ON DERIVED EQUIVALENCES OF NAKAYAMA ALGEBRAS

TARO UEDA

ABSTRACT. In this paper, we investigate the derived category of the Nakayama algebra N(n,¢) =
KAy /rad(KAn)¢. We construct a derived equivalence between Nakayama algebras N (n,£) and
N(n,£+1) where n = p(p+1)g+p(p—1)r and £ = (p+ 1)qg+ pr for each triple of integers p > 2,
q > 1, r > 0. To achieve it, we introduce families of idempotent subalgebras of KAs; ® KA+
and characterize their derived categories by the existence of a certain family of objects called

S-families.
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1. INTRODUCTION

Two rings A and B are said to be derived equivalent if there exists a triangle equivalence
per A — per B. In the representation theory of rings, it is an important problem to determine
whether given two rings are derived equivalent or not. An object X in the perfect derived category
per A of a ring A is said to be tilting if Homype, 4(X, X[n]) ~ 0 for any integer n # 0 and the
thick subcategory generated by X coincides with per A. The following result is known as Rickard’s
theorem:

Theorem 1.1. [20, Thm. 6.4] For any two rings A and B, the following conditions are equivalent:

(i) There exists a tilting object X in per A such that Endper 4(X) ~ B.
(ii) There exists a triangle equivalence per A — per B.

(iii) There exists a triangle equivalence D®(Mod A) — DP(Mod B).
(iv) There exists a triangle equivalence D(Mod A) — D(Mod B).
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However, in general, it is a difficult problem to determine whether two given rings A and B
satisfy the condition in Theorem 1.1.

In this paper, we study this problem for a certain class of Nakayama algebras. Let K be a field.
Throughout this paper, by a K-algebra we mean a finite dimensional associative K-algebra with
an identity element. A K-algebra is said to be right serial (resp. left serial) if any indecomposable
projective A-module (resp. A°P-module) has a unique composition series. A right and left serial
algebra is called a Nakayama algebra [18]. A K-algebra A is said to be connected if A ~ Ay x A;
as K-algebras, then Ay ~ 0 or A; ~ 0. Any K-algebra is isomorphic to a finite product of
connected K-algebras. A K-algebra A is said to be basic if there exists a complete set of primitive
orthogonal idempotents (e;);c[1,n) such that for any 4,5 € [1,n], the relation i # j implies the
relation e;A # e;A . Any K-algebra is Morita equivalent to a basic K-algebra. If K is an
algebraically closed field, any basic K-algebra is isomorphic to a K-algebra KQ/I where Q is a
finite quiver and I is an admissible ideal of the path algebra K@ (i.e.an ideal of K@ satisfying
(rad A)? C I C (rad A)? for an integer ¢ > 2). The following two results for Nakayama algebras
are well-known:

Theorem 1.2. [1, Thm.3.2] Let A be a basic and connected algebra over an algebraically closed
field K. Then A is a Nakayama algebra if and only if A is isomorphic to KQ/I as K-algebras
where Q is one of the following quivers:

(a) A, :

1 2 n—1——sn,
(b) A&n—l

1 2 n—2—-sn-—1,

~_ =

and I is an admissible ideal of KQ.

Theorem 1.3. [1, Thm. 3.5] Let A be a basic and connected Nakayama algebra over an algebraically
closed field K. Then for any indecomposable A-module X , there exists an indecomposable projective
A-module P and an integer k such that X ~ P/ rad®* P. In particular, A is representation-finite
(i.e. the number of isomorphism classes of indecomposable A-module is finite).

By Theorem 1.3, the structure of the module categories over Nakayama algebras is well under-
stood. But little is known about the structure of their derived categories. Let
N(n,0) = KA, /(rad KA,)".

Then the algebra N (n, ¢) is a Nakayama algebra of finite global dimension and a natural embedding
per N(n,¢) — DP(mod N(n,¢)) is a triangle equivalence. An abelian category H is said to be
hereditary if Exty, (X,Y) ~ 0 for any two objects X,Y € H and any integer n > 2. A K-algebra
A is said to be piecewise hereditary if there exists a hereditary abelian category H and a triangle
equivalence DP(mod A) — DP(H). In [9], Happel-Seidel classified Nakayama algebras N (n, £) which
are piecewise hereditary. One of the consequences of their results is the following:

Theorem 1.4. [9, Prop. 2.3] There exists a triangle equivalence
per N(s+6,s+4) = per N(s + 6,5+ 3) for any integer s > 0.

In [16], Lenzing-Meltzer-Ruan classified Nakayama algebras N(n,f) whose bounded derived
categories are triangle equivalent to the stable categories of vector bundles over the weighted
projective lines X(a, b, ¢), and obtained the following similar result as a special case:

Theorem 1.5. [16, Thm.6.3] There exists a triangle equivalence

per N(s+ 12,8+ 7) = per N(s + 12,54+ 6) for any integer s > 0.
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FIGURE 1. In the above graph due to Lenzing [15], each number shows the Coxeter
number (i.e. the order of the Coxeter matrix) of N(n,¢). If two Nakayama algebras
N(n,£) and N(n/,{') are derived equivalent, their Coxeter numbers are equal.

In this paper, we prove the following result which is a far reaching generalization of the above
two results:

Theorem 1.6 (Corollary 5.15). Let p,q be two integers such that p > 2, ¢ = 1. Suppose that one
of the following conditions is satisfied.
(a) r € Zxo.
(b) p=2 and r € 1 Z>o.
Then there exists a triangle equivalence
per N(n,£+ 1) = per N(n,l) wheren=p(p+1)g+plp—1)r, = (p+1)g+pr.

For p =2, r = 5, we obtain a triangle equivalence

(1.1)  perN(s+6q,s+3q+ 1) — per N(s + 6g,s + 3¢q) for any integers ¢ > 1, s > 0.

For ¢ =1, (1.1) is a triangle equivalence in Theorem 1.4 due to Happel-Seidel where they proved
the above two derived categories are triangle equivalent to the derived category of the path algebra
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FIGURE 2. In the above graph, the arrow <> shows the pairs of Nakayama algebras
in Theorem 1.6.

of the star quiver with three branches of length 2,3, s + 3 respectively.
For ¢ = 2, (1.1) is a triangle equivalence in Theorem 1.5 due to Lenzing-Meltzer-Ruan where they
proved the above two derived categories are triangle equivalent to the stable category of vector
bundles over the weighted projective line X(2,3,s + 7).

Notice that the proofs of Theorems 1.4 and 1.5 were quite different. In this paper, we develop a
systematic method to prove our main Theorem 1.6 by using the tensor products of two Nakayama
algebras. Let

L(s,t,u) = (N(s,2)°" @ N(t, 2)°p)/<i es ® er—;),
i=0

L'(s,t,u) = (KA, ® KAt)/(i e, ®e; ;)
i=0
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where ® = @ and e;®e; (resp. €;®e}) is the idempotent of N (s,2)°P@N (t,2)°P (resp. KA, @K Ay)
corresponding the vertex (4,5). Then we show the following result:
Theorem 1.7 (Proposition 4.2, Theorem 4.7). There exist triangle equivalences

per N (st —u,t + 1) — per L(s, t,u) — per L' (s, t,u)

for any integers s > 1, t > 1, 0 < u < t. In particular, N(st —u,t + 1) is derived equivalent to a
K-algebra with global dimension < 2.

For u = 0, the above result gives the following due to Ladkani since L'(s,¢,0) ~ KA, ® KA, as
K-algebras:

Theorem 1.8. [14, Cor. 1.2] There exists a triangle equivalence
per N(st,t + 1) — per KA, ® KA for any integers s > 1, t > 1 such that st >t + 1.
In particular there exists a triangle equivalence
per N(st,s+ 1) — per N(st,t +1) for any integers s > 2, t > 2.
By Theorem 1.7, Theorem 1.6 is equivalent to the following:

Theorem 1.9 (Theorem 5.14). Let s, t, u be three positive integers such that 1 < u < t. Suppose
that one of the following conditions is satisfied.

(a) ueZs andt—u € Z(s+1).

(b) s=2 andt—u € 3Z.

Then there exists a triangle equivalence per L(s,t,u) — per L(s,t — 1,u — s).
A central role in our proof above is played by the notion of S-families (Definition 3.8). By using

the following result, we can construct a triangle equivalence between a given triangulated category
and per L(5).

Theorem 1.10 (Theorem 3.11). Let D be an algebraic, idempotent complete, and Ext-finite trian-
gulated category with a Serre functor. If there exists a full S-family (X ;) j)es, then there exists
a triangle equivalence F' : D — per L(S) such that F(X; ;) ~ P(i,7) for any (i,j) € S.

The following figure presents the relationship of definitions of S-families.

weak S-family - S-family - Y (p; q)-family
Definition 3.2 (L1), (L2) Definition 3.8 (S1)-(S3) Proposition 4.3 (Y1)-(Y4)

As another application of Theorem 1.10, we have the following result related to a triangle
equivalence in Theorem 1.8.

Theorem 1.11 (Theorem 5.16). There exists a triangle equivalence
per L(p+1,q,q — 1) = per L(¢ + 1,p,p — 1)  for any integers p > 2, q > 2.

By Theorem 1.7, the above result gives the following triangle equivalence due to Lenzing-Meltzer-
Ruan [16, Prop.4.1].

Corollary 1.12 (Corollary 5.17). There exists a triangle equivalence
per N(pg+1,q+1) = per N(pg+ 1,p+ 1) for any integers p > 2, q > 2.

In the rest, we describe the summary of each chapter of this paper. In Chapter 2, we give
basic results for Serre functors, semi-orthogonal decompositions, admissible subcategories, tilting
objects, and exceptional sequences. In Chapter 3, we characterize the perfect derived categories of
the algebras L(S) by using the terminology of S-families which are families of objects satisfying
some axioms (Definition 3.8). By showing the existence of an S-family, we can construct a triangle
equivalence between a triangulated category satisfying some conditions and the perfect derived
category of the algebra L(S) (Theorem 3.11). In Chapter 4, we study S-families when S is a
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Young diagram. And we show that if S is the Young diagram Y (s, ¢, u), the algebra L(S) is derived
equivalent to the Nakayama algebra N (st — u,t + 1) (Theorem 4.7). In Chapter 5, we introduce
mutations of S-families under some assumption for S which are mutations as exceptional sequences
(Theorem 5.6, 5.12). By using results for mutations of S-families, we prove main Theorem 5.14.

Conventions In this paper, K is a field and all modules over K-linear categories are right modules.
We denote by ® the tensor product over K. For any K-vector space V, we denote by V* the dual
of V. For any set {X; | i € J} of objects in a triangulated category D, we denote by (X; | i € J) the
thick subcategory of D generated by {X; | i € J}. For any K-linear category C, we denote by D(C)
the derived category of C, and perC the perfect derived category of C i.e.the thick subcategory
(Pc(i) | i € C) of D(C) where P (i) := Home(—, ).

For any two arrows o : ¢ — j and 8 : j — k in a quiver @, we denote the their composition
by Ba : i — k. For any admissible ideal I of KQ, we denote by Skq,r(i) (resp. Pxq,1(i),
Ikqy1(i)), the simple (resp. projective, injective) K@Q/I-module corresponding a vertex i of Q. In
our conventions, for any source i in Q, Skq/r(i) ~ Pxqg/1(i). We often simply denote by S(i)
(vesp. P(i), I(4)) instead of S4(i) (resp. Pa(i), L4(i)).

Acknowledgements I am grateful to Osamu Iyama for his comments to this paper and to Ryo
Takahashi for his support. I would like to thank the referees for their careful reading of this paper.

2. PRELIMINARIES

2.1. K-linear categories and modules. We refer to [6] for the representation theory of K-linear
categories. A category C is called a K -linear category if each hom-set is a K-vector space and each
composition map

Home (X, Y) x Home (Y, Z) — Home (X, Z); (f,9) = g o f

is a bilinear map. Let C and C’ be two K-linear categories. A functor F' : C — C’ is called a
K-linear functor if each mapping

Home (X,Y) — Home: (F(X), F(X")); f — F(f)

is a K-linear map for any two objects X and X’ of C.

Let Mod K be the K-linear category consisting of K-vector spaces. A (right) C-module is a
K-linear functor X : C°? — Mod K. For any small K-linear category C, we denote by ModC the
K-linear category consisting of C-modules. Then we define C-module P¢ (%) as

Pe(i) = P(i) := Home(—, ).

Then Pg(i) is a projective module for any ¢ € C. For any C-module X, there exists a surjective
morphism

P Pe(i)®" — X

iec
where F; is a basis of Homyoqc(Pe(4), X). In particular, any projective C-module P is a direct
summand of a direct sum of projective modules Pe (7).

A C-module X is finitely generated if there exist a family (n;);e; of nonnegative integers n;
indexed by a finite set I of objects of C and a surjective morphism p : @Pc(i)@"i — X. We
iel

denote by modC, the category of finitely generated modules. A K-linear category C is said to
be Hom-finite over K if dimx Home(7,5) < oo for any ¢, j € C. Let C be a Hom-finite K-linear
category. For any 7 € C, define

Sc(l) = Pc(i)/rad PC (7,)

Then S¢(7) is a finitely generated semi-simple C-module.



ON DERIVED EQUIVALENCES OF NAKAYAMA ALGEBRAS 7

A category C is said to be svelte if for any objects i, j € C, the relation ¢ ~ j implies the relation
i = 7. A svelte K-linear category C is said to be locally bounded if for any i € C, the set
{j € C | Home(i, §) # 0 or Home(j, i) # 0}
is a finite set. We define the support of a C-module X as the following:
supp X = {i € C | X (i) # 0}.

A svelte K-linear category C is locally bounded if and only if supp P (i) is a finite set for any
object 1.

Let C be a Hom-finite and locally bounded K-linear category, X € ModC. It is elementary that
the following conditions are equivalent:

(i) X is a finitely generated module.

(ii) supp X is a finite set and dimg X (4) < oo for any i € C.
If C is a Hom-finite and locally bounded K-linear category, then modC is a Hom-finite abelian
category. We define C-module I (i) by

Ic(i) = I(i) := Home (i, —)*.
We denote by projC (resp.injC), the full subcategory of modC consisting of finitely generated
projective (resp.injective) C-modules.
Let C be a Hom-finite and locally bounded K-linear category. Then the K-linear functor D =

(=)* : (modC°P)°P — modC is an equivalence of K-linear categories and the restriction functor
D(projcoryor : (projC°?)°® — injC is an equivalence of K-linear categories. Let

v=(-)®cC":ModC - ModC, v~ =Hom¢(C*,—): ModC — ModC
be Nakayama functors. More precisely, they are defined as
v(X)(i) = Coker( €D X; ® Home(k, j) ® Home (k, i)* EN P xi ® Home(k, 1)),
J,keC kecC
v~ (X)(i) = Hompoq ¢ (Home (4, —)*, X)
for any X € ModC and i € C where
frz@a®Qyu—ra®y— R ay.
By the definitions of v and v, (v 7, v) is a pair of adjoint functors.
Proposition 2.1. Let C be a Hom-finite and locally bounded K -linear category. Then the functor
V|projc 1 projC — injC
is an equivalence of K-linear categories satisfying v(Pc(i)) =~ Ic(i) and there exists a functorial
isomorphism
Homy,od ¢ (P, v(Q)) = Hompeac(Q, P)* for any P,Q € projC.

2.2. Serre functors. Let D be a triangulated category. Recall that a Serre functor of D is a
K-linear autoequivalence S : D — D such that there exists a functorial isomorphism

Homp (X, S(Y))= Homp (Y, X)*
for any two objects X,Y € D. By the definition of a Serre functor, any two Serre functors are
isomorphic.
Proposition 2.2. [4] Let D be a triangulated category with a Serre functor S : D — D.

(a) There exists a natural isomorphism « : S[1] — [1]S such that (S,«) : D — D is a triangle
autoequivalence.

(b) Any Serre functor of D is isomorphic to S.

(c) For any triangle equivalence F : D — D', FSF~!: D' — D' is a Serre functor of D'.
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A K-linear category C is called an Iwanaga-Gorenstein category if C is Hom-finite and for any
1 €C, Ic(i) € perC and Iger (i) € per C°P. The following result is well-known [8]:
Proposition 2.3. For any Hom-finite K -linear category C, the following conditions are equivalent:

(i) C is an Iwanaga-Gorenstein category.
(ii) perC has a Serre functor S : perC — perC.

L
If the above conditions are satisfied, the functor v = (=) ®c¢ C* : perC — perC is a Serre functor
of perC and v=! = RHom¢(C*, —) : perC — perC is an inverse of v.
Proof. (1)=(ii): It follows from [12, 10.4].
(ii)=(i): Let D = perC. Since
Homp (Pe(5),Ic(i)) n=0,

Homp(Pe(5), S(Pe(i))[n]) =~ Homp (Pe (i), Pe(j)[—n])* ~ {o e
for any j € C, we have

H"S(Pe (i) = {éC(") " N

Thus I¢ (i) ~ S(P¢(i)) € D. Dually, we see that Icos (i) € per C°P. Thus the assertion follows. O

Lemma 2.4. For any positive integer p, the category per KA, is a fractional Calabi-Yau category

of dimension ;ﬁ i.e. there exists an isomorphism V%‘Rl =[p — 1] of functors.
P

2.3. Semi-orthogonal decompositions and Admissible subcategories. Let D; and Dy be
full subcategories of D. We denote by D; * Dy the full subcategory consisting of objects X in D
such that there exist objects X7 € D1, X5 € Dy and a triangle

X; = X = Xo— Xq[1] inD.

Then the operation * is associative and we define the full subcategory Dy * Dg * - - - x D,, for full
subcategories Dy, Do, ..., D, inductively.

The sequence (D1, Ds,...,D,) of thick subcategories D; of D is called a semi-orthogonal de-
composition of D if D = Dy % Dy * -+ - % D,, and Homp (D, Dy) = 0 for any integers k, k' € [1, n]
such that k < k’. In this case, we denote Dy * Dy * - - - x D, by

D1 LDy L --- LD,

The properties of admissible subcategories are detailed in [10]. Let D be a triangulated category.
A thick subcategory & of D is said to be right admissible (resp.left admissible) if the natural
embedding IZ : €& — D has a right adjoint functor TZ : D — & (resp.a left adjoint functor
FZ : D — £). If a thick subcategory € of D is right admissible and left admissible, & is said to be
admissible. We often simply denote IZ (resp.TZ, FZ) by L¢ (resp. Te, Fg). By the definitions of
T2 and FZ, we have

(2.1)  Homp(X,I2(X’)) ~ Homg (FE(X), X’) for any objects X € D, X' € &,
(2.2)  Homp(IZ(Y’),Y) ~ Homg(Y', TZ(Y)) for any objects Y € D, Y’ € £.
A thick subcategory & of D is admissible if and only if
(23) D=ELErt=tc1¢€
where

Etr =&t .= {X € D|Homp(Y, X) =0 for any Y € £},

trg =1 .= {X € D|Homp(X,Y) =0 for any Y € £}.
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In particular, the unit and counit morphisms induce triangles
(24) TE2(X)— X = FL.(X) — TEZ(X)[1],
(25) TP.(X) = X = FE(X) — TP.(X)[1].

The following three facts are elementary:

Lemma 2.5. [17] Let D be a triangulated category, £ an admissible subcategory of D, and F a
thick subcategory of £.

(a) F is an admissible subcategory of € if and only if F is an admissible subcategory of D.
(b) If the condition in (a) is satisfied, then
T2 ~ TSTE, FR ~FEFE, TS ~ T2|e, F&E ~FRe.
Lemma 2.6. Let D be a triangulated category, £ a thick subcategory of D. If there exist admissible
subcategories F and F' of D such that € =F L F', then £ is an admissible subcategory of D.

Proof. Since F is an admissible subcategory of D, we have D = F 1 G where G = F+P. Since F’
is an admissible subcategory of D and F’' C G, it follows from Lemma 2.5 that F’ is an admissible
subcategory of G. So G = F' L G’ where G’ = F'*9. Since

D=F1lG=FLF LG=£1¢G,
£ is a right admissible subcategory of D. Dually, £ is a left admissible subcategory of D. O

Lemma 2.7. Let D be a triangulated category and let £, E', F, F' be four admissible subcategories
of D such that D=& L F, & c&, F CF. Then forD =& L F', we have

T2 |p ~TE, F2|p ~FZ.
Proof. For any X € D/, there exists a triangle
TZ (X) = X — F2,(X) — TR (X)[1].
Since T, (X) € £ and F2,(X) € F, the assertion follows. O

The following observation should be well-known but we could not find a reference. We give a
proof for the convenience of the reader.

Proposition 2.8. Let D be a triangulated category with a Serre functor S = Sp, £ a left or right
admissible subcategory of D.

(a) & is an admissible subcategory of D if and only if € has a Serre functor Sg.

If the conditions in (a) are satisfied, then the following two assertions hold:

(b) The functor Sg in (a) satisfies Sg ~ TeS|e and Sz ~ FeS™¢.

(c) If X, S(X) € &, then Sg(X) ~ S(X).

Proof. (a) We prove “only if” part. We show that TeS|¢ is a Serre functor. Since for any X, Y € &,
there exist functorial isomorphisms

(2.6) Homg(X,TeS(Y)) = Homp(X,S(Y)) ~ Homp (Y, X)* ~ Homg (Y, X)*,

(2.7)  Homg(FeS™H(X),Y) = Homp(S™H(X),Y) ~ Homp (Y, X)* ~ Homg (Y, X)*,

it follows from [19, Lem. 1.1.5], that TeS|¢ is a Serre functor of £ with an inverse FeS™1|¢.

We prove “if” part. Let T¢ be a right adjoint functor of I¢, and Sg a Serre functor of £. For any
X,Y € &, there exist functorial isomorphisms

Homg (Sg 'TeSp(Y), X) =~ Homg (X, TeSp(Y))* ~ Homp (X, Sp(Y))* =~ Homp (Y, X).

Thus Sgl’]I‘gSD is a left adjoint functor of Ig¢.
(b) In the proof of (a), we proved that TgS|¢ is a Serre functor. By the uniqueness of Serre functor,

the assertion follows.
(c) This is clear by (b). O
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The proof of the following result is clear from Proposition 2.8.

Lemma 2.9. Let D be a triangulated category with a Serre functor S = Sp, and let £ and F be

two admissible subcategories of D.

(a) The functor F2|¢ : € — F has a right adjoint functor TR |z : F — &.

(b) If STH(F) C &, we have an isomorphism TE |r ~ SeS™ 7 : F = & of functors.

(c) IfS(€) C F, we have an isomorphism F2|¢ ~ SZ'S|¢ : & — F of functors.

(d) IfS(E) = F, then the functors F2|¢ : £ — F and TE|7 : F — & are mutually inverse triangle
equivalences.

Proof. (a) For any X € £ and Y € F, we have functorial isomorphisms
Homz(F2(X),Y) ~ Homp(X,Y) = Homg (X, TE(Y)).

Thus the assertion follows.

(b) Since € is an admissible subcategory, € has a Serre functor Sg¢ = TES|¢ : € — € by Proposition
2.8. Since S7!(F) C €, Lemma 2.8 (b) implies SgS™!|r ~ TESS™! |z ~ TZ|£.

(c) This is the dual of (b).

(d) Since the functor F2|¢ is the composition of S|¢ : € — F and S7' : F — F by (c), we have
that it is a triangle equivalence. By (a), TZ|r is an inverse of F2|¢. O

2.4. Tilting objects and Exceptional sequences. Let D be a triangulated category. An object
T € D is called a pretilting object if Homp (T, T[n]) ~ 0 for any integer n # 0. A pretilting object
T is called a tilting object if D = (T). An additive category D is said to be idempotent complete
if any idempotent morphism e : X — X (i.e.endomorphism e : X — X satisfying e? = ¢) in D,
there exist two morphisms f: X — Y and ¢ : Y — X in D such that fg = 1y and gf = e. A
triangulated category D is said to be algebraic if D is triangle equivalent to the stable category of
a Frobenius category.

Proposition 2.10. [12] Let D be an algebraic triangulated category, T a pretilting object in D, and
A = Endp(T). If D is idempotent complete, there exists a triangle equivalence F : (T) — per A
such that F(T) ~ A.

The following result is clear by Proposition 2.10 and F' is directly given.

Example 2.11. Let A be a K-algebra such that gl.dim A < oo, and let (ex)rep,n) be a complete
set of primitive orthogonal idempotents of A, and e = Z ex, B=eAe. Let

kel,m]
P=cA= @ Pak), PP=(1-e)A= P Pa(k),
ke[1,m] ke[m+1,n]
S= P Salk), = P Salk).
ke[1,m] ke[m+1,n]

(a) The sequence (ex)re[1,m) is a complete set of primitive orthogonal idempotents of B, and there
exists a triangle equivalence F' = RHomu (P, —) : (P) — per B such that

(2.8)  F(Pa(i)) =~ Pg(i) for any i € [1,m].

(b) If Homper 4(P’, P) = 0, then the following conditions are satisfied:
(2.9) perA={(P) L(P)={(S) L (5, (P)=(S).

(2.10) F(Sa(i)) ~ Sg(i) for any i € [1,m].

L L
Proof. (a) The functor F = (—) ®4 Ae : per A — per B has a left adjoint functor G = (—) @ eA :

L
per B — per A. Since eA®y4 Ae ~ B as (B, B)-bimodules, we have F'G ~ Id. Thus F : (P) —
per B is a triangle equivalence such that

F(P4(i)) ~ RHomu (P, P4(i)) ~ Hompe, a(P, Pa(i)) ~ e;Ae ~ Pp(i).
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(b) Since Hompe, 4(P, P'[n]) ~ 0 for any integer n, we have (P) = (S). Since Hompe, 4(P, S'[n]) ~ 0
for any integer n, we have that Hompe, 4 (S, 5’ [n]) ~ 0 for any integer n. Thus
perA=(S®S") =(S) L ().
Since
F(Sa(i)) ~ RHoma (P, Sa(i)) ~ Homper a(P, Sa(i)) ~ (e;A/A(1 —e;)A)e ~ Sp(i)
as B-modules, we have F(S4(i)) ~ Sg(i). O
A pretilting object F is called an exceptional object in D if Endp(E) ~ K.
Lemma 2.12. [10, Lem. 1.58] Let E be an exceptional object in D. Then for any object X € (E),

X ~ @ E®n[n]
neZ
where d,, = dimg Homp (E, X[—n]) = dimg Homp (X, En]).

We recall the notion of exceptional sequences which is slightly modified for later use in this
paper. In fact we allow the index set to be a finite totally ordered set.

Definition 2.13. [10] Let D be a triangulated category, S a finite totally ordered set. A family
(Ex)kes of objects in D indexed by S is called an exceptional sequence if the following conditions
are satisfied:

(E1) E) is an exceptional object for any k € S.
(E2) If k < k', then Homp(Ey, Ey/[n]) = 0 for any integer n.
(E3) (Ex | k € S) is an admissible subcategory of D.

An exceptional sequence (Ey)res is said to be full if
(B | ke S)y=D.
The properties of exceptional sequences are detailed in [10]. In general, for any finite totally

orderd set S, by using the unique ordered isomorphism s : [1,n] — S, we can identify (Fj)ies
with (Esx))keli,n)- If S = [1,n], we denote the family (Ex)res by (E1, Ea, ..., Ey).

A triangulated category D is said to be Euxt-finite over K if @Homp(X, Y[n]) has a finite

neL
dimension for any objects X,Y € D.

Lemma 2.14. [10, Lem. 1.58] Let D be an Ext-finite triangulated category, E an exceptional object
in D. Then (E3) is satisfied.

Let (Ej)res be an exceptional sequence in D. For any T' C S, define
Er = EB Ej.
keT

Lemma 2.15. Let D be an Ext-finite triangulated category, (Ey)res an exceptional sequence in
D. For any T C S, (Er) is an admissible subcategory of D.

Proof. Without loss of generality, we can assume T = [1,n]. Since
(Er) = (E1) L (E) L--- L(Ey)

and (F}) are admissible subcategories of D by Lemma 2.14, (Er) is also an admissible subcategory
of D by Lemma 2.6. O

Lemma 2.16. Let D be an Ext-finite triangulated category with a Serre functor S : D — D, and
let

(E1, Eay..., Ey)

be an exceptional sequence in D.
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(a) The sequence
(Bav. .. EnsSis, 1 (D)

is an exceptional sequence and (Ej ) = (Ejg,n)) L (Sg, ) (E1))-
(b) The sequence

(SZEl[lm,ﬂ (E”)’ El’ ceey En—l)

is an exceptional sequence and (Ejy ) = <S<_E}[1,n1>(E”)> L (B n-1)-
Proof. (a) Since StEy..) (Eppng) — (Epp) is a triangle equivalence and Ej is an exceptional
object, S<E[1’n])(E1) is also an exceptional object. If k € [2,n], then
Homp (Ex, (g, ., (£1)[n]) ~ Homp(E1, Ex[—n])" =0
for any integer n. Thus the sequence
(B, Bn, Sy (E1))

is an exceptional sequence. Since

2.8(b) 2.12

T<E1>S<E[1,n])(E1) = S(E1>(E1) =" ki,
there exists a triangle

Ey — S<E[1.n]>(E1) - F<E[2,n]>S<E[1,n]>(E1) — Eq[1],
thus the last assertion follows.
(b) This is the dual of (a). O
Lemma 2.17. Let D be an Ext-finite triangulated category with a Serre functor S : D — D, and
let (Ek)ke[l,n] be a full exceptional sequence in D. If there exist integers p < q such that
(2.11) Homp(E(gt1,n),S(m, ) (Ep)[n]) = 0 for any integer n,
then

D

T<E[1,n]\{p}>(

Proof. Let D' = (Ep q), € = (Enapipy)s F = Sz, (Ep))s € = (Ejpt1,9)- Then we have
semi-orthogonal decompositions

2.12((1) gl

(Elp.q))
E,) ~ T(Eiﬂ,q])(Ep)'

D/ = <Ep> 1 <E[p+17q]> 1 F and

2.16(a)
D = <E[1,p_1]> €L <Ep> 1 5/ 1L <E[q+17n]> = <E[17p_1]> 1 gl 1 ./r 1L <E[q+17n]>
211)

—~

(Bup-1) L& L(Bygy1n) LF=ELF.

Thus TZ (E,) Y ']I‘?,/ (Ep) and the assertion follows. O

Lemma 2.18. Let A, B be two K-algebras, E an exceptional object in per A. Then
F=FE®(—):perB — per(A® B)

is a fully faithful triangle functor and induces a triangle equivalence F : per B — (E ® B).

Proof. Since E ® B is a pretilting object and the morphism f : B — REndagp(E® B);b — 1®b
is a quasi-isomorphism of dg algebras, the functor

F' = RHomagp(F ® B,—) : (E® B) — per B

is a triangle equivalence. Since F'F ~ Id, the assertion follows. O
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Lemma 2.19. Let A be a K-algebra, B an Iwanaga-Gorenstein K-algebra, C = A ® B. Then
L

G=(-)®c(A® B*) : per C — perC is a triangle autoequivalence, and for any exceptional object

E € per A, Glipgp) : (E® B) = (E® B) is a Serre functor.

L
Proof. Since B is an Iwanaga-Gorenstein algebra, G = (—) ® ¢ (A®B*) : per C' — per C'is a triangle
equivalence. By Lemma 2.18, for any object X € (E ® B), there exists an object Y € per B such
that X ~ F® Y. Since there exist functorial isomorphisms

Hompe, ¢ (EQY,G(E®Y")) ~ Homper ¢ (E®Y, EQup(Y')) ~ Hompe, c (EQY', EQY)*,
we have that G| ggp) is a Serre functor. O
3. S-FAMILIES

3.1. Weak S-families. In this section, let D be a triangulated category satisfying the following
conditions:

(3.1) D is algebraic, idempotent complete, Ext-finite and has a Serre functor S.
Let S be a finite subset of Z2. For any element (i,j) € S,
Si»j = ([Z - 1,2] X [j - ]-a]D ns.

Example 3.1. Let Iy = [1,5], I = I3 = [1,3], I4 = {1} be intervals of Z. The figure of
S = |_| {i} x I; is the following:
i€[1,4]
(1,1) (1,2) (1,3) (1,4) (1,5)
(2,1)](2,2) (2,3)
(3,1)](3,2) (3,3)
(4,1)

In the above figure, the square shows the subset Ss 3.

Definition 3.2. Let D be a triangulated category satisfying (3.1). A family (X; ;)@ jyes of objects
in D indexed by a finite subset S of Z? is called a weak S-family if the following conditions are
satisfied:

(L1) X, ; is an exceptional object for any (i,7) € S.
(L2) Homp(X; ;, Xir j:[n]) =0 for any integer n unless (i',5') € S, ;.
A weak S-family (X; ;) jyes is said to be full if
(Xij | (i,5) € S) =
The name of S-family comes from lattices.
Remark 3.3. The condition (L2) is satisfied if and only if the following conditions are satisfied:

(L2.1) Homp(X; ;, Xy 5/[n]) = 0 for any integer n unless ¢’ € [i — 1,1].
(L2.2) Homp(X; ;, X j/[n]) = 0 for any integer n unless j' € [j — 1, 7].

If (Xi7)(i.5)es is a weak S-family, then for any T' C S, a family (X; ;) jyer is a weak T-family.
Let (X ;)(,j)es be a family of objects in D. For any finite subset 7" of .S, let
(32) Xr = @ Xi,j eD.
(i,5)€T
In particular, X;, and X* are defined as

(33) Xk = X{k}xSk = @ Xk,j, Xk = Xskx{k} = @ Xz’,k
JESk ieSk
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where Sy, = {j € Z | (k,5) € S}, S*={icZ|(i,k) € S}.
Lemma 3.4. Let (X; ;)i )es be a weak S-family in D. Then (Xs) is an admissible subcategory

of D. In particular, (X;) and (X7) are admissible subcategories.

Proof. By restricting the lexicographic order < of Z2, we regard S as a totally ordered set. The
lexicographic order of S in Example 3.1 is as the following.

(L1) —(1,2) — (1,3) — (1,4) —=(1,5)

0960 e

(2,1) = (2,2) — (2,3)
(3,1) —(3,2) —=(3,3)

(4,1)
The condition (L2) implies the following one:
(B2)  If (i,5) < (¢',4"), then Homp(X; j, Xir s [n]) = 0 for any integer n.

So we can regard a weak S-family (X ;)i j)es as an exceptional sequence. Thus the assertion
follows from Lemma 2.15. O

The following observation is clear from (L2).

Lemma 3.5. Let (X ;) j)es be a weak S-family in D. Then Xg is a pretilting object if and only
if Xs,, is a pretilting object for any (i,j) € S.

Proof. Tt suffices to show that Homp(X; j, Xy j:[n]) = 0 for each (4,7), (¢/,j') € S and n # 0. If
(i',4') ¢ Sij, then this holds by (2.9). Otherwise, this holds since X, ; is a pretilting object. [

3.2. Algebras L(S). Let N be the K-linear category defined as
N = (KAZ)P/(rad (K AZ)P)?

where A2 is the quiver
A= 5 29 15 081%2%3..],

and rad KA = (a,, | n € Z). For any subset I of Z, let @ be the full subquiver of A with the
set I of vertices. We define N(I) as

N(I) :== KQ/(rad KQJ)?.
In particular, we define N (k) as

N(k) = N([1, K]).
The typical example of a weak S-family is given by the following:
Example 3.6. Let L =N ®N. The category per L is a triangulated category satisfying (3.1). For
any finite subset S of Z2, the family (Pc(i,7))i,j)es is a weak S-family in per L.

For any finite subset S of Z?2, we define the algebra L(S) as
L(S) = Endpcrﬁ( @ PL‘(%J))
(i,7)€S

Then there exists a triangle equivalence

(Pr(i,4) | (i,5) € S)per £ — per L(S).

Lemma 3.7. The K-linear category L is self-injective, and the category per L is a triangulated
category satisfying (3.1).
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Proof. Since
Ip(i,j) = Pe(i—1,j—1)
for any (i,4) € Z2, L is self-injective. By Proposition 2.3, the assertion follows. g
3.3. S-families.
Definition 3.8. Let D be a triangulated category satisfying (3.1). Let S be a finite subset of Z>.

A weak S-family (Xi ;). jyes in D is called an S-family if the following conditions are satisfied:
(S1) If (i,5), (i,j —1) € S, then S(x,)( z]) Xij1-
(52) 1 (5, ). (i~ 1.4) € S then Spxoy (X g) = Xoo1.
(SS) If (Z,j) (Z -1 j — 1) S S then S{XS ( ) ~ Xi—l,j—l-
An S-family (X ;) j)es s said to be full if
(Xij| (i) € 8) =

A typical example of an S-family is obtained by the following result:

Example 3.9. For any finite subset S C Z2, the family (Pc(7,5)) ¢, )es is an S-family in per L.

Proof. Let X;; = Pr(i,j). The family (X; ;)¢ j)es is a weak S-family in per £ by Example 3.6.
If (¢,4), (4,7 — 1) € S, since
VP (ig)iren)(Xig) = Xij—1 € (Xi),

we have v(x,)(X; ;) 28(¢) Xi j—1. Dually, we have that if (i, ), (i —1,7) € S, then v xs)(Xs ;) ~

Xi—1,;- Thus (S1) and (S2) are satisfied. If (4,5), (i — 1,5 —1) € S,

v(Xij) = Xi1j-1 € (Xs).
So we have v x (X ;) 28 X;—1,j—1 and (83) is satisfied. Thus the assertion follows. O
Example 3.10. Let S = [1,p] x [1,q]. The family (S(i,7)[—i — j])ujyes s a full S-family in
per(KA, ® KA,). There exists a triangle equivalence F' : per(KA, @ KA,) — per(N(p) ® N(q))
such that F(S(i,7)[—i — j]) = P(4,5).
Proof. Let A= KA, ® KA,, B= N(p)® N(q),

Xij=8ali, j)[—i—j].
We construct a triangle equivalence G : per A — per B such that G(X; ;) = Pg(i, j). Since

K jelii+1}, k=0,

Homper rca,, (Ska,, (7)[=7], Ska,, ()[—i + k) ~ )
0 otherwise,

the object T}, = @ Ska,, (1)[—i] is a tilting object in per K'A,, such that Endper xa,, (Tn) =
i€[1,m]

N (m). Then there exists a triangle equivalence F' : per KA,, — per N (m) such that F(Ska,, (1)[—])

~ Pn(m)(i). Thus T'= T, ® T, is a tilting object such that Endpe, A(T) ~ B, and there exists a

triangle exivalence G : per A — per B such that G(X; ;) ~ Pg(i, 7). By Example 3.9, the assertion

follows. O

In general, by using the following result, if there exists a full S-family (X, ;)i j)es in D, then
there exists a triangle equivalence F' : D — per L(S) and F' sends (X ;) j)es to (P(i, 7))@, j)es in
Example 3.9.

Theorem 3.11. Let D be a triangulated category satisfying (3.1), S a finite subset of Z*. For any
S-family (X; ;). jyes in D, Xg is a pretilting object such that Endp(Xs) ~ L(S), and there exists
a triangle equivalence

F:(Xg) — per L(S)
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such that F(X; ;) ~ Pr(4,7) for any (i,j) € S. In particular, there exists a fully faithful triangle
functor G : (Xg) — per L such that G(X; ;) = Pr(i,7) for any (i,7) € S.

The following result is a key step of the proof of Theorem 3.11:
Proposition 3.12. Let (X; ;) j)es be a weak S-family satisfying (S3).

(a) The condition (S1) is equivalent to the following one:
(SV) If (4,4), (i,5 — 1) € S, then F(xi-1)(Xi ;) = Xi j-1.

(b) The condition (S2) is equivalent to the following one:
(82/) ]f (27]>, (Z — 1,]) € S, then F(Xi, )(X ) = Xifl)j.

1 1,

To prove Proposition 3.12, we prove the following result:
Lemma 3.13. Let S be a finite subset of Z?, i an integer such that S; # 0. Let (X; ;)¢ j)es be a
weak S-family satisfying (S1'). Then X; is a pretilting object such that Endp(X;) ~ N(S;), and
there exists a triangle equivalence F : (X;) — per N(S;) such that F(X; ;) ~ P(j).
Proof. 1f j,j — 1 € S;, then

2.1
HOIIlD(AXiJ'7 Xi,j—l [n]) (:) HomD(IF<Xj71> (Xi,j), Xi,j—l [TLD

K n=0,
0 n#0.

s1’ L1
(1) Homp (X j_1, X; j-1[n]) = {

By Lemma 3.5, X; is a pretilting oblect. If j' ¢ [j — 1, j], since Homp(X; ;, X; ;) 2 0, we have

By symmetry, we have the following result:

Lemma 3.14. Let S be a finite subset of Z2, and j an integer such that S7 # (). Let (Xij)ij)es
be a weak S-family satisfying (S2'). Then X7 is a pretilting object such that Endp(X7) ~ N(S7),
and there exists a triangle equivalence G : (X7) — per N (57) such that G(X; ;) ~ P(i).

Now we are ready to prove Proposition 3.12.

Proof of Proposition 3.12. (a) We prove “if” part. Since (S1)’ is satisfied, by Lemma 3.13, there
exists a triangle equivalence F' : (X;) — per A such that F(X; ;) ~ Pa(j) where A = N(S;). If
(ivj)7 (27] - 1) S S, then

Sixy (Xiy) = Six ) F~H(Pa(h))
Thus (S1) is satisfied.
We prove “only if” part. Suppose that (i,5),(i,j —1) € S. If (i — 1,5 — 1) ¢ S, then
(X7 = (X<imzj-1) L (Xij-1) L (Xziq1,5-1)

L2
) (Xij—1) L (X<imoj—1) L (Xsig1-1).

= F ' (va(Pa(y))) = FH(Pa(i — 1)) = Xy 1.

Since
L2
HomD(]F<Xjf1>(Xi7j),X;i+17j_1[n]) >~ HOmD(XiJ,X;i_;,_Lj_l[TL]) (Z) 0 and

L2
Homp (F (xi-1)(Xi ), X<i—2,j-1[n]) =~ Homp(X; j, X<i—2,-1[n]) =0

for any integer n, we have F(x;-1y(X; ;) € (X;;_1). Since
s1
Homp (F x5y (X; 1), Xi,j-1[n]) ~ Homp (X, ;. X ;1 [n]) = Homp (X, .8 (x, (X))

K n=0,

« (L1)
’ZH Xz ’7Xi i =
omp(X; ; J[n]) {0 n 0,
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2.12

we have Fix;-1y(X;;) = X; ;1. If (i = 1,5 —1) € S, then
(83) _ 2. S(b)
(35) Fixi-ny(Xij) = Fixi-nyS H(Xiz1;-1) S;; 1y (Xiz1-1)-

Since
_ 3.5
Homp (S, 1) (Xi-1-1), Xzit1,-1[n]) ) Homp (Fxs-1) (Xi5), Xzi11,5-1[n))
~ HOI’HD(XZ‘J‘, X>i+1,j71[nD ~0
for any integer n, we have S<X] 1y (Xiz1,j-1) € (X<ij-1), and so

(3.5) 28(1:)
(36) F(Xj—l)(X ) S(XJ 1>(Xi—1,j—1)

Let T = Xiyjfl ($) Xifl’jfl. Since
Tx,)(Xiz1,j-1)
we have

(3.7)  Homp(Xij-1,Xi—1,;-1[n]) =~ Homp(X; ; 1, T(x,y(Xi-1,j-1)[n])

ke, (Xim1m).

(S3) (s1)
= T<Xi>S<Xs>(X ) =" X; i,j—15

w) | K n=0,
~ HomD(le,j_l,Xm_l[n]) = {O n 7& 0.

So T is a pretilting object such that Endp(T") ~ N(2), and so there exists a triangle equivalence
F : (T) — per B such that F(Pg(1)) ~ X;_1,-1 and F(Pp(2)) ~ X; j—1 where B = N(2). Let
5 = <X<i7j_1>, .7:2 <X<i_2,j_1> and ]:/ = <S<_j})(XZ,]_1)> Then
L2
€2 F L (Ximaymn) L (Xij)
2.16(b)

2.16(b
SO F L F LX)

(Se'(Xi—1j-1)) LF LF.

On the other hand,

L2 2.16(a
e P r1 (Xic1j-1) L (Xij-1) SO FL (Xij—1) L Sy (Xiz15-1))

L2 .
(X)) LF LSy (Ximrgo1)) 2 (Xiya) LF LF.

Thus <SE1(X7;_1J'_1)> = <Xi,j—1>- Since

K n=0,

_ . (3.7
Homp (Sg " (Xi—1,j-1), Xi j—1[n]) ~ Homp(X; j_1, Xi—1,j—1[-n]) &
0 n#0,

we have Sgl(Xi,Lj,1> 2—12 X i,j—15 and so ]F(XJ 1)(Xi,j) (3:6) Sgl(Xifl,jfl) ~ Xi’jfl. Thus (Sl)l

is satisfied.

(b) This is the dual of (a). O
The following result is clear by the definition of L(S). The proof is left to the reader:

Lemma 3.15. Let (Xs,j)i,5)es be a family of objects X; ; € D. Suppose that there exists a family
(U 2t X — X )G, ( jnes of (possibly zero) morphisms and families (¢; ;) )es, (cgvj)(i’j)es

of non zero scalars ¢; j, C; ] € K* satisfying the following conditions:

(38) HOH’I'D(XZ ]>X ) KU;;?J'/'
9)

(3. (i',5") € Si; if and only if ’Ul:/’j»/ # 0.
(3.10) If (4,7), (i,j — 1), i — 1,5 — 1) € S, then ¢; jv; Jljl 17}1)5 L= UZ’JLJ 1-
(3 11) ]f(%]); (i_la.j) (Z_l.]_l)es thenczjvz }j 1Uz l,g_vz 1,7—1°
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Then there exists an isomorphism f : Endp(Xs) — L(S) of K-algebras such that P(i,j); ~
Homp(Xs, X, ;) as Endp(Xs)-modules where P(i,7); is an Endp(Xg)-module associated with f
and P(i,7).

Now we are ready to prove Theorem 3.11.

Proof of Theorem 38.11. Since (X; ;) j)es is a weak S-family, we have

1 =0
dim g Homp (X j, Xi—1,5[n]) — {0 Z;é 07

1 =0
dlmK HomD(Xi,jaxi,jfl[n]) 3é4 {0 Z 7& 07

. S3) ;.
dim g HomD(Xi,j7Xi—1,j—1[nD (:) dim g HomD(Xi,j7S(Xg}(Xi,j)[n])

1 n=0,
0 n#0.

In particular, X, ; is a pretilting object. Thus Xg is a tilting object by Lemma 3.5.
Thanks to the above calculation, the following condition is satisfied:

(312) If (i/,j/) € Si,j; then dimg HOI’IlD(Xi Xi’,j’) =1.

= dlmK HomD(Xi,jyXi,j [771])* (Lzl) {

i
By the conditions (L2) and (3.12), there exists a family (vf,jj, s Xy = Xvj)ag).irnes of

morphisms satisfying (3.8) and (3.9). By (S1’) and (S2’), the conditions (3.10) and (3.11) are
satisfied.

Thus the assertion follows from Lemma 3.15. O

3.4. A property of S-families. Let (X; ;)(; j)es be an S-family. For any J C Z, define
Xis= @ Xi;
jeIns;
In particular
Xi>j = X(jooyr Xizj = X[joo)y Xi<j = X(—oo)r Xi<j = X(—o00,j]:

In this section, we prove the following result which is the key step of the proof of Theorem 4.3
in the next section. Let (X; ;) j)es be an S-family and (4,7) € S. If (1 = 1,7),(i — 1,5 —1) € S,
by (S1) and (S3), we have Six)(X;;) ~ Xi—1j-1 ~ S(x, ,)(Xi—1,). The following shows that
Sixs) (Xij) = S(x,_,)(Xi—1,5) holds without assuming (i —1,j — 1) € Sif S; C ;1.

Proposition 3.16. Let (X; ;)i jyes be an S-family in D, and (i,j) € S. If S; C Si_1, then
Sixsy (Xig) = Six, 1) (Xiz1,5) € (Xi1).

To prove Proposition 3.16, we prove the following result:

Lemma 3.17. Let (X ;) j)es be an S-family in D and (i, j), (i,j —1) € S. Then

(X3) _
T, ) (Xii—1) = Sex s yo1y) (Xig)-
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Proof. Let Y = "JI‘Ei) >(Xi7j_1). Since (X; ;) es, is regarded as the exceptional sequence,

237

(Xi5i) = (Xij) L (Xisg) "2 (X250 L (E)

where =S, . )(Xi ;). Then
Homp (X >;,Y[n]) ~ Homp(X; >, X; j-1[n]) =0
for any integer n. We have Y € (F). Since F is an exceptional object and

K n=0,

. L (S1
Homp (Y, E[n]) ~ Homp (X ;, Y[—n])* ~ Homp(Xi . Xij_1[—n])* = .
0  otherwise,

2.12 .
we have Y "=" E. Since

(L2)
(Xisnpi-11) = Xi<j—1) L (Xizj) = (Xizj) L (Xi<j-1),
we have
~ XD EAPOR, (0.6 o ~V ~
Six s o) (King) = T(Xi,si\{jaﬁS(X”(XW) - T(Xi,si\{j—n)(Xm_l) =Y ~E
Thus the assertion follows. O

Now we are ready to prove Proposition 3.16.

Proof of Proposition 3.16. By Theorem 3.11, we can assume that D = per £, X, ; = P.(i,j) €
per L. If (i—1,5—1) €S,

Sixsy(Xiyg) = Xiz1j-1 = Six,_,) (Xi-1,5)-

If (i—1,j—1)¢ S, let T := SU{(i—1,j—1)}. Then (X; ;) jer is a T-family in D. By restricting
the lexicographic order < of Z?, we regard T as a totally ordered set (see the figure (3.4)). Let
s :[1,n] — T be the ordered isomorphism, and let Ep = X,). Let p,q be two integers such that

(313) p= 8_1(i - 17] - 1)7 q= s_l(i - lajO) where jO = Sup{j/ €L | (Z - 17j/) € T}a
and let Y = S<Xi71,2j71>(Xi_17j_1) = S(E[pqu(Ep).
If (¢/,5') € S and ¢ > 1,
(L2) .
Homp (X, j#,Y[n]) =" 0 for any integer n.
If (i/,5') € S, i =i, and j' < j — 1,

Homyp (Xy/ i/, Yn]) )0 for any integer n.
It (i,5) €S, i =i, and j' > j — 1,

. (L2)

S2’
HOHID(XZ'/’J'/, Y[n]) (:) HOHID(‘Xi,Lj/7 Y[n]) ~ HomD(Xi,Lj,l,Xi,l,j/[—n]) 0

for any integer n. So we have that
Homp (Ejg11,n),S(m,, ) (Ep)[n]) = 0 for any integer n.

Thus

2.8(b)
Sixs)(Xij) =" Tixe)S(x7)(Xi) = Tixey(Xic1,j-1) = T(mpy oy (op) (Ep)

(3-13) o (Xi—1,7)
B T<Xi—l,.]\{j—l}>

3.17
(Xic15-1) = Sx,_ ) (Xi15)

where J = [j — 1, jo] N Si—1. O

217 o Eip,q1)
o T<E[p+l,q]>(Ep)
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p1

po 47

// qr—k+1

q1

FIGURE 3. The shape of the Young diagram Y(p;q)

4. S-FAMILIES IN DERIVED CATEGORIES OF NAKAYAMA ALGEBRAS

4.1. The algebras L(p;q) and L'(p;q). Let p = (Pr)ken,r) and q = (qr)rep,, be two sequences
of positive integers. For any integer s € [0,7], define

S S
Ps 1= Zpka ds ::ZQka D:=Dr, q:=0qr.
k=1 k=1
Consider the Young diagram

Y(pa) = | D4t x[Lawl= | LIkl X [1+ G Grs]
kelo,r—1] kelo,r—1]
(see Figure 3). Let
epiq) = Y. e®@e, €)= Y. @6
(i,5)€Y(p;a) (4,5)€Y (psq)
where e; ® e; (resp. e} ® 6}) is the primitive idempotent in N(p) ® N(g) (resp. KA; ® KAz) corre-
sponding to the vertex (i,4) € Y(p;q). Then the algebras L(p;q) and L'(p;q) are defined as
(4.1)  L(p;a) = L(p1, .-, prs 1, - -5 ) i= L(Y(p; q)) = e(p; @) (N(P) @ N(q))e(p; a)
~ (N(p) ® N(q))/(1 — e(p;q)),
(42)  LYp;a) = L'(p1,- -5 priq1s -5 qr) i= € (p; ) (K Ay ® KAg)e!(p;q)
~ (KAp © KAg)/(1 - ¢ (p;q)).
By the definition of L(p;q) and L'(p;q), there exist natural isomorphisms L(p;q) — L(q;p) and
L' (p;q) — L'(q; p).
Example 4.1. The quivers of L(3;4) and L'(3;4) are the following respectively:

1 1 1
Uy 1 Uy 2 Uy 3

(1,1) <25 (1,2) <2 (1,3) <2 (1,4) (1,1) = (1,2) == (1,3) —= (1,4)
V1,1 V1,2 V1,3 V1,4 “!1,1 ) ”'12 | v!113 , i/u'lA
(2,1) <= (2,2) <2 (2,3) <= (2,4) (2,1) == (2,2) == (2,3) —= (2,4)

va,1 v2,2 v2,3 v2 4 v} vl
2,1,
u3z,1 us,2 U3, 3 ug 1

(3,1) <1 (3,2) 22 (3,3) <2 (3,4) (3,1) 22 (3,2) 22 (3,3) 22 (3, 4)’
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The quivers of L(1,2,1;1,2,2) and L'(1,2,1;1,2,2) are the following respectively:

!
U1,2

(1, 1) (1 2) (1 3) (1 4) (1 5) (1, 1) (1,2) —(1,3) %(1 4) (1 5)
. :;1 . ;;2 . ;;’3 %J

s, o, d i, e,

a s

and the relations are the following respectively:
Ui, jUjj+1 = 0, Vi, jVi41,5 = 0, WUj,jVi, 541 — Vi jUit1,5 = 0, Q)i’jJrl’U,;’j - uiﬂ’jvé’j =0.

From the following result, L(p;q) is derived equivalent to L'(p;q).

Proposition 4.2. The family (X; ;)@ j)ey(pq) Of objects
X, J = SL’(p;q)(i’j)[_i _.7]

is a full Y(p;q)-family in per L'(p;q). Then the object Xv(psq) = @ X, ; is a tilting object

(4,5)€Y (p;a)

in per L'(p;q) such that Endper 1! (piq) (X (piq)) = L(P;q), and there exists a triangle equivalence
F : per L'(p; q) — per L(p; q)

such that F(X; ;) ~ P(i,7) for any (i,7) € Y(p;q).

Proof. Let A= L'(p;q) = KA; ® KAz, B= N(p)®N(g). By Example 3.10, there exists a triangle

equivalence G : per A — per B such that G(Sa (4, j)[—i —j]) ~ Pg(i,j) for any (i,5) € Y(p,q). Let
P = e!(p;q)Aa P = (1—6!([); q))Aa T= @ SA(Za])[_Z_.]]a R = G(T) = e(pvq)B

(4.5)€Y (psa)

Since Endper 5(R) >~ L(p;q), there exists a triangle equivalence Fy : (R) — per L(p;q) such that

F1(Pp(i, 7)) =~ Pr(pq) (i, ) for any (i,7) € Y(p;q) by Example 2.11.

Since Endper a(P) =~ L'(p;q) and Hompe, 4(P’, P) ~ 0, there exists a triangle equivalence F; :
(P) — per L'(p;q) such that Fy(P4(i, 7)) ~ Pri(piq) (i, 7) and Fa(Sa(i,j)) = Sp(pq) (i, ) for any
(7,7) € Y(p;q) by Example 2.11. Since

F1GFy {(Xi) = Prpg) (i, ),

the triangle equivalence FyGF; ' : per L'(p;q) — per L(p;q) sends the family (X; i,7) (i,7)€Y (piq)
to the full Y(p;q)-family (Pr(pq)(4,7))i,j)ev(psq) i Per L(p;q) given by Example 3. 9 Thus the
assertion follows.

per I (p; q) <—=— (P) (T) —S—~ (R) ——— per L(p; q)

w T

perA:perA%perB. 0O

Recall that D satisfies the condition (3.1) if
D is algebraic, idempotent complete, Ext-finite and has a Serre functor S.
For any two sequences of positive integers p = (pi)re[1,r] and q = (qr)re,r], define
Apia(i) = A(i) == sup{j’ € Z | (i,j') € Y(p;q)}.

When S = Y(p;q), the definition of S-families are characterized by the following much simpler
conditons than (L1), (L2), (S1)-(S3).



22 TARO UEDA

Theorem 4.3. Let D be a triangulated category satisfying (3.1), (Xi ;)i j)ev(psq) @ family of excep-
tional objects inD. Then (X ;) jyey(pa) 15 @ full Y (p; q)-family in D if and only if (X j).5)eY (piq)
satisfies the following conditions:

(Y1) D= (X)) L(X5) Lo L (Xp).
(Y2) (X1) = (X11) L (X12) L+ L (X))
(Y3) S(x,y(X1,5) ~ X1,j-1 for any integer j € (1, A(4)].
(Y4) S(Xi;) ~Six,_,)(Xi1,j) for any integers i € (1,p] and j € [1, A(7)].
In this case, there exists a triangle equivalence
F :D — per L(p;q)
such that F(X; ;) ~ P(i,j) for any (i,5) € Y(p;q).

To prove Theorem 4.3, we prepare the following two results.

Lemma 4.4. Let D be a triangulated category satisfying (3.1), (Xi)icpi,n) a family of objects in
D. If the conditons

(14) D= (X1) L (Xa) Lo L (Xy)
(4.5)  S(X;) € (X;_1) for any integer i € (1,n]
are satisfied, then

(4.6)  Homp(X;, Xi/[n]) = 0 for any integer n unless i’ € [i — 1,1].

Proof. If i <4/, Homp(X;, Xy [n]) “Y 0 for any integer n. If i — 4’ > 2, then S(X;) € (X;_1) by
(4.5) and Homp (X;, X;v[n]) ~ Homp(X;, S(X;)[—n])* A0 for any integer n. Thus the assertion
follows. -
Lemma 4.5. Let D be a triangulated category satisfying (3.1), (Xi ;). j)ev(pq) @ family of excep-
tional objects in D satisfying (Y1)-(Y4). Then (X; ;)@ jyev(pq) satisfies the following conditions:
(Y2') (X)) = (Xi1) L(Xi2) Lo L(X; @) for any integer i € [1,p].

(S1) Sx,y(Xij) = Xij—1 for any integers i € [1,p], j € (1, A(@)].

Proof. When i = 1, (Y2') is nothing but (Y2). Assume that (Y2') holds for i. If j < 5/,

Y4 _ _
HOHID(XZ‘+1J7XZ‘+1J/[TL]) (:) HomD(S 1S<Xi>(Xi’j),S 1S<X,;>(Xi,j’)[n])
>~ Homp(Xi)j,Xi)j/[n]) =0
for any integer n. So (Y2') holds for ¢ + 1.

When i = 1, (S1) is nothing but (Y3). Assume that (S1) holds for i. Then F = S™'Sy,) :
(Xi <a@+1)) = (Xig1) is a triangle equivalence by (Y4) and

(v4) 2.2(b)(c)
S(Xi+1>(Xi+1,j) = S<Xi+1>F(Xi,j) = FS<X1,,g>\(i+1)>(XiJ)

2.8 S1 Y4
2 FSx,)(Xi,5) < F(Xij-1) D Xy

Thus (S1) holds for ¢ + 1.

F
(Xi) =—(Xs <xgirr) — (Xiv1)

iswi) \LS<X{,,§)\(1’+1)> ls<xi+1>

(Xi) — <Xi>,<>\(i+1)> — (Xip1) 0O

(X5, <A(i+1)

Now we are ready to prove Theorem 4.3.
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Proof of Theorem 4.3. If (X ;)i j)ev(piq) is @ full Y(p; q)-family, there exists a triangle equivalence
F : D — per L(p; q) by Theorem 3.11. So we will prove the equivalence of two conditions.

We prove “only if” part. Since (X ;) j)ev(pq) 15 @ full weak Y(p; q)-family, (Y1) and (Y2) are
satisfied. By (S2), we have that (Y3) is satisfied. By Proposition 3.16, (Y4) is satisfied. Thus the
assertion follows.

We prove “if” part. By the assumption, (L1) is satisfied. By (Y1) and (Y4), we see that (L2.1)
is satisfied by Lemma 4.4. Since

(Y4)

Fix, 1) (Xig) = Six, yS(Xig) =" Six, ySexiny (Xic15) = Ximj,

(Xi-1)
(S2) is satisfied. If j — j > 2,

S2) L2.1
HOHID(X ,g7Xz Lj/[n]) ~ HOIHD(]F<X1._1>(X1‘J‘),XZ',LJ‘/[TL]) (:) HOIII(XZ',17J‘7XZ‘7J‘/) ( = ) 0.

So (L2.2) is satisfied. Thus (X; ;). j)ey(piq) is @ weak S-family satisfying (S2)".
In the last, we prove that (X; ;) j)ev(piq) is an S-family. By Lemma 4.5, (S1) is satisfied. By
(S1) and (Y4), we see that (S3) is satisfied. Thus the assertion follows. O

4.2. Y(p,q,r)-families. The aim of this section is to prove Theorem 4.7. Let p, ¢, and r be three
positive integers such that pg > ¢+ 1,0 <r < ¢q. Let

Y(p—1,1qg—rr) r<g,
Y(p7 q, 71) = (
Y(p—1L9q) r=q,
L(p,q,r) = L(Y(p, ¢, 7))-
The following application of Theorem 4.3 is useful to construct a Y(p; ¢)-family:
Proposition 4.6. Let D be a triangulated category satisfying (3.1), (Ek)rep,q an exceptional

sequece in D, and E = @ Ey.. Suppose that the following conditions are satisfied:
ke(1,q]

(4.7 D= (S""YE)) L(SP"XE)) L--- L {(E).
(4.8)  Spy(E;) ~ E;_1 for any integer i € (1,p].
Then the family (X; ;)@ j)ey(p:q) 0f objects
Xig = Figo-i(myFigr-i-1(my) - - Fis(my) (Ej)
is a full Y(p; q)-family in D. In particular, there exists a triangle equivalence
F : D — per L(p;q)
such that F(X,; ;) ~ P(i,j) for any (i,7) € Y(p; q).
Proof. Tt suffices to check the conditions (Y1)-(Y4). Since Fsiti(py : (SHE)) — (S"T(E)) is a

)-
triangle equivalence for each i € Z by Lemma 2.9(d), (X;) = (SP=%(E)). Since (4.7) is satisfied,
(Y1) is satisfied. Then we see that S({X;)) = (X;_1). Since

— 2.9(c)
S, S(Xiy) "= Frx, oy (Xig) = Xica g,

(Y4) is satisfied. Since Fgi+1(pgyy : (S'(E)) — (S"F1(E)) is a triangle equivalence for each i € Z by
Lemma 2.9(d),
G= ]F<SIJ—1(E)>IF<SP—2(E)> e 'F(S(E» : <E> — <X1>

is a triangle equivalence. Since G sends the exceptional sequence (E;);e[1,q) to the family (X1 ;) eq,q]5
it follows that (Y?2) is satisfied. If j € (1, ¢q],

(4.8)
S(x1)(X1,5) = S(x,)G(Ej) = GS(my (Ej) =" G(Ej-1) = Xij-1.

So (Y3) is satisfied. Thus the assertion follows from Theorem 4.3. O
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The following result is one of our main results:

Theorem 4.7. Let p, q, and r be three positive integers such that pg > q+1,0<r < g—1. Then
there exists a full Y (p,q,r)-family (X ;) jyey(p,qr) i per N(pg —r,q + 1). In particular, there
exists a triangle equivalence

F :per N(pg —r,q+1) = per L(p,q,7)
such that F(X; ;) = Prp,qr)(4,7) for any (i,7) € Y(p,q,7).

We first prove the case r = 0 of Theorem 4.7 by applying Proposition 4.6.

Proposition 4.8. Let p and q be two positive integers such that pg > q+ 1, A= N(pq,q+ 1).
(a) Let (Xij)@i)eY(pmq) be a family of objects X; ; € per A defined as

Xijj = Fw-ippFr-izaipy -+ Fro(py) (S(7)[=7]
where P = @ P(k). Then (Xi ;) j)eymaq) 5 a full Y(p;q)-family in per A.

kell,q]
(b) Let (X];)(i.j)eY(psq) be a family of objects X ; € per A defined as
Xij=FuoisnFwei-is) - Fs) (S((p =g+ 7)) [=7]

where S = @ S((p—1)g+k). Then (X] ;) j)eY(pq) 5 a full Y(p;q)-family in per A.
kell,q]
Proof. (a) It suffices to check the conditions (4.7)-(4.8) by Proposition 4.6. Let E; = S(i)[—1],
E = @ E;. Since (E) = (P) and v*(P(i)) ~ P(pk + i), we have
i€[1,q]
D= (" (P)) L (W"72(P)) L.+ L(P) = (W'"H(E)) L (WW7*(E)) L L(E),

and so (4.7) is satisfied.
Since £ = EJ1 4 is a pretilting object such that Endp(E) ~ N(q), there exists a triangle functor
F (E) — per N(q) such that F(E;) ~ P(i), and so (4.8) is satisfied. Thus the assertion follows.

) Let §" = @ S(k). Since vP~1(S(k)) ~ S((p—1)qg+k) for any k € [1, q], we have (vP~1(P)) =
ke(1,q]
(vP=1(S8")) = (S9), and so the assertion follows from (a). O

Now we are ready to prove Theorem 4.7.

Proof of Theorem 4.7. Let A= N(pg,q+ 1), B= N(pq—r,q+ 1) and let

p=@Pk), P'= P Pk, S=PSk), = P Sk
kel ke[Lpg\I kel ke[Lpg\I
where I = [1,pq — r]. Since Hompe, 4 (P, P) ~ 0 and Endpe, 4(P) ~ B, we have (P) = n
there exists a triangle equivalence F' : (P) — per B such that F(P4(i)) = Pp(i), F(Sa(i)) ~ Sp(i
by Example 2.11. Thus it suffices to show that there exists a full Y(p, ¢, r)-family in (S).
Let (X} ;) (i.)eY(piq) Pe a full Y(p; g)-family in per N(pg, ¢+1) given by Proposition 4.8(b). Since

Y, q—i = S(pq J)[=a+ jl, we have (S") = (X . 1), and so (X§(, ) = (8")Lrera = (S) by
Example 2.11. Thus the subfamily (X; ;) j)ev(p.q.r) is a full Y(p, g, r)-family in (S). O

5. MUTATIONS OF S-FAMILIES

In this section, let D be a triangulated category satisfying (3.1). The purpose of this section is
to introduce mutations of S-families on some assumption for S, and to prove Theorems 5.14 and
5.16 by using those results. Let

Pan(Z?) == {S C Z* | |S| < oo}
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In Pan(Z?), the relation S = S’ defined as
“there exists an element v € Z? such that S’ = S + v”

is an equivalence relation on Pg,(Z?). Clearly, if a family (Xi,j)@,j)es is an S-family, then for
S" = S+ (a,b) with (a,b) € Z?* , the family (Xi—a,j—b)(i,j)es is an S'-family. For any S € PBan(Z2),
define

1S = {(i,j) € Z* | (j,i) € S}.
Clearly, a family X = (X; ;)¢ j)es is an S-family if and only if the family *X = (X; ;)(; j)ets is an
tS-family.

5.1. Gluings of S-families. In this section, we introduce gluings of S-families (Proposition 5.2,
Proposition 5.3). For any interval I of Z,

Sp:={(i,j)eS|icI}y, ST :={(i,j)eS|jel}.
In particular,
S<h = S(eok]s Sk = Sphooy, S = Gl g2k = glkioo),
Let X = (X, ;) be a family of objects in D indexed by S € Bg,(Z?). For any integer k, define
Xek = (Xig)iesars Xk = (Xij)(ij)essis
XSE = (Xi5)gpes<rs XoF = (Xij)ges=+-

Lemma 5.1. Let X = (X; ;)i jes be a family of objects in D indexed by S € Bean(Z?) satisfying
(L2.1). Let k be an integer.

(a) If (Z,j) S S>k+1, then S(XS)(Xi,j) ~ S<Xs>k>(Xifj) and S()@)(Xi’j) o~ S(X>k1j)(Xi,j)-
(b) If (i,) € S<k-1, then Sy, (Xij) = Siy, (Xiy) and Siy,, (Xiy) =Sy, (Xij).

)

Proof. (a) From (L2.1), we have (Xs) = (Xs_,_,) L (Xs.,). Since

« (L2.1)

Homp(Xs.,_,,S(xs)(Xij)[n]) ~ Homp(X; 5, Xs ,_,[-n]) 0,

we have Six)(X;;) € (Xs.,). Thus the assertion follows from Proposition 2.8(c). Since the
subfamily (X ;)¢ j)esix ;) satisfies (L2.1), the assertion follows.
(b) This is the dual of (a). O

Proposition 5.2 (Gluing I). Let X = (X ;)@ j)es be a family of objects in D indexed by S €
PBan(Z?2) satisfying (L2.1). For any integer k, the following conditions are equivalent:

(i) X is an S-family.

(i) Xk s an Sgp-family and Xsp is an Ssi-family.

Proof. ()= (ii): This is clear.
(ii)= (i): We need to show that X satisfies the conditions (L1), (L2.2) and (S1)-(S3). Clearly
(L1) is satisfied. We show that (1.2.2) is satisfied. Let (¢,5) and (i’,j’) be two elements in S such
that [j — j'| > 1. If (i,5) € S<p\Stry and (i',5') € S>x\Sqry, we have HomD(X”,X: i[n]) =~
0 and Homp (X j, X; ;[n]) ~ 0 from (L2.1). If (4,7),(i',4") € S<k or (i,7),(i',j') € Ssk, then
Homp (X, ;, Xiv j[n]) ~ 0 since X¢j, is an S¢p-family and X5y is an S>k—family. Thus (1.2.2) is
satisfied, and so X is a weak S-family.
Since Xy is an S¢p-family and X5, is an Ssp-family, (S1) is satisfied.

Suppose that (i, j), (i—1,7) € S. T (i, j) € Sspp1, then Sxn (Xiy) "2 Sixe, 1 (Xiy) 2 Xiovy.
If (i) € Sek, then (i — 1,j) € Scpmy and S, (Ximy) "2 83 (Ximy) =) Xoj Thus
(S2) is satisfied.

5.1(a)

Suppose that (i,5),(i—1,7—1) € S. If (4,5) € Sxry1, then (i—1,j—1) € Syp and S x4 (Xi ;) =
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S3 .. . . _ 5.1(b
S<Xs>k)(Xi,j) (i) Xi—l,j—1~ If (Z,]) S Sgk, then (Z — 1,] — 1) S Sgk_l and S()§S>(Xi—1,j—1) :( )

Stk (Xicrm0) ® X, Thus (S3) is satisfied. O
<k

By transposing, we have the following result.

Proposition 5.3 (Gluing II). Let X = (X ;) j)es be a family of objects in D indeved by S €
PBan(Z?) satisfying (L2.2). For any integer k, the following conditions are equivalent:
(i) X is an S-family.
(i) XS* is an SSF-family and XZ* is an SZ*-family.
5.2. Mutations of S-families. In this subsection, we prove results for mutations of S-families
(Theorem 5.6, Theorem 5.12). Let S € PRqn(Z?). Recall that
Se:={j€Z|(kj)eS}, St :={icZ]|(ik)cS}

for any integer k. Let o<k, 0>k, p<k, p>k be permutaions of Z? such that

ng(imj) = {

(17]71) nga
(4, 4) k<,

N (Z‘ajil) Z>k7
U?k(27.])_ {(Z,j) k>Z7
p<k(i,j) = {(i,j) k<. p=k(i,5) = (i, ) k>

For any subset I of Z and any integer n € Z, we denote by I + n the subset
I+n={jeZ|3iel,;j=i+n}

Definition 5.4. Let k be a nonnegative integer. A finite subset S of Z? is called an M,j—subset if

the following conditions are satisfied:

(M1) Ifi € [0,k +1], then S; is an interval of Z.

(MZFQ) Ifi e [1,k], then S; = S;—1 or S; = S;—1 + 1.

(M73) Sky1 C Sk

A finite subset S’ of Z? is called an M, -subset if the following conditions are satisfied:

(M, 1) Ifi€[0,k+ 1], then S} is an interval of Z.

(M, 2) Ifie€[1,k], then S, =S]_, or S =5._; +1.

(M. 3) S C S+ 1.

For any (i,7) € S, if S—(i,7) is an M,! -subset (resp. M, -subset ), S is called an M, (i, j)-subset

(resp. M, (4, j)-subset).

S S’
? ?
1=0 \ 7 =0 \
LTk | i%k |

By definitions, the following result is clear:

Lemma 5.5. Let k be a nonnegative integer, S and S’ two finite subsets of Z? such that S’ =
o<k (S). Then S is an M,' -subset if and only if S’ is an M, -subset.

The following result is the one of main results in this subsection:

Theorem 5.6 (Mutation I). Let D be a triangulated category satisfying (3.1), S an Mlj—subset
satisfying S<—1 =0, and let S" = o<x(S).
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(a) If X = (Xi ;)i )es is an S-family, then the family X' = (X ;) jyes is an S'-family where
X' = S<Xi>(Xi,j+1) i <k,
©J X’i,j k <i.

In particular, there exists a triangle equivalence per L(S) — per L(S").
(b) IfY = (Yij)@jyes is an S'-family, then the family Y' = (Y] ;) jes is an S-family where

Sl(zg 1) nga
Y k<.

)

Y. =

]

In particular, there exists a triangle equivalence per L(S’) — per L(S5).

S S/

1=0 1=10

L

,izk
? SRS

In Theorem 5.6 (a), by the definitions of X and X', there exists a sequence of mutations of
exceptional sequences from X to X’'.

Remark 5.7. Let I_1 = {2}, Iy =[1,2], I, = {2} and
S = I—l {k‘}XIk, S/:Jgo(S).

ke[—1,1]

:k
k+1

Then S is an My -subset such that S<_1 # 0. Since there exist triangle equivalences
per L(S) — per KAy and per L(S’) — per KDy,
we have that per L(S) and per L(S") are not triangle equivalent to each other.
To prove Theorem 5.6, we prepare the following three results.

Lemma 5.8. Let D be a triangulated category satisfying (3.1), (Xi ;)@ j)eymq @ Y(0;q)-family
in D. Then there exists a triangle autoequivalence G : (Xy (piq)) —+ (Xy(piq)) Such that

(6.1)  Glix,y ~S(x,y : (Xi) = (X3) for any i € [1,p].
Proof. Let A= N(p)®N(q). By Theorem 3.11, there exists a triangle equivalence F : (Xvy(p,q)) —
per A such that F(X; ;) ~ P(i,j) for any (¢,j) € Y(p;q). Then F(X;) ~ P(i) ® N(g) for any
1 € [1,p]. By Lemma 2.19,
L

G'=(-)®a(N(p) ® N(q)") : per A — per A
is a triangle autoequivalence such that

G'lpiyen(e)  (P(i) ® N(q)) — (P(i) ® N(q))
is a Serre functor for any i € [1,p]. Thus G = F~1G'F satisfies (5.1). O

By the following result, if S is an M,;" subset satisfying S¢_1 = 0 and S>r11 = 0, any S-family
is a mutation of a Y(k + 1; h)-family.

Lemma 5.9. Let D be a triangulated category satisfying (3.1), S an M,j -subset satisfying S>p+1 =
0. Let (Xi ;) )es be an S-family in D and h = |S|.

(a) There exists a Y(k + 1; h)-family (Y; ;)@ j)evh+1;n) such that (X;) = (Yy) for any i € [0, k],
and there exists a triangle equivalence (Xg) — per L(k + 1; h) such that F(Y; ;) ~ P(i,j).
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(b) The family (X ;)@ es of objects X| ; :=S(x,)(Xi;) is an S-family such that (X;) = (X]) for
any i € [0, k).
(c) The family (X]';)i.jyes of objects X', = S&i)(X,-,j) is an S-family such that (X;) = (X[')
for any i € [0, k].
Proof. (a) We show that (X} ;) e(0,n] is an exceptional sequence satisfying (4.7)-(4.8) in Proposition
4.6. From (L2), (X} ;) e[0,n] is an exceptional sequence. From (S1), we have that (4.8) is satisfied.
From (L2),
(Xs) = (Xo) L (Xz) L+ L (X).

Let i € [1,k]. If S; = S;_1, then S(X, ;) *2° Six, 1 (Xi_1,), and so we have (S(X;)) = (X; ). If

S; = S;—1 + 1, then S(X, ;) i i—1,j—1, and so we have (S(X;)) = (X;_1). So (4.7) is satisfied.

Thus the assertion follows from Proposition 4.6.

(b) By Lemma 5.8, there exists a triangle autoequivalence G : (Xg) — (Xg) such that G(X, ;) =
Sx,)(Xi,;). Thus the assertion follows.

(c) This is the dual of (b). O

The following result is equivalent to Theorem 5.6 in the case k = 0 and Sxp11 = 0.

Lemma 5.10. Let D be a triangulated category satisfying (3.1), and let Iy and I be two intervals
of Z. such that I} C Iy, S and S’ two finite subsets of Z? such that

S= || {k}xIn, 8" =0<(9).
kel0,1]
a) If X = (X)) es s an S-family, then the family X' = (X! )i nes: 18 an S’ -family where
37 (4:9) 1,5/ (4:4)

X! = S<Xo>(X0,j+1) 1=0,
1, Xl,j i1

In particular, there exists a triangle equivalence per L(S) — per L(S").
(b) IfY = (Yij)jyes is an S'-family, then the family Y' = (Y] ;) jes is an S-family where

v = ISey () i=0,
Y Yy i=1.

In particular, there exists a triangle equivalence per L(S’) — per L(S).

Proof. Without loss of generality, we can assume that Iy = [p1,p2] and I; = [1,q].
(a) Since (X;) = (S(x,)(X;)) = (X;) for any i € [0, 1], we have that X’ satisfies (L2.1). Let j

and j' be two integers such that |j — j/| > 1. Then

HOHI'D(X(I)J, X(/J’j/) = HOHID(S<XO>(X0J'+1), S(XO>(X0’]-/+1))

(L2) for X
~ Homp(Xo 41, Xojr41) = ;

HOmD<X{’j,X{)j,) = HomD(X17j7X1,j/> (L2) for X 0
If j' #p1 -1,
/ ’ (S1) for X
Homp (X1 ;, Xo ;) = Homp (X35, 8(x0) (Xo,541)) =~ Homp(X15, Xo,5)
S2)" for X L2) for X
( ): HomD(X07j,X07j/) ( ): 0.
If jl =p1— ]-a
/ / (S2)’ for X
Hom’D(Xl*j’XO’Pl*l) = HomD(XLﬁS(XO)(XO,m)) = HomD(XO,j78<Xo>(XO,p1))

« (L2) for X
~ Homp(Xo,p, » Xo,5) = 0
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Thus X’ satisfies (1.2.2), and so X' is a weak S’-family.
Clearly X’ satisfies (S1). By Proposition 3.16, X' satisfies (S3). If (0,5),(1,5) € S’, then
(0,j+1) € S and

Fixg) (X15) = Fixo) (X1,5) Xo
So X' satisfies (S2)’. Thus the assertion follows.
(b) Since (V) = (Sy;)(Y3)) = (Y3) for any i € [0, 1], we have that Y satisfies (L2.1). Let j and

(3

j' be two integers such that |j — j'| > 1. Then
Homp Yy ;, Yy ;1) = HomD(S<Y >(Y0J 1); S<y0>(Y(J i'-1))

(SQ)’_for X (S1) for X

J = Sixey(Xoj+1) = Xo

L2) for Y
~ Homp (Yo -1, Yo 1) ' 2,

L2) for Y
Homp (Y], Y{ ;) = Homp (V1 ;, V1) 7= "0

Since Si =5 CS():S(/)—FL

_ S3) for Y _ _
Homp (Yy ;,Yg ;») = Homp (Y15, Syt (Yo,5-1)) S92 Homop (S H(Y0,-1): Sty (Yo,r-1))
« L2) for Y
~ HOHID(S<Y y (Yo,5:-1), ¥o,j-1)" ~ Homp (Yp 51, Yo 5r—1) (B2 Jor ¥ g,
Thus Y satisfies (L2.2), and so Y is a weak S'-family.
Since Y satisfies (S1), we have
Sy, L (Yop,— i, 7) = (1, p2),
62 v, (5o 0om) G9)=(p
i otherwise.
From (5.2), Y satisfies (S1) and (S3). If (1,4),(2,4) € S’, then
(S3) for Y _ 2.8(b)
Fovpy (Y1) =Fryy (Y1) = FryyS™ (Yo, -1) Sty (Yo,5-1) = Yy
and so Y satisfies (S2)’. Thus the assertion follows. O

Now we are ready to prove Theorem 5.6.

Proof of Theorem 5.6. (a) Let X" = (X] ;)(; jyes’- By Lemma 5.9, X is an S¢j-family in D. By
Lemma 5.10, X;k is an Sy i-family in D. Thus the assertion follows from Proposition 5.2.

(b) Let X' = (X} ;)(i.j)es- By Lemma 5.9, X, is an S¢j-family in D. By Lemma 5.10, X%, is an
S>p-family in D. Thus the assertion follows from Proposition 5.2. O

A subset S of Z?2 is called a tM,:r -subset if 'S is an Mlj—subset. By Theorem 5.6, we obtain the
following result:

Theorem 5.11 (Mutation ‘I). Let D be a triangulated category satisfying (3.1), S a M, -subset
satisfying SS™1 =0, and let S" = p<k(9).
(a) If X = (Xi ;)@ )es is an S-family, then the family X' = (X ;) jyes is an S'-family where
x = IS (Kivay) TSk,
“J Xi’j k<.

In particular, there exists a triangle equivalence per L(S) — per L(S").
(b) IfY = (Yij)jyes is an S'-family, then the family Y' = (Y] ;) jes is an S-family where

v/ — SZYJ(Z 11) jgk’
“J Y; k< j.
In particular, there exists a triangle equivalence per L(S’) — per L(S5).

The following result is the one of main results in this subsection.
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Theorem 5.12 (Mutation IT). Let D be a triangulated category satisfying (3.1), and let k, h be

two positive integers such that k € (h+ 1)Z, and let s = (hhj_ll)k. Let S be an M,j'_l—subset of 7.2

satisfying |So| = h and S; = Si—1 for any i € [,k —1], and let 8" = 0<po<1 ... 0<k-1(9).

(a) If X = (Xij)@jes is an S-family, then the family X' = (X] ;)i jyes is an S’-family such that
(Xs) = (X&) where

Xijs] i <0,
k—i .

Xi; =S, (Xij) 0<i<k—1,
Xij i>k—1.

In particular, there exists a triangle equivalence per L(S) — per L(S").
(b) IfY = (Yij)ijyes is an S'-family, then the family Y' = (Y/ ;) jyes is an S-family such that
(Ys) = (Y{,) where

Yi ;=] i <0,
ki .

v, = S(y,:;r (Vi) 0<i<k-—1,
Y; ; 1>k —1.

In particular, there exists a triangle equivalence per L(S’) — per L(S).

S S’
? ?
1=20 =0 \}
z—ﬁ—l i:ﬁzl }
B | ]

Proof. (a) Since Ssq is an M, |-subset satisfying (Ss0)<—1 = 0, the subfamily XL is an S -
family by Theorem 5.6(a). Since there exists a triangle equivalence F : (Xy) — per N(Sp) such
that F(X, ;) ~ P(j) for any j € Sp by Lemma 3.13, we have

2.4
X5, = SIZXO)(XOJ) = Xo,;[s],

and so we have that X, = (X ;[s])(ijes,, 15 an So-family. Thus the assertion follows from

Proposition 5.2.
(b) This is the dual of (a). O

By transposing, we obtain the following result.

Theorem 5.13 (Mutation *II). Let D be a triangulated category satisfying (3.1), and let k, h be

two positive integers such that k € (h + 1)Z, and let s = (hh;ll)k. Let S be a "Mt | -subset of Z*

satisfying |S°| = h and S* = St for any i € [1,k — 1], and let S’ = p<op<i - - - p<i—1(S).

(a) If X = (Xij)ijes s an S-family, then the family X' = (X ;)i jyes is an S'-family such that
(Xg) = (X&) where

Xi j[s] j <0,
X]; =S (Xiy) 0<i<k—1,
Xij j>k—1

In particular, there exists a triangle equivalence per L(S) — per L(S").
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(b) IfY = (Yij)ijyes is an S'-family, then the family Y' = (Y/ ;) jyes is an S-family such that

(Ys) = (Y&,) where

Y;»j[is] .7< 07
Y, =Sy (Vi) 0<j<k—1,
Y; ; ji>k-1.

In particular, there exists a triangle equivalence per L(S’) — per L(S).

5.3. Applications of mutations of S-families. We are ready to prove one of our main results
by applying Theorems 5.6 and 5.13 as follows where

t'=t—1, v =u—s, Y=Y(s,t,u), Y =Y(s,t ).

Mutation I Mutation *II , Mutation I .
Y S S Y’
s S
o
th—u’ t— '
t—ul u-—1 s—1t—ulu—ss—2
— — e u u
s Is -1 s n —LL‘ Iﬁ —1
L"L ek s—1 s—1

Theorem 5.14. Let s, t, u be three positive integers such that 1 < u < t. Suppose that one of the
following conditions is satisfied.

(a) u€Zs andt —u € Z(s+1).

(b) s=2andt—u € 3Z.

Then there exist triangle equivalences

per L(s,t,u) — per L(S) — per L(S’) — per L(s,t — 1,u — s)
where

S=o0¢10¢2...0¢s-1(Y(s,t,u)),

S' = (p<1p<2 - P<t—u) (P51 o11P51—s -+ Poi—up2)(S):

Proof. (a) There exists a triangle equivalence per L(s,t,u) — per L(S) by Theorem 5.6.

Let I = [1,t—u), J =[t—u+2,t—s+1]. Since ST = Y(s;t — u) and S*74F! C S'7%, we
have that S is a *M;" (1, 1)-subset satisfying ¢t — u € Z(s + 1). Since S’ = Y(s — 1;u — s) and
Stmut2 = Gt-utl we have that —S is a 'M,[ (=1, —t + s — 1)-subset satisfying u — s € Zs.
Thus there exists a triangle equivalence per L(S) — per L(S") by Theorem 5.13.

Since

Y(s,t—1,u—s)= (U;LHUU;LHuH ... 0;371)(021‘02,#1 e 03541) (),

there exists a triangle equivalence per L(S’) — per L(s,t — 1,u — s) by Theorem 5.6.
(b) There exists a triangle equivalence per L(2,t,u) — per L(S) by Theorem 5.6.

Let I = [1,t —u), J =[t—u+2,t—1]. Since ST = Y(2;t — u) and St~**+! C S*~“ we have
that S is a ‘M, (1, 1)-subset satisfying ¢t — u € 3Z. Since S’ = Y(1;u — s), we have that —S
is a ‘M, 5(—1,—t + 1)-subset. Thus there exists a triangle equivalence per L(S) — per L(S’) by
Theorems 5.11 and 5.13.

Since

Y(2,t—1,u—2) = (U%l_t+u+20;1_t+u+3 . O’;f)(o’>u0>u_1 c033)(87),

there exists a triangle equivalence per L(S’) — per L(2,t — 1,u — 2) by Theorem 5.6. O
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(s, t,u) Y(s,t,u) S S’ (s, t —1,u—s)
H
(2,8,5) |
LTI CIT[TITT]
LT LT
Ti
(3,10,6)
[T [[T]
[T ] [T 1T | L1
L1
L]
\
(494 .
| } | |
[ ]

FIGURE 4. Mutations from Y(s,t,u) to 'Y (s,t — 1,u — )

By Theorem 4.7, we have the following result.

Corollary 5.15. Let p,q be two integers such that p > 2, g > 1. Suppose that one of the following
conditions is satisfied.

(a) r € Zxo.
(b) p=2 and r € 1 Z>o.

Then there exists a triangle equivalence
per N(n,£+ 1) — per N(n,t) wheren =p(p+ 1)g+plp—1)r, L= (p+ 1)q + pr.
Proof. Let (s,t,u) = (p,(p+ 1)g + pr,pr). By Theorem 4.7, there exist triangle equivalences
per N(n,f+ 1) — per L(s,t,u), per N(n,¢) — per L(s,t — 1,u — s).
Thus the assertion follows from Theorem 5.14. O
The following result is proved by applying Theorems 5.6 and 5.11 as follows where
Y=Yp+1l,q,q—1), Y =Y(¢g+1,p,p—1).

Mutation I Mutation I
S ty’
q q

P P qg+1
——
]

p
p+1 D
] L]

Theorem 5.16. Let p, q be two integers such that p > 2, q > 2. Then there exists a full
Y(g+ 1,p,p — 1)-family in per L(p+ 1,q,q — 1). In particular, there exists a triangle equivalence

perL(p+1,q,q—1) = per L(¢+ 1,p,p — 1).
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Proof. Let S be a subset of Z? such that S = ot,(Y(p+1,9,q—1)). Since

Y(g+1Lpp—1)=pg(9),

the assertion follows from Theorems 5.6 and 5.11. O

Corollary 5.17. There exists a triangle equivalence

per N(pg+1,q+1) = per N(pg+ 1,p+ 1) for any integers p > 2, q > 2.

Proof. By Theorem 4.7, there exist triangle equivalences

per N(pg+1,q+1) = per L(p+1,q,¢— 1), per N(pg+1,p+1) — per L(g+ 1,p,p — 1).

Thus the assertion follows from Theorem 5.16. O
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