
ON DERIVED EQUIVALENCES OF NAKAYAMA ALGEBRAS
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Abstract. In this paper, we investigate the derived category of the Nakayama algebra N(n, ℓ) =
KAn/ rad(KAn)ℓ. We construct a derived equivalence between Nakayama algebras N(n, ℓ) and

N(n, ℓ+1) where n = p(p+1)q+p(p−1)r and ℓ = (p+1)q+pr for each triple of integers p ⩾ 2,
q ⩾ 1, r ⩾ 0. To achieve it, we introduce families of idempotent subalgebras of KAs ⊗ KAt

and characterize their derived categories by the existence of a certain family of objects called

S-families.
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1. Introduction

Two rings A and B are said to be derived equivalent if there exists a triangle equivalence
perA → perB. In the representation theory of rings, it is an important problem to determine
whether given two rings are derived equivalent or not. An object X in the perfect derived category
perA of a ring A is said to be tilting if HomperA(X,X[n]) ≃ 0 for any integer n ̸= 0 and the
thick subcategory generated by X coincides with perA. The following result is known as Rickard’s
theorem:

Theorem 1.1. [20, Thm. 6.4] For any two rings A and B, the following conditions are equivalent:

(i) There exists a tilting object X in perA such that EndperA(X) ≃ B.
(ii) There exists a triangle equivalence perA → perB.
(iii) There exists a triangle equivalence Db(ModA) → Db(ModB).
(iv) There exists a triangle equivalence D(ModA) → D(ModB).
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However, in general, it is a difficult problem to determine whether two given rings A and B
satisfy the condition in Theorem 1.1.

In this paper, we study this problem for a certain class of Nakayama algebras. Let K be a field.
Throughout this paper, by a K-algebra we mean a finite dimensional associative K-algebra with
an identity element. A K-algebra is said to be right serial (resp. left serial) if any indecomposable
projective A-module (resp.Aop-module) has a unique composition series. A right and left serial
algebra is called a Nakayama algebra [18]. A K-algebra A is said to be connected if A ≃ A0 ×A1

as K-algebras, then A0 ≃ 0 or A1 ≃ 0. Any K-algebra is isomorphic to a finite product of
connected K-algebras. A K-algebra A is said to be basic if there exists a complete set of primitive
orthogonal idempotents (ei)i∈[1,n] such that for any i, j ∈ [1, n], the relation i ̸= j implies the
relation eiA ̸≃ ejA . Any K-algebra is Morita equivalent to a basic K-algebra. If K is an
algebraically closed field, any basic K-algebra is isomorphic to a K-algebra KQ/I where Q is a
finite quiver and I is an admissible ideal of the path algebra KQ (i.e. an ideal of KQ satisfying
(radA)q ⊂ I ⊂ (radA)2 for an integer q ⩾ 2). The following two results for Nakayama algebras
are well-known:

Theorem 1.2. [1, Thm. 3.2] Let A be a basic and connected algebra over an algebraically closed
field K. Then A is a Nakayama algebra if and only if A is isomorphic to KQ/I as K-algebras
where Q is one of the following quivers:

(a) An :

1 // 2 // · · · // n− 1 // n,

(b) Ãn−1 :

1 // 2 // · · · // n− 2 // n− 1,

uun

gg

and I is an admissible ideal of KQ.

Theorem 1.3. [1, Thm. 3.5] Let A be a basic and connected Nakayama algebra over an algebraically
closed field K. Then for any indecomposable A-module X, there exists an indecomposable projective
A-module P and an integer k such that X ≃ P/ radk P . In particular, A is representation-finite
(i.e. the number of isomorphism classes of indecomposable A-module is finite).

By Theorem 1.3, the structure of the module categories over Nakayama algebras is well under-
stood. But little is known about the structure of their derived categories. Let

N(n, ℓ) = KAn/(radKAn)
ℓ.

Then the algebra N(n, ℓ) is a Nakayama algebra of finite global dimension and a natural embedding
perN(n, ℓ) → Db(modN(n, ℓ)) is a triangle equivalence. An abelian category H is said to be
hereditary if ExtnH(X,Y ) ≃ 0 for any two objects X,Y ∈ H and any integer n ⩾ 2. A K-algebra
A is said to be piecewise hereditary if there exists a hereditary abelian category H and a triangle
equivalence Db(modA) → Db(H). In [9], Happel-Seidel classified Nakayama algebras N(n, ℓ) which
are piecewise hereditary. One of the consequences of their results is the following:

Theorem 1.4. [9, Prop. 2.3] There exists a triangle equivalence

perN(s+ 6, s+ 4) → perN(s+ 6, s+ 3) for any integer s ⩾ 0.

In [16], Lenzing-Meltzer-Ruan classified Nakayama algebras N(n, ℓ) whose bounded derived
categories are triangle equivalent to the stable categories of vector bundles over the weighted
projective lines X(a, b, c), and obtained the following similar result as a special case:

Theorem 1.5. [16, Thm. 6.3] There exists a triangle equivalence

perN(s+ 12, s+ 7) → perN(s+ 12, s+ 6) for any integer s ⩾ 0.
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4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051
6 8 121830∞ 6 ∞42302414418180304266∞12∞785442420304804866102∞18∞1147860840429246690138∞24∞15010278

8 1218∞ 4 ∞302016132121562028168∞ 8 ∞2163628380204203244∞∞12∞∞5240756288124460720∞16∞81668521260

101830∞∞3020166040106090243050∞∞70∞30∞40400∞7090∞270∞10∞330∞11090∞84060900501950130∞∞
1230∞ 6 ∞42181321215672∞243050∞∞∞ 6 ∞∞∞704236∞2405522460042306∞18∞3424887030930420∞5466

14∞∞∞423012614842028168∞∞14∞70∞∞∞∞7042362101681268414112168224280485698∞∞∞1890126∞28
16∞∞∞3024144∞2428168∞ 8 ∞2163632∞∞40400∞∞∞4055224600288∞120∞485698∞280∞168∞ 8 ∞

18∞∞∞24144181803054∞∞∞2163628180∞18∞4507090∞∞∞∞90306∞18∞342180∞∞541890126∞∞
20∞∞∞144∞1803042∞10∞∞∞12038020420∞∞4090∞270∞10∞330∞11050∞36087030930300∞∞∞

22∞∞∞∞∞1984266∞∞66∞∞∞882203244∞∞∞22∞∞∞∞∞11090770550330221983304625466
24∞∞∞∞∞7266∞12∞7836∞∞∞7244∞∞12∞∞5248∞∞∞∞∞84060900∞240∞6066

26∞∞∞∞∞234∞∞∞785439026∞∞∞312∞∞∞∞524036420826∞∞∞∞∞∞1950130∞390

28∞∞∞∞∞252∞∞∞5442420∞42∞∞∞56∞∞∞∞75628812336∞56∞∞∞∞∞350∞
30∞∞∞∞∞90∞∞∞42420304804890∞∞∞360∞∞∞∞4204460720∞∞30∞∞∞∞

32∞∞∞∞∞288∞∞∞420∞4804866∞16∞∞∞48∞∞∞∞60720∞16∞8166864∞
34∞∞∞∞∞306∞∞∞∞∞51066102∞∞102∞∞∞136∞∞∞∞∞∞∞8166852612

36∞∞∞∞∞36∞∞∞∞∞180102∞18∞11454∞∞∞216∞∞∞∞∞∞∞4321260

38∞∞∞∞∞342∞∞∞∞∞570∞∞∞1147879838∞∞∞456∞∞∞∞∞∞∞
40∞∞∞∞∞360∞∞∞∞∞120∞∞∞7860840∞60∞∞∞40∞∞∞∞∞

42∞∞∞∞∞126∞∞∞∞∞210∞∞∞608404292466126∞∞∞504∞∞∞
44∞∞∞∞∞396∞∞∞∞∞660∞∞∞840∞9246690∞22∞∞∞264∞

46∞∞∞∞∞414∞∞∞∞∞690∞∞∞∞∞96690138∞∞138∞∞∞
48∞∞∞∞∞144∞∞∞∞∞240∞∞∞∞∞336138∞24∞15072∞

50∞∞∞∞∞450∞∞∞∞∞150∞∞∞∞∞1050∞∞∞1501021350

52∞∞∞∞∞468∞∞∞∞∞780∞∞∞∞∞1092∞∞∞10278
54∞∞∞∞∞54∞∞∞∞∞270∞∞∞∞∞378∞∞∞78

56∞∞∞∞∞504∞∞∞∞∞840∞∞∞∞∞168∞∞∞
58∞∞∞∞∞522∞∞∞∞∞870∞∞∞∞∞1218∞∞

60∞∞∞∞∞180∞∞∞∞∞60∞∞∞∞∞420∞
62∞∞∞∞∞558∞∞∞∞∞930∞∞∞∞∞1302

64∞∞∞∞∞576∞∞∞∞∞960∞∞∞∞∞
66∞∞∞∞∞198∞∞∞∞∞330∞∞∞∞

68∞∞∞∞∞612∞∞∞∞∞1020∞∞∞
70∞∞∞∞∞630∞∞∞∞∞210∞∞

72∞∞∞∞∞72∞∞∞∞∞360∞
74∞∞∞∞∞666∞∞∞∞∞1110

76∞∞∞∞∞684∞∞∞∞∞
78∞∞∞∞∞234∞∞∞∞

80∞∞∞∞∞720∞∞∞
82∞∞∞∞∞738∞∞

84∞∞∞∞∞252∞
86∞∞∞∞∞774

88∞∞∞∞∞
90∞∞∞∞

92∞∞∞
94∞∞

96∞
98

Figure 1. In the above graph due to Lenzing [15], each number shows the Coxeter
number (i.e. the order of the Coxeter matrix) of N(n, ℓ). If two Nakayama algebras
N(n, ℓ) and N(n′, ℓ′) are derived equivalent, their Coxeter numbers are equal.

In this paper, we prove the following result which is a far reaching generalization of the above
two results:

Theorem 1.6 (Corollary 5.15). Let p, q be two integers such that p ⩾ 2, q ⩾ 1. Suppose that one
of the following conditions is satisfied.

(a) r ∈ Z⩾0.
(b) p = 2 and r ∈ 1

2Z⩾0.

Then there exists a triangle equivalence

perN(n, ℓ+ 1) → perN(n, ℓ) where n = p(p+ 1)q + p(p− 1)r, ℓ = (p+ 1)q + pr.

For p = 2, r = s
2 , we obtain a triangle equivalence

(1.1) perN(s+ 6q, s+ 3q + 1) → perN(s+ 6q, s+ 3q) for any integers q ⩾ 1, s ⩾ 0.

For q = 1, (1.1) is a triangle equivalence in Theorem 1.4 due to Happel-Seidel where they proved
the above two derived categories are triangle equivalent to the derived category of the path algebra
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Figure 2. In the above graph, the arrow↔ shows the pairs of Nakayama algebras
in Theorem 1.6.

of the star quiver with three branches of length 2, 3, s+ 3 respectively.
For q = 2, (1.1) is a triangle equivalence in Theorem 1.5 due to Lenzing-Meltzer-Ruan where they
proved the above two derived categories are triangle equivalent to the stable category of vector
bundles over the weighted projective line X(2, 3, s+ 7).

Notice that the proofs of Theorems 1.4 and 1.5 were quite different. In this paper, we develop a
systematic method to prove our main Theorem 1.6 by using the tensor products of two Nakayama
algebras. Let

L(s, t, u) = (N(s, 2)op ⊗N(t, 2)op)/⟨
u−1∑
i=0

es ⊗ et−i⟩,

L!(s, t, u) = (KAs ⊗KAt)/⟨
u−1∑
i=0

e!s ⊗ e!t−i⟩
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where ⊗ = ⊗K and ei⊗ej (resp. e
!
i⊗e!j) is the idempotent ofN(s, 2)op⊗N(t, 2)op (resp.KAs⊗KAt)

corresponding the vertex (i, j). Then we show the following result:

Theorem 1.7 (Proposition 4.2, Theorem 4.7). There exist triangle equivalences

perN(st− u, t+ 1) → perL(s, t, u) → perL!(s, t, u)

for any integers s ⩾ 1, t ⩾ 1, 0 ⩽ u ⩽ t. In particular, N(st− u, t + 1) is derived equivalent to a
K-algebra with global dimension ⩽ 2.

For u = 0, the above result gives the following due to Ladkani since L!(s, t, 0) ≃ KAs ⊗KAt as
K-algebras:

Theorem 1.8. [14, Cor. 1.2] There exists a triangle equivalence

perN(st, t+ 1) → perKAs ⊗KAt for any integers s ⩾ 1, t ⩾ 1 such that st > t+ 1.

In particular there exists a triangle equivalence

perN(st, s+ 1) → perN(st, t+ 1) for any integers s ⩾ 2, t ⩾ 2.

By Theorem 1.7, Theorem 1.6 is equivalent to the following:

Theorem 1.9 (Theorem 5.14). Let s, t, u be three positive integers such that 1 ⩽ u ⩽ t. Suppose
that one of the following conditions is satisfied.

(a) u ∈ Zs and t− u ∈ Z(s+ 1).
(b) s = 2 and t− u ∈ 3Z.
Then there exists a triangle equivalence perL(s, t, u) → perL(s, t− 1, u− s).

A central role in our proof above is played by the notion of S-families (Definition 3.8). By using
the following result, we can construct a triangle equivalence between a given triangulated category
and perL(S).

Theorem 1.10 (Theorem 3.11). Let D be an algebraic, idempotent complete, and Ext-finite trian-
gulated category with a Serre functor. If there exists a full S-family (Xi,j)(i,j)∈S, then there exists
a triangle equivalence F : D → perL(S) such that F (Xi,j) ≃ P (i, j) for any (i, j) ∈ S.

The following figure presents the relationship of definitions of S-families.

weak S-family

Definition 3.2 (L1), (L2)
⇐ S-family

Definition 3.8 (S1)-(S3)
⇐ Y(p; q)-family

Proposition 4.3 (Y1)-(Y4)

As another application of Theorem 1.10, we have the following result related to a triangle
equivalence in Theorem 1.8.

Theorem 1.11 (Theorem 5.16). There exists a triangle equivalence

perL(p+ 1, q, q − 1) → perL(q + 1, p, p− 1) for any integers p ⩾ 2, q ⩾ 2.

By Theorem 1.7, the above result gives the following triangle equivalence due to Lenzing-Meltzer-
Ruan [16, Prop. 4.1].

Corollary 1.12 (Corollary 5.17). There exists a triangle equivalence

perN(pq + 1, q + 1) → perN(pq + 1, p+ 1) for any integers p ⩾ 2, q ⩾ 2.

In the rest, we describe the summary of each chapter of this paper. In Chapter 2, we give
basic results for Serre functors, semi-orthogonal decompositions, admissible subcategories, tilting
objects, and exceptional sequences. In Chapter 3, we characterize the perfect derived categories of
the algebras L(S) by using the terminology of S-families which are families of objects satisfying
some axioms (Definition 3.8). By showing the existence of an S-family, we can construct a triangle
equivalence between a triangulated category satisfying some conditions and the perfect derived
category of the algebra L(S) (Theorem 3.11). In Chapter 4, we study S-families when S is a
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Young diagram. And we show that if S is the Young diagram Y (s, t, u), the algebra L(S) is derived
equivalent to the Nakayama algebra N(st − u, t + 1) (Theorem 4.7). In Chapter 5, we introduce
mutations of S-families under some assumption for S which are mutations as exceptional sequences
(Theorem 5.6, 5.12). By using results for mutations of S-families, we prove main Theorem 5.14.

Conventions In this paper, K is a field and all modules overK-linear categories are right modules.
We denote by ⊗ the tensor product over K. For any K-vector space V , we denote by V ∗ the dual
of V . For any set {Xi | i ∈ J} of objects in a triangulated category D, we denote by ⟨Xi | i ∈ J⟩ the
thick subcategory of D generated by {Xi | i ∈ J}. For any K-linear category C, we denote by D(C)
the derived category of C, and per C the perfect derived category of C i.e. the thick subcategory
⟨PC(i) | i ∈ C⟩ of D(C) where PC(i) := HomC(−, i).

For any two arrows α : i → j and β : j → k in a quiver Q, we denote the their composition
by βα : i → k. For any admissible ideal I of KQ, we denote by SKQ/I(i) (resp.PKQ/I(i),
IKQ/I(i)), the simple (resp. projective, injective) KQ/I-module corresponding a vertex i of Q. In
our conventions, for any source i in Q, SKQ/I(i) ≃ PKQ/I(i). We often simply denote by S(i)
(resp.P (i), I(i)) instead of SA(i) (resp.PA(i), IA(i)).

Acknowledgements I am grateful to Osamu Iyama for his comments to this paper and to Ryo
Takahashi for his support. I would like to thank the referees for their careful reading of this paper.

2. Preliminaries

2.1. K-linear categories and modules. We refer to [6] for the representation theory of K-linear
categories. A category C is called a K-linear category if each hom-set is a K-vector space and each
composition map

HomC(X,Y )×HomC(Y, Z) → HomC(X,Z); (f, g) 7→ g ◦ f

is a bilinear map. Let C and C′ be two K-linear categories. A functor F : C → C′ is called a
K-linear functor if each mapping

HomC(X,Y ) → HomC′(F (X), F (X ′)); f 7→ F (f)

is a K-linear map for any two objects X and X ′ of C.
Let ModK be the K-linear category consisting of K-vector spaces. A (right) C-module is a

K-linear functor X : Cop → ModK. For any small K-linear category C, we denote by Mod C the
K-linear category consisting of C-modules. Then we define C-module PC(i) as

PC(i) = P (i) := HomC(−, i).

Then PC(i) is a projective module for any i ∈ C. For any C-module X, there exists a surjective
morphism⊕

i∈C
PC(i)

⊕Ei → X

where Ei is a basis of HomMod C(PC(i), X). In particular, any projective C-module P is a direct
summand of a direct sum of projective modules PC(i).

A C-module X is finitely generated if there exist a family (ni)i∈I of nonnegative integers ni

indexed by a finite set I of objects of C and a surjective morphism p :
⊕
i∈I

PC(i)
⊕ni → X. We

denote by mod C, the category of finitely generated modules. A K-linear category C is said to
be Hom-finite over K if dimK HomC(i, j) < ∞ for any i, j ∈ C. Let C be a Hom-finite K-linear
category. For any i ∈ C, define

SC(i) := PC(i)/ radPC(i).

Then SC(i) is a finitely generated semi-simple C-module.
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A category C is said to be svelte if for any objects i, j ∈ C, the relation i ≃ j implies the relation
i = j. A svelte K-linear category C is said to be locally bounded if for any i ∈ C, the set

{j ∈ C | HomC(i, j) ̸= 0 or HomC(j, i) ̸= 0}

is a finite set. We define the support of a C-module X as the following:

suppX = {i ∈ C | X(i) ̸= 0}.

A svelte K-linear category C is locally bounded if and only if suppPC(i) is a finite set for any
object i.

Let C be a Hom-finite and locally bounded K-linear category, X ∈ Mod C. It is elementary that
the following conditions are equivalent:

(i) X is a finitely generated module.
(ii) suppX is a finite set and dimK X(i) < ∞ for any i ∈ C.

If C is a Hom-finite and locally bounded K-linear category, then mod C is a Hom-finite abelian
category. We define C-module IC(i) by

IC(i) = I(i) := HomC(i,−)∗.

We denote by proj C (resp. inj C), the full subcategory of mod C consisting of finitely generated
projective (resp. injective) C-modules.

Let C be a Hom-finite and locally bounded K-linear category. Then the K-linear functor D =
(−)∗ : (mod Cop)op → mod C is an equivalence of K-linear categories and the restriction functor
D|(proj Cop)op : (proj Cop)op → inj C is an equivalence of K-linear categories. Let

ν = (−)⊗C C∗ : Mod C → Mod C, ν− = HomC(C∗,−) : Mod C → Mod C

be Nakayama functors. More precisely, they are defined as

ν(X)(i) = Coker(
⊕
j,k∈C

Xj ⊗HomC(k, j)⊗HomC(k, i)
∗ f→

⊕
k∈C

Xk ⊗HomC(k, i)
∗),

ν−(X)(i) = HomMod C(HomC(i,−)∗, X)

for any X ∈ Mod C and i ∈ C where

f : x⊗ α⊗ y 7→ xα⊗ y − x⊗ αy.

By the definitions of ν and ν−, (ν−, ν) is a pair of adjoint functors.

Proposition 2.1. Let C be a Hom-finite and locally bounded K-linear category. Then the functor

ν|proj C : proj C → inj C

is an equivalence of K-linear categories satisfying ν(PC(i)) ≃ IC(i) and there exists a functorial
isomorphism

Hommod C(P, ν(Q)) ≃ Hommod C(Q,P )∗ for any P,Q ∈ proj C.

2.2. Serre functors. Let D be a triangulated category. Recall that a Serre functor of D is a
K-linear autoequivalence S : D → D such that there exists a functorial isomorphism

HomD(X, S(Y ))→̃HomD(Y,X)∗

for any two objects X,Y ∈ D. By the definition of a Serre functor, any two Serre functors are
isomorphic.

Proposition 2.2. [4] Let D be a triangulated category with a Serre functor S : D → D.

(a) There exists a natural isomorphism α : S[1] → [1]S such that (S, α) : D → D is a triangle
autoequivalence.

(b) Any Serre functor of D is isomorphic to S.
(c) For any triangle equivalence F : D → D′, FSF−1 : D′ → D′ is a Serre functor of D′.
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A K-linear category C is called an Iwanaga-Gorenstein category if C is Hom-finite and for any
i ∈ C, IC(i) ∈ per C and ICop(i) ∈ per Cop. The following result is well-known [8]:

Proposition 2.3. For any Hom-finite K-linear category C, the following conditions are equivalent:
(i) C is an Iwanaga-Gorenstein category.
(ii) per C has a Serre functor S : per C → per C.

If the above conditions are satisfied, the functor ν = (−)
L
⊗C C∗ : per C → per C is a Serre functor

of per C and ν−1 = RHomC(C∗,−) : per C → per C is an inverse of ν.

Proof. (i)⇒(ii): It follows from [12, 10.4].
(ii)⇒(i): Let D = per C. Since

HomD(PC(j),S(PC(i))[n]) ≃ HomD(PC(i), PC(j)[−n])∗ ≃

{
HomD(PC(j), IC(i)) n = 0,

0 n ̸= 0,

for any j ∈ C, we have

HnS(PC(i)) ≃

{
IC(i) n = 0,

0 n ̸= 0.

Thus IC(i) ≃ S(PC(i)) ∈ D. Dually, we see that ICop(i) ∈ per Cop. Thus the assertion follows. □

Lemma 2.4. For any positive integer p, the category perKAp is a fractional Calabi-Yau category

of dimension p−1
p+1 i.e. there exists an isomorphism νp+1

KAp
→̃[p− 1] of functors.

2.3. Semi-orthogonal decompositions and Admissible subcategories. Let D1 and D2 be
full subcategories of D. We denote by D1 ∗ D2 the full subcategory consisting of objects X in D
such that there exist objects X1 ∈ D1, X2 ∈ D2 and a triangle

X1 → X → X2 → X1[1] in D.

Then the operation ∗ is associative and we define the full subcategory D1 ∗ D2 ∗ · · · ∗ Dn for full
subcategories D1,D2, . . . ,Dn inductively.

The sequence (D1,D2, . . . ,Dn) of thick subcategories Di of D is called a semi-orthogonal de-
composition of D if D = D1 ∗ D2 ∗ · · · ∗ Dn and HomD(Dk,Dk′) = 0 for any integers k, k′ ∈ [1, n]
such that k < k′. In this case, we denote D1 ∗ D2 ∗ · · · ∗ Dn by

D1 ⊥ D2 ⊥ · · · ⊥ Dn.

The properties of admissible subcategories are detailed in [10]. Let D be a triangulated category.
A thick subcategory E of D is said to be right admissible (resp. left admissible) if the natural
embedding IDE : E → D has a right adjoint functor TD

E : D → E (resp. a left adjoint functor
FD
E : D → E). If a thick subcategory E of D is right admissible and left admissible, E is said to be

admissible. We often simply denote IDE (resp.TD
E , FD

E ) by IE (resp.TE , FE). By the definitions of
TD
E and FD

E , we have

HomD(X, IDE (X ′)) ≃ HomE(FD
E (X), X ′) for any objects X ∈ D, X ′ ∈ E ,(2.1)

HomD(IDE (Y ′), Y ) ≃ HomE(Y
′,TD

E (Y )) for any objects Y ∈ D, Y ′ ∈ E .(2.2)

A thick subcategory E of D is admissible if and only if

D = E ⊥ E⊥ = ⊥E ⊥ E(2.3)

where

E⊥D = E⊥ := {X ∈ D | HomD(Y,X) = 0 for any Y ∈ E},
⊥DE = ⊥E := {X ∈ D | HomD(X,Y ) = 0 for any Y ∈ E}.
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In particular, the unit and counit morphisms induce triangles

TD
E (X) → X → FD

E⊥(X) → TD
E (X)[1],(2.4)

TD
⊥E(X) → X → FD

E (X) → TD
⊥E(X)[1].(2.5)

The following three facts are elementary:

Lemma 2.5. [17] Let D be a triangulated category, E an admissible subcategory of D, and F a
thick subcategory of E.
(a) F is an admissible subcategory of E if and only if F is an admissible subcategory of D.
(b) If the condition in (a) is satisfied, then

TD
F ≃ TE

FTD
E , FD

F ≃ FE
FFD

E , TE
F ≃ TD

F |E , FE
F ≃ FD

F |E .

Lemma 2.6. Let D be a triangulated category, E a thick subcategory of D. If there exist admissible
subcategories F and F ′ of D such that E = F ⊥ F ′, then E is an admissible subcategory of D.

Proof. Since F is an admissible subcategory of D, we have D = F ⊥ G where G = F⊥D . Since F ′

is an admissible subcategory of D and F ′ ⊂ G, it follows from Lemma 2.5 that F ′ is an admissible
subcategory of G. So G = F ′ ⊥ G′ where G′ = F ′⊥G . Since

D = F ⊥ G = F ⊥ F ′ ⊥ G′ = E ⊥ G′,

E is a right admissible subcategory of D. Dually, E is a left admissible subcategory of D. □
Lemma 2.7. Let D be a triangulated category and let E, E ′, F , F ′ be four admissible subcategories
of D such that D = E ⊥ F , E ′ ⊂ E , F ′ ⊂ F . Then for D′ = E ′ ⊥ F ′, we have

TD
E |D′ ≃ TD′

E′ , FD
F |D′ ≃ FD′

F ′ .

Proof. For any X ∈ D′, there exists a triangle

TD′

E′ (X) → X → FD′

F ′(X) → TD′

E′ (X)[1].

Since TD′

E′ (X) ∈ E and FD′

F ′(X) ∈ F , the assertion follows. □
The following observation should be well-known but we could not find a reference. We give a

proof for the convenience of the reader.

Proposition 2.8. Let D be a triangulated category with a Serre functor S = SD, E a left or right
admissible subcategory of D.

(a) E is an admissible subcategory of D if and only if E has a Serre functor SE .
If the conditions in (a) are satisfied, then the following two assertions hold:

(b) The functor SE in (a) satisfies SE ≃ TES|E and S−1
E ≃ FES−1|E .

(c) If X, S(X) ∈ E , then SE(X) ≃ S(X).

Proof. (a) We prove “only if” part. We show that TES|E is a Serre functor. Since for any X,Y ∈ E ,
there exist functorial isomorphisms

HomE(X,TES(Y )) = HomD(X, S(Y )) ≃ HomD(Y,X)∗ ≃ HomE(Y,X)∗,(2.6)

HomE(FES−1(X), Y ) = HomD(S−1(X), Y ) ≃ HomD(Y,X)∗ ≃ HomE(Y,X)∗,(2.7)

it follows from [19, Lem. 1.1.5], that TES|E is a Serre functor of E with an inverse FES−1|E .
We prove “if” part. Let TE be a right adjoint functor of IE , and SE a Serre functor of E . For any
X,Y ∈ E , there exist functorial isomorphisms

HomE(S−1
E TESD(Y ), X) ≃ HomE(X,TESD(Y ))∗ ≃ HomD(X, SD(Y ))∗ ≃ HomD(Y,X).

Thus S−1
E TESD is a left adjoint functor of IE .

(b) In the proof of (a), we proved that TES|E is a Serre functor. By the uniqueness of Serre functor,
the assertion follows.
(c) This is clear by (b). □
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The proof of the following result is clear from Proposition 2.8.

Lemma 2.9. Let D be a triangulated category with a Serre functor S = SD, and let E and F be
two admissible subcategories of D.

(a) The functor FD
F |E : E → F has a right adjoint functor TD

E |F : F → E.
(b) If S−1(F) ⊂ E, we have an isomorphism TD

E |F ≃ SES−1|F : F → E of functors.

(c) If S(E) ⊂ F , we have an isomorphism FD
F |E ≃ S−1

F S|E : E → F of functors.
(d) If S(E) = F , then the functors FD

F |E : E → F and TD
E |F : F → E are mutually inverse triangle

equivalences.

Proof. (a) For any X ∈ E and Y ∈ F , we have functorial isomorphisms

HomF (FD
F (X), Y ) ≃ HomD(X,Y ) = HomE(X,TD

E (Y )).

Thus the assertion follows.
(b) Since E is an admissible subcategory, E has a Serre functor SE = TD

E S|E : E → E by Proposition
2.8. Since S−1(F) ⊂ E , Lemma 2.8 (b) implies SES−1|F ≃ TD

E SS−1|F ≃ TD
E |F .

(c) This is the dual of (b).
(d) Since the functor FD

F |E is the composition of S|E : E → F and S−1
F : F → F by (c), we have

that it is a triangle equivalence. By (a), TD
E |F is an inverse of FD

F |E . □
2.4. Tilting objects and Exceptional sequences. Let D be a triangulated category. An object
T ∈ D is called a pretilting object if HomD(T, T [n]) ≃ 0 for any integer n ̸= 0. A pretilting object
T is called a tilting object if D = ⟨T ⟩. An additive category D is said to be idempotent complete
if any idempotent morphism e : X → X (i.e. endomorphism e : X → X satisfying e2 = e) in D,
there exist two morphisms f : X → Y and g : Y → X in D such that fg = 1Y and gf = e. A
triangulated category D is said to be algebraic if D is triangle equivalent to the stable category of
a Frobenius category.

Proposition 2.10. [12] Let D be an algebraic triangulated category, T a pretilting object in D, and
A = EndD(T ). If D is idempotent complete, there exists a triangle equivalence F : ⟨T ⟩ → perA
such that F (T ) ≃ A.

The following result is clear by Proposition 2.10 and F is directly given.

Example 2.11. Let A be a K-algebra such that gl.dimA < ∞, and let (ek)k∈[1,n] be a complete

set of primitive orthogonal idempotents of A, and e =
∑

k∈[1,m]

ek, B = eAe. Let

P = eA =
⊕

k∈[1,m]

PA(k), P ′ = (1− e)A =
⊕

k∈[m+1,n]

PA(k),

S =
⊕

k∈[1,m]

SA(k), S′ =
⊕

k∈[m+1,n]

SA(k).

(a) The sequence (ek)k∈[1,m] is a complete set of primitive orthogonal idempotents of B, and there
exists a triangle equivalence F = RHomA(P,−) : ⟨P ⟩ → perB such that

F (PA(i)) ≃ PB(i) for any i ∈ [1,m].(2.8)

(b) If HomperA(P
′, P ) = 0, then the following conditions are satisfied:

perA = ⟨P ′⟩ ⊥ ⟨P ⟩ = ⟨S⟩ ⊥ ⟨S′⟩, ⟨P ⟩ = ⟨S⟩.(2.9)

F (SA(i)) ≃ SB(i) for any i ∈ [1,m].(2.10)

Proof. (a) The functor F = (−)
L
⊗A Ae : perA → perB has a left adjoint functor G = (−)

L
⊗B eA :

perB → perA. Since eA
L
⊗A Ae ≃ B as (B,B)-bimodules, we have FG ≃ Id. Thus F : ⟨P ⟩ →

perB is a triangle equivalence such that

F (PA(i)) ≃ RHomA(P, PA(i)) ≃ HomperA(P, PA(i)) ≃ eiAe ≃ PB(i).
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(b) Since HomperA(P, P
′[n]) ≃ 0 for any integer n, we have ⟨P ⟩ = ⟨S⟩. Since HomperA(P, S

′[n]) ≃ 0
for any integer n, we have that HomperA(S, S

′[n]) ≃ 0 for any integer n. Thus

perA = ⟨S ⊕ S′⟩ = ⟨S⟩ ⊥ ⟨S′⟩.
Since

F (SA(i)) ≃ RHomA(P, SA(i)) ≃ HomperA(P, SA(i)) ≃ (eiA/A(1− ei)A)e ≃ SB(i)

as B-modules, we have F (SA(i)) ≃ SB(i). □

A pretilting object E is called an exceptional object in D if EndD(E) ≃ K.

Lemma 2.12. [10, Lem. 1.58] Let E be an exceptional object in D. Then for any object X ∈ ⟨E⟩,

X ≃
⊕
n∈Z

E⊕dn [n]

where dn = dimK HomD(E,X[−n]) = dimK HomD(X,E[n]).

We recall the notion of exceptional sequences which is slightly modified for later use in this
paper. In fact we allow the index set to be a finite totally ordered set.

Definition 2.13. [10] Let D be a triangulated category, S a finite totally ordered set. A family
(Ek)k∈S of objects in D indexed by S is called an exceptional sequence if the following conditions
are satisfied:

(E1) Ek is an exceptional object for any k ∈ S.
(E2) If k < k′, then HomD(Ek, Ek′ [n]) = 0 for any integer n.
(E3) ⟨Ek | k ∈ S⟩ is an admissible subcategory of D.

An exceptional sequence (Ek)k∈S is said to be full if

⟨Ek | k ∈ S⟩ = D.

The properties of exceptional sequences are detailed in [10]. In general, for any finite totally
orderd set S, by using the unique ordered isomorphism s : [1, n] → S, we can identify (Ek)k∈S

with (Es(k))k∈[1,n]. If S = [1, n], we denote the family (Ek)k∈S by (E1, E2, . . . , En).

A triangulated category D is said to be Ext-finite over K if
⊕
n∈Z

HomD(X,Y [n]) has a finite

dimension for any objects X,Y ∈ D.

Lemma 2.14. [10, Lem. 1.58] Let D be an Ext-finite triangulated category, E an exceptional object
in D. Then (E3) is satisfied.

Let (Ek)k∈S be an exceptional sequence in D. For any T ⊂ S, define

ET :=
⊕
k∈T

Ek.

Lemma 2.15. Let D be an Ext-finite triangulated category, (Ek)k∈S an exceptional sequence in
D. For any T ⊂ S, ⟨ET ⟩ is an admissible subcategory of D.

Proof. Without loss of generality, we can assume T = [1, n]. Since

⟨ET ⟩ = ⟨E1⟩ ⊥ ⟨E2⟩ ⊥ · · · ⊥ ⟨En⟩
and ⟨Ek⟩ are admissible subcategories of D by Lemma 2.14, ⟨ET ⟩ is also an admissible subcategory
of D by Lemma 2.6. □

Lemma 2.16. Let D be an Ext-finite triangulated category with a Serre functor S : D → D, and
let

(E1, E2, . . . , En)

be an exceptional sequence in D.
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(a) The sequence

(E2, . . . , En,S⟨E[1,n]⟩(E1))

is an exceptional sequence and ⟨E[1,n]⟩ = ⟨E[2,n]⟩ ⊥ ⟨S⟨E[1,n]⟩(E1)⟩.
(b) The sequence

(S−1
⟨E[1,n]⟩(En), E1, . . . , En−1)

is an exceptional sequence and ⟨E[1,n]⟩ = ⟨S−1
⟨E[1,n]⟩(En)⟩ ⊥ ⟨E[1,n−1]⟩.

Proof. (a) Since S⟨E[1,n]⟩ : ⟨E[1,n]⟩ → ⟨E[1,n]⟩ is a triangle equivalence and E1 is an exceptional

object, S⟨E[1,n]⟩(E1) is also an exceptional object. If k ∈ [2, n], then

HomD(Ek,S⟨E[1,n]⟩(E1)[n]) ≃ HomD(E1, Ek[−n])∗ = 0

for any integer n. Thus the sequence

(E2, . . . , En,S⟨E[1,n]⟩(E1))

is an exceptional sequence. Since

T⟨E1⟩S⟨E[1,n]⟩(E1)
2.8(b)
= S⟨E1⟩(E1)

2.12
= E1,

there exists a triangle

E1 → S⟨E[1,n]⟩(E1) → F⟨E[2,n]⟩S⟨E[1,n]⟩(E1) → E1[1],

thus the last assertion follows.
(b) This is the dual of (a). □

Lemma 2.17. Let D be an Ext-finite triangulated category with a Serre functor S : D → D, and
let (Ek)k∈[1,n] be a full exceptional sequence in D. If there exist integers p < q such that

HomD(E[q+1,n],S⟨E[p,q]⟩(Ep)[n]) = 0 for any integer n,(2.11)

then

TD
⟨E[1,n]\{p}⟩(Ep) ≃ T⟨E[p,q]⟩

⟨E[p+1,q]⟩(Ep).

Proof. Let D′ = ⟨E[p,q]⟩, E = ⟨E[1,n]\{p}⟩, F = ⟨S⟨E[p,q]⟩(Ep)⟩, E ′ = ⟨E[p+1,q]⟩. Then we have
semi-orthogonal decompositions

D′ = ⟨Ep⟩ ⊥ ⟨E[p+1,q]⟩
2.16(a)
= E ′ ⊥ F and

D = ⟨E[1,p−1]⟩ ⊥ ⟨Ep⟩ ⊥ E ′ ⊥ ⟨E[q+1,n]⟩
2.16(a)
= ⟨E[1,p−1]⟩ ⊥ E ′ ⊥ F ⊥ ⟨E[q+1,n]⟩

(2.11)
= ⟨E[1,p−1]⟩ ⊥ E ′ ⊥ ⟨E[q+1,n]⟩ ⊥ F = E ⊥ F .

Thus TD
E (Ep)

2.7
= TD′

E′ (Ep) and the assertion follows. □

Lemma 2.18. Let A, B be two K-algebras, E an exceptional object in perA. Then

F = E ⊗ (−) : perB → per(A⊗B)

is a fully faithful triangle functor and induces a triangle equivalence F : perB → ⟨E ⊗B⟩.

Proof. Since E ⊗B is a pretilting object and the morphism f : B → REndA⊗B(E ⊗B); b → 1⊗ b
is a quasi-isomorphism of dg algebras, the functor

F ′ = RHomA⊗B(E ⊗B,−) : ⟨E ⊗B⟩ → perB

is a triangle equivalence. Since F ′F ≃ Id, the assertion follows. □
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Lemma 2.19. Let A be a K-algebra, B an Iwanaga-Gorenstein K-algebra, C = A ⊗ B. Then

G = (−)
L
⊗C(A⊗B∗) : perC → perC is a triangle autoequivalence, and for any exceptional object

E ∈ perA, G|⟨E⊗B⟩ : ⟨E ⊗B⟩ → ⟨E ⊗B⟩ is a Serre functor.

Proof. Since B is an Iwanaga-Gorenstein algebra, G = (−)
L
⊗C(A⊗B∗) : perC → perC is a triangle

equivalence. By Lemma 2.18, for any object X ∈ ⟨E ⊗ B⟩, there exists an object Y ∈ perB such
that X ≃ E ⊗ Y . Since there exist functorial isomorphisms

HomperC(E⊗Y,G(E⊗Y ′)) ≃ HomperC(E⊗Y,E⊗νB(Y
′)) ≃ HomperC(E⊗Y ′, E⊗Y )∗,

we have that G|⟨E⊗B⟩ is a Serre functor. □

3. S-families

3.1. Weak S-families. In this section, let D be a triangulated category satisfying the following
conditions:

D is algebraic, idempotent complete, Ext-finite and has a Serre functor S.(3.1)

Let S be a finite subset of Z2. For any element (i, j) ∈ S,

Si,j := ([i− 1, i]× [j − 1, j]) ∩ S.

Example 3.1. Let I1 = [1, 5], I2 = I3 = [1, 3], I4 = {1} be intervals of Z. The figure of

S =
⊔

i∈[1,4]

{i} × Ii is the following:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

(4, 1)

In the above figure, the square shows the subset S3,3.

Definition 3.2. Let D be a triangulated category satisfying (3.1). A family (Xi,j)(i,j)∈S of objects

in D indexed by a finite subset S of Z2 is called a weak S-family if the following conditions are
satisfied:

(L1) Xi,j is an exceptional object for any (i, j) ∈ S.
(L2) HomD(Xi,j , Xi′,j′ [n]) = 0 for any integer n unless (i′, j′) ∈ Si,j.

A weak S-family (Xi,j)(i,j)∈S is said to be full if

⟨Xi,j | (i, j) ∈ S⟩ = D.

The name of S-family comes from lattices.

Remark 3.3. The condition (L2) is satisfied if and only if the following conditions are satisfied:

(L2.1) HomD(Xi,j , Xi′,j′ [n]) = 0 for any integer n unless i′ ∈ [i− 1, i].
(L2.2) HomD(Xi,j , Xi′,j′ [n]) = 0 for any integer n unless j′ ∈ [j − 1, j].

If (Xi,j)(i,j)∈S is a weak S-family, then for any T ⊂ S, a family (Xi,j)(i,j)∈T is a weak T -family.
Let (Xi,j)(i,j)∈S be a family of objects in D. For any finite subset T of S, let

XT :=
⊕

(i,j)∈T

Xi,j ∈ D.(3.2)

In particular, Xk and Xk are defined as

Xk := X{k}×Sk
=

⊕
j∈Sk

Xk,j , Xk := XSk×{k} =
⊕
i∈Sk

Xi,k(3.3)
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where Sk = {j ∈ Z | (k, j) ∈ S}, Sk = {i ∈ Z | (i, k) ∈ S}.

Lemma 3.4. Let (Xi,j)(i,j)∈S be a weak S-family in D. Then ⟨XS⟩ is an admissible subcategory

of D. In particular, ⟨Xi⟩ and ⟨Xj⟩ are admissible subcategories.

Proof. By restricting the lexicographic order ≼ of Z2, we regard S as a totally ordered set. The
lexicographic order of S in Example 3.1 is as the following.

(1, 1) // (1, 2) // (1, 3) // (1, 4) // (1, 5)

rr
(2, 1) // (2, 2) // (2, 3)

uu
(3, 1) // (3, 2) // (3, 3)

uu
(4, 1)

(3.4)

The condition (L2) implies the following one:

If (i, j) ≺ (i′, j′), then HomD(Xi,j , Xi′,j′ [n]) = 0 for any integer n.(E2)

So we can regard a weak S-family (Xi,j)(i,j)∈S as an exceptional sequence. Thus the assertion
follows from Lemma 2.15. □

The following observation is clear from (L2).

Lemma 3.5. Let (Xi,j)(i,j)∈S be a weak S-family in D. Then XS is a pretilting object if and only
if XSi,j

is a pretilting object for any (i, j) ∈ S.

Proof. It suffices to show that HomD(Xi,j , Xi′,j′ [n]) = 0 for each (i, j), (i′, j′) ∈ S and n ̸= 0. If
(i′, j′) /∈ Si,j , then this holds by (2.9). Otherwise, this holds since XSi,j

is a pretilting object. □

3.2. Algebras L(S). Let N be the K-linear category defined as

N := (KA∞
∞)op/(rad(KA∞

∞)op)2

where A∞
∞ is the quiver

A∞
∞ = [· · · a−3→ −2

a−2→ −1
a−1→ 0

a0→ 1
a1→ 2

a2→ · · · ],
and radKA∞

∞ = ⟨an | n ∈ Z⟩. For any subset I of Z, let QI be the full subquiver of A∞
∞ with the

set I of vertices. We define N(I) as

N(I) := KQop
I /(radKQop

I )2.

In particular, we define N(k) as

N(k) := N([1, k]).

The typical example of a weak S-family is given by the following:

Example 3.6. Let L = N ⊗N . The category perL is a triangulated category satisfying (3.1). For
any finite subset S of Z2, the family (PL(i, j))(i,j)∈S is a weak S-family in perL.

For any finite subset S of Z2, we define the algebra L(S) as

L(S) = EndperL(
⊕

(i,j)∈S

PL(i, j)).

Then there exists a triangle equivalence

⟨PL(i, j) | (i, j) ∈ S⟩perL → perL(S).

Lemma 3.7. The K-linear category L is self-injective, and the category perL is a triangulated
category satisfying (3.1).
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Proof. Since

IL(i, j) = PL(i− 1, j − 1)

for any (i, j) ∈ Z2, L is self-injective. By Proposition 2.3, the assertion follows. □

3.3. S-families.

Definition 3.8. Let D be a triangulated category satisfying (3.1). Let S be a finite subset of Z2.
A weak S-family (Xi,j)(i,j)∈S in D is called an S-family if the following conditions are satisfied:

(S1) If (i, j), (i, j − 1) ∈ S, then S⟨Xi⟩(Xi,j) ≃ Xi,j−1.
(S2) If (i, j), (i− 1, j) ∈ S, then S⟨Xj⟩(Xi,j) ≃ Xi−1,j.
(S3) If (i, j), (i− 1, j − 1) ∈ S, then S⟨XS⟩(Xi,j) ≃ Xi−1,j−1.

An S-family (Xi,j)(i,j)∈S is said to be full if

⟨Xi,j | (i, j) ∈ S⟩ = D.

A typical example of an S-family is obtained by the following result:

Example 3.9. For any finite subset S ⊂ Z2, the family (PL(i, j))(i,j)∈S is an S-family in perL.

Proof. Let Xi,j = PL(i, j). The family (Xi,j)(i,j)∈S is a weak S-family in perL by Example 3.6.
If (i, j), (i, j − 1) ∈ S, since

ν⟨PL(i,j′)|j′∈Z⟩(Xi,j) = Xi,j−1 ∈ ⟨Xi⟩,

we have ν⟨Xi⟩(Xi,j)
2.8(c)
= Xi,j−1. Dually, we have that if (i, j), (i − 1, j) ∈ S, then ν⟨Xj⟩(Xi,j) ≃

Xi−1,j . Thus (S1) and (S2) are satisfied. If (i, j), (i− 1, j − 1) ∈ S,

ν(Xi,j) ≃ Xi−1,j−1 ∈ ⟨XS⟩.

So we have ν⟨XS⟩(Xi,j)
2.8(c)
= Xi−1,j−1 and (S3) is satisfied. Thus the assertion follows. □

Example 3.10. Let S = [1, p] × [1, q]. The family (S(i, j)[−i − j])(i,j)∈S is a full S-family in
per(KAp ⊗KAq). There exists a triangle equivalence F : per(KAp ⊗KAq) → per(N(p) ⊗N(q))
such that F (S(i, j)[−i− j]) ≃ P (i, j).

Proof. Let A = KAp ⊗KAq, B = N(p)⊗N(q),

Xi,j = SA(i, j)[−i− j].

We construct a triangle equivalence G : perA → perB such that G(Xi,j) = PB(i, j). Since

HomperKAm(SKAm(j)[−j], SKAm(i)[−i+ k]) ≃

{
K j ∈ {i, i+ 1}, k = 0,

0 otherwise,

the object Tm =
⊕

i∈[1,m]

SKAm
(i)[−i] is a tilting object in perKAm such that EndperKAm

(Tm) ≃

N(m). Then there exists a triangle equivalence F : perKAm → perN(m) such that F (SKAm(i)[−i])
≃ PN(m)(i). Thus T = Tp ⊗ Tq is a tilting object such that EndperA(T ) ≃ B, and there exists a
triangle exivalence G : perA → perB such that G(Xi,j) ≃ PB(i, j). By Example 3.9, the assertion
follows. □

In general, by using the following result, if there exists a full S-family (Xi,j)(i,j)∈S in D, then
there exists a triangle equivalence F : D → perL(S) and F sends (Xi,j)(i,j)∈S to (P (i, j))(i,j)∈S in
Example 3.9.

Theorem 3.11. Let D be a triangulated category satisfying (3.1), S a finite subset of Z2. For any
S-family (Xi,j)(i,j)∈S in D, XS is a pretilting object such that EndD(XS) ≃ L(S), and there exists
a triangle equivalence

F : ⟨XS⟩ → perL(S)
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such that F (Xi,j) ≃ PL(i, j) for any (i, j) ∈ S. In particular, there exists a fully faithful triangle
functor G : ⟨XS⟩ → perL such that G(Xi,j) = PL(i, j) for any (i, j) ∈ S.

The following result is a key step of the proof of Theorem 3.11:

Proposition 3.12. Let (Xi,j)(i,j)∈S be a weak S-family satisfying (S3).

(a) The condition (S1) is equivalent to the following one:
(S1′) If (i, j), (i, j − 1) ∈ S, then F⟨Xj−1⟩(Xi,j) = Xi,j−1.

(b) The condition (S2) is equivalent to the following one:
(S2′) If (i, j), (i− 1, j) ∈ S, then F⟨Xi−1⟩(Xi,j) = Xi−1,j.

To prove Proposition 3.12, we prove the following result:

Lemma 3.13. Let S be a finite subset of Z2, i an integer such that Si ̸= ∅. Let (Xi,j)(i,j)∈S be a
weak S-family satisfying (S1′). Then Xi is a pretilting object such that EndD(Xi) ≃ N(Si), and
there exists a triangle equivalence F : ⟨Xi⟩ → perN(Si) such that F (Xi,j) ≃ P (j).

Proof. If j, j − 1 ∈ Si, then

HomD(Xi,j , Xi,j−1[n])
(2.1)
= HomD(F⟨Xj−1⟩(Xi,j), Xi,j−1[n])

(S1′)
= HomD(Xi,j−1, Xi,j−1[n])

(L1)
=

{
K n = 0,

0 n ̸= 0.

By Lemma 3.5, Xi is a pretilting oblect. If j′ /∈ [j − 1, j], since HomD(Xi,j , Xi,j′)
(L2)
= 0, we have

EndD(Xi) ≃ N(Si). □

By symmetry, we have the following result:

Lemma 3.14. Let S be a finite subset of Z2, and j an integer such that Sj ̸= ∅. Let (Xi,j)(i,j)∈S

be a weak S-family satisfying (S2′). Then Xj is a pretilting object such that EndD(X
j) ≃ N(Sj),

and there exists a triangle equivalence G : ⟨Xj⟩ → perN(Sj) such that G(Xi,j) ≃ P (i).

Now we are ready to prove Proposition 3.12.

Proof of Proposition 3.12. (a) We prove “if” part. Since (S1)′ is satisfied, by Lemma 3.13, there
exists a triangle equivalence F : ⟨Xi⟩ → perA such that F (Xi,j) ≃ PA(j) where A = N(Si). If
(i, j), (i, j − 1) ∈ S, then

S⟨Xi⟩(Xi,j) ≃ S⟨Xi⟩F
−1(PA(j))

2.2
= F−1(νA(PA(j))) ≃ F−1(PA(j − 1)) ≃ Xi,j−1.

Thus (S1) is satisfied.
We prove “only if” part. Suppose that (i, j), (i, j − 1) ∈ S. If (i− 1, j − 1) /∈ S, then

⟨Xj−1⟩ = ⟨X⩽i−2,j−1⟩ ⊥ ⟨Xi,j−1⟩ ⊥ ⟨X⩾i+1,j−1⟩
(L2)
= ⟨Xi,j−1⟩ ⊥ ⟨X⩽i−2,j−1⟩ ⊥ ⟨X⩾i+1,j−1⟩.

Since

HomD(F⟨Xj−1⟩(Xi,j), X⩾i+1,j−1[n]) ≃ HomD(Xi,j , X⩾i+1,j−1[n])
(L2)
= 0 and

HomD(F⟨Xj−1⟩(Xi,j), X⩽i−2,j−1[n]) ≃ HomD(Xi,j , X⩽i−2,j−1[n])
(L2)
= 0

for any integer n, we have F⟨Xj−1⟩(Xi,j) ∈ ⟨Xi,j−1⟩. Since

HomD(F⟨Xj−1⟩(Xi,j), Xi,j−1[n]) ≃ HomD(Xi,j , Xi,j−1[n])
(S1)
= HomD(Xi,j ,S⟨Xi⟩(Xi,j))

≃ HomD(Xi,j , Xi,j [n])
∗ (L1)

=

{
K n = 0,

0 n ̸= 0,
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we have F⟨Xj−1⟩(Xi,j)
2.12
= Xi,j−1. If (i− 1, j − 1) ∈ S, then

(3.5) F⟨Xj−1⟩(Xi,j)
(S3)
= F⟨Xj−1⟩S−1(Xi−1,j−1)

2.8(b)
= S−1

⟨Xj−1⟩(Xi−1,j−1).

Since

HomD(S−1
⟨Xj−1⟩(Xi−1,j−1), X⩾i+1,j−1[n])

(3.5)
= HomD(F⟨Xj−1⟩(Xi,j), X⩾i+1,j−1[n])

≃ HomD(Xi,j , X⩾i+1,j−1[n]) ≃ 0

for any integer n, we have S−1
⟨Xj−1⟩(Xi−1,j−1) ∈ ⟨X⩽i,j−1⟩, and so

(3.6) F⟨Xj−1⟩(Xi,j)
(3.5)
= S−1

⟨Xj−1⟩(Xi−1,j−1)
2.8(c)
= S−1

⟨X⩽i,j−1⟩(Xi−1,j−1).

Let T = Xi,j−1 ⊕Xi−1,j−1. Since

T⟨Xi⟩(Xi−1,j−1)
(S3)
= T⟨Xi⟩S⟨XS⟩(Xi,j)

(S1)
= Xi,j−1,

we have

HomD(Xi,j−1, Xi−1,j−1[n]) ≃ HomD(Xi,j−1,T⟨Xi⟩(Xi−1,j−1)[n])(3.7)

≃ HomD(Xi,j−1, Xi,j−1[n])
(L1)
=

{
K n = 0,

0 n ̸= 0.

So T is a pretilting object such that EndD(T ) ≃ N(2), and so there exists a triangle equivalence
F : ⟨T ⟩ → perB such that F (PB(1)) ≃ Xi−1,j−1 and F (PB(2)) ≃ Xi,j−1 where B = N(2). Let

E = ⟨X⩽i,j−1⟩, F = ⟨X⩽i−2,j−1⟩ and F ′ = ⟨S−1
⟨T ⟩(Xi,j−1)⟩. Then

E (L2)
= F ⊥ ⟨Xi−1,j−1⟩ ⊥ ⟨Xi,j−1⟩

2.16(b)
= F ⊥ F ′ ⊥ ⟨Xi−1,j−1⟩

2.16(b)
= ⟨S−1

E (Xi−1,j−1)⟩ ⊥ F ⊥ F ′.

On the other hand,

E (L2)
= F ⊥ ⟨Xi−1,j−1⟩ ⊥ ⟨Xi,j−1⟩

2.16(a)
= F ⊥ ⟨Xi,j−1⟩ ⊥ ⟨S⟨T ⟩(Xi−1,j−1)⟩

(L2)
= ⟨Xi,j−1⟩ ⊥ F ⊥ ⟨S⟨T ⟩(Xi−1,j−1)⟩

2.4
= ⟨Xi,j−1⟩ ⊥ F ⊥ F ′.

Thus ⟨S−1
E (Xi−1,j−1)⟩ = ⟨Xi,j−1⟩. Since

HomD(S−1
E (Xi−1,j−1), Xi,j−1[n]) ≃ HomD(Xi,j−1, Xi−1,j−1[−n])∗

(3.7)
=

{
K n = 0,

0 n ̸= 0,

we have S−1
E (Xi−1,j−1)

2.12
= Xi,j−1, and so F⟨Xj−1⟩(Xi,j)

(3.6)
= S−1

E (Xi−1,j−1) ≃ Xi,j−1. Thus (S1)′

is satisfied.
(b) This is the dual of (a). □

The following result is clear by the definition of L(S). The proof is left to the reader:

Lemma 3.15. Let (Xi,j)(i,j)∈S be a family of objects Xi,j ∈ D. Suppose that there exists a family

(υi,j
i′,j′ : Xi,j → Xi′,j′)(i,j),(i′,j′)∈S of (possibly zero) morphisms and families (ci,j)(i,j)∈S, (c

′
i,j)(i,j)∈S

of non-zero scalars ci,j , c
′
i,j ∈ K× satisfying the following conditions:

HomD(Xi,j , Xi′,j′) = Kυi,j
i′,j′ .(3.8)

(i′, j′) ∈ Si,j if and only if υi,j
i′,j′ ̸= 0.(3.9)

If (i, j), (i, j − 1), (i− 1, j − 1) ∈ S, then ci,jυ
i,j−1
i−1,j−1υ

i,j
i,j−1 = υi,j

i−1,j−1.(3.10)

If (i, j), (i− 1, j), (i− 1, j − 1) ∈ S, then c′i,jυ
i−1,j
i−1,j−1υ

i,j
i−1,j = υi,j

i−1,j−1.(3.11)
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Then there exists an isomorphism f : EndD(XS) → L(S) of K-algebras such that P (i, j)f ≃
HomD(XS , Xi,j) as EndD(XS)-modules where P (i, j)f is an EndD(XS)-module associated with f
and P (i, j).

Now we are ready to prove Theorem 3.11.

Proof of Theorem 3.11. Since (Xi,j)(i,j)∈S is a weak S-family, we have

dimK HomD(Xi,j , Xi−1,j [n])
3.13
=

{
1 n = 0,

0 n ̸= 0,

dimK HomD(Xi,j , Xi,j−1[n])
3.14
=

{
1 n = 0,

0 n ̸= 0,

dimK HomD(Xi,j , Xi−1,j−1[n])
(S3)
= dimK HomD(Xi,j ,S⟨XS⟩(Xi,j)[n])

= dimK HomD(Xi,j , Xi,j [−n])∗
(L1)
=

{
1 n = 0,

0 n ̸= 0.

In particular, XSi,j
is a pretilting object. Thus XS is a tilting object by Lemma 3.5.

Thanks to the above calculation, the following condition is satisfied:

If (i′, j′) ∈ Si,j , then dimK HomD(Xi,j , Xi′,j′) = 1.(3.12)

By the conditions (L2) and (3.12), there exists a family (υi,j
i′,j′ : Xi,j → Xi′,j′)(i,j),(i′,j′)∈S of

morphisms satisfying (3.8) and (3.9). By (S1′) and (S2′), the conditions (3.10) and (3.11) are
satisfied.

Xi−1,j−1 Xi−1,j

υi−1,j
i−1,j−1oo

Xi,j−1

ci,jυ
i,j−1
i−1,j−1

OO

Xi,j

c′i,jυ
i,j
i−1,j

OO

υi,j
i,j−1

oo

υi,j
i−1,j−1

ee

Thus the assertion follows from Lemma 3.15. □

3.4. A property of S-families. Let (Xi,j)(i,j)∈S be an S-family. For any J ⊂ Z, define

Xi,J =
⊕

j∈J∩Si

Xi,j .

In particular

Xi,>j = X(j,∞), Xi,⩾j = X[j,∞), Xi,<j = X(−∞,j), Xi,⩽j = X(−∞,j].

In this section, we prove the following result which is the key step of the proof of Theorem 4.3
in the next section. Let (Xi,j)(i,j)∈S be an S-family and (i, j) ∈ S. If (i− 1, j), (i− 1, j − 1) ∈ S,
by (S1) and (S3), we have S⟨XS⟩(Xi,j) ≃ Xi−1,j−1 ≃ S⟨Xi−1⟩(Xi−1,j). The following shows that
S⟨XS⟩(Xi,j) ≃ S⟨Xi−1⟩(Xi−1,j) holds without assuming (i− 1, j − 1) ∈ S if Si ⊂ Si−1.

Proposition 3.16. Let (Xi,j)(i,j)∈S be an S-family in D, and (i, j) ∈ S. If Si ⊂ Si−1, then
S⟨XS⟩(Xi,j) ≃ S⟨Xi−1⟩(Xi−1,j) ∈ ⟨Xi−1⟩.

To prove Proposition 3.16, we prove the following result:

Lemma 3.17. Let (Xi,j)(i,j)∈S be an S-family in D and (i, j), (i, j − 1) ∈ S. Then

T⟨Xi⟩
⟨Xi,⩾j⟩(Xi,j−1) = S⟨Xi,Si\{j−1}⟩(Xi,j).
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Proof. Let Y = T⟨Xi⟩
⟨Xi,⩾j⟩(Xi,j−1). Since (Xi,j)j∈Si is regarded as the exceptional sequence,

⟨Xi,⩾j⟩ = ⟨Xi,j⟩ ⊥ ⟨Xi,>j⟩
2.16(a)
= ⟨Xi,>j⟩ ⊥ ⟨E⟩

where E = S⟨Xi,⩾j⟩(Xi,j). Then

HomD(Xi,>j , Y [n]) ≃ HomD(Xi,>j , Xi,j−1[n]) = 0

for any integer n. We have Y ∈ ⟨E⟩. Since E is an exceptional object and

HomD(Y,E[n]) ≃ HomD(Xi,j , Y [−n])∗ ≃ HomD(Xi,j , Xi,j−1[−n])∗
(S1)
=

{
K n = 0,

0 otherwise,

we have Y
2.12
= E. Since

⟨Xi,Si\{j−1}⟩ = ⟨Xi,<j−1⟩ ⊥ ⟨Xi,⩾j⟩
(L2)
= ⟨Xi,⩾j⟩ ⊥ ⟨Xi,<j−1⟩,

we have

S⟨Xi,Si\{j−1}⟩(Xi,j) ≃ T⟨Xi⟩
⟨Xi,Si\{j−1}⟩S⟨Xi⟩(Xi,j) ≃ T⟨Xi⟩

⟨Xi,Si\{j−1}⟩(Xi,j−1) ≃ Y ≃ E.

Thus the assertion follows. □

Now we are ready to prove Proposition 3.16.

Proof of Proposition 3.16. By Theorem 3.11, we can assume that D = perL, Xi,j = PL(i, j) ∈
perL. If (i− 1, j − 1) ∈ S,

S⟨XS⟩(Xi,j) ≃ Xi−1,j−1 ≃ S⟨Xi−1⟩(Xi−1,j).

If (i−1, j−1) /∈ S, let T := S∪{(i−1, j−1)}. Then (Xi,j)(i,j)∈T is a T -family in D. By restricting

the lexicographic order ≼ of Z2, we regard T as a totally ordered set (see the figure (3.4)). Let
s : [1, n] → T be the ordered isomorphism, and let Ek = Xs(k). Let p, q be two integers such that

p = s−1(i− 1, j − 1), q = s−1(i− 1, j0) where j0 = sup{j′ ∈ Z | (i− 1, j′) ∈ T},(3.13)

and let Y = S⟨Xi−1,⩾j−1⟩(Xi−1,j−1) = S⟨E[p,q]⟩(Ep).

If (i′, j′) ∈ S and i′ > i,

HomD(Xi′,j′ , Y [n])
(L2)
= 0 for any integer n.

If (i′, j′) ∈ S, i′ = i, and j′ < j − 1,

HomD(Xi′,j′ , Y [n])
(L2)
= 0 for any integer n.

If (i′, j′) ∈ S, i′ = i, and j′ > j − 1,

HomD(Xi′,j′ , Y [n])
(S2′)
= HomD(Xi−1,j′ , Y [n]) ≃ HomD(Xi−1,j−1, Xi−1,j′ [−n])∗

(L2)
= 0

for any integer n. So we have that

HomD(E[q+1,n],S⟨E[p,q]⟩(Ep)[n]) = 0 for any integer n.

Thus

S⟨XS⟩(Xi,j)
2.8(b)
= T⟨XS⟩S⟨XT ⟩(Xi,j) ≃ T⟨XS⟩(Xi−1,j−1) = T⟨E[1,n]\{p}⟩(Ep)

2.17
= T⟨E[p,q]⟩

⟨E[p+1,q]⟩(Ep)
(3.13)
= T⟨Xi−1,J ⟩

⟨Xi−1,J\{j−1}⟩(Xi−1,j−1)
3.17
= S⟨Xi−1⟩(Xi−1,j)

where J = [j − 1, j0] ∩ Si−1. □
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q1

pr q2

pr−1

qr−k+1

pk

qr−1

p2 qr

p1

Figure 3. The shape of the Young diagram Y(p; q)

4. S-families in derived categories of Nakayama algebras

4.1. The algebras L(p; q) and L!(p; q). Let p = (pk)k∈[1,r] and q = (qk)k∈[1,r] be two sequences
of positive integers. For any integer s ∈ [0, r], define

p̄s :=

s∑
k=1

pk, q̄s :=

s∑
k=1

qk, p̄ := p̄r, q̄ := q̄r.

Consider the Young diagram

Y(p; q) :=
∪

k∈[0,r−1]

[1 + p̄k, p̄k+1]× [1, q̄r−k] =
∪

k∈[0,r−1]

[1, p̄r−k]× [1 + q̄k, q̄k+1]

(see Figure 3). Let

e(p; q) :=
∑

(i,j)∈Y(p;q)

ei ⊗ ej , e!(p; q) :=
∑

(i,j)∈Y(p;q)

e!i ⊗ e!j

where ei ⊗ ej (resp. e!i ⊗ e!j) is the primitive idempotent in N(p̄)⊗N(q̄) (resp.KAp̄ ⊗KAq̄) corre-

sponding to the vertex (i, j) ∈ Y(p; q). Then the algebras L(p; q) and L!(p; q) are defined as

L(p; q) = L(p1, . . . , pr; q1, . . . , qr) := L(Y(p; q)) = e(p; q)(N(p̄)⊗N(q̄))e(p; q)(4.1)

≃ (N(p̄)⊗N(q̄))/⟨1− e(p; q)⟩,

L!(p; q) = L!(p1, . . . , pr; q1, . . . , qr) := e!(p; q)(KAp̄ ⊗KAq̄)e
!(p; q)(4.2)

≃ (KAp̄ ⊗KAq̄)/⟨1− e!(p; q)⟩.

By the definition of L(p; q) and L!(p; q), there exist natural isomorphisms L(p; q) → L(q; p) and
L!(p; q) → L!(q; p).

Example 4.1. The quivers of L(3; 4) and L!(3; 4) are the following respectively:

(1, 1) (1, 2)
u1,1oo (1, 3)

u1,2oo (1, 4)
u1,3oo

(2, 1)

v1,1

OO

(2, 2)
u2,1oo

v1,2

OO

(2, 3)
u2,2oo

v1,3

OO

(2, 4)
u2,3oo

v1,4

OO

(3, 1)

v2,1

OO

(3, 2)
u3,1oo

v2,2

OO

(3, 3)
u3,2oo

v2,3

OO

(3, 4)
u3,3oo

v2,4

OO

(1, 1)
u!
1,1 //

v!
1,1��

(1, 2)
u!
1,2 //

v!
1,2��

(1, 3)
u!
1,3 //

v!
1,3��

(1, 4)

v!
1,4��

(2, 1)
u!
2,1 //

v!
2,1��

(2, 2)
u!
2,2 //

v!
2,2��

(2, 3)
u!
2,3 //

v!
2,3��

(2, 4)

v!
2,4��

(3, 1)
u!
3,1 // (3, 2)

u!
3,2 // (3, 3)

u!
3,3 // (3, 4)
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The quivers of L(1, 2, 1; 1, 2, 2) and L!(1, 2, 1; 1, 2, 2) are the following respectively:

(1, 1) (1, 2)
u1,1oo (1, 3)

u1,2oo (1, 4)
u1,3oo (1, 5)

u1,4oo

(2, 1)

v1,1

OO

(2, 2)
u2,1oo

v1,2

OO

(2, 3)
u2,2oo

v1,3

OO

(3, 1)

v2,1

OO

(3, 2)

v2,2

OO

u3,1oo (3, 3)

v2,3

OO

u3,2oo

(4, 1)

v3,1

OO

(1, 1)
u!
1,1 //

v!
1,1��

(1, 2)
u!
1,2 //

v!
1,2��

(1, 3)
u!
1,3 //

v!
1,3��

(1, 4)
u!
1,4 // (1, 5)

(2, 1)
u!
2,1 //

v!
2,1��

(2, 2)
u!
2,2 //

v!
2,2��

(2, 3)

v!
2,3��

(3, 1)
u!
3,1 //

v!
3,1��

(3, 2)
u!
3,2 // (3, 3)

(4, 1)

and the relations are the following respectively:

ui,jui,j+1 = 0, vi,jvi+1,j = 0, ui,jvi,j+1 − vi,jui+1,j = 0, v!i,j+1u
!
i,j − u!

i+1,jv
!
i,j = 0.

From the following result, L(p; q) is derived equivalent to L!(p; q).

Proposition 4.2. The family (Xi,j)(i,j)∈Y(p;q) of objects

Xi,j = SL!(p;q)(i, j)[−i− j]

is a full Y(p; q)-family in perL!(p; q). Then the object XY(p;q) =
⊕

(i,j)∈Y(p;q)

Xi,j is a tilting object

in perL!(p; q) such that EndperL!(p;q)(XY(p;q)) ≃ L(p; q), and there exists a triangle equivalence

F : perL!(p; q) → perL(p; q)

such that F (Xi,j) ≃ P (i, j) for any (i, j) ∈ Y(p; q).

Proof. Let A = L!(p̄; q̄) = KAp̄⊗KAq̄, B = N(p̄)⊗N(q̄). By Example 3.10, there exists a triangle
equivalence G : perA → perB such that G(SA(i, j)[−i− j]) ≃ PB(i, j) for any (i, j) ∈ Y(p̄, q̄). Let

P = e!(p; q)A, P ′ = (1−e!(p; q))A, T =
⊕

(i,j)∈Y(p;q)

SA(i, j)[−i−j], R = G(T ) ≃ e(p; q)B.

Since EndperB(R) ≃ L(p; q), there exists a triangle equivalence F1 : ⟨R⟩ → perL(p; q) such that
F1(PB(i, j)) ≃ PL(p;q)(i, j) for any (i, j) ∈ Y(p; q) by Example 2.11.

Since EndperA(P ) ≃ L!(p; q) and HomperA(P
′, P ) ≃ 0, there exists a triangle equivalence F2 :

⟨P ⟩ → perL!(p; q) such that F2(PA(i, j)) ≃ PL!(p;q)(i, j) and F2(SA(i, j)) ≃ SL!(p;q)(i, j) for any
(i, j) ∈ Y(p; q) by Example 2.11. Since

F1GF−1
2 (Xi,j) ≃ PL(p;q)(i, j),

the triangle equivalence F1GF−1
2 : perL!(p; q) → perL(p; q) sends the family (Xi,j)(i,j)∈Y(p;q)

to the full Y(p; q)-family (PL(p;q)(i, j))(i,j)∈Y(p;q) in perL(p; q) given by Example 3.9. Thus the
assertion follows.

(4.3)

perL!(p; q) ⟨P ⟩� _

��

F2

≃
oo ⟨T ⟩ G

≃
//

� _

��

⟨R⟩ F1

≃
//

� _

��

perL(p; q)

perA perA
G

≃ // perB. □
Recall that D satisfies the condition (3.1) if

D is algebraic, idempotent complete, Ext-finite and has a Serre functor S.

For any two sequences of positive integers p = (pk)k∈[1,r] and q = (qk)k∈[1,r], define

λp;q(i) = λ(i) := sup{j′ ∈ Z | (i, j′) ∈ Y(p; q)}.
When S = Y(p; q), the definition of S-families are characterized by the following much simpler
conditons than (L1), (L2), (S1)-(S3).
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Theorem 4.3. Let D be a triangulated category satisfying (3.1), (Xi,j)(i,j)∈Y(p;q) a family of excep-
tional objects in D. Then (Xi,j)(i,j)∈Y(p;q) is a full Y(p; q)-family in D if and only if (Xi,j)(i,j)∈Y(p;q)

satisfies the following conditions:

(Y1) D = ⟨X1⟩ ⊥ ⟨X2⟩ ⊥ · · · ⊥ ⟨Xp̄⟩.
(Y2) ⟨X1⟩ = ⟨X1,1⟩ ⊥ ⟨X1,2⟩ ⊥ · · · ⊥ ⟨X1,λ(1)⟩.
(Y3) S⟨X1⟩(X1,j) ≃ X1,j−1 for any integer j ∈ (1, λ(i)].
(Y4) S(Xi,j) ≃ S⟨Xi−1⟩(Xi−1,j) for any integers i ∈ (1, p̄] and j ∈ [1, λ(i)].

In this case, there exists a triangle equivalence

F : D → perL(p; q)

such that F (Xi,j) ≃ P (i, j) for any (i, j) ∈ Y(p; q).

To prove Theorem 4.3, we prepare the following two results.

Lemma 4.4. Let D be a triangulated category satisfying (3.1), (Xi)i∈[1,n] a family of objects in
D. If the conditons

D = ⟨X1⟩ ⊥ ⟨X2⟩ ⊥ · · · ⊥ ⟨Xn⟩(4.4)

S(Xi) ∈ ⟨Xi−1⟩ for any integer i ∈ (1, n](4.5)

are satisfied, then

HomD(Xi, Xi′ [n]) = 0 for any integer n unless i′ ∈ [i− 1, i].(4.6)

Proof. If i < i′, HomD(Xi, Xi′ [n])
(4.4)
= 0 for any integer n. If i − i′ ⩾ 2, then S(Xi) ∈ ⟨Xi−1⟩ by

(4.5) and HomD(Xi, Xi′ [n]) ≃ HomD(Xi′ ,S(Xi)[−n])∗
(4.4)
= 0 for any integer n. Thus the assertion

follows. □

Lemma 4.5. Let D be a triangulated category satisfying (3.1), (Xi,j)(i,j)∈Y(p;q) a family of excep-
tional objects in D satisfying (Y1)-(Y4). Then (Xi,j)(i,j)∈Y(p;q) satisfies the following conditions:

⟨Xi⟩ = ⟨Xi,1⟩ ⊥ ⟨Xi,2⟩ ⊥ · · · ⊥ ⟨Xi,λ(i)⟩ for any integer i ∈ [1, p̄].(Y2′)

S⟨Xi⟩(Xi,j) ≃ Xi,j−1 for any integers i ∈ [1, p̄], j ∈ (1, λ(i)].(S1)

Proof. When i = 1, (Y2′) is nothing but (Y2). Assume that (Y2′) holds for i. If j < j′,

HomD(Xi+1,j , Xi+1,j′ [n])
(Y4)
= HomD(S−1S⟨Xi⟩(Xi,j),S−1S⟨Xi⟩(Xi,j′)[n])

≃ HomD(Xi,j , Xi,j′ [n]) = 0

for any integer n. So (Y2′) holds for i+ 1.
When i = 1, (S1) is nothing but (Y3). Assume that (S1) holds for i. Then F = S−1S⟨Xi⟩ :

⟨Xi,⩽λ(i+1)⟩ → ⟨Xi+1⟩ is a triangle equivalence by (Y4) and

S⟨Xi+1⟩(Xi+1,j)
(Y4)
= S⟨Xi+1⟩F (Xi,j)

2.2(b)(c)
= FS⟨Xi,⩽λ(i+1)⟩(Xi,j)

2.8(c)
= FS⟨Xi⟩(Xi,j)

(S1)
= F (Xi,j−1)

(Y4)
= Xi+1,j−1.

Thus (S1) holds for i+ 1.

⟨Xi⟩

S⟨Xi⟩

��

⟨Xi,⩽λ(i+1)⟩? _oo F //

S⟨Xi,⩽λ(i+1)⟩

��

⟨Xi+1⟩

S⟨Xi+1⟩

��
⟨Xi⟩T⟨Xi,⩽λ(i+1)⟩

// ⟨Xi,⩽λ(i+1)⟩ F
// ⟨Xi+1⟩ □

Now we are ready to prove Theorem 4.3.
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Proof of Theorem 4.3. If (Xi,j)(i,j)∈Y(p;q) is a full Y(p; q)-family, there exists a triangle equivalence
F : D → perL(p; q) by Theorem 3.11. So we will prove the equivalence of two conditions.

We prove “only if” part. Since (Xi,j)(i,j)∈Y(p;q) is a full weak Y(p; q)-family, (Y1) and (Y2) are
satisfied. By (S2), we have that (Y3) is satisfied. By Proposition 3.16, (Y4) is satisfied. Thus the
assertion follows.

We prove “if” part. By the assumption, (L1) is satisfied. By (Y1) and (Y4), we see that (L2.1)
is satisfied by Lemma 4.4. Since

F⟨Xi−1⟩(Xi,j) ≃ S−1
⟨Xi−1⟩S(Xi,j)

(Y4)
= S−1

⟨Xi−1⟩S⟨Xi−1⟩(Xi−1,j) ≃ Xi−1,j ,

(S2)′ is satisfied. If j − j′ ⩾ 2,

HomD(Xi,j , Xi−1,j′ [n]) ≃ HomD(F⟨Xi−1⟩(Xi,j), Xi−1,j′ [n])
(S2)′

= Hom(Xi−1,j , Xi,j′)
(L2.1)
= 0.

So (L2.2) is satisfied. Thus (Xi,j)(i,j)∈Y(p;q) is a weak S-family satisfying (S2)′.
In the last, we prove that (Xi,j)(i,j)∈Y(p;q) is an S-family. By Lemma 4.5, (S1) is satisfied. By

(S1) and (Y4), we see that (S3) is satisfied. Thus the assertion follows. □

4.2. Y(p, q, r)-families. The aim of this section is to prove Theorem 4.7. Let p, q, and r be three
positive integers such that pq > q + 1, 0 ⩽ r ⩽ q. Let

Y(p, q, r) =

{
Y(p− 1, 1; q − r, r) r < q,

Y(p− 1; q) r = q,

L(p, q, r) = L(Y(p, q, r)).

The following application of Theorem 4.3 is useful to construct a Y(p; q)-family:

Proposition 4.6. Let D be a triangulated category satisfying (3.1), (Ek)k∈[1,q] an exceptional

sequece in D, and E =
⊕

k∈[1,q]

Ek. Suppose that the following conditions are satisfied:

D = ⟨Sp−1(E)⟩ ⊥ ⟨Sp−2(E)⟩ ⊥ · · · ⊥ ⟨E⟩.(4.7)

S⟨E⟩(Ei) ≃ Ei−1 for any integer i ∈ (1, p].(4.8)

Then the family (Xi,j)(i,j)∈Y(p;q) of objects

Xi,j := F⟨Sp−i(E)⟩F⟨Sp−i−1(E)⟩ · · ·F⟨S(E)⟩(Ej)

is a full Y(p; q)-family in D. In particular, there exists a triangle equivalence

F : D → perL(p; q)

such that F (Xi,j) ≃ P (i, j) for any (i, j) ∈ Y(p; q).

Proof. It suffices to check the conditions (Y1)-(Y4). Since F⟨Si+1(E)⟩ : ⟨Si(E)⟩ → ⟨Si+1(E)⟩ is a

triangle equivalence for each i ∈ Z by Lemma 2.9(d), ⟨Xi⟩ = ⟨Sp−i(E)⟩. Since (4.7) is satisfied,
(Y1) is satisfied. Then we see that S(⟨Xi⟩) = ⟨Xi−1⟩. Since

S−1
⟨Xi−1⟩S(Xi,j)

2.9(c)
= F⟨Xi−1⟩(Xi,j) = Xi−1,j ,

(Y4) is satisfied. Since F⟨Si+1(E)⟩ : ⟨Si(E)⟩ → ⟨Si+1(E)⟩ is a triangle equivalence for each i ∈ Z by
Lemma 2.9(d),

G = F⟨Sp−1(E)⟩F⟨Sp−2(E)⟩ · · ·F⟨S(E)⟩ : ⟨E⟩ → ⟨X1⟩
is a triangle equivalence. SinceG sends the exceptional sequence (Ei)i∈[1,q] to the family (X1,j)j∈[1,q],
it follows that (Y2) is satisfied. If j ∈ (1, q],

S⟨X1⟩(X1,j) ≃ S⟨X1⟩G(Ej) ≃ GS⟨E⟩(Ej)
(4.8)
= G(Ej−1) ≃ X1,j−1.

So (Y3) is satisfied. Thus the assertion follows from Theorem 4.3. □
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The following result is one of our main results:

Theorem 4.7. Let p, q, and r be three positive integers such that pq > q+1, 0 ⩽ r ⩽ q− 1. Then
there exists a full Y(p, q, r)-family (Xi,j)(i,j)∈Y(p,q,r) in perN(pq − r, q + 1). In particular, there
exists a triangle equivalence

F : perN(pq − r, q + 1) → perL(p, q, r)

such that F (Xi,j) = PL(p,q,r)(i, j) for any (i, j) ∈ Y(p, q, r).

We first prove the case r = 0 of Theorem 4.7 by applying Proposition 4.6.

Proposition 4.8. Let p and q be two positive integers such that pq > q + 1, A = N(pq, q + 1).

(a) Let (Xi,j)(i,j)∈Y(p;q) be a family of objects Xi,j ∈ perA defined as

Xi,j = F⟨νp−i(P )⟩F⟨νp−i−1(P )⟩ · · ·F⟨ν(P )⟩(S(j))[−j]

where P =
⊕

k∈[1,q]

P (k). Then (Xi,j)(i,j)∈Y(p;q) is a full Y(p; q)-family in perA.

(b) Let (X ′
i,j)(i,j)∈Y(p;q) be a family of objects X ′

i,j ∈ perA defined as

X ′
i,j = F⟨νp−i(S)⟩F⟨νp−i−1(S)⟩ · · ·F⟨ν(S)⟩(S((p− 1)q + j))[−j]

where S =
⊕

k∈[1,q]

S((p− 1)q + k). Then (X ′
i,j)(i,j)∈Y(p;q) is a full Y(p; q)-family in perA.

Proof. (a) It suffices to check the conditions (4.7)-(4.8) by Proposition 4.6. Let Ei = S(i)[−i],

E =
⊕

i∈[1,q]

Ei. Since ⟨E⟩ = ⟨P ⟩ and νk(P (i)) ≃ P (pk + i), we have

D = ⟨νp−1(P )⟩ ⊥ ⟨νp−2(P )⟩ ⊥ · · · ⊥ ⟨P ⟩ = ⟨νp−1(E)⟩ ⊥ ⟨νp−2(E)⟩ ⊥ · · · ⊥ ⟨E⟩,

and so (4.7) is satisfied.
Since E = E[1,q] is a pretilting object such that EndD(E) ≃ N(q), there exists a triangle functor

F : ⟨E⟩ → perN(q) such that F (Ei) ≃ P (i), and so (4.8) is satisfied. Thus the assertion follows.

(b) Let S′ =
⊕

k∈[1,q]

S(k). Since νp−1(S(k)) ≃ S((p−1)q+k) for any k ∈ [1, q], we have ⟨νp−1(P )⟩ =

⟨νp−1(S′)⟩ = ⟨S⟩, and so the assertion follows from (a). □

Now we are ready to prove Theorem 4.7.

Proof of Theorem 4.7. Let A = N(pq, q + 1), B = N(pq − r, q + 1) and let

P =
⊕
k∈I

P (k), P ′ =
⊕

k∈[1,pq]\I

P (k), S =
⊕
k∈I

S(k), S′ =
⊕

k∈[1,pq]\I

S(k)

where I = [1, pq − r]. Since HomperA(P
′, P ) ≃ 0 and EndperA(P ) ≃ B, we have ⟨P ⟩ = ⟨S⟩ and

there exists a triangle equivalence F : ⟨P ⟩ → perB such that F (PA(i)) = PB(i), F (SA(i)) ≃ SB(i)
by Example 2.11. Thus it suffices to show that there exists a full Y(p, q, r)-family in ⟨S⟩.

Let (X ′
i,j)(i,j)∈Y(p;q) be a full Y(p; q)-family in perN(pq, q+1) given by Proposition 4.8(b). Since

Yp,q−j = S(pq − j)[−q + j], we have ⟨S′⟩ = ⟨X ′
p,[q−r+1,q]⟩, and so ⟨X ′

Y(p,q,r)⟩ = ⟨S′⟩⊥perA = ⟨S⟩ by
Example 2.11. Thus the subfamily (X ′

i,j)(i,j)∈Y(p,q,r) is a full Y(p, q, r)-family in ⟨S⟩. □

5. Mutations of S-families

In this section, let D be a triangulated category satisfying (3.1). The purpose of this section is
to introduce mutations of S-families on some assumption for S, and to prove Theorems 5.14 and
5.16 by using those results. Let

Pfin(Z2) := {S ⊂ Z2 | |S| < ∞}.



ON DERIVED EQUIVALENCES OF NAKAYAMA ALGEBRAS 25

In Pfin(Z2), the relation S ≡ S′ defined as

“there exists an element v ∈ Z2 such that S′ = S + v”

is an equivalence relation on Pfin(Z2). Clearly, if a family (Xi,j)(i,j)∈S is an S-family, then for

S′ = S+(a, b) with (a, b) ∈ Z2 , the family (Xi−a,j−b)(i,j)∈S′ is an S′-family. For any S ∈ Pfin(Z2),
define

tS := {(i, j) ∈ Z2 | (j, i) ∈ S}.
Clearly, a family X = (Xi,j)(i,j)∈S is an S-family if and only if the family tX = (Xi,j)(i,j)∈tS is an
tS-family.

5.1. Gluings of S-families. In this section, we introduce gluings of S-families (Proposition 5.2,
Proposition 5.3). For any interval I of Z,

SI := {(i, j) ∈ S | i ∈ I}, SI := {(i, j) ∈ S | j ∈ I}.
In particular,

S⩽k := S(∞,k], S⩾k := S[k,∞), S⩽k := S(∞,k], S⩾k := S[k,∞).

Let X = (Xi,j) be a family of objects in D indexed by S ∈ Pfin(Z2). For any integer k, define

X⩽k = (Xi,j)(i,j)∈S⩽k
, X⩾k = (Xi,j)(i,j)∈S⩾k

,

X⩽k = (Xi,j)(i,j)∈S⩽k , X⩾k = (Xi,j)(i,j)∈S⩾k .

Lemma 5.1. Let X = (Xi,j)(i,j)∈S be a family of objects in D indexed by S ∈ Pfin(Z2) satisfying
(L2.1). Let k be an integer.

(a) If (i, j) ∈ S⩾k+1, then S⟨XS⟩(Xi,j) ≃ S⟨XS⩾k
⟩(Xi,j) and S⟨Xj⟩(Xi,j) ≃ S⟨X⩾k,j⟩(Xi,j).

(b) If (i, j) ∈ S⩽k−1, then S−1
⟨XS⟩(Xi,j) ≃ S−1

⟨XS⩽k
⟩(Xi,j) and S−1

⟨Xj⟩(Xi,j) ≃ S−1
⟨X⩽k,j⟩(Xi,j).

Proof. (a) From (L2.1), we have ⟨XS⟩ = ⟨XS⩽k−1
⟩ ⊥ ⟨XS⩾k

⟩. Since

HomD(XS⩽k−1
,S⟨XS⟩(Xi,j)[n]) ≃ HomD(Xi,j , XS⩽k−1

[−n])∗
(L2.1)
= 0,

we have S⟨XS⟩(Xi,j) ∈ ⟨XS⩾k
⟩. Thus the assertion follows from Proposition 2.8(c). Since the

subfamily (Xi,j)(i,j)∈Sj×{j} satisfies (L2.1), the assertion follows.
(b) This is the dual of (a). □

Proposition 5.2 (Gluing I). Let X = (Xi,j)(i,j)∈S be a family of objects in D indexed by S ∈
Pfin(Z2) satisfying (L2.1). For any integer k, the following conditions are equivalent:

(i) X is an S-family.
(ii) X⩽k is an S⩽k-family and X⩾k is an S⩾k-family.

Proof. (i)⇒ (ii): This is clear.
(ii)⇒ (i): We need to show that X satisfies the conditions (L1), (L2.2) and (S1)-(S3). Clearly
(L1) is satisfied. We show that (L2.2) is satisfied. Let (i, j) and (i′, j′) be two elements in S such
that |j − j′| > 1. If (i, j) ∈ S⩽k\S{k} and (i′, j′) ∈ S⩾k\S{k}, we have HomD(Xi,j , Xi′,j′ [n]) ≃
0 and HomD(Xi′,j′ , Xi,j [n]) ≃ 0 from (L2.1). If (i, j), (i′, j′) ∈ S⩽k or (i, j), (i′, j′) ∈ S⩾k, then
HomD(Xi,j , Xi′,j′ [n]) ≃ 0 since X⩽k is an S⩽k-family and X⩾k is an S⩾k-family. Thus (L2.2) is
satisfied, and so X is a weak S-family.

Since X⩽k is an S⩽k-family and X⩾k is an S⩾k-family, (S1) is satisfied.

Suppose that (i, j), (i−1, j) ∈ S. If (i, j) ∈ S⩾k+1, then S⟨Xj⟩(Xi,j)
5.1(a)
= S⟨X⩾k,j⟩(Xi,j)

(S2)
= Xi−1,j .

If (i, j) ∈ S⩽k, then (i − 1, j) ∈ S⩽k−1 and S−1
⟨Xj⟩(Xi−1,j)

5.1(b)
= S−1

⟨X⩽k,j⟩(Xi−1,j)
(S2)
= Xi,j . Thus

(S2) is satisfied.

Suppose that (i, j), (i−1, j−1) ∈ S. If (i, j) ∈ S⩾k+1, then (i−1, j−1) ∈ S⩾k and S⟨XS⟩(Xi,j)
5.1(a)
=



26 TARO UEDA

S⟨XS⩾k
⟩(Xi,j)

(S3)
= Xi−1,j−1. If (i, j) ∈ S⩽k, then (i− 1, j − 1) ∈ S⩽k−1 and S−1

⟨XS⟩(Xi−1,j−1)
5.1(b)
=

S−1
⟨XS⩽k

⟩(Xi−1,j−1)
(S3)
= Xi,j . Thus (S3) is satisfied. □

By transposing, we have the following result.

Proposition 5.3 (Gluing II). Let X = (Xi,j)(i,j)∈S be a family of objects in D indexed by S ∈
Pfin(Z2) satisfying (L2.2). For any integer k, the following conditions are equivalent:

(i) X is an S-family.
(ii) X⩽k is an S⩽k-family and X⩾k is an S⩾k-family.

5.2. Mutations of S-families. In this subsection, we prove results for mutations of S-families
(Theorem 5.6, Theorem 5.12). Let S ∈ Pfin(Z2). Recall that

Sk := {j ∈ Z | (k, j) ∈ S}, Sk := {i ∈ Z | (i, k) ∈ S}
for any integer k. Let σ⩽k, σ⩾k, ρ⩽k, ρ⩾k be permutaions of Z2 such that

σ⩽k(i, j) =

{
(i, j − 1) i ⩽ k,

(i, j) k < i,
σ⩾k(i, j) =

{
(i, j − 1) i ⩾ k,

(i, j) k > i,

ρ⩽k(i, j) =

{
(i− 1, j) j ⩽ k,

(i, j) k < j,
ρ⩾k(i, j) =

{
(i− 1, j) j ⩾ k,

(i, j) k > j.

For any subset I of Z and any integer n ∈ Z, we denote by I + n the subset

I + n = {j ∈ Z | ∃i ∈ I; j = i+ n}.

Definition 5.4. Let k be a nonnegative integer. A finite subset S of Z2 is called an M+
k -subset if

the following conditions are satisfied:

(M+
k 1) If i ∈ [0, k + 1], then Si is an interval of Z.

(M+
k 2) If i ∈ [1, k], then Si = Si−1 or Si = Si−1 + 1.

(M+
k 3) Sk+1 ⊂ Sk.

A finite subset S′ of Z2 is called an M−
k -subset if the following conditions are satisfied:

(M−
k 1) If i ∈ [0, k + 1], then S′

i is an interval of Z.
(M−

k 2) If i ∈ [1, k], then S′
i = S′

i−1 or S′
i = S′

i−1 + 1.

(M−
k 3) S′

k+1 ⊂ S′
k + 1.

For any (i, j) ∈ S, if S− (i, j) is an M+
k -subset (resp. M−

k -subset ), S is called an M+
k (i, j)-subset

(resp. M−
k (i, j)-subset).

S S′

?

?

i = 0
...

i = k
i = k + 1

?

?

i = 0
...

i = k
i = k + 1

By definitions, the following result is clear:

Lemma 5.5. Let k be a nonnegative integer, S and S′ two finite subsets of Z2 such that S′ =
σ⩽k(S). Then S is an M+

k -subset if and only if S′ is an M−
k -subset.

The following result is the one of main results in this subsection:

Theorem 5.6 (Mutation I). Let D be a triangulated category satisfying (3.1), S an M+
k -subset

satisfying S⩽−1 = ∅, and let S′ = σ⩽k(S).
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(a) If X = (Xi,j)(i,j)∈S is an S-family, then the family X′ = (X ′
i,j)(i,j)∈S′ is an S′-family where

X ′
i,j =

{
S⟨Xi⟩(Xi,j+1) i ⩽ k,

Xi,j k < i.

In particular, there exists a triangle equivalence perL(S) → perL(S′).
(b) If Y = (Yi,j)(i,j)∈S′ is an S′-family, then the family Y′ = (Y ′

i,j)(i,j)∈S is an S-family where

Y ′
i,j =

{
S−1
⟨Yi⟩(Yi,j−1) i ⩽ k,

Yi,j k < i.

In particular, there exists a triangle equivalence perL(S′) → perL(S).

S S′

i = 0
...

i = k
i = k + 1

?

i = 0
...

i = k
i = k + 1

?

In Theorem 5.6 (a), by the definitions of X and X′, there exists a sequence of mutations of
exceptional sequences from X to X′.

Remark 5.7. Let I−1 = {2}, I0 = [1, 2], I1 = {2} and

S =
⊔

k∈[−1,1]

{k} × Ik, S′ = σ⩽0(S).

Then S is an M+
0 -subset such that S⩽−1 ̸= ∅. Since there exist triangle equivalences

perL(S) → perKA4 and perL(S′) → perKD4,

we have that perL(S) and perL(S′) are not triangle equivalent to each other.

To prove Theorem 5.6, we prepare the following three results.

Lemma 5.8. Let D be a triangulated category satisfying (3.1), (Xi,j)(i,j)∈Y(p;q) a Y(p; q)-family
in D. Then there exists a triangle autoequivalence G : ⟨XY(p;q)⟩ → ⟨XY(p;q)⟩ such that

G|⟨Xi⟩ ≃ S⟨Xi⟩ : ⟨Xi⟩ → ⟨Xi⟩ for any i ∈ [1, p].(5.1)

Proof. Let A = N(p)⊗N(q). By Theorem 3.11, there exists a triangle equivalence F : ⟨XY(p;q)⟩ →
perA such that F (Xi,j) ≃ P (i, j) for any (i, j) ∈ Y(p; q). Then F (Xi) ≃ P (i) ⊗ N(q) for any
i ∈ [1, p]. By Lemma 2.19,

G′ = (−)
L
⊗A(N(p)⊗N(q)∗) : perA → perA

is a triangle autoequivalence such that

G′|⟨P (i)⊗N(q)⟩ : ⟨P (i)⊗N(q)⟩ → ⟨P (i)⊗N(q)⟩

is a Serre functor for any i ∈ [1, p]. Thus G = F−1G′F satisfies (5.1). □

By the following result, if S is an M+
k subset satisfying S⩽−1 = ∅ and S⩾k+1 = ∅, any S-family

is a mutation of a Y(k + 1;h)-family.

Lemma 5.9. Let D be a triangulated category satisfying (3.1), S an M+
k -subset satisfying S⩾k+1 =

∅. Let (Xi,j)(i,j)∈S be an S-family in D and h = |S0|.
(a) There exists a Y(k + 1;h)-family (Yi,j)(i,j)∈Y(k+1;h) such that ⟨Xi⟩ = ⟨Yi⟩ for any i ∈ [0, k],

and there exists a triangle equivalence ⟨XS⟩ → perL(k + 1;h) such that F (Yi,j) ≃ P (i, j).
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(b) The family (X ′
i,j)(i,j)∈S of objects X ′

i,j := S⟨Xi⟩(Xi,j) is an S-family such that ⟨Xi⟩ = ⟨X ′
i⟩ for

any i ∈ [0, k].
(c) The family (X ′′

i,j)(i,j)∈S of objects X ′′
i,j := S−1

⟨Xi⟩(Xi,j) is an S-family such that ⟨Xi⟩ = ⟨X ′′
i ⟩

for any i ∈ [0, k].

Proof. (a) We show that (Xk,j)j∈[0,h] is an exceptional sequence satisfying (4.7)-(4.8) in Proposition
4.6. From (L2), (Xk,j)j∈[0,h] is an exceptional sequence. From (S1), we have that (4.8) is satisfied.
From (L2),

⟨XS⟩ = ⟨X0⟩ ⊥ ⟨X2⟩ ⊥ · · · ⊥ ⟨Xk⟩.

Let i ∈ [1, k]. If Si = Si−1, then S(Xi,j)
3.16
= S⟨Xi−1⟩(Xi−1,j), and so we have ⟨S(Xi)⟩ = ⟨Xi−1⟩. If

Si = Si−1 + 1, then S(Xi,j)
(S3)
= Xi−1,j−1, and so we have ⟨S(Xi)⟩ = ⟨Xi−1⟩. So (4.7) is satisfied.

Thus the assertion follows from Proposition 4.6.
(b) By Lemma 5.8, there exists a triangle autoequivalence G : ⟨XS⟩ → ⟨XS⟩ such that G(Xi,j) =
S⟨Xi⟩(Xi,j). Thus the assertion follows.
(c) This is the dual of (b). □

The following result is equivalent to Theorem 5.6 in the case k = 0 and S>k+1 = ∅.

Lemma 5.10. Let D be a triangulated category satisfying (3.1), and let I0 and I1 be two intervals
of Z such that I1 ⊂ I0, S and S′ two finite subsets of Z2 such that

S =
⊔

k∈[0,1]

{k} × Ik, S′ = σ⩽0(S).

(a) If X = (Xi,j)(i,j)∈S is an S-family, then the family X′ = (X ′
i,j)(i,j)∈S′ is an S′-family where

X ′
i,j =

{
S⟨X0⟩(X0,j+1) i = 0,

X1,j i = 1.

In particular, there exists a triangle equivalence perL(S) → perL(S′).
(b) If Y = (Yi,j)(i,j)∈S′ is an S′-family, then the family Y′ = (Y ′

i,j)(i,j)∈S is an S-family where

Y ′
i,j =

{
S−1
⟨Y0⟩(Y0,j−1) i = 0,

Y1,j i = 1.

In particular, there exists a triangle equivalence perL(S′) → perL(S).

Proof. Without loss of generality, we can assume that I0 = [p1, p2] and I1 = [1, q].
(a) Since ⟨X ′

i⟩ = ⟨S⟨Xi⟩(Xi)⟩ = ⟨Xi⟩ for any i ∈ [0, 1], we have that X′ satisfies (L2.1). Let j
and j′ be two integers such that |j − j′| > 1. Then

HomD(X
′
0,j , X

′
0,j′) = HomD(S⟨X0⟩(X0,j+1),S⟨X0⟩(X0,j′+1))

≃ HomD(X0,j+1, X0,j′+1)
(L2) for X

= 0,

HomD(X
′
1,j , X

′
1,j′) = HomD(X1,j , X1,j′)

(L2) for X
= 0.

If j′ ̸= p1 − 1,

HomD(X
′
1,j , X

′
0,j′) = HomD(X1,j ,S⟨X0⟩(X0,j′+1))

(S1) for X
= HomD(X1,j , X0,j′)

(S2)′ for X
= HomD(X0,j , X0,j′)

(L2) for X
= 0.

If j′ = p1 − 1,

HomD(X
′
1,j , X

′
0,p1−1) = HomD(X1,j ,S⟨X0⟩(X0,p1))

(S2)′ for X
= HomD(X0,j ,S⟨X0⟩(X0,p1))

≃ HomD(X0,p1 , X0,j)
∗ (L2) for X

= 0.
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Thus X′ satisfies (L2.2), and so X′ is a weak S′-family.
Clearly X′ satisfies (S1). By Proposition 3.16, X′ satisfies (S3). If (0, j), (1, j) ∈ S′, then

(0, j + 1) ∈ S and

F⟨X′
0⟩(X

′
1,j) = F⟨X0⟩(X1,j)

(S2)′ for X
= X0,j

(S1) for X
= S⟨X0⟩(X0,j+1) = X ′

0,j .

So X′ satisfies (S2)′. Thus the assertion follows.
(b) Since ⟨Y ′

i ⟩ = ⟨S⟨Yi⟩(Yi)⟩ = ⟨Yi⟩ for any i ∈ [0, 1], we have that Y satisfies (L2.1). Let j and
j′ be two integers such that |j − j′| > 1. Then

HomD(Y
′
0,j , Y

′
0,j′) = HomD(S−1

⟨Y0⟩(Y0,j−1),S−1
⟨Y0⟩(Y0,j′−1))

≃ HomD(Y0,j−1, Y0,j′−1)
(L2) for Y

= 0,

HomD(Y
′
1,j , Y

′
1,j′) = HomD(Y1,j , Y1,j′)

(L2) for Y
= 0.

Since S′
1 = S1 ⊂ S0 = S′

0 + 1,

HomD(Y
′
1,j , Y

′
0,j′) = HomD(Y1,j ,S−1

⟨Y0⟩(Y0,j′−1))
(S3) for Y

= HomD(S−1(Y0,j−1),S−1
⟨Y0⟩(Y0,j′−1))

≃ HomD(S−1
⟨Y0⟩(Y0,j′−1), Y0,j−1)

∗ ≃ HomD(Y0,j−1, Y0,j′−1)
(L2) for Y

= 0.

Thus Y satisfies (L2.2), and so Y is a weak S′-family.
Since Y satisfies (S1), we have

(5.2) Yi,j =

{
S−1
⟨Y0⟩(Y0,p2−1) (i, j) = (1, p2),

Yi,j otherwise.

From (5.2), Y satisfies (S1) and (S3). If (1, j), (2, j) ∈ S′, then

F⟨Y ′
0 ⟩(Y

′
1,j) = F⟨Y0⟩(Y1,j)

(S3) for Y
= F⟨Y0⟩S

−1(Y0,j−1)
2.8(b)
= S−1

⟨Y0⟩(Y0,j−1) = Y ′
0,j ,

and so Y satisfies (S2)′. Thus the assertion follows. □

Now we are ready to prove Theorem 5.6.

Proof of Theorem 5.6. (a) Let X′ = (X ′
i,j)(i,j)∈S′ . By Lemma 5.9, X′

⩽k is an S⩽k-family in D. By

Lemma 5.10, X′
⩾k is an S⩾k-family in D. Thus the assertion follows from Proposition 5.2.

(b) Let X′ = (X ′
i,j)(i,j)∈S′ . By Lemma 5.9, X′

⩽k is an S⩽k-family in D. By Lemma 5.10, X′
⩾k is an

S⩾k-family in D. Thus the assertion follows from Proposition 5.2. □

A subset S of Z2 is called a tM+
k -subset if tS is an M+

k -subset. By Theorem 5.6, we obtain the
following result:

Theorem 5.11 (Mutation tI). Let D be a triangulated category satisfying (3.1), S a tM+
k -subset

satisfying S⩽−1 = ∅, and let S′ = ρ⩽k(S).

(a) If X = (Xi,j)(i,j)∈S is an S-family, then the family X′ = (X ′
i,j)(i,j)∈S′ is an S′-family where

X ′
i,j =

{
S⟨Xj⟩(Xi+1,j) j ⩽ k,

Xi,j k < j.

In particular, there exists a triangle equivalence perL(S) → perL(S′).
(b) If Y = (Yi,j)(i,j)∈S′ is an S′-family, then the family Y′ = (Y ′

i,j)(i,j)∈S is an S-family where

Y ′
i,j =

{
S−1
⟨Y j⟩(Yi−1,j) j ⩽ k,

Yi,j k < j.

In particular, there exists a triangle equivalence perL(S′) → perL(S).

The following result is the one of main results in this subsection.
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Theorem 5.12 (Mutation II). Let D be a triangulated category satisfying (3.1), and let k, h be

two positive integers such that k ∈ (h + 1)Z, and let s = (h−1)k
h+1 . Let S be an M+

k−1-subset of Z2

satisfying |S0| = h and Si = Si−1 for any i ∈ [1, k − 1], and let S′ = σ⩽0σ⩽1 . . . σ⩽k−1(S).

(a) If X = (Xi,j)(i,j)∈S is an S-family, then the family X′ = (X ′
i,j)(i,j)∈S′ is an S′-family such that

⟨XS⟩ = ⟨X ′
S′⟩ where

X ′
i,j =


Xi,j [s] i < 0,

Sk−i
⟨Xi⟩(Xi,j) 0 ⩽ i ⩽ k − 1,

Xi,j i > k − 1.

In particular, there exists a triangle equivalence perL(S) → perL(S′).
(b) If Y = (Yi,j)(i,j)∈S′ is an S′-family, then the family Y′ = (Y ′

i,j)(i,j)∈S is an S-family such that
⟨YS⟩ = ⟨Y ′

S′⟩ where

Y ′
i,j =


Yi,j [−s] i < 0,

S−k+i
⟨Yi⟩ (Yi,j) 0 ⩽ i ⩽ k − 1,

Yi,j i > k − 1.

In particular, there exists a triangle equivalence perL(S′) → perL(S).

S S′

i = 0
...

i = k − 1
i = k

?

?

i = 0
...

i = k − 1
i = k

?

?

Proof. (a) Since S⩾0 is an M+
k−1-subset satisfying (S⩾0)⩽−1 = ∅, the subfamily X′

⩾0 is an S′
⩾0-

family by Theorem 5.6(a). Since there exists a triangle equivalence F : ⟨X0⟩ → perN(S0) such
that F (X0,j) ≃ P (j) for any j ∈ S0 by Lemma 3.13, we have

X ′
0,j = Sk⟨X0⟩(X0,j)

2.4
= X0,j [s],

and so we have that X′
⩽0 = (Xi,j [s])(i,j)∈S′

⩽0
is an S′

⩽0-family. Thus the assertion follows from

Proposition 5.2.
(b) This is the dual of (a). □

By transposing, we obtain the following result.

Theorem 5.13 (Mutation tII). Let D be a triangulated category satisfying (3.1), and let k, h be

two positive integers such that k ∈ (h + 1)Z, and let s = (h−1)k
h+1 . Let S be a tM+

k−1-subset of Z2

satisfying |S0| = h and Si = Si−1 for any i ∈ [1, k − 1], and let S′ = ρ⩽0ρ⩽1 . . . ρ⩽k−1(S).

(a) If X = (Xi,j)(i,j)∈S is an S-family, then the family X′ = (X ′
i,j)(i,j)∈S′ is an S′-family such that

⟨XS⟩ = ⟨X ′
S′⟩ where

X ′
i,j =


Xi,j [s] j < 0,

Sk−j
⟨Xj⟩(Xi,j) 0 ⩽ j ⩽ k − 1,

Xi,j j > k − 1.

In particular, there exists a triangle equivalence perL(S) → perL(S′).
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(b) If Y = (Yi,j)(i,j)∈S′ is an S′-family, then the family Y′ = (Y ′
i,j)(i,j)∈S is an S-family such that

⟨YS⟩ = ⟨Y ′
S′⟩ where

Y ′
i,j =


Yi,j [−s] j < 0,

S−k+j
⟨Y j⟩ (Yi,j) 0 ⩽ j ⩽ k − 1,

Yi,j j > k − 1.

In particular, there exists a triangle equivalence perL(S′) → perL(S).

5.3. Applications of mutations of S-families. We are ready to prove one of our main results
by applying Theorems 5.6 and 5.13 as follows where

t′ = t− 1, u′ = u− s, Y = Y (s, t, u), Y ′ = Y (s, t′, u′).

Y S S′ tY ′Mutation I Mutation tII Mutation I

s s − 1

t − u 1 u − 1

s s − 1

s − 1 t − u 1u − ss − 2

t′ − u′

u′

s

s − 1

t′ − u′

u′

s

s − 1

Theorem 5.14. Let s, t, u be three positive integers such that 1 ⩽ u ⩽ t. Suppose that one of the
following conditions is satisfied.

(a) u ∈ Zs and t− u ∈ Z(s+ 1).
(b) s = 2 and t− u ∈ 3Z.
Then there exist triangle equivalences

perL(s, t, u) → perL(S) → perL(S′) → perL(s, t− 1, u− s)

where

S = σ⩽1σ⩽2 . . . σ⩽s−1(Y(s, t, u)),

S′ = (ρ⩽1ρ⩽2 . . . ρ⩽t−u)(ρ
−1
⩾t−s+1ρ

−1
⩾t−s . . . ρ

−1
⩾t−u+2)(S).

Proof. (a) There exists a triangle equivalence perL(s, t, u) → perL(S) by Theorem 5.6.
Let I = [1, t − u], J = [t − u + 2, t − s + 1]. Since SI ≡ Y(s; t − u) and St−u+1 ⊂ St−u, we

have that S is a tM+
t−u−1(1, 1)-subset satisfying t− u ∈ Z(s+ 1). Since SJ ≡ Y(s− 1;u− s) and

St−u+2 = St−u+1, we have that −S is a tM+
u−s−1(−1,−t + s − 1)-subset satisfying u − s ∈ Zs.

Thus there exists a triangle equivalence perL(S) → perL(S′) by Theorem 5.13.
Since

tY(s, t− 1, u− s) ≡ (σ−1
⩽s−t+uσ

−1
⩽s−t+u+1 . . . σ

−2
⩽s−1)(σ⩾uσ⩾u−1 . . . σ⩾s+1)(S

′),

there exists a triangle equivalence perL(S′) → perL(s, t− 1, u− s) by Theorem 5.6.
(b) There exists a triangle equivalence perL(2, t, u) → perL(S) by Theorem 5.6.

Let I = [1, t − u], J = [t − u + 2, t − 1]. Since SI ≡ Y(2; t − u) and St−u+1 ⊂ St−u, we have
that S is a tM+

t−u−1(1, 1)-subset satisfying t − u ∈ 3Z. Since SJ ≡ Y(1;u − s), we have that −S

is a tM+
u−3(−1,−t + 1)-subset. Thus there exists a triangle equivalence perL(S) → perL(S′) by

Theorems 5.11 and 5.13.
Since

tY(2, t− 1, u− 2) ≡ (σ−1
⩽−t+u+2σ

−1
⩽−t+u+3 . . . σ

−2
⩽1)(σ⩾uσ⩾u−1 . . . σ⩾3)(S

′),

there exists a triangle equivalence perL(S′) → perL(2, t− 1, u− 2) by Theorem 5.6. □
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(s, t, u) Y(s, t, u) S S′ tY(s, t− 1, u− s)

(2,8,5)

(3,10,6)

(4,9,4)

Figure 4. Mutations from Y(s, t, u) to tY(s, t− 1, u− s)

By Theorem 4.7, we have the following result.

Corollary 5.15. Let p, q be two integers such that p ⩾ 2, q ⩾ 1. Suppose that one of the following
conditions is satisfied.

(a) r ∈ Z⩾0.
(b) p = 2 and r ∈ 1

2Z⩾0.

Then there exists a triangle equivalence

perN(n, ℓ+ 1) → perN(n, ℓ) where n = p(p+ 1)q + p(p− 1)r, ℓ = (p+ 1)q + pr.

Proof. Let (s, t, u) = (p, (p+ 1)q + pr, pr). By Theorem 4.7, there exist triangle equivalences

perN(n, ℓ+ 1) → perL(s, t, u), perN(n, ℓ) → perL(s, t− 1, u− s).

Thus the assertion follows from Theorem 5.14. □

The following result is proved by applying Theorems 5.6 and 5.11 as follows where

Y = Y(p+ 1, q, q − 1), Y ′ = Y(q + 1, p, p− 1).

Y S tY ′Mutation I Mutation tI

p+ 1

q

p

q

p

q + 1

Theorem 5.16. Let p, q be two integers such that p ⩾ 2, q ⩾ 2. Then there exists a full
Y(q + 1, p, p− 1)-family in perL(p+ 1, q, q − 1). In particular, there exists a triangle equivalence

perL(p+ 1, q, q − 1) → perL(q + 1, p, p− 1).
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Proof. Let S be a subset of Z2 such that S = σq
⩽p(Y (p+ 1, q, q − 1)). Since

tY (q + 1, p, p− 1) ≡ ρ−p
⩽0(S),

the assertion follows from Theorems 5.6 and 5.11. □
Corollary 5.17. There exists a triangle equivalence

perN(pq + 1, q + 1) → perN(pq + 1, p+ 1) for any integers p ⩾ 2, q ⩾ 2.

Proof. By Theorem 4.7, there exist triangle equivalences

perN(pq + 1, q + 1) → perL(p+ 1, q, q − 1), perN(pq + 1, p+ 1) → perL(q + 1, p, p− 1).

Thus the assertion follows from Theorem 5.16. □

References
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