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Abstract
This paper studies results of J.Kaczorowski and K.Wiertelak in 2010 and

of M. Rekoś in 2001. In 2010, J.Kaczorowski and K.Wiertelak considered
the Volterra integral equation of second type for the remainder term in the
asymptotic formula for the Euler totient function φ(n) and splitted the error
term in the asymptotic formula into two summands called arithmetic and
analytic part respectively. Also, J.Kaczorowski and K.Wiertelak proved the
Ω-results for both the arithmetic and the analytic part (see [9]). In prov-
ing the Ω-result for the analytic part, J.Kaczorowski and K.Wiertelak used
the functional equation which was proved by M. Rekoś in 2001(see [20]).
In 2013, J.Kaczorowski defined the generalization of φ(n) associated with
generalized L-functions including the Riemann zeta function, the Dirichlet
L-function and proved an asymptotic formula (see [12]).

In the present paper, firstly, the author considered the Volterra integral
equation of second type for a remainder term in an asymptotic formula of an
arithmetic function which satisfies some special conditions and obtained a
solution of the equation. The method using there is applied to the remainder
term in the asymptotic formula of the associated Euler totient function. Sec-
ondly, the author considered the matter similar to [20] for the generalized
L-functions which satisfy some conditions and proved some analytic prop-
erties e.g. the regularity, analytic continuation on the whole complex plane,
and a certain functional equation. In particular, when we prove the analytic
continuation and the functional equation, we use the Whittaker function
which is kind of the confluent hypergeometric function.
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1. Introduction

1.1. Previous research for the Euler totient function.
For n ∈ N, let φ(n) be the number of positive integers not exceeding n

which are relatively prime to n. The function φ(n) is called the Euler totient
function and appears in various fields e.g. elementary number theory, group
theory. In analytic number theory, studying the arithmetic mean of φ(n) is a
classical problem. Let

(1.1.1) E(x) =
∑
n≤x

φ(n) − 3
π2 x2

be the associated error term. The error term (1.1.1) has been studies for a
long time. P. G. Dirichlet proved the estimate

(1.1.2) E(x) ≪ x1+ϵ

for every positive ϵ. Here, we use the notation f (x) ≪ g(x), if there is a
constant C > 0 such that | f (x)| ≤ Cg(x) for all x in the appropriate range. If
the implicit constant may depend on ϵ in f (x) ≪ g(x), we use the notation
f (x) ≪ϵ g(x). Also, we use the notation f (x) ≫ g(x), if there is a positive
constant c such that f (x) ≥ cg(x) and g is non-negative. The estimate (1.1.2)
was improved by F. Mertens to E(x) ≪ x log x (see [15]). A. Walfisz proved

(1.1.3) E(x) ≪ x(log x)
2
3 (log log x)

4
3

(see [24]). The estimate (1.1.3) is the best known result. S.S. Pillai and S.D.
Chowla proved ∑

n≤x

E(n) ∼ 3
2π2 x2

(see [19]) and S.D. Chowla also proved∫ x

0
E(t)2dt ∼ x3

6π2

(see [2]). H.L. Montgomary proved the best Ω-result for (1.1.1)

(1.1.4) E(x) = Ω±(x
√

log log x)

(see [16]). Here, we use the notation f (x) = Ω+(g(x)) and f (x) = Ω−(g(x))
i.e. the inequalities f (x) > Cg(x) and f (x) < −Cg(x) hold respectively
for some arbitrarily large values of x and a suitable positive constant C.
Also, we use the notation f (x) = Ω±(g(x)) i.e. both f (x) = Ω+(g(x)) and
f (x) = Ω−(g(x)) hold. In 2010, J.Kaczorowski and K.Wiertelak considered

(1.1.5) Ẽ(x) :=
∫ x

0
E(t)

dt
t
=

∑
n≤x

φ(n) log
x
n
− 3

2π2 x2.

The right hand side in (1.1.5) is obtained by Fact 2.3.4 in Section 2.3.
J.Kaczorowski and K.Wiertelak proved that for x tending to infinity

Ẽ(x) = Ω±(x
1
2 log log log x).

Moreover, under the Riemann Hypothesis for the Riemann zeta function
ζ(s) i.e. ζ(s) , 0

(
s = σ + it,

(
σ > 1

2

))
, there exist a positive constant B

such that

Ẽ(x) ≪ x
1
2 exp

(
B

log x
log log x

)
1



(see [10]). We write a complex variable s = σ + it in what follows. We use
the same notation throughout this paper. J.Kaczorowski and K.Wiertelak
also studied (1.1.1) by splitting into two summands. J.Kaczorowski and
K.Wiertelak considered there the following Volterra integral equation of
second type for (1.1.1) (see [9]) :

(1.1.6) F(x) −
∫ ∞

0
K(x, t)F(t)dt = E(x) (x ≥ 1),

where F(x) is the unknown function and the kernel K(x, t) is defined as
follows:

(1.1.7) K(x, t) =

1/t (0 < t ≤ x),
0 (1 ≤ x < t).

The equation (1.1.6) can be solved explicitly. Let us put

(1.1.8) f (x) = −
∞∑

n=1

µ(n)
n

{ x
n

}
for every x ≥ 0, where µ(n) denotes the Möbius function i.e.

µ(n) =


1 (n = 1),
(−1)r (n = p1 p2 · · · pr, pi (1 ≤ i ≤ r) : prime),
0 (otherwise),

and {x} = x − [x] is the fractional part of a real number x.

Theorem 1.1.1 (Theorem 1.1 in [9]). The general solution of (1.1.6) is

(1.1.9) F(x) = ( f (x) + A)x,

where A is an arbitrary constant.

In [9], F(x) = x f (x) is claimed to be the unique solution of the integral
equation (1.1.6), but this uniqueness does not hold even assuming the initial
value condition at x = 0. Probably, the term Ax is missing to give the
general solution. J.Kaczorowski and K.Wiertelak defined the linear space
X as follows :

X =
{

g : (0,∞)→ R; Lebesgue locally integrable,
∫ 1

0
|g(t)|| log t|N dt

t
< ∞ (∀N ∈ N)

}
.

Also, J.Kaczorowski and K.Wiertelak defined the operator δ1 on X as fol-
lows :

(1.1.10) δ1(g)(x) =
∫ x

0

g(t)
t

dt (x > 0, g ∈ X).

Moreover, let δk denote the k-fold iteration of δ1 :

(1.1.11) δk = δ1 ◦ · · · ◦ δ1 (k times)

and let

(1.1.12) Rk(x) = δk(E)(x),

where E(x) is defined in (1.1.1). For x ≥ 0 let us write

(1.1.13) g(x) =
∞∑

n=1

µ(n)
{ x

n

}2
.

2



Theorem 1.1.2 (Theorem 1.2 in [9]). For x ≥ 1 we have

E(x) = x f (x) +
1
2

g(x) +
1
2
.

According to Theorem1.1.2, for x ≥ 1 we can split E(x) as follows :

(1.1.14) E(x) = EAR(x) + EAN(x),

where

EAR(x) = x f (x), and EAN(x) =
1
2

g(x) +
1
2

with f (x) and g(x) given by (1.1.8) and (1.1.13) respectively. We call
EAR(x) and EAN(x) the arithmetic and the analytic part of E(x) respec-
tively. J.Kaczorowski and K.Wiertelak proved the Ω-estimates for EAR(x)
and EAN(x). On an arithmetic part, J.Kaczorowski and K.Wiertelak ob-
tained anΩ-result for a class of arithmetic functionsA as follows (see [9]) :
letA denote the set of all arithmetic functions α(n) satisfying the following
conditions :

(i) α(n) is real and multiplicative.
(ii) There exists a positive real number θ < 1 such that

α(n) ≪ nθ.

(iii) We have
∞∑

n=1

α(n)
n2 , 0.

(iv) For every N ≥ 1 we have
N∑

n=1

|α(n)| ≪ N.

(v) The series
∞∑

n=1

α(n)
n

converges.
(vi) There exists a positive real number η and a sequence of positive

numbers xν → ∞ such that∑
p≤xν
α(p)<0

p≡3 (mod 4)

|α(p)|
p
≥ η log log xν + O(1)

for all ν ≥ 1.
For α(n) ∈ A, we write

f (x, α) =
∞∑

d=1

α(d)
d

s
( x
d

)
,

where s(x) denotes the saw tooth function :

(1.1.15) s(x) =

0 (x ∈ Z),
1
2 − {x} (otherwise).

3



Since
∞∑

n=1

µ(n)
n
= 0,

we have
f (x, µ) =

1
2

( f (x − 0) + f (x + 0)),

where f (x) is the same as in (1.1.8). Hence, for x < Z we have f (x, µ) =
f (x). Moreover, for every x ≥ 1 let us put

R(x, α) = sup
y≥x

∣∣∣∣∣∣∣∑n>y

α(n)
n

∣∣∣∣∣∣∣
and

R∗(x, α) =
√

R(
√

x, α) +
1
x
.

Theorem 1.1.3 (Theorem 1.3 in [9]). Let α ∈ A. Then we have

f (x, α) = Ω±

((
log log

1

R∗(x
2
3 , α)

)η)
as x→ ∞.

Corollary 1.1.4 (Corollary 1.4 in [9]). Let f (x) be defined in (1.1.8). Then

(1.1.16) f (x) = Ω±(
√

log log x) and EAR(x) = Ω±(x
√

log log x)

as x→ ∞.

On an analytic part, J.Kaczorowski and K.Wiertelak obtained anΩ-result
as follows :

Theorem 1.1.5 (Theorem 1.8 in [9]). For x tending to infinity we have

(1.1.17) EAN(x) = Ω±(x
1
2 log log log x).

The following Theorem 1.1.6 and Lemma 1.2.3 below show that while
EAN(x) depends on the non-trivial zeros of the Riemann zeta function, EAR(x)
does not. In particular, Theorem1.1.6 is related to a certain equivalence con-
dition of the Riemann Hypothesis for ζ(s).

Theorem 1.1.6 (Theorem 1.7 in [9]). The following statements are equiva-
lent.

(1) The Riemann Hypothesis is true.
(2) There exists a positive constant A such that for x ≥ ee we have

(1.1.18) EAN(x) ≪ x
1
2 exp

(
A

log x
log log x

)
.

(3) For every ϵ > 0 and x ≥ 1 we have

EAN(x) ≪ϵ x
1
2+ϵ .

J.Kaczorowski and K.Wiertelak obtained a better decomposition for the
remainder term in the asymptotic formula for a generalization of the Euler
totient function (see [5], [11]) : For a non-principal real Dirichlet character
χ (mod q), q > 2, let φ(n, χ) denote the twisted Euler φ-function

(1.1.19) φ(n, χ) = n
∏
p|n

(
1 − χ(p)

p

)
,

4



where the product in (1.1.19) is over the prime p which divisors of n.
Refer to the paper [4] on the application of φ(n, χ). J.Kaczorowski and
K.Wiertelak made a consideration similar to [9] for the remainder term in
the asymptotic formula of the above twisted Euler φ-function. Let

(1.1.20) E(x, χ) =
∑
n≤x

φ(n, χ) − x2

2L(2, χ)

and

(1.1.21) E1(x, χ) =

E(x, χ) (x < N),
1
2 (E(x − 0, χ) + E(x + 0, χ)) (otherwise)

be the corresponding error terms. Here, as usual, L(s, χ) denotes the Dirich-
let L-function associated to χ. It is easy to see that E(x, χ) = O(x log x) for
x ≥ 2. Let s(x) be the same as in (1.1.15). We write for x ≥ 0

(1.1.22) f (x, χ) =
∞∑

d=1

µ(d)χ(d)
d

s
( x
d

)
and

(1.1.23) g(x, χ) =
∞∑

d=1

µ(d)χ(d)
{ x

d

} ({ x
d

}
− 1

)
.

Theorem 1.1.7 (Theorem1.1. in [11]). The solution of the following Volterra
integral equation of second type

(1.1.24) F(x, χ) −
∫ ∞

0
K(x, t)F(t, χ)dt = E1(x, χ) (x ≥ 0),

where K(x, t) is the same as in (1.1.7) is the function

(1.1.25) F(x, χ) = ( f (x, χ) + A)x,

where A is an arbitrary constant.

(In [11], the unique solution is F(x, χ) = x f (x, χ), but the comments just
after (1.1.9) should also be applied here). J.Kaczorowski and K.Wiertelak
also obtained the arithmetic and the analytic part of E(x, χ) respectively.

Theorem 1.1.8 (Theorem1.2. in [11]). For x ≥ 0

(1.1.26) E1(x, χ) = EAR(x, χ) + EAN(x, χ),

where

(1.1.27) EAR(x, χ) = x f (x, χ) and EAN(x, χ) =
1
2

g(x, χ)

with f (x, χ) and g(x, χ) given by (1.1.22) and (1.1.23) respectively.

J.Kaczorowski and K.Wiertelak proved theΩ-estimates for EAR(x, χ) and
EAN(x, χ). Also, J.Kaczorowski and K.Wiertelak proved the equivalence of
the Riemann Hypothesis for the Dirichlet-L function in terms of EAN(x, χ).

Theorem 1.1.9 (Theorem 1.3 in [11]). Let f (x, χ) be defined in (1.1.22).
Then

(1.1.28) f (x, χ) = Ω±((log log x)
1
4 ) and EAR(x, χ) = Ω±(x(log log x)

1
4 )

as x→ ∞.
5



Theorem 1.1.10 (Corollary 1.4 in [11]). We have

(1.1.29) EAN(x, χ) = Ω±(x(log log x)
1
4 )

as x→ ∞.

Theorem 1.1.11 (Theorem 1.5 in [11]). The following statements are equiv-
alent.

(1) L(s, χ) , 0 for σ > 1
2 .

(2) There exists a positive constant A such that for x ≥ ee we have

(1.1.30) EAN(x, χ) ≪ x
1
2 exp

(
A

log x
log log x

)
.

(3) For every positive ϵ and x ≥ 1 we have

EAN(x, χ) ≪ϵ x
1
2+ϵ .

On the EAN(x, χ), J.Kaczorowski and K.Wiertelak proved theΩ-estimates
the cases the character is even and odd respectively (see [11]).

1.2. Preliminaries to prove Theorem1.1.5.
In this section, we state lemmata to prove Theorem1.1.5.

Lemma 1.2.1 (Lemma 5.2 in [9]). For σ > 2 we have

(1.2.1)
∫ ∞

1
EAN(x)x−s−1dx =

3
π2

1
s − 2

+
ζ(s − 1)

s(1 − s)ζ(s)
.

Lemma 1.2.2 (Lemma 5.3 in [9]). Suppose that a measurable locally bounded
function h : [1,∞) → R satisfies h(x) = O(xA), and h(x) ≤ Bxa log log x or
h(x) ≥ −Bxa log log x for certain positive a, A and B and all large x. More-
over, let its Mellin transform F(s) =

∫ ∞
1

h(x)x−s−1dx be holomorphic on the
interval [a, A]. Then F(s) is holomorphic for σ > a and

F(s) ≪ 1
σ − a

log
(

1
σ − a

)
uniformly for a < σ < a + 1

2 .

We can prove the following lemma applying Lemma1.2.1 and Lemma1.2.2
to h(x) = EAN(x), a = 1/2, A = 2 :

Lemma 1.2.3 (Lemma 5.4 in [9]). Suppose that

(1.2.2) ∃x0,C0 > 0 ∀x ≥ x0 EAN(x) ≤ C0x
1
2 log log x

or

(1.2.3) ∃x0,C0 > 0 ∀x ≥ x0 EAN(x) ≥ −C0x
1
2 log log x.

Then the Riemann Hypothesis is true, all non-trivial zeros of the Riemann
zeta function are simple, and denoting by ρ = 1

2 + iγ a generic non-trivial
zero we have

(1.2.4)
ζ(ρ − 1)
ζ′(ρ)

≪ γ2 log |γ|.

Lemma 1.2.4 (Lemma 5.1 in [9]). With the notation (1.1.12) we have

R1(x) + R2(x) = Ω±(
√

x log log log x)

as x→ ∞.
6



In [9], the proof of Lemma1.2.4 is written as follows : Analogous result
for R1(x) in the place of R1(x) + R2(x) was established in [10]. The present
lemma follows by repeating all steps in the proof of Theorem 1.1 in [10].
The required modifications are straightforward and shall not be described
here in detail.

1.3. The outline of the proof of Theorem1.1.5.
We state the outline of the proof of Theorem1.1.5 (see [9]) : We can

assume that (1.2.2) and (1.2.3) are true since otherwise there is nothing left
to be proved. Taking the inverse Mellin transform in (1.2.1) we obtain

(1.3.1) EAN(x) =
1

2πi

∫
L

ζ(s − 1)
ζ(s)

xs

s(1 − s)
ds,

where the path of integration L consists of the half-line [3− i∞, 3− 2i], the
semi-circle s = 3 + 2eiθ, π

2 < θ < 3
2π and the half-line [3 + 2i, 3 + i∞]. On

the Mellin inversion, the following fact is known :

Fact 1.3.1 (Theorem 28 in [23]). Let f (y)yk−1(k > 0) belongs to L(0,∞),
and let f (y) be of bounded variation in the neighborhood at the point y = x.
Let

F (s) =
∫ ∞

0
f (x)xs−1dx (s = k + it).(1.3.2)

Then
1
2
{ f (x + 0) + f (x − 0)} = 1

2πi
lim
T→∞

∫ k+iT

k−iT
F (s)x−sds.(1.3.3)

According to
1

s(1 − s)
= − 1

s2 −
1
s3 +

1
s3(1 − s)

,

we split the integral on the right hand side of (1.3.1) into three parts
1

2πi

∫
L

ζ(s − 1)
ζ(s)

xs

s(1 − s)
ds = − 1

2πi

∫
L

ζ(s − 1)
ζ(s)

xs

s2 ds − 1
2πi

∫
L

ζ(s − 1)
ζ(s)

xs

s3 ds

+
1

2πi

∫
L

ζ(s − 1)
ζ(s)

xs

s3(1 − s)
ds

= −R1(x) − R2(x) +
1

2πi

∫
L

ζ(s − 1)
ζ(s)

xs

s3(1 − s)
ds

= −R1(x) − R2(x) + I,

say where R1(x) and R2(x) are the cases k = 1, 2 in (1.1.12) respectively.
Shifting the line of integration to the left we have

(1.3.4) I =
∑
ρ

ζ(ρ − 1)
ρ3(1 − ρ)ζ′(ρ)

xρ +
1

2πi

∫ 1
4+i∞

1
4−i∞

ζ(s − 1)
ζ(s)

xs

s3(1 − s)
ds.

Using the estimate (1.2.4), for every ϵ > 0

I =
∑
ρ

ζ(ρ − 1)
ρ3(1 − ρ)ζ′(ρ)

xρ +
1

2πi

∫ 1
4+i∞

1
4−i∞

ζ(s − 1)
ζ(s)

xs

s3(1 − s)
ds

≪ x
1
2

∑
ρ

log |γ|
γ2 + x

1
4

∫ 1
4+i∞

1
4−i∞

|s|−3+ϵ |ds|

7



≪ x
1
2 + x

1
4

≪ x
1
2 .

Hence
EAN(x) = −R1(x) − R2(x) + O(x

1
2 ).

The assertion now follows from Lemma 1.2.4. □

1.4. The analytic property of a function f (z).
The proof of Lemma1.2.4 is just as in the case of R1(x) in [10] stated in

Section1.2.When proving Theorem 1.1 in [10], J.Kaczorowski and K.Wiertelak
used the functional equation (1.4.5) below (see p1642-3 in [10]) : We de-
scribe basic analytic properties of the function f (z) defined for Im z > 0 as
follows :

(1.4.1) f (z) = lim
n→∞

∑
ρ

0<Im ρ<Tn

eρzζ(ρ − 1)
ζ′(ρ)

,

where Tn denotes a sequence of real numbers yields appropriate grouping
of the zeros. The summation is over non-trivial zeros the Riemann zeta-
function with positive imaginary part. For simplicity we assume here that
the zeros are simple. Let us denote by ℓ(−1

4 ,
5
2 ) a simple and smooth curve

τ : [0, 1] −→ C such that τ(0) = −1
4 , τ(1) = 5

2 and 0 < Imτ < 1 for t ∈ (0, 1).
The analytic property of f (z) is described by the following theorems :

Theorem 1.4.1 (Theorem 1 in [20]). The function f (z) is analytic on the
upper half-plane H and for z ∈ H we have

(1.4.2) 2πi f (z) = f1(z) + f2(z) − e
5
2 z
∞∑

n=1

φ(n)

n
5
2 (z − log n)

,

where the last term on the right is meromorphic function on the whole com-
plex plane with the poles at z = log n, n = 1, 2, . . .. The function

(1.4.3) f1(z) =
∫ − 1

4

− 1
4+i∞

ζ(s − 1)
ζ(s)

eszds

is analytic on H and

(1.4.4) f2(z) =
∫
ℓ(− 1

4 ,
5
2 )

ζ(s − 1)
ζ(s)

eszds

is analytic on the whole complex plane.

Theorem 1.4.2 (Theorem 2 in [20]). The function f (z) can be continued
analytically to a meromorphic function on the whole complex plane, which
satisfies the functional equation

(1.4.5) f (z) + f (z̄) = B(z)

and
(1.4.6)

B(z) = − 6
π2 e2z+

1
2π2

∞∑
k,n=1

µ(k)
n2k

[
1

(nkez − 1)2 +
2

nkez − 1
+

1
(nkez + 1)2 −

2
nkez + 1

]
,

8



where B(z) is meromorphic function on the whole complex plane with the
poles of the second order at z = − log nk, n, k = 1, 2, . . .. The only singu-
larities of f (z) are simple poles at the points z = log n (n = 1, 2, . . .) on the
real axis with residue

res
z=log n

f (z) = −φ(n)
2πi

,

and the poles of the second order at z = − log m (m = 1, 2, . . .) with residue

res
z=− log m

f (z) =
1

4π2m2

∑
l|m
µ(l)l.

1.5. The associated Euler totient function.
J.Kaczorowski defined the associated Euler totient function for a class of

generalized L-functions including the Riemann zeta function, Dirichlet L-
functions and obtained an asymptotic formula (see [12]) : By a polynomial
Euler product we mean a function F(s) of a complex variable s = σ + it
which for σ > 1 is defined by the product of the form

(1.5.1) F(s) =
∏

p

Fp(s) =
∏

p

d∏
j=1

(
1 −

α j(p)
ps

)−1

,

where p runs over primes and |α j(p)| ≤ 1 for all p and 1 ≤ j ≤ d. We
assume that d is chosen as small as possible, i.e. that there exists at least
one prime number p0 such that

d∏
j=1

α j(p0) , 0.

Then d is called the Euler degree of F. Note that the L-functions from
number theory including the Riemann zeta function, Dirichlet L-functions,
Dedekind zeta and Hecke L-functions of algebraic number fields, as well
as the (normalized) L-functions of holomorphic modular forms and, con-
jecturally, many other L-functions are polynomial Euler products. For F in
(1.5.1) we define the associated Euler totient function as follows :

(1.5.2) φ(n, F) = n
∏
p|n

Fp(1)−1 (n ∈ N).

Let

γ(p) = p
(
1 − 1

Fp(1)

)
,(1.5.3)

C(F) =
1
2

∏
p

(
1 − γ(p)

p2

)
,(1.5.4)

and

(1.5.5) α(n) = µ(n)
∏
p|n
γ(p).

By (1.5.2) and (1.5.3), we see that the Euler totient function φ(n) and the
twisted Euler φ-function φ(n, χ) correspond to the cases where F is the Rie-
mann zeta function ζ(s) and the Dirichlet L-function L(s, χ) respectively.
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Theorem 1.5.1 (Theorem 1.1 in [12]). For a polynomial Euler product F
of degree d and x ≥ 1 we have

(1.5.6)
∑
n≤x

φ(n, F) = C(F)x2 + O(x(log 2x)d).

Remark 1.5.1. Let us observe that α(n) ≪ nϵ for every positive ϵ. Hence
the series

(1.5.7)
∞∑

n=1

α(n)
ns

absolutely converges for σ > 1 (see p33 in [12]). Also, α(n) is multiplica-
tive by (1.5.5). Therefore,

(1.5.8)
∞∑

n=1

α(n)
n2 = 2C(F).

Lemma 1.5.2 (Lemma 2.2 in [12]). The series

(1.5.9)
∞∑

n=1

φ(n, F)
ns

converges absolutely for σ > 2 and in this half-plane we have

(1.5.10)
∞∑

n=1

φ(n, F)
ns = ζ(s − 1)

∞∑
n=1

α(n)
ns .

In particular,

(1.5.11) φ(n, F) = n
∑
m|n

α(m)
m

.

Lemma 1.5.3 (Lemma 2.3 in [12]). For σ > 1 we have

(1.5.12)
∞∑

n=1

α(n)
ns =

H(s)
F(s)

,

where

(1.5.13) H(s) =
∞∑

n=1

h(n)
ns

converges absolutely for σ > 1/2. Moreover, as n runs over square-free
positive integers we have

(1.5.14) h(n) ≪ 1
n

exp
(
c

log n
log log(n + 2)

)
,

where c is a positive constant which may depend on F and other parame-
ters. In particular for such n, h(n) is bounded.

Lemma 1.5.4 (Lemma 2.4 in [12]). Let α(n) be defined by (1.5.5). For
x ≥ 1

(1.5.15)
∑
n≤x

|α(n)|
n
≪ (log(2x))d.

Now we provide the definition of the Selberg classS for our later purpose
as follows : F ∈ S if

10



(i) (ordinary Dirichlet series) F(s) =
∞∑

n=1

aF(n)n−s, absolutely conver-

gent for σ > 1;
(ii) (analytic continuation) there exists an integer m ≥ 0 such that (s −

1)m · F(s) is an entire function of finite order;
(iii) (functional equation) F(s) satisfies a functional equation of type
Φ(s) = ωΦ(1 − s), where

(1.5.15) Φ(s) = Qs
r∏

j=1

Γ(λ js + µ j)F(s) = γ(s)F(s),

say, with r ≥ 0,Q > 0, λ j > 0, Re µ j ≥ 0 and |ω| = 1;
(iv) (Ramanujan conjecture) for every ϵ > 0, aF(n) ≪ nϵ .

(v) (Euler product) F(s) =
∏

p

exp

 ∞∑
ℓ=0

bF(pℓ)
pℓs

, where bF(n) = 0 un-

less n = pm with m ≥ 1, and bF(n) ≪ nϑ for some ϑ < 1
2 .

Note that we understand an empty product is equal to 1.
The aim of the present paper is firstly to obtain the generalization of

Theorem 1.1.1 and Theorem 1.1.2 for a remainder term in an asymptotic
formula of an arithmetic function which satisfies some special conditions.
Secondly, we obtain results similar to Theorem 1.4.1 and Theorem 1.4.2 for
the generalized L-functions which satisfy some conditions.
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2. Main results

2.1. The generalization of Theorem1.1.1.
First, we prove a generalization of Theorem1.1.1.

Theorem 2.1.1 (Theorem in [5]). Let {a(n)} be a complex-valued arithmeti-
cal function for which the series

(2.1.1)
∞∑

n=1

a(n)
n2

is convergent with the sum 2α, where α is a complex number. Let {b(n)} be
the arithmetical function defined by

(2.1.2) b(n) =
∑
d|n

a(d)
n
d
.

Assume for x tending to infinity

(2.1.3)
∑
n≤x

b(n) = M(x) + Er(x),

where

M(x) := αx2,(2.1.4)

Er(x) :=
∑
n≤x

b(n) − M(x).(2.1.5)

Now, we consider the following Volterra integral equation of second type

(2.1.6) F1(x) −
∫ x

0
F1(t)

dt
t
= Er(x) (x ≥ 0).

Then, for every complex number A, the function

(2.1.7) F1(x) = ( f1(x) + A)x (x ≥ 0),

is a solution of the integral equation (2.1.6) and these exhaust all solutions
of (2.1.6). Here,

(2.1.8) f1(x) = −
∞∑

n=1

a(n)
n

{ x
n

}
for every x ≥ 0.

In [9], the arithmetical functions a(n) and b(n) correspond to µ(n) and φ(n)
respectively, and all the hypothesis are satisfied. As for the error term Er(x),
we have a bound similar to Er(x) = o(x2) as x tends to infinity in mind. As
usual, if we say a function F1 is a solution of (2.1.6), then we implicitly
assume that the integral in (2.1.6) exists in the sense that the limit

(2.1.9) lim
ϵ→0+

∫ x

ϵ

|F1(t)|dt
t

exists. We use the same convention throughout this paper. The formula
(2.1.7) is a generalization of the result of Theorem 1.1.1. Also, the function
f1(x) is locally bounded. In fact, by the condition of theorem

f1(x) = −
∞∑

n=1

a(n)
n

{ x
n

}
12



= −
∞∑

n=1

a(n)
n

( x
n
−

[ x
n

])
= −x

∞∑
n=1

a(n)
n2 +

∑
n≤x

a(n)
n

[ x
n

]
+

∑
n>x

a(n)
n

[ x
n

]
= −2αx +

∑
n≤x

a(n)
n

[ x
n

]
.

We generalize Theorem 1.1.1 and 1.1.2 for the remainder term in the as-
ymptotic formula for the associated Euler totient function. For a polynomial
Euler product F of degree d, let us put

(2.1.10) E(x, F) =
∑
n≤x

φ(n, F) −C(F)x2,

and

f (x, F) = −
∞∑

n=1

α(n)
n

{ x
n

}
.(2.1.11)

In the same way as the proof of Theorem 2.1.1, we have the following
Corollary.

Corollary 2.1.2 (I., 2021+). The Volterra integral equation of second type

(2.1.12) F1(x, F) −
∫ x

0
F1(t, F)

dt
t
= E(x, F) (x ≥ 0)

has the following solution

(2.1.13) F1(x, F) = ( f (x, F) + A)x (x ≥ 0)

for every complex number A and these exhaust all solutions of (2.1.12).

For x ≥ 0 let us put

(2.1.14) g(x, F) =
∞∑

n=1

α(n)
({ x

n

}2
+

[ x
n

])
.

In the same way as in the proof of Theorem1.1.2, the error term (2.1.10)
can be splitted as follows.

Theorem 2.1.3 (I., 2021+). For x ≥ 1 we have

(2.1.15) E(x, F) = x f (x, F) +
1
2

g(x, F).

We consider the arithmetic part and the analytic part for E(x, F) as fol-
lows :

(2.1.16) EAR(x, F) = x f (x, F) and EAN(x, F) =
1
2

g(x, F)

with f (x, F) and g(x, F) given by (2.1.11) and (2.1.14) respectively. Corol-
lary 2.1.2 and Theorem 2.1.3 have not seen published, but can be proved in
the same way as in [6].
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2.2. Results similar to Theorem1.4.1 and 1.4.2.
If a function F ∈ S has a polynomial Euler product (1.5.1), the subclass

of S of the functions with polynomial Euler product is denoted by Spoly.
Secondly, we obtain results similar to Theorem 1.4.1 and Theorem 1.4.2
for a function F belonging to Spoly. Now we assume that (r, λ j) = (1, 1) in
the functional equation (1.5.15). The complex number µ1 when r = 1 in
(1.5.15) is hereafter referred to as µ. Let ρ denote the non-trivial zeros of
F with positive imaginary part. We assume that the order of ρ is simple.
Moreover, let Tn denote a sequence of real numbers which yields appro-
priate grouping of the zeros which will be given later. For Im z > 0 and
F ∈ Spoly, we consider a function defined by

(2.2.1) f (z, F) = lim
n→∞

∑
ρ

0<Im ρ<Tn

eρzζ(ρ − 1)
F′(ρ)

.

If there are trivial zeros of F on the imaginary axis in H, we incorporate
into the summation. We see that the series in (2.2.1) converges (see Section
4.2).

Definition 2.2.1 (p 34 in [12]). For σ > 1 and F ∈ Spoly, we define the
function µF as follows :

(2.2.2)
1

F(s)
=

∞∑
n=1

µF(n)
ns =

∏
p

d∏
j=1

(
1 −

α j(p)
ps

)
.

Remark 2.2.1 (p34 in [12]). By (2.2.2), |µF(n)| ≤ τd(n), where τd(n) is the
divisor function of order d, so that ζd(s) =

∑∞
n=1 τd(n)/ns for σ > 1. In

particular τ1(n) = 1 for all n.

Using (2.2.2), for σ > 2

ζ(s − 1)
F(s)

=

 ∞∑
l=1

µF(l)
ls

  ∞∑
m=1

1
ms−1


=

∞∑
n=1

g(n)
ns ,(2.2.3)

where

(2.2.4) g(n) =
∑
d|n

µF(d)
n
d
.

Theorem 2.2.1 (Theorem 4.1 in [7]). The function f (z, F) is analytic on the
upper half-plane H and for z ∈ H we have

(2.2.5) 2πi f (z, F) = f1(z, F) + f2(z, F) − ebz
∞∑

n=1

g(n)
nb(z − log n)

,

where the last term on the right is a meromorphic function on the whole
complex plane with the poles at z = log n, n = 1, 2, . . .. The function

(2.2.6) f1(z, F) =
∫ a

a+i∞

ζ(s − 1)
F(s)

eszds

is analytic on H and

(2.2.7) f2(z, F) =
∫

L

ζ(s − 1)
F(s)

eszds
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is analytic on the whole complex plane. The definition of a, b and the path
of integration L in (2.2.7) are mentioned later in Section 4.2.

Theorem 2.2.2 (Theorem 4.2 in [7]). For F belonging toSpoly whose (r, λ j) =
(1, 1) in (1.5.15) and 0 ≤ µ < 1, the function f (z, F) has a meromorphic
continuation to y > −π.

The L-functions associated with holomorphic cusp forms and Dedekind
zeta functions of the imaginary quadratic fields are examples of F consid-
ering in Theorem 2.2.2. Let

(2.2.8) H− = {z ∈ C : Im z < 0}.
We consider the function for z ∈ H− and F ∈ Spoly

(2.2.9) f −(z, F) = lim
n→∞

∑
ρ

−Tn<Im ρ<0

eρzζ(ρ − 1)
F′(ρ)

.

If there are trivial zeros of F on the imaginary axis in H−, we incorporate
into the summation. The convergence for the series on the right hand side
in (2.2.9) is proved by the same way as in section 4.2.

Corollary 2.2.3 (Corollary 4.3 in [7]). For F belonging to Spoly which sat-
isfies the same condition as in Theorem 2.2.2, the function f −(z, F) has a
meromorphic continuation to y < π.

Theorem 2.2.4 (Theorem 4.4 in [7]). For F belonging to Spoly which satis-
fies the same condition as in Theorem 2.2.2, the function (2.2.1) can be con-
tinued analytically on the whole complex plane. In addition to the condition
as in Theorem 2.2.2, we assume that the coefficient aF(n) in the Dirichlet se-
ries is real value for all n. Then, the function (2.2.1) satisfies the functional
equation

(2.2.10) f (z, F) + f (z, F) = B(z, F),

where

(2.2.11) B(z, F) =
1

2πi
( f1(z, F) + f −1 (z, F)) − e2z

F(2)
.

for all z ∈ C. The definition of f −1 (z, F) is mentioned later (4.6.4).

If a function F ∈ S satisfies the conditions (i)-(iii) on S, we denote the
this class by S# and call the extended Selberg class. It is known that the
Dirichlet coefficient aF(n) of F ∈ S# which satisfies some special conditions
is real (see [8]). We aim to prove the estimate corresponding to Theorem
1.1.5 for the remainder term in the asymptotic formula of the associated Eu-
ler totient function. To do this, we will use Theorem 2.2.1,2,4 and Corollary
2.2.3.

2.3. Motivation for Theorem 2.2.1,2,4 and Corollary 2.2.3.
We imitate the proof of Theorem1.1.5.Then, we need the following lemma

which is the generalization of Lemma1.2.1.

Lemma 2.3.1. For σ > 2 and F ∈ Spoly, we have

(2.3.1)
∫ ∞

1
EAN(x, F)x−s−1dx =

C(F)
s − 2

+
ζ(s − 1)
s(1 − s)

H(s)
F(s)

,

where the function H(s) is the same as in (1.5.13).
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Proof of Lemma 2.3.1:According to (2.1.15) and (2.1.16), we have EAN(x, F) =
E(x, F) − x f (x, F). By inserting this into the integral in (2.3.1), we have

(2.3.2)
∫ ∞

1
EAN(x, F)x−s−1dx =

∫ ∞

1
E(x, F)x−s−1dx −

∫ ∞

1
f (x, F)x−sdx.

By the asymptotic formula (1.5.6) and σ > 2, we have

(2.3.3)
∫ ∞

1
E(x, F)x−s−1dx =

∫ ∞

1
A(x, F)x−s−1dx − C(F)

s − 2
,

where
A(x, F) =

∑
n≤x

φ(n, F).

When we calculate the integral on the right hand side in (2.3.3), we use the
following lemma :

Lemma 2.3.2 (Theorem 4.2 in [1](Abel’s identity)). For any arithmetical
function a(n) let

A(x) =
∑
n≤x

a(n),

where A(x) = 0 if x < 1. Assume f has a continuous derivative on the
interval [y, x], where 0 < y < x. Then we have∑

y<n≤x

a(n) f (n) = A(x) f (x) − A(y) f (y) −
∫ x

y
A(t) f ′(t)dt.

Using Lemma 2.3.2 and (1.5.6) again, the integral on the right hand side
in (2.3.3) is

(2.3.4)
∫ ∞

1
A(x, F)x−s−1dx =

1
s

∞∑
n=1

φ(n, F)
ns .

Since σ > 2, we can apply Lemma1.5.2 and Lemma1.5.3. Hence,
∞∑

n=1

φ(n, F)
ns = ζ(s − 1)

∞∑
n=1

α(n)
ns

= ζ(s − 1)
H(s)
F(s)

.

Therefore, we have

(2.3.5)
∫ ∞

1
E(x, F)x−s−1dx =

ζ(s − 1)
s

H(s)
F(s)

− C(F)
s − 2

.

On the other hand, by (2.1.11),

−
∫ ∞

1
f (x, F)x−sdx =

∫ ∞

1

 ∞∑
n=1

α(n)
n

{ x
n

} x−sdx

=

∫ ∞

1

x
∞∑

n=1

α(n)
n2 −

∞∑
n=1

α(n)
n

[ x
n

] x−sdx.

Since the series of the first term on the above second line is absolutely
convergent, using (1.5.11), (1.5.8),∫ ∞

1

x
∞∑

n=1

α(n)
n2 −

∞∑
n=1

α(n)
n

[ x
n

] x−sdx =

 ∞∑
n=1

α(n)
n2

 ∫ ∞

1
x−s−1dx −

∫ ∞

1
B(x, F)x−sdx
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=
2C(F)
s − 2

−
∫ ∞

1
B(x, F)x−sdx,

where

B(x, F) =
∑
n≤x

φ(n, F)
n

.

Using Lemma 2.3.2 again, we have∫ ∞

1
B(x, F)x−sdx =

1
s − 1

∞∑
n=1

φ(n, F)
ns

=
ζ(s − 1)

s − 1
H(s)
F(s)

.

Therefore, we have

(2.3.6)
∫ ∞

1
f (x, F)x−sdx = −2C(F)

s − 2
+
ζ(s − 1)

s − 1
H(s)
F(s)

.

By inserting (2.3.5) and (2.3.6) into the right hand side in (2.3.2), Lemma
2.3.1 follows. □

By the definition (2.1.14) and Lemma1.5.4, we see that x−σ−1EAN(x, F) ∈
L(1,∞). Also, by (2.1.15) and the definition (2.1.11), we see that EAN(x, F)
is of bounded variation. Hence we can take the inverse Mellin transform in
(2.3.1) by Fact1.3.1, and we obtain

EAN(x, F) =
1

2πi

∫ 3+i∞

3−i∞

{
C(F)
s − 2

+
ζ(s − 1)
s(1 − s)

H(s)
F(s)

}
xsds

=
C(F)
2πi

∫ 3+i∞

3−i∞

xs

s − 2
ds +

1
2πi

∫ 3+i∞

3−i∞

ζ(s − 1)
s(1 − s)

H(s)
F(s)

xsds.(2.3.7)

When we calculate the first integral on the above second line in (2.3.7), we
use the following lemma on contour integrals.

Lemma 2.3.3 (Lemma 4 in [1]). If c > 0, then if a is any positive real
number, we have

1
2πi

∫ c+i∞

c−i∞

az

z
dz =


1 if a > 1,
1
2 if a = 1,
0 if 0 < a < 1.

Using Lemma 2.3.3 and the residue theorem, we have

(2.3.8) EAN(x, F) =
1

2πi

∫
L

ζ(s − 1)
s(1 − s)

H(s)
F(s)

xsds,

where the path of integration L is the same as in (1.3.1). We split the inte-
gral of left hand side in (2.3.8) into three parts

EAN(x, F) =
1

2πi

∫
L
ζ(s − 1)

H(s)
F(s)

{
− 1

s2 −
1
s3 +

1
s3(1 − s)

}
xsds

= − 1
2πi

∫
L
ζ(s − 1)

H(s)
F(s)

xs

s2 ds − 1
2πi

∫
L
ζ(s − 1)

H(s)
F(s)

xs

s3 ds

+
1

2πi

∫
L
ζ(s − 1)

H(s)
F(s)

xs

s3(1 − s)
ds.(2.3.9)
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Since the series (1.5.9) converges absolutely for σ > 2, we can change the
order of summation and integration. By calculating the residue at s = 0, we
have by (1.1.12)

(2.3.10)
1

2πi

∫
L
ζ(s − 1)

H(s)
F(s)

xs

s2 ds = R1(x, F)

and

(2.3.11)
1

2πi

∫
L
ζ(s − 1)

H(s)
F(s)

xs

s3 ds = R2(x, F).

We use the following fact to obtain (2.3.10) and (2.3.11) :

Fact 2.3.4 (Riesz typical means, [17]). For positive integers k and positive
real x put

(2.3.12) Rk(x) =
1
k!

∑
n≤x

an
(
log(x/n)

)k .

Then

Rk(x) =
∫ x

0
Rk−1(u)

du
u
,

where
R0(x) = A(x) =

∑
n≤x

an.

When we calculate the last integral in (2.3.9), we have to consider the
sum, corresponding to the sum in (1.3.4), that is

(2.3.12)
∑
ρ

ζ(ρ − 1)
H(ρ)
F′(ρ)

xρ

ρ3(1 − ρ)
,

where the summation is over non-trivial zeros of F. However, there are two
problems on the sum (2.3.12). First, we do not know the behavior of H(s)
for σ ≤ 1

2 . Therefore, We do not know whether H(ρ) is defined and so, we
do not assume the GRH i.e. F(s) , 0

(
σ > 1

2

)
. Secondly, we can not shift

the line of integration L to the left from the critical line σ = 1
2 . If F is the

Riemann zeta function ζ(s) in (1.5.1), then by (1.5.2) the associated Euler
totient function φ(n, F) corresponds to the Euler totient function φ(n). Since
the Euler degree of ζ(s) equals 1, we have γ(p) = 1 in (1.5.3). By (1.5.5),
we have α(n) = µ(n). By (1.5.12), H(s) = 1 for all s. When H(s) = 1,
the sum (2.3.12) corresponds to the sum on the right hand side in (1.3.4).
Therefore, the above problems are dissolved. To extend Theorem 1.1.5 for
F ∈ Spoly, we have to consider the function for z ∈ H

(2.3.13) s(z, F) =
∑
ρ

H(ρ)
F′(ρ)

ζ(ρ − 1)eρz

which is a generalization for (1.4.1). However, the problem on the behavior
of H(s) for σ ≤ 1

2 is remained. To avoid these problems, we consider the
sum of the case H(s) = 1, that is, the function (2.2.1).We need to gener-
alize Theorem 1.4.1and Theorem 1.4.2 to prove the generalization of The-
orem 1.1.5 for F ∈ Spoly which satisfies some conditions. Obtaining the
Ω-estimate of EAN(x, F) for F ∈ Spoly connects with the generalization of
Theorem1.1.5. Conjecturally, every F ∈ S has an Euler product of type
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(1.5.1) and satisfies the GRH (see [12]).Therefore, proving the generaliza-
tion of Theorem 1.1.5 is to obtain the Ω-estimate of EAN(x, F) for many
L-functions including the Riemann zeta function and is significant. That is
why it is also significant to generalize Theorem 1.4.1 and Theorem 1.4.2
which will be necessary to prove the generalization of Theorem 1.1.5. In
this paper, we could not obtain complete generalizations of Theorem 1.4.1
and Theorem 1.4.2. However, we could obtain results similar to Theorem
1.4.1 and Theorem 1.4.2 for F ∈ Spoly which satisfy some special condi-
tions.
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3. Proof of Theorem 2.1.1

3.1. Preliminaries.
We prove Theorem 2.1.1. We define the auxiliary function for x ≥ 0 by

(3.1.1) R(x) = Er(x) − x f1(x).

First, we prepare the following two lemmas.

Lemma 3.1.1 (LEMMA in [5]). For all positive x,

(3.1.2) R(x) = −
∫ x

0
f1(t)dt,

where the function f1(t) is the same as in (2.1.8).

Proof. Let us observe that R(x) is a continuous function. For x = 0 and for
positive x which is not an integer, it is evident. Let N be a positive integer.
By splitting the series (2.1.8) at N, and considering the limit {(N + x)/n} as
x tending to 0, we see that

f1(N + 0) = −
∞∑

n=1

a(n)
n

{
N + 0

n

}
,

f1(N − 0) = −
∞∑

n=1

a(n)
n

{
N − 0

n

}
.

Since {
N + 0

n

}
−

{
N − 0

n

}
=

0 (n ∤ N),
−1 (n | N)

(see [9], P2691), we have

f1(N + 0) − f1(N − 0) =
∑
n|N

a(n)
n
=

b(N)
N

.

Therefore

R(N + 0) − R(N − 0) = (Er(N + 0) − Er(N − 0)) − N( f1(N + 0) − f1(N − 0))

= b(N) − N · b(N)
N

= 0,

and hence R(N−0) = R(N+0) = R(N). Let x be positive and not an integer.
Take derivatives of the both sides of (3.1.1). Since x is not a positive integer,
we have Er′(x) = −M′(x) = −2αx. Therefore we have

R′(x) = −2αx − f1(x) − x f ′1(x).

For x which is positive and not an integer, we have {x/n}′ = 1/n (see [9],
p2691). Considering the hypothesis on the series (2.1.1), differentiating
term by term we obtain

f ′1(x) = −
∞∑

n=1

a(n)
n
· 1

n
= −2α.

Consequently, we have
R′(x) = − f1(x)

for x which is positive and not an integer. Because of the fact R(0) = 0 and
the continuity of R(x), we have (3.1.2) for all positive x. □
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Lemma 3.1.2 (LEMMA in [5]). Let G be a complex-valued function de-
fined on [0,∞) satisfying

(3.1.3)
∫ x

0
|G(t)|dt

t
< +∞

and the integral equation

(3.1.4) G(x) −
∫ x

0
G(t)

dt
t
= 0

for all x ≥ 0. Then we have

(3.1.5) G(x) = Ax

for some complex number A.

Proof. It is obvious that (3.1.5) satisfies (3.1.3) and (3.1.4) for all x ≥ 0.
Conversely, take a function G(x) arbitrarily satisfying (3.1.3) and (3.1.4) for
all x ≥ 0. By (3.1.3) and (3.1.4), we see that

G(x) =
∫ x

0
G(t)

dt
t

is a continuous function on [0,+∞). Thus, using integral equation again and
using the fundamental theorem of calculus, we see that G(x) is continuously
differentiable on (0,+∞). By taking the derivative of (3.1.4), we have

G′(x) =
G(x)

x
(x > 0).

Thus, we have G(x) = Ax for x > 0 for some A and by the continuity this
holds for x ≥ 0. □

3.2. Proof of Theorem 2.1.1.
Let a function F1(x) be the solution of the Volterra integral equation

of second type (2.1.6) satisfying the condition (2.1.9). Using (2.1.6) and
(3.1.2), from (3.1.1) we have

(3.2.1)
∫ x

0
t−1(F1(t) − t f1(t))dt = F1(x) − x f1(x) (x ≥ 0).

Now we put

(3.2.2) G(x) := F1(x) − x f1(x).

Then, the equation (3.2.1) yields

(3.2.3)
∫ x

0
t−1G(t)dt = G(x) (x ≥ 0).

Using Lemma 3.1.2, we must have (3.1.5). By substituting into (3.2.2), we
have the solution (2.1.7). Conversely, if we assume that F1(x) is a function
of type (2.1.7). Then,

F1(x) −
∫ x

0
F1(t)

dt
t
= ( f1(x) + A)x −

∫ x

0
( f1(t) + A)dt

= ( f1(x) + A)x −
∫ x

0
f1(t)dt − Ax

= x f1(x) −
∫ x

0
f1(t)dt.
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Using (3.1.2) and (3.1.1),

x f1(x) −
∫ x

0
f1(t)dt = x f1(x) + R(x)

= x f1(x) + Er(x) − x f1(x)
= Er(x).

Therefore, the function F1(x) of type (2.1.7) is the solution of the integral
equation (2.1.6) for all x ≥ 0. Since the function f1(x) is a locally bounded
as noted in section 2.1, and A is a constant, it is clear that the function F1(x)
satisfies the condition (2.1.9). The completes the proof. □
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4. Proof of Theorem 2.2.1,2,4 and Corollary 2.2.3

4.1. Some auxiliary results on the Whittaker function.
First, we recall the definition of the Whittaker function which is neces-

sary to show the main theorems.To do this,we introduce some related func-
tions.Secondly,we prepare some auxiliary results e.g.the integral expression
and the asymptotic expansion.

Definition 4.1.1 (The confluent hypergeometric function ( [13])). Let z be a
complex variable, α and γ are parameters which can take arbitrary real and
complex values except that γ , 0,−1,−2, . . .. Moreover,

(4.1.1) (λ)0 = 1, (λ)k =
Γ(λ + k)
Γ(λ)

= λ(λ + 1) · · · (λ + k − 1) (k ∈ N).

We define the confluent hypergeometric function (Kummer’s function) as
follows :

(4.1.2) Φ(α, γ; z) =
∞∑

n=0

(α)n

(γ)n

zn

n!
(|z| < ∞).

By ratio test, the series (4.1.2) is convergence absolutely for all α, γ and
z, except γ , 0,−1,−2, . . .. Hence, (4.1.2) is an analytic and one-valued
function for all z. It is also to be noted that (4.1.2) is a particular solution of
the linear differential equation ( Kummer’s equation )

(4.1.3) z
d2u
dz2 + (γ − z)

du
dz
− αu = 0,

where α, γ are the same as in (4.1.2).

Definition 4.1.2 (The confluent hypergeometric function of the second kind
( [13])). We introduce a new function

Ψ(α, γ; z) =
Γ(1 − γ)
Γ(1 + α − γ)

Φ(α, γ; z) +
Γ(γ − 1)
Γ(α)

z1−γΦ(1 + α − γ, 2 − γ; z),

(| arg z| < π, γ , 0,±1,±2, . . .)(4.1.4)

called the confluent hypergeometric function of the second kind. The condi-
tion γ , 0,±1,±2, . . . in (4.1.4) comes from the condition of the Γ-factors
in the numerator, Φ(α, γ; z) and Φ(1 + α − γ, 2 − γ; z) on the right hand side
in (4.1.4).

Since the function (4.1.4) is a many-valued function of z for α and γ
real or complex, we take its branch which lies in the z-plane cut along the
negative real axis. Also, (4.1.4) is analytic function for all α, γ and z except
γ , 0,−1,−2, . . ..

Definition 4.1.3 (The Whittaker function ( [13])). A class of functions re-
lated to the confluent hypergeometric functions, and often encountered in
the applications, consists of the Whittaker function, defined by the formula

(4.1.5) Wk,µ(z) = zµ+
1
2 e−

z
2Ψ

(
1
2
− k + µ, 2µ + 1; z

)
(| arg z| < π).

By (4.1.4) or (4.1.5), it follows that (4.1.5) is a many-valued function of
z. Therefore, we also take its branch as the same in (4.1.4).
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Theorem 4.1.1 (Barnes type integral for the Whittaker function ( [21], [25])).
The Barnes integral for Wk,µ(z) is
(4.1.6)

Wk,µ(z) =
e−

1
2 zzk

2πi

∫ c+∞i

c−∞i

Γ(s)Γ
(
−s − k − µ + 1

2

)
Γ
(
−s − k + µ + 1

2

)
Γ
(
−k − µ + 1

2

)
Γ
(
−k + µ + 1

2

) zsds,

for | arg z| < 3
2π, and k±µ+ 1

2 , 0, 1, 2, . . .; the contour has loops if necessary
so that the poles of Γ(s) and those of Γ

(
−s − k − µ + 1

2

)
Γ
(
−s − k + µ + 1

2

)
are on opposite sides of it.

In (4.1.6), it holds for all finite values of c provided that the contour of in-
tegration can always be deformed so as to separate the poles Γ(s) and those
of the other Γ-factors.By Stirling’s formula,the integral in (4.1.6) represents
a function of z which is analytic at all points in the domain | arg z| ≤ 3

2π−α,
where α is any positive number.

Theorem 4.1.2 (The asymptotic expansions in z for Ψ(a; b; z) ( [21])). We
find that, as z→ 0,

Ψ(a; b; z) =
Γ(b − 1)
Γ(a)

z1−b + O(|z|Reb−2) (Re b ≥ 2, b , 2),

(4.1.7)

=
Γ(b − 1)
Γ(a)

z1−b + O(| log z|) (b = 2),(4.1.8)

=
Γ(b − 1)
Γ(a)

z1−b + O(1) (1 < Re b < 2),(4.1.9)

=
Γ(1 − b)
Γ(1 + a − b)

+
Γ(b − 1)
Γ(a)

z1−b + O(|z|) (Re b = 1, b , 1),(4.1.10)

= − 1
Γ(a)

{
log z +

Γ′

Γ
(a) + 2C0

}
+ O(|z log z|) (b = 1),(4.1.11)

where C0 is Euler’s constant.

By the definition (4.1.5) and Theorem 4.1.2, we have the following as-
ymptotic expansions in z→ 0 for Wk,µ(z).

Theorem 4.1.3 (The asymptotic expansions in z→ 0 for Wk,µ(z)).

Wk,µ(z) =
Γ(2µ)

Γ
(

1
2 + µ − k

)z
1
2−µ + O(z

3
2−Reµ)

(
Re µ ≥ 1

2
, µ ,

1
2

)
,

(4.1.12)

=
1

Γ(1 − k)
+ O(|z log z|)

(
µ =

1
2

)
,

(4.1.13)

=
Γ(2µ)

Γ
(

1
2 + µ − k

)z
1
2−µ + O(|z|Reµ+ 1

2 )
(
0 < Re µ <

1
2

)
,

(4.1.14)

=
Γ(−2µ)

Γ
(

1
2 − µ − k

)zµ+
1
2 +

Γ(2µ)

Γ
(
µ + 1

2 − k
)z−µ+

1
2 + O(|z|Reµ+ 3

2 ) (Re µ = 0, µ , 0),

(4.1.15)
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= − z
1
2

Γ
(

1
2 − k

) (
log z +

Γ′

Γ

(
1
2
− k

)
+ 2C0

)
+ O(|z| 32 | log z|) (µ = 0).

(4.1.16)

4.2. The convergence of f (z, F).
In this section, we see that the series in (2.2.1) converges.We use the

following lemma.

Lemma 4.2.1 (Lemma 4. in [22]). Let F ∈ S and let T be sufficiently large.
Moreover, let H = D log log T be fixed, where D is a large positive constant.
In any subinterval of length 1 in [T − H,T + H] there are lines t = t0 such
that

(4.2.1) |F(σ + it0)|−1 = O(exp(C(log T )2)),

uniformly in σ ≥ −2, where C is a positive constant.

Let T be sufficiently large.We fix H = D log log T , where D is a large
positive constant.We take any subinterval [n, n + 1], where n is a positive
integer in [T −H,T +H]. Then, by Lemma 4.2.1 there are lines t = Tn such
that

|F(σ + iTn)|−1 = O(exp(C1(log T )2))(4.2.2)

uniformly forσ ≥ −2, where C1 is a positive constant. Since Tn is contained
in the interval [T − H,T + H], we can see that Tn ∼ T as n tends to infinity.
Let α = 1

2 min{Im ρ; Im ρ > 0} and L denote the contour consisting of line
segments

[b, b + iTn] , [b + iTn, a + iTn] , [a + iTn, a] ,
[
a,

a + b
2
+ iα

]
,

[
a + b

2
+ iα, b

]
,

where max
{
−3

2 ,
1
2 max {Re ρ; Re ρ < 0}

}
< a < 0, b > 5

2 . We assume that the
real part of s = a+ it (t ∈ R) does not coincide the poles of Γ(s+µ)Γ(s−µ),
where 0 ≤ µ < 1. We consider the following contour integral round L :

(4.2.3)
∫

L

ζ(s − 1)
F(s)

eszds.

Since we assume the order of ρ is simple, we have by residue theorem∫
L

ζ(s − 1)
F(s)

eszds =
∫ a

a+iTn

ζ(s − 1)
F(s)

ezsds +
∫

L

ζ(s − 1)
F(s)

ezsds

+

∫ b+iTn

b

ζ(s − 1)
F(s)

ezsds +
∫ a+iTn

b+iTn

ζ(s − 1)
F(s)

ezsds

= 2πi
∑
ρ

0<Im ρ<Tn

eρzζ(ρ − 1)
F′(ρ)

,(4.2.4)

where the path of integration L consists of two line segments
[
a, a+b

2 + iα
]

and
[

a+b
2 + iα, b

]
. We estimate the integral along the line segment [b+iTn, a+

iTn]. By (4.2.1), for a ≤ σ ≤ b, we have the estimate

|F(σ + iTn)|−1 = O(exp(C(log T )2)).
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For z = x + iy (y > 0),∣∣∣∣∣∣
∫ b+iTn

a+iTn

ζ(s − 1)
F(s)

ezsds

∣∣∣∣∣∣
≤

∫ b+iTn

a+iTn

∣∣∣∣∣ζ(s − 1)
F(s)

ezs
∣∣∣∣∣ |ds|

≪
∫ b

a
|ζ(σ − 1 + iTn)| exp(C(log T )2 + xσ − yTn)dσ

≪ (b − a) exp{C(log T )2 − yTn + |x|(|a| + |b|)}T c
n ,(4.2.5)

where the constant c may depend on a, b. The last term on the right hand
side in the above tends to zero as n tends to infinity. By Theorem 2.2.1,
the convergence of the other integrals in (4.2.4) are ensured (see (2.2.5)-
(2.2.7)). Therefore, the series in (2.2.1) is convergent. □

4.3. Proof of Theorem 2.2.1.
By (4.2.4), for z ∈ H we have

f1(z, F) + f2(z, F) + f3(z, F) = 2πi f (z, F),

where f1(z, F), f2(z, F), f3(z, F) denote corresponding integrals in (4.2.4),
respectively. First, we calculate the integral

f3(z, F) =
∫ b+i∞

b

ζ(s − 1)
F(s)

ezsds.

Using the Dirichlet series expansion (2.2.2), we have

f3(z, F) =
∫ b+i∞

b

 ∞∑
n=1

g(n)
ns

 ezsds

=

∞∑
n=1

g(n)
∫ b+i∞

b
es(z−log n)ds

= −ebz
∞∑

n=1

g(n)
nb(z − log n)

.(4.3.1)

The interchange of the order of integration and summation is justified for
z ∈ H by the absolute and uniform convergence of the series on the third
line in (4.3.1).

Secondly, we prove the function (2.2.7) is analytic on the whole complex
plane.Since the length of L is finite, ζ(s − 1) = O(1). Also, there are no
zeros on L, the function {F(s)}−1 is bounded. Therefore, for z = x + iy and
s = σ + it (a ≤ σ ≤ b, 0 ≤ t ≤ α),∫

L

∣∣∣∣∣ζ(s − 1)
F(s)

ezs
∣∣∣∣∣ |ds| ≪

∫
L

exp(xσ − yt)|ζ(s − 1)||ds|

= O
(∫

L
exp(xσ − yt)|ds|

)
.

In the case y ≥ 0,∫
L

exp(xσ − yt)|ds| ≪
∫

L
exp(xσ)|ds| ≪x 1.
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In the case y < 0, ∫
L

exp(xσ − yt)|ds| ≪x,y 1.

Hence the function (2.2.7) is analytic on the whole complex plane.
Finally, we prove the function (2.2.6) is analytic on H. Here, we use the

following two lemmas related to the Selberg class.

Definition 4.3.1 (p29 in [18]). Let F ∈ S,

(4.3.2) dF = 2
r∑

j=1

λ j

is the degree of F(s).

Lemma 4.3.1 (Theorem 3.1 in [3]). If F ∈ S, then F = 1 or dF ≥ 1.

Lemma 4.3.2 ( [14].(8), p423). For σ < 0,

(4.3.3) |F(σ + it)| ≍ tdF ( 1
2−σ)|F(1 − σ + it)|

as t → ∞.

Here, we use the notation f ≍ g, if both f ≪ g and f ≫ g hold. Using
Lemma 4.3.2, we have

t(
1
2−a)dF |F(1 − a + it)| ≪ |F(a + it)| ≪ t(

1
2−a)dF |F(1 − a + it)|.

Since max
{
−3

2 ,
1
2 max {Re ρ; Re ρ < 0}

}
< a < 0, so {F(1 − a + it)}−1 is

bounded. Hence, we have

|F(a + it)|−1 ≪ t−( 1
2−a)dF .

Also, by the functional equation for ζ(s),

ζ(s − 1) = −1
π

(2π)s−1 cos
(
π

2
s
)
Γ(2 − s)ζ(2 − s)

≪ |t| 32−a.

In the case F = 1, we have∫ a

a+i∞

∣∣∣∣∣ζ(s − 1)
F(s)

ezs
∣∣∣∣∣ |ds| ≪

∫ ∞

0
t

3
2−aeax−ytdt

≪x,y 1
≪ 1.

Next consider the case F , 1. Now, F(s) belongs toSpoly, so F(s) is analytic
except the point s = 1. Since max

{
−3

2 ,
1
2 max {Re ρ; Re ρ < 0}

}
< a < 0,

|F(a + it)|−1 is bounded near t = 0. Also, dF ≥ 1 by Lemma 4.3.1, we have∫ a

a+i∞

∣∣∣∣∣ζ(s − 1)
F(s)

ezs
∣∣∣∣∣ |ds| ≪

∫ ∞

0

eax−yt

|F(a + it)| t
3
2−adt

≪
∫ ∞

0
t−(

1
2−a)dF+

3
2−aeax−ytdt

<

∫ ∞

0
t−

1
2 dF+

3
2−aeax−ytdt.

Therefore, the integral on the above third line is absolutely and uniformly
convergent on every compact subset ofH. Consequently, the function (2.2.6)
is analytic for y = Im z > 0. □

27



4.4. Proof of Theorem 2.2.2. We prove that the function f (z, F)(z = x+iy)
has a meromorphic continuation to y > −π. By Theorem 2.2.1, the function

f1(z, F) =
∫ a

a+i∞

ζ(s − 1)
F(s)

ezsds

= −
∫ a+i∞

a

ζ(s − 1)
F(s)

ezsds

is convergent for y > 0. We recall the hypotheses that (r, λ j) = (1, 1) in
(1.5.15) and 0 ≤ µ < 1. We rewrite the functional equation (1.5.15) under
these hypotheses as follows :

QsΓ(s + µ)F(s) = ωQ1−sΓ(1 − s + µ)F(1 − s)

= ωQ1−sΓ(1 − s + µ)F(1 − s),

where the conditions of Q and ω are the same as noted in (1.5.15). Hence

(4.4.1)
1

F(s)
= ωQ2s−1 Γ(s + µ)

Γ(1 − s + µ)
1

F(1 − s)
.

Using the following elementary formula for the Γ-function

Γ(s)Γ(1 − s) =
π

sin πs
,

(4.4.1) yields

(4.4.2)
1

F(s)
=
ω

π
Q2s−1 sin π(s − µ)Γ(s + µ)Γ(s − µ)

1

F(1 − s)
.

By (4.4.2) and the functional equation for ζ(s), we have

f1(z, F)

= −
∫ a+i∞

a

ζ(s − 1)
F(s)

ezsds

=
ω

2π3Q

∫ a+i∞

a
(2πQ2)s cos

( s
2
π
)
Γ(2 − s)ζ(2 − s) sin π(s − µ)

× Γ(s + µ)Γ(s − µ)
ezs

F(1 − s)
ds

=
ωe−µπi

(2π)3Qi

∫ a+i∞

a
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s − µ)Γ(s + µ)Γ(2 − s)e(z+ 3

2πi)sds

− ωeµπi

(2π)3Qi

∫ a+i∞

a
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s − µ)Γ(s + µ)Γ(2 − s)e(z− π2 i)sds

+
ωe−µπi

(2π)3Qi

∫ a+i∞

a
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s − µ)Γ(s + µ)Γ(2 − s)e(z+ π2 i)sds

− ωeµπi

(2π)3Qi

∫ a+i∞

a
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s − µ)Γ(s + µ)Γ(2 − s)e(z− 3

2πi)sds

= f11(z, F) + f12(z, F) + f13(z, F) + f14(z, F),
(4.4.3)

28



where f11(z, F), f12(z, F), f13(z, F), f14(z, F) denote the corresponding inte-
grals in (4.4.3) respectively. By Stirling’s formula

Γ(s + µ)Γ(s − µ)Γ(2 − s) ≍ e−
3
2π|t||t|a+ 1

2

as t tends to infinity and max
{
−3

2 ,
1
2 max {Re ρ; Re ρ < 0}

}
< a < 0, f11(z, F)

is analytic for y > −3π, f12(z, F) for y > −π, f13(z, F) for y > −2π, f14(z, F)
for y > 0. Splitting the integral in f14(z, F), we have

f14(z, F) = − ωeµπi

(2π)3Qi

∫ a+i∞

a
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s − µ)Γ(s + µ)Γ(2 − s)e(z− 3

2πi)sds

=
ωeµπii
(2π)3Q

{∫ a+i∞

a−i∞
−

∫ a

a−i∞

}
(2πQ2)s ζ(2 − s)

F(1 − s)

× Γ(s − µ)Γ(s + µ)Γ(2 − s)e(z− 3
2πi)sds.

We consider

(4.4.4) I1(z, F) =
∫ a+i∞

a−i∞
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s−µ)Γ(s+µ)Γ(2− s)e(z− 3

2πi)sds

and

(4.4.5) I2(z, F) =
∫ a

a−i∞
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s−µ)Γ(s+µ)Γ(2− s)e(z− 3

2πi)sds.

Here, we recall the hypothesis that the real part of s = a+ it (t ∈ R) does not
coincide with the poles of Γ(s + µ)Γ(s − µ), where 0 ≤ µ < 1. By Stirling’s
formula, we can see that the integral I2(z, F) is convergent for y < 3π. Since
the function f14(z, F) is analytic for y > 0, the integral I1(z, F) is convergent
for 0 < y < 3π. Using the Dirichlet series expansion (2.2.2), we have
formally

I1(z, F) =
∫ a+i∞

a−i∞
(2πQ2)s

 ∞∑
n=1

1
n2−s

  ∞∑
k=1

µF(k)
k1−s

Γ(s − µ)Γ(s + µ)Γ(2 − s)e(z− 3
2πi)sds

=

∞∑
k,n=1

µF(k)
kn2

∫ a+i∞

a−i∞
es{log(2πnkQ2)− 3

2πi+z}Γ(s − µ)Γ(s + µ)Γ(2 − s)ds.

(4.4.6)

The justification of the interchange of the order of integration and summa-
tion is ensured as follows : For 0 < y < 3π, we have∫ a+i∞

a−i∞

∣∣∣∣es{log(2nkπQ2)+z− 3
2πi}Γ(s − µ)Γ(s + µ)Γ(2 − s)

∣∣∣∣ |ds|

≪ (nk)a · eax
∫ ∞

−∞
e−(y− 3

2π)t− 3
2π|t||t|a+ 1

2 dt

= (nk)a · eax

{∫ 0

−∞
e−(y− 3

2π)t+ 3
2πt(−t)a+ 1

2 dt +
∫ ∞

0
e−(y− 3

2π)t− 3
2πtta+ 1

2 dt
}

≪a,x,y (nk)a

≪a (nk)a.
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Hence, we have
∞∑

k,n=1

∣∣∣∣∣∣µF(k)
kn2

∫ a+i∞

a−i∞
es{log(2nkπQ2)+z− 3

2πi}Γ(s − µ)Γ(s + µ)Γ(2 − s)ds

∣∣∣∣∣∣ ≪a

∞∑
k,n=1

∣∣∣∣∣∣ µF(k)
k1−an2−a

∣∣∣∣∣∣ .
Since the series for k is absolutely convergent by (2.2.2), the above series
of the left hand side is convergent absolutely and uniformly. Therefore, the
interchange of the order of integration and summation is justified for 0 <
y < 3π. Let m1,m2 be non-negative integers. The residue of the integrand
in (4.4.6) at s = µ − m1 is

R(1)
k,n,m1

(z, µ) = lim
s→µ−m1

{s − (µ − m1)}Γ(s − µ)Γ(s + µ)Γ(2 − s)e{log(2πnkQ2)− 3
2πi+z}s

=
(−1)m1

m1!
Γ(2µ − m1)Γ(2 − µ + m1)(2πnkQ2)µ−m1e(z− 3

2πi)(µ−m1).(4.4.7)

Similarly, the residue of the integrand in (4.4.6) at s = −µ − m2 is
(4.4.8)

R(1)
k,n,m2

(z, µ) =
(−1)m2

m2!
Γ(−2µ−m2)Γ(2+ µ+m2)(2πnkQ2)−µ−m2e(z− 3

2πi)(−µ−m2).

When µ = 0, {Γ(s)}2 has a double pole at s = −m, where m is a non-negative
integer. For every positive ϵ, using the Taylor expansion for the every factor
of the integrand in (4.4.6) at s = −m + ϵ, we see that the residue of the
integrand in (4.4.6) at s = −m is
(4.4.9)

R(1)
k,n,m,0(z) =

m + 1
m!

e−(z− 3
2πi)m

(2πnkQ2)m

log(2πnkQ2) + z − 3
2
πi +

m∑
k1=1

1
k1
−C0 −

1
m + 1

 .
Similarly, when µ = 1

2 , Γ
(
s − 1

2

)
Γ
(
s + 1

2

)
=

(
s − 1

2

) {
Γ
(
s − 1

2

)}2
has a dou-

ble pole at s = 1
2−m. In the same way, the residue of the integrand in (4.4.6)

at s = 1
2 − m is

R(1)
k,n,m, 1

2
(z) =

Γ
(

3
2 + m

)
(m!)2

e( 1
2−m)(z− 3

2πi)

(2πnkQ2)m− 1
2

{
m

(
ψ

(
3
2
+ m

)
− 2ψ(m + 1)

)
− m

(
log(2πnkQ2) + z − 3

2
πi

)
+ 1

}
,(4.4.10)

where ψ(s) is the logarithmic derivative of Γ(s), i.e.

(4.4.11) ψ(s) :=
Γ′

Γ
(s).

Since for 0 < y < 3π integrals along the upper and the lower side of the
contour tend to 0, for µ with 0 < µ < 1 except µ , 1

2 , we have by theorem
of residues ∫ a+i∞

a−i∞
es{log(2nkπQ2)+z− 3

2 πi}Γ(s − µ)Γ(s + µ)Γ(2 − s)ds

= −
∫

C
es{log(2nkπQ2)+z− 3

2 πi}Γ(s − µ)Γ(s + µ)Γ(2 − s)ds

− 2πi

 M∑
m1=0

R(1)
k,n,m1

(z, µ) +
M′∑

m2=0

R(1)
k,n,m2

(z, µ)

 ,(4.4.12)
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where C is the contour which the poles of Γ(2− s) and those of Γ(s+µ)Γ(s−
µ) are on opposite sides of it. Of course, when µ = 0, 1

2 , the terms of residue
in (4.4.12) are replaced by

(4.4.13)
M′′∑
m=0

R(1)
k,n,m,0(z),

M′′∑
m=0

R(1)
k,n,m, 1

2
(z).

We use the same convention hereafter. Putting w = 2 − s in the integral
round the contour C on the right hand side in (4.4.12) and using Barnes
type integral for the Whittaker function (4.1.6), for µ with 0 ≤ µ < 1 and
|y − 3

2π| <
3
2π, the integral round the contour C in (4.4.12) is

(4.4.14)

2πi(2πnkQ2)
1
2 exp

 e
3
2πi−z

4πnkQ2 +
z
2
− 3

4
πi

Γ(2 − µ)Γ(2 + µ)W− 3
2 ,µ

 e
3
2πi−z

2πnkQ2

 .
Therefore, we have

I1(z, F) =
∞∑

k,n=1

µF(k)
kn2

2πi · (2πnkQ2)
1
2 exp

 e
3
2 πi−z

4πnkQ2 +
z
2
− 3

4
πi


× Γ(2 − µ)Γ(2 + µ)W− 3

2 ,µ

 e
3
2 πi−z

2πnkQ2

 − 2πi

 M∑
m1=0

R(1)
k,n,m1

(z, µ) +
M′∑

m2=0

R(1)
k,n,m2

(z, µ)


 .

(4.4.15)

The following lemma ensures the convergence for the series on the right
hand side in (4.4.15).

Lemma 4.4.1. For F ∈ Spoly with (r, λ j) = (1, 1) and 0 ≤ µ < 1, the series
on the right hand side in (4.4.15) is absolutely and uniformly convergent on
every compact subset on the whole complex plane.

We will prove Lemma 4.4.1 in the next section. By Lemma 4.4.1, for
F ∈ Spoly whose (r, λ j) = (1, 1) in (1.5.15) and 0 ≤ µ < 1, we have the
following analytic continuation of f1(z, F) for y > −π :

f1(z, F) =
ωe−µπi

(2π)3Qi

∫ a+i∞

a
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s − µ)Γ(s + µ)Γ(2 − s)e(z+ 3

2 πi)sds

− ωeµπi

(2π)3Qi

∫ a+i∞

a
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s − µ)Γ(s + µ)Γ(2 − s)e(z− π

2 i)sds

+
ωe−µπi

(2π)3Qi

∫ a+i∞

a
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s − µ)Γ(s + µ)Γ(2 − s)e(z+ π

2 i)sds

+
ωeµπii
(2π)3Q

∞∑
k,n=1

µF(k)
kn2 × 2πi

(2πnkQ2)
1
2 exp

 e
3
2 πi−z

4πnkQ2 +
z
2
− 3

4
πi


× Γ(2 − µ)Γ(2 + µ)W− 3

2 ,µ

 e
3
2 πi−z

2πnkQ2

 − M∑
m1=0

R(1)
k,n,m1

(z, µ) −
M′∑

m2=0

R(1)
k,n,m2

(z, µ)


+

ωeµπi

(2π)3Qi

∫ a

a−i∞
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s − µ)Γ(s + µ)Γ(2 − s)e(z− 3

2 πi)sds.(4.4.16)

The first is analytic for y > −3π, the second for y > −π, the third for
y > −2π, the fourth is analytic on the whole complex plane by Lemma
4.4.1, and the next is analytic for y < 3π. Therefore, (4.4.16) completes the
proof of the continuation of f (z, F) to the region y > −π. □
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4.5. Proof of Lemma 4.4.1. We prove Lemma 4.4.1. First, we consider
the case µ > 1

2 . By the asymptotic expansion (4.1.12),

W− 3
2 ,µ

 e
3
2πi−z

2πnkQ2

 = Γ(2µ)
Γ(2 + µ)

 e
3
2πi−z

2πnkQ2

 1
2−µ

+ O
 |e( 3

2πi−z)( 3
2−µ)|

(2πnkQ2)
3
2−µ

 .
Hence, the inside of the curly brackets on the right hand side of (4.4.15) is

2πi(2πnkQ2)
1
2 exp

 e
3
2πi−z

4πnkQ2 +
z
2
− 3

4
πi

Γ(2 − µ)Γ(2 + µ)W− 3
2 ,µ

 e
3
2πi−z

2πnkQ2


−2πi

 M∑
m1=0

R(1)
k,n,m1

(z, µ) +
M′∑

m2=0

R(1)
k,n,m2

(z, µ)


= 2πi(2πnkQ2)µ exp

 e
3
2πi−z

4πnkQ2 −
3
2
µπi + µz

Γ(2 − µ)Γ(2µ)

+OQ,µ,x

(
1

(2πnkQ2)1−µ exp
(

e−x

4πnkQ2

))
−2πi

 M∑
m1=0

R(1)
k,n,m1

(z, µ) +
M′∑

m2=0

R(1)
k,n,m2

(z, µ)

 .
Now, by the Taylor expansion

exp
 e

3
2πi−z

4πnkQ2

 = 1 + O
∣∣∣∣∣∣ e

3
2πi−z

4πnkQ2

∣∣∣∣∣∣


= 1 + O
(

e−x

4πnkQ2

)
(4.5.1)

as n, k tend to infinity and (4.4.7), (4.4.8), we have

2πi(2πnkQ2)
1
2 exp

 e
3
2πi−z

4πnkQ2 +
z
2
− 3

4
πi

Γ(2 − µ)Γ(2 + µ)W− 3
2 ,µ

 e
3
2πi−z

2πnkQ2


−2πi

 M∑
m1=0

R(1)
k,n,m1

(z, µ) +
M′∑

m2=0

R(1)
k,n,m2

(z, µ)


= OQ,µ,x

(
1

(nk)1−µ

)
+ OQ,µ,x

(
1

(nk)1−µ +
1

(nk)2−µ

)
−2πi

 M∑
m1=1

R(1)
k,n,m1

(z, µ) +
M′∑

m2=0

R(1)
k,n,m2

(z, µ)


≪ OQ,µ,x

(
1

(nk)1−µ

)
+

 M∑
m1=1

∣∣∣R(1)
k,n,m1

(z, µ)
∣∣∣ + M′∑

m2=0

∣∣∣R(1)
k,n,m2

(z, µ)
∣∣∣

≪Q,µ,x OQ,µ,x

(
1

(nk)1−µ

)
+

M∑
m1=1

1
(nk)m1−µ

+

M′∑
m2=0

1
(nk)m2+µ

= OQ,µ,x

(
1

(nk)1−µ

)
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Hence, I1(z, F) is evaluated as follows :

I1(z, F) ≪Q,µ,x

∞∑
k,n=1

|µF(k)|
kn2 · OQ,µ,x

(
1

(nk)1−µ

)

= OQ,µ,x

 ∞∑
k,n=1

|µF(k)|
k2−µn3−µ

 .
Therefore, the series on the right hand side in (4.4.15) is convergent for
1
2 < µ < 1.

Secondly, in the case µ = 1
2 , by (4.1.13),

W− 3
2 ,

1
2

 e
3
2πi−z

2πnkQ2

 = 1

Γ
(

5
2

) + Oy

(
e−x

2πnkQ2 log
(

e−x

2πnkQ2

))

=
1

Γ
(

5
2

) + Oy

( e−x

2πnkQ2

)1−δ ,
where δ is any positive real number. By the same calculation as in the first
case and using (4.4.10), the inside of the curly brackets on the right hand
side of (4.4.15) is evaluated as follows :

2πi(2πnkQ2)
1
2 exp

 e
3
2πi−z

4πnkQ2 +
z
2
− 3

4
πi

Γ (3
2

)
Γ

(
5
2

)
W− 3

2 ,
1
2

 e
3
2πi−z

2πnkQ2


−2πi

M′′∑
m=0

R(1)
k,n,m, 1

2
(z)

≪ OQ,x,y

(
1

(nk)
1
2−δ

)
+

M′′∑
m=1

log nk

(nk)m− 1
2

= OQ,x,y,M′′

(
1

(nk)
1
2−δ

)
.

Hence, I1(z, F) is evaluated as follows :

I1(z, F) ≪
∞∑

k,n=1

|µF(k)|
kn2 · OQ,x,y,M′′

(
1

(nk)
1
2−δ

)

= OQ,x,y,M′′

 ∞∑
k,n=1

|µF(k)|
k

3
2−δn

5
2−δ

 .
Therefore, the series on the right hand side in (4.4.15) is convergent for
µ = 1

2 .
Thirdly, in the case 0 < µ < 1

2 , by (4.1.14),

W− 3
2 ,µ

 e
3
2πi−z

2πnkQ2

 = Γ(2µ)
Γ(2 + µ)

 e
3
2πi−z

2πnkQ2

 1
2−µ

+ O
 e−x(µ+ 1

2 )

(2πnkQ2)µ+
1
2


and

2πi(2πnkQ2)
1
2 exp

 e
3
2πi−z

4πnkQ2 +
z
2
− 3

4
πi

Γ(2 − µ)Γ(2 + µ)W− 3
2 ,µ

 e
3
2πi−z

2πnkQ2


33



−2πi

 M∑
m1=0

R(1)
k,n,m1

(z, µ) +
M′∑

m2=0

R(1)
k,n,m2

(z, µ)


≪Q,µ,x OQ,µ,x

(
1

(nk)1−µ

)
+

M∑
m1=1

1
(nk)m1−µ

+

M′∑
m2=0

1
(nk)m2+µ

= OQ,µ,x

(
1

(nk)1−µ

)
.

Therefore, the series on the right hand side in (4.4.15) is convergent for
0 < µ < 1

2 .
Finally, in the case µ = 0, by (4.1.16),

W− 3
2 ,0

 e
3
2πi−z

2πnkQ2

 = − e
3
4πi− z

2

(2πnkQ2)
1
2

{
log

(
e−x

2πnkQ2

)
+

(
3
2
π − y

)
i +
Γ′

Γ
(2) + 2C0

}
+ OQ,x

(
1

(nk)
3
2

log
(

e−x

2πnkQ2

))
.

Using the recurrence formula

(4.5.2) ψ(s + 1) =
1
s
+ ψ(s)

(see [13]) and (4.1.16), the inside of the curly brackets on the right hand
side of (4.1.15) is evaluated as follows :

2πi(2πnkQ2)
1
2 exp

 e
3
2πi−z

4πnkQ2 +
z
2
− 3

4
πi

Γ(2)2W− 3
2 ,0

 e
3
2πi−z

2πnkQ2

 − 2πi
M′′∑
m=0

R(1)
k,n,m,0(z)

= −2πi
(
Γ′

Γ
(2) +C0 − 1

)
+ OQ,x,y

(
1
nk

log
(

e−x

2πnkQ2

))
− 2πi

M′′∑
m=1

R(1)
k,n,m,0(z)

= OQ,x,y

(
1
nk

log
(

e−x

2πnkQ2

))
− 2πi

M′′∑
m=1

R(1)
k,n,m,0(z)

= OQ,x,y

(
1
nk
· 1

(nk)1−δ

)
− 2πi

M′′∑
m=1

R(1)
k,n,m,0(z)

= OQ,x,y

(
1

(nk)2−δ

)
− 2πi

M′′∑
m=1

R(1)
k,n,m,0(z)

≪Q,x,y OQ,x,y

(
1

(nk)2−δ

)
+

M′′∑
m=1

log nk
(nk)m

≪ OM′′

(
1

(nk)1−δ

)
,

where δ is any positive real number. Hence, I1(z, F) is evaluated as follows
:

I1(z, F) ≪M′′

∞∑
k,n=1

|µF(k)|
kn2 · 1

(nk)1−δ
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=

∞∑
k,n=1

|µF(k)|
k2−δn3−δ .

Therefore, the series on the right hand side in (4.4.15) is convergent for
µ = 0. In summary,

I1(z, F) ≤
∞∑

k,n=1

|µF(k)|
kn2 ·max

{
1

(nk)1−µ ,
1

(nk)
1
2−δ

}
.(4.5.3)

By (4.1.2),(4.1.4) and (4.1.5), the Whittaker function W− 3
2 ,µ

(
e

3
2 πi−z

2πnkQ2

)
is ana-

lytic for all z ∈ C. Therefore, We have the desired result. □

4.6. Proof of Corollary 2.2.3 and another proof. We prove Corollary
2.2.3. We use the following lemma similar to Lemma 4.2.1. We can prove
this lemma by modifying the proof of Lemma 4.2.1.

Lemma 4.6.1. Let F ∈ S and let T be sufficiently large.Moreover, let H =
D log log T be fixed, where D is a large positive constant.In any subinterval
of length 1 in [−T − H,−T + H] there are lines t = t0 such that

(4.6.1) |F(σ + it0)|−1 = O(exp(C(log T )2))

uniformly in σ ≥ −2.

We consider the integral

(4.6.2)
∫

L ′

ζ(s − 1)
F(s)

ezsds,

where L ′ is the contour symmetrical upon the real axis to L in (4.2.3). By
Lemma 4.6.1, the integral along the lower side of the contour tends to 0 as
n tends to infinity for z ∈ H−. Then, we have by residue theorem and the
definition (2.2.9), in a similar manner as (4.2.4),

(4.6.3) 2πi f −(z, F) = f −1 (z, F) + f −2 (z, F) + f −3 (z, F),

where

(4.6.4) f −1 (z, F) =
∫ a−i∞

a

ζ(s − 1)
F(s)

eszds

is analytic on H−,

(4.6.5) f −2 (z, F) =
∫

L

ζ(s − 1)
F(s)

eszds

is analytic on the whole complex plane. We consider the same setting as in
L for the curve L. In the same way as obtaining (4.3.1),

f −3 (z, F) =
∫ b

b−i∞

 ∞∑
n=1

g(n)
ns

 ezsds

=

∞∑
n=1

g(n)
∫ b

b−i∞
es(z−log n)ds

= ebz
∞∑

n=1

g(n)
nb(z − log n)

(4.6.6)

is meromorphic on the whole complex plane. Now we already know that
f −1 (z, F) is analytic for y < 0, and we have to continue to y < π just as in the
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case of f1(z, F) (see Section 4.4). By the functional equation for ζ(s) and
F(s), we have

f −1 (z, F) =
∫ a−i∞

a

ζ(s − 1)
F(s)

ezsds

= −
∫ a

a−i∞

ζ(s − 1)
F(s)

ezsds

= f −11(z, F) + f −12(z, F) + f −13(z, F) + f −14(z, F),(4.6.7)

where
(4.6.8)

f −11(z, F) =
ωe−µπi

(2π)3Qi

∫ a

a−i∞
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s+µ)Γ(s−µ)Γ(2− s)e(z+ 3

2πi)sds

is analytic for y < 0,
(4.6.9)

f −12(z, F) = − ωeµπi

(2π)3Qi

∫ a

a−i∞
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s+µ)Γ(s−µ)Γ(2−s)e(z− π2 i)sds

for y < 2π,
(4.6.10)

f −13(z, F) =
ωe−µπi

(2π)3Qi

∫ a

a−i∞
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s+µ)Γ(s−µ)Γ(2− s)e(z+ π2 i)sds

for y < π,
(4.6.11)

f −14(z, F) = − ωeµπi

(2π)3Qi

∫ a

a−i∞
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s+µ)Γ(s−µ)Γ(2−s)e(z− 3

2πi)sds

for y < 3π. Splitting the integral on the right hand side in (4.6.8) just as in
the case of f14(z, F), we have

f −11(z, F) = I−1 (z, F) + I−2 (z, F),

where
(4.6.12)

I−1 (z, F) =
ωe−µπi

(2π)3Qi

∫ a+i∞

a−i∞
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s+µ)Γ(s−µ)Γ(2− s)e(z+ 3

2πi)sds

and
(4.6.13)

I−2 (z, F) = − ωe−µπi

(2π)3Qi

∫ a+i∞

a
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s+µ)Γ(s−µ)Γ(2−s)e(z+ 3

2πi)sds.

We see that the integral I−2 (z, F) is convergent for y > −3π by the same way
as in (4.4.5). Since f −11(z, F) is analytic for y < 0, the integral I−1 (z, F) is
convergent for −3π < y < 0 and we can calculate I−1 (z, F) for −3π < y < 0
in a similar way as (4.4.4) (Section 4.4). Let m1,m2 and m be non-negative
integers. By taking the path of integration C in (4.4.12), we have for 0 ≤
µ < 1 and |y + 3

2π| <
3
2π

I−1 (z, F) =
ωe−µπi

(2π)3Qi

∞∑
k,n=1

µF(k)
kn2 × 2πi

(2πnkQ2)
1
2 exp

3
4
πi +

z
2
+

e−
3
2 πi−z

4πnkQ2


× Γ(2 + µ)Γ(2 − µ)W− 3

2 , µ

 e−
3
2 πi−z

2πnkQ2

 − M∑
m1=0

R(2)
k,n,m1

(z, µ) −
M′∑

m2=0

R(2)
k,n,m2

(z, µ)

 ,(4.6.14)
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where

R(2)
k,n,m1

(z, µ) =
(−1)m1

m1!
Γ(2µ − m1)Γ(2 − µ + m1)(2πnkQ2)µ−m1e(z+ 3

2πi)(µ−m1),

(4.6.15)

R(2)
k,n,m2

(z, µ) =
(−1)m2

m2!
Γ(−2µ − m2)Γ(2 + µ + m2)(2πnkQ2)−µ−m2e(z+ 3

2πi)(−µ−m2),

(4.6.16)

R(2)
k,n,m,0(z) =

m + 1
m!

e−(z+ 3
2πi)m

(2πnkQ2)m

log(2πnkQ2) + z +
3
2
πi +

m∑
k1=1

1
k1
−C0 −

1
m + 1


(4.6.17)

and

R(2)
k,n,m, 1

2
(z) =

Γ
(

3
2 + m

)
(m!)2

e( 1
2−m)(z+ 3

2πi)

(2πnkQ2)m− 1
2

{
m

(
ψ

(
3
2
+ m

)
− 2ψ(m + 1)

)
− m

(
log(2πnkQ2) + z +

3
2
πi

)
+ 1

}
(4.6.18)

are residues of the integrand in (4.6.12) at s = µ − m1,−µ − m2,−m and
1
2 − m respectively. The convergence of the series on the right hand side in
(4.6.14) follows in a similar manner as the consideration in (4.4.15). Finally,
by (4.6.7)-(4.6.18) we obtain the following continuation of f −1 (z, F) to y < π
: For F ∈ Spoly whose (r, λ j) = (1, 1) in (1.5.15) and 0 ≤ µ < 1,

f −1 (z, F) =
ωe−µπi

(2π)3Qi

∞∑
k,n=1

µF(k)
kn2 × 2πi

(2πnkQ2)
1
2 exp

3
4
πi +

z
2
+

e−
3
2 πi−z

4πnkQ2


× Γ(2 + µ)Γ(2 − µ)W− 3

2 , µ

 e−
3
2 πi−z

2πnkQ2

 − M∑
m1=0

R(2)
k,n,m1

(z, µ) −
M′∑

m2=0

R(2)
k,n,m2

(z, µ)


− ωe−µπi

(2π)3Qi

∫ a+i∞

a
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s + µ)Γ(s − µ)Γ(2 − s)e(z+ 3

2 πi)sds

− ωeµπi

(2π)3Qi

∫ a

a−i∞
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s + µ)Γ(s − µ)Γ(2 − s)e(z− π

2 i)sds

+
ωe−µπi

(2π)3Qi

∫ a

a−i∞
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s + µ)Γ(s − µ)Γ(2 − s)e(z+ π

2 i)sds

− ωeµπi

(2π)3Qi

∫ a

a−i∞
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s + µ)Γ(s − µ)Γ(2 − s)e(z− 3

2 πi)sds.(4.6.19)

Since a lemma similar to Lemma 4.4.1 holds for the series on the right
hand side in (4.6.19), the series we now consider is also absolutely and
uniformly convergent on every compact subset on the whole complex plane.
Therefore, we complete the continuation of f −(z, F) analytic for y < 0 to
the region y < π.

Also, Corollary 2.2.3 can be proved form Theorem 2.2.2 and the defini-
tion (2.2.9) directly as follows : For z ∈ H− and ρ with Im ρ < 0,

f −(z, F) =
∑
ρ

eρzζ(ρ − 1)
F′(ρ)

=
∑
ρ

ζ(ρ − 1)

F′(ρ)
eρz
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=
∑
ρ′

ζ(ρ′ − 1)

F′
(
ρ′

) eρ′z,

where ρ′ = ρ. We recall the definition F(s) = F(s) for F ∈ S. Hence, the
sum on the right hand side in the third line yields∑

ρ′

ζ(ρ′ − 1)

F′(ρ′)
eρ′z = f (z, F).

Here, we use the fact that if F ∈ Spoly, then so is F ∈ Spoly. Of course,
Spoly may be replaced by S. By Theorem 2.2.2, the function f (z, F) has a
meromorphic continuation to y > −π. Hence f (z, F) has a meromorphic
continuation to y < π.

4.7. Proof of Theorem 2.2.4. We assume the condition written in the state-
ment of Theorem 2.2.4, that is, F ∈ Spoly whose (r, λ j) = (1, 1) in (1.5.15)
and 0 ≤ µ < 1.We add (4.4.16) to (4.6.19). Since some integrals are can-
celed, we have for |y| < π

f1(z, F) + f −1 (z, F) = f11(z, F) + f12(z, F) + f13(z, F) +
ωeµπi

(2π)3Qi
I1(z, F) +

ωeµπi

(2π)3Qi
I2(z, F)

+ I−1 (z, F) + I−2 (z, F) + f −12(z, F) + f −13(z, F) + f −14(z, F)

=
ωeµπii
(2π)3Q

∞∑
k,n=1

µF(k)
kn2 × 2πi

(2πnkQ2)
1
2 exp

−3
4
πi +

z
2
+

e
3
2 πi−z

4πnkQ2


× Γ(2 + µ)Γ(2 − µ)W− 3

2 , µ

 e
3
2 πi−z

2πnkQ2

 − M∑
m1=0

R(1)
k,n,m1

(z, µ) −
M′∑

m2=0

R(1)
k,n,m2

(z, µ)


+

ωe−µπi

(2π)3Qi

∞∑
k,n=1

µF(k)
kn2 × 2πi

(2πnkQ2)
1
2 exp

3
4
πi +

z
2
+

e−
3
2 πi−z

4πnkQ2


× Γ(2 + µ)Γ(2 − µ)W− 3

2 , µ

 e−
3
2 πi−z

2πnkQ2

 − M∑
m1=0

R(2)
k,n,m1

(z, µ) −
M′∑

m2=0

R(2)
k,n,m2

(z, µ)


+ A1(z, F) + A2(z, F),

where
(4.7.1)

A1(z, F) = − ωeµπi

(2π)3Qi

∫ a+i∞

a−i∞
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s+µ)Γ(s−µ)Γ(2−s)e(z− π2 i)sds

and
(4.7.2)

A2(z, F) =
ωe−µπi

(2π)3Qi

∫ a+i∞

a−i∞
(2πQ2)s ζ(2 − s)

F(1 − s)
Γ(s+µ)Γ(s−µ)Γ(2−s)e(z+ π2 i)sds.

The integrals A1(z, F) and A2(z, F) are convergent for |y| < π and we can
obtain series expressions of them involving Whittaker functions in a way
similar to the case of I1(z, F) and I−1 (z, F). We have for |y| < π, F ∈ Spoly

whose (r, λ j) = (1, 1) in (1.5.15) and 0 ≤ µ < 1

A1(z, F) = − ωeµπi

(2π)3Qi

∞∑
k,n=1

µF(k)
kn2 × 2πi

{
(2πnkQ2)

1
2 exp

(
−π

4
i +

z
2
+

e
π
2 i−z

4πnkQ2

)
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× Γ(2 + µ)Γ(2 − µ)W− 3
2 , µ

(
e
π
2 i−z

2πnkQ2

)
−

M∑
m1=0

R(3)
k,n,m1

(z, µ) −
M′∑

m2=0

R(3)
k,n,m2

(z, µ)

 ,
where

R(3)
k,n,m1

(z, µ) =
(−1)m1

m1!
Γ(2µ − m1)Γ(2 − µ + m1)(2πnkQ2)µ−m1e(z− π2 i)(µ−m1),

(4.7.3)

R(3)
k,n,m2

(z, µ) =
(−1)m2

m2!
Γ(−2µ − m2)Γ(2 + µ + m2)(2πnkQ2)−µ−m2e(z− π2 i)(−µ−m2),

(4.7.4)

R(3)
k,n,m,0(z) =

m + 1
m!

e−(z− π2 i)m

(2πnkQ2)m

log(2πnkQ2) + z − π
2

i +
m∑

k1=1

1
k1
−C0 −

1
m + 1


(4.7.5)

and

R(3)
k,n,m, 1

2
(z) =

Γ
(

3
2 + m

)
(m!)2

e( 1
2−m)(z− π2 i)

(2πnkQ2)m− 1
2

{
m

(
ψ

(
3
2
+ m

)
− 2ψ(m + 1)

)
− m

(
log(2πnkQ2) + z − π

2
i
)
+ 1

}
(4.7.6)

are residues of the integrand in A1(z, F) at s = µ − m1,−µ − m2,−m and
1
2 − m respectively. Similarly, for |y| < π, F ∈ Spoly whose (r, λ j) = (1, 1) in
(1.5.15) and 0 ≤ µ < 1

A2(z, F) =
ωe−µπi

(2π)3Qi

∞∑
k,n=1

µF(k)
kn2 × 2πi

{
(2πnkQ2)

1
2 exp

(
π

4
i +

z
2
+

e−
π
2 i−z

4πnkQ2

)

× Γ(2 + µ)Γ(2 − µ)W− 3
2 , µ

(
e−

π
2 i−z

2πnkQ2

)
−

M∑
m1=0

R(4)
k,n,m1

(z, µ) −
M′∑

m2=0

R(4)
k,n,m2

(z, µ)

 ,
where

R(4)
k,n,m1

(z, µ) =
(−1)m1

m1!
Γ(2µ − m1)Γ(2 − µ + m1)(2πnkQ2)µ−m1e(z+ π2 i)(µ−m1),

(4.7.7)

R(4)
k,n,m2

(z, µ) =
(−1)m2

m2!
Γ(−2µ − m2)Γ(2 + µ + m2)(2πnkQ2)−µ−m2e(z+ π2 i)(−µ−m2),

(4.7.8)

R(4)
k,n,m,0(z) =

m + 1
m!

e−(z+ π2 i)m

(2πnkQ2)m

log(2πnkQ2) + z +
π

2
i +

m∑
k1=1

1
k1
−C0 −

1
m + 1


(4.7.9)

and

R(4)
k,n,m, 1

2
(z) =

Γ
(

3
2 + m

)
(m!)2

e( 1
2−m)(z+ π2 i)

(2πnkQ2)m− 1
2

{
m

(
ψ

(
3
2
+ m

)
− 2ψ(m + 1)

)
− m

(
log(2πnkQ2) + z +

π

2
i
)
+ 1

}
(4.7.10)

are residues of the integrand in A2(z, F) at s = µ−m1,−µ−m2,−m and 1
2−m

respectively. Finally, for |y| < π, F ∈ Spoly whose (r, λ j) = (1, 1) in (1.5.15)
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and 0 ≤ µ < 1, we have the series expression for f1(z, F) + f −1 (z, F)

f1(z, F) + f −1 (z, F) =
ωeµπii
(2π)3Q

∞∑
k,n=1

µF(k)
kn2 × 2πi

(2πnkQ2)
1
2 exp

−3
4
πi +

z
2
+

e
3
2 πi−z

4πnkQ2


× Γ(2 + µ)Γ(2 − µ)W− 3

2 , µ

 e
3
2 πi−z

2πnkQ2

 − M∑
m1=0

R(1)
k,n,m1

(z, µ) −
M′∑

m2=0

R(1)
k,n,m2

(z, µ)


+

ωe−µπi

(2π)3Qi

∞∑
k,n=1

µF(k)
kn2 × 2πi

(2πnkQ2)
1
2 exp

3
4
πi +

z
2
+

e−
3
2 πi−z

4πnkQ2


× Γ(2 + µ)Γ(2 − µ)W− 3

2 , µ

 e−
3
2 πi−z

2πnkQ2

 − M∑
m1=0

R(2)
k,n,m1

(z, µ) −
M′∑

m2=0

R(2)
k,n,m2

(z, µ)


− ωeµπi

(2π)3Qi

∞∑
k,n=1

µF(k)
kn2 × 2πi

{
(2πnkQ2)

1
2 exp

(
−π

4
i +

z
2
+

e
π
2 i−z

4πnkQ2

)

× Γ(2 + µ)Γ(2 − µ)W− 3
2 , µ

(
e
π
2 i−z

2πnkQ2

)
−

M∑
m1=0

R(3)
k,n,m1

(z, µ) −
M′∑

m2=0

R(3)
k,n,m2

(z, µ)


+

ωe−µπi

(2π)3Qi

∞∑
k,n=1

µF(k)
kn2 × 2πi

{
(2πnkQ2)

1
2 exp

(
π

4
i +

z
2
+

e−
π
2 i−z

4πnkQ2

)

× Γ(2 + µ)Γ(2 − µ)W− 3
2 , µ

(
e−

π
2 i−z

2πnkQ2

)
−

M∑
m1=0

R(4)
k,n,m1

(z, µ) −
M′∑

m2=0

R(4)
k,n,m2

(z, µ)

 .(4.7.11)

Since a lemma similar to Lemma 4.4.1 also holds, the third and the fourth
series on the right hand side in (4.7.11) are absolutely and uniformly con-
vergent on every compact subset on the whole complex plane.

Next, by the theorem of residues, (2.2.7) and (4.6.5) we have

f2(z, F) + f −2 (z, F) =
∫

L

ζ(s − 1)
F(s)

eszds −
∫

L

ζ(s − 1)
F(s)

eszds

= −2πi lim
s→2

(s − 2)
ζ(s − 1)

F(s)
ezs

= −2πi
e2z

F(2)
.(4.7.12)

Finally, by (4.3.1) and (4.6.6)

(4.7.13) f3(z, F) + f −3 (z, F) = 0.

Thus, for |y| < π we have

2πi( f (z, F) + f −(z, F)) = 2πi
{

1
2πi

( f1(z, F) + f −1 (z, F)) − e2z

F(2)

}
= 2πiB(z, F),(4.7.14)

where

(4.7.15) B(z, F) =
1

2πi
( f1(z, F) + f −1 (z, F)) − e2z

F(2)
.

By (4.7.11), the function f1(z, F) + f −1 (z, F) is absolutely and uniformly
convergent on every compact subset on the whole complex plane. Hence,
the function B(z, F) is an entire function. Since the function f −(z, F) has a
meromorphic continuation for y < π by Corollary 2.2.3, the function

f (z, F) = B(z, F) − f −(z, F)
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is analytic for all y < π. Since the function f (z, F) is analytic for z ∈ H and
y < π, f (z, F) can be analytically continued to the whole complex plane.
In a similar manner, f −(z, F) can be analytically continued to the whole
complex plane. Therefore, for all z ∈ C we have

(4.7.16) f (z, F) + f −(z, F) = B(z, F).

Finally, we prove the functional equation (2.2.10). We recall the hypoth-
esis that the coefficient aF(n) in the Dirichlet series of F is real for all n.
Hence, if ρ is a non-trivial zero of F, then so is ρ. For z ∈ H we have

f (z, F) = lim
n→∞

∑
ρ

0<Imρ<Tn

ζ(ρ − 1)
F′(ρ)

eρz

= lim
n→∞

∑
ρ

0<Imρ<Tn

(
lim
s→ρ

s − ρ
F(s) − F(ρ)

ζ(s − 1)ezs

)
.

Since aF(n) ∈ R, so F(s) = F(s) holds. Using this, we have

f −(z, F) = lim
n→∞

∑
ρ

−Tn<Imρ<0

ζ(ρ − 1)
F′(ρ)

eρz

= lim
n→∞

∑
ρ

−Tn<Imρ<0

lim
s→ρ

s − ρ
F(s) − F(ρ)

ζ(s − 1)ezs


= lim

n→∞

∑
ρ

−Tn<Imρ<0

(
lim
s→ρ

s − ρ
F(s) − F(ρ)

ζ(s − 1)ezs

)

= lim
n→∞

∑
ρ

0<Imρ<Tn

(
lim
s→ρ

s − ρ
F(s) − F(ρ)

ζ(s − 1)ezs

)

= lim
n→∞

∑
ρ

0<Imρ<Tn

(
lim
s→ρ

s − ρ
F(s) − F(ρ)

ζ(s − 1)ezs

)

= f (z, F).

Therefore, we have for z ∈ H
(4.7.17) f (z, F) = f −(z, F).

Using (4.7.17), we have from (4.7.16)

B(z, F) = f (z, F) + f −(z, F)

= f (z, F) + f −(z, F)

= f (z, F) + f (z, F).

Using (4.7.17) and (4.7.16) again, we have for z ∈ H
(4.7.18) f (z, F) + f (z, F) = f −(z, F) + f (z, F) = B(z, F).

Since f (z, F), f −(z, F) and B(z, F) are entire functions, and (4.7.18) holds
for all z ∈ H, (4.7.18) holds for all z ∈ C by the analytic continuation.
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Therefore, the functional equation (2.2.10) holds for all z ∈ C and we have
Theorem 2.2.4. □
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