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ABSTRACT

This paper studies results of J.Kaczorowski and K.Wiertelak in 2010 and
of M. Reko$ in 2001. In 2010, J.Kaczorowski and K.Wiertelak considered
the Volterra integral equation of second type for the remainder term in the
asymptotic formula for the Euler totient function ¢(n) and splitted the error
term in the asymptotic formula into two summands called arithmetic and
analytic part respectively. Also, J.Kaczorowski and K.Wiertelak proved the
Q-results for both the arithmetic and the analytic part (see [9]). In prov-
ing the Q-result for the analytic part, J.Kaczorowski and K.Wiertelak used
the functional equation which was proved by M. Reko$ in 2001(see [20]).
In 2013, J.Kaczorowski defined the generalization of ¢(n) associated with
generalized L-functions including the Riemann zeta function, the Dirichlet
L-function and proved an asymptotic formula (see [12]).

In the present paper, firstly, the author considered the Volterra integral
equation of second type for a remainder term in an asymptotic formula of an
arithmetic function which satisfies some special conditions and obtained a
solution of the equation. The method using there is applied to the remainder
term in the asymptotic formula of the associated Euler totient function. Sec-
ondly, the author considered the matter similar to [20] for the generalized
L-functions which satisfy some conditions and proved some analytic prop-
erties e.g. the regularity, analytic continuation on the whole complex plane,
and a certain functional equation. In particular, when we prove the analytic
continuation and the functional equation, we use the Whittaker function
which is kind of the confluent hypergeometric function.
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1. INTRODUCTION

1.1. Previous research for the Euler totient function.

For n € N, let ¢(n) be the number of positive integers not exceeding n
which are relatively prime to n. The function ¢(n) is called the Euler totient
function and appears in various fields e.g. elementary number theory, group
theory. In analytic number theory, studying the arithmetic mean of ¢(n) is a
classical problem. Let

3
(1.1.1) E(x):Zgo(n)—;xz

n<x
be the associated error term. The error term (1.1.1) has been studies for a
long time. P. G. Dirichlet proved the estimate
(1.1.2) E(x) < x'*€

for every positive €. Here, we use the notation f(x) < g(x), if there is a
constant C > 0 such that |f(x)| < Cg(x) for all x in the appropriate range. If
the implicit constant may depend on € in f(x) < g(x), we use the notation
J(x) < g(x). Also, we use the notation f(x) > g(x), if there is a positive
constant ¢ such that f(x) > cg(x) and g is non-negative. The estimate (1.1.2)
was improved by F. Mertens to E(x) < xlog x (see [15]). A. Walfisz proved

(1.1.3) E(x) < x(log x)3 (log log x)*

(see [24]). The estimate (1.1.3) is the best known result. S.S. Pillai and S.D.
Chowla proved

(see [19]) and S.D. Chowla also proved

3
2 .x
fo E@)*dt ~ pe

(see [2]). H.L. Montgomary proved the best Q-result for (1.1.1)

(1.1.4) E(x) = Q.(x+/loglog x)

(see [16]). Here, we use the notation f(x) = Q,(g(x)) and f(x) = Q_(g(x))
i.e. the inequalities f(x) > Cg(x) and f(x) < —Cg(x) hold respectively
for some arbitrarily large values of x and a suitable positive constant C.
Also, we use the notation f(x) = Q.(g(x)) i.e. both f(x) = Q.(g(x)) and
f(x) = Q_(g(x)) hold. In 2010, J.Kaczorowski and K.Wiertelak considered

(1.1.5) E(x) ::fE(t)— th(n)log———x

n<x

The right hand side in (1.1.5) is obtained by Fact 2.3.4 in Section 2.3.
J.Kaczorowski and K.Wiertelak proved that for x tending to infinity

E(x)=Q. (x% logloglog x).
Moreover, under the Riemann Hypothesis for the Riemann zeta function

l(s)ie. L(s) #0 (s =0 +it, (o' > %)), there exist a positive constant B
such that
log x )

loglog x

E(x) < X2 exp (B
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(see [10]). We write a complex variable s = o + it in what follows. We use
the same notation throughout this paper. J.Kaczorowski and K.Wiertelak
also studied (1.1.1) by splitting into two summands. J.Kaczorowski and
K.Wiertelak considered there the following Volterra integral equation of
second type for (1.1.1) (see [9]) :

(1.1.6) F(x) - foo K, )F(t)dt = E(x) (x> 1),
0

where F(x) is the unknown function and the kernel K(x,?) is defined as
follows:

1/t (0<t<x),
(1.1.7) K=/t O<t=0
0 (I<x<p.
The equation (1.1.6) can be solved explicitly. Let us put
N ﬁdn){x}
1.1.8 =— — -
(1.1.8) £ Z] 1
for every x > 0, where u(n) denotes the Mobius function i.e.
1 (n=1),
un) =<(=1)" (m=pipa---p,pi (1 <i<r):prime),
0 (otherwise),

and {x} = x — [x] is the fractional part of a real number x.

Theorem 1.1.1 (Theorem 1.1 in [9]). The general solution of (1.1.6) is
(1.1.9) F(x)=(f(x) + A)x,

where A is an arbitrary constant.

In [9], F(x) = xf(x) is claimed to be the unique solution of the integral
equation (1.1.6), but this uniqueness does not hold even assuming the initial
value condition at x = 0. Probably, the term Ax is missing to give the
general solution. J.Kaczorowski and K.Wiertelak defined the linear space
X as follows :

I
dt
X = {g : (0, 00) — R; Lebesgue locally integrable,f lg(9)|| log thT <o (YNe N)}.
0

Also, J.Kaczorowski and K.Wiertelak defined the operator ¢; on X as fol-
lows :

*a(t
(1.1.10) 01(g)(x) = f &t)dt (x>0,geX).
0
Moreover, let 6, denote the k-fold iteration of 6; :
(1.1.11) 0y =010---00; (ktimes)
and let
(1.1.12) Ri(x) = 61 (E)(x),
where E(x) is defined in (1.1.1). For x > O let us write
1.1.13 - {—}.
(1.1.13) g(x) ;mn) -
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Theorem 1.1.2 (Theorem 1.2 in [9]). For x > 1 we have

1 1
E(x) = = —.
() = xf(x) + 78(x) + 5
According to Theorem1.1.2, for x > 1 we can split E£(x) as follows :
(1.1.14) E(x) = E*R(x) + EM(x),

where

E*R(x) = xf(x), and E*N(x)= %g(x) + %

with f(x) and g(x) given by (1.1.8) and (1.1.13) respectively. We call
E*R(x) and EAN(x) the arithmetic and the analytic part of E(x) respec-
tively. J.Kaczorowski and K.Wiertelak proved the Q-estimates for EAR(x)
and EAN(x). On an arithmetic part, J.Kaczorowski and K.Wiertelak ob-
tained an Q-result for a class of arithmetic functions A as follows (see [9]) :
let A denote the set of all arithmetic functions a(n) satisfying the following
conditions :

(1) a(n) is real and multiplicative.
(i) There exists a positive real number 6 < 1 such that

a(n) < n’.

(iii)) We have

(o)

a(n)
> —5 #0.
n=1

(iv) Forevery N > 1 we have
N
D laml < N.
n=1
(v) The series
converges.

(vi) There exists a positive real number 7 and a sequence of positive
numbers x, — oo such that

Z la(p) > nloglog x, + O(1)
p

p<xy
a(p)<0
p=3 (mod 4)
forall v > 1.

For a(n) € A, we write

where s(x) denotes the saw tooth function :

(1.1.15) s(x) = {? (xe ),

5 —{x} (otherwise).

3



Since N
3 K _ g
n=1 n

we have

1
SO ) = S(f(x=0) + fx +0),

where f(x) is the same as in (1.1.8). Hence, for x ¢ Z we have f(x,u) =
f(x). Moreover, for every x > 1 let us put
R(x,a) = sup Z @

y=x

n>y

)= Al 1
R*(x,@) = \J/R(Vx,a) + e

Theorem 1.1.3 (Theorem 1.3 in [9]). Let a € A. Then we have
1 n
fx,a) =Q. ((log log —) )
R*(x% , @)
as x — oo,

Corollary 1.1.4 (Corollary 1.4 in [9]). Let f(x) be defined in (1.1.8). Then
(1.1.16)  f(x) = Qu(yloglogx) and E**(x) = Q.(x+/loglogx)

as X — o0,

and

On an analytic part, J.Kaczorowski and K.Wiertelak obtained an Q-result
as follows :

Theorem 1.1.5 (Theorem 1.8 in [9]). For x tending to infinity we have
(1.1.17) E*V(x) = Q.(x? loglog log x).

The following Theorem 1.1.6 and Lemma 1.2.3 below show that while
EN(x) depends on the non-trivial zeros of the Riemann zeta function, EAR(x)
does not. In particular, Theorem1.1.6 is related to a certain equivalence con-
dition of the Riemann Hypothesis for £(s).

Theorem 1.1.6 (Theorem 1.7 in [9]). The following statements are equiva-
lent.

(1) The Riemann Hypothesis is true.
(2) There exists a positive constant A such that for x > e we have

log x
loglogx /"

(1.1.18) E*N(x) < x7 exp (A

(3) For every € > 0 and x > 1 we have
EAN(x) <, x27€.

J.Kaczorowski and K.Wiertelak obtained a better decomposition for the
remainder term in the asymptotic formula for a generalization of the Euler
totient function (see [5], [11]) : For a non-principal real Dirichlet character
x (mod g), g > 2, let ¢(n, y) denote the twisted Euler ¢-function

(1.1.19) (p(n,)():nl_[(l—)%),
pln
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where the product in (1.1.19) is over the prime p which divisors of n.
Refer to the paper [4] on the application of ¢(n,y). J.Kaczorowski and
K.Wiertelak made a consideration similar to [9] for the remainder term in
the asymptotic formula of the above twisted Euler ¢-function. Let

2

2L(2, x)

(1.1.20) E(xx) = ) @lnx) -

n<x

and

E(x,x) (x¢N),

(1.1.21) Ei(x,x) = {%(E(x —0,x)+ E(x+0,y)) (otherwise)

be the corresponding error terms. Here, as usual, L(s, y) denotes the Dirich-
let L-function associated to y. It is easy to see that E(x, y) = O(xlog x) for
x > 2. Let s(x) be the same as in (1.1.15). We write for x > 0

(1.1.22) Flry) = ;%s(g)
and
(1.1.23) g0 ) = ;y(d)x(d>{§}({§} -1).

Theorem 1.1.7 (Theoreml.1. in [11]). The solution of the following Volterra
integral equation of second type

L124) Fap- [ KGOF@0d= B (620
0
where K(x,t) is the same as in (1.1.7) is the function

(1.1.25) F(x,x) = (f(x,x) + A)x,

where A is an arbitrary constant.

(In [11], the unique solution is F(x, y) = xf(x, x), but the comments just
after (1.1.9) should also be applied here). J.Kaczorowski and K.Wiertelak
also obtained the arithmetic and the analytic part of E(x, y) respectively.

Theorem 1.1.8 (Theorem1.2. in [11]). For x >0

(1.1.26) E(x,x) = E*®(x,x) + E*(x, ),
where

1
(1.1.27) E*®(x,x) = xf(x,x) and E*(x,x) = 58(x.X)

with f(x, x) and g(x, x) given by (1.1.22) and (1.1.23) respectively.

J.Kaczorowski and K.Wiertelak proved the Q-estimates for EAR(x, y) and
EAN(x, x). Also, J.Kaczorowski and K.Wiertelak proved the equivalence of
the Riemann Hypothesis for the Dirichlet-L function in terms of EAN(x, y).

Theorem 1.1.9 (Theorem 1.3 in [11]). Let f(x,x) be defined in (1.1.22).
Then

(1.1.28) f(x,x) = Qu((oglogx)i) and E*R(x,y) = Q.(x(loglog x)7)

as x — o0,



Theorem 1.1.10 (Corollary 1.4 in [11]). We have
(1.1.29) E*N(x, x) = Q. (x(log log x)7)
as X — 00,

Theorem 1.1.11 (Theorem 1.5 in [11]). The following statements are equiv-
alent.

(1) L(s,x) # 0 foro > %

(2) There exists a positive constant A such that for x > e we have
log x

loglogx/’

(1.1.30) E*V(x, ) < X7 exp (A

(3) For every positive € and x > 1 we have
EW(x, x) <. X2t

On the EAN(x, x), J.Kaczorowski and K.Wiertelak proved the Q-estimates
the cases the character is even and odd respectively (see [11]).

1.2. Preliminaries to prove Theorem1.1.5.
In this section, we state lemmata to prove Theorem1.1.5.

Lemma 1.2.1 (Lemma 5.2 in [9]). For o > 2 we have

T AN,y sl 3 1 =1
(1.2.1) f; E(x0)x dx = i + =92
Lemma 1.2.2 (Lemma 5.3 in [9]). Suppose that a measurable locally bounded
function h : [1,00) — R satisfies h(x) = O(x*), and h(x) < Bx*loglog x or
h(x) > —Bx“loglog x for certain positive a, A and B and all large x. More-
over, let its Mellin transform F(s) = floo h(x)x=*"'dx be holomorphic on the
interval [a, A). Then F(s) is holomorphic for o > a and

1 1
F(s) < log( )
o-a o—-a

. 1
uniformly fora < o <a+ 3.

We can prove the following lemma applying Lemmal.2.1 and Lemmal.2.2
to h(x) = EAN(x),a=1/2,A =2

Lemma 1.2.3 (Lemma 5.4 in [9]). Suppose that

(1.2.2) Tx0,Co >0 Yx>x9 E(x) < Cox? loglog x
or
(1.2.3) Jx,Co >0 Yx>2x9 E™(x)> —Cox? loglog x.

Then the Riemann Hypothesis is true, all non-trivial zeros of the Riemann
zeta function are simple, and denoting by p = % + iy a generic non-trivial
zero we have

{p-1)
')
Lemma 1.2.4 (Lemma 5.1 in [9]). With the notation (1.1.12) we have
Ri(x) + Ry(x) = Q.(Vxlogloglog x)

(1.2.4) < y*loglyl.

as x — o0,



In [9], the proof of Lemmal.2.4 is written as follows : Analogous result
for R (x) in the place of R;(x) + R,(x) was established in [10]. The present
lemma follows by repeating all steps in the proof of Theorem 1.1 in [10].
The required modifications are straightforward and shall not be described
here in detail.

1.3. The outline of the proof of Theorem1.1.5.

We state the outline of the proof of Theoreml.1.5 (see [9]) : We can
assume that (1.2.2) and (1.2.3) are true since otherwise there is nothing left
to be proved. Taking the inverse Mellin transform in (1.2.1) we obtain

-1 s
(1.3.1) ENGy = [£8=D_ 2 0

2 miJy () s(1-y)

where the path of integration £ COl’lSlStS of the half-line [3 — ico, 3 — 2], the
semi-circle s = 3 + 2¢”, I << 7r and the half-line [3 + 2i,3 + ico]. On
the Mellin inversion, the followmg fact is known :

Fact 1.3.1 (Theorem 28 in [23]). Let f(y)y*'(k > 0) belongs to L(0, o),
and let f(y) be of bounded variation in the neighborhood at the point y = x.
Let

(1.3.2) F(s) = f fxdx (s =k+it).
0
Then
1 k+iT
(1.3.3) —{f(x+ 0)+ f(x—-0)} = — hm F(s)x°d
T—eo Jpir
According to
1 1 1 1
= —— — — + _,
s(1 —5) 2 08 $(1-y)
we split the integral on the right hand side of (1.3.1) into three parts
1 {s—=1) X° 1 [(s—1)x* 1 {s—1)x°
o ds = - —ds — o —as
2ri Jp L(s) s(1— ) 2ri Jy o L(s) s? 2ri )y L(s) §
1 l(s—1) X°

i), {(s) s1-9"
:—Rl(x)—Rz(x)+%f§(s_l) X
Tl Vs

(s sU-9"
= —R;(x) = Ry(x) + 1,

say where R;(x) and R,(x) are the cases k = 1,2 in (1.1.12) respectively.
Shifting the line of integration to the left we have

-1 1 [ s—-1)
S N g (U
p>(1 =p)'(p) 2ni Jiieo  L(s) s7(1 =)
Using the estimate (1.2.4), for every € > 0

‘Z o=, 1 (=D x
FU-ple) i o) -9

(1.3.4)

1 .
Z+too

1 log [yl 1 31e
sz ;‘5/27 +x f |s|73+€|ds|

o 4—100

IS
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<< x% + x%
< x%.
Hence
E*N(x) = =Ry (x) — Ry(x) + O(x?).

The assertion now follows from Lemma 1.2.4. O

1.4. The analytic property of a function f(z).

The proof of Lemmal.2.4 is just as in the case of R;(x) in [10] stated in
Sectionl.2.When proving Theorem 1.1 in [10], J.Kaczorowski and K.Wiertelak
used the functional equation (1.4.5) below (see p1642-3 in [10]) : We de-
scribe basic analytic properties of the function f(z) defined for Im z > 0 as
follows :

(1.4.1) f@ = lim >
0

0<Im p<T),

)
')

where T, denotes a sequence of real numbers yields appropriate grouping
of the zeros. The summation is over non-trivial zeros the Riemann zeta-
function with positive imaginary part. For simplicity we assume here that
the zeros are simple. Let us denote by f(—%, %) a simple and smooth curve
7:[0,1] — Csuch that 7(0) = —i, (1) = % and 0 < Im7 < 1forz € (0, 1).
The analytic property of f(z) is described by the following theorems :

Theorem 1.4.1 (Theorem 1 in [20]). The function f(z) is analytic on the
upper half-plane H and for z € H we have

(59

(1.4.2) 27if(2) = i) + fo2) = ¥ )

n=1

¢(n)
n (z —logn) ’

where the last term on the right is meromorphic function on the whole com-
plex plane with the poles at z = logn, n = 1,2,.... The function

AR Vg
(1.4.3) fiz) = f Wron e¥ds
is analytic on H and
{(s—1)
1.4.4 = —~¢%d
(1.4.4) JAE fa Ly aw s

is analytic on the whole complex plane.

Theorem 1.4.2 (Theorem 2 in [20]). The function f(z) can be continued
analytically to a meromorphic function on the whole complex plane, which
satisfies the functional equation

(1.4.5) f@+ fQ® = B()
and
(1.4.6)
6, 1 Sub| 1 2 1 2
B - ___ 2z - _
@)= k; n2k [(nkez T1R T hke =1 (ke 117 mke 1)’

8



where B(z) is meromorphic function on the whole complex plane with the
poles of the second order at 7 = —lognk, n,k = 1,2,.... The only singu-
larities of f(z) are simple poles at the points z = logn (n = 1,2,...) on the
real axis with residue

res f(z) = —M

z=logn 27’

and the poles of the second order at z = —logm (m = 1,2, ...) with residue

1
Z:E?osgm f(Z) B 4-7T21’I’l2 ;M(l)l

1.5. The associated Euler totient function.

J . Kaczorowski defined the associated Euler totient function for a class of
generalized L-functions including the Riemann zeta function, Dirichlet L-
functions and obtained an asymptotic formula (see [12]) : By a polynomial
Euler product we mean a function F(s) of a complex variable s = o + it
which for o > 1 is defined by the product of the form

(1.5.1) F(s)—nF(s) nn( a](p)) ’

p j=1

where p runs over primes and |a;(p)| < 1 forall pand 1 < j < d. We
assume that d is chosen as small as possible, i.e. that there exists at least
one prime number p, such that

d
[ Jeipo) 0.
j=1
Then d is called the Euler degree of F. Note that the L-functions from
number theory including the Riemann zeta function, Dirichlet L-functions,
Dedekind zeta and Hecke L-functions of algebraic number fields, as well
as the (normalized) L-functions of holomorphic modular forms and, con-
jecturally, many other L-functions are polynomial Euler products. For F in
(1.5.1) we define the associated Euler totient function as follows :

(1.5.2) g, Fy=n| [ F,()" (e
pln

Let

153

(1.5.3) ¥(p) = ( F, (1))
1 ¥(p)

(1.54) cr =5[] (1 _ _)

p
and
(15.5) a(n) = u) [ ().
pln

By (1.5.2) and (1.5.3), we see that the Euler totient function ¢(n) and the
twisted Euler ¢-function ¢(n, y) correspond to the cases where F is the Rie-

mann zeta function () and the Dirichlet L-function L(s, y) respectively.
9



Theorem 1.5.1 (Theorem 1.1 in [12]). For a polynomial Euler product F
of degree d and x > 1 we have

(1.5.6) Z o(n, F) = C(F)x* + O(x(log 2x)").
Remark 1.5.1. Let us observe that a(n) < n€ for every positive €. Hence
the series

(o)

(1.5.7) > a(n)

nS

n=1
absolutely converges for o > 1 (see p33 in [12]). Also, a(n) is multiplica-
tive by (1.5.5). Therefore,

= a(n)

1.5.8 ——= =2C(F).
(15.8) Z] - (F)
Lemma 1.5.2 (Lemma 2.2 in [12]). The series

o ¢(n, F)
1.5.9 —_—
(15.9) Z; .
converges absolutely for o > 2 and in this half-plane we have
S £ F) N e

1.5.10 = -1 .
(15.10) Zl = s )Z‘ -
In particular,

a(m)

1.5.11 ,F) = —_—.
(15.11) @(n, F) = n Z| .
Lemma 1.5.3 (Lemma 2.3 in [12]). For o > 1 we have

C a(n)  H(s)

1.5.12 —_— 0 = 5
( ) ; ns F(s)
where

— h(n)

1.5.13 H(s) =

(1.5.13) ()=~

n=1
converges absolutely for o > 1/2. Moreover, as n runs over square-free
positive integers we have

1 logn
1.5.14 hn) < ~ exp|e——2t
(1.5.19) (n) < - exp (Clog log(n + 2)) ’

where c is a positive constant which may depend on F and other parame-
ters. In particular for such n, h(n) is bounded.

Lemma 1.5.4 (Lemma 2.4 in [12]). Let a(n) be defined by (1.5.5). For
x>1

(1.5.15) > '“;”)l < (log(2x))".

Now we provide the definition of the Selberg class S for our later purpose

as follows : FF € Sif
10



(1) (ordinary Dirichlet series) F(s) = Z ar(n)n™*, absolutely conver-

n=1

gent for o > 1;

(i1) (analytic continuation) there exists an integer m > 0 such that (s —
1)™ - F(s) is an entire function of finite order;

(ii1) (functional equation) F(s) satisfies a functional equation of type
D(s) = wd(1 - ), where

(1.5.15) D(s) = Q° l_l L(Ajs + u)F(s) = y(s)F(s),
j=1
say, withr > 0,0 >0,4; > 0,Re u; > 0 and |w| = 1;
(iv) (Ramanujan conjecture) for every € > 0, ap(n) < n°.

oo ¢
(v) (Euler product) F(s) = l_l exp (Z ﬂg)), where br(n) = 0 un-
P =0 p
less n = p™ with m > 1, and bp(n) < n” for some ¥ < 3.

Note that we understand an empty product is equal to 1.

The aim of the present paper is firstly to obtain the generalization of
Theorem 1.1.1 and Theorem 1.1.2 for a remainder term in an asymptotic
formula of an arithmetic function which satisfies some special conditions.
Secondly, we obtain results similar to Theorem 1.4.1 and Theorem 1.4.2 for
the generalized L-functions which satisfy some conditions.



2. MAIN RESULTS

2.1. The generalization of Theorem1.1.1.
First, we prove a generalization of Theorem1.1.1.

Theorem 2.1.1 (Theorem in [5]). Let {a(n)} be a complex-valued arithmeti-
cal function for which the series

[

2.1.1) Z@

2
n=1 n

is convergent with the sum 2a, where « is a complex number. Let {b(n)} be
the arithmetical function defined by

2.1.2) OEDY a(d)g.
dn

Assume for x tending to infinity

(2.1.3) D b(n) = M(x) + Er(),
where
(2.1.4) M(x) = ax?,
(2.1.5) Er(x) := ) b(n) - M(x).
Now, we consider the following Volterra integral equation of second type
" d
(2.1.6) Fi(x) - f Fl(t)Tt = Er(x) (x> 0).
0

Then, for every complex number A, the function
(2.1.7) Fi(x) = (i) +A)x (x> 0),

is a solution of the integral equation (2.1.6) and these exhaust all solutions
of (2.1.6). Here,

[

(2.1.8) fl(x):_Z@{f}

P n n

for every x > 0.

In [9], the arithmetical functions a(n) and b(n) correspond to u(n) and ¢(n)
respectively, and all the hypothesis are satisfied. As for the error term Er(x),
we have a bound similar to Er(x) = o(x?) as x tends to infinity in mind. As
usual, if we say a function F; is a solution of (2.1.6), then we implicitly
assume that the integral in (2.1.6) exists in the sense that the limit

X dt
(2.1.9) lim f |[F ()| —
e—0+ € t

exists. We use the same convention throughout this paper. The formula
(2.1.7) is a generalization of the result of Theorem 1.1.1. Also, the function
fi1(x) is locally bounded. In fact, by the condition of theorem

-5

n=1



R P

n<x n>x

We generalize Theorem 1.1.1 and 1.1.2 for the remainder term in the as-
ymptotic formula for the associated Euler totient function. For a polynomial
Euler product F of degree d, let us put

(2.1.10) E(x,F)= ) o(n, F) - C(F)x*,
and

__yra (x
(2.1.11) f(x,F) = Z . {n}

n=1

In the same way as the proof of Theorem 2.1.1, we have the following
Corollary.

Corollary 2.1.2 (1., 2021%). The Volterra integral equation of second type
" dt
(2.1.12) Fl(x,F)—f Fl(t,F)T:E(x,F) (x>0)
0

has the following solution
(2.1.13) Fi(x,F)=(f(x, F)+A)x (x=0)
for every complex number A and these exhaust all solutions of (2.1.12).

For x > 0 let us put

(59

(2.1.14) g F)= Y aw ({%}2 ; [%D

n=1

In the same way as in the proof of Theoreml.1.2, the error term (2.1.10)
can be splitted as follows.

Theorem 2.1.3 (1., 2021%). For x > 1 we have
1
(2.1.15) E(x,F):xf(x,F)+§g(x,F).

We consider the arithmetic part and the analytic part for E(x, F) as fol-
lows :

(2.1.16) E*R(x,F) = xf(x,F) and E(x,F)= %g(x, F)

with f(x, F) and g(x, F') given by (2.1.11) and (2.1.14) respectively. Corol-
lary 2.1.2 and Theorem 2.1.3 have not seen published, but can be proved in

the same way as in [6].
13



2.2. Results similar to Theorem1.4.1 and 1.4.2.

If a function F' € S has a polynomial Euler product (1.5.1), the subclass
of S of the functions with polynomial Euler product is denoted by SP°V.
Secondly, we obtain results similar to Theorem 1.4.1 and Theorem 1.4.2
for a function F belonging to S". Now we assume that (r, 4;) = (1,1) in
the functional equation (1.5.15). The complex number y; when r = 1 in
(1.5.15) is hereafter referred to as u. Let p denote the non-trivial zeros of
F with positive imaginary part. We assume that the order of p is simple.
Moreover, let T,, denote a sequence of real numbers which yields appro-
priate grouping of the zeros which will be given later. For Im z > 0 and
F € 8™, we consider a function defined by

. e*L(p-1)
2.2.1) f(z, F) = lim Zp: o
0<Im p<T,

If there are trivial zeros of F on the imaginary axis in H, we incorporate

into the summation. We see that the series in (2.2.1) converges (see Section
4.2).

Definition 2.2.1 (p 34 in [12]). For o > 1 and F € S™Y, we define the
function ug as follows :

(2.2.2) % i Hr(n) Hl—[(l_a,(p))

=1

Remark 2.2.1 (p34 in [12]). By (2.2.2), |up(n)| < 14(n), where 7,(n) is the
divisor function of order d, so that £9(s) = Yoo, T4(n)/n’ for o > 1. In
particular 7,(n) = 1 for all n.

Using (2.2.2), foro > 2

(2.2.3) => g’(;:)’
n=1
where
(2.2.4) 80 = D" ur(d)=.
din

Theorem 2.2.1 (Theorem 4.1 in [7]). The function f(z, F) is analytic on the
upper half-plane H and for z € H we have

(o)

(225) 27Tif(z, F) = fl(Z, F) + fz(Z, F) _ ebz Z g(”l)

— n’(z —logn)’

where the last term on the right is a meromorphic function on the whole

complex plane with the poles at z = logn, n = 1,2, .... The function
{s—-1)
2.2.6 ,F) = %d
220 Meh= ) e o
is analytic on H and
{s—-1)
2.2.7 ,F) = %d
2:27) o) = | Spe—erds
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is analytic on the whole complex plane. The definition of a, b and the path
of integration L in (2.2.7) are mentioned later in Section 4.2.

Theorem 2.2.2 (Theorem 4.2 in [7]). For F belonging to S"°” whose (r, A )=
(1,1) in (1.5.15) and 0 < u < 1, the function f(z, F) has a meromorphic
continuation to 'y > —m.

The L-functions associated with holomorphic cusp forms and Dedekind
zeta functions of the imaginary quadratic fields are examples of F' consid-
ering in Theorem 2.2.2. Let

(2.2.8) H ={zeC:Imz<0}
We consider the function for z € H™ and F € SP°Y
- . eLp-1)
(2.2.9) (z, F) = lim —
/ n 2 Tre
—T,<Im p<0

If there are trivial zeros of F on the imaginary axis in H~, we incorporate
into the summation. The convergence for the series on the right hand side
in (2.2.9) is proved by the same way as in section 4.2.

Corollary 2.2.3 (Corollary 4.3 in [7]). For F belonging to S"°® which sat-
isfies the same condition as in Theorem 2.2.2, the function f~(z,F) has a
meromorphic continuation to 'y < .

Theorem 2.2.4 (Theorem 4.4 in [7]). For F belonging to S"°™ which satis-
fies the same condition as in Theorem 2.2.2, the function (2.2.1) can be con-
tinued analytically on the whole complex plane. In addition to the condition
as in Theorem 2.2.2, we assume that the coefficient ap(n) in the Dirichlet se-
ries is real value for all n. Then, the function (2.2.1) satisfies the functional
equation

(2.2.10) f(z,F)+ f@z, F) = B(z, F),
where

1 ~ 2
(2.2.11) B(z, F) = 2—m.(fl(z, F)+ f{(z, F)) - F)

for all z € C. The definition of f; (z, F) is mentioned later (4.6.4).

If a function F € 8 satisfies the conditions (i)-(iii) on S, we denote the
this class by S* and call the extended Selberg class. It is known that the
Dirichlet coefficient ap(n) of F € S* which satisfies some special conditions
is real (see [8]). We aim to prove the estimate corresponding to Theorem
1.1.5 for the remainder term in the asymptotic formula of the associated Eu-
ler totient function. To do this, we will use Theorem 2.2.1,2,4 and Corollary
2.2.3.

2.3. Motivation for Theorem 2.2.1,2,4 and Corollary 2.2.3.
We imitate the proof of Theorem1.1.5.Then, we need the following lemma
which is the generalization of Lemmal.2.1.
Lemma 2.3.1. For o > 2 and F € 8V, we have
CE)  {s-DHE)
s=2  s(1-=1)F(s)’

where the function H(s) is the same as in (1.5.13).
15
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Proof of Lemma 2.3.1: According to (2.1.15) and (2.1.16), we have EAN(x, F) =
E(x,F) — xf(x, F). By inserting this into the integral in (2.3.1), we have

(2.3.2)[ EAN(x,F)x_S_la’x:f E(x,F)x_S_ldx—f f(x, F)x*dx
1 1 1

By the asymptotic formula (1.5.6) and o > 2, we have
(2.3.3) f E(x, F)x~'dx = f A, Fyxdx - S8
1 1

s—2’
where

A, F) =) @(n,F).

When we calculate the integral on the _right hand side in (2.3.3), we use the
following lemma :

Lemma 2.3.2 (Theorem 4.2 in [1](Abel’s identity)). For any arithmetical
function a(n) let

Ax) = > aln),

where A(x) = 0 if x < 1. Assume f has a continuous derivative on the
interval [y, x], where 0 <y < x. Then we have

Z a(n)f(n) = A(x) f(x) =AW () - f A f'(ndt.

y<n<x y

Using Lemma 2.3.2 and (1.5.6) again, the integral on the right hand side
in (2.3.3) is

*° | — F
(2.3.4) f ACe Fxldx =~ )’ . F).
1 s = ns

Since o > 2, we can apply Lemmal.5.2 and Lemmal.5.3. Hence,

> p(n, F) > ()
;T—as—nz -
H(s)
F(s)’

={(s—1)

Therefore, we have

” 1, _ SGs—DH(s) CF)
(2.3.5) flE(x Fx Ty = S—— s = .

On the other hand, by (2.1.11),

” s * (< an) —s
—fl f(x, F)x dx:fl [Z‘%{%}Jx dx
[ < ) o ) s
:fl [x;an—?—;%[%]]x dx.

Since the series of the first term on the above second line is absolutely
convergent, using (1.5.11), (1.5.8),

fl ( Z a(n) Z a(n) [x [ ]] Sy = (i %) flw xS dx - flw B(x, F)x*dx

n=1
16



2C(F «
= ( ) - f B(.x, F).x_sdx,
s—2 |

where

Bx.F)= Y ‘D("’; B

n<x

Using Lemma 2.3.2 again, we have

* _ 1 e, F)
B(x, F)x*dx =
f (x, F)x*dx S_lnz; "

1
_L(s—=1)H(s)
 s—1 F(s)

Therefore, we have
© s __2C(F) L(s—1)H(s)
(2.3.6) ﬁ f(x, F)x*dx = ) 51 F(5)°

By inserting (2.3.5) and (2.3.6) into the right hand side in (2.3.2), Lemma
2.3.1 follows. O
By the definition (2.1.14) and Lemmal.5.4, we see that x ' EAN(x, F) €
L(1, 00). Also, by (2.1.15) and the definition (2.1.11), we see that EAN(x, F)
is of bounded variation. Hence we can take the inverse Mellin transform in
(2.3.1) by Fact1.3.1, and we obtain
1 (Y (C(F)  ¢(s—1)H(s)
EMN(x, F) = + Sd
(o F) = 2mf3 {5—2 s1-9Fs "%
C(F) 3+ico xs 1 3+ico éz(s _ 1) H(S)
2.3.7 = ds + — s
2.3.7) i Sy 5—20 " 21 Jys (= 5) F(s)"

When we calculate the first integral on the above second line in (2.3.7), we
use the following lemma on contour integrals.

—joco

Lemma 2.3.3 (Lemma 4 in [1]). If ¢ > O, then if a is any positive real
number, we have

| e 1 if a>1,
—J1 : _
% ‘ ?dZ— ) lf (l—],
0 if O<a<l.

Using Lemma 2.3.3 and the residue theorem, we have
(- DHE)
27 £ S(1—5) F(s)

where the path of integration £ is the same as in (1.3.1). We split the inte-
gral of left hand side in (2.3.8) into three parts

B = L fg( CCY N B }

(2.3.8) EAN(x, F) =

F(s) 3 831 —-vs)
_ B H(s)x_ __f 1 H(s)x
ff( )F( )52 {(s )F( )53

H(s) x°

17



Since the series (1.5.9) converges absolutely for o > 2, we can change the
order of summation and integration. By calculating the residue at s = 0, we
have by (1.1.12)

1 H(s)x"
(2310) 2—7_” L{(s - 1)@@6]5‘ = Rl(x, F)
and

1 H(s)x'
(2.3.11) T L{(s - 1)F(s) Fds =Ry(x, F).

We use the following fact to obtain (2.3.10) and (2.3.11) :

Fact 2.3.4 (Riesz typical means, [17]). For positive integers k and positive
real x put

1
(2.3.12) Ru@) = > a, (log(x/m)".

n<x

Then . p
u

Rk(x):f Ry_1(u)—,

0 u

where
Ro(x) = A(x) = Z an.
When we calculate the last integral in (2.3.9), we have to consider the
sum, corresponding to the sum in (1.3.4), that is

H@p) x°
(2.3.12) {p- D,
; F'(p)p*(1 = p)

where the summation is over non-trivial zeros of F'. However, there are two
problems on the sum (2.3.12). First, we do not know the behavior of H(s)
for o < % Therefore, We do not know whether H(p) is defined and so, we

do not assume the GRH i.e. F(s) # 0 (o' > %) Secondly, we can not shift

the line of integration L to the left from the critical line o = % If F is the
Riemann zeta function {(s) in (1.5.1), then by (1.5.2) the associated Euler
totient function ¢(n, F) corresponds to the Euler totient function ¢(n). Since
the Euler degree of {(s) equals 1, we have y(p) = 1 in (1.5.3). By (1.5.5),
we have a(n) = u(n). By (1.5.12), H(s) = 1 for all s. When H(s) = 1,
the sum (2.3.12) corresponds to the sum on the right hand side in (1.3.4).
Therefore, the above problems are dissolved. To extend Theorem 1.1.5 for
F € 8 we have to consider the function for z € H

_\ Hp) o2

(2.3.13) s(z, F) Zp: Tyl e

which is a generalization for (1.4.1). However, the problem on the behavior
of H(s) for o < % is remained. To avoid these problems, we consider the
sum of the case H(s) = 1, that is, the function (2.2.1).We need to gener-
alize Theorem 1.4.1and Theorem 1.4.2 to prove the generalization of The-
orem 1.1.5 for F € SPY which satisfies some conditions. Obtaining the
Q-estimate of EAN(x, F) for F € SPY connects with the generalization of

Theoreml1.1.5. Conjecturally, every F € S has an Euler product of type
18




(1.5.1) and satisfies the GRH (see [12]).Therefore, proving the generaliza-
tion of Theorem 1.1.5 is to obtain the Q-estimate of EAN(x, F) for many
L-functions including the Riemann zeta function and is significant. That is
why it is also significant to generalize Theorem 1.4.1 and Theorem 1.4.2
which will be necessary to prove the generalization of Theorem 1.1.5. In
this paper, we could not obtain complete generalizations of Theorem 1.4.1
and Theorem 1.4.2. However, we could obtain results similar to Theorem
1.4.1 and Theorem 1.4.2 for F € SP°Y which satisfy some special condi-
tions.



3. ProoF oF THEOREM 2.1.1

3.1. Preliminaries.
We prove Theorem 2.1.1. We define the auxiliary function for x > 0 by

(3.1.1) R(x) = Er(x) — xfi(x).
First, we prepare the following two lemmas.

Lemma 3.1.1 (LEMMA in [5]). For all positive x,

(3.1.2) R(x) = - f fi(vdt,
0
where the function fi(t) is the same as in (2.1.8).

Proof. Let us observe that R(x) is a continuous function. For x = 0 and for
positive x which is not an integer, it is evident. Let N be a positive integer.
By splitting the series (2.1.8) at NV, and considering the limit {(N + x)/n} as
x tending to 0, we see that

(o)

fl(N+0>=—Z@{N+O},

n=1 n n

[59)

N-0
fl(N—O):—Z%”){ - }

n=1

{N+O}_{N—O}_ 0 (n{N),
n n | -1 m|N)

(see [9], P2691), we have

Since

a(n) b(N)
SN+0) - fiN-0)= ) — = —.
1 1 nZlN: . N
Therefore
R(N +0) = R(N — 0) = (Er(N + 0) — Er(N — 0)) = N(fi(N + 0) — fi(N —0))
b(N)
=b(N)-— N - ——=
:O’

and hence R(N —0) = R(N+0) = R(N). Let x be positive and not an integer.
Take derivatives of the both sides of (3.1.1). Since x is not a positive integer,
we have Er'(x) = —M’(x) = —2ax. Therefore we have

R'(x) = —2ax — fi(x) — xf{(x).

For x which is positive and not an integer, we have {x/n}’ = 1/n (see [9],
p2691). Considering the hypothesis on the series (2.1.1), differentiating
term by term we obtain

(o)

f]’(x):—Z@-lz—Za.

n n
n=1

Consequently, we have
R'(x) = —fi(x)
for x which is positive and not an integer. Because of the fact R(0) = 0 and

the continuity of R(x), we have (3.1.2) for all positive x. O
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Lemma 3.1.2 (LEMMA in [5]). Let G be a complex-valued function de-
fined on [0, 00) satisfying

(3.1.3) fx |G(t)|ﬂ < 400
O t

and the integral equation

(3.1.4) G(x) - fx G(I)? =0
0

for all x > 0. Then we have
(3.1.5) G(x) = Ax
for some complex number A.

Proof. Tt is obvious that (3.1.5) satisfies (3.1.3) and (3.1.4) for all x > 0.
Conversely, take a function G(x) arbitrarily satisfying (3.1.3) and (3.1.4) for
all x > 0. By (3.1.3) and (3.1.4), we see that

G(x) = fx G(t)it
0 t

is a continuous function on [0, +00). Thus, using integral equation again and
using the fundamental theorem of calculus, we see that G(x) is continuously
differentiable on (0, +c0). By taking the derivative of (3.1.4), we have
G
G'(x)= SIC (x > 0).
X

Thus, we have G(x) = Ax for x > 0 for some A and by the continuity this
holds for x > 0. O

3.2. Proof of Theorem 2.1.1.

Let a function F(x) be the solution of the Volterra integral equation
of second type (2.1.6) satisfying the condition (2.1.9). Using (2.1.6) and
(3.1.2), from (3.1.1) we have

s2n [ 0 - thod = P -3 0
Now we put
(3.2.2) G(x) := Fi(x) — xfi(x).

Then, the equation (3.2.1) yields

(3.2.3) f ) 'Gdt = G(x) (x> 0).

0
Using Lemma 3.1.2, we must have (3.1.5). By substituting into (3.2.2), we
have the solution (2.1.7). Conversely, if we assume that F(x) is a function
of type (2.1.7). Then,

X d X
Fi(x) - fo FiO = (fi(0+ A - fo fi(6) + A)dr
— (i) + A)x— f £ Ax

0

= xfi(x) - f findt.
0

21



Using (3.1.2) and (3.1.1),

xfi(x) — f fidt = xfi(x) + R(x)
0
= xfi1(x) + Er(x) — xfi(x)
= Er(x).
Therefore, the function F(x) of type (2.1.7) is the solution of the integral
equation (2.1.6) for all x > 0. Since the function f;(x) is a locally bounded

as noted in section 2.1, and A is a constant, it is clear that the function F(x)
satisfies the condition (2.1.9). The completes the proof. O
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4. Proor oF THEOREM 2.2.1,2,4 AND COROLLARY 2.2.3

4.1. Some auxiliary results on the Whittaker function.

First, we recall the definition of the Whittaker function which is neces-
sary to show the main theorems.To do this,we introduce some related func-
tions.Secondly,we prepare some auxiliary results e.g.the integral expression
and the asymptotic expansion.

Definition 4.1.1 (The confluent hypergeometric function ( [13])). Let zbe a
complex variable, @ and vy are parameters which can take arbitrary real and
complex values except thaty # 0,—1,-2,.... Moreover,
['(A+k)
'
We define the confluent hypergeometric function (Kummer’s function) as
follows :

4.1.1) (Wo=1, A= =AAl+1)---(1+k—-1) (keN).

o (@), 2

4.1.2) O(a,y;2) = 2, o

(Iz] < 00).

By ratio test, the series (4.1.2) is convergence absolutely for all @,y and

z, except y # 0,—1,-2,.... Hence, (4.1.2) is an analytic and one-valued

function for all z. It is also to be noted that (4.1.2) is a particular solution of
the linear differential equation ( Kummer’s equation )

d*u

“az

where @, y are the same as in (4.1.2).

d
4.1.3) + - —qu=0,
dz

Definition 4.1.2 (The confluent hypergeometric function of the second kind
( [13])). We introduce a new function

I'd-v) Fy-1 -
¥ 32) = =—/————O )+ ———z2 " +a-vy,2-v;
(@,7;2) fd+a-7) (@,7:2) fa) ° (I+a-vy2-v2),
(4.1.4) (largz] <7,y #0,+1,+2,...)

called the confluent hypergeometric function of the second kind. The condi-
tiony # 0,+1,+2,... in (4.1.4) comes from the condition of the I'-factors
in the numerator, ®(«, y; z) and ®(1 + @ — v, 2 — v; z) on the right hand side
in (4.1.4).

Since the function (4.1.4) is a many-valued function of z for @ and y
real or complex, we take its branch which lies in the z-plane cut along the
negative real axis. Also, (4.1.4) is analytic function for all @,y and z except
vy#0,-1,-2,....

Definition 4.1.3 (The Whittaker function ( [13])). A class of functions re-
lated to the confluent hypergeometric functions, and often encountered in
the applications, consists of the Whittaker function, defined by the formula

1 z 1
4.1.5) Wiu(2) = z“+2e‘2‘1’(5 —k+u,2u+ l;z) (largz| < m).
By (4.1.4) or (4.1.5), it follows that (4.1.5) is a many-valued function of

z. Therefore, we also take its branch as the same in (4.1.4).
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Theorem 4.1.1 (Barnes type integral for the Whittaker function ( [21], [25])).
The Barnes integral for Wy ,(2) is

(4.1.6)
odigk peroi T (—s—k—p+ 3)T(=s—k+pu+ 1)
Wiu(2) = e f 1 1 2'ds,
Tl c—00i F(—k—u+§)r(—k+,u+§)
for|argz| < %ﬂ', and ki,u+% #0,1,2,...; the contour has loops if necessary

so that the poles of T'(s) and those ofF(—s —k—u+ %) F(—s —k+u+ %)
are on opposite sides of it.

In (4.1.6), it holds for all finite values of ¢ provided that the contour of in-
tegration can always be deformed so as to separate the poles I'(s) and those
of the other I'-factors.By Stirling’s formula,the integral in (4.1.6) represents
a function of z which is analytic at all points in the domain | arg z| < %ﬂ' -a,
where « is any positive number.

Theorem 4.1.2 (The asymptotic expansions in z for W(a; b; z) ( [21])). We
find that, as 7 — 0,

4.1.7)
Y(a;b;z) = F(llj(;)l) P+ 0(|z*)  (Reb >2,b #2),
_Te-D o,
(4.1.8) =@ ¢t O(llogzl) (b=2),
(4.1.9) =D O(1) (1<Reb<?2),
I'(a)
__Td-b  TG-D ., ~
4.1.10) = 0 +a_b) T +0(z)) (Reb=1,b#1),
4.1.11) = —m {logz + E(a) + 200} +O0(zlogz) (b=1),

where Cy is Euler’s constant.

By the definition (4.1.5) and Theorem 4.1.2, we have the following as-
ymptotic expansions in z — 0 for W ,(z).

Theorem 4.1.3 (The asymptotic expansions in z — 0 for W ,(z)).
(4.1.12)

I'(2 1 3 1 1
Win(2) = 1(—m17_“ + O(z3 ) (Re,u 2 51 F 5)’
F(E + M — k)
(4.1.13)
1
= O(z1 ==,
ra-% + O(|zlogz]) (,u 2)
4.1.14)
e 1
- l(—mz%—” + O(ff+7) (o <Reu< -),
T(4+u—k) 2
(4.1.15)
I'(-2 e
- 1( 2 S ERLLS fl) 27 4+ O(2f3)  (Rep = 0,1 # 0),
F(E—,u—k) F(,U'i‘z—k)
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(4.1.16)
2 (1 R
— (logz +— (— - k) + 2Co) +0(z%|logz)) (u = 0).
r(l _ k) r\2

2

4.2. The convergence of f(z, F).
In this section, we see that the series in (2.2.1) converges.We use the
following lemma.

Lemma 4.2.1 (Lemma 4. in [22]). Let F € S and let T be sufficiently large.
Moreover, let H = Dloglog T be fixed, where D is a large positive constant.
In any subinterval of length 1 in [T — H, T + H] there are lines t = ty such
that

4.2.1) |F(o + ity) ™' = O(exp(C(log T)?)),
uniformly in o > =2, where C is a positive constant.

Let T be sufficiently large.We fix H = Dloglog T, where D is a large
positive constant.We take any subinterval [n,n + 1], where n is a positive
integer in [T — H, T + H]. Then, by Lemma 4.2.1 there are lines t = T, such
that

(4.2.2) |[F(o +iT,)|”" = O(exp(C;(log T)?))

uniformly for oo > -2, where C; is a positive constant. Since 7, is contained
in the interval [T — H, T + H], we can see that T, ~ T as n tends to infinity.
Leta = % min{Im p; Im p > 0} and .Z denote the contour consisting of line
segments

+b +b
[b,b+iTn],[b+iT,l,a+iT,,],[a+iTn,a],[a,aT+ia , a—+ia,b],
where max {—%, 5 max {Re p;Re p < O}} <a<0,b> % We assume that the

real part of s = a + it (t € R) does not coincide the poles of I'(s + t)I'(s — ),
where 0 < u < 1. We consider the following contour integral round .Z :

-1
(4.2.3) f Me”ds.
v F(s)
Since we assume the order of p is simple, we have by residue theorem
-1 “ -1 -1
f {(s ) e’’ds = —g(s )e“ds + & )e“ds
F(s) avir,  F(5) L F(s)
b+iT, a+iT,
n _ 1 n _ 1
+ f —Z;(s )ezsds + f —{(S )e“ds
b F(s) b+iT, F(s)
: e”(p—1)
4.24) = 2mi —_—,
2 Tr
0<Im p<T,

where the path of integration L consists of two line segments [a ath 4 1a]

and [“”’ + ia, b] We estimate the integral along the line segment [b+iT),, a+
iT,]. By (4.2.1), for a < o < b, we have the estimate

[F(o +iT,)I”" = O(exp(C(log T)*)).
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Forz =x+iy(y > 0),

b+iT, _
f —{(s 1)ezsds
a+iT, F(s)

b+iT),
< f
a+iT,

b
< f |£(o = 1+ iT,)|exp(C(log T)* + xo — yT,)do

{s—1
—e
F(s)

\ds]

(4.2.5) < (b - a)exp{C(log T)* — yT, + |x|(la| + |b])}T¢,

where the constant ¢ may depend on a, b. The last term on the right hand
side in the above tends to zero as n tends to infinity. By Theorem 2.2.1,
the convergence of the other integrals in (4.2.4) are ensured (see (2.2.5)-
(2.2.7)). Therefore, the series in (2.2.1) is convergent. O

4.3. Proof of Theorem 2.2.1.
By (4.2.4), for z € H we have

N(@ F) + f2(z, F) + f3(z, F) = 2nif(z, F),

where fi(z, F), f2(z, F), f3(z, F) denote corresponding integrals in (4.2.4),
respectively. First, we calculate the integral

b+ico
_ {s=1)
f3(Z,F)—fh R e“ds.

Using the Dirichlet series expansion (2.2.2), we have

b+ico [
= | [Z %Jemds

n=1

© b+ico
— Z g(n)f es(z—logn)ds
b

n=1

43.1) ==y )

nb(z—logn)

n=1

The interchange of the order of integration and summation is justified for
z € H by the absolute and uniform convergence of the series on the third
line in (4.3.1).

Secondly, we prove the function (2.2.7) is analytic on the whole complex
plane.Since the length of L is finite, {(s — 1) = O(1). Also, there are no
zeros on L, the function {F(s)}~! is bounded. Therefore, for z = x + iy and
s=o+it(a<oc<b0<t<La),

fé(s—l)
L

eZS
In the case y > 0,

lds| < feXP(XU'—yl)l{(S — Dllds|
L

= O(fexp(xa —yt)ldsl).
L

fexp(x(f —yhlds| < fexp(xcr)ldsl <, 1.

L L
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In the case y < 0,
f exp(xo — ynlds| <, 1.

L
Hence the function (2.2.7) is analytic on the whole complex plane.

Finally, we prove the function (2.2.6) is analytic on H. Here, we use the
following two lemmas related to the Selberg class.

Definition 4.3.1 (p29 in [18]). Let F € S,
(4.3.2) dp =2 Z A
j=1

is the degree of F(s).

Lemma 4.3.1 (Theorem 3.1 in [3]). If F € S, then F = 1 ordp > 1.
Lemma 4.3.2 ( [14].(8), p423). For o <0,

(4.3.3) |F(o +if)] =< (@ D|F(1 = o + i)

ast — oo,

Here, we use the notationf =< g, if both f <« g and f > g hold. Using
Lemma 4.3.2, we have

{37r | F(1 = a + i) < |F(a + it)| < | F(1 - a + if).

301

Since max{—i, > max {Re p;Re p < O}} <a<0, s0{F(1-a+it'is

bounded. Hence, we have
|F(a+in|™" < G-,
Also, by the functional equation for {(s),
1 .
[(s—1) = —=2m)"" cos (gs) T2 - L2 - 5)
T

3
< |27

In the case F = 1, we have

-1 .
f SRS [ f e gy
a+ico F(S) 0
<y 1
< 1.

Next consider the case F # 1. Now, F(s) belongs to SP°Y, so F(s) is analytic
except the point s = 1. Since max {—% %max {Re p;Re p < O}} <a<0,
|F(a + it)|™" is bounded near ¢ = 0. Also, dr > 1 by Lemma 4.3.1, we have

' _ 1 00 ax—yt 2
f 6= D sl 1yt < f e
dico o |F(a+ i)

e
0 1 3
< f t—(j—a)dF+§—aeax—ytdt
0

F(s)
< 3
< f t—idp+§—aeax—ytdl_.
0

Therefore, the integral on the above third line is absolutely and uniformly
convergent on every compact subset of H. Consequently, the function (2.2.6)
is analytic fory =Imz > 0. O
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4.4. Proof of Theorem 2.2.2. We prove that the function f(z, F)(z = x+iy)
has a meromorphic continuation to y > —x. By Theorem 2.2.1, the function

_ (" =D
fl(Z’F)_ a+ioo F(S)

_ a+ico é«(s—_l) ;
= j; FG5) e“’ds

is convergent for y > 0. We recall the hypotheses that (r,4;) = (1,1) in
(1.5.15) and 0 < u < 1. We rewrite the functional equation (1.5.15) under
these hypotheses as follows :

e’ds

O'T(s+ wF(s) = wQ'I'(1 = s+ wF(1 -7%)
= wQ'"T(1 — s+ F(1 =75),
where the conditions of Q and w are the same as noted in (1.5.15). Hence

1 _ I'(s+w) 1
4.4.1 2s-1 S—
(-l F(s) . I -s+wF1-3)

Using the following elementary formula for the I'-function

I'(HIr(a—s)=

sinrs’

(4.4.1) yields

(4.4.2) L §Q2S-1 sin (s — (s + (s — ) .
F(s) =« F(1-75)

By (4.4.2) and the functional equation for {(s), we have

fl(Z’ F)
_ a+100 {(S _ 1) N
= fa —F(s) e“ds
= 27ra_3)Q E’;;"Q )’ COS(2 )F(Z - $){(2 = s)sinm(s — p)
X T(s + (s — ) —edis
F(1-7)
_ De KT (atieo {2—s) i o
= (27T)3Ql . ( Q ) F(l — S)F(S /l)F(S +,u)r(2 s)e ds
_ aeﬂm' a+ico s{( ) ) . (Z ZZ)S
m)30i J, 27 Q%) Fl - S)F(s WI(s + Q2 - s)e ds

we H a+ico {2—s) i o
+ (27T)3Ql L ( Q ) F(l — S)F(S /J)F(S +lu)1—‘(2 s)e ds

_ w0 82— 9)
2n)*Qi J, Q) F(1-75)

4.4.3)
= @ F) + fi2(z, F) + fi3(z, F) + f1a(z, F),
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where f11(z, F), fi2(z, F), fi3(z, F), fi4(z, F) denote the corresponding inte-
grals in (4.4.3) respectively. By Stirling’s formula

T(s + (s — T2 — s) =< e 7™|ge+2

3

as f tends to infinity and max {—5, 5 max {Rep;Re p < O}} <a<0, fliF)

is analytic for y > =3nx, fio(z, F) fory > —n, fi3(z, F) for y > =2n, fi4(z, F)
for y > 0. Splitting the integral in f4(z, F)), we have

(fe;ﬂg (o = g( ))F(s — (s + T2 = 5)e= s

werri (2 - 5)
— 2 S
- @20 {f f m}( O F(1-75)

X F(S - lu)r(s + ,U)F(Z — S)e(z—jm)xds.

f14(Z, F)=-

We consider

R 0 S (s T+ T 2 967

ico -5
and
@45 beh) = [ eaoy B r s e - e ias
F(-5%)

Here, we recall the hypothesis that the real part of s = a + it (r € R) does not
coincide with the poles of I'(s + p)I'(s — ), where 0 < ¢ < 1. By Stirling’s
formula, we can see that the integral I,(z, F) is convergent for y < 3. Since
the function fi4(z, F) is analytic for y > 0, the integral /;(z, F') is convergent
for 0 < y < 3n. Using the Dirichlet series expansion (2.2.2), we have
formally

e = [ ergy [Z - ][Z F(k))F<s—u>r<s+u>r(2— $)e 3™ ds

s
a—ico n k=1

n=1

(4.4.6)

k .
= Z ﬂ;f,iz)  llosCmk @it (s T (s 4+ D2 — s)ds.
k.n=1 aieo

The justification of the interchange of the order of integration and summa-
tion is ensured as follows : For 0 < y < 3z, we have

+ico
[ [t — s + v - ) s

ico

(o]
< (nk)* - eaxf e—(y—%n)t—%ﬂltl|t|a+%dt
—00

0 00
k- e { f oG-Itk gp 4 f (5 3)i- 3t o dt}
—o0 0

Lgxy (Mk)?

<, (nk)“.
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Hence, we have

TGN
kn?

(o)

2,

k.n=1

(k)

et {log@nkn@®+e=3mi ¢ NF(s + )2 — $)ds pEril
an —a

(o]
=)

k.n=1

a—ioco

Since the series for k is absolutely convergent by (2.2.2), the above series
of the left hand side is convergent absolutely and uniformly. Therefore, the
interchange of the order of integration and summation is justified for 0 <
y < 3n. Let my, m, be non-negative integers. The residue of the integrand
in (4.4.6) at s = u —m is

R, @)= Tim (5= (u=m)IT(s = (s + (2 — s)ellxEmheD=3risc)s
o sop—m
_ (_1)m1 2\p—my (Z—iﬂi)(/l—n’n)
4.4.7) = IF'Qu—-m)I'2 — u + my)2ankQ~)'"e\*"2 .

nmq !
Similarly, the residue of the integrand in (4.4.6) at s = —u — m; is
(4.4.8)
_ ="

Ry (@0 — (=241 = m)T (2 + o + ) (2nk Q)+ (3m)mmme),
- my!

When p = 0, {I'(s)}? has a double pole at s = —m, where m is a non-negative
integer. For every positive €, using the Taylor expansion for the every factor

of the integrand in (4.4.6) at s = —m + €, we see that the residue of the
integrand in (4.4.6) at s = —m is
(4.4.9)

m+1 e (amm
m! rnkQ*)"

3 S 1
RY (@)= {1og(27ka2) to- g > o~ Co- } :
ki=1

m+1

Similarly, when u = % F(s — %)F(s + %) = (s — %) {F (s - %)}2 has a dou-

ble pole at s = % —m. In the same way, the residue of the integrand in (4.4.6)
1

ats =35 —mis
T(3+m) b)) 3
() _ 2 e 3 ~
Ry @ = T ooty {m (w ( S+ m) 2(m + 1))
(4.4.10) -m (10g(27ka2) +z-— %m’) + 1} ,

where /() is the logarithmic derivative of I'(s), i.e.

l—‘/
(4.4.11) U(s) = = (9).

Since for 0 < y < 3x integrals along the upper and the lower side of the
contour tend to 0, for u with 0 < u < 1 except u # %, we have by theorem
of residues

+ico
f e loe@nkn0+e=37 (¢ _ ND(s + T2 — s)ds
o

jco

=— f e lloe@nkn @ +a=37} g _ (s + )02 — s)ds
C

M M’
(4.4.12) - 27ri{z R)  @w+ Y R (o u)},
m;=0

m2:0
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where C is the contour which the poles of I'(2 - s) and those of I'(s +)['(s—
() are on opposite sides of it. Of course, when y = 0, ;, the terms of residue
in (4.4.12) are replaced by

M M’
(4.4.13) D Rome@. 2R @
m=0 m=0

We use the same convention hereafter. Putting w = 2 — s in the integral
round the contour C on the right hand side in (4.4.12) and using Barnes
type integral for the Whittaker function (4.1.6), for u with 0 < u < 1 and
ly — 271 < 2, the integral round the contour C in (4.4.12) is

(4.4.14)

3_.
Eﬂ'l*Z

1 3 e%nrz
. 2\ 5
2mi(2mnk Q%) exp[ ke 2 4m) [Q-prC+mw_s, [z,kaz)

Therefore, we have

I( F)_ oo #F(k) i (27rnkQ2)% ex e%ﬂi—z +£_§7ri
IZ, _knzl kn? P 4nnkQ? 2 4
4.4.15)
e%nifz M 0 a o

The following lemma ensures the convergence for the series on the right
hand side in (4.4.15).

Lemma 4.4.1. For F € S with (r, A;))=(,1)and 0 < u < 1, the series
on the right hand side in (4.4.15) is absolutely and uniformly convergent on
every compact subset on the whole complex plane.

We will prove Lemma 4.4.1 in the next section. By Lemma 4.4.1, for
F € 8 whose (r, 4;) = (1,1)1in (1.5.15) and 0 < p < 1, we have the
following analytic continuation of fi(z, F) fory > —n:

Y ) Z+ )s
heh) =G G f Q') s)r(s — (T (s + T2 = 5)el+27)ds

i a+ico
_% f QrQ*® Ii( _S)) (s — )0(s + T2 — 5)eG3)3ds

L e f W( 2m0?) L (( ))F(s — T (s + W2 — ) 334

Qm)3Qi =
weﬂm /J ( ) Eim 4 .
+ ¢ e X 2ni {(27ka )2 exp(4 T Z’”)
e (1) _ (1)
X T2 =l 2 +wW_g,, (27ka2] ;ORknml(z, ) V;ORk,n,mz(z, ,1)}
weﬂm ‘ s 4’(2 _ S) z—37i)s
4416+ o5 o 0% (1 _E)r(s— OT(s + w2 — $)eE 25 ds,

The first is analytic for y > —3m, the second for y > —n, the third for
y > —2r, the fourth is analytic on the whole complex plane by Lemma
4.4.1, and the next is analytic for y < 3x. Therefore, (4.4.16) completes the

proof of the continuation of f(z, F) to the region y > —x. O
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4.5. Proof of Lemma 4.4.1. We prove Lemma 4.4.1. First, we consider
the case u > % By the asymptotic expansion (4.1.12),

W s e%m’—z 3 F(Z,Ll) e%”i_z %_# L0 |g(%”i_z)(%_:“)|
24\ 2nkQ? ) T2 + p) \ 27nk Q2 QankQ?)i+ )’

Hence, the inside of the curly brackets on the right hand side of (4.4.15) is

iRk Q?)} 2 3 o re s pw s [
ni(2rnkQ°)? exp Ik +§—Zﬂl Q-2+ -3 2nnk Q>
M M
2l 3 s 5 el
m;=0 my=0

3 .
Eﬂ'l—Z

. e 3 .
= 27i(2nnkQ* Y exp ( Ik Q2 - 5/4711 + ,uz) I'2—-wr'w

1 e
+00 ux (W xp (W))

M M
_2m'{z R, G+ Y Rg;hm(z,m} .

m;=0 mp=0

Now, by the Taylor expansion

3 i 3 i
ezﬂ'l Z B 1 + 0 ezﬂl 74
cxp ArnkQ? ) 4rnkQ?
e—x
4.5.1 =1
4.5.1) +0(47ka2)

as n, k tend to infinity and (4.4.7), (4.4.8), we have

3= 3 i
ik exp| S + £ = 2milre - pr@ s Wy, [ S
b 4nnkQ* 2 4 . FOW 3 2nnkQ?

M M
_27ri{Z R @m+ D RL (z,u)}

m1=0 mr=0

I ! !
= Ogus (W) + Oour ((nk)l_" ' (nk)z-ﬂ)

M M
—zm-{z B e S R m}
mi=1

my=0
1 M 2 M’
1 1
= Oaus ) | 3 ol 5 el

1 SR |
2 Ogpx\ 7=
<oux Yoy, ((nk)l—,u) + mZ: (nk)m-# +n;) (nk)m2tr

1=1

1
= OQ,/J,X (W)
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Hence, I1(z, F) is evaluated as follows :

| k)l 1
1e ) s 33 O

k.n=1

I ()| ]

= OQ’W‘( k2-up3-u |
k.n=1

Therefore, the series on the right hand side in (4.4.15) is convergent for
l<u<l
Secondly, in the case u = 1, by (4.1.13),

W[ = b 0 tog
= (o)
1z 2nnkQ? r(%) "\ 27k Q? g 2nnkQ?
1

o 1O
-] )

where ¢ is any positive real number. By the same calculation as in the first
case and using (4.4.10), the inside of the curly brackets on the right hand
side of (4.4.15) is evaluated as follows :

3 S7i
: 21 ez 3 ) (3\.[5 e
27i(2nnkQ’)? exp[ aok0? T2 zﬁ”)r(g)r(i W14 2k
M//
. (1)
—2ni mzzo R . : ()
1 M// 1 k
< Og 1y (—1) + Z o i
(nk)>=) 5= (nky">

1
= Oportr | ———|.
0.x.y,M ((nk)i_é)

Hence, I,(z, F) is evaluated as follows :

k 1
P < Zw( [P (_)

Pt (nk)2~9

N |,UF(k)|

kon=1

Therefore, the series on the right hand side in (4.4.15) is convergent for
p= .
Thirdly, in the case 0 < u < 1, by (4.1.14),

w 3miz _ T'w e - +0 )
-3u 2nnkQ? ) T2 + w) \ 27nk Q> (2mnk Q)3

3_.
Eﬂ'l—Z

47ka2
33

and

3ri—z
2i(2rnk Q) eXp[ 5 i’”) F@ =Pl + Wy, (2:1@2)



M/
—2ni {Z R, @w+ > RY. (G, u)}

m1=0 mr=0

1 1 1
X 0 x|\ -,
<o, o.u, ((nk)l—#) + n; (nk)ml_/‘ + P (nk)m2+/J

1

Therefore, the series on the right hand side in (4.4.15) is convergent for
O<u< %
Finally, in the case u = 0, by (4.1.16),

I i A Y S T E MU PO PSP e
= - —r-yli+—=
0\ 2mk @) T T ko)t S \2mmk@?) 27T T 0

1 e*
+ 0o ((nk)% log (27ka2 )) '

Using the recurrence formula

1
4.5.2) U(s+1) = 3 + ()

(see [13]) and (4.1.16), the inside of the curly brackets on the right hand
side of (4.1.15) is evaluated as follows :

3 .
jﬂ'l—z

_ 1 e 3 )
27i(2nnkQ?)? exp [47ka2 t5- Zm) lﬂ(2)2W_g,o [2 kQZ) 2mi Z R im0

m=0

NN 1
= 2 (F(Z) +Cy— 1) + Op.xy ( kl g(zka2 )) 2mi ZR( mo(z)

_ 1 (1)
= Oguy| 1o g(27rnkQ2)) ZH’ZRknm,O(Z)

1 ()
= Oouy nk (nk)- 6) 2 Z R

where ¢ is any positive real number. Hence, I,(z, F) is evaluated as follows

r® 1
kn*  (nk)!-°

o |
LG F) <u Y.
k,n=1
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o lur®)l
- 2-6,,3-6"
k,n=1 k n

Therefore, the series on the right hand side in (4.4.15) is convergent for
¢ = 0. In summary,

O e (k) 1 !
433 ks k; k2 {(nk)‘—“’ (nk)é—é}'

3 riez
e 272

By (4.1.2),(4.1.4) and (4.1.5), the Whittaker function W_%’# (W

lytic for all z € C. Therefore, We have the desired result. O

) is ana-

4.6. Proof of Corollary 2.2.3 and another proof. We prove Corollary
2.2.3. We use the following lemma similar to Lemma 4.2.1. We can prove
this lemma by modifying the proof of Lemma 4.2.1.

Lemma 4.6.1. Let F € S and let T be sufficiently large.Moreover, let H =
DloglogT be fixed, where D is a large positive constant.In any subinterval
of length 1 in [-T — H,—T + H] there are lines t = ty such that

(4.6.1) |F(o + ity)| ™' = O(exp(C(log T)*))
uniformly in o > =2.

We consider the integral

{s=1)
o F(s)
where .#” is the contour symmetrical upon the real axis to .Z in (4.2.3). By
Lemma 4.6.1, the integral along the lower side of the contour tends to 0 as

n tends to infinity for z € H™. Then, we have by residue theorem and the
definition (2.2.9), in a similar manner as (4.2.4),

(4.6.2) e“ds,

(4.6.3) 2nif (2, F) = fi (o, F)+ f; (. F) + f5 (2, F),
where
a—i00 -1
(4.6.4) fi@ F) = L %e”ds
is analytic on H™,
- _ (=1
(4.6.5) (@ F) = L—F(s) e*ds

is analytic on the whole complex plane. We consider the same setting as in
L for the curve L. In the same way as obtaining (4.3.1),

(4.6.6) =y 8()

nb(z —logn)

n=1
is meromorphic on the whole complex plane. Now we already know that

fi (z, F) is analytic for y < 0, and we have to continue to y < 7 just as in the
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case of fi(z, F) (see Section 4.4). By the functional equation for {(s) and
F(s), we have

fr@F) = f D

F(s)

I (Gl D

"l e
(4.6.7) = @ F) + foa F) + f3@ F) + £,z F),
where
(4.6.8)
& F (2 )3Q = s))r(s+u)r(s wrH2- S)e(ZJr m)sgs
is analytic for y < O,
(4.6.9)
fiae P = - )aQ = S))r<s+u)r(s T2 - )¢50 ds
fory < 2n,
(4.6.10)
i@ F (2 )3 f 2rnQ%)°* g((l = s))F(s + 1) (s — )2 - s)e(” Dsds
fory < m,
(4.6.11)
Jia@ F) = - @- [(s+)(s—)T2—s)eE 33 ds

- T —
2r) Qi Jaieo F(1-75)
for y < 3m. Splitting the integral on the right hand side in (4.6.8) just as in
the case of fi4(z, F), we have

Mm@ F) =1@F)+ 1Lz F),

where

(4.6.12) . '

_ _ Ee""” aieo {( ) (z+ m)s
I[(z, F) = —(27r)3Qi fa_iw QrQ*)* F(l—_s)l"(s+,u)l"(s WIL(2—-s)e ds
and
(4.6.13) _ .

_ _ Ee‘”’” e 4( ) _ (z+ ﬂ'l)S
Iz, F) = anioi . 27rQ ) mF(s+,u)1ﬂ(s L(2—s)e ds.

We see that the integral I (z, F) is convergent for y > —3m by the same way
as in (4.4.5). Since f,(z, F) is analytic for y < 0, the integral 1] (z, F) is
convergent for —37 < y < 0 and we can calculate 1] (z, F) for =37 <y <0
in a similar way as (4.4.4) (Section 4.4). Let m;, m, and m be non-negative
integers. By taking the path of integration C in (4.4.12), we have for 0 <
u < 1and|y+§7r|< 371

3.
—5mi—z

I} (z, we 4" Z ﬂp( ) X 27i {(27rnkQ )2 exp(3 5 + e_—)

(27r)3 Qi ¢ P 4rnkQ?

3 .
e R® o)
(46.14) X TQ2+wIQ - u)W_N[kaQQ) SR - ZRknmz(z,ﬂ)},

m;=0 my=0
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where

(4.6.15)
R (z.p) = (;f T~ m)TQ = -+ my)ankQy—m ol )k-m)
5T, 1 1
(4.6.16)
—_1\ynm
R (@) = SO0 = )@ 4 g+ ) ek Q) e,
" .y
4.6.17)
(2) m+ 1 e—(z+%7ri)m 5 3 . m 1 1
log(2nnk = — —Cy—
kan( ) m! (27Tl’le2)m Og( n Q )+Z+ 27” +klZ=1 kl 0 m+ 1
and
F(i + m) (%—m)(z+%m’) 3
R? 2 e
— -2 1
fhant(@ " (Wy(hwww%&*42“ﬂ wW+ﬂ
3
(4.6.18) - m(log(ZnnkQZ) +z+ Em') + 1}

are residues of the integrand in (4.6.12) at s = u — my, —u — m,, —m and
% — m respectively. The convergence of the series on the right hand side in
(4.6.14) follows in a similar manner as the consideration in (4.4.15). Finally,
by (4.6.7)-(4.6.18) we obtain the following continuation of f (z, F)toy <

: For F € 8% whose (r,4;) = (1,1)in (1.5.15) and 0 < pu < 1,

B Ee—ym‘ ,UF( ) ) 3 e 3Tz
i@ F)= 20700 pa X 2mi {(2ﬂnkQ )2 exp(4m + = 47ka2)

mi—z M M
e 2
T Wy ()= 3R G- 3 R m}

m;=0 my=0

—ﬂfﬂ 220" £2 =D (s 4 (s — T2 - )
F( -

(@2r) 01 Ja s)
aeﬂni s g( ) (Z_il)é
- —r (s — w2 - d
(271')3Ql \f;lw( Q ) F(-75%) (s + (s — I( s)e s
weH

+ 23 0i f 2 Q2)s é’( 5) F(S + (s — Q2 - S)e(” D) s

(4.6.19) - ﬂ f 2rQ )ng +WI(s — Q2 = 5)e3ms g,
Q0 Jo-ico F(1-7%)

Since a lemma similar to Lemma 4.4.1 holds for the series on the right
hand side in (4.6.19), the series we now consider is also absolutely and
uniformly convergent on every compact subset on the whole complex plane.
Therefore, we complete the continuation of f~(z, F) analytic for y < O to
the region y < 7.

Also, Corollary 2.2.3 can be proved form Theorem 2.2.2 and the defini-
tion (2.2.9) directly as follows : For z € H™ and p with Im p < 0,

] e L(p—1)
far=Yy P2
27Fp

_ZZ(P—l) o

0 F(p)




(-1 .
")

where p’ = p. We recall the definition F(s) = F(5) for F € S. Hence, the
sum on the right hand side in the third line yields

}:Qilﬂwf=ﬂzﬁ.

Here, we use the fact that if F € SPY, then so is F € SPY. Of course,
SP°Y may be replaced by S. By Theorem 2.2.2, the function f(z, F) has a
meromorphic continuation to y > —x. Hence f(z, F) has a meromorphic
continuation to y < 7.

4.7. Proof of Theorem 2.2.4. We assume the condition written in the state-
ment of Theorem 2.2.4, that is, F € S whose (7, 4;)) = (1,1)in (1.5.15)
and 0 < pu < 1.We add (4.4.16) to (4.6.19). Since some integrals are can-
celed, we have for [y| < &

Ui - /m'

A@F) + f{ @ F) = fuF) + f F) + fis@ F) + %mz, P+ o
+1 (2, F) + (2, F) + 5z, F) + f3(z, F) + fi4(z, F)

———h(zF)

@e™i < pr(k) > 3 e
= X 2. 2rnkQ?)? - + =
2n7Q L L {( AKQT)? X it o ¥ R

eimi=: RO M
XTQ+wlr2-wW._s , (2ﬂnkQ2) p Ry, @) — Z Ry, (@ 1)

m20

@b up(k) 3z e
+ (27{)3Q1 Z X 27i {(2717’le )2 exp(4m + E + 47‘[}1—kQ2)

.
e RO ®
x TQ+@Q~wW_y, (2ka2] Z AN Z RY)  (zp)

m]_

+A(z, F) + Az, F),

where
4.7.1) o
Az, F) = —ﬂ. 27TQ ) L2 )F(S+,u)r(s—,u)F(Z s)e(Z 55 ds
@7y Q1 Juie F(1-59)
and
4.7.2) . .
B we a-+ico S(( ) (Z+ l)s
Ay(z, F) = o0 ) 2rnQ?) o )F(s+,u)l"(s wWI'Q2—s)e ds.

The integrals A,(z, F)) and A,(z, F) are convergent for |[y| < 7 and we can
obtain series expressions of them involving Whittaker functions in a way
similar to the case of /,(z, F) and I (z, F). We have for |y| < 7, F € Spoly
whose (r,4;) = (1,1)in (1.5.15)and 0 < u < 1

Z #F( ) X 27i {(27ka )2 exp (——z Z er )

e;mz

- (@n) Qi

Ao F ' 72Ttk
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Ji—z

X T2+ W2 - u)WM(zjszZ) Z R (@10) - ZR;(BZ,HZ(Z’N)},

= mr=0

where
4.7.3)

RY  (z,u) =

k,n,my

(_m)ml TQu — m)T(2 =y + my)2ank @y~ F=2D)w=m),
1

4.7.4)

RY  (zp) =

(4.7.5)

— )mz

(=20 = m)l @2+ p+ )2k Q%)+ (=3 (pmm),

m+ 1 e—(z—%i)m

R = log(2nnkQ?) + —E'+E——C—
ko2 m! (27ka2)m{Og( e 2! il *m+l

and

[(3+m) o(b-m(5) 3

(3) _ 2 e > B

I T ) )
(4.7.6) —m (1og(27ka2) +z- gz) + 1}

are residues of the integrand in A(z, F) at s = u — my, —u — m, —m and

1 — m respectively. Similarly, for [y| < 7, F € SPY whose (r, 1)) = (1, 1) in

(1.5.15)and 0 < u < 1

we DO,UF() 7 e
o )3Ql Z X 27i {(ZﬂnkQ )2 exp (Zz + > 47ka2)

Az, F) =

e—%i—z
X TQ+ w2 - W5, ( - Q2) Z RY  (z.p) - Z RY (G u)},

m1=0 mp=0

where

4.7.7)
RY (7)) =

k,n,my

4.7.8)
RY  (zp) =
4.7.9)

(1"

my!

TQu = m)LQ2 — p + my)2ank @2y (+3)b=m),

T(=2p — mo)T(2 + pt + my)Rrnk Q)+ 2+ 3)cumma),

(-1)™
my!

(4) m + 1 e—(2+%i)m

2 7_1' ¢ l_ B 1
R 0@ = — (ZﬂnkQZ)"’{IOgQﬂnkQ)+Z+2l+,;1k1 Co m+1}

and

r (§ + m) (%—m)(z+%i) 3
4) _ 2 e 2 _
Bomt® = TG gy {m (‘/' (2 ’ m) o 1))
(4.7.10) —m (1og(27ka2) N gz) + 1}

are residues of the integrand in A,(z, F) at s = u—m;, —u—m,, —m and 5—m

respectively. Finally, for |y| < &, F € SPY whose (7, A ) =,1)in (1. 5 15)
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and 0 < u < 1, we have the series expression for fi(z, F) + f; (z, F)

weri

2n)*Q

fH@ )+ fi( F)= Z ﬂF( ) X 2mi {(ZnnkQ )2 exp (—gm

3
eiﬂ'[z
T2+ 02— W
X T@+pr( )-zf‘(zkaZ] =

Z e 27”—
4 2 47rnkQ2

SR - ZRﬁfimz(z,,u)}

my=0
X TQ+ 2~ W3, ( ;ﬂzzsz] ]ZO RY  (z.p) - ’;OR%Z,,,Z(Z,M)}
B (Za_;;’;"Q l Z up(k) « i {(2;ka ) exp (—Zz +2 %)
X T2+ W@ - W_ (2n kéz) ZO RO, (@)~ WZOR(W(Z )
v (?;):Ql Z 1) o {(27ka )z exp(—l tat 4jrn2le2)

(4.7.11) X T2 +pl2 = )W_;, ”(er_zk_Q2) Z RY (@) - Z R G, u)}.

mi=0 =0
Since a lemma similar to Lemma 4.4.1 also holds, the third and the fourth
series on the right hand side in (4.7.11) are absolutely and uniformly con-
vergent on every compact subset on the whole complex plane.
Next, by the theorem of residues, (2.2.7) and (4.6.5) we have

— _ g(S B 1) sz _ g(S - 1) 57
h@F)+ f, (2, F) = Ry e*ds Fe) e*ds
= —2mi hm(s -2) {(;(—)1) o
) 621
4.7.12) = _sz(Z)'

Finally, by (4.3.1) and (4.6.6)
(4.7.13) S F)+ f(zF)=0

Thus, for |y| < m we have

. - 1 - e*
21i(f(z, F) + f~(z, F)) = 2 {z—m.(fl @ F)+ fi @ F) - = (2)}
4.7.14) = 2niB(z, F),
where
1 5 2z
(47.15) B F)= 5 2(h@F)+ i F) = o

By (4.7.11), the function fi(z, F) + f; (z,F) is absolutely and uniformly
convergent on every compact subset on the whole complex plane. Hence,
the function B(z, F) is an entire function. Since the function f~(z, F) has a
meromorphic continuation for y < 7 by Corollary 2.2.3, the function

f@, F)=B(z,F)—- f (z,F)
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is analytic for all y < &. Since the function f(z, F) is analytic for z € H and
y < m, f(z, F) can be analytically continued to the whole complex plane.
In a similar manner, f~(z, F)) can be analytically continued to the whole
complex plane. Therefore, for all z € C we have

(4.7.16) f@ F)+ f(z,F) = Bz, F).

Finally, we prove the functional equation (2.2.10). We recall the hypoth-
esis that the coeflicient ar(n) in the Dirichlet series of F is real for all n.
Hence, if p is a non-trivial zero of F, then so is p. For z € H we have

G F) = lim Z ¢ (P‘f,(;)l)epz

O<Imp<T

S 3 (i e ver)

0<Imp<T

Since ar(n) € R, so F(s) = F(s) holds. Using this, we have

=1
f@F)=lim Z o o~
—T,l<Imp<O
. . s—p _
= lim lim ———{(s - 1)625)
e ; (H’” F(s) - F(p)
—T,<Imp<0
) s—=p .
= lim Zp: (IH,) FG) - F(p)g(s ~ De )
—T,<Imp<0
= ll_)n(}o Z (lsl_rg —F(S) F(p){(s - 1)e2s)
O<Imp<T,l
s —
= Jim Z (Hp F(s) - F(p)g(s - Der )
0<Imp<T
= f(z, F).
Therefore, we have for z € H
4.7.17) [ F)=f(z,F).

Using (4.7.17), we have from (4.7.16)
Bz, F)=f(z, F)+ (2, F)
=f@F)+ f~ZF)
= fGF)+ f& F).
Using (4.7.17) and (4.7.16) again, we have for z € H
(4.7.18) fGF)+ f@F)=f(zF)+ f(z. F) = B F).

Since f(z, F), f(z, F) and B(z, F) are entire functions, and (4.7.18) holds

for all z € H, (4.7.18) holds for all z € C by the analytic continuation.
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Therefore, the functional equation (2.2.10) holds for all z € C and we have
Theorem 2.2.4. O
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