of ES"®Y (z) given in | ]
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For each a = a+ rc € S¢RY ¢ P, @ Re, we define qShC(a) and ¢t (a) by
gt g et o (BT (B ehe) - pC N e o0 =Y (n—i)er (3.25)
i=1 i=1
We also denote the fundamental alcove of SC RY by

i

Then we have ACRY = AUsyA, where A is the fundamental alcove (2.1.1) and s is the 0-th reflection

associated to ag = —2¢; + ¢ € S (3.1.3), both of type (CY,C,). Note that ag # a,gv’RY, so that the
corresponding hyperplanes and reflections are different. See Figure 3.2.1 for the case n = 2.

ACYRY — AUsyA

ACV,RY

Figure 3.2.1: The fundamental alcove of Ram-Yip type Cs

Finally, for each p € Pc,, we denote the shortest element in the coset t(u) Wy by
we(p) € WERY, (3.2.6)

Finally, we denoted by I’C(W7 z) the set of all alcove walks with start z € WO RY of type .

Fact 3.2.1.2 ([RY11, Theorem 3.1]). Let u € Pg, be arbitrary, and take a reduced expression we(p) =
(7€ )ks;, -+ s;, with k € {0,1}, using the abbreviated symbols in (3.2.3). Then, we have

1
ES,RY(x) — Z fpctj(p)xm(p)v
PETC (w(i),e)
<hC (3, c, ., shC(_ o,
pr = H (wick)+(qh (=Br) $ht™ ( 5k)) H (wi) (qh (=Br) $ht™ 5k))7

k€pi(p) kep_(p)

where S == s;.8;,_, ~--sik+1(agv’RY) for k=1,2,...,r, and ()% (2) for i = 0,1,...,n is given by
RY)—3 _ (¢RY)3 RY\—1 _ (4RY)%
C\+ o (tm) 2_(tm )2 - C\+ o (ts ) 2_(ts )2

(wi ) (Z) == 1 — 1 (0 SisSn— 1)v ('(/)n) (Z) ==+ 1 — %l . (327)

Specialization to type C,

In this part, we check that the specialization ty = ug = u, = 1 of the Ram-Yip type formula for the
non-symmetric Koornwinder polynomial E, (x) (Fact 2.2.3.1) is equal to the Ram-Yip formula for the
non-symmetric Macdonald polynomial EE’RY(.’L‘) of Ram-Yip type C,, (Fact 3.2.1.2). Using (3.1.28), we
denote the specialized non-symmetric Koornwinder polynomial by

EPC(2) = EPC (25,1, tn) = Eu(w1¢,t, 1,0, 1,1). (3.2.8)
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We denote by
Po(w(p), €) € D), ¢)

the subset consisting of alcove walks without folding by so. We first show that under the specialization
to = up = uy, = 1, the summation over I'(w(u), e) in Fact 2.2.3.1 reduces to that over To(w(u), e).

Lemma 3.2.1.3. Let u € Pg, be arbitrary, and take a reduced expression w(u) = s;, ---s;, for the
element w(u) € W given in (1.3.36). Then

sp,C _ 3
EPCa)y= 3 fotipe™?,

PETo (w(11)s€)
fp = H (¢?57C)+(qSh(*ﬁk)tht(*Bk)) H (w?i’vc)*(qSh(*Bk))tht(*ﬂk))’

kepy (p) kep_ (p)

where we used

_1 1
2 2
th? —tn

(P E(2) = t—— (=1....n-1), WP)(e)=+7—- (3.2.9)

Proof. The specialization ug = u, = 1 yields woi (z) =0 by (1.3.33). Thus, no folding step by so appear
in the summation in Fact 2.2.3.1. Also, a direct calculation shows that under tg = 1, wli(z) is equal to
(PP NE(2) for i =1,...,n. O

Comparing (3.2.7) and (3.2.9), we have

= (¥5)*(2). (3.2.10)

t, =tRY

= (W) (=), WPO)F()

t=tRY

W) * (=)

Hence, to check the identification of EE>RY(;U) with EZP’C(x), it is enough to construct a bijection

To(w(pf,e) — Te(we(),e)

between the sets of alcove walks.

Lemma 3.2.1.4. For any u € Pg, , take a reduced expression w(u) = s;, - - - 85, of the element w(p) € W
in (1.3.36), and set

I={re{l,2,...,0} i, #0} ={k1 <ko<--- <ks} (s<9),
J = {(b1,ba,..., b)) € {0,1} | b; =1 (i ¢ I)}.

Also, define §¢: J — {0,1}* by
J > (bl,bz,...7bg> — (bkl,bk2,...,bks) S {0,1}5.

Then the following statements hold.
(1) The length of we(p) € W(CV'RY) is |I| = s, and we can write we () by

84,84, """ Sj, s € 2N
wC(N):{]C J2 J ( )

7" 85,85, 55, (s ¢ 2N)

with some j,’s, where we used the abbreviation in (3.2.3).
(2) The map 6 : J — {0,1}° induces a bijection

60 : To(w(n),e) — To(we(),e),

by b b
Ac,s: YA, ..y 8. s A € 2N
p:(A,S?IIA,...,SZI...S?IZA) y ( vasm - bk’sjl Sis vaz , (s )
¢ (¢ Ac, 7€ SjllAc,...ﬂT'C s, s Ac) (s ¢ 2N)
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(3) For any p € Fo(w(m,e), we have

wt(p) = wt(6(p)), d(p) = d(6C(p)).

Proof. (1) Tt is enough to show ¢ (w(p)) = we(p) for any u € P, . First, we can see ¢ (w(e;)) =
wc(€;) by the comparison between the reduced expressions (1.3.9) and (3.2.4). Since ¢ is a group
isomorphism by Lemma 3.2.1.1, we see that ¢ (w(u)) = we(u) for any pu € Pg, .

(2) It is an immediate consequence of the item (1) and the bijectivity of 6.

(3) We want to show that for any p € Fo(m,e), expressing e(p) = t(wt(p))d(p), wt(p) € Pc,,
d(p) € Wy, we would have ¢ (e(p)) = t(wt(é\é(p))) d(é‘é(p)) For any ¢ = 1,2,...,n, we have
©%(t(e;)) = t(e;) by the comparison of (3.1.14) with (3.2.4). Thus we have t(wt(p)) = t(wt(éE ()

for any p, which means wt(p) = wt(6(p)). On the other hand, since ¢ = idyw,, we have

C|W()

d(p) = d(é\é(p)) for any p. Thus the statement is proved.
O

Combining this lemma with (3.2.10), we obtain the desired identification
2,C (. 1 _ 4RY 4 _ RY\ _ pCRY( . ,RY ,RY
E/ip (:CaQat_tmvtn_ts )_Ep, ($7Q7ts 7tm )
The definition (3.2.8) of Eipvc(as) yields:

Proposition 3.2.1.5. For any i1 € P, , we have

m Vs

Ey(w;q,t00 1LY 1,1) = EC™ (¢, 657 1Y),

Comparing this result with the specialization Table 3.0.1, we see that it corresponds to type B .
Thus, the Macdonald polynomial of Ram-Yip type C, is the Macdonald polynomial of type By in the
sense of Definition 1.3.1.1.

3.2.2 Ram-Yip type B,

The Ram-Yip formula of non-symmetric Macdonald polynomial of type B,, is derived in | ] using
the affine root system of type B, in the sense of loc. cit. In this subsection, we give a similar argument
as in the previous §3.2.1 to type B,, and show that under the specialization

tn:un, t():’u,():].

we can recover the non-symmetric Macdonald polynomial of type B, in the sense of | | from the
non-symmetric Koornwinder polynomial.

We will use similar terminologies on the affine root system and the non-symmetric Macdonald poly-
nomials as in §3.2.1. We denote by SB"RY and EPRY (1) those considered in | | for type B, and
call them the affine root system of Ram-Yip type B, and the Macdonald polynomial of Ram-Yip type
B,,, respectively.

Affine root system of Ram-Yip type B,/
Using the symbols in (3.1.2), the affine root system S? “RY of Ram-Yip type is given by

SBYRY (0, U 04) LU Os

3.2.11
={+2+7r|1<i<n,reZlU{te e +r|1<i<j<n,relZ} ( )
The choice of the basis in | ] is given by
agv’RY =ap = —2¢ +c, afv’RY =a;=¢—¢€41 (=1,...,n—1), afv’RY = a, = 2¢,,

where a;’s are in (3.1.3). Thus, the associated reflections are s sv = s; in (3.1.5) and (3.1.11).
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We turn to the explanation of the extended affine Weyl group. Let Qv be the automorphism group
of the extended Dynkin diagram of type Ci,:

1 2 2 2 2 1
o & o—o—— o o= o

Explicitly, we have y y
Qpv =Py /Q}, = Po,/Qc, = (7 | (x77)* =¢).

Then, the extended affine Weyl group WBRY ig the subgroup of GLg(V), V = & ;Re; given by

WwBYRY BV>'

= <507517"'757l77‘-

As an abstract group, W2 “RY has a presentation with these generators and the following relations.

s7=1 (i=0,...,n),
sis; =sjs; (li—jl > 1),
8iSi118i = Si118iSit1 (i=1,...,n—=2),
8i8i+15iSi4+1 = Si+15i5i+15; (t=0,n—1),
7TBVS7; = sn,iﬂva (i=0,1,...,n)

Let us write down the action of W5 BY on Fy, = P, & 1Zc (3.1.15).

c—e (i=1) < (i=5+1) .
s0(€;) = . (i£1) sje) =9¢€¢+1 (i=7) Gj=1,...,n—1),
sn(€;) = {6;" 8 ; Zi , 7 (e;) = %c — €n—it1

We can see from this action that W5 RY acts on SBV’RY, and the description SBYRY — 0, Os in
A\
(3.2.11) is actually the decomposition into W5 -BY_orbits.
The group WE *RY also has the following descriptions.

WERY — Qpy x W =t(Pp,) x Wy, Pg, =Ze @@ Zep ®Li(er + - +¢), (3.2.12)
where we used t in (3.1.6). For later use, we write down reduced expressions of t(e;)’s.

t(€;) = Si—1 -+ 815081 " SnSn—1---8; (1 =1,2,...,n),

v (3.2.13)
t(%(el + -+ 6n)) - 7TB (Sn et 51) Tt (Snsn—l)sn-

Ram-Yip formula of non-symmetric Macdonald polynomial of type B,

Next we consider the parameters for Macdonald polynomials. Recalling the W5 “RY _orbit decomposition
Vv
SBURY = 05 (02 U Oy) in (3.2.11), we take parameters tRY and 2 in the correspondence

thY « 5 05, 1Y +— 0, U0y

We have the non-symmetric Macdonald polynomial of Ram-Yip type B, for 4 € Pg_ in (3.1.38), which
is then denoted by

1 1 1
EPRY (z) = EP™Y (250,607, 61Y) € Kpry[z™], Kpry = Q(q7, (65)7, (t1)?).
For eacha =a+rce SBV’RY, we define qShB(“) and 8t”(a) by

B B
qshB(a—i-rc) =q ", thtB(O‘+TC) = tﬁﬁ’"mtl(pl 7a>’ pﬁ :
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We denote the fundamental alcove of Ram-Yip type B by
ABYRY {zeV| a,fv(m) >0,i=0,1,...,n}.

See Figure 3.2.2 for the case n = 3. We have AP RY = A in (2.1.1).
263

ABY.RY

D=

5€1 %62
Figure 3.2.2: The fundamental alcove of Ram-Yip type By
We also denote by wg (1) € WB”RY the shortest element of the coset t(p)W 5B BY | Finally, I' 5(W, 2)
denotes the set of alcove walks with start z € WEBRY of type ﬁ,
Fact 3.2.2.1 (] , Theorem 3.1]). Let u € Pp, be arbitrary, and take a reduced expression wp(p) =
(7B )*si i, -+ 8i,, k € {0,1}. Then we have
1
EE,RY(x) — Z ffté(p)mm(p)a
PET s (w(p) e)
pr — H ( .B)+(qshB(—5k)thtB(—5k)) H (w,B)—(qShB(—ﬁk)thtB(—ﬁk))
1k (23 ’
k€ (p) kep_(p)
where i = s, -84, (aP) for k=1,2,...,r, and (P)*(z) for i = 0,1,...,n is given by
()2 — (tnr)?
1—2#!

RY\—3% _ (4RY\%
@) = 222U ),

(W7)*F(z) ==+ (1<j<n-1),

(3.2.15)

Specialization to type B,

In this part, we check that the specialization t, = u,, to = up = 1 of E,(z) in Fact 2.2.3.1 is equal
to EPRY(x) in Fact 3.2.2.1. Using (3.1.28), we denote the specialized non-symmetric Koornwinder
polynomial by

EZP’B(LE) = EZP’B(Q?; ¢ ttn) = Eu(z;q,t,1,t,,1,t,). (3.2.16)
Lemma 3.2.2.2. The map s; — s; (i = 0,...,n) defines an injective group homomorphism W <
WBY.RY
Proof. Obvious from the structure W5 BY = Qpv x W in (3.2.12). O

Lemma 3.2.2.3. For any u € Pc,, take a reduced expression w(p) = s;,8i, -+ 8;, of the element
w(p) € Win (1.3.36). Then, we have

1
EPP@) = 3 fotipr™®
pe (wenle)
fo= ] @50y T ()~ (¢t o),

k€pi(p) kep_(p)
where (), = s;,8i,_, -~ 84, (a;,) for k=1,2,...,r, and (¢fp’B)i(z) fori=0,1,...,n is given by
_1 1
=% — 3 p.B tn? —t2

(WPEYE(z) = (1<j<n—1), @PPFE)=+2—20 (=0n).  (3217)

1— 2%
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Proof. A direct calculation with ¢, = u, and ty = ug = 1 yields the result. O

Since P, C Pp, , we have:

n?

Proposition 3.2.2.4. For any u € Pg,, the following equality holds.

Eyu(wiqty 1,0, 1,6%) = B2 (w5q, 60 41™). (3.2.18)
Proof. By (3.2.16), it is enough to show EZP*B(x;q,tnRTY,tF‘Y) = Ef(a:;q, tBY +RBY) " Comparing (3.2.15)
and (3.2.17), we have

WP PR = @R, WP, = 0P

The embedding W < W5 BY in Lemma 3.2.2.2 implies that we have F(w(,u;, e) =Tg(w(u),e) for any
w € P, N Pe, = Pc,. Then, the result follows from Lemma 3.2.2.3. O

Comparing this result with the specialization Table 3.0.1, we see that the specialization (3.2.18)
corresponds to type B,. Thus, the Macdonald polynomial of Ram-Yip type B, is the Macdonald
polynomial of type B,, in the sense of Definition 1.3.1.1.

3.2.3 Ram-Yip type D,
By Proposition 3.1.4.6, we know that the specialization
tn:unZtOZUQ:1

yields the non-symmetric Macdonald polynomial Ef (z) of type D,,. In this subsection, we reprove it by
using the Ram-Yip formula of type D,,, in which case there is no discrepancy between | ] and [ I,
so we use our default notation for the affine root system and the non-symmetric Macdonald polynomials

based on [M03].
Ram-Yip affine root system of type D
Recall the affine root system SP of type D,, given in (3.1.54):
SP =05 ={xe;te;+r|1<i<j<n,rcZ}.
A basis given by

D .__ D .__ _ . D .__
ag = —€1— €+, aj =a; =€ — €1 (1<j<n—-1), a; =€p_1+en.

Denoting s = sqp, the finite Weyl group is given by WP = <517 ceeySne1, sE> o~ {:I:l}rk1 X &,,. Also,
recall the weight lattice Pp in (3.1.55):

Pp, :Zﬁl@---@Zﬁn@zé(€1+~--+en)

and the extended affine Weyl group WP = WL x t(Pp,) in (3.1.56). The group WP has another
description:

WP = (sP,s1,...,80_1,82, 70 7l | 7D). (3.2.19)

Here 7P, 7D | and 72 denotes the generators of the automorphic group

Qp = Pp,/Qp, = (v} =e,n 7} 1, 7F)

of the extended Dynkin diagram of type D,,:

0 n—1
o

2 3 n—2 /
o

—O0——O0

|
/ \»

(0]



As an abstract group, WP is presented by the generators (3.2.19) and the following relations.

5? = (SOD)2 =€,

sg)sl = slsOD, sn_lsf = sfsn_l, sisj =858 (|t —j| > 1),
SODSQSOD = 3250D<92, sfsn,gsf = sn,gsfsn,g, $i8i418; = Si418iSi+1 (1=1,...,n—2),
Tso =S, M1sg = Sno1my o, TS0 = ST s
7l sy =samP |, wPsy =s,7D, D si=s, P (i=2,...,n-2),
Ps; = s, il (i=2,...,n—2), (P2 =P =@l =e (i=1,...,n).
(3.2.20)
Although it will not be used explicitly, let us write down the action of WP on Fy, (3.1.15).
C — €3 (Zzl) Gj (Z:]-l-].)
sd(e)=<Rc—e (i=2) |, sjle)) =€ +1 (i=j7) (Gj=1,...,n—1),
€; (2751’2) € (17&]7]—1_1)
—€n (i=n-1)
Dy _ L Doy 1. _
sn (61) - —€n—1 (7/ - n) 9 7Tn (62) - 26 671—24-1 (Z - 07 e ,TL),
€ (i#n—1,n)
c—e (=1 lete i1=1
T (€;) = ( ) ’ Ty (€:) = : ! ( ) :
€ (i#1) 3¢—€n—it1 (i #1)
We also write down reduced expressions of t(e;) € WP:
tler) =77, tlex) = mPs¥s1, tle) =7lsi 1 5258851811 (i=3,...,n). (3.2.21)

Ram-Yip formula of non-symmetric Macdonald polynomial of type D

There is a unique WP-orbit on the affine root system S, i.e., Os, and correspondingly we set the
parameter
t +— Os.

See also (3.1.57). For p € Pp,, the non-symmetric Macdonald polynomial of type D,, is denoted by
D¢,y _ Dy,
E/(z)=E, (v;q,1).
For each a = a + rc € SP, we define sh” (a) and ht” (a) by

n
PO g Pere) P )P SN e (3.2.22)

i=1

We also denote by wp () € WP the shortest element in the coset t(u)WP. For p=¢€;,i=1,2,...,n,
they are given by

wp(er) =77, wplex) = 7P, wp(e) =7Psi 1 5058 (3 <i<n). (3.2.23)
The fundamental alcove of type D, is denoted by
AP ={z eV |aP(z)>0,i=0,1,...,n}.
Finally, we denote by I'p (W, 2) the set of all alcove walks with start z € W% of type E},

Fact 3.2.3.1 (| , Theorem 3.1]). For p € Pp, , take a reduced expression wp(u) = ﬂ'jDSil -ee s, of
the element wp(u) € WP with some j € {0,1,n — 1,n}. Then we have

EP(@)= S fPti, e, (3.2.24)
pELp (w(n)se)

76



D/ _ D/_ —, shP(— D(_
pr — H ( ka)+(qSh (=Br) ¢ht( ﬂk))) H ( 3) (q b= (= Bk)) ¢ht ™ ( ﬂk))’
kep (p) kep_ (p)

where i = s;, -85, (aP) for k=1,2,...,r, and (?)*(z) for i = 0,1,...,n is given by

1 1
=% — 3
1— 2+

W) (2) =+
For distinction, we denote by EP®Y (x;¢,t) the right hand side of (3.2.24).

Specialization to type D,

In this part, we specialize ¢, = u, =to = up = 1 in E,(z) in Fact Fact 2.2.3.1, and show that it is equal
to Ef RY(7) in Fact Fact 3.2.3.1. We denote the specialized Koornwinder polynomial by

EppP(wq,t) = Bu(r;¢,1,1,1,1,1). (3.2.25)

Let Fo,n(w(u;, e) C T'(w(u), e) be the subset consisting of alcove walks without folding by sg or s,.

Lemma 3.2.3.2. For any u € Pc,, take a reduced expression w(u) = 8;,8;, - $;, of the element
w(p) € W in (1.3.36). Then we have
EPP@) = 3 fotipe™®,

peFO,n(mve)
o= TT @)@ o) T @) (@i,

kepy (p) kep_(p)

sp,D t_%_té .
(wip )i(z)::il_izj:l (i=12,....,n—1).

Proof. The specialization tg = t, = ug = u,, = 1 in (1.3.33) yields T (z) = 1 (2) = 0. Thus the folding

steps by sg or s, does not appear in the summation of Fact Fact 2.2.3.1. O
Thus, it is enough to construct a bijection Fo,n(m, e) = Fp(m, e).

Lemma 3.2.3.3. The following gives an injective group homomorphism ¢ : W — WP,

D( D(Sn) =e.

oP(so) =70, ¢P(si)=s (1<i<n-1), o

Proof. We can check that the relations (3.1.13) of W are mapped by ¢ to those (3.2.20) of WP. Indeed,
as for the final relation sps15081 = $1505180 in (3.1.13), we have

P (s0s15051) = 9P (s1808180) = 7ls17Ps1 = syl sinP = si's1 = 5188,
which is in the second line of (3.2.20). The other relations can be checked similarly. O

Lemma 3.2.3.4. For any u € Pc,, take a reduced expression w(p) = 4,84, ---s;, of the element
w(p) € Win (1.3.36), and set

Iop={re{L2,....0 |ir #0}, Li={re{l,2,....0} i, #n},
[=T UL, ={ki <ky<---<ks} (s<0), J={01,ba,....b)) €{0,1}"|b;=1(i ¢ I)}.

Using them, define 6°: J — {0,1}" by
J > (b17b2,...7b4) — (bkl,bk2,...,bks) S {0,1}5.

(1) The length of wp(u) € WP is equal to |I| = s, and

wD(M) _ 541552 * " " Sjs (|IO‘ € 2Z)
085,85, 55, ([lo| & 2Z)
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(2) The map 6 : J — {0,1}" induces a bijection

6D : To.n(w(n), e) — Do (wp (), e),
b

b
(Ap, s, Ap,...,s;" s Ap) (o] € 27.)

b RE bies ’
(WPAD,’]TlDSjiIAD,...,7T1DSj);1 -“Sj:‘ AD) (‘Io| ¢ 2Z)

’ Ziq i1

(A sl-’lA,...,sb1~~~s?fA)r—>{

(3) For any p € To,n(w(j), ), we have wt(p) = wt(92(p)), d(p) = d(6P (p)).

Proof. (1) Tt is enough to show o (w(u)) = wp(p) for any u € Pc,. By the reduced expressions
(1.3.37) and (3.2.23), we have P (w(e;)) = wp(e;) for each i = 1,2,...,n. Then, since p” is a
group homomorphism by Lemma Lemma 3.2.3.3, we find the desired equality.

(2) It is an immediate consequence of (1) and the bijectivity of 6D .

(3) Similarly as (1), we have o (t(¢;)) = t(e;) for eachi = 1,2, ..., n, and thus t(wt(p)) = t(Wt(GND(p)))
for each p € Ty, (w(p),e), which implies wt(p) = Wt(ﬁ(p)). As for the remaining ¢P(d(p)) =
d(HND(p)), since p”(s,) = e and " preserves si,ss,...,5,_1, the specialization ¢, = 1 yields
tap) =1t @)’ which givers the consequence. .

Thus we have ESPP(x;q,t) = ED®Y (x;q,t) for any p € Pg, C Pp,. Using (3.2.25), we have the
conclusion:

Proposition 3.2.3.5. For any i € Pc,, the following equality holds.

E,(x;q,t,1,1,1,1) = ES’RY(x; q,t).

3.3 Concluding remarks

The original motivation of our study on specialization is to find some explicit formula of symmetric
Macdonald-Koornwinder polynomials, bearing in mind the Macdonald tableau formula [ , Chap.
VI, (7.13), (7.13”)] for type GL,. Certain progress has been developed for such tableau formulas of type
B,C, D and (C),C,) by the recent papers | , , ], although the connection to Ram-Yip
type formulas seems to be still unclear.

Another interesting theme is the ¢ = oo limit. By Sanderson | ] and Ion [I03], it is known
that the graded character of the level one (thin) Demazure module of an affine Lie algebra of type X l(r),
X = A, D, E, is equal to the non-symmetric Macdonald polynomial of the corresponding type specialized
at t = o0 if X l(r) #* Ag), and equal to non-symmetric Koornwinder polynomial specialized at t = co

in Ag). There are vast amount of literature on this topic from representation-theoretic, combinatoric,

and geometric points of view. For example, Orr and Shimozono | ] studied the relation of the limits
and quantum Bruhat graphs. Let us also mention the article [ ] by Chihara, where the Demazure
specialization for type Ag) is identified with the graded character of a Demazure slice of the same type
AQ.

Returning to out study, it would be interesting to find a concrete connection between our argument
and the argument given in | ]. Let us close this paper by a naive explanation on why the non-
symmetric Koornwinder polynomial is related to the representation theory of the affine Lie algebra of
type Ag). According to [103, §3.2] and | , §1.5], one considers the specialization of the Noumi
parameters

(t, 0, b, Uo, Un ) = (£, 1,1, 1, 1). (3.3.1)

Here we exchanged the specialized value of (g, ug) and (t,, u,) in loc. cit., due to the numbering of roots
explained below. Comparing (3.3.1) and the specialization Table 3.0.1, we find that (3.3.1) is included
as the case t,, = tl2 =ts =t in the BC,, specialization of §3.1.4:

| ¢t to tn Uy Un
|t

BCn m t12 ts 1 té’
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Let us write again the Dynkin diagram (3.1.52) of the affine root system of type BC,:

0 1 2 n—1 n
o 0

This is in fact the Dynkin diagram for the affine Lie algebra of type Ag) for even n | , p-55, §4.8,
Table Aff 2], with the numbering of the roots 0,1,...,n reversed. Thus, very naively speaking, we can
read the result of Ion on the Koornwinder specialization [I03, §3] from our specialization Table 3.0.1.
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Chapter 4

Bispectral correspondence of QAKZ
equations and Macdonald-type
eigenvalue problems

Chapter 4 is based on the proceeding draft [YY] of the author’s talk in the conference “Recent develop-
ments in Combinatorial Representation Theory” at RIMS, Kyoto University held in November 7th—11th,
2022, written with S. Yanagida.

4.0 Introduction

As mentioned in Preface, Abstract of Chapter 4, the purpose of this chapter is to give a review of the
bispectral correspondence between QAKZ (quantum affine Knizhnik-Zamolodchikov) equations and the
eigenvalue problems of Macdonald type, and to study the relation of the bispectral correspondence and
the parameter specialization explained in Chapter 3.

Rank one review of bispectral correspondence

The first part (§ 4.1, §4.2) is devoted to the review of the bispectral correspondence between QAKZ
solutions and Macdonald-type eigenvalue problems, established by the works | , , ].

Let us begin with the recollection on the original Cherednik’s correspondence. We refer to | ,
§1.3] for an exposition of this correspondence. In | ], Cherednik introduced his QAKZ equations
for arbitrary reduced root systems and for the type GL,. Let H = H(k, q) be the affine Hecke algebra
of the concerning root systems, and let 7' := Homgyoup (A, C*) be the algebraic torus associated to the
weight lattice A. Then the QAKZ equations are ¢-difference equations for functions of torus variable
t € T valued in a (left) H-module M satisfying certain conditions. In [ ], Cherednik constructed
a correspondence between solutions of the QAKZ equations for the principal series representation M.,
with central character v € T', and eigenfunctions of the g-difference operators of Macdonald type.

Below we explain the correspondence for the type GL,,. In this case, we can identify A = Z" and put
t=(t1,...,tn),v=(M1,.-.,7n) € T. Let SOLnpac(k, ¢), be the eigenspace of the Macdonald-Ruijsenaars
g-difference operators of type GL,,, i.e.

SOLntac(k, a)y = {f(t) € M(T) | L, f(t) = p()f(t), Vp € C[T]®"},

where M(T) is the set of meromorphic functions on 7', and Lf, denotes the Macdonald-Ruijsenaars g-
difference operator [R87, ] associated to each symmetric polynomial p which acts on functions of ¢.
For example, to the first elementary symmetric polynomial e(z) = 21 + - - - + z,,, the operator L! is given
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by

Z H kt —L Ty, (4.0.1)

i=1 j#i

Here we used the g-shift operator T, ;, fori =1,...,n

(Tq,tif)(tla DR 7tn) = f(tla vy qtla DR 7tn)7 f(t) € M(T)
Moreover, let SOLgkz(k, q)y be the QAKZ equations of type GL,, i.e.

SOLaxca(k, )y = { £(t) € BT | O (01 (a0 = F(0), A € A},

where Hy = Hy(k) is the finite Hecke algebra of type 4,1 and HM(T) M(T) ®c Hy. We omit the
precise definition of the g-difference operators C’t( /\)( ). We will explaln in detail the case of type A; and
(CY,C4) in §4.1 and §4.2, respectively.

Cherednik’s correspondence for the type GL,, is now described as

X+ SOLqKz(k, ‘1)7 — SOLMaC(k7 q)W' (*)

A bispectral analogue of Cherednik’s correspondence is investigated by van Meer and Stokman
[ ] for type GL, who introduced the bispectral QAKZ equations using Cherednik’s duality anti-
involution *: H — H of the double affine Hecke algebra H (see (1.3.24)). The bispectral QAKZ equations
are consistent systems of ¢-difference equations for functions on the product torus 7' x T, and splits up
into two subsystems. Denoting by (¢,7) € T' x T the variable, we have:

e The first subsystem only acts on ¢, and for a fixed 7y, the equations in t are Cherednik’s QAKZ

equations for the principal series representation M, of the affine Hecke algebra H C H.
e For a fixed t € T, the equations in 7 are essentially the QAKZ equations for M;-1 of the image

H* c H.
This argument can be extended to arbitrary reduced and non-reduced root systems, as done by van Meer
[ ] for reduced types and by Takeyama [110] for the non-reduced type (C,/, Cp).

After the build-up of bispectral QAKZ equations, it is rather straightforward, except for one issue, to
make an analogue of Cherednik’s construction of correspondence to the bispectral eigenvalue problems
of Macdonald-type. Below we explain the case of type GL,, again. Let SOLpmac(k, ¢) be the bispectral
eigenspace of the Macdonald-Ruijsenaars g-difference operators of type GL,, i.e.,

SOLintac (ks q) = { F(t,y) € M(T x T) ‘ é%; g ng - ziz))]{((i, ;y)) Vp e (C[T]Gn}

where M(T x T) is the set of meromorphic function on 7' x T, and Lt L} denote the Macdonald-
Ruijsenaars g-difference operators attached to each symmetric polynomial p, actlng on functions of ¢ and
7, respectively. For the first elementary symmetric polynomial e(z) = 21 + - - - + 2,, they are given by

| L TR By | e
i=1 j#i i=1 j#i i

Note that L! is the same as (4.0.1), and the parameters ¢~ 1, k~! in L} are the reciprocal of those in LZ‘
Next, let SOLbqkz(k, q) be the solution space of the bispectral QAKZ equations of type GL,, i.e.,

_ Mmx1) | Ciony,e) () @t y) = f(E,7)
SOLua(hy0) 1= { 16,9) € HRTD | Qv B =H00) i went.

where H M) = M(T x T) ®&c Hyp. We omit the precise definitions of the g-difference operators
Cie(n),e) (t ~) and C(e,t(u))(t, ), and refer to §4.1 and §4.2 for the explanation for type A; and (CY, Cy).
Mimicking (%), the resulting bispectral correspondence is depicted as

X+ : SOLpgkz(k, ¢) — SOLbMac(k, q).
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type H Dynkin ‘ orbits ‘ Hecke parameters

(C]\_/a Cl) * *
Askey-Wilson 0o 1 O1U0, 003004 | ko ki lo D
01 1 t 1 t
A 0o 1 O3 t t 1
Rogers =0 Os 1 2 1 1
Oy t? 1 1 1

Table 4.0.1: Type A; subsystems in (C},C;) and parameter specializations

The issue here is the existence of (some nice) asymptotic free solutions of the bispectral QAKZ equations,
i.e., non-emptiness of the source, which was carefully done for type GL,, in | , 85, Appendix]. The
same argument works with minor modification for reduced and non-reduced root types (see [St14, §3]).
In Chapter 4, we give a review of the bispectral correspondence explained so far. Since the corre-
spondence itself looks rather abstract, we decided to concentrate on the rank one cases and give detailed
computations.
e In §4.1, we treat the reduced root system of type A;. The corresponding Macdonald-Koornwinder
polynomials are the Rogers polynomials.
e In §4.2, we treat the non-reduced root system of type (Cy,C1). The corresponding polynomials
are the Askey-Wilson polynomials.
The GLg case could be included, but it is essentially the same with A;, and we will not treat it.

Specializing parameters in the rank one bispectral problems

The second part (§ 4.3) is a complement of the first part, and is also a continuation of the paper
[ ] on the parameter specialization of Macdonald-Koornwinder polynomials. There we classify all the
specializations based on the affine root systems appearing as subsystems of the type (C,/, C,,) system. The
obtained parameter specializations are compatible with degenerations of the Macdonald-Koornwinder
inner product to the subsystem inner products.

In the rank one case | , §2.6], where the concerned polynomials are Askey-Wilson polynomials, we
discovered four ways of specialization of the type (CY, C) parameters to recover the type A;. Table 4.0.1
is the excerpt from [ , §2.6, Table 2].

In § 4.3, we study the relation between our parameter specializations and the bispectral correspon-
dence. To begin with, let us recall that the bispectral correspondence is built using the duality anti-
involution * of the DAHA H. As reviewed in §4.2.1 (4.2.16), the duality anti-involution % of H affects
on the Hecke parameters in the way

(kr7k87lial8) = (klalla k07lO)-

Then, we see from Table 4.0.1 that the specialization corresponding to the orbit O, is the only one which
is compatible with the bispectral correspondence reviewed in the first part. Under this specialization,
we establish the following commutative diagram (Theorem 4.3.1.2).

oV .o X(C}/,Cﬂ
SOL{CLy ) < SOLpaw
sp\[ Jsp
SOLS&KZ «———— SOLbur
X+

Notation and terminology

We use the notation in § 1.0, and Gasper-Rahman basic hypergeometric notation explained in § 1.1.1.
Let us write down the latter again. Using g¢-shifted factorials (1.1.1):

(@500 = [[A=2¢"), (@1, 200 = [ [ (5 @)oo’
n=0 i=1
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the basic hypergeometric series is given by

A1y oy Gpgq = (al,---aar+1;Q)n n
1P i q, z2| = z". 4.0.2
19 [ b, ., by 1 } > (@01, b Q) (402)

We will also use the g-binomial coefficient

B—n+1.
(a2 o
nj, (4 9)n
for g € C and n € N. Note that we have [mq = % for m,n € N with m > n.

4.1 Type A4

4.1.1 Extended affine Hecke algebra

Here we recall the extended affine Hecke algebra of type A; and the basic representation.

The extended affine Weyl group of type A;

We start with the recollection of the extended affine Weyl group of the affine root system of type A;.
For the detail, see | , 81, 82, 86.1], [ , §2.1] and | , 82.1].

Remark 4.1.1.1. Let us remark in advance that we work in the untwisted affine root system | ,
(1.4.1)], although [ ] works in the twisted affine system [M03, (1.4.2)]. Since we only consider the
type Aj, there is no essential difference, but there are a few notational differences. For instance, we define
the extended affine Weyl group W to be the semi-direct product Wy x t(P) using the weight lattice P,
although in [ ] it is defined to be Wy x t(PV) using the coweight lattice PV.

We consider the one-dimensional real Euclidean space (V, (-,-)) with
V=Ra, (a,a)=2. (4.1.1)

Let F be the space of affine real functions on V', which is identified with real vector space V & Rc¢ by
the map (u — (v,u) +7r) — v+ rc for u,v € V and r € R. Using the gradient map D: F' — V|
v + rc¢ — v, we extend the inner product (-,-) on V to a positive semi-definite bilinear form on F by

(f,9) = (D(f),D(g)) for f,g € F.
Let S(A1) = {*a+nc|n € Z} C F be the affine root system S(A;) in the sense of Macdonald [M03].

A basis of S(A41) is given by {a; = «,a¢ = ¢ — a}, and the associated simple reflections s;: V' — V for
1= 20,1 are given by

5i(v) ==v —a;(v)D(a)) (veV), (4.1.2)

where a) = 2a;/{a;,a;) = a; € F. Explicitly, we have
si(ra) = —ra, so(ra)=(1-1r)a (r eR). (4.1.3)

We denote by Wy € O(V, (-, -)) the subgroup generated by s;. It is the Weyl group of the irreducible
root system R(A;) = {£a} of type A; in the sense of Bourbaki, and as an abstract group, we have
Wo = (s1 | s7) = &g, the symmetric group of degree 2. Let us also denote the fundamental weight and
the weight lattice of the root system R(A;) by

w=1a, A=ZwcCV.

Then the Wy-action (4.1.3) preserves A.

We denote by t(A) := {t(\) | A € A} the abelian group with relations t(\) t(u) = t(A+u) for A\, u € A.
The group t(A) acts on V' by translation:

tANv=v+X (AeL,veV). (4.1.4)
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Then the extended affine Weyl group W of S(A1) is defined to be the semi-direct product group
W =Wy x t(A) (4.1.5)

which acts on V faithfully. In other words, the group W is determined by Wy and t(A), and by the
additional relations

S1 t(/\)sl = t(Sl()\)) ()\ S A) (416)

with s1(\) given by (4.1.3).

The group W is generated by s1, sg and t(w). It is convenient to introduce u = t(w)s;. By (4.1.6), we
have u? = t(w) t(s1(w)) = t(w) t(—w) = e. Also, by (4.1.6) and (4.1.3), we can check so(v) = usju(v)
for any v € V. Thus, as an abstract group, W is generated by s, sg, u with defining relations

s2=s2=u’=e, wus = sou. (4.1.7)
For later use, we write down a few relations in W.
t(w) = usy = spu, t(—w) = s1u = usp. (4.1.8)
t(a) = t(2w) = ususy = SpS1.
The extended affine Hecke algebra of type A;

Here we recall the extended affine Hecke algebra H associated to the affine root system S(A;). For the
detail, see [ , 84, 86.1] and | , §2.2, §2.3]. Hereafter we fix nonzero complex numbers k € C*.

Remark 4.1.1.2. Our parameter k correspond to 7 in [MO03].

Definition 4.1.1.3. The extended affine Hecke algebra of type A1, denoted by
H = H(k) = B (k),
is the C-algebra generated by T3, Ty and U with fundamental relations
(T, — k)T, + k=0 (i=1,0), U>=1, UTy =TyU. (4.1.10)

By comparing (4.1.7) and (4.1.10), we see that H is a deformation of the group ring C[W] of the
extended affine Weyl group W of S(A;) explained above.

In order to attach an element Ty, € H to each w € W, let us recall from | , §2.2] that we have
the length function and reduced expressions in W. The group W is an extension of the affine Weyl
group Ws = (s1,50 | 3, 3) of S(A1) by the automorphism u of the Dynkin diagram of S(A;), so that
any element w € W can be written as w = w'u” with w’ € Wg and r € {0,1}. The group W is a
Coxeter group, so that it has the length function ¢(-) and reduced expression of each element. Now, let
w' = s;, -+ 8, be areduced expression in Wg with [ = £(w’). Then we define the length of w € W to be
l(w) == L(w') =1, and call the expression w = s;, - - - s;,u” € W a reduced expression of w.

Now, for w € W, take a reduced expression w = s;, - - - s;,u” and define

Ty =T, --T,U" € H.

Then T, is independent of the choice of reduced expression. By convention we have T, = 1, the unit of
the ring H.
Next we introduce the Dunkl operator to be

Y = UT, € H. (4.1.11)
By (4.1.10), Y is invertible and

Y =170 = (1) — k+kH)U.
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Also note that these can be regarded as deformations of the translations t(+w) € W given in (4.1.8).
Let us also define

YY=Y'eH (A=lwecA, lcZ).
In particular, we have
YY=Y?% = Y2 =UTWUT, =T,T1, (4.1.12)

which corresponds to (4.1.9). We denote by C[Y '] C H the ring of Laurent polynomials in Y. We have
an isomorphism of C-linear spaces

H=Hy,®C[Y*], (4.1.13)
where
Hy = Hy(k) == CT, 4+ CT,, = C + CT} (4.1.14)

is the subalgebra of H generated by T1. We call Hy the finite Hecke algebra of type A;.

The basic representation and the double affine Hecke algebra of type A;

Next, we review the basic representation of the extended affine Hecke algebra H = H (k), mainly following
[MO3, §6.1]. See also [C05, Theorem 3.2.1] and references therein.

Below we choose and fix a parameter ¢'/2 € C*. The extended affine Weyl group W acts on the ring
of Laurent polynomials

Clz*!], z:=e? (4.1.15)
by letting the generators si, sg, u operate as
(s1.0/)(@) = f@™), (s04/)(@) = flaz™),  (ugf)(@) = f(g"?2™"), (4.1.16)

where we indicated the dependence on ¢ explicitly.
Now, using the parameter k € C*, and define b(z; k), c(x; k) € C(x) by

El — kx E—k!
c(zy k) = g b(x; k) =k —c(z; k) = T (4.1.17)
Then, denoting z; := 2 and ¢ := gz 2, we have an algebra embedding
Ph.q: H(k) — End(C[z*!]), (4.1.18)
Pr,q(Ti) = c(zi; k)85, + b(xis k) =k + c(zi; k) (85,9 — 1), prq(U) = u,. (4.1.19)

Note that the image is in End(C[z*!]) € End(C(x)). We call py. , the basic representation of H (k).
Using the basic representation py, 4, we introduce:

Definition 4.1.1.4. The double affine Hecke algebra (DAHA) of type A1, denoted as
H = H(k,q) = B (k,q),

is defined to be the subalgebra of End(C[z*!]) generated by X*! := (the multiplication operator by z*1)
and the image p;w(H(k;)).

As an abstract algebra, the DAHA H of type A; is presented with generators 717, U, X and relations

(T, — k) (T +E Y =0, U?=1, TWXT,=X"', UXU=qY?U"" (4.1.20)

See [ , §4.7] and [C05] for the detail. The map py 4 of (4.1.18) extends to the embedding py 4: H —
End(C[z*1]).
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We have the Poincaré-Birkhoff-Witt type decomposition of H as a C-linear space:
H=~C[X* ] ® Hy® C[YH). (4.1.21)

This decomposition is compatible with H 2 Hy®C[Y*!] in (4.1.13) under the identification of H = H (k)
with the faithful image pg q(H) C End(C[z%!]). Below we often identify X*! and z*!, and denote the
decomposition (4.1.21) as H = C[z*!] ® Hy ® C[Y*1].

Let us also recall the duality anti-involution introduced by Cherednik ([ ], [MO3, (4.7.6)]). It is
the unique C-algebra anti-involution
x: H(k,q) — H(k™,q), h+——h" (4.1.22)

such that, denoting by X* := (the multiplication operator by x!) for A = lw € A, [ € Z, we have
T =T, (V) =X (X) =Y (Aen), K=k

Here and hereafter we use the redundant symbol k* for the comparison with type (CY, Cy) (see (4.2.15)).
Finally, we denote by

H(k)* C H(E", q) = H(k, ) (4.1.23)

the image of H(k) C H(k, ¢) under the duality anti-involution *. Then H(k)* is equal to the subalgebra
of H(k, q) generated by the finite Hecke algebra Hy(k) (see (4.1.14)) and X+ = g*1,

4.1.2 Bispectral quantum Knizhnik-Zamolodchikov equation

Let us explain the bispectral qKZ equation of the affine root system S(A4;), mainly following | ,
§3.2]. Hereafter we fix the parameters ¢'/2,k € C*, and consider the basic representation Pr,q: H(k) —
End(C[z*!]) of the affine Hecke algebra H (k) in (4.1.18) and the DAHA H(k, ¢) in Definition 4.1.1.4.
The affine intertwiners of type A;

Following [C05, §1.3], | , §2.3] and | , Proposition 3.3], we introduce the affine intertwines
of type A;. Correfpoildiilg to the generators s1, sg, u of the extended Weyl group W (and T3, T, U of
H(k)), we define S, Sp, S, € End(C[z*]) by

Si = Sik,q) = di(w;k, @)sig (i =1,0), Sy =Sulq) = uq, (4.1.24)
where s; , and ug are the operators in (4.1.16), and the function d;(z) is given by
di(x) = d(xi; k,q) = k™ —kxy, 2= 2%, x0:=qax > (4.1.25)

The elements S, Sy and S, belong to the subalgebra H C End(C[z+1]) since

Si=(1 =) (prg(Ti) — k) + k™ — ki, Sy = prg(U) (4.1.26)
More generally, for each w € W, taking a reduced expression w = s, - - - s;,u” with ji,...,j,r € {0,1},
we define the element S,, € H by

S = iy (@) - (55,3 ) () -+« (5, -+ 5y ) (@) - (4.1.27)

Here we used the action of s;’s on functions in « and the operator w,, both given in (4.1.16). Note that
this definition includes (4.1.24) by setting Sp = Ss, and S; = Ss,. The element S,, € H is independent
of the choice of reduced expression w = s;, - - - s;u", since

do(x) = dj, (2) - (s5,dj,) (@) -+ -+ (85, - 85,_,dj, ) (@) (4.1.28)
depends only on w [M03, (2.2.9)]. Moreover, by | , Proposition 3.3 (ii)], we have
Sw =28 ---5;8". (4.1.29)

We call the elements S, in (4.1.27) the affine intertwiners of type Aj.

Remark 4.1.2.1. Our affine intertwines are obtained from those in [ ] by replacing k,x with
k=Y 2~!. We made this replacement to simplify the comparison with the type (CY,C;) discussed in
§4.3.
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The double extended Weyl group

Extending the representation space C[z*!] of the basic representation py, (see (4.1.15) and (4.1.18)),
we introduce

L = Clz*!] ® C[¢*!] = Clz*!, £*1]. (4.1.30)
We sometimes call © the geometric variable and £ the spectral variable.

Remark 4.1.2.2. The papers | , , | considered (for a root system of arbitrary type) the
ring L := C[T'x T] = C[T|®C|[T] of regular functions on the product T'x T, where T' := Homgyoup(A, C*)
is the algebraic torus associated to the lattice A. In loc. cit., the value of t € T at A € A is written as
t* € C*, and a point of T x T is denoted by (¢,7) € T x T. For the type A; we are considering, the
lattice is A = Zw, and there is a natural identification " 2 IL given by (¢t — t¥) — z and (v — v¥) — &.
The geometric and spectral variables x, £ are called the coordinate (functions) of 7' x T in loc. cit. The
formulas and arguments given in the following text are obtained from those in loc. cit. by replacing
f(t,y) € L' with f(z,€) € L.

Then the DADA H = H(k, ¢) in Definition 4.1.1.4 has a structure of an L-module by
(f@g)h:= f(X)-h-g(Y) (4.1.31)

for f = f(z) € ClzT) C L, g = g(¢) € Cl¢*] C L and h € H. Here X € H denotes the multiplication
operator by z (see Definition 4.1.1.4), and Y € H = py o(H) C H denotes the Dunkl operator (4.1.11).
The - in the right hand side means to take the multiplication of the ring H. Note that the PBW type
decomposition (4.1.21) yields the natural L-module isomorphism

H= HY =L ® Hy, (4.1.32)

where in the right hand side L acts on the first tensor component IL by ring multiplication.

We turn to the introduction of the double extended Weyl group W, following | , §3.1] and
[ , §3.2]. Let ¢ denote the nontrivial element of the group Zy = Z/2Z. We define the group W as
the semi-direct product

W=7 x (W x W), (4.1.33)
where ¢ € Z5 acts on the product W x W of the extended affine Weyl group W by
v(w,w') = (W w)e  (w,w € W).
The group W acts on L as follows. We define an involution ¢: W — W by
w® i =w, t(A)° =1t(=N) (4.1.34)
for w € Wy and A € A. Then the W-action on L is given by
(Wf)(@) = (W) (@), We)E) = (W)eg)(E) (F)w,€) = Flg~ 2™ (4.1.35)

forweW=Wx{efCW,w eW={e} xWCWand f=f(z),9g=g(&),F =F(z,§) € L. Here w,
denotes the W-action in (4.1.16).

Remark 4.1.2.3. The element ¢ € W is designed to be consistent with the duality anti-involution *
(4.1.22) and the actions of W and H on L.

Now, following | , 83.1] and | , §3.2], we define G, ), 0, € End(H) by
Fwawy(h) = Su - h- (Sw)*,  G.(h) ==h* (heH). (4.1.36)

Here * denotes the anti-involution (4.1.22), and - denotes the multiplication of the ring End(C[z*!]) (or
the composition of operators on C[z*']). The action is well defined since S, € H.

Fact 4.1.2.4 (] , Lemma 3.2], [ , Lemma 3.5]). For h € H, f € L and w,w’ € W, we have
F(w,w)(fh) = (W, 0") f)F(w,wy(h),  T.(fh) = (of)F.(h). (4.1.37)
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The cocycles
Below we denote the field of meromorphic functions of variables x and £ by
K= M(z, ),
and set
HY = K® Hp. (4.1.38)

An element f € HE is regarded as a meromorphic function of z,¢ valued in Hy C Endc(Clz*!]). Also,
we have a C-linear isomorphism HE = K @, H by (4.1.32), and f € HEX can be expressed as

f=Y fulw fuck (4.1.39)

weWy
The W-action on L given by (4.1.35) naturally extends to that on K. Now the group W acts on HY by
wf= > (Wfuw)Tw (4.1.40)
weWy

for f =3 cw, fulw € HE and w e W.

By Fact 4.1.2.4, we can extend the maps &, ) and o, uniquely to C-linear endomorphisms of
HE =~ K @, H such that the formulas (4.1.37) are valid for f € K and h € HYX. We denote them by the
same symbols 7, ), 0, € Endc(H).

Fact 4.1.2.5 (| , Theorem 3.3], | , Theorem 3.6]). There is a unique group homomorphism
7: W — GLc(HY)
satisfying
T(w,w)(f) = du(@) ' dw (€))7 G (), T((f) = 5u(f) (4.1.41)

for w,w’ € W and f € HY. Here we used the function d,, given by (4.1.28), and - denotes the K-action
given by (4.1.31). Moreover, we have

T(w)(gf) = wgr(w)(f)
for g e K, f € HY and w € W.

Remark 4.1.2.6. In | , Theorem 3.6], the action of 7(w, w’) is written using d¢,(Y"), which is equal
to dy (Y 1) according to [ , Proof of Lemma 3.2].

Now we recall a terminology of non-abelian group cohomology. Let G be a group, and M be a
G-group. We denote by m9 € M the action of g € G on m € M. Then, a (1-)cocycle means a map
z: G — M such that z(g1g2) = 2(g1)z(g2)9* for any g1,92 € G.

Recall that W acts on HE by (4.1.40). This action makes the group GLx(HY) into a W-group by

(w,A) — wAwW ™! (w e W, A GLg(HY)).
Fact 4.1.2.7 (| , Corollary 3.4], | , Corollary 3.8]). The map
w— Cy = 7(W)w ! (4.1.42)

is a cocycle of W with values in the W-group GLg(HY). In other words, for any w,w’ € W, we have
Cw € GLg(HY) and

Cow = CouwCyrw L. (4.1.43)

Note that the cocycles Cy, depend on the parameters (k,q). Also note that, by the natural isomor-
phism

GLk(HY) =2 K @ GLc(Hy), (4.1.44)

we can regard an element Cy, € GLg(HY) as a meromorphic function of z,¢ valued in GL¢(Hp). To
stress this point, we denote it as

Cw(, ). (4.1.45)
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The bispectral bispectral quantum KZ equations of type A;
Let us focus on the cocycles associated to the translations in W, i.e., the elements in the subgroup
t(A) X t(A) CW x W CW.
Recalling A = Zw, we denote
Cim = Cli(im) t(mw)) (,m €Z). (4.1.46)

Definition 4.1.2.8 (] , Dfn. 3.7, | , Dfn. 3.9], | , Din. 3.2]). Using (4.1.45) and (4.1.46),
we call the system of g-difference equations

Crom (2, f(q 2, ™€) = f(x,6) (ILm € Z)

for f € HY the bispectral quantum KZ equations (the bgKZ equations for short) of type A;. The solution
space is denote by

SOLf&KZ(kJ, q) == {f € HX | f satisfies the bqgKZ equations of type A;}.

Remark 4.1.2.9. The solution space is denoted by SOL in | , ], and by Ky 4 in [St14]. Our
symbol is a modification of the notation Solgakz in [C05, Theorem 1.3.8].

The cocycle values

As before, let H = H(k) be the affine Hecke algebra of type Ay, Hy = Hy(k) be the subalgebra of H
generated by 71, and HY = K ® Hy. We can write down the cocycles Ch,0 and Cp,1 by the following
representations of the affine Hecke algebra H and its duality anti-involution image H* (see (4.1.23)).

Definition 4.1.2.10. HY has the following left H-module structure and the right H*-module structure:
We define an algebra homomorphism 77,: H — Endg(H) by

nL(A)( 3 fwTw) = 3 fu(AT,) (A€ H), (4.1.47)

weWy weWy

using the expression (4.1.39) of an element of HYX. We also define an algebra anti-homomorphism
nr: H* — Endg (HY) by

nR(A)( 3 fwTw> =Y fu(TuA) (Ac H). (4.1.48)
weWy weWy
Remark 4.1.2.11. The map n;, was introduced in | , §4.1] and | , §4.1], denoted by 7, under
the name of the formal principal series representation of H, since it is a formal version of the principal
series representation used in [ , ]. We borrowed the symbol ng from [T10, §4.2].
Lemma 4.1.2.12 (c.f. | , (5.3)]). Regarding the cocycles C1 0, Cp.1 as GL(Hp)-valued meromorphic
functions of z, & (see (4.1.45)), we have
Cro(,€) = Rg (z0)ne(U), (4.1.49)
Co(z,€) = Rg'(&)nr(U”), (4.1.50)

where we denoted zg = qr ™2, £ = ¢€? and
RE(2) = c(z, k;)_l(nL(Ti) —b(z; k‘)) =c(z; k)t (nL(Ti) - k:) +1,
R (2) = (2, k") " (nr(T}) = b(z; k")) = c(z k)" (nr(T) — (K9)71) + 1,

using ¢(z; k), b(z; k) in (4.1.17) and the duality anti-involution # in (4.1.22). We also used the redundant
notation k* = k.
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Proof. We first calculate C1 0 = Cly(w),e) = T(t(w), €) (t(w), ) ~'. We have t(w) = us; = sou by (4.1.8).
Then, using (4.1.42) and (4.1.41), for any element f =3 . fuTw € HE (fu € K), we have

Crof = 7(s0u, e) (sou, e) ( Z Jw w) = 7(s0u, 6)( Z ((Souve)flfw)ﬂa

weWp weWy
= dsou(m)_lg(sou,e)< Z (Sou,e)_l.fwTw)
weWy
- dsOu(:v)_l( Z ((sou,e)(sou7e)_1fw)§SOuTw) = dsOu(:C)_l( Z fwgs(,uTw).
weWy weWy

Now, by (4.1.26), we have
Ssou = 505w = ((1 = 20) (pr,o(To) — k) + k™" — kao) pr.o (V).
On the other hand, (4.1.28) and (4.1.25) yield dy,(7) = k! — kzg, and by (4.1.17), we have
dsgu ()71 (1 = 20) = c(z0; k). (4.1.51)
Then, using Definition 4.1.2.10, we have
Crof = (clwos k) (L (To) — k1) + )nr(U)(f),

which yields (4.1.49).

Similarly, the action of Cp 1 on f =" fuwTw € HE is computed as

weW,
Coaf =7(e, sou)(e, sou)™ ( Z fuw w) = dsou(éfl)fl . ( Z fuTw S:Ou)
weWy weWy

where - denotes the K-action (see (4.1.31)). By (4.1.24) and (4.1.26), we have
St = 5055 = pra(U) ((prg(To)" = R)(1 =Y ) + k™ = kg™ 'Y 72).

Now recall that a function g(§) acts on Hy by the right multiplication of g(Y") (see (4.1.31)). Then, by
(4.1.51) and Definition 4.1.2.10, we have

Conf = (nr(Ty) — k)elqY?; k)" + 1) nr(U*)(f),

which yields (4.1.50). O
Remark 4.1.2.13. A few comments on Lemma 4.1.2.12 are in order.
(1) By [ , Remark 4.4], we have
C(e,w)(‘T,g) = CLC(w,e)(é.il,xil)CL (4152)

for any w € W, where we used the notation (4.1.45). The result of Lemma 4.1.2.12 is consistent
with this equality.
(2) As shown in | , Lemma 4.3], the rational function

Ri(2) = c(z, k) * (nL( i) — b(z; k:))

valued in End(Hj) satisfies the Yang-Baxter equation Ro(z)R1(22)Ro(2") = R1(2')Ro(22")R1(z).
In the terminology [C05, §1.3.6], R;(2) is called the baxterization of T;.

For later use, let us cite the following two facts.

Fact 4.1.2.14 (| , Lemma 5.1]). Let A= C[z~!] C L = C[z*',¢*!], and Qy(A) be the subring of
the quotient field Q(A) = C(x) consisting of rational functions which are regular at = = 0. Considering
Qo(A) ® C[¢T1] as a subring of C(z, ), we have

C1.0 € (Qo(A) @ C[¢F!)) @ End(Hy). (4.1.53)
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Moreover, setting Cl(?g = Ch0l,-1_o € C[¢*!] ® End(H,), we have

O = kn(TY 1. (4.1.54)

Similarly, defining B := C[¢] C L, and Qy(B) C Q(B) to be the subring consisting of rational functions
which are regular at £ = 0, we have

Co.1 € (Clz*' ® Qo(B)) ® End(Hy).

Moreover, setting Cé?l) = Co,leg € Clz*!] ® End(Hy), we have

O = K np(Tiy 1Ty,

Proof. We only show the statements for C; o using Lemma 4.1.2.12. Let us denote A(x) = Ay if A(z) =
Ag + O(z71) by expansion in terms of x~!. Then we have c(xo; k) = c(qz~2; k) ~ k, and the expression
(4.1.49) yields

Cro ~ 1 = (k(ne(To) = k) + 1)ne(U) = kne(T1Y 17,

where we used ToU = UT; and Ty ' =Ty — k+ k= in H = H(k) from (4.1.10), and Y~ = T, U from
(4.1.11). Thus we have (4.1.53) and (4.1.54). O

For the next fact, note that we have gj}, € H C H for all w € Wy.

Fact 4.1.2.15 (] , Lemma 4.2]). For w € Wy, we set
Tw = n1(S5 )T, € Cl{e} x T) @ Hy C HY.

Then the following statements hold.
(1) {rw | w € Wy} is a K-basis of HY consisting of simultaneous eigenfunctions for the n-action of
ClY*!' C H on HY.
(2) For p € C[T] and w € Wy, we have

1L (p(Y)(7) Tw(y) = (w™'p)(7) 7w ()
as Hy-valued regular functions in v € 7.
We close this subsection with:
Lemma 4.1.2.16. The cocycles C ¢ and Cp 2 are given by
Cs0 = Ry (z0)RY (27), Co2 = RE(&)RI(ED)
Here we used the notation of Lemma 4.1.2.12: xq = gz~ 2, &, := ¢£? and

RlL(z) :
RE(:) :

(i k)" e (T) = bzis k) = ez k)™ (e (T) — k) + 1,
(&, k) (nr(T7) — b(&is k) = e(&s k)~ (nr(T}) — (K*)71) + 1.

We further used 2} := ¢?2~2 and &] = ¢2¢2.

Proof. Tt is a consequence of the cocycle relation (4.1.43) and a similar calculation of Lemma 4.1.2.12.
We omit the detail. O

4.1.3 Bispectral Macdonald-Ruijsenaars equations

As in the previous §4.1.2, we fix generic complex numbers ¢'/? and k.
We consider the crossed product algebra (the smash product algebra)

]D)f\;V =W x C(z, §),
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where W acts as field automorphisms on C(z,€) by (4.1.35), and also the subalgebra Dy of D’ defined
by
Dy = (t(A) x t(A)) x C(z, &) C D,

where t(A) x t(A) is regarded as a subgroup of W x W C W. The subalgebra D, is identified with the
algebra of g-difference operators on C(z,£). We can expand each D € DZ}V as

D= few= Y  Dss (4.1.55)

wew sceWyx Wy

with fw € C(z,€) and Ds = 37 ci(p)xi(a) Jtst € Dg. Then we define the restriction map Res: D — D,
to be the C(x, £)-linear map

Res(D):= > D (4.1.56)

s€eWox Wy
Next, we introduce two realizations of the basic representation p of H. One is given by
Py kg H/K) — D) (4.1.57)

which is the map p;/4 4 from (4.1.18), regarded as an algebra homomorphism from H(1/k) to the
subalgebra C(z)[W x {e}] of D,’. The other is given by

Phasq: H(k) — DY (4.1.58)

defined as the map pj 1/, from (4.1.18), regarded as an algebra homomorphism from H(1/k) to the
subalgebra C(&)[{e} x W] of Dy’

Definition 4.1.3.1. For h € H(1/k), we define
D = % 4(h) € DY

Also, for b’ € H(k), we define
Dj, = pf (W) €D}

Remark 4.1.3.2. Our choice (4.1.57) and (4.1.58) of the basic representations affects the parameters in
the bispectral correspondence (4.1.66) of quantum Knizhnik-Zamolodchikov and Macdonald-Ruijsenaars
equations. Our argument is equivalent to | ,86.2] and | , §6.1], and opposite to | , Definition
2.17]. See Definition 4.2.3.1 for the (CY,Cy) case.

Let C[zT1]"0 denote the ring of Laurent polynomials of variable z which are invariant under the
Wo-action s;1(z) == 2~ 1. Using the restriction map Res in (4.1.56), we introduce:

Definition 4.1.3.3. For p € C[z*1]"°, we define L;,Lg € D, by
Ly = L (k,q) = Res(D¥yy), L§=L5(k,q) = Res(Dg(Y)), (4.1.59)

where we regard p(Y) € H(1/k) for L%, and p(Y') € H (k) for L.
Since we have C[zF1]"Wo = C[z + 271], it is natural to introduce:
Definition 4.1.3.4. We denote p; := z + 2~ !, the generator of the invariant ring C[z*1]Wo.

Using the function ¢(-; k) in (4.1.17), we can write down

LI

p1?

L§, €Dy C End(C(x,£)).
Let us denote the action of w € W on functions of  given in (4.1.16) as

w” € End(C(z)) C End(C(z,¢)).
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Explicitly, for f = f(x) € C(x), we have
(s5./)(@) = flga™"), (sTP)2) = fa™h), (W f)(2)=f@%27), (t(w)"f)(2) = f(a"/?2).

Recall that it is compatible with pf,, in (4.1.57). We also denote by

wt € Bnd(C(€)) € Bnd(C(, £))

the action on functions g = ¢g(§) € C(€). It is given by

(569)(€) = g(a7'€),  (519)(€) =g(€™), (u*9)(&) = gla™*¢™"),  (t(@)9)(€) = gla™"/3¢),
(4.1.61)
and is compatible with pf |, in (4.1.58).
Proposition 4.1.3.5. We have
Ly, (k.q) = A@@)Tpse y + Al yoas2 0y Ly (kiq) = AYE ) Tpr g + A(OTy1ne (4.1.62)
with

EL— k22
1—22 7

A(z) = (2% k) = A*(2) = (2% k%) = A(2).

Here we used the redundant notation k* = k for the comparison with (CY, C) case (Proposition 4.2.3.2).
Proof. Let us compute Ly = Res(Dy. ). Since Y = UT} and u = t(w)s1, using (4.1.10) and (4.1.19),
we have
DY y-1 = pi UL+ 17 'U)
= (t(@)*s]) (k™" + c(a® k™) (sf — 1)) + (k +c(2® k1) (s7 — 1)) (t(w)"s7).
Then, using
Res(t(w)”st) = t(@)”, Res(t(w)”sf(sf —1)) =0,
Res((sf — 1) t(w@)"s]) = t(—=)* — t(w)”,
kE+k=t —c(2? k1) = c(2?;k) and c(z?; k7)) = c(z72; k), we have
Res(Dy y—1) = k™' t(@)" + kt(@)” + c(@® k™) (t(—=)" — t(=)")
= (k7 = e D) U)* + cla® k) ()"
= c(@® k) t(@)" + c(z 7% k) t(—w)".
By (4.1.60), we obtain the first half of (4.1.62).
For Lfg17 we replace (z,k,q) in Ly with (€, k=1 ¢~!) and calculate
Ly, (k. q) = e(€% k™) (=) + (€% k71 b(@)" = o677 k) t(=w)* + o(&% ) H(=)".
Then, by (4.1.61), we obtain the second half of (4.1.62). O

Remark 4.1.3.6. By the expression (4.1.17) of ¢(+; k) and (4.1.60), the formula of Ly € D, in (4.1.62)
can be rewritten by

kr — kgt ke — kx!
Ly (kq) = ———Tpr,+——7—

Ty
r—T

x—zx ! )
where Ty, , denotes the ¢-shift operator acting on a function f in x as (Ty, 5 f)(x) = f(¢gz). Similarly, for
Lgl, recalling t(w)¢ = qu% ¢ from (4.1.61), we have

ke —ke? T

th(k’q) = c—¢1 Tgrr2e + E—¢ 1 Ty=1r2¢-

93



Now let us recall the Macdonald ¢-difference operator of type GLg | , Chap. VI, or the two-variable
trigonometric Ruijsenaars operator [R37]:

tl’l — T2 t:L'Q — T
Dur(z1,22;¢,t) = —— Ty + ——Tgu,
Ty — T2 T2 — T1

The specialization Dy (z,271;¢,t) is essentially equal to the Macdonald g-difference operator of type
Ap (see | , (9.13)] and | , §6.3]). Comparing these operators, we have

L2 (k,q) = k™' Dur(z, 2715 ¢" /2, k?),
Ly, (k,q) = k Dr(§, €402, K7%) = k™' Dun (671, € ¢'/%, k).
Lem42 In particular, using the action (4.1.35) of ¢ and noting ¢Ty ;¢ = Ty, ¢, we have
L5, =LY .
See | , Lemma 6.2] for a generalization of this relation.
Now we reach the main object in this §4.1.3.

Definition 4.1.3.7. The following system of eigen-equations for f = f(x,£) € K = M(x,§) is called
the bispectral Macdonald-Ruijsenaars equation of type A1, and the bMR equation for short.

{@;wmﬂu@ =p(E DS @6 (41.63)
(L5, (k) ) (@.8)  =pi(2)f(2,€)
The solution space is denoted as

SOLymr(k, q) == {f € K| f satisfies (4.1.63)}.
Remark 4.1.3.8. Continuing Remark 4.1.2.9, the solution space is denoted as BiSP in | ) ]

Our symbol is a modification of Solpq. in [C05, Theorem 1.3.8].

4.1.4 Bispectral gKZ/MR correspondence

The works | , ] established the following correspondence between the two solution spaces
SOL?&KZ(k, q) (Definition 4.1.2.8) and SOLpmr(k, q) (Definition 4.1.3.7).

Definition 4.1.4.1. We define a K-linear function x4 : Hy — C by
X4 (Top) = k) (4.1.64)

for the basis element Ty, € Hy (w € Wy). It is extended to Hg< as

Xot HY — K, > fuTwr— Y fux+(Tw), (4.1.65)
weWy weWy

where we used the expression (4.1.39).
Remark 4.1.4.2. This is a bispectral analogue of the map tr in | , §1.3.4, Theorem 1.3.8].

Fact 4.1.4.3 (| , Theorem 6.16, Corollary 6.21], | , Theorem 6.6]). Assume 0 < ¢ < 1. Then
the map x4 restricts to an injective F-linear Wy-equivariant map

X+ 1 SOL{r (k. q) — SOLypur (k. q), (4.1.66)
where T is the subspace of K = M(z, ) defined by
F = {f(z,€) e K| ((t(\),t(n))f)(2,€) = f(2,6), V(A p) € Ax A},
and Wy is the subgroup of W defined by
Wo :=Zo x (Wo x Wy) C W.
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Remark 4.1.4.4. As mentioned in Remark 4.1.3.2, we follow the arguments in | , ] giving
the bispectral correspondence x4 : SOLpqkz(k, q) = SOLpmr(k, ¢). The claim in | , Theorem 3.1] is
based on the correspondence x4 : SOLygkz(1/k, q¢) = SOLpmr(k, ¢), X+ (Tw) = k—tw),

Let us explain the outline of the proof. We abbreviate SOLpqkz = SOLpqkz(k, ¢) and SOLpmr =
SOLpmr (K, q). The proof is divided into three parts.
(i) x4 restricts to an F-linear Wy-equivariant map x4 : SOLpqxz — K.
(ii) The image x4+ (SOLpqkz) is contained in SOLpumg.
(iii) x4 : SOLpgkz — SOLpMmg is injective
We omit the part (iii), and refer to [ , Corollary 6.21] for the detail. For the part (i), we give a
preliminary lemma.

Lemma 4.1.4.5 (| , Lemma 6.6]). For each w € Wy and F € HY, we have

X+(CwF) = x4 (F).

Proof. First, we have x, o C, = y since, for any w € Wy, the element T, € Hy C HY satisfies
C.(Ty) = Ty—1. Second, since C(c 5,) = C,Cs, )C, by Remark 4.1.2.13, (4.1.52), it is sufficient to show
X+ © C(s,,e) = X+ But it is a consequence of

C(sl,e)h = C(Il; ka Q)il(nL(Tl) - k)h + ha X+(T1) = ka X+ ©0MNL =1L ° X+ (4167)
for any h € Hy. O

Part (i) of the proof of Fact 4.1./.3. We first show that x restricts to an F-linear Wy-equivariant map
SOLpgkz — K. By (4.1.42), Lemma 4.1.4.5 and (4.1.35), for any f € HE and w € Wy, we have

X+(T(w)f) = x+(Cowf) = x4 (wf) = w(X+(f))~

Hence x4 is Wy-equivariant. Then, by Definition 4.1.2.8, (4.1.64) and (4.1.65), we obtain the Wy-
equivariant and F-linear map x: SOLpqkz — K by restriction. O

The part (ii) of the proof consists of several arguments, and we may say that this part is one of the
main body of [ ]. It is further divided into the following steps.

e Describe of SOLyqkz in terms of the basic asymptotically free solution ®.

e Analyze the map x4 using ®.

The first step requires the following Fact 4.1.4.6 and Fact 4.1.4.8.

Fact 4.1.4.6 (] , §85.1-5.2], | , §5.2], [St14, §3.2]). Denote wg = s1 € Wy. Let
W(x, &) = W(x,&k,q) € K= M(x,§) (4.1.68)
be a meromorphic function satisfying the ¢-difference equations (quasi-periodicity)
W(q"?x,&) = (k/)W(x,&) (1 €Z) (4.1.69)
and the self-duality
WE o7k q) = W(, &k, q). (4.1.70)

Here we used the redundant notation k* = k for the comparison with the (C},Cy) case (4.2.51). Then,
there is a unique element ¥ € HY satisfying the following conditions (i)—(iii).
(i) We have the self-dual solution

P =WV e SOquKZ(k7 Q)v L((b) =

(ii) We have a series expansion

U(t) = Y Kpnz 2" (Kap € Hp)

m,neN

for (x,€) € B-! x B with B, being some open ball of radius ¢ > 0, which is normally convergent
on compact subsets of B L' x B..
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(iil) Ko,0 = T,
The solution ® is called the basic asymptotically free solution of the bgKZ equation in [ , Definition
5.5], [ , Definition 5.5] and the self-dual basic Harish-Chandra series in | , Definition 3.8].

Remark 4.1.4.7. The function W is designed so that the element W(x, &)1y, = W(z,£)T1 is a solution
of the formal asymptotic form of the quantum KZ equation C(; ¢)(z,&)f(q “2g, &) = f(x,€) in the
region |z| > 0. Indeed, noting that we are working in H(1/k), recall from (4.1.54) the asymptotic form
of C,e) = C10 in this region:

Cro~ C) = ko (TY 'T7Y).

The definition (4.1.47) of the map 7y, and the K-module structure (4.1.31) yield n,(T,Y 1T, )T =
YTy, = ¢~1Ty. Thus we have

O (@, ) W(g™ %2, 6)T1) = W(a, Ty = ke W(q~ 20, &)Ty = W(x, )T,
= W(g " ?2,€) =k 1eW(t, ),

which holds by (4.1.69). See also the argument in | , §56.1]. We give an example of such W in
Example 4.1.4.12.

Fact 4.1.4.8 (] , (5.18), Lem. 5.12, Prop. 5.13], | , Prop. 5.12]). Denoting wg = s1 € Wy, we
define U € Endg (Hg<) =K® End(HO) by

U(k_é(w)Tonw*Q = T(e7 w)q) (’LU € WO)'

Then the following statements hold.
(1) U is an invertible End(Hy)-valued solution of the bqKZ equation. In particular, under the natural
isomorphism K ® End(Hp) = Endg (HE), we have U € GLg(HE).
(2) U eK End(Ho) is an End(Ho)—Valued meromorphic solution of the bqKZ equation if and only
if U/ = UF for some F € F @ End(Hy).
(3) U € GLg (H{) restricts to an F-linear isomorphism U: H{ — SOLpqkz.
(4) {r(e,w)® | w € Wy} is an F-basis of SOLpqkz.

We turn to the second step, which requires the following Fact 4.1.4.9-Fact 4.1.4.11.

Fact 4.1.4.9 (| , Lemma 6.5 (ii), (6.3)]). For F € Endg (H{), we denote by
o =x(Fv) €K (4.1.71)

the matrix coefficient of F' with respect to x € Hj and v € Hy. Also, using U in Fact 4.1.4.8, we define
a twisted algebra homomorphism ¢': D, — End(Endg (H{)) by

V(f)F = fF, V'(wW)F=w(E) U (r(w)U)
for f € C(z,£), w e Wand F € EndK(Hgg). Then we have the following.

(1) ¥ is an algebra homomorphism.
(2) For D =3 w, Dss € D,V (see (4.1.55)), we have

¢V PV = 3" Dy( (655 Y). (4.1.72)
seWy

(3) If x € H{ satisfies x(CsU) = x(U) for all s € Wy, then we have
Res(D)(¢Y.,) = 63 Y

for any D € DEV and v € Hy.
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Fact 4.1.4.10 (] , Proposition 6.9]). For h € H(1/k), we have

& (Di))U = ni(hH)U, (4.1.73)
where T: H(1/k) — H (k) is the unique algebra anti-isomorphism satisfying
TV =17t af =771
Similarly, for &' € H(k), we have
9 (DS)U = Cou(np (W)U, (4.1.74)

where I: H(k) — H(k) is the unique algebra anti-involution satisfying
Tli =Ty, wt=x"L
Fact 4.1.4.11 (] , Lemma 6.10]). For p € C[z*]"° we have
p(Y)" =p(Y)* =p(Y ).

Now we can explain:

Part (ii) of the proof of Fact 4.1.4.3. We want to show x4 (f) € SOLymr(k, q) for f € SOLpqkz(1/k, q).
By Fact 4.1.4.8 (2 ) and the F-linearity of x4, it is enough to consider the case f = Uv with v € Hy(1/k).

Then x4+ (f) = ¢X+ » by (4.1.71).

Let us check the first equality of (4.1.63), extending it to general p € C[T]"°

(Lpdy, o) () = (Res(Dyy)) (0, ) (7).

Now, by Lemma 4.1.4.5, 1 satisfies the condition of Fact 4.1.4.9 (3). Then we have

(Res(DZy) (07, ) (6,7) = dr o (1,),

Then, by (4.1.73) in Fact 4.1.4.10 and by Fact 4.1.4.11, we have

py))U -1
S (1) =SB (1) = GBI (1),

Finally, by Fact 4.1.2.15 and that p is Wy-invariant, we have
-1 _
@B (¢ ) = p(v )Y, ,(t7).
Hence we have the desired equality (LZx4(f))(t,7) = p(v™")x+(f) (7).

Similarly, we can prove the second equality of (4.1.63), using (4.1.74) instead of (4.1.73). O
Example 4.1.4.12. We cite from | , , ] two examples of the function W in (4.1.68).
(1) We denote the Jacobi theta function with elliptic nome ¢ by
0(z0) = (0,2,0/2 Q) = [[(1 = ¢ = q"2)(1 = ¢"/2),
neN
using the g¢-shifted factorial (1.1.1). It enjoys the properties
0(qr;q) = 0(z "1 q) = —o~0(z;9), O(gr™ ;) = 0(x;9), (4.1.75)
Then, denoting
0(z,2";q) = 0(z;9)0(z'; q), (4.1.76)
we define the meromorphic function WAt of z, & by
O(—al/ Az og1/2
WA (2, €) = WA (1, 5, q) 1= ———a (4.7

0(—q'/kx, —q' /4 k=1 ¢1/2)

. By (4.1.59), we have

By the above identities, it satisfies the properties (4.1.69) and (4.1.70). Let us write them again:
WA (G2, €k, q) = (KT W 2,65k, ), (4.1.78)
WA a7k, q) = WA (2, & k7, q). (4.1.79)

We used the redundant notation k* = k again for the comparison with the (CY,Cy) case (4.2.56).
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(2)

For later use, let us cite another function W € K = M(z,€) from | , p-279]:

0(—¢"*k~"at; /)

TAAL _ WA . —
WA (2,86) = W (2,6 k, q) = e (4.1.80)
This function satisfies the g-difference equation
WA (g 2, 6k, q) = (/T WA (2,65 b, q), (4.1.81)
but does not satisfy the self-duality.
Remark 4.1.4.13. We give a few comments on the function W4 in Example 4.1.4.12 (1).
(1) The function W4 is equivalent to G(t,7) in | , (5.8)], and equivalent to the function W
[ , §3.2] with k replaced by k~!. This parameter difference comes from the choice of the basic
representation py_, _in [ , ] and p , in | | (see Remark 4.1.3.2).
(2) Let us explain the function G(t,~) in | ], and how to obtain the function W41 (z, ¢) from it. We

use the torus 7' = Homgyoup (A, C*), the notation t* of the value of t € T at A € A, the notation of
a point (¢,7) € T x T, the ring I/ = C[T x T and the isomorphism L’ = L = C[z*!, £*1] explained
in Remark 4.1.2.2. The outline is that G(t,~) is defined to be an element of M(T x T), i.e., a
meromorphic function on T' x T, and the function W41 (z,€) is obtained from G(t,7) under the
isomorphism M(T x T') =2 M(x, ) induced by L' = L.

Let ¥ = 941 be the theta function associated to the weight lattice A = Zw of type A; in the sense
of Looijenga [L.70]. It is a meromorphic function on the torus T := Homy (A, C*), and the value at
a point t € T is given by

I(t) =0 (1) =) ¢"*M M (4.1.82)
AEA

Let us also denote wg = s1 € Wy and
70:78 ::kaETa

which are borrowed from | , (2.3),(2.4)]. There the general types are treated in a uniform way
under the notation 7o 4 for our 4§. The symbol * indicates the duality anti-involution (4.1.22).
Then, the meromorphic function G on 7' x T is defined to be

I(t(woy) ™)
I(v0t) I((v5) 1)

Next we explain how to obtain W4 (z, €) from G(t,~). Using the coordinate = = (t — t¥), we can
rewrite the lattice theta function as
qu Jagl — g4 g1?).

leZ

G(t,) = (4.1.83)

Using the other coordinate ¢ = (y + %), we can also rewrite twy(y) ™! as (two(y) ™1™ = (t7)¥ =
z€, Yot as (Yot)T = E®1F = kx, and (v5) 'y as ((8) " 1y)® = k—(» WWW = k~1¢ Hence, we
obtain the function W41 (z, €).

4.1.5 Bispectral Macdonald-Ruijsenaars function of type A;

In this subsection, we give an explicit solution of the bispectral Macdonald-Ruijsenaars g-difference
equation of type Ay, following [NSh] and | , §5.3]. One caution is that we work on

SOLymr (1/k, q),

so that the reciprocal parameter k~! is used in this subsection. As in the previous Fact 4.1.4.3, we

assume 0 < ¢ < 1. Let us denote v :=g¢q

1/2.
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Let us write again the bispectral Macdonald-Ruijsenaars equation (4.1.63):

(L;.lf)(x7£) :(€+§_1)f(x’§)
{(Lfolf)(aaf) = (w+a V) f(x,6) (4.1.84)

By Proposition 4.1.3.5 and Remark 4.1.3.6, the operators can be written as

Ly, = L(zik,q), Ly, = L(EK g7, (4.1.85)
k— kg2 k=1 — ka2

L(z: = T 75 4.1.86

(l‘, kv Q) 1— x,Q v,r + 1— 1,72 v,z ( )

First, we consider the asymptotic form of the z-side g-difference equation
(Ly, — (€+&))fl@)=0
in the region |z| > 1. From (4.1.86) (also recall Remark 4.1.3.6), the asymptotic form is
Ly o~ Liy =kT,.+k7'T, .
Similarly, in the region |{| < 1, we have

¢ 1
Lp )—k‘ T5—|—]€ Vg,

Now recall the functions W41 (z, &;1/k, ¢) and W (x,&1/k,q):

O(—v2x¢;v)
O(—v1/2k— 1w, —1/2kE; V)’

O(—v/2kxg; v)
O(—v1/2z;v) -

WA (2,6 1/k, q) = WA (2,6 1/k, q) = (4.1.87)

Lemma 4.1.5.1. The sets {W41(z, 6+ 1/k, q)} and {WAl (z,6F151/k, q)} are bases of solutions of the
asymptotic g-difference equation

(L) — (€+E ) f(z) = 0.

Similarly, the sets {W41(z*1,&;1/k,q)} and {WAl( +1.¢,k1/,q)} are bases of solutions of
( o)~ (z+271))g(&) =0.

Proof. As seen before, we have Tj5! f(x) = (k§)T' f(z) for f(z) = W (2%,&1/k,q), so that these
functions are solutions of the z-side equation. Since the equation is second-order and these functions are
linear independent by the property of the Jacobi theta function 6(x; ¢), we have the z-side statement. The
¢&-side is shown similarly using TlfgWAl(z,f; 1/k,q) = (x/k)T'WAi(z,£;1/k,q). The same argument

works for WA, O
Next, let us recall Heine’s basic hypergeometric g-difference equation | , Chap. 1, Exercise 1.13]:
(DF(a,b,c;q)u)(z) = 0, (4.1.88)

where the operator D% is given by

(1—a)(1—0b)
(1-4¢)?

with (0qu)(2) == (u(z)—u(qz))/((1—q)z). A solution of (4.1.88) is given by Heine’s basic hypergeometric
function

lfc+(1fa)(lfb)f(1—abq) )

D% (a,b,c;q) = z(c — aqu)ag + (1 4 T4 2 )04 + (4.1.89)

u(z) =201 [a’cb; q Z] : (4.1.90)

where we used the notation (4.0.2).
The following relation between the Macdonald g¢-difference operator of type A; and Heine’s basic
hypergeometric g-difference equation is well known.
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Lemma 4.1.5.2 (cf. | , Lemma 5.4]). Let W(x) be a meromorphic function in x satisfying
W(qT%z) = (k&) T'W(x). (4.1.91)
Then, the function f(z) = W(z)u(k~2gz~2) is a meromorphic solution of the g-difference equation
(Ly, (@) = (€ + €71 f(2)
if and only if u(z) is a meromorphic solution of the g-difference equation
(DF (K K*6%,¢6%)u)(2) =0, ==k "qz™"
Proof. A direct computation yields that the operator D% (a,b,c; q) in (4.1.89) is proportional to
D'(a,b,c;q) = (c/q — abz)T;Z —(I+¢/qg—(a+b)2)T, .+ (1 - 2).
If a/b = q/c, then D'(a,ac/q,c;q) = (¢/q)(1 —a*2)T; . — (1+¢/q)(1 —az)T, . + (1 — z). Hence, defining

1—a%z 1—=2
1 /4 o+ /q Tl -
1—az/q l—az/q ©

_ 1
D”(avc; q) = Tq,zlialez(chac/q’C; q) =cq (1 +C/q)7

1—

we have (D% (a,ac/q,c;q)u)(z) =0 <= (D"(a,c;q)u)(z) = 0. If moreover z = k~2qz~2, a = k? and
¢ = g€2, then we have

(D5 (K%, k%€, 4€% q)u) (2) = 0 <= (7' D"(k*,q€% q)u)(z) = 0
1— k%272 11—k 22072, _
<W§Tq,z + ﬁf 1Tq,z1 —(§+¢ 1))“(2) =0.
On the other hand, by the expression (4.1.85) and the condition (4.1.91), we have

((Ly, = (€+ENfx) =0

k—k= g2 . . k1 — kp—2 _
(1—7:5—2k ¢ qu,zl + WkgTq,z - (€+¢ 1))“(2) =0
1—k%2x~2 1—k2272 _, _
(WﬁTw t—g—2 ¢ T (€4 1))U(Z) =0.

Thus we have the desired equivalence. O
Now we give an explicit bispectral solution of (4.1.84).

Proposition 4.1.5.3 (c.f. [NSh, Theorems 2.1, 2.2, (3.13)], | , Cor. 5.5]). We denote v := ¢'/2.
(1) Define the function f41(x, &) by

FA(@,8) = fY (2, &k, q) =W (2,6 1)k, q) o™ (2,6 K, q),
: . €% @)oo k2, k€2 (4.1.92)
@A («I,g) = <pA (I7£7 k7q) = (k(_(]qu?q;)q)oquSl q£2 5 q, kQZQ .

Here we used the function WAt (z,¢;1/k, q) in (4.1.87), and assumed ‘k‘Qqac—Q’ < 1. Then f4
satisfies the following properties.

(i) It is a solution of the bispectral problem (4.1.84).

(ii) It has the symmetry (the inversion invariance in [St14])

fA@,8) = A (@) = (a7,

(iii) It has the self-duality
FA (& ko) = [T R ),

using the redundant notation k* = k for the comparison with the (CY, C}) case.
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Recalling the W-action on K = M(T x T') in (4.1.35), we express the subset of SOLymr(1/k, q)
satisfying these properties as

SOLywr(1/k, ) = {f € SOLpur(1/k,q) | (ii), (iii)}.
Thus, we can restate the claim as
f™M € SOy (1/k, q).
(2) Defining & = kv~ for I € N, we have
[ (@, &) = e (2),

(k) () (1209 4, K2, g ¢ (4.1.93)
:9( K2y l+2 ) (k= 4 1 ) P () = alatn L2 1 z7q7 122

The function Pz !(x) satisfies the following three conditions.
(i) It is an eigenfunction of the Macdonald-Ruijsenaars g-difference operator Ly of type A;.

(ii) It is a Laurent polynomial in = belonging to #!C[z~!], and is invariant under the replacement
!
Moreover, these conditions uniquely determine the function PlA1 (x) up to constant multiplication,
and the eigenvalue in (i) is p1(§ ") =& 1 +&.

We will give an almost self-consistent proof, except the following equality (4.1.94).

Fact 4.1.5.4 ([NSh, (4.11)]). The function ¢4t (xz, ) satisfies

(k?,q2726% )0 k—2qx=2, k™2q¢?

A 2
1 = iq, k 4.1.94
e @) (k=2qz=2,k~2¢€% ¢) o 201 qr=2¢? & ( )
under the condition |k| < 1. In particular, we have
i (a,6) = (e, (4.1.95)
The equality (4.1.94) can be shown using Heine’s transformation formula for 2¢; series | , (1.4.1)].
See also [NSh, (4.10)] for the calculation.
Proof of Proposition 4.1.5.3. For (1), we follow the argument of [ , Lemma 2.18]. Let us denote
WAL (2, &) == WAL (z,£;1/k, q) for simplicity, and recall the quasi-periodicity and the self-duality:
WA 2™t = W (2,6), W (v, §) = (k€)' W(a, ). (4.1.96)

The first equality of (4.1.96) and (4.1.95) yield the self-duality (iii). The second equality of (4.1.96) is
nothing but the condition (4.1.91), so that Lemma 4.1.5.2 and (4.1.90) yield

Ly 2 (,8) = (€+ €7D () = pu (€)1 (2,9). (4.1.97)
On the other hand, (4.1.85) shows th = L(& k™, = IL(&; K, q)I, where I is the operator g(&) —
(Ig)(€) == g(¢71) for a function g(€). Then, the self-duality (iii) and the eigen-property (4.1.97) imply

Ly f4 (@, €) = (IL(& b, 1) f2 (€727 = TL(E k) f 1 (G271 = T(pa(2) f2 (§271)
=pi(@) [ (E e = (@ e (,€).
Hence (iii) holds.
Before showing (1) (ii), we show (2). The equality in the statement is a consequence of
W (@,6:1/k.q) = (—v Pk ) ) = ale,

which can be checked using 0(z;q) = (¢, ,q/2; ¢)oo. The condition (2) (i) is a consequence of (4.1.97).
The condition (2) (ii) can be checked by the formula 4.1.93 (see also Remark 4.1.5.5 (1)). The uniqueness
is well-known in the theory of Macdonald polynomials (see also Remark 4.1.5.5 (1)).

Now we show the remaining (1) (ii). By (2) (ii), we have f41(z, &) = f41(z71; &) for any [ € N. Then,
applying the identity theorem in complex analysis to the analytic function g(¢) = f4(z, &) — fA41 (271 €),
we have f41(z, &) = fA1 (x71;¢) for any ¢ in the domain of definition. Combining it with the self-duality
(1) (iii), we have f41(x,&) = fA1(z,£71). Hence we have (1) (ii). O
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Remark 4.1.5.5. Some comments on Proposition 4.1.5.3 are in order.
(1) Defining B € C by k = v#, the Laurent polynomial PZA1 is equal to

-1 . .
=TT S P P e (4.09%)
l L [ J
q itj=l q q

where we used the g-binomial coefficient (4.0.3). It is nothing but the Macdonald symmetric poly-
nomial of type A4; | , (6.3.7)], and is proportional to the continuous g-ultraspherical polynomial,

or the Rogers polynomial. See | , §6.3, pp.156-157] for the detail.
(2) In | ], Noumi and Shiraishi gave an explicit bispectral solution f(x1,...,Zn;81,...,S,) of type
GL,. The above solution f41(z,¢) is obtained by specializing (z1,72) = (z,271) and (s, s2) =
(€,€71) in the solution f(x1,2; 51, 82) of type GLa. See also Stokman | , Corollary 5.5] for the

uniqueness of f(x1,x2; 51, s2).
Let us cite another bispectral solution.

Fact 4.1.5.6 (] , Theorem 4.6, (5.18)]). Define a meromorphic function 5f1(x,£) = Sfl(x,f; k,q) €
K = M(z,£) by
O(—v'2k;v) (K262 K2 @)oo 754 k%, k2€? q 1
1 . 1 .
9(_1/1/25; l/) (572’]{4;(1)00 w (QT,E, /k7q)2¢1|: q€2 34, k2l’2:| +<£’_>€ )
O(—v'/ 2k, =2k v) (K262 k% @)oo, [K2, K2E2 _
e [ L ] e e
0(_1/ / fa_’/ / €T V) (g 1k aq)OC qg k*x
(4.1.99)

EM (2,6 k,q) =

where the second term is obtained by replacing ¢ in the first term with ¢~'. Then the function Sfl
enjoys the following properties (i)—(iii).

(i) It is a solution of the bispectral problem (4.1.84).

(ii) It has the symmetry (the inversion invariance in [St14])

Ef(z, &) = EM (a8 = 8 (w67,

(i) It has the self-duality
EM (@, & koq) = EL (€ TR ),

using the redundant notation k* = k for the comparison with the (CY,Cy) case.
Recalling the W-action on K = M(x,&) in (4.1.35), we express the subset of SOLymgr(1/k, ¢) satisfying
these properties as .
SOLpr(1/k,q) = {f € SOLynr(1/k,q) | (ib), (iii)}-

Thus, we can restate the claim as
1" € SOLyy (1/k, q).

Following [ ], we call it the basic hypergeometric function of type Aj.

Remark 4.1.5.7. Some comments on the function Efl are in order.

(1) As explained right after | , Definition 2.19], we have the basic hypergeometric function of
arbitrary type. The reduced case, including the above & fl (z,&;k, q), was introduced by Cherednik
[ , | under the name of global spherical function. The non-reduced case (type (CY,C1))
was introduced by Stokman [St03], and the uniform approach was discussed in [St14]. The GLq
type is written down in | , (5.18)], from which we can recover the A; case.

(2) Although we take (4.1.99) as the definition of the basic hypergeometric function é’fl, the actual
statement of | , Theorem 4.6] is that £, (of arbitrary type) has the c-function expansion with
respect to the self-dual basic Harish-Chandra series ® (see Fact 4.1.4.6 for type A1), and defined
for generic € T. The c-function expansion is given in the form

Ex(t,vik,g) = Y clt,wyik, @) (t, wyi k, q).
weWy
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4.2 Type (CY,C1)

We discuss the type (CY,Cy), or the non-reduced type. See also | , 83, 85.2].

4.2.1 Extended affine Hecke algebra

First, we recall the affine root system of type (C},C1) and the extended affine Weyl group, following

[ , 81, §2, §6.4].
We consider the one-dimensional real Euclidean space (V; (-, )) with

V=Re, (e¢) =1.

Similarly as in §4.1.1, we denote by F the space of affine real functions on V', and identify it with V @ Rec.
Using the gradient map D: F — V, we extend (-,-) to F.

Let S(CY,C1) = {m(£e+ 3n) | m € {1,2}, n € Z} be the affine root system S(CY,C1) in the sense
of Macdonald | ]. A basis is given by {ag = %c —¢€,a1 = €}, and the corresponding simple reflections
si: V.= V for i = 0,1 are given by the formula (4.1.2) with a) = 2a;/{(a;, a;) = 2a; € F. Explicitly, we
have

si(re) = —re, so(re) =(1—r)e (reR). (4.2.1)
We denote Wy == (s1) C O(V, (-,)), which is isomorphic to &,. The Wy-action (4.2.1) on V preserves
N=ZeCV,

the coroot lattice of the root system R(C;) = {+2¢} generated by (2¢)¥ = e. We also denote by
t(A) = {t(A) | A € A} is the abelian group with relations t(A) t(u) = t(A + u) for A\, u € A. The group
t(A) acts on V by translation (4.1.4). Then, the extended affine Weyl group W of S(CY, C4) is defined
to be the subgroup of the isometries on (V (-, -)) generated by Wy and t(A).

W =Wy x t(A). (4.2.2)
In particular, we have the relation
S1 t(>\)51 = t(51(>\)) ()\ S A) (423)

with s1(A) given by (4.2.1).
As an abstract group, W is generated by sp and s; with fundamental relations

st=s=e. (4.2.4)
The following relations hold in W.
t(e) = sos1, t(—€) = sis0. (4.2.5)

Compare the first relation with (4.1.9): denoting sfh (i =0,1) for the generators of the extended Weyl
group W41 of S(A;), we have t(a) = s{*s7.
Next, we recall the extended affine Hecke algebra H associated to the affine root system S(CY,Cy).

For the detail, see | , 84, §6.4]. Hereafter we fix nonzero complex numbers k1, kg, l1,lo and denote
k= (ki,ko), L= (l1,lo). (4.2.6)

The symbols k; and kg are borrowed from | ]

Remark 4.2.1.1. Our parameters (k1, ko, l1,lo) correspond to (ti/z,téﬂ,lim,lém) in [N95] and [T'10].

Definition 4.2.1.2. The extended affine Hecke algebra H (k) is the C-algebra generated by T and Ty
with fundamental relations

(T; — k) (T + k) =0 (i=1,0). (4.2.7)

In this §4.2, we denote H := H (k) for simplicity.
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As in §4.1.1, we denote by ¢(w) the length of w € W. If we have a reduced expression w = s;, - - - 8;,,
ij € {0,1}, then ¢(w) = I. For such w € W, we set

Ty =T ---T; € H.
Then T, is independent of the choice of reduced expression. We also define Y*! € H by
Y =TTy, Y '=17"T5", (4.2.8)

which can be regarded as deformations of t(¢) € W given in (4.2.5). As in the case of type A; (§4.1.1),
the monomials in C[Y*!] C H are denoted as Y* := Y for A = le € A, | € Z. We also have a C-linear
isomorphism H = Hy ® C[Y*!], where

Hy=C+CT
is the subalgebra of H generated by T7.
Remark 4.2.1.3. Our choice (4.2.8) of the Dunkl operator Y follows | , §6.4], which is the opposite
of [N95, , ]. The choice (4.2.8) is compatible with the choice for type A; (see (4.1.12)).
Next, we review Noumi’s [N95] basic representation py ;4 of H = H(k). Choose and fix a parameter
¢'/? € C*. The extended affine Weyl group W acts on the Laurent polynomial ring C[z*'] by
(s14)(@) = F(@™),  (s04f)(@) = flaz™h),  (t(e)gf)(2) = flaz) = (Tyuf)(2), (4.2.9)
where T, , denotes the g-shift operator on the variable z. Then, we have an algebra embedding
Prrg: H(E) — End(Clz®)), p(T) = c(zi; ki, 1i)siq + b(xi kiy ;) (i =1,0) (4.2.10)
with 21 == 22, z¢ := gz~ 2 and
1 — kl2Y/2) (14 kl=12Y/2
c(z; k1) = kfl( Z )+ z ), (4.2.11)

1—-2
k—k=Y) 4+ (1 —171)z"/2
1—2 '

b(z; k1) =k —c(z; k1) = (

Here we understand x}/z =z and x(l)/z = ¢/22=1. We call Pk,lq the basic representation of H (k).

Definition 4.2.1.4. The double affine Hecke algebra (DAHA) of type (CY,C1), denoted as
H = H(k L q) = HD (kL q),

is defined to be the C-subalgebra of End(C[z*!]) generated by the multiplication operators by z*! and
the image pg1.q4(H (k)).

As an abstract algebra, the DAHA H of type (CY,C}) is presented with generators 11, Ty, Ty, T,/
and relations

(T, — k) (T + k) =0 (T —1)(TY +1;) =0 (i=1,0),

K2

4.2.12
TY T\ ToTy = q /2. ( )
See [ I [ L , §4.7] and [C05] for the detail. The symbols T” are borrowed from | ]. To
recover Definition 4.2.1.4, we put

TY = X717 Ty = VT X, (4.2.13)

by which we can extend the map p; 4 of (4.2.12) to the embedding py; ,: H = End(C[z*!]).

Similarly as the type Ay, we have the Poincaré-Birkhoff-Witt decomposition of H:

H=~C[X*]® Hy®C[Y*], (4.2.14)
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and the duality anti-involution

«: H(k, 1, q) — H(E", 1", q), h+——h", (4.2.15)
which is a unique C-algebra anti-involution determined by

Tr=T, (YN =z (@) =y

for A € A and

(E%,17) = (K1, ko, 17, 15) = (K1, 1, ko, Do) (4.2.16)
We also denote by

H(k,1)* C End(C[z*1)) (4.2.17)

the image of H(k,l) C H(k,!, ¢) under the duality anti-involution x*.

4.2.2 Bispectral quantum Knizhnik-Zamolodchikov equation

Let us explain the bispectral qKZ equation of the affine root system S(C},C}), mainly following [T10,
§4.1, §4.2]. Hereafter we choose and fix k1, ko, 11,10, ¢"/? € C*, and consider the affine Hecke algebra
H = H(k), the basic representation py;,: H(k) = End(C[z*!]) and the DAHA H = H(k, [, q).

The affine intertwiners

Following [C05, §1.3] and [T'10, §4.2], we introduce the affine intertwines of type (CY',C1). We set
71 =22, 20 = qr~2, and define Sy, Sy € End(C[z*!]) by

Si=di(a)si,  di(2) = dilak, Lq) =k (1= kalga ) (14 Rl 2y ) (6= 0,1). (4.2.18)
The elements S; and Sy belong to the subalgebra H C End(C[z*!]) since

Si= (1= w)prig(Ts) = (ks = k7)== 17 )™, (4:2.19)

3 K3

More generally, for each w € W, taking a reduced expression w = s;, ---s;, with ji,...,j, € {0,1}, we

define the element S,, € H by

r

Su = djn (@) - (550d)(@) -+~ (50 -5, 3, )(2) 1w, (4.2.20)

The element gw € H is independent of the choice of reduced expression w = sj, ---s; by the same
argument as the type A; case, using

du () = dj, (x) - (85,d5,) (@) -+ (85, -+ 85,_,dj,) (@) (4.2.21)
Also, by [T'10, §4.1], we have

(4.2.22)

We call the elements S,, in (4.2.20) the affine intertwiners of type (CY,C4).

The double extended affine Weyl group
As in the case of type A; (§4.1.2), let us consider the ring

L = Clz*!, €41] = Cla*'] o Cle*).
We can regard H as an LL-module by

(f@gh=f(x)hg(Y) (4.2.23)
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for f = f(z) € Clz*™!], g = g(&) € C[¢F!] and h € H, where x is understood as the multiplication
operator by z itself, and Y is the Dunkl operator. By the PBW type decomposition (4.2.14), we have
an L-module isomorphism

H = HY =L ® H,. (4.2.24)

As in the case of type A, we regard f(x,&) € HY as a function of z, ¢ valued in Hy.
The double extended Weyl group W is introduced in the same way (4.1.33) as the type A; case. Let
¢ denote the nontrivial element of the group Zs := Z/27Z, and define W to be the semi-direct product

group
W =Zo x (W x W),

with ¢ € Zy acting on W x W by «(w,w') = (w’,w)e for (w,w') € W x W.
The group W acts on L in the same way as the type A; (see §4.1.2). Define the involution ¢: W — W
by (4.1.34), i.e., w® := w for w € Wy and t(A\)° :== t(—\) for A € A. Then the W-action on L is given by

(Wf)(@) = (w @), (Wg)E) = (w)eg)©), (F)(x,&)=F(E" 2" (4.2.25)

forweW=Wx{efCW,w eW={e} xWCWand f=f(z),9g=g(&),F = F(z,§) € L. Here w,
denotes the W-action in (4.2.9).
We also define 7y, 0, € Endc(H) by

Fwary(h) = SuhSk,  &,(h) = h*
for h € H, where * is the duality anti-involution (4.2.15). Then, as in Fact 4.1.2.4, we have
&y (F1) = (0,0 ) oy (B, 5,(FH) = (1), (R) (4.2.26)
for h € H, f € L and w,w’ € W. The proof is essentially the same as Fact 4.1.2.4 (] , Lemma 3.5]).

The cocycle
As in the case of type A; (see (4.1.38)), we denote by
K = M(a,€)
the meromorphic functions of variables z, £, and define
HY =K® Hy = K®H,
We can express an element f € HY as (4.1.39): f = > wew, fuTw € HE, ., € K. The W-action (4.2.25)

on L naturally extends to that on K, and we have a W-action on HY by the formula (4.1.40):

wf= > (Wfu)Tw (4.2.27)

weWy

for f =3, cw, fulw € HE and w € W.
By the argument right before Fact 4.1.2.5, we have 6y ), 0, € Endc(H{) such that the formulas
(4.2.26) are valid for f € K and h € HY. Then, similarly as Fact 4.1.2.5, we have:

Fact 4.2.2.1 ([110, §4.2]). There is a unique group homomorphism 7: W — GL¢(HY) satisfying
T(wa w/)(f) = dw(x)ildrv’ (671)71 : 5(w7w’)(f)a T(L)(f) = gL(f)

for w,w’ € W and f € HY. Here we denoted by d, the image of d,, under the duality anti-involution
% in (4.2.17), and - denotes the L-action (4.2.23).

By the W-action (4.2.27) on HE, we can regard GLg(HY) as a W-group via the corresponding
conjugation action:
(w,A) — wAwW ™! (weW, A GLg(HY)).

Then, we have the following analogue of Fact 4.1.2.7.
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Fact 4.2.2.2 ([T10, §4.2]). The map
Wi Cy = 7(W)w ! (4.2.28)
is a cocycle of W with values in the W-group GLg(HY) =2 K ® GL¢(Hy).

We denote Cy (x,&) to stress that the cocycle can be regarded as a meromorphic function of x,¢
valued in GL¢(Hyp)

Definition 4.2.2.3. Denote Cj ., == Ciiie),¢(me)) for [,m € Z. The system of g-difference equations

Crom (2, f(q" 2, ™€) = f(x,6) (I,m € Z)

for f = f(z,6) € HE is called the bispectral quantum KZ equations (the bqKZ equations for short) of
type (CY,C1). We also denote

SOLfgiv(’ZCl) = SOL](DiiV(’ZCl)(E, l,q) = {f € HY | f satisfies the bqKZ equations of type (CY,C1)}.

In this §4.2, we abbreviate SOLpqkz == SOLI(E?(’ZC”

Similarly as Lemma 4.1.2.12, we can compute the action of Cj and Cp; on HE. We define an
algebra homomorphisms 77 : H — Endg(HY) by

nL(A)( > fwTw) =Y fuwlATy), (4.2.29)

weWy weWy

for Ae Hand f =3 cw, fulw € HE. Similarly, using the subspace H* C H in (4.2.17), we define an
algebra anti-homomorphism ng: H* — Endg (HY) by

weWg weWy
for Ae H* and f =} cw, fulw € HE.

Lemma 4.2.2.4. The cocycles C1,Co 1 € GLg(H{) =2 K ® GL(Hy), regarded as functions of z and &
are expressed as

Cro = R (z0)RY (z)), Coa = RE(§)RT(£1), (4.2.31)
where we denoted zg = gz 2, ) = ?r2, & = q&?, § = ¢*€? and

R{(2) = ci(2) " (L (Th) — bi(2))
T (- klzvzl/Z)](gi kil 212) (L= 2)ne(Ty) = (ks = k1) = (L= 171212,
R(2) = ¢} (2) " (na(T}) — b} (2))
k3

- (1 — kFlz21/2) (1 + kF(17)—121/2) ((1 —2)nr(T77) — (ki = (kf)_l) - (i - (l;'k)_l)zlm)

for i =0, 1, using the duality anti-involution * in (4.2.15).

Proof. We denote by s? and sf for i = 0,1 the action (4.2.25) of s; in terms of variables « and & of
K = M(x,&). Explicitly, for f(z,£) € K, we have

(s11)(2,6) = f(a71,8), (sgf)(2,6) = flqz™",€),
(1)@, €) = f(@, €7, (s5)(@,8) = fla,q ).

By a similar calculation as Lemma 4.1.2.12, the cocycle values for (s1,e) and (so, e) are given by C(y, o) =
R (x1) with z1 := 22 and C,, ) = R§ (20), respectively. Then the cocycle condition gives

CI,O = C(sosl,e) = C(so,e) (C( 6)>(SO76) = R£($) (Sng(‘rl)) = R(L)/(',I"O)Rf(xll)’

S1,
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where s§ means the (s1,e)-action given in (4.2.25).

Next, using the duality anti-involution * and the K-action (4.2.23), the cocycle values for (e, s1) and
(e, 50) are given by Cl.uy) = R(z1)* = RI(E) and Cyq o) = RE(w0)* = RE(E)) with & = (z0)" = g€
Thus, we have

CO,l = 0(678081) = C(é,So)(C(E,sl))(e’so) = R(l)%(g(/))(ng{%(g—2)) = Ré%(gé)Rf(&)

O
Remark 4.2.2.5. Some comments on Lemma 4.2.2.4 are in order.
(1) Explicitly, we have
CI,O = Jo(x)Jl ($), 0170 = Ko(f)Kl(f) (4.2.32)
with
ko
J, = .
(@) (1 — kolog*/2x=1) (1 + kol *q/22~1)
(1= qr?)np(To) — (ko — kg ') — (lo — g g ?2™1),
k1 2. -2 -1 -1 -1
J = 1-— Ty) — (k1 — k — (I =1 ,
@) = e A T T (7 e = (b =k = (b — ™)
h 2 * -1 —1\ 1/2
K = 1-— T5) — (1 =1 —(lg =1 ,
€)= g (T taag (L €A — =17~ o~ 15)4%)
k _ _
Ky (8) = - (1 — 2E)mr(Tr) — (ky — ki) — (ko — kg *)g€).

(1= Kukog€) (1 + kikg " q€)
(2) Asin Remark 4.1.2.13, we have
Clew)(,8) = C.Cu.o) (€270, (4.2.33)

for any w € W. The formulas (4.2.31) are compatible with 4.2.33.
(3) The formulas (4.2.31) are also consistent with the computation of Cy; in the final paragraph of
[T10, §4.2]. Note that we are working on the different choice (4.2.8) of Y from loc. cit.

For later use, we give a (CY, C)-analogue of Fact 4.1.2.14.

Lemma 4.2.2.6. Let A = Clz7!] C L = Claz*!,¢*1], and Qy(A) be the subring of the quotient field
Q(A) = C(z) consisting of rational functions which are regular at #~! = 0. Considering Qy(A) ® C[¢+!]
as subring of C(z, &), we have

Ch0 € (Qo(A) ® C[¢*1]) ® End Hy. (4.2.34)
Moreover, setting Cﬁ)g = C1,0l,-1_9 € Cl¢*!] ® End Hy, we have
O = kakon (Y T77Y). (4.2.35)

Similarly, defining B := C[¢{] C L and Qy(B) C Q(B) = C(£) to be the subring consisting of rational
functions which are regular at the point £ = 0, we have

Co1 € (Clz* ® Qy(B)) ® End Hy,.
Moreover, setting C(g?l) = Cole—p € Clr*'] ® End Hy, we have
CiY = kihr(TyY 7T, (4.2.36)

Proof. We only show the statements for Cy . By the expression (4.2.31) of Ci o, we have Cio €
(Qo(A) ® C[¢*!]) ® End Hy. To get (4.2.35), we compute

lim Cyo = (lim Jy(2))(lim Jo(2)) = ko(n(To) — ko + kg )ka(ne(T1) — ka + ky )
= kukone (Tg e (T7Y) = kakonn (YT,

Here we used Tfl =T, —k; + k’;l from (4.2.7) and Y = 71Ty from (4.2.8). O
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Let us also record the (CY, Cy)-version of Fact 4.1.2.15.

Fact 4.2.2.7 (c.f. | , Lemma 4.2]). For w € Wy, we set
Tw = (S5 )T, € Cl¢*) @ Hy c HE.
Then the following statements hold.
(1) {7 | w € Wy} is a K-basis of HY consisting of eigenfunctions for the 7z -action of (C[Yil] C H on
HE.
(2) For p € C[Eil] and w € Wy, we have nr(p(Y))7w(€) = (w™'p)(€)7w(€) as Ho-valued regular
functions in &.

The proof for the reduced type in | | also works for the non-reduced type (C},C}), so we omit
it.

4.2.3 Bispectral Askey-Wilson ¢-difference equation
As in §4.1.3, we consider the crossed product algebra
Wo._
D, =W x C(z,§)
where W acts on C(z,§) by (4.1.35), and also consider the subalgebra
Dy = (t(A) x t(A)) x C(z, &) C DY,

which is identified with the algebra of ¢-difference operators on C(x,&). We can expand D € ID)XV as

D=> few= Y  Dss, (4.2.37)

wew seWox Wy

where fw € C(T' x T) and Dg = Ztet(A)Xt(A) gist € Dy. We also use Res: ]DZV — D, given by

Res(D):= > D (4.2.38)
seWox Wy

Next, following (4.1.57) and (4.1.58), we introduce two realizations of the basic representation of type
(CY,C4). Let us denote
(1/&, I/D = (l/kl, 1/]{,'07 1/[17 1/[0)

Then, the first is given by the algebra homomorphism

Pt eajng: H(1/k) — C(z)[W x {e}] c D (4.2.39)
given by the map py /5,114 in (4.2.10). The second is

P soasq HET) — CE)[{e} x W] C DY (4.2.40)
Then, recalling Definitions 4.1.3.1 and 4.1.3.3, let us introduce:
Definition 4.2.3.1. For h € H(1/k) and h' € H(k™), we define Dy, be/ e D}’ by

Dii = pipeajah): Di = 0 o1 yg (W)
Also, for an invariant polynomial p = p(z) € C[z*' |0 = C[z + 27|, we define L7, L5 € D, by

Ly = Ly(k,l,q) == Res(Djyy), L = L§(k, L q) == Res(D5 ), (4.2.41)

where we regarded p(Y) € H(1/k) for L%, and p(Y) € H(k") for L5, and used the map Res in (4.2.38).
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As in Definition 4.1.3.4, we denote by p;(z) = z + z~1, which is the generator of the invariant
polynomial ring C[z*1]"o. Then, similarly as in Proposition 4.1.3.5, we can compute Ly, and Lgl using
the function ¢(z;t,1) in (4.2.11). Let us denote the action of w € W on functions of x given in (4.2.9) as
w”. It is compatible with p{ kg 1 (4.2.39), and explicitly,

st(x) = qz ™, st(z)=a"', t(w)(z)=q¢" %z (4.2.42)
We also denote by w¢ the action on functions of €. It is compatible with p?l /q in (4.2.40), and explicitly,
s5(6) =q7le7t, SHE) =€, t(w)S(e) = ¢3¢ (4.2.43)

Proposition 4.2.3.2. We have

L =kiko + (kiko) ™" + (k1ko) ?DXw,  Diw = A(@)(Tye — 1) + A(z™")(T,} — 1), (4.2.44)

q,r
Lfn =kily + (klll)_l + (klll)QDgva DiW = A*(E‘l)(T%S _ 1) + A*(f)(T‘;gl _ 1) (4245>
with
Az) = L Rih2)(1+ kel 2) (1 — kolog=/22) (1 + kol 'q=V/22)

(1—=22)(1—q12?) ’
1 —kikoz)(1 + Kkl 2) (1 — lilog™ Y 22) (1 + iy tq™1/%2)
(1—22)(1—q122) '

A (z) = &

Proof. Let us compute Ly = Res(Dy_y 1). Since Y = TyT1 and so = t(€)s1, using (4.2.7), (4.2.42) and
(4.2.10), we have

Dy yy—1 = 0y (ToTy + T T )
= (ko_l + co(t(e)®s] — 1)) (kl_l + (s — 1)) + (k1 +c1(sf — 1)) (ko + co(t(e)®sT — 1))
=k thgt Ry eo(t(€)"sT — 1) + kg ter(sT — 1) + colc] t(€)"sT — cr)(sT — 1)
+ kiko + kico(t(e)®sT — 1) + kocr (sT — 1) + e1(chsT — co)(t(e)®sT — 1),
where w® is given by (4.2.42) and, using the function ¢ in (4.2.11), we denoted
c1 = c(zh kI, ¢y = t(e)"sT (1),
co = clgr % ko 1), cp = 57 (co) = clga? kg 1 1g ).
Then, using (c{s¥ — co)(t(e)*sf — 1) = ¢ t(—€)® — ¢hsT — co t(€)*sT + ¢p and
Res(t(e)sT —1) =t(e)* — 1, Res(s{ —1) =0,
we have
Res(DY .,y 1) = ki "k ' + ki teo(t(€)” — 1)
+ kiko + k1co(t(e)® — 1) + 1 (e t(—€)” — ¢ — co t(€)™ + ¢o)
= klko + k'l_lko_l + Co(kl + kl_l — 01)(t(e)m — ].) + 6166(t(76)$ — ].)
Now, using the identity

(1 —kyh2)(1 + kydy )

1— a2 = c(a? k) = c(@™% k) = 57 (),

ky+kit—c =kt

we have co(ky + k' —c1) = co - s¥(c1) = s¥(cher). Then, by t(e)* = Ty, .., we have

Li =Res(Dy y 1) = kiko + ki kgt + (sT(cher)) (Toe — 1) + cher (T, — 1),
Denoting A(z) = s{(cjc1), we obtain (4.2.44). The formula (4.2.45) of L§ is obtained from LZ by
replacing (z, ko, k1, lo, 11, q) with (&, 171 ky Y g kg g™ h). O
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Remark 4.2.3.3 (c.f. [N95, pp.54-55]). The operators D%y, and Diw are equivalent to the Askey-
Wilson second order q-difference operator | , (5.7)]:
DAW(Z; a, b; c, dv q) = A+(Z; a, b7 c, da q)(Tq,Z - 1) + A+(Z_1; a, bv c, da Q)(Tq_,; - 1)7
(1—az)(1—-0b2)(1 —cz)(1—dz)
(1-2%)(1—qz?)

The precise relation with A(x), A*(€) in (4.2.44), (4.2.45) is given by

At(z;a,b,c,d,q) =

Ax) = AT (z30,b,¢,d',q),  A*(€) = AT(&a", b, ¢, d",q)
with the parameters
{a7 b7 Clv d/} = {klllv _klll_la q71/2k010a _q71/2k0l0_1}7
{a*,b*,c’*,d'*} — {k;lkal, _kflko,q_l/Qlfllal,_q_1/21;1l0}~

The reciprocal parameter ¢~ ! appearing above originates from our choice (4.2.8) of the Dunkl operator

Y. As mentioned in Remark 4.2.1.3; the choice in | , , ] is the opposite, and for that choice,
the above construction of the g-difference operator on = which is equal to the original Askey-Wilson
operator D (z;a,b,¢c,d,q).

The ordinary parameters and the dual parameters of Askey-Wilson polynomials are given as

{a,b,c,d} = {kily, =kl ", ¢ *kolo, —q**koly Y,
{a*,0%, " d*} = {kiko, —k1ky ", ¢"*lalo, " P11 ).

There are related by the duality anti-involution * (see (4.2.15)) as
a* =+/abed/q, b* =ab/a*, " =ac/a®, d* =ad/a".
By Remark 4.2.3.3, it is natural to name the bispectral problem as:

Definition 4.2.3.4. The following system of eigen-equations for f = f(z,&) € K is called the bispectral
Askey-Wilson q-difference equation of type (CY,C1), and the bAW equation for short.

(L5 )(@:6) = p(E ) f(@:8),
{(Lfnf)(mwﬁ) = pi(x) f(z,€). (4.2.46)

The solution space is denoted as

SOLpaw(k,1,q) = {f € K| f satisfies (4.2.3.4)}.

4.2.4 Bispectral gKZ/AW correspondence

Here we give a (C), Cy)-analogue of §4.1.4, using the reciprocal parameters
(1/k,1/1) = (1/k1,1/ko.1/11,1/lo).
Similarly as in Definition 4.1.4.1, we define a K-linear function x4 : Ho(1/k) — C by
X4 (Ty) =kt (4.2.47)
for the basis element T}, € Ho(1/k) (w € Wy). Tt is extended to Ho(1/k)* := K ®y, Ho(1/k) as

Xi: Ho(I/B) — K, > fulwr— Y fuxs(Tw). (4.2.48)
weWy weWy

Below is a (CY, C1)-analogue of Fact 4.1.4.3.
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Theorem 4.2.4.1 (c.f. | , 83]). Assume 0 < ¢ < 1. Then the map X restricts to an injective F-linear
Wo-equivariant map
X+ - SOquKZ(l/Ea l/éa Q) — SOLbAW(Ev L q)a

where Wy is the subgroup of W defined by
Wo = Zs X (WO X Wo) cCW,
and F is the subspace of K = M(T x T) defined by

F o= {f(t,7) € K| (N, t(u)f)(t,7) = F(t£,7), V(A ) € Ax A},

The strategy of proof is the same as the type Ay (§4.1.4). Denoting SOLyqkz = SOLuqkz(1/k,1/1, q)
and SOLpaw = SOLpaw(1/k, 1/, q), we can divide the proof into three parts.
(i) x4 restricts to an F-linear Wy-equivariant map x4 : SOLpqkz — K.
(ii) The image x4 (SOLpqkz) is contained in SOLpaw.
(iii) x4 : SOLpgkz — SOLpaw is injective
We write down the arguments of part (i) and the first half of part (ii). The rest arguments are similar
as the type A;, and we omit them.

Part (i) of the proof of Theorem 4.2.4.1. Similarly as Lemma 4.1.4.5, we have
X+ (CwF) = x4(F) (4.2.49)

for each w € Wy and F € Hy(1/k)¥. The proof is quite similar as Lemma 4.1.4.5, once we use
Cle,s;) = C.C(s,,6)C. and replace the expression (4.1.67) of C(, oyh for h € Hy by

Cloperh = d(@*1/k1, 1/L) (1 = 2®)np(Ty) = (ki = k1) = (5" = L)) h.

Then, in the same way as §4.1.4, we can show that y is Wy-equivariant using (4.2.28), (4.2.49) and
(4.2.25), and that x4 restricts to an F-linear map SOLpqkz — K using Definition 4.2.2.3, (4.2.47) and
(4.2.48). O

Similarly as the type Aj, the part (ii) of the proof consists of two steps.

e Describe of SOLpqkz in terms of the basic asymptotically free solution ®.

e Analyze the map x4 using ®.
The second step is quite the same as the type A;, and we omit the detail. The first step requires the
following Proposition 4.2.4.2, which is a (CY’, C)-analogue of Fact 4.1.4.6, and a simple modification of
Fact 4.1.4.8.

Proposition 4.2.4.2. Denote wg := s1 € Wy. Let
W(z,€) = W(z, &k, 1, q) € K= M(x,€)
be a meromorphic function satisfying the g-difference equations
W(d'z,&) = (kiko&) " W(z,&) (1€ Z) (4.2.50)
and the self-duality
W(E e kS q) = Wi, &k, L q). (4.2.51)

Then, there is a unique element W € Hy(1/k)¥ satisfying the following conditions.
(i) We have
S =WV € SOquKz.

(ii) We have a series expansion

U(,8) = Y Kpar ™" (Kap € H)

m,neN

for (x,¢) € B! x B. with B. being some open ball of radius ¢ > 0, which is normally convergent
on compact subsets of B L' x B..
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(iil) Ko,0 = Tuwp-
We call the solution ® the basic asymptotically free solution of the bgKZ equation of type (CY,Cy).

Let us give some preliminaries for the proof of Proposition 4.2.4.2. Given a function W € K satisfying
(4.2.50) and (4.2.51), we write

Dl,O(xag) = W(.’E,5)7101’0($,£)W(q761',f),
DO,l(xag) = W(‘rag)ilco,l(x’g)w(xv qeg)v

which are regarded as End(Ho(1/k))-valued meromorphic functions in z,£. We have f € Ho(1/k)¥ if
and only if g := W(x, &)1 f satisfies the holonomic system of g-difference equations

Dl,O(:Ev f)g(qiﬁx, f) = 9(1'7 5)
DO,l(xa §)Q($7 qeé-) = g(!l?7 g)
as End(Ho(1/k))-valued rational functions in x,£. Now recall from Lemma 4.2.2.6
A=Clz™'] cClz™], B:=C[¢] cCle*
and
Qo(A) = {f(z™")/9(z™") € Q(A) | 9(0) # 0} € Q(A) = C(a),
Qo(B) :==A{f(§)/9(&) € Q(B) | g(0) # 0} € Q(B) = C(¢).
Lemma 4.2.4.3 (c.f. | , Lemma 5.2]). The operators D1 o and Dy ; satisfy the following properties.
(1) D1 € (Qo(A) ® B) @ End(Ho(1/k)) and Do € (A® Qo(B)) ® End(Ho(1/k))
(2) Define DI}, D{%) € End(Ho(1/k)) by
D% = Diol,-a_y, D) = Dole_y-
Then, denoting wqy = s1, we have
T, (w=e)
0 (w=s1)

T, (w=e)

0 (wesy) (4.2.52)

0 0
D%,())(Tonw) - { ) D((),l)(Tonw) - {

Proof. For the first half of (1), note that the g-difference equation (4.2.50) with A = —e yields
Dl,O(x7 6) = W(.’IJ, 6)_101,0(377 g)W(q_lxa 5) = klkOECI,O(xv 6)7 (4253>

By the explicit expression of C ¢ (Lemma 4.2.2.4), we have D; g € (Qo(A) ® B) ® End(Hj).
For the second half, using (4.2.50) and (4.2.51), we have

Do1(@,€) = WO (2, 6) 71 Co 1 (2, YWD (2, ¢€) = (kyure) "  Co a1 (x, £).

By the explicit expression of Cp; (Lemma 4.2.2.4), we have Dy ;1 € (A ® Qo(B)) @ End(Hy).
Next, we will show the first half of (2). By the above computation (4.2.53) and Lemma 4.2.2.6, we
have

D) = Diol, 1_y = kikotCL%. (4.2.54)
Let us compute DE(B(Tl). Since nz (TyY Ty 1) (Th) = €' Ty, we have
D%%(Tl) = klkofcfg(ﬂ) =& (MY ' T (1) = Th,

using (4.2.35) with reciprocal parameters 1/k in the second equality. Hence we obtain D%?())(Tl) =T1.

For D%(Te)7 note that 7, == nL(ng,l)Te (w € Wy) form a K-basis of HYX (Fact 4.2.2.7) and (T, )Tw €
B ® End(Hp). By Fact 4.2.2.7 and (4.2.35), we obtain

DO ((T1)7s,) = krkofCLY (n(T1)7s,) = Enp(TY Ty ) (n(Th)7y,) = E20(Th) s,

as identities in B ® End(Hy). Specializing at £ = 0, we obtain Dg?g (T.)=0.
The second half of (2) can be shown similarly using (4.2.36). We omit the detail. O
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Proof of Proposition /.2.4.2. Lemma 4.2.4.3 implies that the operators Dg?g and Dé?l) on Hy(1/k,1/1)
commute with each other. We denote the simultaneous eigenspace decomposition of Ho(1/k,1/1) as

Ho(1/k,1/1) = @ Hyla,b], Hyla,b] = {v € Hy | Dg?&(v) = av, D(()?%(v) = bv}
(a,b)€C?

Since Ho(1/k,1/l) is finite dimensional, the subset S C C? for which Hy[a, b] # 0 is finite. We also have
(1,1) € S and Hy[1,1] = CTy by Lemma 4.2.4.3. Furthermore, a,b € ¢~ for all (a,b) € S. Under these
conditions, the holonomic system of g-difference equations 4.2.52 admits a unique solution ¥ satisfying
the desired properties by the general theory developed in | , Theorem A.6]. O

Example 4.2.4.4. We give an example of the function W in Proposition 4.2.4.2. As in the case of type
Ay (Example 4.1.4.12 (1)), using the Jacobi theta function 6(z;q) == (q, z,4/2; ¢) 0o, We define

0(—q'/?x€;q)

W(Cval)(x, £) = )/V(Clv,CH)(w7 &kl = (=g 2 (ko) 17, —q ki€ ) (4.2.55)
It satisfies the ¢-difference equation (4.2.50) in the form
WEH (g, €) = (kiko) WO (2, ),
and the self-duality (4.2.51) in the form
WIEEED (1 7k, 1) = WD (1,3, D). (4.2.56)

Here we used the duality anti-involution * in (4.2.15).

Remark 4.2.4.5. As in the case of type A; case (Remark 4.1.4.13), the function W(1-C1) is nothing
but the function G' of Remark 4.1.4.13 (2) introduced by | ]:

9(t(woy) )
9(v0t) H((v5) 1)

whose lattice theta function 9J(t) = 941 (t) is replaced by

)= Y aOV, A=ze
AEA

G(t,v) =

and the parameters 7o, y; are replaced by

= (klko)ie, ")/S = (k1l1)76 eT. (4257)

4.2.5 Bispectral Askey-Wilson function

In this subsection, we cite from | , | an example of explicit solution of the bispectral Askey-Wilson
g-difference equation. As in the previous Theorem 4.2.4.1, we assume 0 < ¢ < 1.

Let us write again the bispectral Askey-Wilson ¢-difference equation (4.2.46) for f(z,£) € L =
Cla®?t, 1] for the reciprocal parameters SOLyaw (1/k, 1/1):

(L, D(x,6) = (E+ENf(,9)
{(Lfnf)(af) = (@ +a ) f(x,6)’ (4.2.58)

By Proposition 4.2.3.2 and Remark 4.2.3.3, the operators are given by

LE = kiko + (kiko) ™" + (kiko) ' Diw, LS, = kily + (kily) ™! + (k1ly) Dy, (4.2.59)
Diw = Daw(z;a,b,¢,d,q), Diy = Daw(& (a®)™, ()71, (¢") 71, (d) L g h),

{a,b,¢,d} = {kily, —k1l7 ", ¢ % kolo, —¢*?koly '}, (4.2.60)

{a*,b*, ¢*,d*} == {kiko, —k1kg ', ¢/ 211y, —g* 211151} (4.2.61)
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with

DAW(Ia q, a7b7 ¢, d) = A('T)(Tq,x - 1) + A(’Iil)(Tqi,a} - 1)7

Aw) = 1= “x)((ll__;f))((ll__ch)(l —dx). (4.2.62)

As mentioned in Remark 4.2.3.3, the g¢-difference operator D%, was introduced by Askey and Wil-
son | ]. Using the symbol (z1,...,2,;¢); in (1.1.2), they showed that the basic hypergeometric
polynomial

-1

(ab,ac,ad;q) . [q~', abedg

; 103
a

, azr, a/x

P(x;a,b,¢,d;q) = i¢, q| (L€N) (4.2.63)

ab, ac, ad
is an eigenfunction of D%y, and the eigenvalue is —(1 — ¢~ ')(1 — ¢!~ 'abed). This claim is restated as
Ly, Pi(w:a,b,¢,diq) = (¢'a” +q7'(a") ") Pi(w 0, b, ¢, ds q)

under the parameter correspondence (4.2.60) and (4.2.61) (c.f. [N95, p.55]). The Laurent polynomial
Pi(xz;a,b,c,d;q) is called the Askey-Wilson polynomial.

In order to treat the bispectral problem (4.2.58), we need to consider non-polynomial eigenfunctions
of the Askey-Wilson second order g-difference operator Daw. In literature, such an eigenfunction is given
in terms of a very-well-poised g¢7 series under the name of the Askey-Wilson function. Here we give a

brief review, and refer to [ , §3] for more information.
Following Gasper and Rahman | , (2.1.11)], we denote
1/2 1/2
ai, qay" , —qay , G4, as, Ag, G7, g
sWr(ai; as, a5, a6, a7, as; q, 2) = sz 1/2 1/2 ga1 qai gqar qai qay 0D |
al 9 _al 7H7 asv%v?aTg
which is a very-well-poised basic hypergeometric series in the sense of | , the line after (2.1.9)].
Then, the Askey-Wilson function ¢¢(x) = ¢¢(x;a,b, ¢, d; q) is defined by | , (3.1)]
qaxé/d*,qa&/d*z, qabc/d; q) o o . ke "
pe(x) = (qact/ / /d:4) sWr(a"b*c"¢/q; ax, a/x,a™§,b°E, "5 q,q/d"E).

(a*b*c*€, q¢/d*, qx/d, q/dz,be, qb/d, qc/d; q) o

It satisfies the eigen-equation

(L, 9¢)(2) = (€ + € 1)), (4.2.64)
the self-duality
oe(x;a,b,¢,d;q) = ¢ (§;a",0", ¢, d"; q), (4.2.65)
and the symmetry (the inversion invariance in [St14])
pe(x) = de(z™") = e (). (4.2.66)
The properties (4.2.65) and (4.2.66) are the consequences of the equality | , (3.2)]:
de(r) = (be, qa/d,(gz;);,/jé?z)i(Z/ad; q)oo4¢3 {a% Z{)fyai ida /5; ’ q}

N (ax,a/x,a*€,a* /€, qabe/d; q) oo
(qr/d,q/dx,q€/d*, q/d*&, ab, ac, be, qa/d, ad/q; q)oo

which can be shown by a form | , (2.10.10)] of Bailey’s transformation formulas. The above equality
also yields

qr/d, q/dz, ¢¢/d*, q/d*&
2 7q’ q )
qb/d, qc/d, q*/ad

403 {

(gabe/d; q) 0o q~ ', abedq' =, ax, a/z
103

be(v) = (beyqa/d, gb/d, qc/d, q/ad; q)co ab, ac, ad

;4 q} &= (a*)""q7,
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which is proportional to the Askey-Wilson polynomial P;(x) (4.2.63).

Let us consider the asymptotic form of the Askey-Wilson q—dlfference equation ( —(&+¢ )) f
0 in the region |z| > 1. Since the functions A(z) and A(z~!) in (4.2.62) behave as A(z) = (a*)
A(x71) ~ 1, we have the asymptotic form

(z) =
2 and
LY ~a'Ty .+ (a*)7'T, .

Now, recall the function WY OV (z, €) given in (4.2.55):

0(—vag; q)

(cy,cy) —
WO = G, vearg)

where v = ¢'/2. By 0(qz;q) = —z~'0(z; q), we have T;:;W(Clv’cl)(z,f) = (a*&)FIW(C O (g, €), which
implies that the set {)/V(Clv Oz, €F1)} is a basis of solutions of the asymptotic g-difference equation

(@ Ty + (a") Ty = (€+671))f(x) = 0.
Similarly, the £-side asymptotic ¢g-difference equation in the region || < 1 is given by

L5, ~al, i +a 'Tye,

and since TﬂW (©7-C) (5,€) = (a/z)FWCT O (2, €), the set {WCY-CV(zFL £)} is a basis of solutions
of the asymptotlc equation
(a7 Tye +aTy¢ — (x+27"))g(€) =0,

By the argument in § 4.2.4, we have a unique element ® := X+(®) € SOLpaw of the form P =
Vv . .
W(ETC g where g = g(x) has a convergent series expansion around |z| = co with constant coefficient
being 1. By | , Proposition 5.2, (5.8)], ® is written down as

S _ (CcyY,Ch) . (qaf/a*x, qbf/a*l', qcf/a*w, qa*f/dm, d/CL‘, q)oo
et =W (@:4) (¢/az.q/bx,q/dx,q*y?/dx; q)oo
: 8W7(q§2/d:c, qg/a*a qg/d*a b*€7 C*fa Q/dx, q, d/l’)

Remark 4.2.5.1. Our solution ®(z, ) is equivalent to the solution @n(t, ) in | , (5.8)] up to quasi-
constant multiplication.

Now we cite a (CY, Cy)-analogue of Fact 4.1.5.6.

Fact 4.2.5.2 (c.f. | , Proposition 5.2]). The function 5(01 ’Cl)(x,é) = Eg_clv’cl)(x,ﬁ;k, 1, q) given by

g(ci/acl)(x é—) — (qaxg/d*v qag/d*xa qa’/d7 q/ad; Q)oo
* ’ (a*b*c*€, g8 /d*, qx/d, q/dx; q) o
enjoys the following properties.

(i) It is a solution of the bispectral problem (4.2.58).
(ii) It has the symmetry

8W7(a*b*0*§/q; ax, a/m, (L*f, b*gv C*f; q, Q/d*x)

TN (2,6) = £ N @6 = £ PV 7).
(iii) It has the self-duality
) g ek q) = £ e BT g). (4.2.67)
Thus, defining SOL}"w = {f € SOLpaw | (i), (iii)}, we have
g9 € SO

Cl 701)

The function & is called the basic hypergeometric series of type (CY,C1).
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4.3 Specialization

In | , §2.6], we introduced four embeddings of affine root systems of type A; into type (CY,Cy).
They are given by particular specializations of the parameters (k,[), and characterized to preserve the
Macdonald inner product under which the Macdonald-Koornwinder polynomials are orthogonal. Among
the four specializations, the one given by

(k,0) = (k,1,1,1) (4.3.1)

has a special feature that it is also compatible with the duality anti-involution (4.2.15). In this section,
we show that this specialization yields the commutative diagram mentioned in Preface:

oV o X(CYYCI)
SOL{ 15 ") ™ SOLpaw

w0 Jsp

SOL{k7 —— SOLnur
+

4.3.1 The bispectral qKZ equations

Recall the subalgebras H2 (k) ¢ HA (k, ¢) and H{C 'O (k)  H(EY ) (k, 1, q), both of which have the
basis {T. = 1,75, = T1}. Let us identify these linear spaces, and denote it by Hy. As in the previous
sections, let us use the notation K = M(z,¢) and HY = K ® Hy.

Then, the solution spaces of bispectral qKZ equations of type A; and of type (C},C1) (Defini-
tion 4.1.2.8 and Definition 4.2.2.3) can be expressed as

SOL?&KZ(hq) = {f € HY | f satisfies the bqKZ equations of type A;},
SOLC1) (k,1,q) = {f € HY | f satisfies the bqKZ equations of type (CY,Cy)}.
Then we can show:

Proposition 4.3.1.1. For the specialized parameters (k,1) = (k,1,1,1), we have the relation

SOLCIE (k. 1,1,1,q) € SOL{5 (k. q).

Proof. Denoting by ¢4 (z;k,q) = ¢(z : k,q) the function in (4.1.17), and by c(clv’ol)(z; k,l,q) = c(z:
k,l,q) the function in (4.2.11), we have

AT 2k, 1, q) = M (21 k, ).
Then, comparing Lemma 4.1.2.16 and Lemma 4.2.2.4, we have
cY,Cy CY,C
OGNk, 1,1,1,q) = Cil(kyq),  CST Y (k,1,1,1,9) = Cy (K, ), (4.3.2)
from which we have the claim. O

Theorem 4.3.1.2. The specialization (4.3.1) yields the commutative diagram

v (cy,cn)
SOL{C17) (k,1,1,1,q) ———— SOLyaw(k, 1,1,1,0)

spj Jsp (4.3.3)

SOLS&Kz(ka q) SOLymr (K, q)

X+
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Proof. We saw the left vertical embedding in Proposition 4.3.1.1. Thus, it is enough to check that
the specialization maps the bispectral Askey-Wilson equation (4.2.46) to the bispectral Macdonald-
Ruijsenaars equation (4.1.63). Since (k1,ko,l1,l0) = (k,1,1,1) yields the Askey-Wilson parameters
{a,b,c,d} = {k,—k,q"/?,—¢"/?}, the specialization of the z-side equation is computed as

- 4 k—kT1lax2 k=t — ka2
Lioy.onk, L1, 1,q) =k+k" + s T =1+ 1_793_2(21,; -1)
k—k=tp=2 k=t — ka2 "
= Tyz+ T T, = L% (k,¢).

1—22

Note that the parameter ¢* in type A; is compatible with the relation (4.3.2). The &-side is similarly
checked directly, or by the compatibility of the duality anti-involution and the specialization. O

So far we give a computational argument to show the commutative diagram (4.3.3). Let us give
another, more conceptual argument.

Lemma 4.3.1.3. There is an isomorphism of algebras
HOD (k,1,1,1,¢) = HA (k,q).

Proof. Recall the presentations (4.1.20) of HA* and (4.2.12) of H(CY-C1). The former gives HA (k, q) as
the quotient of the free algebra C(T', U, X) by the relations

(T—k)(T+kY)=0 U?>=1, TXT=X"' UXU=q¢"?x"".

Under the specialization (k,1) = (k,1,1,1), the latter gives H(Clv’cl)(k,l,l,l,q) as the quotient of
C(T1, Ty, Ty, T,)) by the relations

(MK +k ) =0, (B)’ =@V =@ =1 TYLRIY =¢ /%  (434)

Now, recalling (4.2.13), we find that the correspondence Ty = T, Ty = U and Ty = ¢~ '/2UX gives the
desired isomorphism O

Since the bispectral correspondence Xfl is defined in terms of the DAHA H*:(k,q), the restric-

tion to the subalgebra H(Clv’cl)(k, 1,1,1,1,q) will give the correspondence Xi_clv’cl). Thus we have the

commutative diagram (4.3.3).

Remark 4.3.1.4. We leave it for a future study to give an explicit element in SOLpaw (k, 1,1, 1, ¢) which
is mapped to SOLymr (K, ¢) under the right vertical embedding sp in (4.3.3). Here we only give a clue to
find such an element. If the spectral variable ¢ is specialized to & = k~1q~'/? (see Proposition 4.1.5.3
(2)), we have

k%, g7t q 1 (cy.,cn)
qlil/kQ;q7 k2x2 = (qle;q)l‘Pl(‘T;k717171;q) = ’F)l ! ! (x’k717171’q)'

P (232, q) = 2o

We expect that there is an element f(z,£) € SOLpaw(k, 1,1,1,¢q) such that the specialized f(x,&;) is
equal to Pl(c1 ’Cl)(x; k,1,1,1;q) and the image sp(f(x,&)) is equal to PlAl(x;t, ).
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