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Abstract

In this paper, we give a sharp sparse domination of pseudodifferential operators associated with symbols
belonging to the Hérmander class, and fundamental solutions of dispersive equations. Furthermore, we give
boundedness results of these operators on weighted Besov spaces by using the sparse domination.

1 Introduction and results
For any m € R and 0 < p,§ < 1, the Hérmander class S;’fé is defined as the set of all ¢ € C*° (RQ") such that
020 a(x, &) S (1+ g™Vl

for any (z,¢) € R?™. Here, A < B means A < CB with a positive constant C' > 0. For given a € S, we define
the pseudodifferential operator a(z, D) by

D) @) = iz [ eCale 7€),

(27-‘-)n

where f € . and f denotes the Fourier transform of f. Pseudodifferential operator is a useful tool for study
of partial differential equations, and the many boundedness results are known. The most basic result is the LP-
boundedness given by Hérmander [19] and Fefferman [18]. Hérmander [19] showed that m < —n(1—p)|1/2—1/p|
is necessary for a(x, D) with a € S)'s to be LP- bounded. Conversely, the LP-boundedness of a(z, D) with
a € S and m = —n(l — p)|1/2 — 1/p| was established by Fefferman [18]. As for the boundedness on
Lebesgue spaces welghted by w € A, which is so called Muckenhoupt weight, Miller [32] established the LP(w)-
boundedness of a(z, D) with a € SO For general a € S7;, Michalowski, Rule and Staubach [34] showed the

L?(w)-boundedness of a(x, D) with a € S "0 and w € A,. Chanillo and Torchinsky [13] showed it for a

larger class a € S’p n(1=r)/2 (0<d<p< 1) and a smaller class w € A/, and Michalowski, Rule and Staubach
[33] showed the same result for 0 < § = p < 1. It should be mentioned here that Beltran [3] showed it for
a €Sy, with —n(1—p)/2 <m < —n(1—p)[1/2—1/p| and w € A,/ NV RH (341/,), where 2 < p < 2t and t' is
the conjugate exponent of t = —n(1 — p)/(2m). We remark that there is no such p that satisfies 2 < p < 2¢ for
the critical exponent m = —n(1 — p)|1/2 — 1/p|. An important idea to deduce weighted estimates is to show
pointwise estimates. For example, Chanillo and Torchinsky [13] established pointwise estimate

|(a(z, D))" (z)| S Maf(z)

for a € 570772 (012 6 < p < 1), whete Maf(2) o= supga, 101l and (a(s, D))" denotes the
sharp max1ma1 function of a(z, D) f.

Recently as a refinement of pointwise estimates, the theory of sparse domination of operators was developed
by Lerner [27]. For operators T' on function spaces, the sparse domination means the inequalities:

Tf(2)] S Asrf(x) and (Tf,9)| S Asre(f:9)-

In particular, we call the first one sparse bounds and the second one sparse form bounds. See below for the
definition of Asﬂn and Agms/.

Definition 1.1. Letn € (0,1). A collection S of cubes in R™ is an n-sparse family if there are pairwise disjoint
subsets {Eq}qeg such that Eq C Q, and |Eg| > 1|Q)|.

We often just say sparse instead of 7-sparse whenever there is no confusion. For any cube @ and p € [1, c0),

we define (f), o : |Q|77||f|\Lp(Q) For a sparse collection S and r, s € [1,00) , the (r, s)-sparse form operator
As,rs and r-sparse operator Ags , are defined by

AS,rf(:E> = Z <f>r,Q1Q(‘T) 5 ASrs fa Z |Q‘
QeS QeSs

for all f,g € L} . If r < p < s, we have

As.rs(f,9) S ANl

This inequality is easily obtained from the LP-boundedness of r-Hardy Littlewood maximal operator M, which
is defined by M, f(x) = supgs, (f), o- Furthermore, weighted inequality with Muckenhoupt weights is deduced
from sparse domination. Bernicot, Frey and Petermichl [5] showed

loc*

Asrs(f9) S ([W]AMT, [w]RH(S/p),)a||f||Lp(w)||g||Lp/(w1,p/),



_ PN -1
where p € (r,s) and o = max(pir, i_;), [w]Aq = supQ(w)LQ(wl q >1,Q and [w]RHq = supQ<w)LQ<w>q7Q for

any 1 < ¢ < co. From these observations, sparse domination is used to study the weighted boundedness of
operators, and Lerner [27] gave the simple proof of A conjecture which means

||Tf||L2(w) S [W]A2||f”L2(w)’

where T' denotes the Calderén-Zygmund operators. The As conjecture was studied by many researchers. For
example, Petermichl [37], [38] solved the As conjecture for Hilbert transform and Riesz transform, and Perez,
Treil and Volberg [36] gave

ITFll 2wy S [wla, 108 (1 + WA ) f]] 20

for general Calderén-Zygmund operators. Finally, Ay conjecture was completely solved by Hytonen [21]. Lerner
[27] gave another proof by establishing

ITFllx S sup [lAs1fllx

for any Banach function space X, and it was improved to the pointwise estimate

Tf(2)l < Asaf(x)

by Lerner [28], Lerner and Nazarov [30]. There are also results of sparse domination with other operators. Sparse
form bounds of rough singular integral operators and Bochner-Riesz multipliers were shown by Conde-Alonso,
Culic, Plinio and Ou [11], and Lacey, Mena and Reguera [26] respectively.

Beltran and Cladek [4] discussed the sparse domination of pseudodifferential operators with symbols in S;’f(;,
and they established

la(z, D) f(2)] S As.r f(2),

with a € S;Z;(l*p) and 1 < r < oo which implies the weighted boundedness result of [34], that is the LP(w)-

boundedness with w € A,. We establish a pointwise estimate of a(x, D) with larger class a € S;Z(l_p)m than

S, :)l(l*p ) by introducing another type of sparse bounds:

Theorem 1.1. Let a € S}, with 0 < p < 1 and m € R. Then, for any f € L°, there exists a collection of
finitely many sparse families {.; }jzl such that

@ D)@ SIS (g S lal)

j Qe RCQ,Re.%
if and only if
m < —n(l—p)/2.

Then as a corollary, we recover the weighted boundedness result which was showed by Michalowski, Rule
and Staubach [33], that is the LP(w)-boundedness with a € S;Z(lfp)ﬁ and w € A,/;. Furthermore, as a
benefit of our new sparse bounds, we have the boundedness of pseudodifferential operators and also the time
evolution e(—"* with 0 < < 2 of dispersive equations on weighted Besov spaces (Theorem 3.1, Theorem
3.2, Corollary 3.3, Theorem 3.3, Corollary 3.4). We have also the following Coifman-Fefferman estimate for

a(x, D) by the same argument used in the proof of Theorem 1.1.

Theorem 1.2. Let a € S;Z(l_p)m with 0 < p < 1. Then, for any w € As and 0 < p < 00, we have

lla(@, D) fll Loy S [Wa 1M2fl] Lo (w)-

This paper is organized as follows. In the next section, we prove Thoorem1.1 and Theorem 1.2 by using Lerner
and Nazarov’s method. The Section 3 is devoted to establishing a sparse form bounds and the boundedness
on weighted Besov spaces for a(z, D) and eit(=a)*/2

weighted boundedness of these operators.

, Furthemore, we give some results about the sharpness of



2 Sparse bounds for pseudodifferential operators

2.1 The pointwise estimate for pseudodifferential operators

To establish Theorem 1.1, we use the following definition of dyadic lattice and sparse decomposition of measur-
able functions given by Lerner and Nazarov [30].

Definition 2.1. A Dyadic lattice 2 in R™ is any collection of cubes such that
(D-1) if Q € 2, then each child of Q is in 2,
(D-2) every two cubes in 2 have a common ancestor in 2,
(D-3) 9 is regular, i.e., for any compact set K in R™, there exists Q € 9 such that K C Q.

Theorem 2.1 ([30]). Let f: R™ — R be any measurable almost everywhere finite function such that for every
e >0,

lim R~ "|{z € [-R,R]"; |f(z)] >} =0.

R—o0

Then, for any dyadic lattice 2 and any X € (0,27"~2], there exists a sparse family S C 2 such that

@< S wn(f5Q)10(),

QeS

where

wr(f;Q) = bigi;? mil}gElf(QC)—f(m’)\-
|B[>(1-N)|Q|

By using Theorem 2.1, we have a pointwise estimate of a(x, D) with a € Sp_,:f(l_p)m:

Lemma 2.1. Leta € S,;Z(I*p)/Q with 0 < p < 1. Then, for any f € L, there exists a sparse family S so that

‘a(l‘, D)f(x)| s Z 27k Z <f>2,2k+1Q1Q(x) + Z 27k Z <f>272k+1QplQ(x)v

k>0 _2n k>0 _2n_
= Qes,|Q|=3" 1-p = QES,|Q[<3 1-¢

where € = |n/2] —n/2+ 1. Here, Q° denotes the cube such that |Q?| = |Q|” whose center is the same as that
of Q.

To prove the lemma, we give a partition of unity. Take 1) € C§°(R™) such that supp U C B(0,2), ¥ =1on
B(0,1) and ¢ > 0, and denote 1;(£) := (277¢) — (277 FLE) for j € Z,

_ ’L/Jj j € N
¢; = . .
Zigo Yi j=0
Then, a(z, D) is decomposed as
a(x,D) = Zaj(x, D),
3=0
where a(z, &) = a(z, )gBJ (£). Furthermore, we use these notations in the following sections. Let us prove Lemma

2.1.

Proof. From Theorem 2.1, we have

la(z, D) f(2)| < Y willa(z, D) f(2); Q)1q(x),

QesS
First, we consider the case |Q] < 377 Let a > 0 and

E={xeQ; |a(xz,D)(flagr)| < a}.
Then, L? — L?/? boundness of a(x, D) yields
Bl o Hla(z, D)(f12ge)|| 2/

o Hla(@, D)l 2o poro 1 fll 122

INIA



By taking a = 2" A~*/2||a(x, D)2y 1200 (f)a.2qs» one has |[E¢| < AQ[ and |E| > (1-A)|Q|. Therefore, we have
la(z, D) f(x) — a(z, D) f(2')| S (f)apqr + la(z, D)(fLl2qe)e) (@) — a(z, D)(f1aqe)) ()]

for any x,2’ € E. We estimate the second term. Let a;(z,€) == a(z, £)¢;(€) and

Kj(z,y) = /ei(xfy)gaj(x,f)df.
We integrate by parts in £ to obtain
Kl Slo ol X | [ oot 0
la|=N
for any n € N. Hence, we have
e D)) < X [l sl gry )| [ =500y 0, 0 ay
lee|=N

= sup
|a‘ N 19l Lo =1

/ oyl eiw*ﬁa?am,g)dsdy‘

/2

sup (/ 024, (2, 6)| ) 17z — 7 fLageedll,.

|a\ N 191l Lo =1

1/2
9ipn/2—jpN (/(2Q ) |z — y2N|f(y)2dy)
e

1/2
gien/2=ipN § (/WQ - |z — yIQNIf(y)Izdl/>
2 P\2FQP

k>1

2jpn/2—ij€(Q)—pN+pn/2 Z 2_kN+kn/2<f>2’2k+1Qp~
E>1

IN

A

N

A

By taking N > n/2, one has
| ( D)(fl(ng | < 2= kN+kn/2 <f>2 Sk t1 0+
Z » Q

2-7<U(Q) k>1

On the other hands, it holds that
(z —y)"{K;(z,y) — K;(z',y)}
@) [ e a0 e + (- ) [ a5 (0,6) - 0y g

[ mep - e g a e)de + [ I ae.) - (e’ )i

For any j such that 277 > £(Q), Taylor’s formula yields
|92 {(1 — e =) ay (2, )} < (@272 ilel
and
1
(02,9~ @ D] = |08 [ (@) (Vo' + tlo — "), )
0
< g(Q)ijn(lfp)/ijp\alJrjp.

From these results, we obtain

> laj(@, D)(flagey)(x) — a;(@, D)(f1aqe) (@)

277>4(Q)

S DD PRINYQ) TN Y Ty N i
2-7>4(Q) k>1

S D), g

k>1



by taking N = [n/2| + 1. In the case |Q| > 37177, the desired estimate is easily checked in the same way as
above by setting

E={zeQ; la(z,D)(flag)| < a} , a=2"A"2[ja(z, D)l 12—, 12(f)2 50-

2.2 Proof of Theorem 1.1

In this subsection, we prove Theorem 1.1 by using Lemma 2.1 and Lerner and Nazarov’s technique [30].

Definition 2.2. Let P denote a map from {(Q,Q') € 2 x 2 ; Q' C Q} to {true, false} such that P(Q,Q) =
true for any Q € D. Then, we call that (Q,Q") is one step if P(Q,Q") = false and P(Q, R) = true for any
Q" C R CQ, and we call that (Q,Q") is finite step if there exist m € N and sequence Q' = Qo C Q1 C -+ C
Qm = Q such that each (Q;+1,Q;) is one step. Furthermore, we set

stop(Q,P) ={Q" € 7 ; (Q,Q") is finite step, or Q' = Q}.

Let S C & denote a sparse family and that with every cube @ € S some family .7 (Q) C Z of child of Q is
associated so that Q € Z(Q). Then, we define the family of cubes S by

s=U 7@
QEeS
F(Q)={Pe ZQ); P¢ FR) for any Q C R},

and we call S the argumentation of S by .# (Q). In [30], Lerner and Nazalov proved S is a sparse family if
Z(Q) are sparse families. In particular, they proved the following result in the same paper.

Proposition 2.1. Let S be a sparse family and assume that
1
Y1l < 5lel
J

for any Q € S and finitely pairwise disjoint cubes {Qj}j included in @ such that P(Q,Q;) = false. Then, the
augmentation of S by stop(Q,P) is a sparse family.

Let us prove Theorem 1.1.

Proof. In view of the three lattice theorem in [30], there exists a family of dyadic lattices {Z;}
that
- For any cube Q € 2 and j, there exists an unique cubeg € Zj such that Q C Q and |@L: 32"|QL7
- For each pair of cubes (@, Q") in R”, there exist j and (Q,Q’) € Z; x Z; such that Q C Q, Q' C @', and
Q| ~ Q] Q'] ~ Q']
For any cubes Q” and k € Zx¢, we can take j and Rg, R € ; such that Q” C Rg, 2°Q” C R and |Q”| ~ |Rg],
|28QP| ~ |R|. Therefore, we have

_ Ro|\°
D22 YT (Maawmgle@ S D Ej(bg)quﬂmm
k>0 Qes j QeS  Rew;
jQl<s 77 j@l<a” 5 ek

j=1,2, 32n Such

Furtherinore, we take Q € :@2] such that Q C @ and |Q| = 3%"|Q| for any j, and deﬁnefj ={Q; Q € S},

S;=1{Q; QeS, |Q <3 T}, of course S; is a regular sparse collection. Since @ — () is a injective map,
2n

we can define the map R@ = Rg. Here, the assumption |Q] < 37 1-¢ gives

Q1 =3""1Ql < |QI” < |Rql,



which yields Q C R@‘ From these results, for any regular sparse family 87 so that S; C ST C 9;, we obtain

> Y S (B twew £ T T (1) tastew

j QES ~ Rey, j QES, ReP;
RoCR RoCR

Sy s () v

J UeS; QeS; ReHs(
RQCR

S s X 3 (He) o

i ves, FeHsU) QEeS; ReHg(U)
QCU RqQCR

lQl<3™ 5

IN

where
HE(U) :={R€ 9; ; RCU, there is no cube P € S; so that RC P C U}.

Here, we claim that

ReH=—(U) |R|
S5
RQCR

In fact, since R, Rg € %;, R and R have a common ancestor in ;. Therefore, if R C R, there exists k € N
such that

IR| = 27| Rg)|.
Furthemore, if R, R’ € 9 satisfy Rg C R, R’, we have R C R' or R C Rby RN R’ D Rg # 0. Hence, the map
R — |Rgl|/IR| , {R€%;; Rg CR} — {27"; ke N}
is a injective map, and we have
[Rql )" —kne
X Ui = 2 () =g
RoCR RqCR

Therefore, one has

22 2 (Mhangle@S D 3 o Y lo(@).

k>0 Qes 7 ves; REHS (U) -

To establish deisired inequality, we give a regular sparse families 87 such that

sup <f>2,R§ <f>2,U-
ReHg(U)

To this end, we define the map P by

P ={ [, =

Let {R; }j be a pairwise disjoint dyadic children of U such that P(U, R;) = false, then we have

Z|R|< |U|Z|\f||Lz<RJ 110 < 310

Hence, the argumentation of S; by stop(U, P) is a regular sparse family and put it as S;. We assume that there
exists a R € HQ(U) so that P(U, R) = false. From the definition of Hsfj(U)7 we obtain R ¢ S; which yields
R ¢ stop(U,P). We take R C Ry C U such that P(U, Ry) = false. If Ry # U, we can take Ry C Ry C U such



that P(U, R2) = false again. By repeating this work, we have P(U,U) = false which contradict the definition
of P. Hence, we have P(Q, R) = true and

sup  (flo.r S (v

ReHg; 1)
On the other hands, by Lerner and Nazarov’s result [30], we can find {S; }j=1....3n such that
Z 2~k Z <f>272k+1Q1Q(x) S Z Z <f>2,Q1Q($)-

. — L
R20 QesQiz3T TS 7 Qes;

From these estimates, we obtain

la(@, D) @) S DY (Nagle@+Y. > (Hag > 1r()
J Qes; J QeS; geC%
< YN o D@ DY (o Y 1a(a)
i Qes§; ReS; J QeS; ReS;
RCQ RCQ
S DD (o D k@),

where {7}, := {S1--- 831,81, - Sgan }.
Conversely, we assume

la(z, D) @) S D > (Nag D lele).

J Qe Re;
RCQ

For any s € (1, 00), we have

fa(@, D))l S D D Nag D |BIGe

j Qe RCQ,RE;

SIDSD SN S ARV
J Qe RCQ,Re¥; Er

S Y Y he X [ Mgl
j Qe RCQ,Re¥; ” PR

S Z Z |Q‘<f>2,Q<M(ng)>1,Q
J Qe

S ZASJQ,S’(fag)‘
J

Hence, we have the LP-boundedness of a(x, D) for any 2 < p < oo. On the other hands, Hérmander [19]
showed that m < —n(1l — p)|1/2 — 1/p| is necessary for a(x, D) to be LP- bounded. Therefore, we have
m < —n(l—p)/2. O
2.3 Weighted L? bounds for pseudodifferential operators

This subsection is devoted to prove Theorem 1.2. The class A,, denotes the set of all nonnegative locally
integrable function w such that

1
(W, = sgp w(Q)/QM(le) < 0.

The sharp reverse Holder inequality of A, weights was shown by Hyténen and Pérez [23] .

Theorem 2.2 ([23]). Let w € As,. Then, there exists a constant ¢, depending on dimension n such that

<612|/Qw5>”5 < %w(Q)

for any Q where 6 =1+ cn[w];l;.



From this theorem, we remark that

fe = (L) (L)
@ / |f5’)1/6

for each nonnegative locally integrable function f. In particular, for any measurable subset ' C (), we have
B\ /Y
B <2(5) @

by taking f = 1g. To establish Theorem 1.2, we establish the following lemma which is shown by using Cejas,
Li, Pérez and Rivera-Rios’s idea in subsection 5.2.3 in [12].

N

IN

Lemma 2.2. Let X : {cube} — {cube} be a map such that Q C X(Q) for any cube Q, and let

As,xf(x):= Z (Frx@le(@)

QeS

for any sparse family S and 1 < r < oo. Then, for any w € Ax and p € (0,00), one has
As X fll oy S Wla  IMefll Lo )

for any f € LY.

Proof. Let v > 0 and we have

s xflloy S D 2"w({Asrxf>2")

k€EZ

> 2P w({Asaxf > 25, Mof <4280+ 2Mw({M, f > 42%})

kEZ kEZ

> 2P0({Asrx f > 25, Mo f <y28) 447 |IM £
keZ

IN

A

Here, we set

Sm
S

{Qes;2m< <f>r,X(Q) <2mthy,

{Q € S, ;5 Q is maximal with inclusion}

for any m € Z. If 2™ > 42F, we obtain M, f(z) > 72* for any = € Q € S,,, from the assumption Q C X (Q).
Hence, one obtains

w{Asyxf>2" M f<2F})) = w S Aspexf > 2% M,f <42
2m <y2k

< Y w({As,exf >y 20
2m <2k

< Z w Z 1Q > 7*1/22(7m+k)/272
m<y2t QESwH

= Z Z w rel; Z lo(z) > 7*1/22(7m+k)/272
a2t Uesy, Q€S QCU

= > > w(B).

2m<y2k UESE,



For any s € (1,00), the sparseness of S,,, gives

Yool < osuwp Y /Qg

QESH,QCU Ls HgHLS/:lQeSm7QCU
S sup /Mg
llgll o =17Q
1 3
< sup  |QIY°||Mgl|p.
llgll =1
< s|QIVe,

which yields
|E| < 2(m_k)s/2+28’y_s/288|U|.
From this and Theorem 2.2, we obtain

Z2kpw({AS,r,Xf>2kv Mrf§2k}) < Z2kp Z 2(m—k)s/(25’)+25/5’7—5/(26/)85/5’ Z w(U)

kEZ kEZ 2m <2k Uesy,

< 225/6/’78/(25I)85/6l Z 2m8/(26/)w({M'r‘f > 2m}) Z 2kp7ks/(25')

meZ 2k >~ —12m

S 225/5’7,p+s/5’85/5/HMTf”[l)/p(w)

for any s/(26") > p. Since
1+ c,lw -1
e IR
CH[W]AOO =

we obtain the desired inequality by taking v = [W]ZXL and s = cw],  with some large constant ¢ > 0 depending
on only n and p.
[

Let us prove Theorem1.2.

Proof. For any k € Z>, we define the map X}, : {cube} — {cube} by

_[ 2 191z —20/(1-p)
x@={ 3l (82 00

From Lemma 2.1 and Lemma 2.2, we obtain

la@ D) fllowy < D2 " IAs 2.l 1o
k>0

S > 27 wla 1M fll 1o
k>0

S Wla M2 fll e

for any 1 < p < co. The result with 0 < p < 1 is proved in a same manner by using p-triangle inequality on
LP(w). O

3 Sparse form bounds for Pseudodifferential operators

3.1 Besov-type sparse form bounds

Beltran and Cladek [4] established sparse form bounds of pseudodifferential operators

|<a(x,D)f, g>| /S A'r',s’ (fv g)

with a € S}, and m < m(r, s) where

i 8)_{n<1p><1/r1/2> 1<r<s<2



It is natural to ask whether such bounds hold or not when m = m(r, s). However, we do not know how to settle
this problem. Therefore, we treat the case m = m(r, s) by using Besov type sparse form bounds

|<(l(l’, D)f, g>| S Z QjHASj,r,s/(d)j * fv g)
j=0
with suitable x € R. As for the definition of {¢;}, we refer to subsection 2.1. By using Beltran and Cladek’s
idea, it is not hard to see
(a(e, D)f,g)| S Y2 Im NS, 1 (05 % £ 9)
>0
for any € > 0. Our purpose is to eliminate € in the above inequality. More generally, we use

1/

Ag,r,s(fag) = Z |Q|<f>?,Q<g>?,Q

QES

to obtain the following results:

Theorem 3.1. Let 2 < s< oo and1<1/a<3/2—-1/s, and a € Sy, with m <0, 0 < p < 1. Then for any

f,9 €7, there exists a sequence of sparse families {Sj}j:O,l,m such that

(a(z, D)f.g) < liminf Y 27"AG 5 o ((6; % F)lon.9):
3>0

where k1 =m+n(l—p)(1/2—1/s)+ pn(l/a—1). Here, Qr denotes the cube whose center is origin and side
length is R.

Theorem 3.2. (i) Let2 < s < oo and 1 < 1/a < 2/s', and a € S}, with m <0, 0 < p < 1. Then for any
f,g9 € 7, there exists a sequence of sparse families {‘Sj}jzo,l,--- such that
e, D) S i ind 32708, (65 )
J>

where Ky =m +n(l —p)(1 —2/s) + pn(l/a —1).
(ii) Let 1 < s’ <r <2< s<ocanda€ Sy, withm <0,0<p<1. Then for any f,g € 7, there exists a

sequence of sparse families {S; }j:O 1.... such that

(a(z, D), g)| < liminf Zjo 2 s, (95 % F)1Qu: 9),
J1Z

where kK3 =m+n(1 —p)(1/r —1/s).

To prove Theorem 3.1 and Theorem 3.2, we introduce the maximal operators Mz , defined by

My f() = sup QI T (1))l

for each linear operators T and s € [1, x].

Proposition 3.1. Let 1 <r <s<ooand 0 < a <1, and T denote a linear operator on L2. We assume
weak-type (r,p) of T and My s with

1 11
S o= S -4l
p T «

Then, for any f € LY and g € .7, there exists a sparse family S such that

(Tt 9l < (T

Proposition 3.1 with « = 1 was proved by Lerner in [28], [29]. The proposition with general « is proved in
a similar manner, but we give the proof for reader’s convenience.

L7 —sLp,oo + HMT,sHLT_,Lp,oo)Ang/ (fv g)'



Lemma 3.1. .Let 1<r<s<ooand0<a<1, feL® andge ., and T denote a linear operators on L?.
We assume that for any cubes Q@ C R™ there exists some family Fg of dyadic child of Q such that

(F-1)  Fq is a pairwise disjoint collection, i.e., PN P =0 for any P,P" € Fg such that P # P,

(F2) ) |PI<

PcFqg

(F-3) /Q T(f130)gda

<3 C|Q\1/a<f>r,3Q )oro T Z

PeFq

/ (f1zp)gdz|.

Then, there exists a sparse family S such that

(Tf,9)l < CAG . (. 9)-

Proof. Pick up a cube Qo in R™ containing supports of f. Then, we construct {Fj},_, 12, by

Fo={Q} . Fer1= UJ Fr.
PeFy

and set S;(Qo) = Sy = Uf:o Fi, 8(Qo) := S = U, Sk From the assumption (F-1), Fj, is a pairwise disjoint
family. The assumption (F-3) gives

’ / T(flag))gdz| < C Y [P spl)er+ > || T(flsp)gdz
0 PeSy, PeFk41
< O IPMYDapleh et S / (lsp)gds
PeS PeFiy1 P

for any k£ € N. From

Z ‘P‘S Z Z |P|§% Z ‘L|§..,§27k71‘Q0‘,

PeFri1 LeF, PeFyr LeFy
we have
Z / T(flzp)gdz| — 0 as k — oc.
PeFi41 P
Therefore, one obtains
[ 7100 < 013, (1.0).
0

We prove the sparseness of S. Let @ be any dyadic child of @Qg. For any k, we have

Sop < Y Y

Pe]:k+1,PCQ LeF, PEFL
PCQ
< 2 P+ Y IP
LeF, PeFy, LeF, PeFy,
LCQ PCQ LO>Q PCQ
1
< >, M+ > 1P
LeEF,LCQ LeF, PeFy
LDQ PCQ
=: ap + bg.

Here, if by # 0 for some k, it holds that b; = 0 for any i > k. Actually, by # 0 means that there are L € }'k

and P € Fr, C Fr41 so that L D @ and P C Q. From the pairwise disjointness of Fj1, any cube in |
do not contain ). Hence, we have b; = 0 with ¢ > k, and

Zbk <1Ql.

k>0

z>k



From these results, one has

doar < %Zak+|Q|

E>0 k>0
doar < 20Q)
k>0

which means S is a Carleson family, and therefore S is a sparse family. To complete the proof, we take the
pairwise disjoint family of cubes {Q); }j:O 1 o... S0 that any 3Q; contain the support of f and the union of Q;

coincides R™. Then, & := U528 (Q;) is a sparse family, and we obtain the desired sparse form bound.
O

Let us prove Proposition 3.1.

Proof. For any cube @ in R™ and A > 0, set

E={zeQ; T(flsg) > NQI"* ' {f), 50} U{z € Q5 Mr(flg) > NQ["* (), 50}

From weak-type boundedness of 7" and My s, we obtain

a— 1/p _ e
{z € Qs T(f13q) > MQI"* (f)aot T < ARV sl Tl s poe 11 150
< AT s e | QI
and
a— 1/p _ e,
{z € Qs Mru(flsg) > NQIM " (st < AR (sl Mrsll e o1 Il 30)

_ 1
R N [ 1,72 S (o]

We apply the Calderon-Zygmund decomposition to 1z to construct the family {P; }j of pairwise disjoint dyadic
child of @ so that

27" Pl < |[P;NE| < 27H Py,
|E\ P| =0,

where P = (J P;. Here, the pairwise disjointness of {F;}; gives

IN

>

J

P;

\ [ (100 JR
Q Q\P

= L+ 1L+

/ T(flzq\3p,)gd
P

J

Since |E \ P| = 0, one obtains
< /Q T salsids S QM (1), /Q 191 < MQIY(F), 400} o

On the other hands, since P; N E° # (), we have

I < YT saner)l o 19l )
] 1/s

< Z [T (f1laq\ap; )l 25(Pj) 9l @)
] . 1/s

< (S g drretrra)@) ) sl
’ 1/s

S (X N, sllalle @
J

< AR sl9)s o

From these results with sufficient large X ~ (||T|[ 1+, ;p.00 +|[M7,s|| ;+,  ».o ) and Lemma 3.1, we obtain ) | | P;| <
271Q| and complete the proof. O



Remark 3.1. From Lebesgue’s differentiation theorem, we obtain

. 1 . 1/s
7@ = g;g()(@ )

.. 1 s
MT,sf(fv)Jrlllgllg})f <|Q|/QIT(f1(3Q))I )

ST

1/s

IN

If T is a bounded operator from L*~¢ to L® with some € > 0, then we have
1 1/s 1 . 1/(s—¢)
lim inf (/ |T(f1(3Q))|S> liminf(/ rin )
Q-0 Ql—o |0/
o0\l /g 950 1@ 3Q

1 B 1/(s—e)
lim inf 1/(s—e)—1/s < / s E)
iminf Q| 3G Juo £

Q3

= 0.

A

AN

Hence, we have |Tf(2)] < Mr.of(x) and [T, poe < || M

Lr—Lp:>°-”

The Proposition 3.1 gives some interpolation theorem.

Corollary 3.1. Let 1 <r < sg,s1,p0,p1 < co. We assume a linear operator T satisfies

1Mz sofl oo < Coll£llLrs
M5, fllore < Cullfll

A

Then, for any 6 € (0,1), we have
IMrsll ey e S Co' 701
where 1/s = (1—6)/so+6/s1 and 1/p = (1—0)/po+ 6/p1. In particular, we have
(TLOIS Il e e + Co' ™ CL)AG 10 (£,9),

where

Proof. Let @ C R™ be any cube and x € Q. For any simple functions f,g so that ||g||,, = 1, we define the
analytic function F on the open strip {z € C 0 < Rez < 1} by

F(z) = /Q T(f1a0)-) (2)g- (2)dz,

where
g- = sgn(g)|g|* {17/ st/
Then, it holds that
Rl < [ T aq )l
< Tl peo o)
< QY My, f(2).

On the other hands, one has

F(1+iy)| < /Q T(F1aa))llgl*
‘|T(f1(3Q)C)||LS1(Q)
QI My, f(z).

IN

IN



By using Hadamard’s three lines lemma, we have

[E(0)]

IN

|Q‘(1_9)/80+9/81 MT750 f(-T)l_eMT,Sl f(‘r)e
QY M sy f(2) ™" M, f (),

which yields
Mo f(x) < My f(2)' " My g, f(2)°.
By Holder’s inequality, we have

—0 0 —0 0
WMz, ) Mz, ) e S 1M fll prgee M5, £ 1o
< G CIfll,

for 1/p = (1 —0)/po +6/p1. By this and Proposition 3.1, we have ||[Mr ||, ;poe S Co' %1% and the desired
sparse form bounds for T'. O

Corollary 3.2. Let 1 < ry,r1 < sg,81,p0,p1 < 00. We assume a linear operator T satisfies

||MT,Sof||Lpoyoo < C0||f| L7o>
1Mz, fllporee < Cullfllpm -

and
Tf(@)| <T(fN)(x) a.e zeR™
Then, for any 0 € (0,1), we have

[|Mrs < G0y,

|Lrsppee S

where 1/s = (1 —0)/so+60/s1 and 1/q= (1 —0)/po + 0/p1. In particular, we have

(TE ) S T oy poee + Co' P CLOAS . o (£ 9),

where

Proof. The proof is similar to that of Corollary 3.1. Let @ C R™ be any cube and x € ). For any simple
functions f, g so that [|g||,, = 1, we define the analytic function F' on the open strip {z € C 0 < Rez < 1} by

F(z) = /Q T(f- 130y ) (@)= (2)de,

where
fo = sl
g: = sgn(g)lgl* {072/ 0=/,
From |Tf| < T(|f]), we have
Fliy) < /Q T(f1 sy llgl*
< T2 o)
< QI Mg (If"70) (2),

and

PO +iy)| < /Q IT(f 1300 llgl”/*
||T(fz1(3Q)”)HLs1(Q)
QI * M, (™) ().

IN

IN



Hence, one obtains

r/To 1-6 r/ri o
My f(z) < My (IF[770) (@) M, (IF]77)(@)

By using Hélder’s inequality, we have

1-6 r/To 1-6 r/ry 0
||MT,SU(|f‘ )||LT’0“X’HMT,51(|f| )HLPL‘X’

Co'COI£1I -

(Mo (7)) (M (1777 e

IN A

We give a proof of Theorem 3.1.

Proof. We recall the dyadic decomposition in subsection 2.1. Since ¢; * f = (¢j_1 + ¢; + @j+1) * ¢; * f, we have

Jj+1
{a(@, D))l = > > lai(z,D)(¢; * f), 9)]
j>0i=j—1
j+1
=¥ [{ai(z, D)( lim 1gne; % f),g)l
j>0i=j—1
j+1
< liminf 7 7 ai(x, D)((¢5 % Hlga)9)l.
j>0i=j—1

Therefore, it is enough to prove

|<0’J($7D)fag>‘ S ZjHIAg' 2 e’(fvg)

VEEEE

for any f € L° and g € .. For any =,z € Q and € [0, 1), we integrate by parts N € N times to obtain

1/2
N . —2
a2 D) (/L) ()] < 2ﬂm+f”/2{ Lo 25—l f<y>|2dy}

1/2

A

. . i -2
23m+Jn/2{/ (1 + 22PNz — y|2N) |f(y)2dy}

1/2
S { / (1+ 2%N)_2|f(y)l2dy}
kez \Jlz—y|l~27ir2k

< mHInao 2|2 a)' )

where M7h(x) := supge, |Q|" (k). Hence, we obtain

Mo, (0.0 .00 S 2 Hm0=20=0)/2 00| £12) ()2,

By weak-type boundedness of M7 (see, for example, Remark 2.10 in Lacey, Moen, P’erez and Torres [25]), for

any pg > 2, one has

1Mo (2,000l g0 S 27T/ ZHIRALZZ RO )]

by taking v = 1 — 2/pg. On the other hands, we have

llaj (@, D) fl] poy S 2" HIE2ZVED 1))

for any p; > 2. From this and

ym—+jn — — 1/2
Mo, (o, [ (@) S My, (a5 (w, D) f)(w) + 27022 N =2/on (| £12) ()7,

~ p1
we obtain

HMa]-(:c,D),p1f||Lp1,oo 5 2jm+jn(1/2_1/pl)||f||L2'



Therefore, Corollary 3.1 gives
[(aj(z, D) f,g)| < 2jm2jn(1—9)(1—p)/2+jpn(1—9)(1/2—1/po)2jn9(1/2—1/p1)Agz’sl (f,9),
with 1/s =6/p; and 1/aa=1/2— (1 —60)/po —0/p1 +1 < 3/2 — 1/s. By simple calculation as following,

(1=0)1=p)/2+4p(1=0)(1/2=1/po) +0(1/2=1/p1) = —p(1-0)/po+1/2-0/p
= —p(1-1/a+1/2—-1/s)+1/2—-1/s
= (- p)(1/2—1/5)+p(1/a— 1),

we have the desired sparse bounds.

To establish Theorem 3.2 by the interpolation argument as Corollary 3.2, we need the condition |a(z, D) f| <
a(z, D)(|f|). Unfortunately, it fails in general and we need the following alternative argument:

Lemma 3.2. Let 0 < v < 1. We assume a linear operator T' satisfies

T2z < Co,
Mroof(z) < CiM"f(z) ae xzeR"

Then, for any 6 € (0,1), we have
||MTT'||LT*>LPOO ~ C - Gcl )
where 1/r = (1—6)/2+6 and 1/p= (1 —~)0 + 1/r'. In particular, we have

|<vag>| S (||T| LT™—Lp:>° + CUl_&ClG)Ag,T,r(fa 9)7

1 2
()
« r

Proof. We put E = {Mp,f > A} for any A > 0. For each § > 0, we have

where

Bl < {Mpef>A M <OM[+[{M)f >0}

= |Eo| + |EAl,

where M f = M7(|f[")""

. Weak-type boundedness of MY gives

B < 67l
with 1/g = 1/r — v/r. We need to estimate |Ey|. For any x € Ey, there exists a cube @, such that
Qul < NI L300 )

Let K C Ej be any compact set, then we can select a finite pairwise disjoint subcollection {3Q;} ; C {3Q:}

such that
K|S0l
J

zeE

From the duality of ¢ (N; L"), we obtain

|K|1/7‘/

IN

ZHT AEDE )|

L7 (Qy)

sup Z/ fl(dQ]

{gJ

Here, the supremum is taken all over g = {g;}, such that ||g||;- .-y < 1. We define the analytic function F°
on the open strip {z € C 0 < Rez < 1} by

9=X [ 100,00



where

sgn(f)|f| 0=/
r{(=2)/242}

fz
9z = sgn(gy)lg;

By L? boundness of T', one has

. r/2 r/2
F(g)l < SITLlzio sl + Co Sl p2gao, gl
J J

< ||Tf2||L2 + COHfZHL2
< CollfIlE

Since Q; N Ey # (0, we obtain

F+iy)l < 37 i Mroofo(@)lgll;
j J

< Clzj:ziencgj MY f ()" g7
< O

By these results, we have
K| < (Gy0ed) &N | 0
= (G AT

and

B <8N If1IE + (CoP0D) 6 NI

Here, we optimize for § to obtain

[E[MP < X7ty Ot fll e

where 1/p=r8/q+1/r" = (1 —~)0 +1/r’". Hence, My, be a weak-type (r,p) operator which yields
UL S (TN o proe + Co " CT)AG 11 (£,9)-

Let us prove the Theorem 3.2.
Proof. The theorem follows from the pointwise estimate
Mo, (2,0 00 f () S 27 HO=PU=DIN0 £ (),

Lemma 3.2 and Marchinkiewicz interpolation theorem. Indeed, this estimate and Lemma 3.2 yield

, , < gimtjn(l=p)(1-2/s)+jpn(l/a—1)
Ls' s[s’ o0 ~

HMaj(rc,D),s|

by taking 1/ = 1+ (2/r — 1)y. Moreover, by interpolating this with a = 1 and [|M,,( p),
2jm+jn(1_p)(1/2_1/5)7 we have

S||L2_>L2,oo S

||Maj(w,D),sHLT*>LT1w < gim+in(l—p)(1/r—1/s)

Thus, we obtain the desired sparse form bounds. Now, we prove the above pointwise estimate. For any z,z € @
and v € [0,1), we integrate by parts N € N times to obtain

. ) . —1
o5 D) (Flog )@l S 27 [ 128y )y

o ) —1
s 2 [ 22—y 7 )y
< rmAm=p(=) N7 £ ().
Hence, we obtain
Ma@ D) wo(z) < 2jm+jn(1—p(1—’y))M’Yf(x),
and complete the proof. O



3.2 Application to the boundedness on weighted Besov spaces

This section is devoted to obtain the boundedness on weighted Besov space of pseudodifferential operators. To
do this, we establish the weighted bounds for A§g , ;, by using Bernicot, Frey and Petermichl’s idea in [5].

Proposition 3.2. Let 1 < r < g < p < s < oo and 1/a = 1/p' + 1/q. We assume a weight w satisfies
wl € Ag/r N RH(,q)(s/py - Then, for any sparse family S C 2 with some dyadic lattice 9, we have

§
AS’I‘S (f7 ) ([wq]A /7[ q]RH<p/q)(S/p)/) Hf||L‘1(w‘1)||g”LP,(w*P,)7

5=nmx{:1 Ms‘”}.

q—7"q(s—p)

where

Proof. We set

p=w V) gnd y= PS8,

Furthermore, let us define

1/«

Ag,r,s’(fag) < Z |Q‘ O‘/7‘ a/s aGQa

QES

Then, we have

We estimate |Q|{u )O‘/T<V>a/s By taking

1/r—1
6 =1+ M7
1/p—1/s
we obtain = v'~#" and <I/>Q<u>g_1 < [v]4,- Here, we assume
1 _ps=1)

b

¢—r " q(s—p)
which gives v :=1/r — (8 —1)/s’ < 0. From this assumption and the sparseness of S, one obtains

QUMWY g™ < WY IR

< WY |Egl </Eu>

On the other hands, it holds that p~7u!/901/?" =1 since v = p'~#. Hence, by setting 1/t = 1/q+1/p/ —~ =
1/a — v and using Holder’s inequality, we have

A

[Eol"t = |l i sy
1(EQ) " u(Eq) w(@Q)",

IN

which yields
QU W E < WY uEQ) ™ w(@)* .

From these results, we obtain

1/«
AL, (f9) < WY (Fou(Eg)'Gor(Eg)'™)
QEeS
1/q 1/p’
1/s ’
< Wy QZSFQ W(Eq) QZSGQP v(EQ)
S S
1/3 L 1/q 2 . 1/p'
< W (et (1, e a)
1/s’
S W oo 191 o oy



In another case, by using

QU (™

IN

[V]Z/B{T(ﬁ—l)} ‘Q|<V>g/s —a/{r(B-1)}

ay
a/{r(f—1 l—«
ARl ( / u) ,
Eq
and the same discussion as above, we have

1/{r(B—-1
A% o (£,9) S TN A oo 9l o (-

Concluding these results, we have

«a 5
AS,r,s'(f7g) S/ [V]ABHf”L’I(w(I)HgHLl’l(w—Pl)?

IN

where
5:max{<z<s—p>,8—1}.
ps(g—r) s

To complete the proof, we need to estimate [v]4,. However, it is deduced from a simple calculation. The detail
is the following;:

_ o(s/p) =1/ (qg—r))\P(s/D) [a-(q/r—1)
<V>Q<N>gl _ <wqp( /p)/q>Q<wq( /(q ))>Q
/(g /=1 p(s/p)'/q
= ([wq]RHw/q)(s/q)’<wq>Q<wq( 1 ))>Q )
= ([wq]RH<p/q>(s/p>/ [wq]Aq/r)pS/{q(s_p)}'

O

We define the weighted Besov spaces according to Bui [6]. Suppose 0 < p,o < oo and & € R, then weighted
Besov spaces By, (w) are defined by

By, (w) {fes s |Ifl

Br () < )

1/0

111 B ) D2 % fll Do)

Jj=0

for any w € A Bui showed that . is a dense subset of B} ,(w). Hence, Theorem 3.1 and Theorem 3.2, and
Proposition 3.2 give the following results about boundedness of pseudodifferential operators on weighted Besov
spaces.

Corollary 3.3. Let a € S'; withm € R and 0 <6 < p < 1. Then, we have the following bounds.
(i) Let2 < g<p< oo andwq € Ag/2NRH (4)(s/p)y with some s € (p,00]. Then, for anyk € R and 0 < 0 < oo,
a(z, D) is a bounded operator from B TR (w) to By ,(wP) where

- 1 1 1 1
F1=m+n(l—p) 373 + pn 7 )

(ii) Let 1 < g <p < oo and wi € Ag/r N RH (;/q) (' /p)r with some r € [1,min{p’, q}). Then, for any x € R and
0 <o < o0, a(z,D) is a bounded operator from B tF2(w?) to Bp ,(wP) where

Fo =m+n(l—p) (i—l)—kpn(;—;).

Remark 3.2. The Corollary 8.3 contains the following known boundedness results of a(x, D) with a € S)ls-

(i) By takingw = 1, p = q and suitable s in neighborhood of p in (i) of Corollary 3.3, we have the LP- b0undedness
with m < —n(1 — p)|1/p — 1/2] which was established by Fefferman [18].

(ii) By taking p = q and sufficiently large s in (i) of Corollary 8.3, we have the LP(w)-boundedness with
m = —n(l—p)/2 and w € Ay, /y which was established by Chanillo and Torchinsky [13].

(iii) By taking r = 1 and p = q in (ii) of Corollary 3.3, we have the LP(w)-boundedness with m = —n(1 — p)
and w € A, which was established by Michalowski, Rule and Staubach [34].



Proof. First, we assume 1 < ¢ < oco. For any ¢ € Z, there exists by € S;"‘M so that b(x, D) =

0 < p. From this, for any f € . and g € C§° suth that \|g||Lp

|<¢k *a(x’D)(qu *f)7

where

and o = 1/p' + 1/q. After this, we write & =

(D)

(k(pv q)7 T(p, q)7 S(p, q)) = {

o)l =

IN

S

9|

A

A

(D)

féqsk % <D>Z

[(be(, D) f, (D)

r(p,q),5(p, Q)((

a(va)(d)j * f)vg>|
D) gr(—) * g)|

QIH+IR(P:9) Jimm inf A®
|R|— 00

¢j *f)lQR7<D>

Y <1, we have

(D) a(z, D) since

“or(—) *g)

Y —L
2IHIELD 5 f| oy (D)™ D1(—) % 9| Lot (-7

(F1,2,8")

(/%27 T, T)

2<qg<p<
l<g<2<p<qg<oo’

R(p,q). Now, we obtain

TGRS

(14 226N 12Ny ’/(1 + 22’“N(—A)N)(e”g)<§>_%k(§)df’

(14 224N oY) ] [+ W(—A)N)«@%Bm-’%mds\

—1
2—k€+kn(1 + 22kN|Z|2N)

for any z € R® and N € N, that means

(D)

()

g(x)|

A

IN

<

<

Combining this and w™? € A, we obtain

H(bk * G($,D)(¢j * f)”Lp(wp) 5 2_k£2jz+jk||¢j * fHLq(wq)'

Here, w e Ay follows from

" 5 (L w'/(’n)p,_l
Sp(|@|/ p)(lm/@p '

The Besov norm of a(z, D) is handled by

I + 1

— Z 2k}l‘€0’

k>0

> w * alx, D)(¢; * f

0<j<k

-1
2kt [ (1 2V o ) gly)ldy

ez’ |lv—yl~27k27

JEZ

Jn

(1+22N) " [g(y)|dy

2 1
PR . , / d
jezz 1 + 22iN 9—kngjn o y|~a k2 l9(y)|dy

27 Mg(x)

<

< [w?

< fwt

< fwt
) | |LP (wp)

]

]
]

p/a(p—1)

1 o) plg=1)/alp=1) , 4
_ . L —q/(q— _
RHp/4)(s/p) sgp <|Q| /Qw ) <|Q|

p/q(p—1)

RHp/q)(s/p)

p/q(p—1)

o

1/o

i)

-1
[wq]i/f(p )

1
Q

qp/a(p—1)
w .
RHp/q)(s/p) | ]Aq/r

1/(p—1)
1)
Q
A V(s/p) (p=1)
/ wp(S/p))
Q

1 =) p(g—1)/q(p—1) 1
sup w4/ (a— ) (
(IQI / Q)

p/a(p—1)
/Q q)

N Zka ZHd;k*a(x,D)(%*f)HLp(wp)

k>0

k<j



Our purpose is to control I; and I5 by ||f‘|B;J;“(wq)- First, we give an estimation of I;. From the observation
above, we obtain '

o\ 1/o
Il S Z2kna—kéa Z 2j@+jf€‘|¢j *f”Lq(wq)
E>0 0<j<k
o\ 1/o
< 221«,@0—1«@” Z 2(j+k)e+(j+k)k”¢j+k " f||Lq(wq)
E>0 —k<j<0
1/o
< 22j2+jf% Z 2k(n+f€)o||¢j+k *f”c[iq(wq)
§<0 k>—j
1/o
= D HIRHIEERL Y RO gk 5 Dy
j<0 E>0
5 ||f”BgﬁtR(wQ)
by taking sufficiently large ¢. On the other hands, the same calculation gives
o\ 1/o
Los [ S22 [ ST gkl
k>0 k<j
o\ 1/o
< Zka—kea ZQ(j+k)é+(j+k)gH¢j+k *fHLq(w‘l)
k>0 §>0
1/o
< D RN MR gk 11T
§>0 k>0
1/o

= Z 2j£+j%7j(n+g) Z Qk(,ﬂii)[r”(ﬁk * f||EQ(w‘?)
J>0 k>0

S Wllprsen

by taking ¢ <« —1. Hence, we complete the proof in the case of 1 < o < c0o. To complete the proof, we treat the
case of 0 < o < 1. However, the result with this case is proved in a same manner by using o-triangle inequality
on 7. O

3.3 The special case of pseudodifferential operators
For a given —1 < p < 1, U, f denotes the solution of

{ iOpu+ (—A) P2 =,
u(0) = f.

U, with 0 < p < 1 is a pseudodifferential operators belonging to 5270 (for large frequency), and therefore gives
sparse bounds in Theorem 3.1 and Theorem 3.2. However, we can improve the above results:

Theorem 3.3. Let 1 <r<2and -1<p< 1.
(i) Given p £ 0, 1/r+1/2 < 1/a < 2/r and f,g € ., there exists a sequence of sparse families {Sj}j:O,l,m
such that

(U f(E).0)] S #0427 i g 325G (6 -0,
Jj=0
where kg =n(l —p)(1/r —1/2) + pn(1l/a —1).
(ii) Given a € R such that
n+l n-1 1 2
< <
N 2n oa T




and f,g € 7, there exists a sequence of sparse families {S;} such that

j=0,1,

[(Uo (£), )] St D/ =1/0=n/a=D fn inf 5™ 2055 AG (6% )1y, 9),
Jj=0

where ks = (n+1)(1/r — 1/2).

To prove the theorem, we use the following stationary phase type estimate which was proved by Domar [15]
(cf. also [9], [31]).

Lemma 3.3. Suppose that ® is a real valued smooth funcion on R™\ {0}, and U is a smooth function supported
in the set {§ ; 1/2 < |¢] < 2}. Assume that the rank of (9;0;®(€)), ; is at least (= 0) on the set {£ ; 1/2 <
|€] < 2}. Then, there exists M > 0 such that

’/emwm(&)qj(@dg SAT2 |

for any A > 0.
Let us prove Theorem 3.3.
Proof. (i) It suffices to prove the pointwise estimate
My, ; «f(t, z) < t—n('y—l/?)an(l—p)/2+jnva7f(x)

for any 1/2 < v < 1, where U, ; f = U,(¢; * f). Take any cube @) and any z,z € Q). First, we consider the case
j>1and 2770-r) <t. We integrate by parts N € N times to obtain

Ui (F13q)e) (¢, 2)

S / (14 229PN 2V 2N 7 £ ()| '/ e CTVE(1 4 22j"Nt2N(A)N)(eitgl_péj(é))dé' dy
(3Q)°
S 2 (@) sup | 6“”5<1+22WNNN<A>N><e“'€'l‘péj<s>>d£“
weR™

To obtain desired pointwise estimate, we need to prove

sup
weR?

/ €S (L+ 2NN (- AV (T g, (s»dsdy’ S /22,

By the Leibniz formula, we have

AN 650 = S0 ST (00T (97 95(¢))

|a|=2N B<La
— ST ST (P a(€)(979,(6)),
|a|=2N B<a

where P, 3 denote a functions such that
107 Pays (27)|| e S (277 4 22797)"N 1

on support of ’(ZJ for any o € N". By using lemma 3.3, we have

[ e 2 Ay e ]

< Vemf’“”fw@(f)df‘ +22PNm2N R R /e“”f“tflpPa.B(f)ﬁ%j(f)d§‘
la|=2N B<a
< gin /eiwéﬂﬂ-’“—m51‘”1/3(5)d€'+2j”+2jPNt2N > ZTM/6iw§+it2j(l_p)‘ﬂl_pPa.ﬁ(?jf)a%(f)df

|a|=2N |B<La

< 9in(1+p)/2p=n/2 | 9in(1+p)/2+2jpN—n/2-2N Z Zz—ﬂm(ruﬁwfmw
|a|=2N B<a

< 9in(l+p)/24—n/2



Here, the last inequality follows from

Z ZQ—jlﬁl(Q—j +t2—jp)2N—|ff| < $2N9=2jpN Z Zt—lﬁlg—jlﬁlﬂ'plﬁ\ < $2N9—2jpN
|a|=2N B<a |o|=2N B<a

The desired estimate with 7 > 1 and 2(1=p) < =1 is obtained from

Uy, (F13g)e) (¢, 2)|

~ / (142298 — ) ()| '/ At QW(A)N)(eitml_%j@)dg‘ dy
(3Q)°
< 9= MY f(a) sup /eiw5(1+22jN(A)N)(e“ﬁ'“”q%(ﬁ))dﬁ‘
weR™
< Zj"FYMFYf(J:)
< t—n('y—l/Z)2jn(1—p)/2+jnﬂ’YM’Yf(x).

Here, we use the condition v > 1/2 to obtain

Iy — 9in(1=p)/2+jnpy9in(1=p)(v=1/2) < y=n(y=1/2)9in(1=p)/2+jnpy
When j = 0, we recall ¢g = Zego 1y and obtain
|Up0(f1(z)e)(t, 2)]

< 3| [ G sy i
¢<0
S 2N =2N | 2Ny ' i(z=y)¢ 2UN 22N (_ ANV (N7 d‘d
: ;/@@c“” P g7 | [ 2N (AP () dy
S YoM (e sup | [ PN ) )
weR™

£<0

where 7 = max{1,¢}. Since ||07 P, (2%)|| . < 7lol=18I12=¢Uel=I8D one has

Upo(flage)(t2)] S D200V | 7= =n2ap £ (z)
£<0

< OV ().

(ii) It suffices to prove the pointwise estimate
My, oo f(t,x) St 1/2F/ 295412 3y £ (1)
15100 ; ~

for any (n +1)/2n < v < 1. Take any cube @ and any z, 2z € Q. First, we consider the case j > 1 and 277 < ¢t.
We integrate by parts N € N times to obtain

Uo,j(f1aq)e)(t,2)| S "~ M7 f(z) sup

weR™

[ e g ]

By using Lemma 3.3, we have

[ e Ay )

< ’/eiwgﬂtf(gj(g)dg’_i_t—w oy /e“‘f*”'fPa.g(é“)@ﬂqgj(é)dﬁy
la]=2N f<a
SO P DI DL R ST ROTE

|o|=2N p<a

< HD/2m(nmD/2 g gi(nkD/2p=(n-)/2-2N . Y ngﬂm(g—jﬂ)mﬁﬂl
|a|=2N B<a

< intD)/2y=(n-1)/2



for any w € R™. The desired estimate with j > 1 and 27 < ¢~! is obtained from
U0, (1)) (t, 2)|

S [ ar ) ) \ [t 22“(A)Nxe“'ﬁ'a%j(s»ds\ dy
3Q)°
< 270N MY f(x) sup / eiwfu+22J’N(—A)N)(eitlﬁlgﬁj(g))dg’
weR™
< 2MMY f()
< YR/ 295 0 /2 0 ),

Here, we use the condition v > (n + 1)/2n to obtain
QI — 9=i(n+1)/2Hingi(nt1)/2 < p=nlr=1/2)+1/29i(n1)/2.

When j = 0, we recall ¢y = Zégo 1y and obtain
Uo,0(f1zq)e)(t, 2)]

< S| [ ale 9dE) sy v
£<0
$ [ N2 | [ e 2 Ay )| d
<0’ (3@)°
S Q2N f(x) sup / e (L4 22N TN ()N (el (€)) e
weR™

¢<0

where 7 = max{1,t}. Since [|07 P, (2%)|| « S 7loI=1FI2=¢el=18D "one has

1Uo,0(f1i3g)e)(t,2)] < Z 2tn(y=(n41)/2n) | Zn(l=9)=(n+D)/2 \ v £ ()
<0

< t_”("’_l/2)+1/2M7f(x).

Theorem 3.3 and Proposition 3.2 give a boundness of U, on weighted Besov spaces.

Corollary 3.4. Let -1 <p<1,1<q¢<2<p<q <ooandw? € Ay NRH/q) (v /py with some T € [1,q).
(i) If p #0 and
1 1 1
- — S - — —
27q p

then for any k € R and 0 < o < 00, U,(t) is a bounded operator from B iR+ (w?) to By ,(wP) where
1 1 1 1
fi=n(l—p)(=—= L
Fa=n{l=p) <7" 2) o (q p)

||U,,(t)||B;;g4 (@)= B5  (wP) < 4—((1/q¢=1/p)—(1/r=1/2)) ([wq}Aq/r w9

1
r

9

Furthermore, we have
)6
RHp/q)(r py17

with § in Proposition 3.2.
(i) If

ntl (1 1y _1_ 1
n r 2) 7 q p

then for any k € R and 0 < o < 00, U,(t) is a bounded operator from BitFs(w?) to Bl ,(wP) where
- 1 1
H5:(n+1) <7‘_2)

[|U,(t) ||B;jj5 (9= B (P) < 4~ {n(1/q=1/p)=(n+1)(1/r=1/2)} (w4

Furthermore, we have
[w?] ).

a/r RH gy (v /py



3.4 A sharpness of weighted boundedness of pseudodifferential operators

In previous sections and subsections, we obtain some weighted inequalities for pseudodifferential operators and
the time evolution U,(t) of dispersive equations. In this subsection, we insure a sharpness of some of these
inequalities as follows:

Proposition 3.3. Let 1 < q¢<p<¢ < oo and v € [1,00), and a(¢) = €I "|¢|™ withm € R and 0 < p < 1.
If we have LA(| - |*%)-LP(| - |P®) boundedness of a(D) for any s € (—n/~,0), then we have

ssnn (i) ()

In particular, if we have LY(w?)-LP(wP) boundedness of a(D) with any w? € RH,/q) (v /pyr for some r € [1,q),

then we have
< (1 ) } 1 1 1
m n P -3 on . .

{a(D)F, )| S 1171l gagoe

for any s € (—n/v,0). We take a nonnegative function ¢ € C§° such that supp ¢ C {1/4 < |§] < 2} and
¢p=1on{1/2 <[] <1}, and let

Proof. Our assumption gives

9o s)

f(&) = e " p(¢/R),

and

9(&) = ¢(§/R)

for any R > 0. Then, we have

(a(D)fg)| = \ [ 1ot/ myste/rde

Rm+n

On the other hands, we have
[F(@)] S min{RMOH0/2, Rr(+p)/2-20N |y =2
for any NV € N. In fact, Lemma 3.3 gives

f@) = \ / eim“f“”ms/mds\

< R" Sup‘/eiz5+iR1p|€llp¢(€)d§‘

5 Rann(lfp)/2
Rr(0)/2.

As for the second estimates, we have

@ = ol | [ Ao o e

|1’|,2N ’/ezxﬁAé\/(e’L|§|1—P¢(£/R))d£‘

DY ZR'B"/ eI (P, L (6))(070) (€ R)d

|a|=2N B<a

IN

where P, 3 denote a functions such that

107 Py g (R-)|| o S B2V



on support of ¢ for any ¢ € N™. From this and Lemma 3.3, we obtain the desired estimate. Therefore, we have

Y 1/q
</ d @)'q'x"”d“”) + (/ |f(x)|q|a:|qsda:>
lz|<R—e o[> R+

Al ooy <
1/q 1/q
< Rn(1+p)/2/ |x|q5d:c +Rn(1+ﬂ)/272pN\/ |w|q$f2qu$
B |z|<R=P |z|>R~r
< Rn(1+p)/2—/m/q—ps’

and

. p/ s 1/17/
ol ey = B [ 1R 1177

Rnfn/p'jts

A

R/ Pts,

From these observations, we obtain
Rt < gr(+4p)/2—pn/q—ps pn/p+s
R™ Z R—(1/2=1/p)+np(1/2=1/a)+s(1—p)
R™ % R—(1=p)(1/2=1/p)=pn(1/q—1/p)+s(1=p)
<

—n(l—=p)(1/2—1/p) — pn(1/q—1/p) —n(1 - p)/v

Here, we take the infimum all over s € (—n/v,0) to obtain the final inequality. In particular, we have | - |*° €
RH (3 /q)(r jpy With s € (—=n/p(r' /p)’, 0), that means

0)
)(1/2=1/p) = pn(1/q — 1/p) = n(1 = p)/p(+' /p)’

)(1/2=1/p) — pn(1/q —1/p) = n(1 — p)(1 —p/r")/p

= —n(l—=p)1/r=1/2) = pn(1/q—1/p).

by taking v = p(r'/p)’. O
Remark 3.3. Since ei|5|lfp|§|m ¢ oo, Proposition 3.3 cannot be applied to the pseudodifferential operators
associated with symbols belonging to the Hormander class directly. However, by the same proof of the proposition,

it holds with a € S}y such that a(§) = ¢S 1™ for any |€| > 1, that means a sharpness of weighted inequalities
in Theorem 1.2 and (i) of Corollary 3.3.

m

m < —-n(l-p
= -n(l-p

A Appendix A

To see the proof of Corollary 3.3, the operator norms of a(x, D) on weighted Besov spaces are controlled by

q q 5 ,—p
([w ]Aq/r[w ]RH<p/q>(r’/p>/) o }Ap"

However, we can eliminate the factor [w_Pl} 4, by having the sparse form bounds ¢y, * a(x, D)(¢; * -) directly.

Proposition A.1. (i) Let2 <s<ooand1<1/a <3/2-1/s, anda € SJ's withm < 0,0 <5 < p <1. Then

forany f,g € . and j, k € Z>o, there exists a sequence of sparse families {S }J _0.1.... such that

[(on + a(w, D)(¢; * f). g)] < 27277 liminf A, (65 % F)lQs, 9)-

(ii) Let 2< s < o0 and 1 < 1/a < 2/¢, andaES;’% withm <0,0< 0 < p<1. Then for any f,g € .7, there

exists a sequence of sparse families {S; }j:() 1. such that

[(0n * alz, D)6, % ), )| S 279 lim inf AZ (85 * f)lan: ).

(iii) Let 1 < ¢ <Sr<2<s<ooanda€ S5 withm<0,0<0d<p<1. Then for any f,g € 7, there exists

a sequence of sparse families {S; }gzo 1.... such that

[(6n + a(w, D)(¢; * f), g)| < 2727 F7" liminf As o (] * )1Qn»9)-



Proof. We put
T f = ¢r * a(x, D)(¢; = f).
Here, we remark that

Tinf = (D) “¢r) * (D) a(z, D)(¢; * f))
= ((D)"“on) * be(z, D)(¢; * [),

with some by € S;";é. For any cube @Q and x € @, one has

Tk (Fls@) ) Lo g

< |IUD) " br) * [12g)ebe(x, D)( * (e Dl @) + 27 b (x, D) (5 * (M@ D g
< fo(iﬂ)+f1(l’),
where
fo(z) = sup (D)~ 61.) * [Li2g)ebe(wr, D) (5 (M D g
filz) = ZggTMHbe(an)(%*(f1<3Q)“))\|Lm(2Q)-

(i) Now, we have

fo(x)

A

2 Ht Zgle[be(w, D)(¢; * (flzgye))l(x)

< 2—k€2jm+j€+jn(1—p(1—'y))/2MM27f(x)
for any 0 <y < 1. By using the argument in the proof of Theorem 3.1, it is not hard to see that
fi(z) < 2—kfgjm+j€+jn(1—9(1—7))/2M27f(x)_

Therefore, we obtain

—klojmtie+in(1—p)/2+inp(1/2—1/po)
,k7oof‘|L2*>LP0,oo 5 2 2

HMT]'
for any pg > 2. On the other hands, we have

op I < 9—klojm+jl+jn(1/2—1/p1)
woP1llp2 s ppiiee S

T < 9 ktoimHittin(1/2=1/p) gnd || My,
) J

k”L?aLPl ~

for any p; > 2. By interpolating them, we have the desired sparse bounds.
(ii), (iil) It suffices to prove the pointwise estimate

fo(2) + fi(x) < 27k€2jm+jé+jn(1*p(17v))va(x).

We just handle the fo(z) since the estimate of f;(z) be obtained immediately from the proof of Theorem 3.2.
For any N € N and h € L', we have

(D)) wh2) £ 274 [ (1 2N =) iyl
e, D)6 * (Plisa D@ £ 27 [ (1429 — w1y ()
Hence, we obtain
folz) 27 Fitbngttamtn sup (12 (111 @)l = g

where ® denotes the radial function

1 1
O(z) = / : 5 4Y-

1+ 22PN |z — y|2N 1+ 226N |y|

To complete the proof, we decompose the integral region:

B(2) :/ + / . / .
2|yl<|z| 2|z|<]y| |z]/2< |y <2|=|



Since |z — y| 2 |z| under the 2|y| < |z] or 2|z] < |y|, one has

27kn
/ +/ S TN N
2[y[<|z| 2)2|<|yl 1 4 22PN |z

Furthermore, it is not hard to see that

2 "
/ < min o —
|z]/2<|y|<2]z| 1+ 226N |z| 1+ 226N |z

From them, for any k < jp, we have

folz) < 2*k€2j€+jm+jn(1*p)(2jpm + an“/)M’Yf(x)
< 2*k€2jm+j4+jn(1fﬁ(1*7))M’Yf(m)_
We assume k > jp. Then, we have
|z —wl” jz —w|”
sup/ fw)|ldw < f(w)|dw
2€Q J(3Q)° 1+22kN|sz|2N‘ (w)l 1+22’“N|x7w|2N‘ (w)l
|x _ w|7l
< |f (w)|dw
2 Lo iz 224N | — "N
S/ 27kn2fkn(17'y)M'yf(I)
< Q*knzfjpn(lf'v)va(x%
which completes the proof. O

B Appendix B

From Proposition 3.1, the weak-type boundedness of My ; is a sufficient condition to have the sparse domination.
It is natural to ask whether such condition be a necessary condition or not. However, the answer of this question
appears to be negative since it is not true for the sparse operator ' = Ags ,

Proposition B.1. (i) Let 1 < r < oco. Then, there exist f € L and collction of sparse families {S(Q)}o:cube,
and measurable set K which has a non-zero measure, such that

sup AS - fl c - =0
QExH @ (M)l Lo

for any x € K.
(ii) Let 1 <r < s < oo. Then, there exist f € L and collction of sparse families {S(Q)}q:cuve, and measurable
set K which has a non-zero measure, such that

1
sup  sup Q] /SAS(Q)7T75/(f1RTL\3Q7g) = 0
Q3% llgll v g, =

for any x € K.

Proof. (i) Fix a cube Qo, and let f = 1g,. Furthermore, we define the sparse collection S(Q) for any cube @
by

S(Q) ={3*Q; k=1,2,3,---}.

For any cube 3Q C Qo and z € Q, we choose N € N such that 3V QN Q¢ # 0 and 3V Q C Qy. Then, we have

As@)r(flrmag)(2)1q(z) = Z<1Q0\3Q>r’3kQ1Q(z)
k=1
N 1/r
13°Q \ 3Q)|
. ,;( o) e
2 Nlg(2),



which yields

[As(@).r(FIrm3Q) | oo () < N-

Since N — oo at |@Q| — 0, we have

sup ||A 2 (flgn oy = 00
QEI” S(Q) ( R\3Q)”L Q)

for any = € Q.

(ii) By taking f and S(Q) as above, we have

sup  As@).rs (flrmag.9) = 2\3 Ql{100\3Q) 300 (9) s 340
lgll s gy =1 HQ”L @@= k=1
|3k@\3@|) e (1LY
> 3°Q ( Q
Z' U ) 9 g
2 |Q|”53N“/S,
which complete the proof. O
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