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Chapter 0

Introduction

This thesis aims to study Grothendieck monoids and give their applications to representation theory and
algebraic geometry. We will explain the background of our study and describe the main results.

0.1 Background

0.1.1 Homological methods in representation theory and algebraic geometry

The notion of homology is a tool to translate geometric information to linear algebraic data. It was
introduced by Poincaré in 1895 to give a rigorous treatment of the Betti numbers [Poi1895]. Several
algebraic techniques were developed to compute homology groups of topological spaces, and these in-
fluenced various areas of mathematics, such as algebraic geometry, representation theory and number
theory. Cartan and Eilenberg unified these ad hoc techniques using derived functors and published the
textbook Homological Algebra [CE56] in 1956. In the following year, Grothendieck introduced the notion
of abelian categories to give an appropriate framework for homological algebra [Gro57]. The category
modΛ of finitely generated modules over a noetherian ring Λ and the category cohX of coherent sheaves
on a noetherian scheme X are basic examples of abelian categories. In 1962, Gabriel, a student of
Grothendieck, intensively studied abelian categories and obtained significant results in both algebraic
geometry and representation theory (see §0.2.1 and 0.2.3 below). His works promoted abelian categories
as an important research object, not just a framework of homological algebra.

On the other hand, Grothendieck attempted to construct a duality theory on arbitrary schemes (or,
more generally, morphisms) around 1960 and realized that this required a more serious treatment of
complexes of sheaves. Based on the vision of Grothendieck, Verdier developed the theory of derived
categories and triangulated categories, which gives an appropriate framework to formulate a duality
theory for arbitrary schemes [Ver67, Har66]. In short, the derived category Db(A) of an abelian category
A is the category obtained from the category of chain complexes over A by formally inverting chain maps
which induce isomorphisms on the homology. The derived category has the structure of a triangulated
category, in which we can develop a homological algebra similarly as that of abelian categories. As in
the case of abelian categories, triangulated categories had become an important research object that is
worth more than the framework by various studies, for example, [Bei78, Muk81, Hap88]. Nowadays, the
term homological algebra means the study of abelian categories and triangulated categories.

This thesis is devoted to homological representation theory and homological algebraic geometry. Rep-
resentation theory studies how an algebraic object acts on vector spaces. Homological representation
theory studies categories of actions of a fixed algebraic object, such as modΛ and its bounded derived cat-
egory Db(modΛ) for an algebra Λ. Similarly, homological algebraic geometry studies categories related
to an algebraic variety X such as cohX and Db(cohX).

The notion of Grothendieck groups is an effective tool to study these categories, which translates
categorical information to linear algebraic data. We will give a short review of Grothendieck groups in
the next part.
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0.1.2 Grothendieck groups

The Grothendieck group K0(A) is an abelian group defined for each skeletally small abelian category
A (more generally, skeletally small exact category, a generalization of abelian categories which includes
the category vectX of vector bundles over a noetherian scheme X as an example). We can associate
to an object X of A an element [X] of K0(A), and the equality [B] = [A] + [C] holds for any short
exact sequence 0 → A → B → C → 0. It was originally introduced by Grothendieck in a seminar
at Princeton in 1957 [BS58]. He used it to formulate a relative version of Hirzebruch-Riemann-Roch
theorem, which is now called Grothendieck-Riemann-Roch theorem. Atiyah and Hirzebruch mimicked
Grothendieck’s construction for topological vector bundles on a compact Hausdorff space X and proved
a Riemann-Roch theorem for differentiable manifolds [AH59]. This work led many authors to study the
structure of Grothendieck groups, and these studies eventually developed into K-theory. Since then, the
Grothendieck group has been established as a basic and important invariant.

In homological representation theory, Grothendieck groups are used as a source of Morita invariants.
Recall that two Artin algebras Λ and Γ are called Morita equivalent if modΛ and modΓ are equivalent
as categories. The Grothendieck group K0(modΛ) is a Morita invariant in the sense that K0(modΛ) ∼=
K0(modΓ) as groups if Λ and Γ are Morita equivalent. If Λ is an Artin algebra, then K0(modΛ) is a
free Z-module whose rank is equal to the number of isomorphism classes of simple Λ-modules. Thus the
number of isomorphism classes of simple modules is also a Morita invariant.

Another important notion for Artin algebras is derived equivalence, which gives a more flexible frame-
work to study Artin algebras. Recall that two Artin algebras Λ and Γ are derived equivalent if Db(modΛ)
and Db(modΓ) are triangulated equivalent. Since the derived category is constructed from the given
abelian category, we see that Morita equivalence implies derived equivalence. In the study of derived
equivalence, Grothendieck groups still give us great help, since they are defined for any skeletally small
triangulated category T . In fact, in the case T = Db(A) for a skeletally small abelian category A, we have
an isomorphism K0(A) ∼= K0(D

b(A)). Thus, if two Artin algebras Λ and Γ are derived equivalent, then
we have an isomorphism K0(modΛ) ∼= K0(modΓ). The argument so far shows that the Grothendieck
group of an Artin algebra is not only a Morita invariant but also a derived invariant. In particular, the
number of isomorphism classes of simple modules is also a derived invariant.

However, there is some criticism of the above argument. The fact that Grothendieck groups are
derived invariants indicates that they do not fully reflect the information of abelian categories. For
example, the bounded derived category Db(cohP1) of the projective line P1 is triangulated equivalent to
the bounded derived category Db(modΛ) of the path algebra Λ of the Kronecker quiver 1 ⇔ 2. Thus,
the Grothendieck groups cannot distinguish the abelian categories cohP1 and modΛ. However, they
are quite different, for instance, cohP1 has infinitely many simple objects while modΛ has exactly two
simple objects up to isomorphisms. The Grothendieck groups lose even such basic information of abelian
categories. The Grothendieck monoids are invariants that resolve these shortcomings, which will be
explained in the following subsection.

0.1.3 Grothendieck monoids

The Grothendieck monoid M(E) is a natural monoid version of the Grothendieck group, which is defined
for each skeletally small exact category E . Several authors studied the Grothendieck monoid and extract
information that the Grothendieck group does not contain. As far as the author knows, Grothendieck
monoids were first studied in [Bro98] by Brookfield. He defined the Grothendieck monoid M(ModΛ) of the
category ModΛ of modules over a ring Λ to study the direct sum cancellation problem. The Grothendieck
monoid of an exact category was first introduced in [BG16] as a monoid which gives a natural grading
of the Ringel-Hall algebras of an exact category. Enomoto intensively studied the Grothendieck monoid
of an exact category from the viewpoint of homological representation theory [Eno22]. In particular,
he observed that the isomorphism classes of simple objects bijectively correspond to some distinguished
elements of the Grothendieck monoid. As explained in the previous subsection, this information is lost
in the Grothendieck group.

In this thesis, we define and study the Grothendieck monoid of an extriangulated category, which
was recently introduced in [NP19] as a unification of abelian categories and triangulated categories. It
includes extension-closed subcategories of abelian and triangulated categories as examples. We have the
notion of conflations in an extriangulated category, which generalize both short exact sequences in an
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abelian category and exact triangles in a triangulated category. The Grothendieck monoid M(C) of an
skeletally small extriangulated category C is a commutative monoid, and we can associate to an object
X of C an element [X] of M(C) such that [B] = [A] + [C] for any conflation A → B → C 99K. We
can construct the Grothendieck group K0(C) from the Grothendieck monoid M(C) by an operation on
monoids called the group completion. Thus M(C) has more information of C than K0(C).

We use the Grothendieck monoids of extriangulated categories to study classifying subcategories,
categorifications of monoid operations, reconstruction theorems and periodic derived invariants.

0.2 Main results

In this section, we will explain the main results of this thesis without going into the set-theoretic details.
The set-theoretic foundations of this thesis are given in §1.1, to which we refer the interested reader.

0.2.1 Classifying subcategories

Classifying nice subcategories of an abelian category or a triangulated category is quite an active subject
in homological representation theory and homological algebraic geometry. It started from the following
result of Gabriel:

Fact 0.2.1 ([Gab62, Proposition VI.2.4], see also [Kan12, Theorem 5.5]). Let X be a noetherian scheme.
There is an inclusion-preserving bijection between the following sets:

• The set of Serre subcategories S of the category cohX of coherent sheaves on X.
• The set of specialization-closed subsets Z of X.

Here the assignments are given by

S 7→ SuppS :=
⋃

F∈S

SuppF , Z 7→ cohZ X := {F ∈ cohX | SuppF ⊆ Z}.

As can be seen from Fact 0.2.1, a solution to the subcategory classification problem is given by
constructing a bijection between the subcategories of interest and mathematical objects which are easier
to understand. We will establish bijections between several subcategories of an extriangulated category
and certain subsets of its Grothendieck monoid in Chapter 3 and 6. Using this, in Chapter 3 and 7, we
will address classifications of Serre subcategories of some concrete exact categories, while most researchers
so far have classified those of abelian categories such as the fact above.

We first establish a bijection between Serre subcategories of an extriangulated category and certain
subsets of its Grothendieck monoid. An additive subcategory S of C is Serre if for any conflation
A→ B → C 99K in C, we have B ∈ S if and only if both A ∈ S and C ∈ S.

Theorem A (= Proposition 6.2.1, cf. [Sai2, Proposition 5.14], [ES, Proposition 3.5]). Let C be a
skeletally small extriangulated category. Then there are bijections between the following sets:
(1) The set Serre(C) of Serre subcategories of C.
(2) The set FaceM(C) of faces of M(C).
(3) The set MSpecM(C) of prime ideals of M(C).

Here
• a submonoid F of a monoid M is a face if for any a, b ∈M , we have that a+ b ∈ F if and only if
both a ∈ F and b ∈ F ,

• a proper subset p of a monoid M is a prime ideal1 if it satisfies (i) x + a ∈ p for any x ∈ p and
a ∈M and (ii) a+ b ∈ p implies a ∈ p or b ∈ p for any a, b ∈M .

The bijection between the first and second sets generalizes [Bro97, Proposition 16.8] for module
categories (see Remark 3.3.7). The second set Face(M(C)) can be computed purely algebraically, and
its computation is much easier than examining the whole structure of the extriangulated category C.
The third set MSpecM(C) has a topology, which is a natural analogue of the Zariski topology on the
spectrum SpecR of a commutative ring R. These lead us in two directions.

The one direction is the classification of Serre subcategories using faces of the Grothendieck monoid.
We propose the following strategy to classify Serre subcategories of an extriangulated category C.

1Note that we treat the empty set as a prime ideal since it corresponds to C itself by the bijection between (1) and (3).
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(i) Relate the Grothendieck monoid M(C) with an abstract monoid M .
(ii) Classify faces of the abstract monoid M .
(iii) Classify Serre subcategories of C by using (i) and (ii).
We apply this strategy to exact categories related to finite dimensional algebras and noetherian schemes.
In particular, we compute the Grothendieck monoids of the following exact categories related to a smooth
projective curve C and classify Serre subcategories of them:

• The category cohC of coherent sheaves on C.
• The category vectC of vector bundles on C.
• The category torC of coherent torsion sheaves on C.

Theorem B (= Propositions 7.1.4, 7.2.4 and 7.3.2, cf. [Sai2, Propositions 4.4, 4.9 and 4.12]). Let C be
a smooth projective curve over an algebraically closed field k.
(1) M(torC) ∼= Div+ C holds, where Div+ C is the monoid of effective divisors on C.
(2) M(vectC) ∼= (PicC × N+) ∪ {(OC , 0)} ⊆ PicC × Z holds, where Pic(C) is the Picard group of C

and N+ is the semigroup of strictly positive integers.
(3) We can regard M(torC) and M(vectC) as submonoids of M(cohC). Then M(cohC) is the dis-

joint union of M(torC) and M(vectC)+ := M(vectC) \ {0}. See Corollary 7.3.8 for the complete
description of M(cohC) as a monoid.

Theorem C (= Corollary 7.2.5, cf. [Sai2, Corollary 4.10]). Let C be a smooth projective curve over an
algebraically closed field k. Then vectC has no nontrivial Serre subcategories.

The other direction is the study of the space Serre(C) whose topology is induced by the topology on
MSpecM(C). We classify finitely generated Serre subcategories via this topology. A Serre subcategory
S of C is finitely generated if it is generated by some single object.

Theorem D (= Proposition 6.2.6, cf. [Sai2, Proposition 5.19]). Let C be a skeletally small extriangulated
category. Then there is a bijection between the following two sets:
(1) The set of finitely generated Serre subcategories of C.
(2) The set of nonempty strongly quasi-compact open subsets of Serre(C).

Here, a topological space X is strongly quasi-compact if for every open covering {Ui}i∈I of X, there
exists i ∈ I such that X = Ui.

Next, we establish a classification of dense 2-out-of-3 subcategories of C, that is, an additive subcat-
egory D of C satisfying addD = C and the 2-out-of-3 property for conflations.

Theorem E (= Theorem 3.6.6, cf. [ES, Theorem 3.14, Corollary 3.17]). Let C be a skeletally small
extriangulated category. Then there are bijections between the following sets:
(1) The set of dense 2-out-of-3 subcategories of C.
(2) The set of cofinal subtractive submonoid of M(C) (see Definition 3.5.1).
(3) The set of subgroups of K0(C) such that ρ−1(H) is cofinal in M(C), where ρ : M(C)→ K0(C) is the

natural map.

Applying Theorem E to a triangulated category, we immediately obtain Thomason’s classification
[Tho97] of dense triangulated subcategories via subgroups of the Grothendieck group (Corollary 3.6.7).
In [Mat18], Matsui classified dense resolving subcategories of an exact category containing a generator
via certain subgroups of the Grothendieck group (see also [ZZ21]). Applying Theorem E to an exact
category, we obtain the classification of all dense resolving subcategories, which generalizes [Mat18, ZZ21]
(Corollary 3.6.10).

0.2.2 Categorifications of monoid operations

A categorification is a method of considering a given algebraic object as an invariant of a category and
studying the algebraic object at the level of the category. This method enables us to simplify complicated
algebraic relations from the eye of category theory and get new insights for the category from operations
on the algebraic object. We address a categorification of two basic monoid operations, quotient and
localization, via Grothendieck monoids in Chapter 4 and 5.

We first study the Grothendieck monoid of the exact localization of Nakaoka–Ogawa–Sakai [NOS22]
to categorify quotient of monoids. An exact localization C/N of an extriangulated category C by an
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extension-closed subcategory N of C is (if exists) the universal extriangulated category which sends N to
0 (Proposition 4.2.3). Typical examples are Serre quotients of abelian categories and Verdier quotients
of triangulated categories. Under certain assumptions, where an exact localization exists, we show that
this localization gives a kind of categorification of the quotient of monoids in the following sense.

Theorem F (= Corollary 4.3.12, cf. [ES, Corollary 4.28]). Let C be a skeletally small extriangulated
category and N an extension-closed subcategory of C. Under some conditions (see Corollary 4.3.12), we
have the following coequalizer diagram of commutative monoids:

M(N ) M(C) M(C/N ),
M(ι)

0

M(Q)

where ι : N ↪→ C and Q : C → C/N are the inclusion and the localization functor respectively. In
particular, M(C/N ) is isomorphic to the quotient monoid M(C)/ ImM(ι) (see Definition 4.1.1). This can
be applied to the following cases.
(i) C is a triangulated category and N is a thick subcategory of C. In this case, C/N is the usual

Verdier quotient of a triangulated category.
(ii) C is a Frobenius category and N is the subcategory of all projective objects in C. In this case, C/N

is the usual (triangulated) stable category.
(iii) C is an abelian category and N is a Serre subcategory of C. In this case, C/N is the usual Serre

quotient of an abelian category.
Moreover, if N is a Serre subcategory (e.g. (iii)), then M(ι) : M(N )→ M(C) is an injection.

The above coequalizer diagram immediately yields the right exact sequence of the Grothendieck group
(Corollary 4.3.16):

K0(N ) K0(C) K0(C/N ) 0.

This unifies the well-known results for the abelian case and the triangulated case. Moreover, the injec-
tivity of M(N )→ M(C) for a Serre subcategory N is quite remarkable, since it fails for the Grothendieck
groups (see e.g. Example 3.3.6).

Next, we address a categorification of the monoid localization, which makes certain elements of a
monoid invertible (see Definition 5.1.1). For this purpose, we study intermediate subcategories of the
derived category in detail. Let A be a skeletally small abelian category and Db(A) the bounded derived
category of A. Then a subcategory C of Db(A) is called an intermediate subcategory if A ⊆ C ⊆ A[1] ∗A
holds and C is closed under extensions and direct summands. We show in Theorem 5.2.3 that there is
a bijection between torsionfree classes F in A and intermediate subcategories C of Db(A), where the
corresponding intermediate subcategory is given by F [1] ∗ A. This is illustrated as follows.

F [1]A
Db(A)

C = F [1] ∗ A

· · ·· · ·
A A[1]

C

Figure 0.2.1: An intermediate subcategory

We show that the Grothendieck monoid of an intermediate subcategory F [1] ∗ A can be described
using a monoid localization (see Definition 5.1.1) as follows.

Theorem G (= Theorem 5.3.1, cf. [ES, Theorem 5.4]). Let A be a skeletally small abelian category
and F a torsionfree class in A. Then M(F [1] ∗ A) is isomorphic to the monoid localization M(A)MF of
M(A) with respect to a subset MF := {[F ] | F ∈ F} ⊆ M(A).

This enables us to compute M(F [1]∗A) in concrete situations. Also, this can be interpreted as follows:
the inclusion of a subcategory A ↪→ F [1]∗A categorifies the monoid localization M(A)→ M(A)MF in the
sense that by applying the functor M(−) : ETCat→ Mon we obtain the monoid localization. Moreover, we
show that all the monoid localization of M(A) appear in this way (Remark 5.3.3). This result explains
why it is natural to study Grothendieck monoids in the generality of extriangulated categories. The
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Grothendieck monoid of an exact category is reduced, that is, 0 is the only invertible element, while
that of a triangulated category is a group, that is, every element is invertible. In particular, most of the
monoid localizations of the Grothendieck monoid do not appear as the Grothendieck monoid if we only
consider exact categories and triangulated categories. Thus, to realize a localization as the Grothendieck
monoid, we have to consider extriangulated categories which are neither abelian nor triangulated.

Finally, we consider Serre subcategories of C := F [1] ∗ A and the behavior of an exact localization of
C in detail:

Theorem H (= Proposition 5.4.1, Theorem 5.4.4, cf. [ES, Proposition 5.10, Theorem 5.13]). Let A be
a skeletally small abelian category and F a torsionfree class in A, and put C := F [1] ∗ A.
(1) The assignment S 7→ F [1] ∗ S gives a bijection between the set of Serre subcategories S of A

containing F and the set of Serre subcategories of C.
(2) Let S be a Serre subcategory of A containing F . Then we can apply Theorem F to an exact

localization C/(F [1] ∗ S), and we have an exact equivalence A/S ' C/(F [1] ∗ S) which makes the
following diagram commute:

A F [1] ∗ A

A/S (F [1] ∗ A)
/
(F [1] ∗ S).∼

(0.2.1)

0.2.3 Reconstruction theorems

In 1962, Gabriel proved that any noetherian scheme X can be reconstructed from the category QcohX
of quasi-coherent sheaves on X [Gab62]. This result indicates that the geometric object X and the
abelian category QcohX are equivalent. It is a starting point of noncommutative algebraic geometry
which studies geometric objects through categories. Inspired by the Gabriel’s work, several authors
addressed the reconstruction problem of schemes from some specified categories. For example, Buan,
Krause and Solberg recovered a noetherian scheme X from the abelian category cohX [BKS07]. Bon-
dal and Orlov showed that a smooth projective variety X can be reconstructed from the triangulated
category Db(cohX) if X has ample or anti-ample canonical bundle [BO01]. Balmer reconstructed a
noetherian scheme X from its perfect derived category perfX with the tensor triangulated structure
[Bal05]. Note that perfX ' Db(cohX) as triangulated categories when X is regular. We will give a kind
of reconstruction of noetherian schemes from the Grothendieck monoids in Chapter 8.

We recover the topology of a noetherian scheme X from the spectrum of Grothendieck monoid
M(cohX) and prove the following theorem.

Theorem I (= Theorem 8.0.4, cf. [Sai2, Theorem 5.27]). Consider the following conditions for noetherian
schemes X and Y .
(1) X ∼= Y as schemes.
(2) M(cohX) ∼= M(cohY ) as monoids.
(3) X ∼= Y as topological spaces.

Then “(1)⇒ (2)⇒ (3)” hold.

The nontrivial part is, of course, the implication “(2) ⇒ (3)”. It is surprisingly enough because the
Grothendieck monoid M(cohX) loses a lot of information and the Grothendieck group K0(cohX) never
recovers the topology of X as the following examples show.

Example 0.2.2. Let k be an algebraic closed field.
(1) Let R be a finite dimensional commutative k-algebra. Then M(modR) ∼= N⊕n, where n is the

number of maximal ideals of R (see Example 3.4.5). In particular, if R is local, then we have
M(modR) ∼= N.
Consider a finite dimensional commutative local k-algebra R := k[x, y]/(x2, xy, y2). For any λ ∈ k,
define an k-algebra homomorphism φλ : R→M2(k) to the matrix algebra M2(k) of degree 2 by

φλ(x) =

[
0 1
0 0

]
, φλ(y) =

[
0 λ
0 0

]
.
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Then φλ defines a 2-dimensional R-module Mλ. We can easily see that Mλ is indecomposable
and Mλ 6∼= Mµ if λ 6= µ. Thus, modR has infinitely many indecomposable objects. On the other
hand, mod k has exactly one indecomposable object k. Hence, modR and mod k are very different.
Despite this, by the fact above, we have M(mod k) ∼= N ∼= M(modR). This shows that Grothendieck
monoids lose a lot of categorical information.

(2) Let P1 be the projective line over k. Then we have K0(cohP1) ∼= Z⊕2 (see Example 7.3.5). On the
other hand, we have K0(coh(Spec(k × k))) ∼= K0(mod(k × k)) ∼= Z⊕2. Hence P1 6∼= Spec(k × k) as
topological spaces, but K0(cohP1) ∼= K0(coh(Spec(k× k))) as groups. This shows that “(2)⇒ (3)”
of Theorem I becomes false if Grothendieck monoids are replaced by Grothendieck groups.

Example 0.2.2 (1) is also a counter example of “(2) ⇒ (1)” of Theorem I. In Example 8.0.5, we will
give a counter example of “(3)⇒ (2)” of Theorem I.

The argument so far is illustrated as follows:

X cohX

|X|

Db(cohX)

M(cohX) K0(cohX)

[Gab62, BKS07]

gpTheorem I

[BO01, Bal05]

Here
• X is a noetherian scheme,
• |X| is the underlying topological space of X,
• Db(cohX) is the bounded derived category of cohX,
• gp is the group completion (see Definition 2.1.5 and Remark 2.3.6),
• the thick arrow A 7→ B indicates that B can be constructed from A,
• the arrow A→ B marked with a cross indicates that B cannot be recovered from A (see Example
0.2.2),

• the dashed arrow indicates that some assumption or additional structure is needed.

0.2.4 Periodic derived invariants

Fix a positive integer m. The m-periodic derived category Dm(A) of an abelian category A is a natural
Z/mZ-periodic analogue of the usual derived category. Two Artin algebras Λ and Γ arem-periodic derived
equivalence if Dm(modΛ) ' Dm(modΓ) as triangulated categories. The notion of 2-periodic derived
category was first introduced by Peng and Xiao [PX97] to construct a categorification of the full part
of a semisimple Lie algebra via a 2-periodic version of Ringel-Hall algebra, which was based on Ringel’s
construction of the half of the quantum group via his Hall algebra. Inspired by this work, Bridgeland used
the 2-periodic derived category of a hereditary algebra to construct the full quantum group of a symmetric
Kac-Moody Lie algebra [Bri13]. Motivated by these studies, several authors analyzed the structure of
m-periodic derived categories [Fu12, Gor, Zha14, Sta18]. Recently, the author studied periodic derived
categories from the viewpoint of homological representation theory and developed periodic tilting theory
which describe a way to relate periodic triangulated categories with periodic derived categories of Artin
algebras [Sai1]. As a sequel of this work, we will study periodic derived invariants of Artin algebras in
Chapter 9.

We first compute the Grothendieck group of the periodic derived categories. Remark that the
Grothendieck monoid of a triangulated category coincides with the Grothendieck group of it (Propo-
sition 2.4.3). Thus, the study of the Grothendieck groups of triangulated categories is a part of that of
the Grothendieck monoids of them.
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Theorem J (= Theorem 9.3.1, cf. [Sai22, Theorem 1.1]). Let A be a skeletally small abelian category
with enough projectives. Suppose that the global dimension of A is finite. Then we have an isomorphism

K0(Dm(A)) ∼=

{
K0(A) if m is even,

K0(A)F2
:= K0(A)⊗Z F2 if m is odd,

which is induced by the natural functor A → Dm(A). Here F2 is the finite field of two elements.

As an immediate corollary of this, we can conclude that the number of isomorphism classes of simple
modules is a periodic derived invariant. That is, if Artin algebras are periodic derived equivalent, then the
numbers of isomorphism classes of simple modules over them are coincide. We also obtain the following
result which is an original motivation for this study. See §9.3 for precise meaning and significance of this
theorem.

Theorem K (= Corollary 9.3.6, cf. [Sai22, Corollary 1.6]). Let m be a positive integer, and T be an
idempotent complete algebraic m-periodic triangulated category over a perfect field k. Suppose that
HomT (X,Y ) is finite dimensional over k for all objects X,Y ∈ T . Then the number of non-isomorphic
summands of a strict periodic tilting object is constant.

0.3 Organization

This thesis divides into two parts. In Part I, we develop a general theory of Grothendieck monoids of
extriangulated categories (Chapters 2–6). In Part II, we give applications of Grothendieck monoids to
representation theory and algebraic geometry (Chapters 7–9). In more detail, this thesis is organized as
follows.

In Chapter 1, we confirm the premises of this thesis. In §1.1, we give a precise formulation of the
content of this paper by using the Grothendieck universe. In §1.2, we fix the notations and conventions
that will be used throughout this thesis.

In Chapter 2, we introduce the main subject in this thesis the Grothendieck monoid of an extri-
angulated category. In §2.1 and 2.2, we recall the basics of commutative monoids and extriangulated
categories which will be used throughout this thesis. In §2.3, we define the Grothendieck monoids by
universal property and then construct it. We also explain the relationship between Grothendieck monoids
and groups. In §2.4, we explain the special future of the Grothendieck monoids of a triangulated category
and an exact category, respectively. We especially show that the Grothendieck monoid of a triangulated
category coincides with its Grothendieck group.

In Chapter 3, we classify several subcategories of an extriangulated category via its Grothendieck
monoid. In §3.1, we introduce the key notion of c-closed subcategories which are the largest class
of subcategories that can be classified via the Grothendieck monoid. In §3.3 and 3.6, we classify Serre
subcategories (Theorem A) and dense 2-out-of-3 subcategories (Theorem E) via the Grothendieck monoid
by showing that they are c-closed.

In Chapter 4, we show that the localization of an extriangulated category “commutes with the monoid
quotients”. In §4.1, we recall the quotient of monoids, which is a natural analogue of that of abelian
groups. In §4.2, we review the exact localization of an extriangulated category which was introduced
recently in [NOS22]. In §4.3, we prove Theorem F. The saturatedness of the exact localization is the key
observation of the proof.

In Chapter 5, we study intermediate subcategories of the derived category in detail, which also gives
a concrete example of the theory developed in Chapter 3 and 4 for an extriangulated category which
is neither abelian nor triangulated. In §5.1, we give a review on monoid localization, which makes
certain elements of a monoid invertible. In §5.2, we introduce intermediate subcategories which are
contained in the derived category of an abelian category. We give a bijective correspondence between
them and torsionfree classes of the abelian category. In §5.3, we compute the Grothendieck monoid of
an intermediate category and obtain a categorification of the monoid localization (Theorem G). In §5.4,
we study Serre subcategories of an intermediate subcategory. We classify Serre subcategories of it and
describe the behavior of the exact localization of an intermediate subcategory by its Serre subcategory
(Theorem H).

10



In Chapter 6, we study the monoid spectrum MSpecM(C) of the Grothendieck monoid of an extri-
angulated category C. In §6.1, we recall the monoid spectrum of a commutative monoid, which is an
analogue of the spectrum of a commutative ring. In §6.2, we classify finitely generated Serre subcate-
gories of an extriangulated category via the topology of the monoid spectrum of its Grothendieck monoid
(Theorem D). We also study the sheaf of monoids on the monoid spectrum of the Grothendieck monoid
of an abelian category. We describe it by using the abelian quotient category by a Serre subcategory.

In Chapter 7, we compute the Grothendieck monoids of exact categories related to a smooth projective
curve and classify Serre subcategories of them (Theorems B and C).

In Chapter 8, we recover the topology of a noetherian scheme from the Grothendieck monoid of the
category of coherent sheaves on it by using the topology of the monoid spectrum (Theorem I).

In Chapter 9, we compute the Grothendieck group of the periodic derived category (Theorem J) and
explain an application to periodic tilting theorem (Theorem K).

We explain the relationships between this thesis and our other papers. Chapters 2–5 are based on
the collaboration paper [ES] with H. Enomoto. Chapters 6–8 are based on the author’s preprint [Sai2].
Chapter 9 is based on the author’s paper [Sai22].
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Chapter 1

Preliminaries

This chapter aims to confirm the premises of this thesis and fix notations and conventions throughout
this thesis.

In §1.1, we first recall that the definition of categories within the ZFC set theory. Next, we introduce
the notion of Grothendieck universes and some finiteness conditions for categories. The basic setup of
this paper is then described (see Convention 1.1.12). This setup is important to formulate precisely
the operation of taking the Grothendieck monoid as a functor from the category of skeletally small
extriangulated categories to the category of monoids (see §2.3 in the next chapter). We also discuss
that some categories are independent of the choice of Grothendieck universes, up to equivalences (see
Propositions 1.1.16 and 1.1.17). It guarantees that the Grothendieck monoids of these categories do not
depend on the choice of Grothendieck universes (see Proposition 2.3.5 in the next chapter).

1.1 Foundations for category theory

In this section, we will discuss the foundations for category theory which we use. References for this
section are [Kun09, SGA4-1, Mac98, DHKS04, KS06].

In this thesis, we entirely work in the ZFC set theory and assume the Grothendieck’s axiom of universe
(UA): for every set x, there exists a Grothendieck universe U such that x ∈ U. We abbreviate the ZFC
set theory with (UA) as the ZFCU set theory. We use the following notations:

• ∅ denotes the empty set.
• P(x) denotes the power set of a set x.
• {x, y} denotes the pair of sets x and y.
• (x1, . . . , xn) denotes the ordered tuple of sets x1, . . . , xn.
•
⋃
x denotes the union of elements of a set x.

Categories are always considered within the ZFC set theory. To describe the precise meaning of this,
we recall the definition of categories.

Definition 1.1.1. A category is an ordered tuple C = (Ob C,Mor C, dom, codom, e,m) consisting of the
following:

• Sets Ob C and Mor C. We call an element of Ob C an object and an element of Mor C a morphism.
• Maps dom, codom : Mor C → Ob C. We denote by f : X → Y a morphism f such that dom(f) = X
and codom(f) = Y .

• A map e : Ob C → Mor C. We write idX := e(X) for any object X and call it the identity morphism
of X.

• A map m : Comp2 C → Mor C from Comp2 C := {(f, g) ∈ Mor C × Mor C | codom(f) = dom(g)}.
Morphisms f and g are said to be composable if (f, g) ∈ Comp2 C. In this case, we write gf :=
g ◦ f := m(f, g) and call it the composition of f and g.

These are subject to the following conditions:
(C1) For any composable morphisms f and g, we have dom(gf) = dom(f) and codom(gf) = codom(g).
(C2) For any morphism f : X → Y , we have f ◦ idX = f = idY ◦ f .
(C3) For any (f, g), (g, h) ∈ Comp2 C, we have h(gf) = (hg)f .
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Let C be a category. We simply write X ∈ C instead of X ∈ Ob C. For a subset S of Mor C and
objects X,Y ∈ C, we define S(X,Y ) := {f ∈ S | dom(f) = X, codom(f) = Y }. We simply write
C(X,Y ) := HomC(X,Y ) := (Mor C)(X,Y ).

In our definition of categories, we cannot consider the category of “all sets” since there is no set of
all sets. To deal with this problem, we will introduce the notion of Grothendieck universes and consider
the category of sets within a fixed Grothendieck universe.

Definition 1.1.2. A set U is said to be a Grothendieck universe if it satisfies the following properties:
(U1) If x ∈ U and y ∈ x, then y ∈ U.
(U2) If x, y ∈ U, then {x, y} ∈ U.
(U3) If x ∈ U, then P(x) ∈ U.
(U4) If f : I → U is a map with I ∈ U, then

⋃
i∈I f(i) ∈ U.

(U5) The first infinite ordinal ω is an element of U1.

As described in the beginning of this section, we assume the Grothendieck’s axiom of universe (UA):
for every set x, there exists a universe U such that x ∈ U.

Let U be a Grothendieck universe. An element of U is called a U-set. A set is called U-small if it is
isomorphic to a U-set. A subset of U is called a U-class.

Remark 1.1.3. Let U be a Grothendieck universe. The following immediately follow from Defini-
tion 1.1.2.

• A subset of a U-set is also a U-set.
• For any sets a and b, the ordered pair (a, b) (resp. the set Map(a, b) of maps from a to b) is a U-set
if and only if both a and b are U-sets.

• For any set x, the power set P(x) is a U-set if and only if x is a U-set.
• For any family {xi}i∈I of sets, it is a U-set if and only if I ∈ U and xi ∈ U for any i ∈ I.
• For any family {xi}i∈I of sets, if it is a U-set, then so are their product

∏
i∈I xi and their disjoint

union
⊔
i∈I xi.

• If x is a U-set, then so is the union
⋃
x of elements of x.

• If x is a U-set and R is an equivalence relation on x, then the quotient set x/R is also a U-set.
• If there exists a surjective map f : x→ y from a U-set x to a U-class y, then y is also a U-set.
• A U-small U-class is a U-set.

We now introduce some hierarchy of categories using a Grothendieck universe.

Definition 1.1.4. Let U be a Grothendieck universe, and let C be a category.
(1) C is called a U-category if C = (Ob C,Mor C, dom, codom, e,m) ∈ U.
(2) C is called a locally U-set category if HomC(X,Y ) ∈ U for any X,Y ∈ C.
(3) C is called a U-small category if Ob C and Mor C are U-small.
(4) C is called a locally U-small category if HomC(X,Y ) is U-small for any X,Y ∈ C.
(5) C is said to be U-moderate if Ob C ⊆ U.
(6) C is said to be skeletally U-small if it is locally U-small and the set |C| of isomorphism classes of

objects of C is U-small.

Remark 1.1.5. Let U be a Grothendieck universe. We describe the relationship between our terminology
and that of other literature.
[SGA4-1]:

• U-petite in [SGA4-1] is U-small in our terminology.
• A U-catégorie in [SGA4-1] is a locally U-small category in our terminology.

[Mac98]:
• A small set in [Mac98] is a U-set in our terminology.
• A small category in [Mac98] is a U-category in our terminology.
• A category with small hom-sets in [Mac98] is a locally U-set category in our terminology.

[DHKS04]:
• A U-category in [DHKS04] is a U-moderate locally U-set category in our terminology.
• A small U-category in [DHKS04] is a U-category in our terminology.

1Some literatures do not include this condition in the definition of Grothendieck universes. This condition excludes that
the first infinite ordinal ω is a Grothendieck universe.
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[KS06]:
• A U-category in [KS06] is a locally U-small category in our terminology.
• A U-small category in [KS06] is a U-small category in our terminology.
• Essentially U-small in [KS06] is skeletally U-small in our terminology.

We describe the relationship between the concepts introduced in Definition 1.1.4. We omit the proofs
since it is straightforward.

Remark 1.1.6. Let U be a Grothendieck universe.
(1) The following are equivalent for a category C.

• C is a U-category.
• Ob C and Mor C are U-sets.
• C is a locally U-set category such that Ob C ∈ U.
• C is a U-moderate locally U-set category such that Ob C is U-small.

(2) The following are equivalent for a category C.
• C is a U-small category.
• C is a locally U-small category such that Ob C is U-small.
• C is isomorphic to a U-category.

(3) The following are equivalent for a category C.
• C is skeletally U-small.
• There is a U-small full subcategory C′ such that the inclusion functor C′ ↪→ C is an equivalence
of categories.

• C is equivalent to a U-category.
(4) The property of being a U-category (resp. locally U-set, resp. U-moderate) is not closed under

isomorphisms of categories.
(5) The property of being U-small is closed under isomorphisms of categories.
(6) The property of being locally U-small (resp. skeletally U-small) is closed under equivalences of

categories.

We will give examples of locally U-small categories.

Example 1.1.7. Let U be a Grothendieck universe. The following categories are frequently used in this
thesis:

• The category SetU of U-sets and maps.
• The category AbU of abelian groups belonging to U and group homomorphisms.
• The category MonU of commutative monoids belonging to U and monoid homomorphisms.
• For a (unital and associative) ring Λ, the category ModU Λ of (right) Λ-modules which belong to
U and Λ-linear maps.

• For a scheme X, the category QcohUX of quasi-coherent OX -modules which belong to U and
OX -linear maps.

These are U-moderate locally U-set categories.
• For a ring Λ belonging to U, the category modU Λ of finitely generated Λ-modules belonging to U
and Λ-linear maps.

• Let X be a scheme belonging to U.
– The category cohUX of coherent OX -modules belonging to U and OX -linear maps.
– The full subcategory torUX of cohUX consisting of coherent torsion sheaves.
– The full subcategory vectUX of cohUX consisting of vector bundles.

These are skeletally U-small categories.

Remark 1.1.8. There is another foundation for category theory using the NBG set theory (due to von
Neumann, Bernays and Gödel). See [Men15] for a detailed account of the NBG set theory. In the NBG
set theory, the notion of classes is introduced, and we can consider the products of classes and maps
between classes. Defining a category by an ordered pair of the class of objects, the class of morphisms
and some maps such as Definition 1.1.1, we can define the category Set of all sets since there is the class
of all sets in the NGB set theory.

We describe the relationship between the NBG set theory and the ZFCU set theory. Let U be a
Grothendieck universe. Then the power set P(U) is a model for the NBG set theory. Thus, replacing sets
and classes with U-sets and U-classes respectively, the proposition correct in the NBG set theory gives
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the proposition correct in the ZFCU set theory. In this sense, the ZFCU set theory is stronger than the
NBG set theory.

Let us discuss the reasons why we have chosen the ZFCU set theory rather than the NBG set theory
as the foundation for this thesis. In this thesis, we will treat the collection of full subcategories and the
Picard group of a scheme. Hence, we have to consider the collection of classes in both cases. Whereas
we can consider a set of U-classes in our foundation, we cannot consider a class of (proper) classes in
the NBG set theory. For this reason, we use the ZFCU set theory which is stronger than the NBG set
theory, as the foundation for this thesis.

Let C and D be categories. We denote by Fun(C,D) the category of functors from C to D and natural
transformations.

Example 1.1.9. Fix a Grothendieck universe U. Let C and D be categories.
(1) If both C and D are U-categories (resp. U-small), then so is Fun(C,D).
(2) If C is U-small and D is locally U-small, then Fun(C,D) is also locally U-small.

Let C be a category and S a subset of Mor C. The localization C[S−1] of C with respect to S is a pair
of a category C[S−1] and a functor Q : C → C[S−1] satisfying the following:
(i) Q(s) is an isomorphism for any s ∈ S.
(ii) For any category D and any functor F : C → D such that F (s) is an isomorphism for any s ∈ S,

there exists a unique functor F : C[S−1]→ D satisfying F = F ◦Q.
For any category C and a subset S ofMor C, the localization Q : C → C[S−1] certainly exists (cf. [DHKS04,
Subsection 33.8]). By the construction, Ob(C[S−1]) = Ob(C) and Q is the identity on the objects.

Example 1.1.10. Fix a Grothendieck universe U. Let C be a category and S a subset of Mor C.
(1) If C is a U-category (resp. U-small, resp. skeletally U-small), then so is C[S−1].
(2) Even if C is locally U-set, the localization C[S−1] is not necessarily locally U-small (cf. [Kra10,

Subsection 4.15]).

We often fix two Grothendieck universes U and V such that U ∈ V and consider the following
categories.

Definition 1.1.11. Let U and V be Grothendieck universes such that U ∈ V, and let CU be one of the
categories in Example 1.1.7. We define the category CŨ by the essential image of the natural inclusion
functor CU ↪→ CV.

For example, SetŨ is the category of U-small V-sets. It is clear that CŨ is equivalent to CU and a full
subcategory of CV closed under isomorphisms.

We often use the following convention:

Convention 1.1.12. Let U and V be Grothendieck universes such that U ∈ V. We use the following
convention:

• A set := U-small V-set.
• A collection := a V-set.
• A category := a V-category.
• small (resp. locally small, resp. skeletally small) := U-small (resp. locally U-small, resp. skeletally
U-small).

• Assume that the underlying sets of monoids, abelian groups and topological spaces are U-small
V-sets.

• Assume that rings, schemes and modules over them belong to U.
• Mon := MonŨ and Ab := AbŨ.
• For a ring Λ belonging to U, ModΛ := ModU Λ and modΛ := modU Λ.
• For a scheme X belonging to U, QcohX := QcohUX, cohX := cohUX, torX := torUX and
vectX := vectUX.

For example, Fact 0.2.1 is interpreted as follows under this convention.

Fact 1.1.13 (The precise statment of Fact 0.2.1). Let X be a noetherian scheme belonging to U. There
is an inclusion preserving bijection between the following sets:
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• The U-small V-set of Serre subcategories of cohUX.
• The U-small V-set2 of specialization-closed subsets of X.

More precisely, in [Gab62], Gabriel fixed a single Grothendieck universe U and did not mention the
size of the sets appearing in Fact 1.1.13. However, it is clear that they are U-small V-sets.
Warning 1.1.14. Let us explain the purpose of Convention 1.1.12. In this thesis, some sets, monoids,
and topological spaces are constructed from skeletally small categories. For example, we consider the set
of full subcategories closed under isomorphism (cf. Chapter 3), Grothendieck monoids (cf. Chapter 2),
and their monoid spectra (cf. Chapter 6). Thus, in Convention 1.1.12, we assume that monoids, abelian
groups and topological spaces are U-small V-sets. In this thesis, we do not construct rings, schemes and
modules over them from the set of full subcategories closed under isomorphism, Grothendieck monoids,
and their monoid spectra. Therefore, this convention does not cause any inconsistency.

Warning 1.1.15. Let us clarify the relationship and differences between our basic setup (Conven-
tion 1.1.12) and those of other literature cited in §0.2.

• In [Gab62], the ZFCU set theory was used and only one Grothendieck universe was fixed. Similar
to Fact 1.1.13, the content of this paper can be interpreted consistently in our setup.

• In [Tho97], the NBG set theory is referred in the definition of essentially small categories (cf.
[Tho97, page 4, (1.7)]). Thus, the foundation of this paper can be interpreted as the NBG set theory.
As explained in Remark 1.1.8, replacing sets and classes with U-sets and U-classes respectively,
we can interpret the statements in [Tho97] as statements in our setup. In particular, under this
interpretation, we can easily see that our definition of skeletally U-small coincides with the definition
of essentially small in [Tho97] by Remark 1.1.6 (3).

• In [Bro97, Mat18, ZZ21], there is no mention for set-theoretical foundations. However, [Mat18,
ZZ21] cite [Tho97] as a previous study, so their foundation can be interpreted as the NBG set
theory. Therefore, as with the second item, these papers are also consistent with the current setup.

Finally, we prove that the category modU Λ of finitely generated modules over a ring Λ and the
category cohUX of coherent sheaves over a scheme X do not depend on the Grothendieck universe U up
to equivalences.

Proposition 1.1.16. Let U and V be Grothendieck universes such that U ∈ V. For any ring Λ belonging
to U, the natural inclusion functor modU Λ ↪→ modV Λ is an equivalence of categories.

Proof. For any finitely generated Λ-module M , there are integer n ≥ 0 and a surjection Λ-linear map

w : Λ⊕n � M . Thus, there is an isomorphism Λ⊕n/Ker(w)
∼=−→ M . It is clear that Λ⊕n/Ker(w) is a

U-set. Therefore, the natural inclusion functor modU Λ ↪→ modV Λ is essentially surjective.

Proposition 1.1.17. Let X be a scheme, and let U and V be Grothendieck universes such that X ∈
U ∈ V. Then the following hold:
(1) The natural inclusion functor cohUX ↪→ cohVX is an equivalence of categories.
(2) The natural inclusion functor torUX ↪→ torVX is an equivalence of categories.
(3) The natural inclusion functor vectUX ↪→ vectVX is an equivalence of categories.

Proof. It is enough to show that the following claim:
• Every OX -module of finite type is isomorphic to an OX -module belonging to U.

Let F be an OX -module of finite type. Then for any x ∈ X there exists an open neighborhood Ux of x
and an exact sequence of OUx

-modules of the form

O⊕nx

Ux

w(x)

−−−→ F|Ux
→ 0,

where nx ≥ 0 is an integer. Then w(x) induces an isomorphism φ(x) : O⊕nx

Ux
/Ker

(
w(x)

) ∼=−→ F|Ux
. It is

clear that O⊕nx

Ux
/Ker

(
w(x)

)
is a U-set. Gluing

{
O⊕nx

Ux
/Ker

(
w(x)

)}
x∈X and

{
φ(x)

}
x∈X , we obtain an

OX -module G belonging to U and an isomorphism φ : G → F of OX -modules.

Remark 1.1.18. Let Λ be a ring, and let U and V be Grothendieck universes such that Λ ∈ U ∈ V.
Then the natural inclusion functor ModU Λ ↪→ ModV Λ is not essentially surjective since Λ⊕U ∈ ModV Λ
is not isomorphic to an object of ModU Λ. Thus, the property of being finitely generated is essential in
Proposition 1.1.16. The same can be said for Proposition 1.1.17.

2It is, in fact, a U-set.
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1.2 Global notations and convention

In this section, we fix a Grothendieck universe U.
Let C be a category. We denote by |C| the set of isomorphism classes of objects. The isomorphism

class of X ∈ C is also denoted by X. A subcategory is said to be strictly full if it is a full subcategory
closed under isomorphisms. The strictly full subcategories of C are often identified with the subsets of
|C|. If C is skeletally U-small (see Definition 1.1.4), then |C| is U-small by the definition. Thus, the set
of strictly full subcategories of C is also U-small.

Let C be an additive category. A subcategory D of C is called an additive subcategory if it is a strictly
full subcategory closed under taking finite direct sums. In particular, each additive subcategory of C
contains a zero object. For a non-empty full subcategory D of C, we denote by addD the subcategory
of C consisting of direct summands of direct sums of objects in D. For the empty subcategory ∅, we
set add(∅) := {0}. Then addD is the smallest additive subcategory of C closed under direct summands
containing D.

Let Λ be a (unital and associative but not necessarily commutative) ring. For (right) Λ-modules M
and N , we denote by HomΛ(M,N) the set of Λ-linear maps from M to N .

Let X be a scheme with structure sheaf OX . A point of X is not necessarily assumed to be closed.
For a point x ∈ X, we denote by mx the maximal ideal of OX,x and κ(x) := OX,x/mx the residue field
of x. Let F and G be quasi-coherent sheaves on X. We denotes by HomOX

(F ,G ) the set of OX -linear
maps form F to G . The tensor product of F and G over OX is denoted by F ⊗OX

G . The sheaf of
homomorphisms from F to G is denoted by HomOX

(F ,G ). If no ambiguity can arise, we will often
omit the subscript OX . The support of F is the subset of X defined by SuppF := {x ∈ X | Fx 6= 0}. A
variety over a field k means a separated integral scheme of finite type over k. A curve is a 1-dimensional
variety.

For a commutative ring R, we often identify ModUR with QcohU(SpecR). For a morphism f : X →
Y of schemes belonging to U, we denote by f∗ : QcohUX → QcohU Y the direct image functor and
f∗ : QcohU Y → QcohUX the pull-back functor.

A monoid means a semigroup with unit. Every monoid is assumed to be commutative. We use an
additive notation, that is, the operation is denoted by + with its unit 0. We denote by N the monoid of
non-negative integers. For a subset S of a monoid M , we denote by 〈S〉N the smallest submonoid of M
containing S.
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Chapter 2

Grothendieck monoids of
extriangulated categories

For a triangulated category or an exact category C, its Grothendieck group K0(C) is a basic invariant and
has been studied and used in various areas. Recently, the Grothendieck monoid of an exact category,
a natural monoid version of the Grothendieck group, has been introduced by Berenstein–Greenstein in
[BG16] to study Hall algebras, and its relation to the categorical property of an exact category was
studied in [Eno22].

We can naturally generalize these constructions to an extriangulated category C. The Grothendieck
group K0(C) was formulated by Zhu–Zhuang [ZZ21] and Haugland [Hua21] and was used to classify
certain subcategories of an extriangulated category. The aim of this chapter is to define and investigate
the Grothendieck monoid M(C) of C.

2.1 Preliminaries: commutative monoids

We collect minimal definitions and properties of commutative monoids to describe our first results. The
main reference of this section is [Ogu18].

A monoid is a semigroup with a unit. In this paper, every monoid is assumed to be commutative.
Hence, we use the additive notation, that is, the binary operation is denoted by +, and the unit is
denoted by 0. A homomorphism of monoids is a map f : M → N satisfying f(x+ y) = f(x) + f(y) and
f(0M ) = 0N . Let U be a Grothendieck universe. We denote by MonU the category of (commutative)
monoids belonging to U and homomorphisms of them. The category MonU has arbitrary U-small limits
and colimits (see [Ogu18, Section I.1.1]). We can define the product

∏
i∈IMi and the direct sum (=

coproduct)
⊕

i∈IMi of monoids similarly to abelian groups. In particular, finite products and finite
direct sums coincide.

A basic example of monoids is the set N of non-negative integers with the arithmetic addition. A
monoid M is said to be free if it is isomorphic to N⊕I for some index set I. In this case, the cardinality
of I is called the rank of M . A basis of a free monoid is defined by a similar way to abelian groups.

Remark 2.1.1. For a monoid homomorphism f : M → N , define a submonoid of M by

Ker(f) := {x ∈M | f(x) = 0}.

A caution is that the condition Ker(f) = 0 does not imply f is injective. Indeed, the monoid homomor-
phism

f : N⊕2 → N, (x, y) 7→ x+ y

is not injective but Ker(f) = 0.

The notion of quotients of monoids slightly differs from that of abelian groups. We introduce a class
of equivalence relations ∼ on a monoid M to guarantee that the quotient set M/∼ becomes a monoid.

Definition 2.1.2. The equivalence relation ∼ on a monoid M is called a congruence if x ∼ y implies
a+ x ∼ a+ y for every a, x, y ∈M .
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We can check easily that the quotient set M/∼ of a monoid M by a congruence ∼ has the unique
monoid structure such that the quotient map M →M/∼ is a monoid homomorphism.

Next, we list the properties of monoids which we will use.

Definition 2.1.3. Let M be a monoid.
(1) M is sharp (or reduced) if a+ b = 0 implies a = b = 0 for any a, b ∈M .
(2) M is cancellative (or integral) if a+ x = a+ y implies x = y for any a, x, y ∈M .

Remark 2.1.4. Let M be a monoid. An element x ∈ M is said to be unit if there is y ∈ M such that
x+ y = 0. We denote by M× the set of units in M . Then M is sharp if and only if M× = 0.

Finally, we discuss the relationship between monoids and groups.

Definition 2.1.5. The group completion of a monoidM is a pair (gpM,ρ) of a group gpM and a monoid
homomorphism ρ : M → gpM satisfying the following universal property:

• For every monoid homomorphism f : M → G into a group G, there exists a unique group homo-
morphism f : gpM → G such that f = fρ.

The group completion gpM certainly exists for any monoid M . It is constructed as the localization
of M with respect to M itself (see Definition 5.1.1). The group completion has the following properties
by the construction.

Proposition 2.1.6 (cf. Definition 5.1.1). Let M be a monoid and (gpM,ρ : M → gpM) its group
completion.
(1) gpM is an abelian group.
(2) For any x, y ∈ M , the equality ρ(x) = ρ(y) holds in gpM if and only if x + s = y + s in M for

some s ∈M .
(3) If M is a group, then gpM =M .
(4) Let U be a Grothendieck universe. If M is a U-set (resp. U-small), then so is gpM .

The cancellation property is related to the group completion as follows.

Proposition 2.1.7. Let M be a monoid and (gpM,ρ : M → gpM) its group completion. Then the
following are equivalent.
(1) M is cancellative.
(2) The monoid homomorphism ρ : M → gpM is injective.
(3) There is an injective monoid homomorphism from M to some group.

Proof. It follows immediately from Proposition 2.1.6 and the fact that any submonoid of an abelian
group is cancellative.

Let U be a Grothendieck universe. The assignmentM 7→ gpM gives rise to a functor gp : MonU → AbU
by the universal property. Also, the assignment M 7→ M× (cf. Remark 2.1.4) gives rise to a functor
(−)× : MonU → AbU. Let V be a Grothendieck universe such that U ∈ V. Then the following diagram
commutes by the construction:

MonV AbV

MonU AbU .

gp

(−)×

gp

(−)×

Moreover, they restrict to MonŨ → AbŨ by Proposition 2.1.6.

Proposition 2.1.8. Let U be a Grothendieck universe. The forgetful functor AbU → MonU has both
the left adjoint functor gp : MonU → AbU and the right adjoint functor (−)× : MonU → AbU. A similar
statement also holds for MonŨ and AbŨ if we fix a Grothendieck universe V such that U ∈ V.

Proof. This follows from Definition 2.1.5 and the fact that units are preserved by monoid homomor-
phisms.
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2.2 Preliminaries: extriangulated categories

In this paper, we omit the precise definitions and axioms of extriangulated categories. We refer the
reader to [NP19, LN19] for the basics of extriangulated categories.

Let U be a Grothendieck universe. An extriangulated U-category is an ordered tuple (C,E, s) consisting
of the following data satisfying certain axioms:

• C is an additive U-category.
• E is an additive bifunctor E : Cop × C → AbU.
• s = {sZ,X}(Z,X)∈Ob C×Ob C is a family of functions sZ,X : E(Z,X)→ E(Z,X). Here the set E(Z,X)
is defined as follows.

A complex V over C is called a 3-term complex starting with A and ending in B if V 0 = A, V 2 = B and

V i = 0 for all i 6= 0, 1, 2. Two 3-term complexes X
f−→ Y

g−→ Z and X
f ′−−→ Y ′ g′−−→ Z are equivalent if

there is an isomorphism y : Y
∼=−→ Y ′ which makes the following diagram commute:

X Y Z

X Y ′ Z.

f y

y ∼=

f ′ g′

We denote by E(Z,X) the set of equivalence classes of 3-term complexes starting with X and ending
with Z. Note that E(Z,X) is a U-set. Thus, an extriangulated U-category (C,E, s) is also a U-set.

For an extriangulated U-category (C,E, s), we call a 3-term complex X
f−→ Y

g−→ Z a conflation if
its equivalence class is equal to s(δ) for some δ ∈ E(Z,X). In this case, we call f an inflation and g a
deflation, and say that this complex realizes δ. We write this situation as follows:

X Y Z ,
f g δ

and we also call this diagram a conflation in C. In what follows, we often write C = (C,E, s) for an
extriangulated U-category (C,E, s) for simplicity.

Triangulated categories and Quillen’s exact categories can be naturally considered as extriangulated
categories as follows:
(1) An exact U-category is an exact category whose underlying category is a U-category. Let E be

an exact U-category. We denote by Ext1E(Z,X) the set of equivalence classes of conflations (in
the sense of exact categories) in E of the form 0 → X → Y → Z → 0. Then we have a functor
Ext1E(−,−) : Eop × E → AbU. Then by setting E := Ext1E and s := id, we may regard E as an
extriangulated U-category.

(2) A triangulated U-category is a triangulated category whose underlying category is a U-category.
Let T be a triangulated U-category with shift functor Σ. Then by setting E(Z,X) := T (Z,ΣX),
we may regard T as an extriangulated U-category. In this case, for each h ∈ E(Z,X) = T (Z,ΣX),

its realization s(h) is given by [X
f−→ Y

g−→ Z] which makes X
f−→ Y

g−→ Z
h−→ ΣX a triangle in

T .
Throughout this paper, we always regard triangulated U-categories and exact U-categories (in particular,
abelian U-categories) as extriangulated U-categories in this way. Conversely, exact and triangulated
categories can be characterized within extriangulated U-categories as follows.

Fact 2.2.1 ([NP19, Corollary 3.18, 7.6]). Let (C,E, s) be an extriangulated U-category.
(1) If any inflation is monic and any deflation is epic, then C admits a natural structure of exact

category, in which conflations in the sense of an exact categories are conflations in the sense of
extriangulated categories.

(2) If any morphism is both an inflation and a deflation, then C admits a natural structure of a
triangulated category, in which triangles comes from conflations.

For later use, we fix some terminologies for extriangulated categories. Let C = (C,E, s) be an extrian-
gulated U-category. For any δ ∈ E(Z,X) and any morphisms x ∈ C(X,X ′) and z ∈ C(Z ′, Z), we denote
E(idZ , x)(δ) and E(z, idX)(δ) briefly by x∗δ and z∗δ respectively.
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A morphism of conflations from X
f−→ Y

g−→ Z
δ99K to X ′ f ′−−→ Y ′ g′−−→ Z ′ δ′99K is a triplet

(x : X → X ′, y : Y → Y ′, z : Z → Z ′) of morphisms in C satisfying yf = f ′x, zg = g′y and x∗δ = z∗δ′.
We often write a morphism of conflations (x, y, z) as follows:

X Y Z

X ′ Y Z ′ .

f

x

g

y

δ

z

f ′ g′ δ′

For two subcategories C1 and C2 of an extriangulated U-category C, we denote by C1 ∗ C2 the subcat-
egory of C consisting of X ∈ C such that there is a conflation

C1 X C2

in C with C1 ∈ C1 and C2 ∈ C2.
We recall some properties of a subcategory D of an extriangulated U-category C.
• D is closed under finite direct sums if it contains a zero object of C and for any objects X,Y ∈ D,
their direct sum X ⊕ Y in C belongs to D. We also say that D is an additive subcategory in this
case.

• D is closed under direct summands if X ⊕ Y ∈ D implies X, Y ∈ D for any objects X,Y ∈ C.
• D is closed under extensions if D is additive and D ∗ D ⊆ D holds, that is, for any conflation
X → Y → Z 99K in C, we have that X,Z ∈ D implies Y ∈ D. We also say that D is an
extension-closed subcategory in this case.

An extension-closed subcategory D of an extriangulated U-category C also has the structure of an extri-
angulated U-category induced from that of C, see [NP19, Remark 2.18]. In this structure, a conflation
X → Y → Z 99K in D is precisely the conflation in C with X, Y , and Z in D. When we consider
extension-closed subcategories of an extriangulated U-category, we always regard D as an extriangulated
U-category in this way.

We also need the natural notion of functors between extriangulated categories, namely, an exact
functor :

Definition 2.2.2 ([BS21, Definition 2.32]). Let (Ci,Ei, si) be extriangulated U-categories for i = 1, 2, 3.
(1) An exact functor (F, φ) : (C1,E1, s1)→ (C2,E2, s2) is a pair of an additive functor F : C1 → C2 and

a natural transformation φ : E1 ⇒ E2 ◦ (F op × F ) such that for every conflation

X Y Z
f g δ

in C1, the following is a conflation in C2:

FX FY FZ .
Ff Fg ϕZ,X(δ)

We often write F = (F, φ) : C1 → C2 in this case.
(2) For two exact functors F1 = (F1, φ1) : C1 → C2 and F2 = (F2, φ2) : C2 → C3, their composition is

defined by F2 ◦ F1 = (F2 ◦ F1, φ2 · φ1) : C1 → C3, where

(φ2 · φ1)C,A : E1(C,A)
(ϕ1)C,A−−−−−→ E2(FC,FA)

(ϕ2)FC,FA−−−−−−−→ E3(GFC,GFA).

(3) Let F = (F, φ) and G = (G,ψ) be two exact functors C1 → C2. A natural transformation η : F ⇒ G
of exact functors is a natural transformation of additive functors such that, for any conflation

A
x−→ B

y−→ C
δ99K in C, the following is a morphism of conflations in D:

FA FB FC

GA GB GC .

Fx

ηA

Fy

ηB

ϕC,A(δ)

ηC

Gx Gy ψC,A(δ)
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(4) ETcatU is the category of extriangulated U-categories and exact functors.

Horizontal compositions and vertical compositions of natural transformations of exact functors are
defined by those for natural transformations of additive functors. These compositions are also natural
transformations of exact functors. In particular, we can define an exact equivalence of extriangulated
categories in the same way as that of additive categories.

Remark 2.2.3. Let F = (F, φ) : C → D be an exact functor of extriangulated U-categories, and let
(a, b, c) be a morphism of conflations

A1 B1 C1

A2 B2 C2

x1

a

y1

b

δ1

c

x2 y2 δ2

in C. Then (Fa, Fb, Fc) gives a morphism of conflations

FA1 FB1 FC1

FA2 FB2 FC2

Fx1

Fa

Fy1

Fb

ϕC1,A1
(δ1)

Fc

Fx2 Fy2 ϕC2,A2
(δ2)

in D by the naturality of φ.

Later, we need the following observation about exact functors to exact categories, which can be easily
proved by considering the extriangulated structure on exact categories.

Lemma 2.2.4. Let C = (C,E, s) be an extriangulated U-category, E an exact U-category, and F : C → E
an additive functor. Then the following are equivalent.
(1) There is some φ which makes (F, φ) an exact functor between extriangulated categories.

(2) For each conflation X
f−→ Y

g−→ Z 99K in C, the following is a conflation in E:

0 FX FY FZ 0.
Ff Fg

Moreover, in this case, φ in (1) is uniquely determined.

Due to this fact, we call an additive functor F : C → E satisfying (2) above just an exact functor.
Let U and V be Grothendieck universes such that U ∈ V. Then it is clear that the natural inclusion

functor ETcatU → ETcatV is fully faithful. We consider the following full subcategories of ETcatV.
• The category ETcatŨ of U-small extriangulated V-categories.
• The category ETCatU of skeletally U-small extriangulated V-categories.

Note that a skeletally U-small category is not necessarily locally U-small in our definition (Defini-
tion 1.1.4).

In the remaining of this thesis, we often use the following convention:

Convention 2.2.5. Let U and V be Grothendieck universes such that U ∈ V.
• An extriangulated category := an extriangulated V-category.
• ETcat := ETcatŨ.
• ETCat := ETCatU.
• ETCAT := ETcatV.

2.3 Definition and construction of Grothendieck monoids

We define the Grothendieck monoid by the universal property. Recall that all monoids are commutative.

Definition 2.3.1. Let U be a Grothendieck universe, and let C be an extriangulated U-category.
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(1) An additive function on C with values in a monoid M is a map f : |C| →M satisfying the following
conditions:
(1) f(0) = 0 holds.
(2) For every conflation

X Y Z

in C, we have f(Y ) = f(X) + f(Z) in M .
We also say that f : |C| →M respects conflations.

(2) A Grothendieck monoid M(C) is a monoid M(C) together with an additive function π : |C| → M(C)
which satisfies the following universal property:

• For any additive function f : |C| → M with values in a monoid M , there exists a unique
monoid homomorphism f : M(C)→M such that f = fπ.

|C| M

M(C)

π

f

f

We often write [X] := π(X) for X ∈ |C|.

Since the Grothendieck monoid of C is defined by the universal property, we must show that it
certainly exists. For later use, we give an explicit construction of M(C).

Definition 2.3.2. Let U be a Grothendieck universe and C an extriangulated U-category. Let A and B
be objects in C.
(1) A and B are conflation-related, abbreviated by c-related, if there is a conflation

X Y Z

such that either of the following holds in C:
(1) Y ∼= A and X ⊕ Z ∼= B, or
(2) Y ∼= B and X ⊕ Z ∼= A.
In this case, we write A ∼c B.

(2) A andB in C are conflation-equivalent, abbreviated by c-equivalent, if there are objects A0, A1, . . . , An
in C for some n ≥ 0 satisfying A0

∼= A, An ∼= B, and Ai ∼c Ai+1 for each i. In this case, we write
A ≈c B.

It is immediate that ∼c and ≈c induce binary relations ∼c and ≈c on the set |C|. Then clearly ≈c
is an equivalence relation on |C| generated by ∼c. On the other hand, |C| can be regarded as a monoid
with the addition given by A+B := A⊕B. Then we can state the following explicit construction of the
Grothendieck monoid.

Proposition 2.3.3. Let U be a Grothendieck universe and C an extriangulated U-category. Then the
following hold.
(1) ≈c is a monoid congruence on |C| (see Definition 2.1.2 for a monoid congruence).
(2) The quotient monoid |C| /≈c together with the natural projection π : |C|� |C| /≈c gives a Grothendieck

monoid of C.

Proof. (1) We must show that A ≈c B implies A⊕ C ≈c B ⊕ C holds for every A, B, and C in C. By
the definition of ≈c, it clearly suffices to show that A ∼c B implies A ⊕ C ∼c B ⊕ C, so suppose that
A ∼c B holds. Then there is a conflation

X Y Z
f g

such that either (a) Y ∼= A and X ⊕ Z ∼= B or (b) Y ∼= B and X ⊕ Z ∼= A. On the other hand, we have
the following conflation:

C C 0
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since s is an additive realization [NP19, Definition 2.10]. Moreover, since conflations are closed under
finite direct sums (because s is an additive realization), we obtain the following conflation:

X ⊕ C Y ⊕ C Z
f⊕idC [g, 0]

Thus, we obtain Y ⊕ C ∼c (X ⊕ C)⊕ Z ∼= (X ⊕ Z)⊕ C. In either case, we obtain A⊕ C ∼c B ⊕ C.
(2) By (1), we obtain the quotient monoid |C| /≈c and the natural monoid homomorphism π : |C|�

|C| /≈c. We first show that π : |C| � |C| /≈c respects conflations. Since π is a monoid homomorphism,
we have π(0) = 0 and π(X ⊕Y ) = π(X)+π(Y ) for all objects X and Y in C. Let X → Y → Z 99K be a
conflation in C. Then we have Y ∼c X ⊕ Z, which implies π(Y ) = π(X ⊕ Z) = π(X) + π(Y ) in |C| /≈c.

Next, suppose that we have additive function f : |C| → M with values in a monoid M , and we will
show that there is a unique monoid homomorphism f : |C| /≈c →M satisfying f = fπ. The uniqueness
is clear since π is surjective, so we only show the existence of such f . To obtain a well-defined map
f : |C| /≈c → M satisfying f = fπ, it clearly suffices to show that A ∼c B implies f(A) = f(B),
so suppose A ∼c B. Then there is a conflation X → Y → Z 99K such that either (a) Y ∼= A and
X ⊕ Z ∼= B or (b) Y ∼= B and X ⊕ Z ∼= A. On the other hand, since f respects conflations, we have
f(Y ) = f(X) + f(Z). Moreover, we have the following split conflation

X X ⊕ Z Z

[
idX
0

]
[0, idZ ] 0

because s is an additive realization. Therefore, f(X) + f(Z) = f(X ⊕ Z) holds, and hence f(Y ) =
f(X ⊕ Z). Thus f(A) = f(B) holds in either case.

Let U be a Grothendieck universe and C an extriangulated U-category. In what follows, we often
identify M(C) with |C| /≈c and write [X] ∈ |C| /≈c to represent an element for X ∈ C. Note that M(C)
is a U-set by the construction.

The assignment C 7→ M(C) actually gives a functor:

Proposition 2.3.4. Let U be a Grothendieck universe. We have a functor M(−) : ETcatU → MonU
defined as follows.

• To C ∈ ETcatU, we associate the Grothendieck monoid M(C) ∈ MonU.
• To an exact functor F : C → D, we associate a monoid homomorphism M(F ) : M(C) → M(D)
defined by [C] 7→ [F (C)].

Moreover, if F : C ∼−→ D is an exact equivalence, then M(F ) : M(C)→ M(D) is a monoid isomorphism.

Since the proof is straightforward by using the defining universal property of the Grothendieck
monoid, we omit it.

Let U and V be Grothendieck universes such that U ∈ V. Then the following diagram commutes by
the construction of Grothendieck monoids:

ETcatV MonV

ETcatU MonU .

M(−)

M(−)

If C is a skeletally U-small extriangulated V-category, then M(C) is clearly a U-small monoid. Thus, the
functor M(−) : ETcatV → MonV restricts to a functor M(−) : ETCatU → MonŨ (see §1.1 and 2.2 for the
notations).

We obtain the following result by the discussion above and Propositions 1.1.16 and 1.1.17.

Proposition 2.3.5. Let U and V be Grothendieck universes such that U ∈ V.
(1) We have the following isomorphism of monoids for a ring Λ belonging to U.

• M(modU Λ)
∼=−→ M(modŨ Λ)

∼=−→ M(modV Λ).
(2) We have the following isomorphisms of monoids for a scheme X belonging to U.

• M(cohUX)
∼=−→ M(cohŨX)

∼=−→ M(cohVX).

• M(vectUX)
∼=−→ M(vectŨX)

∼=−→ M(vectVX).
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• M(torUX)
∼=−→ M(torŨX)

∼=−→ M(torVX).

Finally, we compare the Grothendieck monoid M(C) with the Grothendieck group K0(C).

Remark 2.3.6. Let U be a Grothendieck universe and C an extriangulated U-category.
(1) Recall that the Grothendieck group K0(C) of C is defined by

K0(C) :=
⊕
X∈|C|

ZX
/
〈A−B + C | A→ B → C 99K is a conflation〉.

The image of X ∈ |C| in K0(C) is denoted by [X]. Then there is a natural monoid homomorphism

ρ : M(C)→ K0(C), [X] 7→ [X].

Then the defining properties of M(C) and K0(C) immediately show that (K0(C), ρ : M(C)→ K0(C))
is the group completion of M(C) (see Definition 2.1.5). Moreover, we have a natural isomorphism
of functors K0(−) ' gp ◦M(−) : ETcatU → AbU.

(2) The natural map ρ is injective if and only if M(C) is cancellative by Proposition 2.1.7. In this case,
the Grothendieck monoid M(C) can be identified with the positive part

K+
0 (C) := {[X] ∈ K0(C) | X ∈ C}

of the Grothendieck group. Thus, if M(C) is cancellative, the computation of M(C) becomes much
easier. However, not much is known about the conditions for an extriangulated category C under
which M(C) becomes cancellative.

(3) An element of M(C) can be expressed by [X] for some single object X ∈ C, while an element of
K0(C) can only be expressed by [X]− [Y ] for some objects X,Y ∈ C in general. It is an advantage
of the Grothendieck monoid.

2.4 Grothendieck monoids of exact and triangulated categories

In this section, we discuss the Grothendieck monoids of exact and triangulated categories, respectively.
We will see that the invertible elements of the Grothendieck monoid of an exact category are only 0,
while every element of that of a triangulated category is invertible. Fix a Grothendieck universe U.

We first consider the Grothendieck monoid of an exact category. Let E be an exact U-category. We
regard it as an extriangulated U-category. Then our M(E) coincides with the Grothendieck monoid of
an exact category which is studied in [BG16, Eno22] by the universal property.

The Grothendieck monoid of an exact category has the following properties.

Proposition 2.4.1. Let C be an extriangulated U-category. Consider the following conditions.
(1) C is an exact category (with the usual extriangulated structure).
(2) If X → 0→ Y 99K is a conflation in C, then X ∼= 0 holds in C (or equivalently, Y ∼= 0 holds).
(3) If [A] = 0 in M(C), then A ∼= 0 holds in C.
(4) M(C) is sharp (see Definition 2.1.3).

Then (1) ⇒ (2) ⇔ (3) ⇒ (4) holds.

Proof. The conditions in (2) are easily seen to be equivalent by considering the long exact sequence
associated to the conflation.

(1) ⇒ (2): This is clear since an inflation X → 0 in an exact category must be monic.
(2) ⇒ (3): It suffices to show that A ∼c 0 implies A ∼= 0. Then there exists a conflation X → Y →

Z 99K such that either (a) Y ∼= A and X ⊕Z ∼= 0 or (b) Y ∼= 0 and X ⊕Z ∼= A. In the case (a), both X
and Z are isomorphic to 0 since X ⊕ Z ∼= 0. Thus A ∼= Y ∼= 0 by the conflation 0→ Y → 0 99K. In the
case (b), both X and Z are isomorphic to 0 by the assumption. Thus A ∼= X ⊕ Z ∼= 0.

(3) ⇒ (2): Suppose that we have a conflation X → 0→ Y 99K. Then we have [X ⊕Y ] = [X] + [Y ] =
[0] = 0 in M(C). Thus (4) implies X ⊕ Y ∼= 0, so X ∼= Y ∼= 0 holds.

(3) ⇒ (4): Suppose that x + y = 0 holds in M(C). There are X and Y in C satisfying [X] = x and
[Y ] = y, and [X ⊕ Y ] = [X] + [Y ] = 0 holds. Thus (4) implies X ⊕ Y ∼= 0, which shows X ∼= Y ∼= 0.
Therefore, x = y = 0 holds.
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It is natural to ask whether the conditions in Proposition 2.4.1 are equivalent. However, there is a
counterexample for (4) ⇒ (1) and (3) ⇒ (1) (see [BHST, Example 5.2, Remark 5.3]). Thus, we pose the
following question.

Question 2.4.2. Let C be an extriangulated U-category. Are the following conditions equivalent?
(1) If X → 0→ Y 99K is a conflation in C, then X ∼= 0 holds in C (or equivalently, Y ∼= 0 holds).
(2) M(C) is sharp.

Next, we consider the Grothendieck monoid of a triangulated category.

Proposition 2.4.3. Let T be a triangulated U-category.
(1) M(T ) is a group.
(2) There is a natural isomorphism M(T ) ∼= K0(T ) of groups.

Proof. (1) For every element [X] ∈ M(T ), there is a triangle

X 0 ΣX ΣX.

This means that we have a conflation X → 0 → ΣX 99K, which implies [X] + [ΣX] = 0 in M(T ).
Therefore, every element in M(T ) is invertible, that is, M(T ) is a group.

(2) It follows from Remark 2.3.6 (1).

In general, the converse does not hold: there is an extriangulated U-category which is not triangulated
but whose Grothendieck monoid is a group (see Corollary 5.3.2 for example).

The following example says the natural inclusion from an abelian category to its bounded derived
category categorifies the group completion of the Grothendieck monoid.

Example 2.4.4. Let A be an abelian U-category. Then A can be regarded as an extension-closed
subcategory of its bounded derived category Db(A). The natural inclusion functor A ↪→ Db(A) induces
a monoid homomorphism

M(A)→ M(Db(A)) = K0(D
b(A)) ∼= K0(A)

by Proposition 2.4.3. In fact, the monoid homomorphism M(A) → K0(A) coincides with the group
completion of M(A) (see Remark 2.3.6).
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Chapter 3

Classifying subcategories via
Grothendieck monoids

Throughout this chapter, we fix Grothendieck universes U and V such that U ∈ V and use Convention
1.1.12 and 2.2.5. Moreover, we assume that every subcategory is a strictly full subcategory. Hereafter,
C = (C,E, s) is a skeletally small extriangulated category.

In this chapter, we give classifications of several subcategories of C via its Grothendieck monoid M(C).
More precisely, we consider the following assignments:

• For a subcategory D of C, we define a subset MD of M(C) by

MD := {[D] ∈ M(C) | D ∈ D}.

• For a subset N of M(C), we define a subcategory DN of C by

DN := {X ∈ C | [X] ∈ N}.

In what follows, we will show that these maps give bijections between certain subcategories of C and
certain subsets of M(C). We freely identify M(C) with |C| /≈c by Proposition 2.3.3. Note that the
collection of subcategories of C forms a set since C is skeletally small.

3.1 Classifying c-closed subcategories via subsets

The key notion of this chapter is c-closed subcategories defined below. These are the largest class of
subcategories which can be classified via the Grothendieck monoid (see Proposition 3.1.3). In §3.3 and
3.6, we will show that Serre subcategories and dense 2-out-of-3 subcategories are c-closed and classify
them via the Grothendieck monoid.

Definition 3.1.1. A subcategory D of C is said to be closed under c-equivalences if for any conflation
A → B → C 99K, we have that B ∈ D if and only if A ⊕ C ∈ D. We also say that D is a c-closed
subcategory for short.

The following lemma follows immediately from Proposition 2.3.3. We freely use this characterization
in what follows.

Lemma 3.1.2. The following are equivalent for a subcategory D of C.
(1) D is closed under c-equivalences.
(2) For every X,Y ∈ C, if X ∼c Y (cf. Definition 2.3.2) holds and X belongs to D, then Y also belongs

to D.
(3) For every X,Y ∈ C, if [X] = [Y ] holds in M(C) and X belongs to D, then Y also belongs to D.

The relation between the subcategories DN defined above and c-closed subcategories is as follows.
Note that a subcategory is not assumed to be additive.

Proposition 3.1.3. The following hold.
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(1) DN is closed under c-equivalences for any subset N of M(C).
(2) The assignments D 7→ MD and N 7→ DN give mutually inverse bijections between the set of c-closed

subcategories of C and the power set of M(C).

Proof. (1) Let X ∈ DN and Y ∈ C, and suppose that [X] = [Y ] in M(C). Then we have [Y ] = [X] ∈ N ,
and hence Y also belongs to DN . This proves that DN is closed under c-equivalences.

(2) First, we prove that MDN
= N holds for each subset N of M(C). Clearly, we have MDN

⊇ N .
Take [X] ∈ MDN

. Then there is an object Y ∈ DN such that [X] = [Y ] holds in M(C). Since DN is
closed under c-equivalences by (1), we have that X is also in DN , that is, [X] ∈ N . Hence, we obtain
MDN

= N .
Next, we prove that DMD = D holds for a c-closed subcategory D of C. Clearly, we have DMD ⊇ D.

Take X ∈ DMD , then we have [X] ∈ MD, so there exists an object Y ∈ D satisfying [X] = [Y ] in
M(C). Since D is closed under c-equivalences, we obtain X ∈ D. Therefore, we obtain DMD = D, which
completes the proof.

In the rest of this section, we will discuss the conditions under which all subcategories are classified
via M(C), that is, all subcategories are c-closed. We recommend that the reader skips the remaining part
of this section in the first reading. Let us begin with a simple observation.

Proposition 3.1.4. The following conditions are equivalent.
(1) All subcategories of C are c-closed.
(2) For any conflation A→ B → C 99K in C, we have B ∼= A⊕ C.

Proof. (1) ⇒ (2): Let A→ B → C 99K be a conflation in C. Consider the subcategory X consisting of
objects isomorphic to B. Since X is c-closed, it contains A⊕ C. This means A⊕ C ∼= B.

(2) ⇒ (1): Let X be a subcategory of C. For any conflation A → B → C 99K, we have B ∼= A ⊕ C
by the assumption (2). Thus B ∈ X if and only if A⊕ C ∈ X . This proves that X is c-closed.

Let us call a conflation A→ B → C 99K quasi-split if B ∼= A⊕C holds. There are subtle differences
between split and quasi-split conflations.

Example 3.1.5. There are two short exact sequences of abelian groups:

δ : 0→ Z 2−→ Z→ Z/2Z→ 0 and ε : 0→ 0→ (Z/2Z)⊕N =−→ (Z/2Z)⊕N → 0.

Then the short exact sequence obtained by their direct sum

δ ⊕ ε : 0 Z Z⊕ (Z/2Z)⊕N Z/2Z⊕ (Z/2Z)⊕N 0

is quasi-split but not split. Indeed, the element δ ⊕ ε corresponds to (δ, 0) by the natural isomorphism
Ext1Z

(
Z/2Z⊕ (Z/2Z)⊕N,Z

) ∼= Ext1Z (Z/2Z,Z) ⊕ Ext1Z
(
(Z/2Z)⊕N,Z

)
, and it is nonzero since δ is not a

split exact sequence.

From this example, a quasi-split conflation is not a split conflation in general. However, there are the
following examples where this claim holds.

Example 3.1.6. In the following classes of extriangulated categories C, every quasi-split conflation is a
split conflation.

• C is an exact R-category over a commutative ring R such that C(A,B) is an R-module of finite

length for any A,B ∈ C. Indeed, for any quasi-split conflation 0→ A→ B
f−→ C → 0, we have an

exact sequence

0 C(C,A) C(C,B) C(C,C)
C(C,f)

of R-modules. Now we have C(C,B) ∼= C(C,A) ⊕ C(C,C) by the assumption. Considering the
lengths of R-modules in the above exact sequence, we conclude that C(C, f) is surjective, and this

implies that the conflation 0→ A→ B
f−→ C → 0 splits.

• C is an extension-closed subcategory of modΛ, where Λ is an algebra over a commutative noetherian
ring R with Λ ∈ modR. This follows from the result in [Miy67, Theorem 1], which states that any
quasi-split short exact sequence in modΛ actually splits.
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The above examples lead us to the next question.

Question 3.1.7. When does a quasi-split conflation become a split conflation? More concretely, in the
following classes of exact categories C, does this question have a positive answer?

• C is an exact R-category over a commutative noetherian ring R such that C(A,B) ∈ modR holds
for any A,B ∈ C.

• C is a noetherian exact category, that is for any X ∈ C, the poset of admissible subobjects of X
satisfies the ascending chain condition (see [Eno22, Section 2] for this poset).

We now return to considering when all subcategories are classified via M(C). An extriangulated
category C is said to be quasi-split if every conflation in C is quasi-split. Recall that this condition is
equivalent to the condition under which all subcategories of C can be classified via the Grothendieck
monoid by Proposition 3.1.4. On the other hand, if every conflation of an extriangulated category C is
a split conflation, then every inflation is a monomorphism, and every deflation is an epimorphism. Thus
C becomes an exact category (see [NP19, Corollary 3.18]). Such an exact category C is called a split
exact category. It is clear that a split exact category is quasi-split. Thus, we have the following natural
question.

Question 3.1.8. When does a quasi-split extriangulated category C become a split exact category?

Example 3.1.9. Question 3.1.8 has a positive answer for the following classes of extriangulated cate-
gories C.

• C is one of the exact categories in Example 3.1.6.
• More generally, C is an exact category in which Question 3.1.7 has a positive answer.
• C is an extriangulated category with enough projectives. See Proposition 3.1.10 below.

We recall some terminology to prove Proposition 3.1.10. An object P of C is projective if E(P,X) = 0
for any X ∈ C. We denote by Proj C the category of projective objects of C. Clearly Proj C is closed under
extensions and direct summands. An extriangulated category C has enough projectives if for any A ∈ C,
there exists a deflation P → A from a projective object P .

Proposition 3.1.10. Suppose that an extriangulated category C has enough projectives. Then the fol-
lowing conditions are equivalent.
(1) Every subcategory of C is c-closed.
(2) Every additive subcategory of C is c-closed.
(3) Every extension-closed subcategory of C is c-closed.
(4) C is a split exact category.
(5) C is a quasi-split extriangulated category.

Proof. The implications (1) ⇒ (2) ⇒ (3) and (4) ⇒ (5) ⇒ (1) are clear, so we only prove (3) ⇒
(4). Let A → B → C 99K be a conflation in C. Since C has enough projectives, there is a conflation
X → P → C 99K in C with P ∈ Proj C. The assumption (3) implies that Proj C is c-closed, and hence
C ⊕X ∈ Proj C. Then C is also projective since Proj C is closed under direct summands. Therefore the
conflation A→ B → C 99K splits. This proves that C is a split exact category.

3.2 Preliminaries: faces

In this section, we study faces a class of submonoids which corresponds to Serre subcategories in §3.3.
Hereafter, M is a monoid.

Definition 3.2.1.
(1) A submonoid F of M is called a face if for all x, y ∈M , we have that x+ y ∈ F if and only if both

x ∈ F and y ∈ F .
(2) FaceM denotes the set of faces of M .

Remark 3.2.2. The set M× of units (see Remark 2.1.4) is the smallest face, and M itself is the largest
face. In particular, FaceM is a singleton if and only if M is a group.

Example 3.2.3. Let M be a free monoid of rank 2 with basis e1 and e2.
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(1) N(e1 + e2) is a submonoid of M but not a face.
(2) FaceM = {M,Ne1,Ne2, 0} holds.

Let us give an explicit description of the face generated by a subset, which is useful to study faces.

Fact 3.2.4 (cf. [Ogu18, Proposition I.1.4.2]). Let S be a subset of a monoid M .
(1) The submonoid 〈S〉N of M generated by S, i.e. the submonoid

〈S〉N :=

{
m∑
i=1

nixi

∣∣∣∣∣ m,ni ∈ N, xi ∈ S

}

is the smallest submonoid of M containing S. Note that 〈∅〉N = {0}.
(2) The face 〈S〉face of M generated by S, i.e. the submonoid

〈S〉face := {x ∈M | there exists y ∈M such that x+ y ∈ 〈S〉N}

is the smallest face of M containing S.

Let f : M → N be a monoid homomorphism. For any face F of N , the inverse image f−1(F ) is also
a face of M . Thus, we have an inclusion-preserving map Face(f) : Face(N) → Face(M). The following
lemma is obvious but useful.

Lemma 3.2.5. The map Face(f) : Face(N) → Face(M) is injective for a surjective monoid homomor-
phism f : M → N .

Proof. It is straightforward.

Let us consider a finiteness condition on a monoid and classify faces of a monoid satisfying it.

Definition 3.2.6.
(1) M is finitely generated if M = 〈S〉N for a finite subset S of M .
(2) A face F of M is finitely generated if F = 〈S〉face for a finite subset S of F .

Remark 3.2.7.
(1) If M is finitely generated, then it is finitely generated as a face.
(2) A face F of M is finitely generated if and only if F = 〈x〉face for some element x ∈ M . Indeed, if

F = 〈S〉face for a finite subset S of M , then we can easily see that F =
〈∑

s∈S s
〉
face

.

Lemma 3.2.8. If M is generated by a (not necessarily finite) subset S ⊆M , then the map

〈−〉face : P(S)→ Face(M), A 7→ 〈A〉face

is an inclusion-preserving surjection, where P(S) is the power set of S.

Proof. Let F be a face of M and set SF := {x ∈ S | x ∈ F}. We want to show that F = 〈SF 〉face. We
may assume that F 6= 0. It is clear that F ⊇ 〈SF 〉face. Take 0 6= x ∈ F . Then x =

∑m
i=1 nisi for some

si ∈ S and 0 6= ni ∈ N by Fact 3.2.4. Since F is a face, we obtain that si ∈ F for all i, which shows
x ∈ 〈SF 〉face. Thus, we conclude that F = 〈SF 〉face and 〈−〉face : P(S) → Face(M) is surjective. Note
that we actually proved F = 〈SF 〉N.

Corollary 3.2.9. If M is finitely generated, then Face(M) is a finite set.

Proof. There is a finite subset S of M such that M = 〈S〉N because M is finitely generated. Then P(S)
is also a finite set, and we conclude that Face(M) is a finite set by Lemma 3.2.8.

Example 3.2.10. Let M be a free monoid with basis {ei | i ∈ I}. Then it is clear that the map
〈−〉face : P({ei | i ∈ I})→ Face(M) is bijective.
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3.3 Classifying Serre subcategories via faces

In this section, we establish a bijection between the set of Serre subcategories of C and the set of faces
of M(C), which generalizes [Bro97].

Definition 3.3.1. An additive subcategory D of C is called a Serre subcategory if for any conflation

X Y Z

in C, we have that both X and Z are in D if and only if Y ∈ D.

In particular, a Serre subcategory is extension-closed, so it can be regarded as an extriangulated
category in itself.

The relation between Serre subcategories and c-closed subcategories is the following.

Proposition 3.3.2. A subcategory of C is Serre if and only if it is closed under finite direct sums, direct
summands, and c-equivalences.

Proof. It is clear that a Serre subcategory is closed under finite direct sums and direct summands. Let
A → B → C 99K be a conflation in C. For any additive subcategory D closed under direct summands,
A⊕ C belongs to D if and only if both A and C belong to D. Thus, we can conclude that D is Serre if
and only if it is closed under c-equivalences by comparing Definition 3.1.1 and 3.3.1.

Now we can establish a bijection between Serre subcategories and faces.

Proposition 3.3.3. The bijection in Proposition 3.1.3 (2) restricts to the bijection between the set
Serre C of Serre subcategories of C and the set FaceM(C) of faces of M(C) (see Definition 3.2.1).

Proof. Let S be a Serre subcategory of C and F a face of M(C). We already know DMS = S and
MDF

= F by Propositions 3.1.3 and 3.3.2. Hence, we only need to show that MS is a face and DF is a
Serre subcategory.

We first prove that MS is a face. Note that S is closed under finite direct sums, direct summands,
and c-equivalences by Proposition 3.3.2. It is clear that MS is a submonoid of M(C) since S is closed
under direct sums. Suppose that [X] + [Y ] ∈ MS for some objects X,Y ∈ C. By the definition of MS ,
there exists an object Z ∈ S such that [Z] = [X] + [Y ] = [X ⊕ Y ]. Then we have X ⊕ Y ∈ S because
S is closed under c-equivalences. Since S is closed under direct summands, both X and Y belong to S,
and hence [X], [Y ] ∈ MS . This proves that MS is a face of M(C).

Next, we prove that DF is a Serre subcategory. It is obvious that DF is closed under finite direct
sums since F is a submonoid of M(C). We already know that DF is c-closed by Proposition 3.1.3 (1).
Thus, it is enough to show that DF is closed under direct summands by Proposition 3.3.2. Let X and Y
be objects in C with X⊕Y ∈ DF . Then [X]+ [Y ] = [X⊕Y ] ∈ F . Because F is a face of M(C), both [X]
and [Y ] belong to F , which implies both X and Y belong to DF . Therefore, DF is a Serre subcategory
of C.

Finally, we compare MD with M(D) for an extension-closed subcategory D ⊆ C. The natural inclusion
functor ι : D ↪→ C induces the monoid homomorphism M(ι) : M(D)→ M(C) by Proposition 2.3.4. Clearly,
the image of M(ι) coincides with MD. Thus, we have a surjective monoid homomorphism M(D) � MD.
This monoid homomorphism is not injective in general, as the following example shows.

Example 3.3.4. Consider the polynomial ring k[T ] over a field k. Then the natural inclusion functor
mod k[T ] ↪→ Db(mod k[T ]) induces the group completion

M(mod k[T ])→ M
(
Db(mod k[T ])

)
∼= K0(mod k[T ])

by Example 2.4.4. It is not injective. Indeed, [k[T ]/(T )] is non-zero in M(mod k[T ]) by Proposition 2.4.1,
but it is zero in K0(mod k[T ]) because there is a short exact sequence

0 k[T ] k[T ] k[T ]/(T ) 0.T
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In spite of this example, if we consider Serre subcategories, then the natural monoid homomorphism
is injective:

Proposition 3.3.5. Let S be a Serre subcategory of C and ι : S → C the inclusion functor. Then the
monoid homomorphism

M(ι) : M(S)→ M(C)
is injective. In particular, it induces an isomorphism M(S) ∼−→ MS ⊆ M(C) of monoids.

Proof. Suppose that A,B ∈ S satisfies M(ι)(A) = M(ι)(B) in M(C), that is, A ≈c B in C. There is a
sequence of objects A0 = A,A1, . . . , An = B such that Ai ∼c Ai+1 in C for all i. Then Ai ∈ S for all i
since S is c-closed. Thus, it is enough to show that A ∼c B in C implies A ∼c B in S. Since A ∼c B in
C, there is a conflation

X Y Z (3.3.1)

in C satisfying either (a) Y ∼= A and X ⊕ Z ∼= B or (b) Y ∼= B and X ⊕ Z ∼= A. Since A,B ∈ S and
S is closed under direct summands, we have X,Y, Z ∈ S in both cases. Then the sequence (3.3.1) is a
conflation in S, which implies A ∼c B in S.

This injectivity is remarkable since it is false for Grothendieck groups and one has to consider the
higher K-group K1 to deal with its failure.

Example 3.3.6. Consider the subcategory S of mod k[T ] consisting of finitely generated torsion k[T ]-
modules. It is clearly a Serre subcategory. The natural inclusion functor S ↪→ mod k[T ] induces an
injective monoid morphism M(S) ↪→ M(mod k[T ]) on the Grothendieck monoids by Proposition 3.3.5.

On the other hand, it induces a zero morphism K0(S)
0−→ K0(mod k[T ]) on the Grothendieck groups.

Indeed, every object in S is a finite direct sum of finitely generated indecomposable torsion k[T ]-modules,
and such a module M has a free resolution

0 k[T ] k[T ] M 0
f

for some polynomial f ∈ k[T ] by the structure theorem for finitely generated modules over a principal
ideal domain. This implies [M ] = 0 in K0(mod k[T ]).

Remark 3.3.7. Propositions 3.3.3 and 3.3.5 are not entirely new. Those are originally mentioned in
[Bro97, Proposition 16.8] for the category ModΛ of all modules over a (not necessarily noetherian) ring
Λ. Brookfield defined the Grothendieck monoids M(S) for Serre subcategories S of ModΛ. He studied
mainly the case S = noethΛ, the category of noetherian Λ-modules, and used the bijection to identify
M(noethΛ) with the face MnoethΛ ⊆ M(ModΛ) in our terminologies. Our approach using the notion of
c-closed subcategories is quite different from Brookfield’s one and has a broader application for classifying
certain subcategories. For example, see §3.6.

3.4 Classifying Serre subcategories of a length exact category

In this section, we concentrate on length exact categories (see Definition 3.4.1 below). We give concrete
examples of classifying Serre subcategories of a length exact category E via its Grothendieck monoid
M(E). Our strategy is the following:
(1) Relate the Grothendieck monoid M(E) with an abstract monoid M .
(2) Classify faces of the abstract monoid M .
(3) Classify Serre subcategories of E by using (1) and (2).

Although we think that some results in this section are well-known to experts, we give the proofs from
the viewpoint of Grothendieck monoids. In what follows, E is a skeletally small exact category.

We quickly review terminologies related to composition series to introduce finiteness conditions of
exact categories. Let X be an object of E . Two inflations Y � X and Z � X are equivalent if there is

an isomorphism Y
∼=−→ Z such that the following diagram commutes:

Y

X

Z .

∼=
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An admissible subobject of X is the equivalence class of an inflation Y � X. We often say that Y is an
admissible subobject of X and denote the cone of Y � X by X/Y . We omit the adjective admissible if
E is an abelian category. The collection of admissible subobjects of X forms a set since E is a skeletally
small. For two admissible subobjects Y and Z of X, we write Y ≤ Z if there exists an inflation Y � Z
such that the following diagram commutes:

Y

X

Z .

This binary relation ≤ yields a partial order on the set of admissible subobjects of X. See [Eno22,
Section 2] for a detailed study of the poset of admissible subobjects.

An admissible subobject series of X is a finite sequence 0 = X0 ≤ X1 ≤ · · · ≤ Xn = X of admissible
subobjects of X. It is proper if Xi+1/Xi 6= 0 for all i. In this case, we say that this proper admissible
subobject series has length n. Two admissible subobject series 0 = X0 ≤ X1 ≤ · · · ≤ Xn = X and
0 = Y0 ≤ Y1 ≤ · · · ≤ Ym = Y are isomorphic if n = m and there exists a permutation σ ∈ Sn such that
Xi/Xi−1

∼= Yσ(i)/Yσ(i)−1 for all 1 ≤ i ≤ n.
A nonzero object X ∈ E is said to be simple if it has no admissible subobject except 0 and X itself.

We denote by sim E the set of isomorphism classes of simple objects of E . An admissible subobject series
0 = X0 ≤ X1 ≤ · · · ≤ Xn = X of X ∈ E is a composition series if Xi+1/Xi is simple for all i.

Definition 3.4.1.
(1) An object X of E is of finite length if the lengths of proper admissible subobject series of X have

an upper bound.
(2) E is said to be length if every object in E is of finite length.
(3) A length exact category E satisfies the Jordan-Hölder property if, for every X ∈ E , all composition

series of X are isomorphic to each other.

Note that any object of finite length has a composition series since proper admissible subobject series
of a maximal length are composition series (see [Eno22, Proposition 2.5]).

Example 3.4.2.
(1) A length-like function is an additive function ` : |E| → N such that `(X) = 0 implies X ∼= 0. If E

has a length-like function, then E is a length exact category (see [Eno22, Lemma 4.3]).
(2) Let Λ be a finite dimensional algebra over a field k. Then modΛ is a length abelian category

since the dimension as vector spaces gives rise to a length-like function dimk : |modΛ| → N. An
extension-closed subcategory of modΛ is also a length exact category.

(3) A length abelian category satisfies the Jordan-Hölder property (see [Ste75, p.92, Examples 2]).

The following facts are basics to study the Grothendieck monoid of a length exact category.

Fact 3.4.3 ([Eno22, Proposition 4.8]). If E is a skeletally small length exact category, then M(E) is
generated by the set {[S] | S ∈ sim E}. Moreover, M(E) is finitely generated if and only if sim E is a finite
set.

Fact 3.4.4 ([Eno22, Theorem 4.12]). The following are equivalent.
(1) E satisfies the Jordan-Hölder property.
(2) M(E) is a free monoid with basis {[S] | S ∈ sim E}.

In particular, if A is a skeletally small length abelian category, then M(A) is a free monoid with a basis
{[S] | S ∈ simA}.

Example 3.4.5. Let Λ be a finite dimensional algebra over a field k. Then M(modΛ) ∼= N⊕n, where n
is the number of isomorphism classes of simple Λ-modules. The number of maximal right ideals of Λ is
also n. Thus, if Λ is local, we have M(modΛ) ∼= N.

We will now begin to classify Serre subcategories of a length exact category. For a subcategory X
of an exact category E , the Serre subcategory generated by X is the smallest Serre subcategory 〈X 〉Serre
containing X . A Serre subcategory of the form 〈X〉Serre for some X ∈ E is said to be finitely generated.
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Proposition 3.4.6. Let E be a skeletally small length exact category. Then we have an inclusion-
preserving surjection

〈−〉Serre : P(sim E)→ Serre(E), X 7→ 〈X〉Serre .

Proof. It follows from Proposition 3.3.3, Lemma 3.2.8 and Fact 3.4.3.

As a corollary, we obtain a classification of Serre subcategories of an exact category satisfying the
Jordan-Hölder property.

Corollary 3.4.7. Let E be a skeletally small exact category satisfying the Jordan-Hölder property. Then
we have an inclusion-preserving bijection

〈−〉Serre : P(sim E)→ Serre(E), X 7→ 〈X〉Serre .

Proof. It follows from Example 3.2.10, Fact 3.4.4 and Proposition 3.4.6.

We give a nontrivial example of classifying Serre subcategories of a length exact category which does
not satisfy the Jordan-Hölder property. We first introduce the Cayley quiver, which is a monoid version
of the Cayley graph of a group.

Definition 3.4.8 ([Eno22, Definition 7.5]). Let M be a monoid generated by A ⊆M . Then the Cayley
quiver of M with respect to A is a quiver defined as follows:

• The vertex set is M .
• For each a ∈ A and m ∈M , we draw a (labeled) arrow m

a−→ m+ a.

For a length exact category E , the natural choice of A above is {[S] | S ∈ sim E}.

Example 3.4.9 (cf. [Eno22, Section 7.2]). Let Λ be the path algebra of the quiver 1 ← 2 over a
field k. Then modΛ is a length abelian category whose indecomposable objects are exactly two simple
modules S1, S2 and one projective injective module P . Thus M(modΛ) = N[S1] ⊕ N[S2] ∼= N⊕2 by
Fact 3.4.4. We identify M(modΛ) with N⊕2 via this isomorphism. Set N := N(m,n) ⊆ M(modΛ)
for (0, 0) 6= (m,n) ∈ N⊕2. Consider the extension-closed subcategory DN of modΛ corresponding to
N . Then DN is a length exact category by Example 3.4.2. The structure of M(DN ) is determined by
Enomoto [Eno22, Proposition 7.6] as follows:
(1) DN has exactly l + 1 distinct simple objects A0, . . . , Al, where l := min{m,n} and

Ai := P⊕i ⊕ S⊕(m−i)
1 ⊕ S⊕(n−i)

2 .

Thus M(DN ) is generated by [A0], . . . , [Al].
(2) Set ai := [Ai] for 0 ≤ i ≤ l. Then the Cayley quiver of M(DN ) with respect to {ai | 0 ≤ i ≤ l} is

determined as follows, where
a0∼k−−−→ denotes k + 1 arrows a0, . . . , ak for 0 ≤ k ≤ l.

(Case 1) The case m 6= n:

0

a0

a1

...

al

2a0 3a0 · · · .

a0

a1

al

a0∼l

a0∼l

a0∼l

a0∼l a0∼l

In particular, M(E) is free if and only if either m = 0 or n = 0.
(Case 2) The case m = n:

0

a0

a1

...

an

2a0 3a0 · · ·

2an 3an · · · .

a0

a1

an

a0∼n

a0∼n

a0∼n−1

a0∼n a0∼n

an an an

a0∼n−1 a0∼n−1
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Now we determine the faces of M(DN ) to classify the Serre subcategories of DN :
(Case 1) Any face F of M(DN ) is of the form 〈ai | i ∈ I〉face for some I ⊆ {0, . . . , l} by Lemma 3.2.8. If

I is not empty, then F contains 2a0. Thus all ai belong to F since it is a face, and then F = M(DN ).
Therefore DN has no nontrivial Serre subcategories.

(Case 2) Let F = 〈ai | i ∈ I〉face be a face of M(DN ) for some I ⊆ {0, . . . , n}. If i ∈ I for 0 ≤ i ≤ n− 1,
then 2a0 ∈ F , and thus F = M(DN ). Unlike the case m 6= n, M(DN ) has a nontrivial face
F = 〈an〉face. Hence DN has exactly three Serre subcategories 0, DN and 〈P⊕n〉Serre.

3.5 Preliminaries: cofinal subgroups

In this section, we study subtractive submonoids and cofinal submonoids. A subtractive submonoid can
be thought as a submonoid which comes from a subgroup of the group completion. In §3.6, we will see
that cofinal subtractive monoids classify dense 2-out-of-3 subcategories. Hereafter, M is a monoid.

Definition 3.5.1. Let S be a subset of M .
(1) S is subtractive if x+ y ∈ S and x ∈ S imply y ∈ S for any x, y ∈M .
(2) S is cofinal if, for any x ∈M , there exists y ∈M satisfying x+ y ∈ S.

Remark 3.5.2.
(1) If M is a group, then a subtractive submonoid is nothing but a subgroup.
(2) If M is a group, then any submonoid N of M is cofinal since x+ (−x) = 0 ∈ N for all x ∈M .
(3) We can define a pre-order ≤ on any monoid M by

x ≤ y :⇔ there exists some a ∈M such that y = x+ a.

A cofinal subset of M defined as above is nothing but a cofinal subset of M with respect to this
preorder ≤.

Since it is easier to deal with subgroups of a group than with submonoids of a monoid, we study the
relation between submonoids of a monoid and subgroups of its group completion. As a consequence of
this, we can classify certain subcategories via the Grothendieck groups.

Let ρ : M → gpM be the group completion. We define a preorder on gpM by

x ≤ y :⇔ there exists a ∈M such that x+ ρ(a) = y.

We set S+ := {x ∈ S | x ≥ 0} for a subset S of gpM . A subgroup H of gpM is directed if H = 〈H+〉Z.
Here 〈S〉Z is the subgroup of gpM generated by a subset S. A subset S of gpM is cofinal if, for any
x ∈ gpM , there exists y ∈ S such that x ≤ y.

Remark 3.5.3.
(1) A subset S of gpM is cofinal if and only if, for any x ∈ gpM , there exists a ∈ M such that

x+ ρ(a) ∈ S.
(2) gpM+ = ρ(M) is a cofinal submonoid of gpM .

Example 3.5.4. Consider M1 := N⊕n. Then the preorder on gpM1 = Z⊕n induced by M1 is the
following:

(x1, · · · , xn) ≤ (y1, · · · , yn) ⇔ xi ≤ yi for all 1 ≤ i ≤ n. (3.5.1)

A subgroup H of Z⊕n is cofinal if and only if it contains (x1, · · · , xn) ∈ Z⊕n such that xi > 0 for all i.
On the other hand, if we consider M2 := Z⊕N⊕(n−1), then gpM2 = Z⊕n but the preorder on Z⊕n is

different from (3.5.1). In this case, we have

(x1, · · · , xn) ≤ (y1, · · · , yn) ⇔ xi ≤ yi for all 2 ≤ i ≤ n.

Consider the following two maps:

{submonoids of M} {subgroups of gpM},
Φ

Ψ

where Φ(N) = 〈ρ(N)〉Z and Ψ(H) = ρ−1(H).
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Proposition 3.5.5. The following hold.
(1) ΨΦ(N) ⊇ N holds for any submonoid N of M .
(2) ΦΨ(H) ⊆ H holds for any subgroup H of gpM .
(3) Φ and Ψ restrict to inclusion-preserving bijections between ImΦ and ImΨ.
(4) ImΦ = {directed subgroups of gpM}.
(5) ImΨ ⊆ {subtractive submonoids of M}.

Proof. (1),(2) and (5) are straightforward, hence we leave them to the reader. (3) is a formal consequence
of (1) and (2). Indeed, we have that Φ(N) ⊇ ΦΨΦ(N) ⊇ Φ(N) and Ψ(H) ⊇ ΨΦΨ(H) ⊇ Ψ(H) for any
submonoid N of M and any subgroup H of gpM . We now prove (4). It is clear that Φ(N) = 〈ρ(N)〉Z
is directed. We show that a directed subgroup H of gpM belongs to the image of Φ. Since H = 〈H+〉Z,
we have that

Φ(ρ−1(H+)) =
〈
ρ(ρ−1(H+))

〉
Z =

〈
H+

〉
Z = H.

Here the second equality holds since H+ ⊆ gpM+ = Im ρ.

We will restrict this bijection to cofinal subtractive submonoids in Proposition 3.5.7. We need the
following lemma for this.

Lemma 3.5.6. Let S be a subset of M , and let T be a subset of gpM .
(1) T is cofinal in gpM if and only if ρ−1(T ) is cofinal in M .
(2) If S is a cofinal in M , then ρ(S) is cofinal in gpM .
(3) A cofinal subgroup of gpM is directed.

Proof. (1) Suppose that T is cofinal in gpM . Take any x ∈ M . Then there exists a ∈ M such that
ρ(x+ a) = ρ(x) + ρ(a) ∈ T . Thus x+ a ∈ ρ−1(T ), which proves ρ−1(T ) is cofinal in M .

Conversely, suppose that ρ−1(T ) is cofinal in M . Take any x ∈ gpM . Since ρ(M) is cofinal in gpM ,
there exists a ∈ M such that x ≤ ρ(a). Because ρ−1(T ) is cofinal in M , there is b ∈ M such that
a+ b ∈ ρ−1(T ). Hence, we have x ≤ ρ(a) ≤ ρ(a) + ρ(b) = ρ(a+ b) ∈ T . This shows that T is cofinal in
gpM .

(2) It easily follows from ρ−1(ρ(S)) ⊇ S and (1).
(3) Let H be a cofinal subgroup of gpM . Take any h ∈ H. Then h = ρ(x) − ρ(y) holds for some

x, y ∈ M . Since ρ−1(H) is cofinal in M by (1), there is some y′ ∈ M such that y + y′ ∈ ρ−1(H).
Then we have h = ρ(x + y′) − ρ(y + y′). We also have ρ(x + y′) = h + ρ(y + y′) ∈ H, which implies
ρ(x+y′) ∈ H∩gpM+ = H+. Thus h = ρ(x+y′)−ρ(y+y′) ∈ 〈H+〉Z. This proves that H is directed.

Proposition 3.5.7. The following hold.
(1) For a subgroup H of gpM , it is cofinal in gpM if and only if Ψ(N) is a cofinal submonoid of M .
(2) If N is a cofinal submonoid of M , then Φ(N) is a cofinal subgroup of gpM .
(3) If N is a cofinal subtractive submonoid of M , then N = ΨΦ(N) holds.

Therefore we have the following commutative diagram:

{submonoids of M} {subgroups of gpM}

{subtractive submonoids of M} {directed subgroups of gpM}

ImΨ ImΦ

{cofinal subtractive submonoids of M} {cofinal subgroups of gpM}.

Φ

Ψ

⊆ ⊆

∼=

⊆ =

∼=

⊆ ⊆

Proof. (1) and (2) follow from Lemma 3.5.6. We only prove (3). Let N be a cofinal subtractive
submonoid of M . Clearly N ⊆ ΨΦ(N) holds. Suppose x ∈ ΨΦ(N) = ρ−1(〈ρ(N)〉Z). Then since ρ(x) ∈
〈ρ(N)〉Z and N is a submonoid of M , there are elements n1 and n2 in N such that ρ(x) = ρ(n1)− ρ(n2),
hence ρ(x + n2) = ρ(n1). Therefore, there is an element m ∈ M such that x + n2 +m = n1 +m in M
(see the argument below Definition 5.1.1). Then, since N is cofinal in M , there is m′ ∈ M satisfying
m+m′ ∈ N . Then we have x+(n2+m+m′) = n1+m+m′. Now x ∈ N follows since N is subtractive
and x+ (n2 +m+m′) and n2 +m+m′ belong to N .
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Corollary 3.5.8. Let S be a cofinal subset of M . Then Φ and Ψ restrict to the following bijections:

{subtractive submonoids of M containing S} {subgroups of gpM containing ρ(S)}.
ΦS

ΨS

Proof. It is easily checked that ΦS and ΨS are well-defined using Proposition 3.5.5 (5). Clearly any
submonoid N ofM containing S is cofinal, hence ΨΦ(N) = N holds by Proposition 3.5.7 (3). Therefore,
it suffices to show that a subgroup H of gpM containing ρ(S) is directed. But this follows from Lemma
3.5.6 (3).

3.6 Classifying dense 2-out-of-3 subcategories via cofinal sub-
groups

In this section, we give classifications of dense 2-out-of-3 subcategories of C in terms of M(C) and K0(C),
which generalize Thomason’s classification of dense triangulated subcategories of a triangulated category
[Tho97] in terms of K0(C) and remove the unnecessary assumption on [Mat18, ZZ21].

Definition 3.6.1. Let D be an additive subcategory of C.
(1) D is a dense subcategory if addD = C holds, that is, for every C ∈ C, there is some C ′ ∈ C

satisfying C ⊕ C ′ ∈ D.
(2) D is a 2-out-of-3 subcategory if it satisfies 2-out-of-3 for conflations, that is, if two of three objects

X,Y, Z in a conflation X → Y → Z 99K belong to D, then so does the third.

We note that 2-out-of-3 subcategories closed under direct summands are called thick subcategories,
see Definition 4.2.2.

Example 3.6.2. Let T be a triangulated subcategory. Then a subcategory of T is a 2-out-of-3 subcat-
egory if and only if it is a triangulated subcategory (see e.g. [Tho97, 1.1]).

Remark 3.6.3. Let D be a 2-out-of-3 subcategory of C. If X ⊕ Y ∈ D and X ∈ D, then Y ∈ D by a
split conflation X → X ⊕ Y → Y 99K. We will freely use this property in what follows.

We can relax the 2-out-of-3 condition of dense 2-out-of-3 subcategories by the following observation.

Proposition 3.6.4 ([ZZ21, Lemma 5.5]). Let D be a dense additive subcategory of C. Then the following
are equivalent.
(1) For every conflation X → Y → Z 99K in C, if X and Y belong to D, then so does Z.
(2) For every conflation X → Y → Z 99K in C, if Y and Z belong to D, then so does X.

A key observation in this section is as follows.

Proposition 3.6.5. Let D be a dense 2-out-of-3 subcategory of C. Then D is closed under c-equivalences.

Proof. Take any conflation

X Y Z
f g

(3.6.1)

in C. It suffices to show that Y belongs to D if and only if so does X ⊕ Z.
First, suppose that Y belongs to D. Since D is dense, there is some W ∈ C satisfying Y ⊕Z⊕W ∈ D.

By taking the direct sum of (3.6.1) and a split conflation Z → Z⊕W →W 99K, we obtain the following
conflation.

X ⊕ Z Y ⊕ Z ⊕W Z ⊕W

[
f 0
0 idZ
0 0

] [
g 0 0
0 0 idW

]
(3.6.2)

Since D is 2-out-of-3, Y ⊕ (Z ⊕W ) ∈ D and Y ∈ D implies Z ⊕W ∈ D. Therefore, (3.6.2) implies that
X ⊕ Z belongs to D.

Conversely, suppose that X ⊕ Z belongs to D. By taking the direct sum of (3.6.1) and a split
conflation Z → Z ⊕X → X 99K, we obtain the following conflation:

X ⊕ Z Y ⊕X ⊕ Z X ⊕ Z

[
f 0
0 0
0 idZ

] [
0 idX 0
g 0 0

]
(3.6.3)

Since D is 2-out-of-3 and X⊕Z ∈ D, we have Y ⊕ (X⊕Z) ∈ D, which implies Y ∈ D by X⊕Z ∈ D.
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Now we can state the following classification of dense 2-out-of-3 subcategories.

Theorem 3.6.6. Let C be a skeletally small extriangulated category. There are bijections between the
following sets.
(1) The set of dense 2-out-of-3 subcategories of C.
(2) The set of cofinal subtractive submonoids of M(C).
(3) The set of cofinal subgroups of K0(C).

Proof. There is a bijection between (2) and (3) by Proposition 3.5.7. Thus, we only construct a bijection
between (1) and (2). Due to Proposition 3.1.3 (2) and Proposition 3.6.5, we only have to check the
following well-definedness of maps:
(i) MD is a cofinal subtractive submonoid for a dense 2-out-of-3 subcategory D.
(ii) DN is a dense 2-out-of-3 subcategory of C for a cofinal subtractive submonoid N .
(i) Let D be a dense 2-out-of-3 subcategory of C. Since D is closed under direct sums, MD is a

submonoid of M(C). To show that MD is cofinal in M(C), take any [C] ∈ M(C). Since C is dense, there is
some C ′ satisfying C ⊕ C ′ ∈ D. This implies [C] + [C ′] = [C ⊕ C ′] ∈ MD. Thus MD is cofinal in M(C).

Next, to show that MD is subtractive, suppose that x + y and x belong to MD. Take X,Y ∈ C
satisfying [X] = x and [Y ] = y. Then [X ⊕Y ] and [X] belong to MD. Since D is c-closed by Proposition
3.6.5, we have D = DMD by Proposition 3.1.3. Therefore, X ⊕ Y and X belong to D. Since D is
2-out-of-3, we obtain Y ∈ D. Thus y = [Y ] ∈ MD holds.

(ii) Let N be a cofinal subtractive submonoid of M(D). To show that DN is dense, take any C ∈ C.
Since N is cofinal, there is some C ′ ∈ C satisfying [C ⊕ C ′] = [C] + [C ′] ∈ N . Thus C ⊕ C ′ ∈ DN holds.

Next, we will check that DN is 2-out-of-3. Take any conflation X → Y → Z 99K in C. Then we have
[Y ] = [X] + [Z] in M(C). If X and Z belong to DN , then [X] and [Z] belong to N , and hence so does
[Y ] = [X] + [Z] since N is a submonoid. Thus Y belongs to DN . Similarly, if X and Y belong to DN ,
then [X] and [Y ] = [X]+ [Z] belong to N , and hence so does [Z] since N is subtractive. Thus Z belongs
to DN . The same argument works if Y and Z belong to DN .

As a corollary, we can immediately deduce the following classification of dense triangulated subcate-
gories.

Corollary 3.6.7 ([Tho97, Theorem 2.1]). Let T be a skeletally small triangulated category. Then there
exists a bijection between the following two sets:

• The set of dense triangulated subcategories of T .
• The set of subgroups of K0(T ).

Proof. Since M(T ) ∼= K0(T ) holds by Proposition 2.4.3 and dense triangulated subcategories of T
are precisely dense 2-out-of-3 subcategories, we only have to check that a subset of K0(T ) is a cofinal
subtractive submonoid if and only if it is a subgroup. This follows from Remark 3.5.2.

Using this observation, we can obtain all dense 2-out-of-3 subcategories in an abelian length category
with finitely many simples. First, recall the following description of the Grothendieck monoid. Let A be
an abelian length category, that is, an abelian category such that every object has a composition series.
Suppose that {S1, . . . Sn} is the set of all non-isomorphic simple objects in A. Then for C ∈ A, define
dimC := (x1, . . . , xn) ∈ Nn, where xi is the multiplicity of Si in the composition series of C (this is
well-defined due to the Jordan-Hölder theorem). Then dim respects conflations, and moreover, it induces
the following isomorphisms of monoids and groups:

M(A) Nn

K0(A) Zn,

dim

∼

ρ ι

dim

∼

(3.6.4)

where ρ is the group completion and ι is the natural inclusion.

Corollary 3.6.8. Let A be an abelian length category with n simple objects up to isomorphism. Then
there are bijections between the following two sets:

• The set of dense 2-out-of-3 subcategories C of A.
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• The set of subgroups H of Zn containing a strictly positive element.
Here an element x = (x1, . . . , xn) of Zn is strictly positive if xi > 0 for all i. The maps are given by
C 7→ 〈{dimC | C ∈ C}〉Z and H 7→ {C ∈ C | dimC ∈ H}.

Proof. It follows from Example 3.5.4 and Theorem 3.6.6.

Certain classes of dense 2-out-of-3 subcategories were classified via the Grothendieck group in [Mat18]
(for the exact case) and [ZZ21] (for the extriangulated case). We explain that their results can be
immediately deduced from ours. Let us explain some terminology to state them.

Definition 3.6.9. Let C be an extriangulated category. Then a set G of objects in C is called a generator
if for every C ∈ C there is a conflation X → G→ C 99K in C with G ∈ G.

Now we can deduce their results as follows.

Corollary 3.6.10 ([Mat18, Theorem 2.7], [ZZ21, Theorem 5.7]). Let C be a skeletally small extriangu-
lated category and G a generator of C. Then there is a bijection between the following two sets:
(1) The set of dense 2-out-of-3 subcategories of C containing G.
(2) The set of subgroups of K0(C) containing the image of G.

Proof. We will show that these sets are in bijection with the following one:
(3) The set of subtractive submonoids of M(C) containing the image of G.
Denote by [G] ⊆ M(C) the image of G in M(C), then [G] is cofinal in M(C). Indeed, for every

[C] ∈ M(C), there is a conflation X → G → C 99K in C, and thus [C] + [X] = [G] ∈ [G] holds in
M(C). Therefore, by Corollary 3.5.8, we have a bijection between (2) and (3), and every submonoid in
(3) is cofinal. Therefore, (1) and (3) are subsets of the two sets in Theorem 3.6.6. Hence, it suffices to
observe the following well-definedness, which are immediate from definitions: If D is a dense 2-out-of-3
subcategory containing G, then MD contains [G], and if N is a submonoid of M(C) containing [G], then
DN contains G.
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Chapter 4

Quotient of monoids and localization
of extriangulated categories

The purpose of this chapter is to prove Theorem 4.3.1, which describes the Grothendieck monoid of the
localization of extriangulated categories as a monoid quotient of the Grothendieck monoid.

Throughout this chapter, we fix Grothendieck universes U and V such that U ∈ V and use Convention
1.1.12 and 2.2.5. Moreover, we assume that every category, functor, and subcategory is additive. In
particular, every subcategory is strictly full and nonempty.

4.1 Preliminaries: quotient of monoids

We introduce the notion of quotient of monoids, which is a natural analogue of that of abelian groups.
Hereafter, M is a monoid.

To each submonoid of a monoid, we can associate the congruence as follows.

Definition 4.1.1. Let N be a submonoid of M . Define a congruence on M as follows:

x ∼ y :⇔ there exist n, n′ ∈ N such that x+ n = y + n′.

Then the monoid M/N := M/∼ is called the quotient monoid of M by N . We write x ≡ y mod N if
x ∼ y holds. The equivalence class of x ∈M is denoted by x mod N .

It is easily seen that the quotient monoids have the following universal property.

Proposition 4.1.2. Let N be a submonoid of a monoid M , and let π : M → M/N be the quotient
homomorphism. Then π(N) = 0 holds, and for any monoid homomorphism f : M → X such that
f(N) = 0, there exists a unique monoid homomorphism f : M/N → X satisfying fπ = f . This means
that the diagram

N M M/N
ι

0

π

is a coequalizer diagram in Mon, where ι is the inclusion map.

Unlike the case of abelian groups, submonoids of M/N do not correspond to those of M containing
N :

Example 4.1.3. Let M := N⊕2 and N := N(1, 0) + N(1, 1) ⊆ M . Then we have M/N = 0 but M and
N are distinct submonoids of M containing N .

However, we have a bijection for faces.

Proposition 4.1.4. Let N be a submonoid of M , and let π : M →M/N be the quotient homomorphism.
(1) If F is a face of M containing N , then F/N := π(F ) is also a face of M/N .
(2) If F ′ is a face of M/N , then π−1(F ′) is also a face of M containing N .
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(3) The assignments given in (1) and (2) give inclusion-preserving bijections between the set of faces
of M containing N and that of M/N .

Proof. We only prove (1) and (3) since the proof of (2) is straightforward.
(1) It is clear that F/N is a submonoid of M/N . Let a, b ∈ M such that π(a) + π(b) ∈ F/N . Then

there exist x ∈ F and n, n′ ∈ N such that x+ n = (a+ b) + n′ in M . Since x+ n ∈ F and F is a face of
M , we have that a, b ∈ F . Thus both π(a) and π(b) belong to F/N , which proves F/N is a face.

(3) We have that π−1(F ′)/N = π(π−1(F ′)) = F ′ since π is surjective. It is easy to check that
π−1(F/N) ⊇ F . It remains to show that π−1(F/N) ⊆ F . Let a ∈ π−1(F/N). Then we have π(a) ∈ F/N .
There exist x ∈ F and n, n′ ∈ N such that x + n = a + n′. Since x + n ∈ F and F is a face, we have
a ∈ F , which proves π−1(F/N) ⊆ F .

Corollary 4.1.5. Let N be a submonoid of a monoid M . There is an inclusion-preserving bijection
between Face(M/N) and Face(M/〈N〉face). In particular, we have an inclusion-preserving bijection
Face(M) ∼= Face(M/M×), where M× is the set of units of M .

Proof. Proposition 4.1.4 shows that both Face(M/N) and Face(M/〈N〉face) are in bijection with {X ∈
FaceM | X ⊇ N} by the definition of 〈N〉face. Thus, the former assertion holds. The latter assertion
follows from Remark 3.2.2 and the former one by putting N := 0.

4.2 Preliminaries: localization of extriangulated categories

We first recall the localization of an extriangulated category following [NOS22].

Definition 4.2.1. Let C be an extriangulated category, and let S ⊆ Mor C be a collection of morphisms.
A pair (CS , Q) of an extriangulated category CS and an exact functor Q : C → CS is the exact localization
of C with respect to S if it satisfies the following conditions:
(i) F (s) is an isomorphism in CS for any s ∈ S.
(ii) For any extriangulated category D and any exact functor F : C → D such that F (s) is an isomor-

phism for any s ∈ S, there exists a unique exact functor FS : CS → D satisfying F = FS ◦Q.

If the exact localization exists, it is unique up to exact isomorphisms. Note that the exact localization
is closed under exact isomorphisms, but not closed under exact equivalences, see Remark 4.2.7 below.

Nakaoka–Ogawa–Sakai [NOS22] constructs the exact localization of an extriangulated category by
a collection of morphisms under some assumptions. We only recall the construction of the localization
of an extriangulated category by the collection of morphisms determined by a thick subcategory, as we
shall explain.

From now on, C = (C,E, s) is an extriangulated category.

Definition 4.2.2. A subcategory N of C is a thick subcategory if it satisfies the following conditions:
(i) N is closed under direct summands.
(ii) N satisfies 2-out-of-3 for conflations in C, that is, if two of three objects A,B,C in a conflation

A→ B → C 99K belong to N , then so does the third.

For a thick subcategory N ⊆ C, we set the following collections of morphisms:

L := {` ∈ Mor C | there is a conflation A
ℓ−→ B → N 99K with N ∈ N},

R := {r ∈ Mor C | there is a conflation N → A
r−→ B 99K with N ∈ N}.

We define SN to be the collection of all finite compositions of morphisms in L and R. We can easily
check L ◦ L ⊆ L and R ◦ R ⊆ R. Thus, a morphism s in SN is of the form s = · · · `n−1rn`n+1rn+2 · · ·
for some `i ∈ L and rj ∈ R. The thick subcategory N can be recovered from SN since we have

N = {A ∈ C | both A→ 0 and 0→ A belong to SN } (4.2.1)

by [NOS22, Lemma 4.5]. In the following, we consider the exact localization C/N := CSN of C with
respect to SN . This localization satisfies the following natural universal property.
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Proposition 4.2.3. Let C be an extriangulated category and N a thick subcategory of C. Suppose that
the exact localization Q : C → C/N := CSN exists. Then it satisfies the following conditions.
(i) Q(N) ∼= 0 holds for every N ∈ N .
(ii) For any extriangulated category D and an any exact functor F : C → D such that F (N) ∼= 0 holds

for every N ∈ N , there exists a unique exact functor FN : C/N → D satisfying F = FN ◦Q.

Proof. By comparing the claimed properties with Definition 4.2.1, it suffices to show the following claim:
for an extriangulated category D and an exact functor F : C → D, we have that F (N) ∼= 0 holds for
every N ∈ N if and only if F (s) is an isomorphism for every s ∈ SN .

To see the “only if” part, suppose that F (N) ∼= 0 holds for every N ∈ N . It suffices to check
that F (`) and F (r) are isomorphisms for ` ∈ L and r ∈ R respectively. By the definition of L, there
is a conflation A

ℓ−→ B → N 99K with N ∈ N . Since F is an exact functor, we obtain a conflation

F (A)
F (ℓ)−−−→ F (B) → F (N) 99K in D. Then F (N) ∼= 0 implies that F (`) is an isomorphism in D by

considering the associated long exact sequence (cf. [NP19, Corollary 3.12]). The same proof applies to
r ∈ R.

To see the “if” part, suppose that F (s) is an isomorphism for every s ∈ SN , and let N ∈ N . Then
0→ N clearly belongs to L ⊆ SN , so 0→ F (N) is an isomorphism in D. Thus the assertion holds.

Let C := C/[N ] be the quotient by the ideal [N ] consisting of morphisms which factor through
objects in N , and let p : C → C be the canonical functor. In what follows, we write f := p(f) for any
morphism f in C. Set SN := p(SN )1. We recall a condition in [NOS22] under which the exact localization
C/N = (C/N , Q) exists.

Condition 4.2.4. Let N be a thick subcategory of C.
(i) f ∈ SN holds for any split monomorphism f : A → B in C such that f is an isomorphism in C.

(This is equivalent to the dual condition by [NOS22, Lemma 3.2]: f ∈ SN holds for any split
epimorphism f : A→ B in C such that f is an isomorphism in C.)

(ii) SN satisfies 2-out-of-3 with respect to compositions in C.
(iii) SN is a multiplicative system in C.
(iv) The set

{
txs | x is an inflation in C and s, t ∈ SN

}
is closed under compositions. Dually, the set{

tys | y is a deflation in C and s, t ∈ SN
}
is closed under compositions.

Fact 4.2.5 ([NOS22, Theorem 3.5, Lemma 3.32]). Let N be a thick subcategory of C. If it satisfies
Condition 4.2.4, then there exists the exact localization C/N satisfying the following properties.

(1) C/N is constructed as the category SN
−1C of fractions. In particular, every morphism in C/N can

be described as a right or left roof of morphisms in C.
(2) For any inflation α in C/N , there exist an inflation f in C and isomorphisms β, γ in C/N satisfying

α = β◦Q(f)◦γ. Dually, for any deflation α in C/N , there exist a deflation f in C and isomorphisms
β, γ in C/N satisfying α = β ◦Q(f) ◦ γ.

Remark 4.2.6. Let us confirm that Condition 4.2.4 implies the conditions in [NOS22, Theorem 3.5].
Suppose that SN satisfies Condition 4.2.4. It is clear that SN satisfies (M0) in [NOS22, Section 3].
The condition (MR1), (MR2), and (MR4) in [NOS22, Theorem 3.5] are nothing but (i), (iii), and (iv)
of Condition 4.2.4, respectively. By [NOS22, Lemma 4.6], SN satisfies (M3) in [NOS22, Corollary 3.4].
Thus, it also satisfies (MR3) by the condition (i) and [NOS22, Lemma 3.2, Claim 3.6]. Therefore SN
satisfies all the conditions in [NOS22, Theorem 3.5].

Remark 4.2.7. Some readers may find the definition of exact localizations unsatisfactory since it is not
preserved by exact equivalences. In fact, there is a notion of exact 2-localizations, which is preserved by
exact equivalences. For two extriangulated categories C and D, we denote by Funex(C,D) the category
of exact functors C → D and natural transformations of them. Any exact functor F : C → C′ induces a
functor F ∗ : Funex(C′,D)→ Funex(C,D) defined by F ∗(G) := G ◦ F .

For a collection S ⊆ Mor C of morphisms in an extriangulated category C, the exact 2-localization of
C with respect to S is a pair (CS , Q) of an extriangulated category CS and an exact functor Q : C → CS
which satisfies the following conditions:

1Our notation SN is different from the one in [NOS22]. However, they coincide if (i) of Condition 4.2.4 is satisfied. See
[NOS22, Lemma 3.2].
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(i) F (s) is an isomorphism in CS for any s ∈ S.
(ii) For any extriangulated category D and an exact functor F : C → D such that F (s) is an isomorphism

for any s ∈ S, there exist an exact functor F̃ : CS → D and a natural isomorphism F ∼= F̃ ◦ Q of
exact functors.

(iii) The functor
Q∗ : Funex(CS ,D)→ Funex(C,D)

is fully faithful for every extriangulated category D.
In fact, the exact localization C/N obtained by Fact 4.2.5 is also the exact 2-localization by [NOS22,

Theorem 3.5].

Although Condition 4.2.4 seems a little technical, there is a sufficient condition which we can easily
verify, see Fact 4.2.12 and 4.2.13. In this paper, we focus on the situation where Condition 4.2.4 is
satisfied so that we can use the additional properties (1)–(2) of Fact 4.2.5 freely.

Remark 4.2.8. We do not assume in Condition 4.2.4 that SN is a multiplicative system. However,
any morphism f : X → Y in C/N is of the form f = Q(s)−1Q(g) for some morphisms g : X → A in C
and s : Y → A in SN . Indeed, let Q : C → SN

−1C = C/N be the canonical functor. For any morphism
f : X → Y in C/N , there are morphisms g : X → A in C and s : Y → A in SN satisfying f = Q(s)−1Q(g).
Since Q(φ) = Q(φ) holds for any morphism φ in C, the claim follows.

We introduce some convenient classes of thick subcategories.

Definition 4.2.9. Let N be a thick subcategory of C.
(1) N is called biresolving if for any C ∈ C, there exist an inflation C → N and a deflation N ′ → C in
C with N,N ′ ∈ N .

(2) N is called percolating if for any morphism f : X → Y in C factoring through some object in N ,
there exist a deflation g : X → N and an inflation h : N → Y satisfying N ∈ N and f = hg2.

For the triangulated case, we have the following observation.

Example 4.2.10. Let T be a triangulated category with shift functor Σ.
(1) A thick subcategory of T in the sense of Definition 4.2.2 coincides with the usual one, that is,

a subcategory of T closed under cones, shifts, and direct summands. We can easily check it by
considering the following conflations:

X
f−→ Y → Cone(f) 99K, X → 0→ ΣX 99K, and Σ−1X → 0→ X 99K .

(2) Any thick subcategory of T is biresolving because there exist conflations C
0−→ N → N ⊕ ΣC 99K

and Σ−1C ⊕N → N
0−→ C 99K.

(3) Similarly, any thick subcategory of T is percolating because every morphism is both an inflation
and a deflation in T .

Typical examples of percolating subcategories are Serre subcategories of admissible extriangulated
categories, as we shall explain. A morphism f : A→ B in C is called admissible if it has a factorization
f = i ◦ d such that i is an inflation and d is a deflation. We call this factorization a deflation-inflation
factorization. We also say that C is admissible if every morphism in C is admissible. For examples,
abelian categories and triangulated categories are admissible.

Example 4.2.11. Let C be an admissible extriangulated category. Then every Serre subcategory N
of C is percolating. Indeed, let f : X → Y be a morphism in C having a factorization X

x−→ N
y−→ Y

with N ∈ N . Consider a deflation-inflation factorization X
d1−−→ M1

i1−−→ N of x. Since N is a Serre

subcategory, an inflation i1 implies M1 ∈ N . Then consider a deflation-inflation factorization M1
d2−−→

M2
i2−−→ Y of M1

i1−−→ N
y−→ Y . We have M2 ∈ N by a deflation d2, and X

d2d1−−−→M2
i2−−→ Y is a desired

decomposition. It is obvious that Serre subcategories are thick, and thus N is percolating.

The following two facts are useful conditions where Condition 4.2.4 is satisfied for biresolving and
percolating subcategories.

2This definition is different from [NOS22, Definition 4.28], but they are equivalent by [NOS22, Lemma 4.29].
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Fact 4.2.12 ([NOS22, Propostion 4.26]). If N is biresolving, then Condition 4.2.4 is satisfied. In this
case, C/N is a triangulated category.

Fact 4.2.13 ([NOS22, Corollary 4.42]). Let N be a thick subcategory of C. Consider the following
conditions:
(EL1) N is percolating.
(EL2) For any split monomorphism f : A → B in C such that f is an isomorphism in C, there exist

N ∈ N and j : N → B in C such that [f j] : A⊕N → B is an isomorphism in C.
(EL3) For every conflation A

f−→ B
g−→ C 99K in C, both of the following hold:

Ker

(
C(−, A) f◦(−)−−−−→ C(−, B)

)
⊆ [N ](−, A),

Ker

(
C(C,−) (−)◦g−−−−→ C(B,−)

)
⊆ [N ](C,−).

(EL4) C is admissible, namely, every morphism f : A→ B in C has a factorization f = i ◦ d such that
i is an inflation and d is a deflation.

Then the following statements hold.
(1) If (EL1)–(EL3) are satisfied, then Condition 4.2.4 is satisfied, and C/N is an exact category.
(2) If (EL1)–(EL4) are satisfied, then C/N is an abelian category (endowed with the natural extrian-

gulated structure).

The situation can be summarized as follows.

N is biresolving Condition 4.2.4 + C/N is triangulated

(EL1)–(EL3) (+ (EL4)) Condition 4.2.4 + C/N is exact (+ abelian)

Fact 4.2.12

Fact 4.2.13

Our main interests are the above two cases, namely, the case where N is biresolving, and the case where
(EL1)–(EL3) are satisfied (so N is percolating).

Remark 4.2.14.
(1) Consider the following condition:

(WIC) Let h = gf be a morphism in C. If h is an inflation, then so is f . Dually, if h is a deflation,
then so is g.

Then (WIC) implies (EL2) by [NOS22, Remark 4.31 (2)]. A triangulated category satisfies (WIC)
since every morphism is both an inflation and a deflation. More generally, an extension-closed
subcategory of a triangulated category which is closed under direct summands satisfies (WIC), see
Lemma 4.2.16 below.

(2) (EL2) implies Condition 4.2.4 (i) by [NOS22, Lemma 3.2, 4.34].
(3) Under the condition (EL1), the condition (EL3) is equivalent to that f (resp. g) is a monomorphism

(resp. an epimorphism) in C for every conflation A
f−→ B

g−→ C 99K in C, see Lemma 4.3.5.

Example 4.2.15. The following are typical examples of the case where N is biresolving or N satisfies
(EL1)–(EL4).
(1) Let T be a triangulated category. A thick subcategory N of T is biresolving as mentioned in

Example 4.2.10, so the exact localization T /N exists and becomes a triangulated category by Fact
4.2.12. This coincides with the Verdier quotient of T by N .

(2) Let F be a Frobenius exact category, and let N be the subcategory of projective objects in F .
Then N is a biresolving subcategory of F . In this case, the exact localization F/N coincides with
the usual stable (triangulated) category F = F/[N ].

(3) Let A be an abelian category. A Serre subcategory S of A is percolating as mentioned in Example
4.2.11. Moreover, it satisfies (EL1)–(EL4) in Fact 4.2.13. Indeed, (EL2) is satisfied by Remark
4.2.14 (1) since A satisfies (WIC), and (EL3) is satisfied since every inflation and deflation in A is
a monomorphism and an epimorphism respectively. Therefore, the exact localization A/S exists
and becomes an abelian category by Fact 4.2.13. This coincides with the Serre quotient of A by S.

We have the following convenient criterion for the condition (WIC).
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Lemma 4.2.16. Let C be an extension-closed subcategory of a triangulated category T with shift functor
Σ. If C is closed under direct summands in T , then it satisfies (WIC).

Proof. Let f : A → B and g : B → C be morphisms in C. Suppose that h := gf is an inflation, and

thus there is a conflation A
h−→ C

c−→ D
δ99K in C. Then there exists a conflation A

f−→ B
b−→ X

τ99K in
T by taking cone of f . Applying [LN19, Proposition 1.20] (see also [Nee01, Proposition 1.4.3]) to T , we
obtain a morphism x : X → D in T which gives a morphism of conflations

B X ΣA

C D ΣA

g

b τ

x

−Σf

c δ −Σh

in T and makes B

[
b
g

]
−−−→ X ⊕ C [ x −c ]−−−−−→ D 99K a conflation in T . Since B,D ∈ C and C is extension-

closed, we have X ⊕ C ∈ C, which implies X ∈ C because C is closed under direct summands. Hence f
is an inflation in C. We can dually prove that, if h is a deflation, then so is g, so we omit it.

4.3 The Grothendieck monoid of the localization of an extrian-
gulated category

In this section, we investigate the relations between Grothendieck monoids and the exact localization.
Throughout this section, C is a skeletally small extriangulated category and N is a thick subcategory
of C. Note that, if Nakaoka-Ogawa-Sakai exact localization C/N exists, it is also skeletally small by the
construction (cf. Example 1.1.10 and Fact 4.2.5).

The following is the main theorem of this section. We refer the reader to Definition 4.1.1 for the
quotient monoid by a submonoid.

Theorem 4.3.1. Suppose that the following two conditions are satisfied:
(i) Condition 4.2.4 is satisfied. Thus, the exact localization Q : C → C/N exists, and we can freely use

Fact 4.2.5.
(ii) SN is saturated, that is, for every morphism f in C, we have f ∈ SN if Q(f) is an isomorphism

in C/N .
Then M(Q) : M(C)→ M(C/N ) induces an isomorphism of monoids:

M(C)/MN
∼−→ M(C/N ).

We first prove this theorem, and then discuss the condition (ii) of this theorem.

Lemma 4.3.2. Assume the same conditions as in Theorem 4.3.1. Let X and Y be objects in C. If
X ∼= Y in C/N , then [X] ≡ [Y ] mod MN .

Proof. Let f : X
∼−→ Y be an isomorphism in C/N . We have morphisms g : X → A in C and s : Y → A

in SN such that f = Q(s)−1Q(g) by Remark 4.2.8. Then Q(g) is also an isomorphism in C/N , and thus
g ∈ SN because SN is saturated. Therefore, it is enough to show that [X] ≡ [Y ] mod MN if there is a
morphism s : X → Y in SN . Since a morphism in SN is a finite composition of morphisms in L and R,
we may assume that s ∈ L or s ∈ R. If s ∈ L, then there is a conflation X

s−→ Y → N 99K with N ∈ N .
Then [X] + [N ] = [Y ] holds in M(C), which implies [X] ≡ [Y ] mod MN . The case s ∈ R is similar.

Proof of Theorem 4.3.1. The homomorphism M(Q) : M(C) → M(C/N ) induces a homomorphism
φ : M(C)/MN → M(C/N ) satisfying φ([A] mod MN ) = [Q(A)] by Proposition 4.1.2 since Q(N ) = 0
holds by Proposition 4.2.3. Clearly φ is surjective since Q is the identity on objects. We have to show
that φ is injective. Suppose that [Q(A)] = [Q(B)] in M(C/N ) for A,B ∈ C, or equivalently, A ≈c B in
C/N . We want to show that [A] ≡ [B] mod MN . It suffices to prove it for the case A ∼c B in C/N .

Since A ∼c B in C/N , there exists a conflation X → Y → Z 99K in C/N such that either (a)
X ⊕Z ∼= A and Y ∼= B in C/N or (b) X ⊕Z ∼= B and Y ∼= A in C/N . Clearly we only have to deal with
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the case (a). By Fact 4.2.5 (2), we can find a conflation X ′ f−→ Y ′ g−→ Z ′ 99K in C such that we have an
isomorphism of conflations

X Y Z

X ′ Y ′ Z ′

∼ ∼ ∼

Q(f) Q(g)

in C/N . Thus, by Lemma 4.3.2, we have

[A] = [X ⊕ Z] ≡ [X ′ ⊕ Z ′] = [Y ′] ≡ [Y ] = [B] mod MN .

This proves the injectivity of φ.

In the following, we discuss the kernel of the localization functor Q : C → C/N and study when SN
is saturated. We would like to thank Hiroyuki Nakaoka for sharing the results on the kernel of the
localization functor. We prepare some lemmas.

Lemma 4.3.3. Suppose (i) of Condition 4.2.4 and let A ∈ C. If there exists a split monomorphism
u : A→ N with N ∈ N , then A ∈ N .

Proof. The morphism u is a split monomorphism in C since so is u in C. Then the split monomorphism

A
u−→ N ∼= 0 should be an isomorphism in C. Thus, (i) of Condition 4.2.4 implies that u : A→ N belongs

to SN . By composing this with N → 0, which is in SN , we obtain that A→ 0 is in SN . Dually, 0→ A
is also in SN by considering a retraction q : N → A of u. By (4.2.1), we conclude that A ∈ N .

Lemma 4.3.4. Suppose (i) of Condition 4.2.4. Then the following hold.

(1) Let N
k−→ Y

r−→ Z
δ99K be a conflation with N ∈ N and r = 0 in C. Then Y ∈ N .

(2) Dually, let X
ℓ−→ Y

c−→ N
δ99K be a conflation with N ∈ N and ` = 0 in C. Then Y ∈ N .

In each case, all objects in the above conflations belong to N since N is a thick subcategory.

Proof. We only prove (1) since (2) follows dually. The assumption r = 0 implies that it has a factor-

ization Y
f−→ N ′ g−→ Z in C with N ′ ∈ N . Then there is a morphism of conflations

N M N ′

N Y Z .

a c

b g

g∗δ

k r δ

The top row implies M ∈ N because N is extension-closed. We can choose b : M → Y so that M
[ cb ]−−→

Y ⊕N ′ [ g −r ]−−−−−→ Z 99K is a conflation by [LN19, Proposition 1.20]. This implies that the following diagram
is a weak pullback diagram, and hence a section φ : Y →M of b is induced:

Y

M N ′

Y Z.

f

ϕ

c

b wPB g

r

Since M ∈ N , we obtain Y ∈ N by Lemma 4.3.3.

Set L := p(L) and R := p(R). We have the following interpretation of (EL3) for the case of
percolating subcategories.

Lemma 4.3.5. Let N be a percolating subcategory, and let f : A→ B be a morphism in C.

(1) f is a monomorphism in C if and only if Ker

(
C(−, A) f◦(−)−−−−→ C(−, B)

)
⊆ [N ](−, A) holds.
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(2) f is an epimorphism in C if and only if Ker

(
C(B,−) (−)◦f−−−−→ C(A,−)

)
⊆ [N ](B,−) holds.

Proof. Since (2) is the dual of (1), we only prove (1). To show the “only if” part, suppose that f is a

monomorphism in C. Let x ∈ Ker

(
C(X,A) f◦(−)−−−−→ C(X,B)

)
, that is, x : X → A satisfies fx = 0 in C.

Because f is a monomorphism, we have x = 0 in C. This means x ∈ [N ](X,A).

To show the “if” part, suppose that Ker

(
C(−, A) f◦(−)−−−−→ C(−, B)

)
⊆ [N ](−, A) holds. Let x : X →

A be a morphism in C with fx = 0 in C, that is, fx factors through an object in N . Then fx has a

deflation-inflation factorization X
d−→ N

i−→ B with N ∈ N since N is percolating. In particular, we

have a conflation K
ℓ−→ X

d−→ N 99K. Note that ` ∈ L. Then we have fx` = id` = 0, and by the
assumption, we conclude that x` = 0 in C. Since ` ∈ L is an epimorphism in C by [NOS22, Lemma 4.7
(2)], we have x = 0. This proves that f is a monomorphism.

Corollary 4.3.6. Suppose that either of the following conditions holds.
(i) N is a biresolving subcategory.
(ii) N satisfies (EL1)–(EL3).

Then any morphism in SN is both a monomorphism and an epimorphism in C.

Proof. By [NOS22, Lemma 4.7], every morphism in L (resp. R) is an epimorphism (resp. a monomor-
phism) in C. Thus, it suffices to show that every morphism in L is a monomorphism in each case, since
the proof for R follows dually.

(i) This case is precisely [NOS22, Lemma 4.24].
(ii) In this case, N is a percolating subcategory by (EL1). Thus, the assertion follows from (EL3)

and Lemma 4.3.5, since every morphism in L is an inflation in C by definition.

Now we can show that the kernel of C → C/N coincides with N under some conditions. Recall that
a kernel kerF of an additive functor F : C → D consists of objects C ∈ C satisfying F (C) ∼= 0 in D.

Proposition 4.3.7. Suppose that Condition 4.2.4 is satisfied, and that every morphism in SN is a
monomorphism in C. Then Ker(Q : C → C/N ) = N holds.

Proof. We have Ker(Q : C → C/N ) ⊇ N by Proposition 4.2.3. Conversely, suppose that X ∈ C satisfies
Q(X) ∼= 0 in C/N . Then there exists Y ∈ C satisfying 0 ∈ SN (X,Y ) since C/N is constructed as the

category of fractions SN
−1C by Fact 4.2.5. Hence, we obtain s ∈ SN (X,Y ) satisfying s = 0 in C. By

the construction of SN , we can write either s = t` or s = ur for some t, u ∈ SN , ` ∈ L, and r ∈ R. We
consider the case s = t`. Since t is a monomorphism in C by the assumption, s = t` = 0 implies ` = 0.
Thus, Lemma 4.3.4 (2) implies X ∈ N . The case s = ur can be proved similarly using Lemma 4.3.4
(1).

Consequently, we can describe the kernel of the localization for the cases we are interested in.

Corollary 4.3.8. Suppose that either of the following conditions holds.
(i) N is a biresolving subcategory.
(ii) N satisfies (EL1)–(EL3).

Then Ker(Q : C → C/N ) = N holds.

Proof. For each case, Condition 4.2.4 is satisfied by Fact 4.2.12 and 4.2.13, and every morphism in SN
is a monomorphism by Corollary 4.3.6. Thus, the assertion follows from Proposition 4.3.7.

Using this result, we next consider whether SN is saturated. Assume Condition 4.2.4, and let Q : C →
C/N be the localization functor. Recall that SN is saturated if f ∈ SN holds for any morphism f in C
such that Q(f) is an isomorphism in C/N .

Proposition 4.3.9. If N is a biresolving subcategory of C, then SN is saturated.
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Proof. Let f : X → Y be a morphism in C with Q(f) is an isomorphism in C/N . Since N is biresolving,

there is a conflation X
x−→ N

y−→ C
δ99K with N ∈ N . Then there is a morphism of conflations

X N C

Y M C .

x

f

y

g

a b

(4.3.1)

We can choose a morphism g : N →M so that

X
[ xf ]−−−→ N ⊕ Y [ g −a ]−−−−−→M

b∗δ999K (4.3.2)

is a conflation by [LN19, Proposition 1.20]. We have a factorization f = [ 0 idY ]◦ [ xf ] for [ 0 idY ] : N⊕Y →
Y and [ xf ] : X → N ⊕ Y . Clearly, [ 0 idY ] belongs to R. Thus, it is enough to show that [ xf ] belongs to
L, that is, M ∈ N . Applying Q to (4.3.1), we have a morphism of conflation

X N C

Y M C .

Q(x)

Q(f)

Q(y)

Q(g)

Q(a) Q(b)

in C/N by Remark 2.2.3. Since Q(f) is an isomorphism by the assumption, Q(g) is an isomorphism in
C/N by [NP19, Corollary 3.6]. Thus, we obtain M ∼= N ∼= 0 in C/N , which shows M ∈ KerQ. Since
KerQ = N holds by Corollary 4.3.8, we obtain M ∈ N . This proves [ xf ] ∈ L by (4.3.2).

Unfortunately, for the percolating case, we do not know whether the condition (EL1)–(EL3) implies
that SN is saturated, although we have the following criterion.

Proposition 4.3.10. Suppose that N satisfies (EL1)–(EL3). Then the following conditions are equiva-
lent.
(1) SN is saturated.
(2) For a morphism f : X → Y in C, if Q(f) is an isomorphism in C/N , then f is admissible in C,

that is, there exists a deflation-inflation factorization of f .

Proof. (1) ⇒ (2): We have SN = L ◦R by [NOS22, Lemma 4.37]. Hence, if Q(f) is an isomorphism in
C/N , then f ∈ SN = L ◦ R since SN is saturated, which proves (2) since a morphism in L (resp. R) is
an inflation (resp. a deflation).

(2) ⇒ (1): Let f : X → Y be a morphism in C such that Q(f) is an isomorphism in C/N . There

is a deflation-inflation factorization X
d−→ A

i−→ Y of f by (2). In particular, we have conflations

K
k−→ X

d−→ A 99K and A
i−→ Y

c−→ C 99K. Since Q is an exact functor, we obtain conflations

Q(K)
Q(k)−−−→ Q(X)

Q(d)−−−→ Q(A) 99K and Q(A)
Q(i)−−−→ Q(Y )

Q(c)−−−→ Q(C) 99K in C/N . In particular, Q(d)
is a deflation in C/N . Thus Q(d) is an epimorphism because C/N is an exact category by Fact 4.2.13.
On the other hand, Q(d) is a split monomorphism since Q(f) = Q(i) ◦ Q(d) is an isomorphism. Thus
Q(d) is an isomorphism in C/N . Dually, Q(i) is also an isomorphism in C/N . Hence, both Q(K) and
Q(C) are isomorphic to 0 in C/N , which implies K,C ∈ KerQ = N by Corollary 4.3.8. We conclude
that d ∈ R and i ∈ L, and hence f = i ◦ d ∈ SN .

Therefore, if one assumes in addition that (EL4) holds, that is, C is admissible, then we can show the
saturatedness of SN . We can summarize our results of the saturatedness as follows.

Corollary 4.3.11. Suppose that either of the following conditions holds.
(i) N is a biresolving subcategory.
(ii) N satisfies (EL1)–(EL4).

Then SN is saturated.

Proof. (i) This is Proposition 4.3.9.
(ii) Since N satisfies (EL1)–(EL3), we can apply Proposition 4.3.10. In addition, every morphism in C

is admissible by (EL4), and hence the condition in Proposition 4.3.10 (2) automatically holds. Therefore,
SN is saturated.
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As a consequence, we can deduce the following result for the cases we are interested in.

Corollary 4.3.12. Suppose that either of the following conditions holds.
(i) N is a biresolving subcategory.
(ii) N satisfies (EL1)–(EL4).

Then the monoid homomorphism M(Q) : M(C)→ M(C/N ) for the exact localization Q : C → C/N induces
an isomorphism of monoids:

M(C)/MN
∼−→ M(C/N ).

Proof. This follows from Theorem 4.3.1 and Corollary 4.3.11.

Remark 4.3.13. Ogawa [Oga] developed localization theory of triangulated categories with respect
to an extension-closed subcategory. We briefly introduce his results and explain the relation to ours.
Let T be a triangulated category and N an extension-closed subcategory of T . We consider T as the
extriangulated category (T ,E, s). Then there is a subfunctor EN ⊆ E satisfying the following:

• T N := (T ,EN , s|EN ) is an extriangulated category.
• N is a thick subcategory of T N and satisfies Condition 4.2.4. In particular, the exact localization
T N /N exists by Fact 4.2.5.

• SN is saturated in T N .
Thus, we can apply Theorem 4.3.1 and obtain a monoid isomorphism M

(
T N )

/MN
∼−→ M

(
T N /N

)
for any extension-closed subcategory N of T . However, we do not know a relation between M(T ) and
M

(
T N )

at this moment.

Finally, we give applications of our description Theorem 4.3.1 of the Grothendieck monoid of the
exact localization.

First, by applying this to the abelian case, we obtain the following consequence on the Serre quotient
of an abelian category.

Corollary 4.3.14. Let A be a skeletally small abelian category, S a Serre subcategory of A, and ι : S ↪→ A
and Q : A → A/S the inclusion and the localization functor respectively. Then the following holds.
(1) M(ι) : M(S)→ M(A) is injective, so we have an isomorphism M(S) ∼= MS .
(2) M(Q) : M(A)→ M(A/S) induces an isomorphism of monoids M(A)/MS ∼= M(A/S).

Proof. (1) This is Proposition 3.3.5.
(2) Example 4.2.15 (3) shows that S satisfies (EL1)–(EL4). Therefore, we can apply Corollary 4.3.12

to this setting.

This may be seen as a “short exact sequence” of monoids:

0 M(S) M(A) M(A/S) 0. (4.3.3)

This description of M(A/S) gives the following description of Serre subcategories of A/S, which
seems to be a folklore.

Corollary 4.3.15. Let A be a skeletally small abelian category and S a Serre subcategory of A. Then
there is a bijection between the following two sets:
(1) Serre(A/S).
(2) {S ′ ∈ SerreA | S ⊆ S ′}.

Proof. There is a bijection between Serre(A/S) and FaceM(A/S) by Proposition 3.3.3. On the other
hand, M(A/S) is isomorphic to the quotient monoid M(A)/MS by Corollary 4.3.14 (2). Thus, Proposition
4.1.4 (3) shows that Face(M(A)/MS) is in bijection with the set of faces of M(A) containing MS . Since
FaceM(A) are in bijection with SerreA by Proposition 3.3.3 again and since S corresponds to MS in this
bijection, we conclude that Face(M(A)/MS) are in bijection with (2). The situation can be summarized
as the following figure.

Serre(A/S) {S ′ ∈ SerreA | S ⊆ S ′} SerreA

FaceM(A/S) Face(M(A)/MS) {F ∈ FaceM(A) | MS ⊆ F} FaceM(A)

⊆

⊆
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It is well-known that the similar sequence to (4.3.3) for the Grothendieck group is only right exact.
Actually, we can deduce it using our result as follows.

Corollary 4.3.16. Suppose that all the items in Condition 4.2.4 are satisfied and SN is saturated (e.g.
the assumption in Corollary 4.3.11 holds). Then the following sequence is exact:

K0(N ) K0(C) K0(C/N ) 0,
K0(ι) K0(Q)

where ι : N ↪→ C is the inclusion functor and Q : C → C/N is the exact localization functor.

Proof. The diagram

M(N ) M(C) M(C/N )
M(ι)

0

M(Q)

is a coequalizer diagram inMon by Theorem 4.3.1 (see also Proposition 4.1.2). Since the group completion
functor gp : Mon → Ab is a left adjoint of the forgetful functor Ab ↪→ Mon by Proposition 2.1.8, it
preserves colimits. Hence, we have a coequalizer diagram

K0(N ) K0(C) K0(C/N )
K0(ι)

0

K0(Q)

in Ab because gp ◦M = K0 by Remark 2.3.6. This is nothing but the claimed exact sequence.
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Chapter 5

Localization of monoids and
intermediate subcategories

In this chapter, we address a categorification of a monoid localization, which makes certain elements
of a monoid invertible (see §5.1). For this purpose, we study intermediate subcategories of the derived
category in detail, which also gives a concrete example of the theory developed in Chapter 3 and 4 for
an extriangulated category which is neither abelian nor triangulated.

Throughout this chapter, we fix Grothendieck universes U and V such that U ∈ V and use Convention
1.1.12 and 2.2.5. Moreover, we assume that every category, functor, and subcategory is additive. In
particular, every subcategory is strictly full and nonempty.

5.1 Preliminaries: localization of monoids

In this section, we introduce the localization of a monoid, which is a monoid analogue of the localization
of a commutative ring.

Definition 5.1.1. LetM be a monoid and S a subset of M . The localization of M with respect to S is a
monoid MS together with a monoid homomorphism ρ : M →MS which satisfies the following universal
property:
(i) ρ(s) is invertible in MS for each s ∈ S.
(ii) For any monoid homomorphism φ : M → X such that φ(s) is invertible for each s ∈ S, there is a

unique monoid homomorphism φ : MS → X satisfying φ = φρ.

The localization of a monoid M with respect to a subset S ⊆ M does exist, which is constructed as
follows: Define a binary relation on M × 〈S〉N by

(x, s) ∼ (y, t) :⇔ there exist u ∈ 〈S〉N such that x+ t+ u = y + s+ u in M .

It is a congruence on the monoid M × 〈S〉N, and hence the quotient set MS := M × 〈S〉N/∼ becomes a
monoid. We denote by [x, s] the equivalence class of (x, s) ∈M ×〈S〉N. We can think of [x, s] as “x− s.”
Then it is straightforward to check that the monoid MS together with a monoid morphism ρ : M →MS

defined by ρ(m) = [m, 0] is the localization of M with respect to S. We call ρ : M →MS the localization
homomorphism of M with respect to S.

We reveal the relationship between faces of MS and those of M in Proposition 5.1.4 below. Let us
prove two lemmas for this purpose.

Lemma 5.1.2. Let S be a subset of M . Then the natural monoid homomorphism

MS →M⟨S⟩face , [x, s] 7→ [x, s]

is an isomorphism.

Proof. Let ρ : M → MS be the localization homomorphism. We have that ρ−1(M×
S ) = 〈S〉face by

[Ogu18, The text following Proposition 1.4.4]. Then the conclusion follows immediately from the uni-
versal property.
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Lemma 5.1.3. Let F be a face of M .
(1) M/F is sharp (see Definition 2.1.3 (1)).
(2) The monoid homomorphism

φ : MF /M
×
F →M/F, [x, s] modM×

F 7→ x mod F

is an isomorphism.

Proof. (1) Let x, y ∈M such that x+ y ≡ 0 mod F . There are elements s, t ∈ F such that x+ y+ s = t
in M . Since F is a face, both x and y belong to F , which implies both x ≡ 0 mod F and y ≡ 0 mod F .
Therefore M/F is sharp.

(2) The quotient homomorphism M → M/F induces a monoid homomorphism φ′ : MF → M/F
by the universal property of MF . Then φ′(M×

F ) = 0 since M/F is sharp. Thus φ′ induces a monoid
homomorphism φ : MF /M

×
F → M/F by the universal property of MF /M

×
F . The homomorphism φ is

clearly surjective. We prove that φ is injective. Let [x, s], [y, t] ∈ MF such that x ≡ y mod F . Then
there are n, n′ ∈ F such that x+ n = y + n′ in M . Hence, we have the following equalities in MF :

[x, s] + [s+ n, 0] = [x+ s+ n, s] = [x+ n, 0] = [y + n′, 0] = [y, t] + [t+ n′, 0].

We conclude that [x, s] ≡ [y, t] modM×
F because [s+ n, 0], [t+ n′, 0] ∈M×

F . Therefore φ is injective.

Proposition 5.1.4. Let M be a monoid and S a subset of M . Then there is an inclusion-preserving
bijection between the following sets:
(1) Face(MS).
(2) {F ∈ FaceM | F ⊇ S}.

Proof. We have the following inclusion-preserving bijections:

Face(MS) ∼= Face
(
M⟨S⟩face

) ∼= Face
(
M⟨S⟩face/M

×
⟨S⟩face

)
∼= Face(M/〈S〉face)

by Lemma 5.1.2, 5.1.3, and Corollary 4.1.5. The set Face(M/〈S〉face) corresponds bijectively to the set
(2) by Proposition 4.1.4.

5.2 Intermediate subcategories of the derived category

In the remaining of this chapter, A denotes a skeletally small abelian category. We denote by Db(A)
the bounded derived category of A, which we regard as an extriangulated category. Note that Db(A) is
skeletally small since so is A. We also denote by Hi : Db(A)→ A the i-th cohomology functor. We often
identify A with the essential image of the canonical embedding A ↪→ Db(A), that is, the subcategory of
Db(A) consisting of X such that Hi(X) = 0 for i 6= 0.

The following observation is useful throughout this section, and can be proved easily by using the
truncation functor.

Lemma 5.2.1. Let A be a skeletally small abelian category and B and B′ subcategories of A.
(1) We have the following equality in Db(A):

B[1] ∗ B′ = {X ∈ Db(A) | Hi(X) = 0 for i 6= 0,−1, H−1(X) ∈ B, and H0(X) ∈ B′}.

(2) For every X ∈ A[1] ∗ A, we have the following conflation in Db(A), which is natural on X:

H−1(X)[1] X H0(X) .

Moreover, every conflation A[1]→ X → B 99K with A,B ∈ A is isomorphic to the above conflation.
(3) For every X ∈ A[1] ∗ A, there is some Y ∈ Db(A) with X ∼= Y in Db(A) such that Y is a complex

concentrated in degree 0 and −1.

Let us introduce the main topic of this section.
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Definition 5.2.2. Let A be a skeletally small abelian category. An intermediate subcategory of Db(A)
is a subcategory C satisfying the following conditions:
(1) A ⊆ C ⊆ A[1] ∗ A holds.
(2) C is closed under extensions in Db(A).
(3) C is closed under direct summands in Db(A).

By (2), we regard an intermediate subcategory as an extriangulated category.

See Figure 0.2.1 for the intuition of this notion. The simplest example of an intermediate subcategory
is A itself, and generally intermediate subcategories are larger than A but not too large so that they are
contained in A[1] ∗ A.

First, we will see that intermediate subcategories can be described using torsionfree classes in A.
Here a subcategory F of A is called a torsionfree class if F is closed under subobjects and extensions.
Note that torsionfree classes do not necessarily correspond to torsion classes and torsion pairs in general.

Theorem 5.2.3. Let A be a skeletally small abelian category. Then the following hold.
(1) If F is a torsionfree class in A, then F [1] ∗ A is an intermediate subcategory of Db(A).
(2) If C is an intermediate subcategory of Db(A), then H−1(C) is a torsionfree class in A, and we have
C = H−1(C)[1] ∗ A.

(3) The assignments given in (1) and (2) give bijections between the set of torsionfree classes in A and
that of intermediate subcategories of Db(A).

Proof. (1) Let F be a torsionfree class in A. Recall from Lemma 5.2.1 (1) that F [1] ∗ A consists of
X ∈ Db(A) satisfyingHi(X) = 0 for i 6= 0,−1 andH−1(X) ∈ F . We clearly haveA ⊆ F [1]∗A ⊆ A[1]∗A.
Next, we show that F [1] ∗ A is closed under extensions in Db(A). Suppose that there is a conflation
(triangle)

X Y Z

in Db(A) with X,Z ∈ F [1] ∗A. It clearly suffices to show that H−1(Y ) ∈ F . Since H is a cohomological
functor, we have the following exact sequence in A:

0 = H−2(Z) H−1(X) H−1(Y ) H−1(Z).

Since we have H−1(X),H−1(Z) ∈ F and F is closed under subobjects and extensions, we obtain
H−1(Y ) ∈ F . Since clearly Hi(Y ) = 0 for i 6= 0,−1, we obtain Y ∈ F [1] ∗ A, so C is closed under
extensions in Db(A).

Since Hi(X⊕Y ) ∼= Hi(X)⊕Hi(Y ) holds and F is closed under direct summands in A, we can easily
check that F [1] ∗ A is closed under direct summands in Db(A).

(2) Suppose that C is an intermediate subcategory of Db(A), that is, A ⊆ C ⊆ A[1] ∗A holds and C is
closed under extensions and direct summands in Db(A). We first show the equality C = H−1(C)[1] ∗ A.
Lemma 5.2.1 (2) implies C ⊆ H−1(C)[1] ∗ A. To show the converse, it suffices to show H−1(C)[1] ⊆ C
since A ⊆ C and C is closed under extensions.

Take any C ∈ C and we will see H−1(C)[1] ∈ C. By Lemma 5.2.1 (3), we may assume that C = C•

is a complex concentrated in degree 0 and −1, that is, C is of the form C = [· · · → 0 → C−1 → C0 →
0→ · · · ]. Lemma 5.2.1 (2) gives the following triangle:

H−1(C)[1] C H0(C) .
f

On the other hand, define the cochain map g : C0 → C by the following:

C0 · · · 0 0 C0 0 · · ·

C · · · 0 C−1 C0 0 · · ·

g

Then by consider the mapping cocone of [f, g] : H−1(C)[1]⊕ C0 → C, we obtain the following triangle
in Db(A):

A H−1(C)[1]⊕ C0 C A[1].
[f, g]
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We claim that A belongs to A. To show that, consider the cohomology long exact sequence induced from
the above triangle:

0 = H−2(C) H−1(A) H−1(H−1(C)[1]⊕ C0) H−1(C)

H0(A) H0(H−1(C)[1]⊕ C0) H0(C)

H1(A) H1(H−1(C)[1]⊕ C0) = 0

f

g

Clearly we have Hi(A) = 0 for i 6= −1, 0, 1. On the other hand, f is isomorphic to H−1(f), which is an
isomorphism. Hence H−1(A) = 0 holds. Moreover, g is isomorphic to H0(g) : C0 → H0(C), which is
surjective. Hence H1(A) = 0 holds. Therefore, we have shown that Hi(A) = 0 for i 6= 0. Thus A ∈ A
holds.

It follows that H−1(C)[1]⊕C0 belongs to C, since A ⊆ C and C is closed under extensions. Therefore,
we obtain H−1(C)[1] ∈ C because C is closed under direct summands. Thus, we have shown that
C = H−1(C)[1] ∗ A holds.

We claim that H−1(C) is a torsionfree class in A. Put F := H−1(C) for simplicity, and then we have
C = F [1] ∗ A by the above argument. Suppose that we have a short exact sequence

0 X Y Z 0

in A. Note that this gives a triangle X → Y → Z → X[1] in Db(A). If X and Z belong to F , then X[1]
and Z[1] belongs to F [1] ⊆ C. Therefore, the conflation

X[1] Y [1] Z[1]

in Db(A) implies that Y [1] ∈ C since C is closed under extensions. Then we obtain Y = H−1(Y [1]) ∈
H−1(C) = F .

Similarly, suppose that Y belongs to F . Then we have a conflation

Z X[1] Y [1]

in Db(A), and we have Z ∈ A ⊆ C and Y [1] ∈ F [1] ⊆ C. Therefore, X[1] ∈ C holds since C is closed
under extensions. Hence, we obtain X = H−1(X[1]) ∈ H−1(C) = F . Therefore, F is a torsionfree class
in A.

(3) Let F be a torsionfree class in A. Then Lemma 5.2.1 (1) shows H−1(F [1] ∗ A) ⊆ F . Since we
clearly have F ⊆ H−1(F [1] ∗ A), we obtain H−1(F [1] ∗ A) = F . Conversely, if C is an intermediate
subcategory of Db(A), then we have C = H−1(C)[1] ∗ A by the proof of (2). Thus, the assignments in
(1) and (2) are mutually inverse.

5.3 The Grothendieck monoid of an intermediate subcategory

By the previous section, an intermediate subcategory of Db(A) is of the form F [1] ∗ A for a torsionfree
class F in A. Next, we will calculate the Grothendieck monoid of this extriangulated category. Note
that the inclusion functor A ↪→ F [1] ∗ A induces a monoid homomorphism M(A)→ M(F [1] ∗ A).

Theorem 5.3.1. Let A be a skeletally small abelian category and F a torsionfree class in A, and put
C := F [1]∗A. Then the natural monoid homomorphism M(A)→ M(C) induces the following isomorphism
of monoids

M(A)MF ∼= M(C),

where the left-hand side is the localization of M(A) with respect to MF (see Definition 5.1.1).

Proof. Let ι : M(A) → M(C) be the natural monoid homomorphism. We check that ι satisfies the
universal property of the localization of M(A) with respect to MF .
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First, we show that every element in ι(MF ) is invertible. Take any [F ] ∈ MF with F ∈ F , then
ι[F ] = [F ] in M(C). Now we have a conflation

F 0 F [1]

in C = F [1] ∗ A. Therefore, [F ] + [F [1]] = 0 holds in M(C), that is, ι[F ] ∈ M(C) is invertible.
Next, we will check the universal property. Let ϕ : M(A)→M be a monoid homomorphism such that

ϕ[F ] is invertible in M for every F ∈ F . We have to show that there is a unique monoid homomorphism
ϕ : M(C)→M which makes the following diagram commute:

M(A) M(C)

M

φ

ι

φ

We first check the uniqueness. Suppose that there is such a map ϕ. Let C ∈ C be any object. Then
since C = F [1] ∗ A, there is a conflation in C

H−1(C)[1] C H0(C)

with H−1(C) ∈ F by Lemma 5.2.1. Thus [C] = [H0(C)] + [H−1(C)[1]] = [H0(C)] − [H1(C)] in M(C).
Since ϕ is a monoid homomorphism, it preserves the inverse. Therefore, we must have

ϕ[C] = ϕ[H0(C)]− ϕ[H1(C)] = ϕι[H0(C)]− ϕι[H1(C)] = ϕ[H0(C)]− ϕ[H1(C)].

Therefore, the uniqueness of ϕ holds.
Next, we will construct ϕ. Consider the following map ψ : |C| →M :

ψ[X] := ϕ[H0(X)]− ϕ[H−1(X)].

Note that ϕ[H−1(X)] has an inverse in M since H−1(X) ∈ F . We will show that ψ respects conflations
in C. Clearly ψ[0] = 0 holds. Take any conflation

X Y Z

in C. Since this is a triangle in Db(A), we obtain the following long exact sequence in A:

H−2(Z) = 0 H−1(X) H−1(Y ) H−1(Z)

H0(X) H0(Y ) H0(Z) H2(X) = 0

By decomposing this long exact sequence into short exact sequences in A, we can easily obtain the
equality

[H−1(X)] + [H−1(Z)] + [H0(Y )] = [H−1(Y )] + [H0(X)] + [H0(Z)]

in M(A). Therefore, by applying ϕ, we obtain

ϕ[H−1(X)] + ϕ[H−1(Z)] + ϕ[H0(Y )] = ϕ[H−1(Y )] + ϕ[H0(X)] + ϕ[H0(Z)],

which clearly implies ψ[Y ] = ψ[X] + ψ[Z] in M . Thus ψ respects conflations, so it induces a monoid
homomorphism ϕ : M(C) → M . Moreover, for any A ∈ A, we have ϕι[A] = ϕ[H0(A)] − ϕ[H−1(A)] =
ϕ[A]− 0 = ϕ[A], and hence ϕι = ϕ holds.

As an immediate consequence, we obtain the following example of an extriangulated category whose
Grothendieck monoid is a group:

Corollary 5.3.2. Let A be a skeletally small abelian category. Then the natural homomorphism M(A)→
M(A[1] ∗ A) induces an isomorphism K0(A) ∼= M(A[1] ∗ A).
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Proof. By Theorem 5.3.1, we have that M(A[1] ∗ A) is isomorphic to the localization of M(A) with
respect to the whole set M(A). This is nothing but the group completion of M(A), which is K0(A) (see
Remark 2.3.6).

The above corollary says that the inclusion A ↪→ A[1] ∗A categorifies the group completion M(A)→
K0(A). Furthermore, we can realize all the localization of M(A) in this way, as follows.

Remark 5.3.3. Consider the localization M(A)S of M(A) with respect to any subset S ⊆ M(A). We
have a monoid isomorphism M(A)S ∼= M(A)⟨S⟩face by Lemma 5.1.2. Then F := D⟨S⟩face is a Serre
subcategory of A and MF = 〈S〉face by Proposition 3.3.3. In particular, it is a torsionfree class of A. By
Theorem 5.3.1, we have a monoid isomorphism

M(A)S ∼= M(A)⟨S⟩face = M(A)MF ∼= M(F [1] ∗ A).

Thus, we can realize all localizations of M(A) as the Grothendieck monoids of intermediate subcategories
of Db(A). Therefore, the natural inclusion A ↪→ C to an intermediate subcategory yields a categorification
of a localization of the monoid M(A).

Next, we describe the Grothendieck monoid of an intermediate subcategory of Db(A) when A is an
abelian length category with finitely many simples. Recall that an abelian length category is a skeletally
small abelian category such that every object has a finite length. For an abelian length category A, we
denote by simA the set of isomorphism classes of simple objects in A. The following observation on the
localization of a monoid can be easily checked.

Lemma 5.3.4. LetM and N be monoids. Then the localization ofM⊕N with respect toM is isomorphic
to (gpM)⊕N .

Corollary 5.3.5. Let A be an abelian length category and F a torsionfree class in A. Define simF A as
follows:

simF A := {[S] ∈ simA | S appears as a composition factor of a some object in F}.

Then we have an isomorphism of monoids

M(F [1] ∗ A) ∼= Z⊕ simF A ⊕ N⊕(simA\simF A).

Proof. Since A is an abelian length category and the Jordan-Hölder theorem holds in A, we have that
M(A) is a free commutative monoid with the basis {[S] ∈ M(A) | [S] ∈ simA}, see [Eno22, Corollary
4.10]. Thus, we have an isomorphism M(A) ∼= N⊕ simA, which sends [A] ∈ M(A) to

∑
ni[Si], where ni

is the multiplicity of Si in the composition series of M . In the rest of this proof, we identify M(A) with
N⊕ simA.

Theorem 5.3.1 implies that M(F [1] ∗ A) is the localization of M(A) with respect to MF . By Lemma
5.1.2, this localization coincides with that with respect to the smallest face 〈MF 〉face of M(A) containing
MF . It is easily checked that the following holds:

〈MF 〉face = N⊕ simF A ⊆ N⊕ simF A ⊕ N⊕(simA\simF A) = M(A).

Then Lemma 5.3.4 immediately deduces the assertion.

Example 5.3.6. Let k be a field and Q a quiver 1 ← 2 ← 3, and let A := mod kQ. Then the
Auslander-Reiten quiver of Db(A) is as follows:

· · ·

3[−1]

1

2
1

3
2
1

2

3
2

3

1[1]

2
1[1]

3
2
1
[1]

2[1]

3
2[1]

3[1]

1[2]

· · ·
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Consider the torsionfree class F := add{1, 21} in A. Then an intermediate subcategory C := F [1] ∗ A is
the additive closure of the gray region. Since A is length, M(A) = N[S1]⊕N[S2]⊕N[S3], where Si = i is
the simple module corresponding to each vertex i. Then simF A = {S1, S2}, so Corollary 5.3.5 implies
M(C) = Z[S1]⊕Z[S2]⊕N[S3]. For example, [S2] is invertible in M(C) although [S2[1]] 6∈ C, which can be
checked alternatively as follows. We have [S2] = [21] + [1[1]] in M(C) by a conflation

2
1 2 1[1] .

On the other hand, [21] and [1[1]] have inverses [21[1]] and [1] in M(C) respectively. Thus [S2] has an inverse
[21[1]] + [1].

5.4 Serre subcategories of an intermediate subcategory

In this section, we classify Serre subcategories of an intermediate subcategory and study its localization.
First, we classify Serre subcategories of an intermediate subcategory via Serre subcategories of the

original abelian category.

Proposition 5.4.1. Let A be a skeletally small abelian category and F a torsionfree class in A. Then
there is a bijection between the following two sets.
(1) Serre(F [1] ∗ A).
(2) {S ∈ SerreA | F ⊆ S}.

The maps are given as follows: for D in (1), we consider A ∩ D in (2), and for S in (2) we consider
F [1] ∗ S in (1).

Proof. Let D be a Serre subcategory of F [1] ∗ A. Then clearly A∩D is a Serre subcategory of A since
A is an extension-closed subcategory of F [1] ∗ A. Moreover, for any F ∈ F , we have a conflation

F 0 F [1] (5.4.1)

in F [1]∗A, which implies that F ∈ D and F [1] ∈ D since D is a Serre subcategory of F [1]∗A and 0 ∈ D.
Thus F ∈ A ∩ D, and hence F ⊆ A ∩D.

Conversely, let S be a Serre subcategory of A with F ⊆ S, and put D := F [1] ∗ S. By Lemma 5.2.1
(1), we can describe D as follows:

F [1] ∗ S = {X ∈ F [1] ∗ A | H0(X) ∈ S}.

We claim that D is a Serre subcategory of F [1] ∗ A. Suppose that there is a conflation

X Y Z
f g

in F [1] ∗ A. Then we obtain the following long exact sequence in A:

H−1(Z) H0(X) H0(Y ) H0(Z) H1(X) = 0δ H0(f) H0(g)

Thus, we obtain the following short exact sequence:

0 Cok δ H0(Y ) H0(Z) 0.
H0(g)

If X and Z belong to F [1] ∗S, then we have H0(X),H0(Z) ∈ S by X,Z ∈ F [1] ∗A, and Cok δ ∈ S since
S is closed under quotients in A. Thus H0(Y ) ∈ S holds since S is closed under extensions. Similarly, if
Y belongs to F [1] ∗ S, then H0(Y ) ∈ S, and hence Cok δ,H0(Z) ∈ S since S is closed under subobjects
and quotients. Moreover, we have another short exact sequence:

0 Im δ H0(X) Cok δ 0.

Since Im δ is a quotient of H−1(Z) ∈ F ⊆ S, we have Im δ ∈ S. Thus H0(X) ∈ S holds since S is closed
under extensions. Therefore, we obtain X,Z ∈ F [1] ∗ S, so F [1] ∗ S is a Serre subcategory of F [1] ∗ A.
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Finally, we check that these maps are inverse to each other. Let D be a Serre subcategory of
F [1] ∗ A, and we will see D = F [1] ∗ (A ∩ D). By the conflation (5.4.1), we have F [1] ⊆ D. Thus,
we obtain F [1] ∗ (A ∩ D) ⊆ D since D is closed under extensions. Conversely, let X ∈ D. Then since
X ∈ D ⊆ F [1] ∗ A, we have the conflation

F [1] X A

in F [1] ∗ A with F ∈ F and A ∈ A. Since D is a Serre subcategory of F [1] ∗ A, we have in addition
A ∈ D, and hence A ∈ A ∩ D. Thus X ∈ F [1] ∗ (A ∩ D). Next, let S be a Serre subcategory of A
containing F . Clearly we have S ⊆ F [1] ∗ S, so S ⊆ A ∩ (F [1] ∗ S). Conversely, let A ∈ A ∩ (F [1] ∗ S).
Then we have an isomorphism A ∼= H0(A), and H0(A) ∈ S holds by Lemma 5.2.1 (1). Therefore, we
obtain A ∈ S.

Remark 5.4.2. The bijection in Proposition 5.4.1 can also be constructed purely combinatorially as
follows: Proposition 3.3.3, Theorem 5.3.1, and Proposition 5.1.4 give the following diagram consisting of
bijections.

Serre(F [1] ∗ A) {S ∈ Serre(A) | F ⊆ S}

FaceM(F [1] ∗ A) = FaceM(A)MF {F ∈ FaceM(A) | MF ⊆ F}

M(−) M(−)

∼

Therefore, we can think of Proposition 5.4.1 as a categorification of Proposition 5.1.4 on faces.

Next, we discuss the localization of an intermediate subcategory by its Serre subcategory. Such a
localization is always possible and yields an abelian category:

Proposition 5.4.3. Let A be a skeletally small abelian category, F a torsionfree class in A, and D a
Serre subcategory of F [1] ∗ A. Then D satisfies conditions (EL1)–(EL4) in Fact 4.2.13. Therefore, the
exact localization (F [1] ∗ A)

/
D exists and is an abelian category.

Proof. (EL1) Since D is a Serre subcategory of F [1] ∗ A and F [1] ∗ A is admissible as shown in (EL4)
below, it is a percolating subcategory by Example 4.2.11.

(EL2) Lemma 5.2.1 (1) implies that F [1] ∗ A is closed under direct summands in Db(A). Therefore,
F [1] ∗A satisfies the condition (WIC) by Lemma 4.2.16, and thus (EL2) is satisfied by [NOS22, Remark
4.31 (2)].

(EL3) First, we will check the first condition in (EL3). Let f : X → Y be an inflation in F [1] ∗A and
ϕ : W → X in F [1] ∗ A a morphism satisfying fϕ = 0. We have the following triangle in Db(A) with
Z ∈ F [1] ∗ A:

W

Z[−1] X Y Z.

φ 0φ

h f

Since fϕ = 0 and h is a weak kernel of f in Db(A), it follows that ϕ factors through h, so we obtain the
above ϕ : W → Z[−1] satisfying ϕ = hϕ. Then, since Z ∈ F [1] ∗ A, we have the following triangle in
Db(A) with F ∈ F and A ∈ A.

W

F Z[−1] A[−1] F [1].

φ
0ψ

a b

Here bϕ = 0 holds since both Db(A)(F [1],A[−1]) and Db(A)(A,A[−1]) vanish. Therefore, we obtain the
above ψ satisfying ϕ = aψ. Thus ϕ = hϕ = haψ holds, so ϕ factors through the object F ∈ F . On the
other hand, by the proof of Proposition 5.4.1, we have F ⊆ D. Hence ϕ factors through an object in D.
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Next, we will prove the second condition. Let g : Y → Z be a deflation in F [1] ∗ A and ϕ : Z → W
in F [1] ∗ A a morphism satisfying ϕg = 0. We have the following triangle in Db(A) with X ∈ F [1] ∗ A:

X Y Z X[1]

W

g

0

h

φ
φ

Since ϕg = 0 and h is a weak cokernel of g in Db(A), it follows that ϕ factors through h, so we obtain
the above ϕ : X[1]→W satisfying ϕ = ϕh. Then, since W ∈ F [1] ∗ A, we have the following triangle in
Db(A) with F ∈ F and A ∈ A.

X[1]

F [1] W A F [2].

φ 0ψ

a b

Here bϕ = 0 holds since X[1] ∈ F [2] ∗A[1] and both Db(A)(F [2],A) and Db(A)(A[1],A) vanish. There-
fore, we obtain the above ψ satisfying ϕ = aψ. Thus ϕ = ϕh = aψh holds, so ϕ factors through the
object F [1] ∈ F [1]. On the other hand, by the proof of Proposition 5.4.1, we have F [1] ⊆ D. Hence ϕ
factors through an object in D, and thus (EL3) is satisfied.

(EL4) The proof of this part is essentially the same as the proof of the fact that the heart of a t-
structure is an abelian category. We denote by (−)≤0, (−)≥1 : Db(A)→ A the truncation functors with
respect to the standard t-structure of Db(A).

Let f : X → Y be any morphism in F [1]∗A. By taking the mapping cocone K of f and the truncation
ofK and using the octahedral axiom, we obtain the following commutative diagram consisting of triangles
in Db(A):

K≤0 K≤0

K X Y K[1]

K≥1 W Y K≥1[1]

K≤0[1] K≤0[1]

f

p

i

(5.4.2)

We claim that f = ip is a deflation-inflation factorization. It suffices to show the following three
assertions.
(1) K≤0 ∈ F [1] ∗ A
(2) K≥1[1] ∈ A ⊆ F [1] ∗ A.
(3) W ∈ F [1] ∗ A.
(1) By the second row of (5.4.2), we have the following long exact sequence in A:

0 = H−2(Y ) H−1(K) H−1(X)

H−1(Y ) H0(K) H0(X)

H0(Y ) H1(K) H1(X) = 0.

It easily follows that Hi(K) = 0 for i /∈ {−1, 0, 1}. Moreover, since H−1(X) ∈ F , we have H−1(K) ∈ F
because F is closed under subobjects. Since the i-th cohomology of K≤0 is zero for i > 0 and the same
as K for i ≤ 0, we obtain that K≤0 belongs to F [1] ∗ A by Lemma 5.2.1 (1).

(2) Because the i-th cohomology of K vanishes for i ≥ 1 except for i = 1 by the proof of (1), we have
K≥1 ∈ A[−1]. Thus K≥1[1] ∈ A holds.
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(3) Since Hi(X) = 0 and Hi(K≤0[1]) = Hi+1(K≤0) = 0 for i ≥ 1, we obtain that Hi(W ) = 0 for
i ≥ 1 by the second column of (5.4.2). On the other hand, the third row of (5.4.2) shows the following
exact sequence in A:

0 = H−1(K≥1) H−1(W ) H−1(Y ) H0(K≥1) = 0

ThusHi(W ) = 0 holds for i ≤ −2 andH−1(W ) ∼= H−1(Y ) ∈ F holds. Therefore, we obtainW ∈ F [1]∗A
by Lemma 5.2.1 (1).

Actually, we can describe the localization of an intermediate subcategory as a usual Serre quotient
of an abelian category as follows.

Theorem 5.4.4. Let A be a skeletally small abelian category, F a torsionfree class in F , and S a Serre
subcategory of A with F ⊆ S. We have the following commutative diagram consisting of exact functors
of extriangulated categories, where Q1 and Q2 are localization functors:

A F [1] ∗ A

A/S (F [1] ∗ A)
/
(F [1] ∗ S)

ι

Q1 Q2

Φ

Then Φ gives an equivalence of extriangulated categories (or equivalently, abelian categories).

Proof. First, recall that an exact functor from an extriangulated category to an exact category (e.g.
an abelian category) is precisely an additive functor preserving conflations by Lemma 2.2.4. It is easily
checked from the universality of the localization that an exact functor Φ exists (see Proposition 4.2.3).
Furthermore, since both A/S and (F [1] ∗ A)

/
(F [1] ∗ S) are abelian categories by Proposition 5.4.3, we

only have to check that Φ is just an equivalence of an additive category.
Actually, we will construct a quasi-inverse Ψ: (F [1] ∗ A)

/
(F [1] ∗ S)→ A/S as follows. Consider the

following diagram.

F [1] ∗ A A

(F [1] ∗ A)
/
(F [1] ∗ S) A/S

Q2

H0

Q1

Ψ

(5.4.3)

We claim that the composition Q1H
0 is an exact functor. To show this, take any conflation

X Y Z
f g

in F [1] ∗ A. Then since it is a triangle in Db(A), we obtain the following long exact sequence in A:

H−1(Z) H0(X) H0(Y ) H0(Z) H1(X) = 0

Then Lemma 5.2.1 (1) implies H−1(Z) ∈ F . Now since F is contained in S, we obtain the following
short exact sequence in A/S by applying an exact functor Q1 to the above exact sequence:

0 Q1H
0(X) Q1H

0(Y ) Q1H
0(Z) 0.

Therefore, Lemma 2.2.4 shows that Q1H
0 is an exact functor between extriangulated categories. Hence,

an exact functor Ψ in (5.4.3) is induced. Now we obtain the following strict commutative diagram
consisting of additive functors between additive categories.

A F [1] ∗ A A

A/S (F [1] ∗ A)
/
(F [1] ∗ S) A/S

ι

Q1 Q2

H0

Q1

Φ Ψ
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Since H0ι is naturally isomorphic to idA, we have Q1H
0ι ' Q1. Thus, the universal property of Q1 as an

exact 2-localization (see Remark 4.2.7) implies that ΨΦ is naturally isomorphic to the identity functor.
Similarly, we have the following strict commutative diagram.

F [1] ∗ A A F [1] ∗ A

(F [1] ∗ A)
/
(F [1] ∗ S) A/S (F [1] ∗ A)

/
(F [1] ∗ S)

Q2

H0

Q1

ι

Q2

Ψ Φ

We claim that Q2ιH
0 is naturally isomorphic to Q2. In fact, for any morphism f : X → Y in F [1] ∗ A,

we obtain the following morphism of conflations in F [1] ∗ A:

H−1(X)[1] X ιH0(X)

H−1(Y )[1] Y ιH0(Y )

H−1(f)[1] f ιH0(f)

Since Q2 is an exact functor which sends every object in F [1] to 0, we obtain the following exact
commutative diagram in an abelian category (F [1] ∗ A)

/
(F [1] ∗ S):

0 = Q2H
−1(X)[1] Q2(X) Q2ιH

0(X) 0

0 = Q2H
−1(Y )[1] Q2(Y ) Q2ιH

0(Y ) 0

Q2H
−1(f)[1] Q2(f) Q2ιH

0(f)

Therefore, Q2ιH
0 is naturally isomorphic to Q2. Thus, the universal property of an exact 2-localization

Q1 (Remark 4.2.7) implies that ΦΨ is naturally isomorphic to the identity functor. Therefore, Φ and Ψ
are mutually quasi-inverse.
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Chapter 6

The spectra of Grothendieck
monoids

In this chapter, we study the monoid spectrum of the Grothendieck monoid and introduce a topology
on the set of Serre subcategories. As a consequence, we classify finitely generated Serre subcategories by
using this topology.

Throughout this chapter, we fix Grothendieck universes U and V such that U ∈ V and use Convention
1.1.12 and 2.2.5. Moreover, we assume that every subcategory is a strictly full subcategory. Hereafter,
C is a skeletally small extriangulated category.

6.1 Preliminaries: the spectrum of a commutative monoid

In this section, we review the spectrum of a monoid. The main reference is [Ogu18]. We often refer
to [GW20], a textbook of scheme theory since many constructions are analogies of the spectrum of a
commutative ring. Throughout this section, M is a monoid.

Definition 6.1.1.
(1) A subset I of M is called an ideal if for all x ∈ I and a ∈M , we have x+ a ∈ I.
(2) An ideal p of M is said to be prime if it satisfies (i) p 6=M and (ii) x+ y ∈ p implies x ∈ p or y ∈ p

for all x, y ∈M .
(3) The monoid spectrum of M is the set MSpecM of prime ideals of M .

For a subset S of M , the ideal 〈S〉ideal generated by S is the smallest ideal of M containing S. We
can describe it as follows:

〈S〉ideal := {x+ a | x ∈ S, a ∈M} .

Remark 6.1.2.
(1) The set M+ :=M \M× of non-units is the unique maximal ideal of M . It is also a prime ideal of

M .
(2) The empty set ∅ is the unique minimal ideal of M . It is also a prime ideal of M .
(3) The monoid spectrum MSpecM is never empty and has the maximum and minimum element with

respect to inclusion by (1) and (2). MSpecM consists of exactly one point if and only if M is a
group.

The relation between faces and prime ideals is the following.

Fact 6.1.3 ([Ogu18, Section I.1.4]).
(1) pc :=M \ p is a face of M for any prime ideal p of M .
(2) F c :=M \ F is a prime ideal of M for any face F of M .
(3) The assignments given in (1) and (2) give inclusion-reversing bijections between Face(M) and

MSpecM .
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We will now endow MSpecM with the structure of a topological space. For a subset S of M , we set

V (S) := {p ∈ MSpecM | p ⊇ S}.

Note that V (S) = V (〈S〉ideal) holds. They satisfy the following equalities (cf. [GW20, Lemma 2.1]):
• V (M) = ∅ and V (∅) = MSpecM .
•
⋂
α∈A V (Sα) = V

(⋃
α∈A Sα

)
for a family {Sα}α∈A of subsets of M .

• V (I) ∪ V (J) = V (I ∩ J) for ideals I, J of M .
These equalities show that we can define a topology on MSpecM by taking the subsets of the form V (S)
to be the closed subsets. We call it the Zariski topology on MSpecM . Note that MSpecM has a unique
closed point M+ and a unique generic point ∅ by Remark 6.1.2. In particular, MSpecM is an irreducible
topological space.

Let
D(f) := {p ∈ MSpecM | f 6∈ p}

for each element f ∈M . They are open in MSpecM since D(f) = MSpecM \ V (f). They satisfy

D(f) ∩D(g) = D(f + g)

for any f, g ∈M . Open subsets of MSpecM of this form are called principal open subsets of MSpecM .
The set of principal open subsets D(f) forms a basis of the Zariski topology on MSpecM (cf. [GW20,
Proposition 2.5]).

We define a preorder on a topological space.

Definition 6.1.4. Let X be a topological space.
(1) For two points x, y ∈ X, we say that x is a specialization of y or that y is a generalization of x if

x belongs to the topological closure {y} of {y} in X. Define a preorder � on X by

x � y :⇔ x is a specialization of y.

We call it the specialization order on X. When we regard X as a poset by the specialization order,
it is denoted by Xspcl := (X,�).

(2) A subset A of X is specialization-closed (resp. generalization-closed) if for any x ∈ A and every its
specialization (resp. generalization) x′ ∈ X, we have that x′ ∈ A.

Remark 6.1.5. Let X be a topological space.
(1) A subset A of X is specialization-closed if and only if its complement Ac = X \A is generalization-

closed.
(2) Any closed subset is specialization-closed. Also, any open subset is generalization-closed.
(3) Recall that X is called a T0-space if for any distinct points, there exists an open subset containing

exactly one of them. In this case, the specialization order on X is a partial order. That is, x � y
and y � x imply x = y for any x, y ∈ Xspcl.

The specialization order on MSpecM recovers the inclusion-order on prime ideals.

Proposition 6.1.6. The following hold.
(1) {p} = V (p) for any prime ideal p ⊆M .
(2) (MSpecM)spcl is isomorphic to MSpecM ordered by reverse inclusion as posets.

Proof. We omit the proof since it is straightforward.

We give a topological characterization of principal open subsets D(f). We will use it to classify
finitely generated Serre subcategories in Proposition 6.2.6.

Definition 6.1.7. A topological space X is strongly quasi-compact if for every open covering {Ui}i∈I of
X, there exists i ∈ I such that X = Ui.

Lemma 6.1.8. Let M be a monoid. A nonempty open subset U of MSpecM is strongly quasi-compact
if and only if U = D(f) for some f ∈M .
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Proof. We first show that D(f) is nonempty and strongly quasi-compact. The subset D(f) has the
maximum element 〈f〉cface with respect to inclusions. Indeed, for any p ∈ D(f), we have f 6∈ p. Since pc

is a face and f ∈ pc, we obtain 〈f〉face ⊆ pc. Thus, we conclude that 〈f〉cface ⊇ p. Let {Ui}i∈I be an open
covering of D(f). Then there exists i ∈ I such that 〈f〉cface ∈ Ui, which implies D(f) = Ui because Ui is
generalization-closed. This proves D(f) is strongly quasi-compact.

Conversely, suppose that U is a nonempty strongly quasi-compact open subset of MSpecM . Since
the principal open subsets are a basis of Zariski topology, the open subset U is covered by them. Thus
U = D(f) for some f ∈M because U is strongly quasi-compact.

The monoid spectrum MSpecM is equipped with a natural sheaf of monoids.

Fact 6.1.9 ([Ogu18, Section II.1.2]). There is a sheaf OM of monoids on MSpecM , which is called the
structure sheaf, satisfying the following.
(1) For any element f ∈M , we have that OM (D(f)) =Mf .
(2) In particular, we have that OM (MSpecM(A)) =M .
(3) For any point p ∈ MSpecM , the stalk OM,p of OM is isomorphic to the localization Mpc of M with

respect to pc :=M \ p.

A monoidal space is a pair (X,M ) of a topological space X and a sheaf M of monoids on X. A
morphism (f, f ♭) : (X,M ) → (Y,N ) of monoidal spaces is a pair of continuous map f : X → Y and a
morphism f b : f−1N →M of sheaves of monoids such that the map on the stalks Nf(x) →Mx are local
monoid homomorphism for all x ∈ X. Here a monoid morphism φ : M → N is local if φ−1(N×) =M×.
A morphism (f, f ♭) : (X,M )→ (Y,N ) is an isomorphism if and only if f is a homeomorphism and f ♭ is
an isomorphism of sheaves. An affine monoid scheme is a monoidal space isomorphic to (MSpecM,OM )
for some monoid M .

Remark 6.1.10. An affine monoid scheme (MSpecM,OM ) was first introduced by Kato [Kat94] to
study toric singularities. Deitmar [Dei05] used it to construct a theory of “schemes over the field F1 with
one element”. See [LP11] for more information.

6.2 The spectrum of the Grothendieck monoid

In this section, we first introduce a topology on the set Serre(C) of Serre subcategories and study the
relationship between the topologies on Serre(C) and MSpecM(C). Next, we classify finitely generated
Serre subcategories by using this topology. Finally, we introduce a sheaf M of monoids on Serre(A) for
an abelian category A, which is related to the quotient abelian category A/S, and compare it with the
structure sheaf OM(A) of MSpecM(A).

Let us begin with the bijections which follow from Proposition 3.3.3 and Fact 6.1.3.

Proposition 6.2.1. There are bijections between the following sets:
(1) The set Serre(C) of Serre subcategories of C.
(2) The set FaceM(C) of faces of M(C).
(3) The set MSpecM(C) of prime ideals of M(C).

Moreover, the bijection between (1) and (2) is inclusion-preserving while the one between (2) and (3) is
inclusion-reversing.

The bijection between (1) and (3) induces a topology on Serre(C) from MSpecM(C). In the following,
we describe this topology explicitly. For a subcategory X of C, we set

V (X ) := {S ∈ Serre(C) | S ∩ X = ∅}.

We can easily check that the following equalities hold:
• V (C) = ∅ and V (∅) = Serre(C).
•
⋂
α∈A V (Xα) = V (

⋃
α∈A Xα) for a family {Xα}α∈A of subcategories of C.

• V (X )∪ V (Y) = V (X ⊕Y) for subcategories X , Y of C, where X ⊕Y := {X ⊕ Y | X ∈ X , Y ∈ Y}.
Thus, we can define a topology on Serre(C), which is called the Zariski topology, by taking the subsets
of the form V (X ) to be the closed subsets.
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For an object X ∈ C, we put

UX := {S ∈ Serre(C) | X ∈ S}.

We can easily check that UX ∩ UY = UX⊕Y for any X,Y ∈ C.
We now compare the Zariski topology on MSpecM(C) with the one on Serre(C).

Proposition 6.2.2. The following hold.

(1) The bijection Φ: Serre(C)
∼=−→ MSpecM(C) in Proposition 6.2.1 is a homeomorphism.

(2) The set of subsets of the form UX forms an open basis of Serre(C).
(3) Serre(C)spcl ∼= (Serre(C),⊆) as posets (see Definition 6.1.4).

Proof. We first note that Φ(S) = Mc
S := M(C) \MS for any S ∈ Serre(C).

(1) Let X be a subcategory of C, and let S be a Serre subcategory of C. Then S ∩ X = ∅ if and only
if MS ∩MX = ∅ since S is c-closed by Proposition 3.3.2. It is equivalent to Φ(S) = Mc

S ⊇ MX . Thus, we
obtain Φ(V (X )) = V (MX ), which implies Φ is a homeomorphism since MX runs through all subsets of
M(C) by Proposition 3.1.3.

(2) It is clear since Φ(UX) = D([X]) for any X ∈ C.
(3) It follows from Proposition 6.1.6 and the fact that Φ is inclusion-reversing.

Remark 6.2.3. The topology on Serre(C) is a natural analogue of the topology on the set of thick
subcategories of a triangulated category, which is introduced by Balmer [Bal05] (see also [MT20, Mat21]).

Next, we will classify finitely generated Serre subcategories of C by using the Zariski topology on
Serre(C). Recall that a Serre subcategory S of C is finitely generated if S = 〈X〉Serre for some object
X ∈ C. We need two lemmas for the open subsets UX of Serre(C).

Lemma 6.2.4. Let U be a nonempty open subset of Serre(C). Then U is strongly quasi-compact if and
only if U = UX for some X ∈ C.

Proof. Let Φ: Serre(C)
∼=−→ MSpecM(C) be the homeomorphism in Proposition 6.2.2. This lemma

immediately follows from Lemma 6.1.8 and Φ(UX) = D([X]).

Lemma 6.2.5. Let X and Y be objects of C. Then UX ⊆ UY if and only if 〈X〉Serre ⊇ 〈Y 〉Serre. In
particular, UX = UY if and only if 〈X〉Serre = 〈Y 〉Serre.

Proof. Suppose that UX ⊆ UY . Then 〈X〉Serre ∈ UX ⊆ UY , which implies Y ∈ 〈X〉Serre. Thus, we have
that 〈Y 〉Serre ⊆ 〈X〉Serre. Conversely, suppose that 〈X〉Serre ⊇ 〈Y 〉Serre. Take S ∈ UX . Then X ∈ S,
which implies Y ∈ 〈Y 〉Serre ⊆ 〈X〉Serre ⊆ S, and hence S ∈ UY . Thus, we have that UX ⊆ UY .

Proposition 6.2.6. There are bijections between the following sets:
(1) The set of finitely generated Serre subcategories of C.
(2) The set of nonempty strongly quasi-compact open subsets of Serre(C).
(3) The set of nonempty strongly quasi-compact open subsets of MSpecM(C).

The bijection from (1) to (2) is given by X = 〈X〉Serre 7→ UX .

Proof. Let Φ: Serre(C)
∼=−→ MSpecM(C) be the homeomorphism in Proposition 6.2.2. It is clear that

there is a bijection between (2) and (3) induced by Φ. Let us construct a bijection between (1) and (2).
For any X,Y ∈ C, UX = UY if and only if 〈X〉Serre = 〈Y 〉Serre by Lemma 6.2.5. Thus, the assignment
X = 〈X〉Serre 7→ UX is well-defined and injective. On the other hand, it is surjective by Lemma 6.2.4.
Therefore, the assignment X = 〈X〉Serre 7→ UX gives a bijection from (1) to (2).

Finally, we construct a sheaf of monoids on Serre(A) for a skeletally small abelian category A, which
is related to the quotient abelian category A/S. There is no application of this sheaf at this moment.
However, it may be interesting from the viewpoints of geometry over the field F1 with one element and
noncommutative algebraic geometry. Even if the reader skips the rest of this section, there is no harm
to read the other sections.

We begin with a review of the notion of abelian quotient categories. See [Pop73, Section 4.3] for
details. For a Serre subcategory S of A, there are an abelian category A/S and an exact functor
Q : A → A/S which satisfy the following universal property:
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• For any exact functor F : A → C of abelian categories such that F (S) = 0, there exists a unique
exact functor F : A/S → C satisfying F = FQ.

We call A/S the abelian quotient category of A with respect to S, and Q : A → A/S the quotient functor.
The following facts are useful to study the abelian quotient category A/S.

Fact 6.2.7 ([Pop73, Lemma 4.3.4, 4.3.7, 4.3.9]). Let S be a Serre subcategory of an abelian category A,
and let Q : A → A/S be the quotient functor.
(1) S = {X ∈ A | Q(X) = 0} holds.
(2) Let f : X → Y be a morphism in A.

• Q(f) is a monomorphism in A/S if and only if Ker(f) ∈ S.
• Q(f) is an epimorphism in A/S if and only if Cok(f) ∈ S.
• Q(f) is an isomorphism in A/S if and only if Ker(f),Cok(f) ∈ S.

(3) Any morphism of A/S can be written by Q(s)−1Q(f)Q(t)−1 for some morphisms s, t, f in A.

LetA be a skeletally small abelian category. Let us construct a sheaf of monoids on Serre(A). Let B be
the set of strongly quasi-compact open subsets of Serre(A). Explicitly, we have that B = {UX | X ∈ A}
by Lemma 6.2.4. Then B is an open basis of Serre(A) by Proposition 6.2.2. Note that UX ⊇ UY if and
only if 〈X〉Serre ⊆ 〈Y 〉Serre for any X,Y ∈ A by Lemma 6.2.5. In this case, there is an exact functor
FX,Y : A/ 〈X〉Serre → A/ 〈Y 〉Serre induced by the universal property of the abelian quotient category
A/ 〈X〉Serre. In particular, we obtain a monoid homomorphism rX,Y := M(FX,Y ) : M(A/ 〈X〉Serre) →
M(A/ 〈Y 〉Serre). Thus, the assignment

UX 7→MA(UX) := M(A/ 〈X〉Serre)

defines a presheaf of monoids on B. Define a presheaf MA on Serre(A) by

V 7→MA(V ) := lim
←−−
U

MA(U),

where U runs through the set of U ∈ B with U ⊆ V . Then it satisfies the condition of [GW20, Proposition
2.20] since U ∈ B is strongly quasi-compact. Thus MA is a sheaf on Serre(A). We need the following
lemma to study this sheaf MA.

Lemma 6.2.8. Let S be a Serre subcategory of a skeletally small abelian category A, and let X,Y ∈ A.
(1) If X is a subobject of Y in A/S, then there is M ∈ S such that X remains a subobject of Y in
A/ 〈M〉Serre.

(2) If Y is a quotient of X in A/S, then there is M ∈ S such that Y remains a quotient of X in
A/ 〈M〉Serre.

(3) If X ∼= Y in A/S, then there is M ∈ S such that X ∼= Y in A/ 〈M〉Serre.

Proof. The proof of (2) is similar to that of (1), and (3) is a consequence of (1) and (2). Thus we
only prove (1). Any monomorphism X ↪→ Y in A/S can be written as Q(s)−1Q(f)Q(t)−1 for some
morphisms s, t, f in A by Fact 6.2.7 (3). We set

M := Ker(s)⊕Ker(t)⊕ Cok(s)⊕ Cok(t)⊕Ker(f).

Then M ∈ S by Fact 6.2.7 (2). Since Ker(s), Ker(t), Cok(s), Cok(t) and Ker(f) belong to 〈M〉Serre,
the morphisms s and t are isomorphisms in A/ 〈M〉Serre, and f is a monomorphism in A/ 〈M〉Serre.
Thus, there is a monomorphism X ↪→ Y in A/ 〈M〉Serre, and hence X remains a subobject of Y in
A/ 〈M〉Serre.

The following fact is useful to study the Grothendieck monoid of an abelian category.

Fact 6.2.9 ([Bro98, Proposition 3.3]). Let A be a skeletally small abelian category. For any two objects
X,Y ∈ A, the equality [X] = [Y ] holds in M(A) if and only if X and Y have isomorphic subobject series
(see §3.4 for the terminologies).

Proposition 6.2.10. Let A be a skeletally small abelian category and MA a sheaf on Serre(A) con-
structed as above.
(1) For any X ∈ A, we have MA(UX) = M(A/ 〈X〉Serre).
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(2) In particular, we have MA(Serre(A)) = M(A).
(3) For any point S ∈ Serre(A), the stalk MA,S of MA is isomorphic to M(A/S).

Proof. We only prove (3) because (1) and (2) are obvious by the definition of MA. Let S be a Serre
subcategory of A. For any X ∈ A with S ∈ UX , we have the natural exact functor A/ 〈X〉Serre → A/S.
They induce a monoid homomorphism

φ : MA,S = colim
−−−−−→
UX∋S

MA(UX) = colim
−−−−−→
UX∋S

M(A/ 〈X〉Serre)→ M(A/S).

It is clear that φ is surjective. We now prove φ is injective. We first note that the natural map M(A)→
MA,S is surjective since the natural map M(A)→ M(A/ 〈M〉Serre) is surjective. We denote by [X]S the
element of MA,S represented by X ∈ A. Suppose that φ ([X]S) = φ ([Y ]S) for some X,Y ∈ A. Then
there are admissible subobject series 0 = X0 ≤ X1 ≤ · · · ≤ Xn = X and 0 = Y0 ≤ Y1 ≤ · · · ≤ Yn = Y
such that Xi/Xi−1

∼= Yσ(i)/Yσ(i)−1 in A/S for some permutation σ ∈ Sn by Fact 6.2.9. Applying
Lemma 6.2.8 to Xi−1 ≤ Xi, Yi−1 ≤ Yi and Xi/Xi−1

∼= Yσ(i)/Yσ(i)−1, and taking their direct sum, we get
M ∈ S such that X and Y remain having isomorphic subobject series in A/ 〈M〉Serre. Thus [X] = [Y ]
in M (A/ 〈M〉Serre) and S ∈ UM . This proves [X]S = [Y ]S in MA,S .

Finally, we compare (Serre(A),MA) with (MSpecM(A),OM(A)) as monoidal spaces. Define a sheaf

OM(A) on MSpecM(A) by the sheafification of presheaf

U 7→ OM(A)(U)/OM(A)(U)×.

For any object X ∈ A, we have an isomorphism

OM(A)(D([X]))/OM(A)(D([X]))× = M(A)[X]/M(A)×[X]

∼=−→ M(A)/ 〈[X]〉face
∼=−→ M(A/ 〈X〉Serre).

by Theorem 4.3.1, Lemmas 5.1.2 and 5.1.3. Thus, we have a natural isomorphism

OM(A)(D([X]))
∼=−→MA(UX). (6.2.1)

Let Φ: Serre(C)
∼=−→ MSpecM(A) be the homeomorphism in Proposition 6.2.2. Then (6.2.1) gives rise

to an isomorphism Φ−1OM(A) →MA of sheaves of monoids. Thus we have the following proposition.

Proposition 6.2.11. Let A be a skeletally small abelian category. The bijection in Proposition 6.2.1
induces an isomorphism of monoidal spaces

(Serre(A),MA) ∼= (MSpecM(A),OM(A)).
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Part II

Applications
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Chapter 7

The Grothendieck monoids of
smooth projective curves

Throughout this chapter, we fix Grothendieck universes U and V such that U ∈ V and use Convention
1.1.12 and 2.2.5. Moreover, we assume that every category, functor, and subcategory is additive. In
particular, every subcategory is strictly full and nonempty. Hereafter C is a smooth projective curve
over an algebraically closed field k.

There are three exact categories related to C:
• The category coh(C) of coherent sheaves on C.
• The category vect(C) of vector bundles on C.
• The category tor(C) of coherent torsion sheaves on C.

We determine the Grothendieck monoids of them and classify Serre subcategories of them. For the basics
of algebraic geometry, we refer to [Har77, GW20]. We will review the categorical properties of cohC in
each of the following sections. Note that coh(C) is skeletally small, and hence so are vect(C) and tor(C).

7.1 The case of coherent torsion sheaves

We first review a categorical characterization of coherent torsion sheaves on a curve. Let i : Z ↪→ X be a
closed immersion into a noetherian scheme X and let I be the quasi-coherent ideal sheaf corresponding
to Z. Then the functor i∗ : cohZ → cohX is a fully faithful exact functor whose essential image Im i∗
is the subcategory consisting of coherent sheaves F such that I F = 0 (cf. [SP, Tag 01QX]). It follows
immediately that Im i∗ is closed under subobjects in cohX. This means that there is no difference
between subobjects of F ∈ cohZ and subobjects of i∗F ∈ cohX. For a closed point x ∈ X, consider
the natural closed immersion i : Specκ(x) ↪→ X. Then Ox := i∗OSpecκ(x) is a simple object of cohX by
the above discussion.

Lemma 7.1.1. The following are equivalent for a coherent sheaf F on a noetherian scheme X:
(1) F is a simple object in cohX.
(2) F ∼= Ox for some closed point x ∈ X.

Proof. We have already proved that (2) implies (1). Hence, we only prove that (1) implies (2). Suppose
that F is a simple object in cohX. Recall that a simple object is nonzero, so we have SuppF 6= ∅.
There is a closed point x of SuppF because X is noetherian (cf. [GW20, Lemma1.25, Exercise 3.13]).
Let i : Specκ(x) ↪→ X be the natural closed immersion. Then F (x) := i∗F = Fx/Fxmx ∈ modκ(x)
is nonzero by Nakayama’s lemma. Because the unit morphism F → i∗i

∗F = i∗F (x) is surjective and

F is simple, we have that F
∼=−→ i∗F (x). Then F (x) is also a simple object in modκ(x). This means

F (x) ∼= κ(x), and we obtain the desired result.

Lemma 7.1.2. The following are equivalent for a coherent sheaf F on a noetherian scheme X:
(1) F is of finite length in cohX (see Definition 3.4.1).
(2) Supp(F ) consists of only finitely many closed points.

In this case, the following hold:
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(i) Fx is an OX,x-module of finite length for any x ∈ X.
(ii) The natural morphism F →

⊕
x∈SuppF ix∗Fx is an isomorphism, where ix is the natural mor-

phism SpecOX,x → X.

Proof. It is clear when F = 0. We assume that F 6= 0, and hence SuppF 6= ∅.
(1) ⇒ (2): There is a composition series 0 = F0 ⊆ F1 ⊆ · · · ⊆ Fn = F in cohX since F is of

finite length. Then Fi/Fi−1
∼= Oxi

for some closed point xi ∈ X by Lemma 7.1.1. Thus, we have
SuppF =

⋃n
i=1 SuppOxi

= {xi | 1 ≤ i ≤ n}.
(2)⇒ (1): We regard Z := SuppF as a closed subscheme of X which corresponds to the annihilator

Ann(F ) of F (cf. [GW20, Subsection 7.17]). Note that OZ,x ∼= OX,x/AnnOX,x
(Fx) as rings. Then the

natural morphism
∐
x∈SuppF SpecOZ,x → Z is an isomorphism and OZ,x is an artinian local ring by

(2) and [GW20, Proposition 5.11]. Since Fx is finitely generated over the artinian ring OZ,x, it is of
finite length as an OZ,x-module, and hence (i) also holds. Let j : Z ↪→ X and jx : SpecOZ,x → Z be the
natural closed immersions. Then we have

j∗F ∼=
⊕

x∈SuppF

jx∗ (j
∗F )x

∼=
⊕

x∈SuppF

jx∗
(
Fx/Fx ·AnnOX,x

(Fx)
)
=

⊕
x∈SuppF

jx∗Fx.

Thus, we obtain isomorphisms

F
∼=−→ j∗j

∗F ∼= j∗

 ⊕
x∈SuppF

jx∗Fx

 ∼= ⊕
x∈SuppF

(jjx)∗Fx. (7.1.1)

See [GW20, Remark 7.36] for the first isomorphism. Since jjx is a closed immersion and Fx is of finite
length, we conclude that F is also of finite length in cohX. Then (ii) holds by (7.1.1) and the following
commutative diagram:

Z X

SpecOZ,x SpecOX,x.

j

jx ix

Let us characterize coherent sheaves of finite length on a smooth projective curve C. For any closed
point x ∈ C, we set Onx := i∗ (OC,x/mnx), where i is the natural morphism SpecOC,x → C.

Lemma 7.1.3. The following are equivalent for a coherent sheaf F on C:
(1) F is of finite length in cohC.
(2) Supp(F ) has only finitely many points.
(3) Fη = 0 holds, where η is the generic point of C.

In this case, the following hold:
(i) Fx is a torsion OC,x-module for any x ∈ C.
(ii) F ∼=

⊕
x∈SuppF Onxx for some positive integers nx > 0.

Proof. It is clear when F = 0. We assume that F 6= 0, and hence SuppF 6= ∅. Since C is a 1-
dimensional integral scheme of finite type over k, the following are equivalent for a non-empty closed
subset Z of C (cf. [GW20, Proposition 5.20]):

• dimZ = 0.
• Z has only finitely many points.
• Z consists of finitely many closed points.
• η 6∈ Z.

The equivalence of (1), (2) and (3) follows from Lemma 7.1.2 and the above. For a finitely generated
module over the discrete valuation ring OC,x, it is of finite length if and only if it is torsion. Moreover,
it is of the form OC,x/mnx

x for some integer nx ≥ 0. Thus (i) and (ii) follow from Lemma 7.1.2.

A coherent sheaf F on C is said to be torsion if it satisfies the equivalent conditions of Lemma
7.1.3. We denote by torC the category of coherent torsion sheaves. It is immediate that torC is a Serre
subcategory of the abelian category cohC. It is also clear that torC is a length abelian category.
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We will calculate the Grothendieck monoid M(torC) and classify Serre subcategories of torC. For
this, we recall divisors on C. Let C(k) be the set of closed points of C. We denote by Div(C) the free
abelian group generated by C(k). An element D =

∑n
i=1mixi of Div(C) is called a divisor on C. The

integer degD :=
∑n
i=1mi is called the degree of D. A divisor D =

∑n
i=1mixi is said to be effective if

mi ≥ 0 for all i. Div+(C) denotes the set of effective divisors on C, which is a submonoid of Div(C).

Proposition 7.1.4. The following hold.
(1) sim(torC) = {Ox | x ∈ C(k)} holds (see §3.4 for the notation).
(2) There is a monoid isomorphism

Div+(C)
∼=−→ M(torC),

n∑
i=1

mixi 7→
n∑
i=1

mi[Oxi
].

Proof. It follows from Lemma 7.1.1 and Fact 3.4.4.

Corollary 7.1.5. There is an inclusion-preserving bijection

P(C(k))
∼=−→ Serre(torC), A 7→ 〈Ox | x ∈ A〉Serre .

Proof. It follows from Example 3.4.2 (3), Corollary 3.4.7 and Proposition 7.1.4.

Note that P(C(k)) is exactly the set of specialization-closed subsets except C itself (see Definition
6.1.4).

7.2 The case of vector bundles

We begin with a review of vector bundles on a noetherian scheme X. A locally free sheaf of rank n on
X is a coherent sheaf F such that Fx

∼= O⊕n
X,x for all x ∈ X (cf. [GW20, Proposition 7.41]). We call

a locally free sheaf of finite rank on X a vector bundle over X. We denote by vectX the category of
vector bundled over X. Then vectX is an extension-closed subcategory of cohX. Indeed, for any exact
sequence 0 → F → G → H → 0 in cohX with F ,H ∈ vectX and any x ∈ X, the exact sequence
0 → Fx → Gx → Hx → 0 splits since Hx is a free OX,x-module. Thus Gx ∼= Fx ⊕Hx is also a free
OX,x-module for any x ∈ X. This implies G ∈ vectX, and hence vectX is extension-closed. Then
vectX is a length exact category because the ranks of vector bundles give rise to a length-like function
rk: |vectX| → N. An admissible subobject in vectX is called a subbundle.

Before studying the Grothendieck monoid M(vectC), we recall the structure of the Grothendieck
group K0(vectC). For this, we will introduce the Picard group of a noetherian scheme X. A line bundle
L is a vector bundle of rank 1. It gives rise to an exact equivalence − ⊗L : cohX

∼−→ cohX, which
restricts to an exact equivalence vectX

∼−→ vectX. It is clear that rk(U ⊗ V ) = rk(U ) rk(V ) for any
vector bundles U and V . In particular, we have that rk(L ⊗ V ) = rk(V ) if L is a line bundle. The
set PicX of isomorphism classes of line bundles over X becomes a group whose operation is the tensor
product ⊗ and unit is OX . The inverse of L in Pic(X) is given by the dual L ∨ := HomOX

(L ,OX) of
L . The group PicX is called the Picard group of X. We can assign a vector bundle V of rank r ≥ 1 with
a line bundle detV :=

∧r V , which is called the determinant bundle of V . We define the determinant
bundle of the zero sheaf 0 by det(0) := OX . It gives rise to an additive function det : |vectX| → PicX.

Fact 7.2.1 ([LeP97, Section 2.6]). The following holds for a smooth projective curve C.

(1) The inclusion functor vectC ↪→ cohC induces a group isomorphism K0(vectC)
∼=−→ K0(cohC).

(2) There is a group isomorphism

K0(vectC)
∼=−→ Pic(C)× Z, [V ] 7→ (detV , rkV ).

We will determine the Grothendieck monoid M(vectC) in Proposition 7.2.4 below. Let us give a few
preliminaries for Proposition 7.2.4. A coherent sheaf F on a noetherian scheme X is globally generated if
there exists a surjective morphism O⊕n

X � F . We do not define very ample line bundles which appear in
the following fact. See [Har77, Section II.5, page 120] for the definition. We only note that any projective
variety has a very ample line bundle.
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Fact 7.2.2 (Serre [Ser55, Theorem 66.2], cf. [Har77, Theorem II.5.17]). Let X be a projective variety
over k, and let O(1) be a very ample line bundle on X. Then for any coherent sheaf F on X, there is
an integer n0 such that F ⊗ O(1)⊗n is globally generated for all n ≥ n0.

Fact 7.2.3 (Atiyah [Ati57, Theorem 2]). Let X be a smooth projective variety of dimension d over k,
and let V be a globally generated vector bundle of rank r over X. If r > d, then V contains a trivial

subbundle of rank r − d, that is, there is an inflation O
⊕(r−d)
X � V in vectX.

We prepare notations to use the following proof. Let O(1) be a very ample line bundle on a smooth

projective curve C. We set O(n) := O(1)⊗n when n ≥ 0 and O(n) := (O(1)∨)
⊗|n|

when n < 0. For a
coherent sheaf F on C, we set F (n) := F ⊗ O(n). Then F (n) ⊗ O(m) ∼= F (n + m) holds for any
integers n and m.

Proposition 7.2.4. The following hold.
(1) A vector bundle is simple in vectC if and only if it is a line bundle.
(2) M(vectC) is a cancellative monoid, that is, the natural monoid homomorphism M(vectC) →

K0(vectC) is injective (see Definition 2.1.3 and Remark 2.3.6).
(3) There is a monoid isomorphism

M(vectC)
∼=−→

(
PicC × N+

)
∪ {(OC , 0)} ⊆ PicC × Z, [V ] 7→ (detV , rkV ),

where N+ := N \ {0} is the semigroup of strictly positive integers.

Proof. (1) Let V be a vector bundle of rank r. Then there is some integer n such that V (n) is globally

generated by Fact 7.2.2. If r > 1, then there is an inflation O
⊕(r−1)
C � V (n) in vect(C) by Fact 7.2.3.

Since the functor −⊗O(−n) : vectC
∼−→ vectC is exact, we have an inflation O(−n)⊕(r−1) � V . Thus,

a simple object in vectC has to be a line bundle. Conversely, a line bundle is a simple object in vectC
because rk: |vectC| 7→ N is a length-like function.

(2) Define a monoid homomorphism by Φ := (det, rk) : M(vectC)→ PicC×N. Consider the following
commutative diagram:

M(vectC) K0(vectC)

PicC × N PicC × Z.

Φ

∼=

It is enough to show that Φ is injective. Take vector bundles U and V such that Φ(U ) = Φ(V ). That
is, they satisfy detU ∼= detV and r := rkU = rkV . It follows from Fact 7.2.2 that U (n) and V (n)
are globally generated for some same integer n. Then there are conflations

0→ O(−n)⊕(r−1) → U → L → 0 and 0→ O(−n)⊕(r−1) → V →M → 0

in vectC by Fact 7.2.3. Here L and M are line bundles. Then we have

L = detL ∼= detU ⊗ det
(
O(−n)⊕(r−1)

)∨ ∼= detV ⊗ det
(
O(−n)⊕(r−1)

)∨ ∼= detM = M .

Hence, we obtain [U ] = [L ] + (r − 1)[O(−n)] = [M ] + (r − 1)[O(−n)] = [V ] in M(vectC). This proves
Φ is injective.

(3) It follows from ImΦ = (PicC × N+) ∪ {(OC , 0)}.

Corollary 7.2.5. The exact category vectC has no nontrivial Serre subcategories.

Proof. It is enough to show that the monoidM := (PicC × N+)∪{(OC , 0)} ⊆ PicC×Z has no nontrivial
faces by Proposition 3.3.3 and Proposition 7.2.4 (3). Let F be a nonzero face of M . There is (L , r) ∈ F
such that (L , r) 6= (OC , 0). Then we have (OC , 1) ∈ F since 2(L , r) = (L ⊗2, 2r−1)+(OC , 1) inM and F
is a face. For any non-zero element (M , s) ∈M , we obtain (M , s)+(M∨, s) = (OC , 2s) = 2s(OC , 1) ∈ F ,
and thus (M , s) ∈ F . This means F =M , and hence M has no nontrivial faces.
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7.3 The case of coherent sheaves

We finally deal with the case of the category cohC of coherent sheaves. We begin with the relationship
between torC, vectC and cohC.

Lemma 7.3.1. The following hold.
(1) HomOC

(T ,V ) = 0 holds for all T ∈ torC and V ∈ vectC.
(2) For every coherent sheaf F on C, there exists an exact sequence

0→ Ftor → F → Fvect → 0

in cohC such that Ftor ∈ torC and Fvect ∈ vectC.
In particular, (torC, vectC) is a torsion pair in cohC (see [Ste75, Section VI.2] for the definition).

Proof. (1) Let f : T → V be a morphism from a coherent torsion sheaf to a vector bundle in cohC.
Then Tx is a torsion module and Vx is a free module for any x ∈ C by Lemma 7.1.3 and the definition
of vector bundles. Hence fx : Tx → Vx is equal to zero for all x ∈ C. This implies f = 0.

(2) Let η be the generic point of C and K(C) := OC,η the function field of C. Consider the natural
morphism j : SpecK(C) → C. Define a coherent sheaf Ftor by the kernel of the unit morphism F →
j∗j

∗F = j∗Fη. Note that j∗Fη is a constant sheaf on C with value Fη. Thus, we have Ftor(U) =
{s ∈ F (U) | sη = 0} for every open subset U of C. Then it is clear that Ftor,η = 0, and thus Ftor is
a coherent torsion sheaf. Set Fvect := F/Ftor ∈ cohC. Then Fvect is a subsheaf of the constant sheaf
j∗Fη. Hence (Fvect)x is an OC,x-submodule of Fη for every point x ∈ C. This implies (Fvect)x is a
torsionfree OC,x-module, and thus it is a free OC,x-module since OC,x is a discrete valuation ring. For
this reason, Fvect is a vector bundle.

We will determine the structure of the Grothendieck monoid M(cohC) in Proposition 7.3.2 below.
For this, we recall the relation between divisors and line bundles. We can attach to a divisor D a line
bundle OC(D). It gives rise to a group homomorphism

DivC → PicC, D 7→ OC(D).

For any effective divisor D =
∑n
i=1 nixi on C, we set OD :=

⊕n
i=1 Onixi

(see the sentence before Lemma
7.1.3 for the definition of Onx). Then there is the following exact sequence in cohC:

0→ OC(−D)→ OC → OD → 0. (7.3.1)

Note that the abelian category cohC is not length since there is an infinite subobject series of OC :

· · · ⊊ OC(−3x) ⊊ OC(−2x) ⊊ OC(−x) ⊊ OC ,

where x is a closed point of C. Thus we cannot use the results in §3.4.

Proposition 7.3.2. The following hold.
(1) The inclusion functors torC ↪→ cohC and vectC ↪→ cohC induce injective monoid homomorphisms

M(torC) ↪→ M(cohC) and M(vectC) ↪→ M(cohC), respectively.
(2) For any line bundle L and any effective divisor D, we have [L ] + [OD] = [L ⊗ OC(D)].
(3) M(cohC) is the disjoint union of MtorC and M+

vectC := MvectC \ {0} as a set.

Proof. (1) The natural monoid homomorphism M(torC)→ M(cohC) is injective by Proposition 3.3.5.
We prove that the natural monoid homomorphism ι : M(vectC) → M(cohC) is injective. Recall that
M(vectC) is cancellative and the natural homomorphism K0(vectC)→ K0(cohC) is an isomorphism by
Proposition 7.2.4 and Fact 7.2.1. It follows that ι is injective by the following commutative diagram:

M(vectC) M(cohC)

K0(vectC) K0(cohC).

ι

∼=
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(2) We first note that T ⊗L ∼= T for any coherent torsion sheaf T . Applying the exact functor
−⊗ (L ⊗ OC(D)) : cohC ∼= cohC to the exact sequence (7.3.1), we get an exact sequence

0→ L → L ⊗ OC(D)→ OD → 0.

Hence, we have the equality [L ] + [OD] = [L ⊗ OC(D)].
(3) For any coherent sheaf F , there exists a coherent torsion sheaf T and a vector bundle V such

that [F ] = [T ] + [V ] by Lemma 7.3.1. Then there is an effective divisor D such that T ∼= OD. We can
write [V ] =

∑r
i=1[Li] for some line bundles Li by Proposition 7.2.4. If V is a nonzero vector bundle,

we have

[F ] = [OD] +
r∑
i=1

[Li] = [L1 ⊗ OC(D)] +

r∑
i=2

[Li] =

[(
L1 ⊗ OC(D)

)
⊕

r⊕
i=2

Li

]
∈ MvectC .

This proves the desired conclusion.

As a corollary of Proposition 7.3.2, we recover Fact 0.2.1 for smooth projective curves. See Definition
6.1.4 for the definition of specialization-closed subsets.

Corollary 7.3.3 (cf. [Gab62, Proposition VI.2.4]). There is an inclusion-preserving bijection between
the following sets:

• The set of Serre subcategories of cohC.
• The set of specialization-closed subsets of C.

Proof. It is enough to classify faces of M(cohC) by Proposition 3.3.3. Let F be a face of M(cohC). If
[V ] ∈ F for some nonzero vector bundle V , it contains MvectC by Corollary 7.2.5. Then F must coincide
with M(cohC) by the exact sequence (7.3.1). Thus, if F 6= M(cohC), it is contained in MtorC . The
faces of M(torC) bijectively correspond to the subsets of the set C(k) of closed points by Corollary 7.1.5.
Extending this bijection by assigning M(cohC) with C, we obtain the desired bijection.

We also have the following corollary of Proposition 7.3.2. This corollary is used in Example 8.0.5
later.

Corollary 7.3.4. Let C1 and C2 be smooth projective curves over an algebraically closed field k. If
M(cohC1) ∼= M(cohC2) as monoids, then PicC1

∼= PicC2 as groups.

Proof. We first recall some terminologies and a result. A nonzero element x of a monoid M is called an
atom if x = y + z for y, z ∈M implies either y = 0 or z = 0. We denote by AtomM the set of atoms in
M . For a skeletally small exact category E , we have the following bijection by [Eno22, Proposition 3.6]
(see §3.4 for the notation):

sim E
∼=−→ Atom(M(E)), S 7→ [S].

Thus Atom(M(cohCi)) = {[Ox] | x is a closed point of Ci} by Lemma 7.1.1.

Let φ : M(cohC1)
∼=−→ M(cohC2) be a monoid isomorphism. Then φ preserves atoms, and hence it

restricts to a monoid isomorphism MtorC1

∼=−→ MtorC2
. Since M(cohC) = MtorC t M+

vectC by Proposi-

tion 7.3.2, the monoid isomorphism φ also restricts to MvectC1

∼=−→ MvectC2
. By Proposition 7.2.4, we

have Atom(M(vectCi)) = {[L ] | L is a line bundle on Ci}. Thus, there is a some line bundle L on C2

such that φ([OC1 ]) = [L ]. Twisting this isomorphism by M (−⊗L ∨) : M(vectC2)
∼=−→ M(vectC2), we

have a monoid isomorphism ψ : M(vectC1)
∼=−→ M(vectC2) such that ψ([OC1

]) = [OC2
].

It is enough to show that M(vectCi)/ 〈[OCi
]〉N ∼= PicCi as monoids. Consider the monoid homomor-

phism det : M(vectCi) → PicCi. It induces a monoid homomorphism M(vectCi)/ 〈[OCi ]〉N → PicC. It
is clear that this homomorphism is surjective. We now prove that it is injective. Suppose that det U ∼=
detV for some vector bundles U and V . We may assume that rkU ≥ rkV . Set d := rkU −rkV . Then
we have det(U ) ∼= det

(
V ⊕ O⊕d

Ci

)
and rk(U ) = rk

(
V ⊕ O⊕d

Ci

)
. Since (det, rk) : M(vectCi)→ PicCi×N

is injective as proved in Proposition 7.2.4 (2), we have the following equality in M(vectCi):

[U ] =
[
V ⊕ O⊕d

Ci

]
= [V ] + d[OCi

].

This means that [U ] ≡ [V ] mod 〈[OCi ]〉N, and hence the monoid homomorphism M(vectCi)/ 〈[OCi ]〉N →
PicC is injective.
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Now we compare the Grothendieck monoid M(cohC) with the Grothendieck group K0(cohC). There
are unique group homomorphisms deg, rk : K0(cohC)→ Z satisfying the following conditions (see [LeP97,
Section 2.6]):

• rk(F ) = rk(Fvect) for any coherent sheaf F on C.
• deg(OC(D)) = degD for any divisor D on C.
• deg(OD) = degD for any effective divisor D on C.

The image of the map (rk, deg) : K0(cohC)→ Z⊕2 is illustrated as follows:

O
rk

deg

MtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorCMtorC 

Here the gray region corresponds to the Grothendieck monoid M(cohC). Let ρ : M(cohC)→ K0(cohC)
be the natural map. The map ρ is injective on MvectC by Proposition 7.2.4 and 7.3.2. Whereas, the
map ρ loses a lot of information on MtorC . Indeed, for two effective divisors D and E, the equality
[OD] = [OE ] holds in K0(cohC) if and only if OC(D) = OC(E) in PicC.

Example 7.3.5. Let P1 be the projective line. Then deg : PicC → Z is a group isomorphism (cf. [GW20,
Example 11.45]). In particular, the map (rk, deg) : K0(cohP1) → Z⊕2 is a group isomorphism. For two
effective divisorsD and E on P1, the equality [OD] = [OE ] holds in K0(cohC) if and only if degD = degE.
Thus, the map ρ loses all information except the degrees for torsion sheaves. In particular, the equality
[Ox] = [Oy] holds in K0(cohC) for any closed points x, y ∈ P1(k). Thus, the Grothendieck group
K0(cohP1) has no information about closed points of P1. In contrast, the Grothendieck monoid M(cohP1)
remembers all closed points of P1 because M(cohC) ⊇ MtorC =

⊕
x∈P1(k) N[Ox].

This example has another consequence. Let kQ be the path algebra of Kronecker quiver. It is
well-known that the bounded derived categories Db(cohP1) and Db(mod kQ) are triangulated equiva-
lent. However, we have a monoid isomorphism M(mod kQ) ∼= N⊕2 by Fact 3.4.4. Thus M(cohP1) and
M(mod kQ) are not isomorphic as monoids. This implies the Grothendieck monoids are not derived
invariants.

Finally, we will introduce the notion of the twisted disjoint union to describe the structure of M(cohC)
in terms of purely monoid-theoretic language. The rest of this section does not affect the other sections
and can be skipped. We first recall the notion of a monoid action. Let M be a monoid. An M -action
on a set X is a monoid homomorphism σ : M → EndSet(X) := HomSet(X,X). The pair X = (X,σ) is
called an M -set. Set σm := σ(m) and m · x := σm(x) for all m ∈ M and x ∈ X. A map f : X → Y
between M -sets is M -equivariant if f(m · x) = m · f(x) holds for all m ∈M and x ∈ X.

Let X, Y and Z be M -sets. A map α : X × Y → Z is an M -bimorphism if it satisfies m · α(x, y) =
α(m · x, y) = α(x,m · y) for all m ∈ M , x ∈ X and y ∈ Y . An M -semigroup is an M -set S with
an M -bimorphism α : S × S → S satisfying associativity and commutativity. In other words, it is a
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(commutative) semigroup S with an M -action satisfying m · (x + y) = m · x + y = x + m · y for all
m ∈ M and x, y ∈ S. An M -semigroup homomorphism is an M -equivariant map f : S → T satisfying
f(x + y) = f(x) + f(y) for all x, y ∈ S. We denote by SemiGrpM the category of M -semigroups and
M -semigroups homomorphisms.

Example 7.3.6. Let φ : M → X be a monoid homomorphism. Then φ defines an action of M on X by
m · x := φ(m)+ x for m ∈M and x ∈ X. We can easily check that X is an M -semigroup by this action.

Let M be a monoid, and let S be an M -semigroup whose action is given by σ : M → EndSet(S).
The twisted disjoint union M tσ S of M and S is the set-theoretic disjoint union M t S with a binary
operation given by

x+ y :=


x+M y if both x ∈M and y ∈M ,

x+S y if both x ∈ S and y ∈ S,
σx(y) if x ∈M and y ∈ S,
σy(x) if x ∈ S and y ∈M ,

where +M (resp. +S) denotes the binary operation on M (resp. S). We can check easily that M tσ S is
a (commutative) monoid. The natural inclusion i : M ↪→M tσ S is a monoid homomorphism. Hence, we
can think of M tσ S as an M -semigroup by Example 7.3.6. Then the natural inclusion j : S ↪→M tσ S
is an M -semigroup homomorphism.

We describe a universal property of the twisted disjoint union. We denote by MonM/ the slice category
of Mon under a monoid M . That is, its objects are monoid homomorphisms M → X, and morphisms
between φ : M → X and ψ : M → Y are monoid homomorphisms f : X → Y satisfying fφ = ψ.

Proposition 7.3.7. Let φ : M → X be a monoid homomorphism. We regard X as an M -semigroup.
Let S be an M -semigroup, and let i : M →M tσ S and j : S →M tσ S be the natural inclusions. Then
there is a natural isomorphism

HomMonM/
(M tσ S,X)

∼=−→ HomSemiGrpM (S,X), h 7→ hj.

Proof. We omit the proof since it is straightforward.

Consider the Grothendieck monoid M(cohC). Then M(cohC) is an MtorC-semigroup by the inclusion
homomorphismMtorC ↪→ M(cohC). The subsemigroupM+

vectC := MvectC\{0} is also anMtorC-semigroup
whose MtorC-action is given by σ[OD]([V ]) := [OD] + [V ]. Then the natural inclusion map M+

vectC ↪→
M(cohC) is an MtorC-semigroup homomorphism. It induces a monoid homomorphism h : MtorC tσ
M+

vectC → M(cohC) by Proposition 7.3.7. It is clear that h is an isomorphism. Thus the following
statement follows.

Corollary 7.3.8. There is a monoid isomorphism

Div+(C) tσ (PicC × N+)
∼=−→ M(cohC),

where the Div+(C)-action on PicC × N+ is defined by σD(L , r) := (L ⊗ OC(D), r).
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Chapter 8

Reconstruction of the topology of a
noetherian scheme

Throughout this chapter, we fix Grothendieck universes U and V such that U ∈ V and use Convention
1.1.12 and 2.2.5. We assume that all subcategories are strictly full subcategories. Hereafter X is a
noetherian scheme.

In this chapter, we recover the topology of X from the Grothendieck monoid M(cohX). We first
construct an immersion from X to Serre(cohX) as topological spaces. For any point x ∈ X, define a
subcategory of cohX by

cohxX := {F ∈ cohX | Fx = 0}.

It is clear that cohxX is a Serre subcategory of cohX. Let j : X → Serre(cohX) be a map defined by
j(x) := cohxX.

Lemma 8.0.1. The map j : X → Serre(cohX) is an immersion of topological spaces. That is, it is a
homeomorphism onto a subspace of Serre(cohX).

Proof. We first prove that j is injective. Let x, y ∈ X be distinct points. Since any scheme is T0-space
(cf. [GW20, Proposition 3.25]), the specialization order on X is a partial order by Remark 6.1.5 (2).
Thus x 6∈ {y} or y 6∈ {x} hold. We may assume that x 6∈ {y}. Then O{x} 6∈ cohxX but O{y} ∈ cohxX,

where we consider {x} and {y} as reduced subschemes of X. Hence cohxX 6= cohyX, which proves j is
injective. For a coherent sheaf F on X, we have

j−1(UF ) = {x ∈ X | F ∈ cohxX} = {x ∈ X | Fx = 0} = X \ SuppF .

Thus j is continuous. Let Z be a closed subset of X. We consider Z as a reduced subscheme of X.
Then it is straightforward that cohxX ∈ V ({OZ}) if and only if x ∈ Supp(OZ) = Z for any x ∈ X.
Thus, we have j(Z) = j(X) ∩ V ({OZ}), and hence j(Z) is a closed subset of j(X). Therefore j is a
homeomorphism onto the subspace j(X) of Serre(cohX).

Next, we determine the image of the immersion j : X ↪→ Serre(cohX). A Serre subcategory S of an
abelian category A is meet-irreducible if X ∩ Y ⊆ S implies X ⊆ S or Y ⊆ S for any X ,Y ∈ Serre(A).

Proposition 8.0.2. For a Serre subcategory S of cohX, it is meet-irreducible if and only if S = cohxX
for some point x ∈ X. In particular, we have

j(X) = {S ∈ Serre(cohX) | S is meet-irreducible}.

Proof. By Gabriel’s classification of Serre subcategories (Fact 0.2.1), there is a poset isomorphism

Spcl(X)
∼=−→ Serre(cohX), Z 7→ cohZ X := {F ∈ cohX | SuppF ⊆ Z},

where Spcl(X) is the set of specialization-closed subsets of X ordered by inclusion. Then for any Z ∈
Spcl(X), the Serre subcategory cohZ X is meet-irreducible if and only if so is Z in the following sense:
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• A specialization-closed subset Z is meet-irreducible if A ∩B ⊆ Z implies A ⊆ Z or B ⊆ Z for any
A,B ∈ Spcl(X).

We also introduce the dual notion for generalization-closed subsets. We denote by Genl(X) the set of
generalization-closed subsets of X.

• A generalization-closed subset U is join-irreducible if A ∪B ⊇ U implies A ⊇ U or B ⊇ U for any
A,B ∈ Genl(X).

Then Z ∈ Spcl(X) is meet-irreducible if and only Zc(:= X \Z) ∈ Genl(X) is join-irreducible. Therefore,
it is equivalent that determining meet-irreducible Serre subcategories of cohX and determining join-
irreducible generalization-closed subsets of X.

We now determine join-irreducible generalization-closed subsets of X. For any point x ∈ X, we denote
by 〈x〉genl the set of generalizations of x. It is clear that 〈x〉genl is a join-irreducible generalization-closed
subset for any x ∈ X. We prove that any join-irreducible generalization-closed subset is of the form
〈x〉genl for some x ∈ X. Let A ∈ Genl(X) be join-irreducible. For any x ∈ A, there is a minimal element

y ∈ A with respect to the specialization-order such that y � x. Indeed, if {x} ∩A has exactly one point
x, then x itself is a minimal element of A. If {x} ∩ A contains a point x1 such that x 6= x1, then we
have a sequence x � x1 of points of A. Repeating this operation, we have a sequence x � x1 � x2 � · · ·
of points of A. This sequence terminates since X is noetherian. Thus, we get a minimal element y ∈ A
such that y � x. Let I be the set of minimal elements of A. Then A =

⋃
a∈I 〈a〉genl by the discussion

above. Fix x ∈ I. Since
A = 〈x〉genl ∪

⋃
a∈I,a≠x

〈a〉genl

and A is join-irreducible, we have that A = 〈x〉genl or A =
⋃
a∈I,a ̸=x 〈a〉genl. If A =

⋃
a∈I,a ̸=x 〈a〉genl,

then x ∈ A =
⋃
a∈I,a ̸=x 〈a〉genl. Hence, there is a ∈ I such that a 6= x and x ∈ 〈a〉genl, which contradicts

the minimality of x. Thus we have A = 〈x〉genl.
We have proved that a subset A of X is join-irreducible generalization-closed subsets if and only

if A = 〈x〉genl for some x ∈ X. We can easily see that Fx = 0 if and only if SuppF ⊆ 〈x〉cgenl for
any F ∈ cohX because SuppF is specialization-closed. Thus coh⟨x⟩cgenl X = cohxX, which proves the
proposition.

Let X be a noetherian scheme. Define Serre(cohX)irred by the set of meet-irreducible Serre subcate-

gories of cohX. We consider it as a subspace of Serre(cohX). Then the immersion j : X
∼=−→ Serre(cohX)

induces a homeomorphism X
∼=−→ Serre(cohX)irred by Lemma 8.0.1. Thus, we can recover the topologi-

cal space X from the topological space Serre(cohX). In particular, the Grothendieck monoid M(cohX)
recovers the topology of X. Moreover, Serre(cohX)irred has the following property.

Lemma 8.0.3. Let X and Y be noetherian schemes. Any homeomorphism Serre(cohX)
∼=−→ Serre(cohY )

restricts to a homeomorphism Serre(cohX)irred
∼=−→ Serre(cohY )irred.

Proof. Let Ψ: Serre(cohX)
∼=−→ Serre(cohY ) be a homeomorphism. Then it is clear that Ψ is also

a poset isomorphism Serre(cohX)spcl
∼=−→ Serre(cohY )spcl. Thus Ψ is an isomorphism of the poset

Serre(cohX) and Serre(cohY ) ordered by inclusion by Proposition 6.2.2 (3). Therefore Ψ preserves
meet-irreducible Serre subcategories, and hence we have Ψ(Serre(cohX)irred) = Serre(cohY )irred.

Based on the above considerations, we obtain the following.

Theorem 8.0.4. Consider the following conditions for noetherian schemes X and Y .
(1) X ∼= Y as schemes.
(2) M(cohX) ∼= M(cohY ) as monoids.
(3) MSpecM(cohX) ∼= MSpecM(cohY ) as topological spaces.
(4) Serre(cohX) ∼= Serre(cohY ) as topological spaces.
(5) X ∼= Y as topological spaces.

Then “(1)⇒ (2)⇒ (3)⇔ (4)⇒ (5)” hold.

Proof. The implications “(1) ⇒ (2) ⇒ (3)” are obvious. The equivalence “(3) ⇔ (4)” follows from
Proposition 6.2.2. The implication “(4)⇒ (5)” follows from Lemma 8.0.1 and 8.0.3.

79



The implications “(2)⇒ (1)” and “(5)⇒ (2)” of Theorem 8.0.4 do not hold. Example 0.2.2 (1) is a
counter example of the former. We now give a counter example of the latter. The following example is
suggested by Professor Kazuhiro Fujiwara and Professor Sho Tanimoto.

Example 8.0.5. Let C be a smooth projective curve over a field k. Then C has 1 generic point and
max{|N| , |k|} closed points. Hence, the underlying topological space of C depends only on the cardinality
of k. Consider the projective line P1 and an elliptic curve E over the complex number field C. Then
P1 ∼= E as topological spaces by the discussion above. On the other hand, we can deduce Pic P1 6∼= PicE
since PicP1 ∼= Z is countable but PicE ∼= E(C)×Z is uncountable. Here E(C) is the group of C-rational
points of the elliptic curve E. Thus, we can conclude that M(cohP1) 6∼= M(cohE) by Corollary 7.3.4.

We finally comment on [BKS07] and our approach.

Remark 8.0.6. Let X be a noetherian scheme. Buan, Krause and Solberg reconstructed the topological
space X from the poset Serre(cohX) of Serre subcategories in [BKS07]. We review their approach and
compare it with ours.

We first recall the spectrum of a frame. See [BKS07] and [PP12] for detailed explanations. A frame
is a poset L = (L,≤) satisfying the following conditions:

• L is a complete lattice, that is, any subset A of L admits a supremum supA =
∨
a∈A a and an

infimum inf A =
∧
a∈A a. We denote by a ∨ b := sup{a, b} and a ∧ b := inf{a, b}.

• L satisfies the distributed law:
(
∨
a∈A

a) ∧ b =
∨
a∈A

(a ∧ b)

for any subset A ⊆ L and any element b ∈ L.
An element p of a frame L is meet-irreducible if x ∧ y ≤ p implies x ≤ p or y ≤ p for any x, y ∈ L. The
set LSpecL of meet-irreducible elements of L is called the lattice spectrum of L. The set LSpecL has a
topology whose closed subsets are of the form

V (a) := {p ∈ LSpecL | a ≤ p}, a ∈ L.

We can endow the underlying set LSpecL with a new topology by taking subsets of the following form
to be the open subsets:

Y =
⋃
i∈I

Yi such that X \ Yi is a quasi-compact open in LSpecL for all i ∈ I. (8.0.1)

We denote this new space by LSpec∗ L and call this topology the dual topology of LSpecL, which was
introduced by Hochster in [Hoc69].

We now come back to the case L = Serre(cohX). Buan, Krause and Solberg proved that X and
LSpec∗(Serre(cohX)) are homeomorphic for any noetherian scheme X in [BKS07, Section 9] by using
Hochster duality [Hoc69, Proposition 8]. This gives another proof of “(4) ⇒ (5)” in Theorem 8.0.4.
Indeed, consider the following condition:
(4.5) Serre(cohX) ∼= Serre(cohY ) as posets.
Then “(4) ⇒ (4.5)” holds by Proposition 6.2.2 (3). If Serre(cohX) ∼= Serre(cohY ) as posets, then we
have homeomorphisms

X ∼= LSpec∗(Serre(cohX)) ∼= LSpec∗(Serre(cohY )) ∼= Y.

Thus “(4.5)⇒ (5)” holds.
We now compare our approach with that of [BKS07]. An advantage of our approach is that we

can avoid the dual topology and Hochster duality. Although Serre(cohX)irred = LSpec(Serre(cohX))
as subsets of Serre(cohX), they have different topologies. Serre(cohX) has the correct topology in the
sense that X can be embedded in Serre(cohX) as a topological space.

On the other hand, an advantage of the approach of [BKS07] is that it is more general than ours.
Indeed, we can recover the poset structure of Serre(cohX) from the topology of Serre(cohX) by consid-
ering the specialization-order (Proposition 6.2.2 (3)). However, the author does not know whether the
topology on Serre(cohX) which we introduced in this paper can be recovered from the poset structure
of Serre(cohX). In particular, we cannot prove “(4.5)⇒ (5)” by our approach.

In summary, our approach is simpler than [BKS07] and avoids heavy facts such as Hochster duality,
but the approach of [BKS07] is more general than ours.
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Chapter 9

The Grothendieck groups of periodic
derived categories

The m-periodic derived category of an abelian category is a natural Z/mZ-periodic analogue of the usual
derived category. In this chapter, we determine the Grothendieck group (= Grothendieck monoid by
Proposition 2.4.3) of the periodic derived category of a skeletally small abelian category with enough
projectives. In particular, we prove that the Grothendieck group of the m-periodic derived category of
finitely generated modules over an Artin algebra is a free Z-module if m is even, and is an F2-vector
space if m is odd. Moreover, in both cases of parity of m, the rank of the Grothendieck group is equal
to the number of isomorphism classes of simple modules in both cases. As an application, we prove that
the number of non-isomorphic summands of a strict periodic tilting object T , which was introduced by
the author in [Sai1] as a periodic analogue of tilting objects, is independent of the choice of T .

Throughout this chapter, we fix Grothendieck universes U and V such that U ∈ V and use Convention
1.1.12 and 2.2.5. Moreover, we assume that every category, functor, and subcategory is additive. In
particular, every subcategory is strictly full and nonempty. We denote by Σ the suspension functor of a
triangulated category. For a positive integer m, we denote by Zm := Z/mZ the cyclic group of order m.

9.1 Grothendieck groups of periodic triangulated categories

In this section, we investigate properties of the Grothendieck group of a periodic triangulated category.

Definition 9.1.1. Let T be a triangulated category.
(1) For a positive integer m > 0, T is m-periodic if Σm ' IdT as additive functors.
(2) The period of T is the smallest positive integer m such that T is m-periodic.

9.1.1 Even periodic case

Let m be an even integer, and T be a skeletally small m-periodic triangulated category.

Lemma 9.1.2. A cohomological functor F : T → A induces a homomorphism

φ : K0(T ) −→ K0(A), [X] 7−→
m−1∑
i=0

(−1)i
[
F i(X)

]
.

Proof. We need to show that for any exact triangle X → Y → Z → ΣX in T , the equality φ(X) −
φ(Y ) + φ(Z) = 0 holds in K0(A). We have two exact sequences in A:

Fm−1(Z)
f−→ Fm(X) ' F 0(X)

g−→ F 0(Y ), (9.1.1)

0→ Ker g → F 0(X)
g−→ F 0(Y )→ · · · → Fm−1(Y )→ Fm−1(Z)

f−→ Im f → 0. (9.1.2)

By (9.1.2), we have [Ker g] = φ(X)−φ(Y )+φ(Z)+ (−1)m[Im f ]. Then (9.1.1) and the assumption that
m is even imply the equality φ(X)− φ(Y ) + φ(Z) = 0.
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9.1.2 Odd periodic case

Let m be an odd integer, and T be a skeletally small m-periodic triangulated category.

Lemma 9.1.3. K0(T ) is an F2-vector space. That is, for any element α ∈ K0(T ), we have 2α = 0.

Proof. By the axiom of triangulated categories, a triangle X → 0→ ΣX → ΣX is exact for any X ∈ T .
It implies [ΣX] = −[X] in K0(T ). Hence, we have [X] = [ΣmX] = (−1)m[X] = −[X], which yields
2[X] = 0 for any X ∈ T .

Lemma 9.1.4. A cohomological functor F : T → A induces a homomorphism

φF2
: K0(T ) −→ K0(A)F2

, [X] 7−→
m−1∑
i=0

(−1)i
[
F i(X)

]
mod 2K0(A),

where K0(A)F2
:= K0(A)⊗Z F2 ' K0(A)/2K0(A).

Proof. Let X → Y → Z → ΣX be an exact triangle in T . Then we have, for some object K ∈ A,

[K] = φF2
(X)− φF2

(Y ) + φF2
(Z) + (−1)m[K]

in K0(A) by the same calculation as in Lemma 9.1.2. Since m is odd, we get φF2
(X) − φF2

(Y ) +
φF2

(Z) = 2[K] ≡ 0 mod 2K0(A). Hence, the map [T ]→ K0(A)F2
, [X] 7→ φF2

(X) mod 2K0(A) induces a
homomorphism φF2

: K0(T )→ K0(A)F2
.

9.2 Preliminaries: periodic derived categories

In this section, we give a review of periodic derived categories. See [Sai1, §3] for a detailed account. Let
us fix a positive integer m.

Definition 9.2.1. Let C be an additive category.
(1) An m-periodic complex V is a family (V, dV ) = (V i, diV )i∈Zm of objects Vi ∈ C and morphisms

diV : V i → V i+1 in C satisfying di+1
V diV = 0 for all i ∈ Zm.

(2) A periodic chain map f : V → W between m-periodic complexes V and W is a family (fi)i∈Zm
of

morphisms in C satisfying f i+1diV = diW f
i for all i ∈ Zm.

(3) Cm(C) denotes the category of m-periodic complexes and periodic chain maps.

We can say roughly that an m-periodic complex is a Zm-graded complex. Replacing Zm by Z in the
above Definition 9.2.1, we recover the usual notion of complexes, chain maps and their category.

Example 9.2.2. Let C be an additive category.
(1) A 1-periodic complex is a morphism d : V → V in C with d2 = 0.

(2) A 2-periodic complex is a diagram V 0
d0

�
d1
V 1 in C with d1d0 = d0d1 = 0.

Two periodic chain maps f, g : V → W of m-periodic complexes are called homotopic if there exist
si : V i → W i−1 (i ∈ Zm) such that f i − gi = di−1

W si + si+1diV for all i ∈ Zm. This homotopy condition
defines an equivalence relation ∼h on the set HomCm(C)(V,W ). The homotopy category Hm(C) of m-
periodic complexes is the category whose objects are the same as those of Cm(C), and whose morphism
set is defined by HomHm(C)(V,W ) = HomCm(C)(V,W )/∼h. The shift functor [1] : Hm(C) → Hm(C) is
defined by

V 7→ V [1] := (V i+1,−di+1
V )i∈Zm

.

The homotopy category Hm(C) is a triangulated category with suspension functor [1] : Hm(C)→ Hm(C).
For an abelian category A, the category Cm(A) is also an abelian category, where a sequence 0 →

U
f−→ V

g−→ W → 0 in Cm(A) is exact if and only if 0 → U i
fi

−−→ V i
gi−−→ W i → 0 is exact in A for all

i ∈ Zm. Define the ith cohomology of V ∈ Cm(A) by Hi(V ) := Ker diV / Im di−1
V for i ∈ Zm. It gives rise

to a functor Hi : Hm(A)→ A for all i ∈ Zm. A periodic chain map f : V →W of m-periodic complexes
is called a quasi-isomorphism if Hi(f) : Hi(V )→ Hi(W ) is an isomorphism for all i ∈ Zm.
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Definition 9.2.3. For an abelian category A, the m-periodic derived category Dm(A) is the localization
of Hm(A) with respect to quasi-isomorphisms.

By the standard argument, one can find that the category Dm(A) is a triangulated category and the
localization functor Hm(A)→ Dm(A) is a triangulated functor.

Remark 9.2.4. The periodic derived category is a typical example of periodic triangulated categories.
A caution is that the period of Dm(A) is not necessarily equal to m, and it actually depends on the parity
of m. By [Sai1, Proposition 5.1], we have the following three cases for the period p of Dm(A).
(i) m is even and p = m.
(ii) m is odd and p = m.
(iii) m is odd and p = 2m.
This phenomenon, which might look strange at first glance, is caused by the change of signs of differential
by the shift functor [1]. For example, the shift of a 1-periodic complex is (M,d)[1] = (M,−d). Hence
(M,d) and (M,d)[1] are not isomorphic in general.

The ith cohomology functor Hi : Hm(A) → A induces a functor Dm(A) → A. We also denote the
latter by Hi : Dm(A) → A. One of the advantage of considering the localized category Dm(A) is that
an exact sequence in A yields an exact triangle in Dm(A).

Fact 9.2.5 ([Sai1, Propostions 3.12, 3.19]). Let A be an abelian category.
(1) The natural functor Cm(A)→ Dm(A) is an exact functor of extriangulated categories.
(2) The ith cohomology functor Hi : Dm(A)→ A is a cohomological functor.

The purpose of this paper is to study the Grothendieck group of a periodic derived category. First, we
should find out the condition of a periodic derived category under which we can define the Grothendieck
group. It turns out to be sufficient to find the condition under which the periodic derived category
considered is skeletally small. We will give a solution of this problem in Proposition 9.2.8 below.

Let us give a few preliminary for Proposition 9.2.8. For an abelian category A, we denote by ProjA
the full subcategory of A consisting of projective objects.

Fact 9.2.6 ([Gor, Lemma 9.5], c.f. [Sai1, Corollary 3.28]). Let A be an abelian category of finite global
dimension with enough projectives. Then the natural functor Hm(ProjA) → Dm(A) is a triangulated
equivalence.

Fact 9.2.7 ([Gor, Proposition 9.7], c.f. [Sai1, Lemma 3.26]). Let A be an abelian category of finite global
dimension with enough projectives. Then the smallest triangulated subcategory of Dm(A) containing A
coincides with Dm(A).

These facts yield the following statements on the Grothendieck group of a periodic derived category.

Proposition 9.2.8. Let A be a skeletally small abelian category of finite global dimension with enough
projectives.
(1) The periodic derived category Dm(A) is skeletally small. In particular, we can define the Grothendieck

group of Dm(A).
(2) The natural functor A → Dm(A) is an exact functor of extriangulated categories. In particular, we

have an induced homomorphism ψ : K0(A)→ K0(Dm(A)).
(3) The smallest triangulated subcategory of Dm(A) containing A coincides with Dm(A). In particular,

the homomorphism ψ : K0(A)→ K0(Dm(A)) is surjective.

Proof. (1) It is not obvious in general that HomDm(A)(V,W ) forms a set since Dm(A) is a localization
of Hm(A). However, it is enough to show that Hm(ProjA) is skeletally small since the natural functor
Hm(ProjA)

∼−→ Dm(A) is an equivalence by Fact 9.2.6. Note that MorA =
⋃
M,N∈|A| HomA(M,N) forms

a set since A is skeletally small. Then HomHm(A)(V,W ) is a quotient of the set HomCm(A)(V,W ) ⊆∏m−1
i=0 HomA(V

i,W i) and |Hm(ProjA)| is a subset of the set
∏m−1
i=0 MorA. Thus Hm(ProjA) is skeletally

small.
(2) Since the natural inclusion A ↪→ Cm(A) and the natural functor Cm(A) → Dm(A) are exact,

their composition A → Dm(A) is also exact.
(3) For a collection S of objects in a triangulated category, it is well-known that every object of the

smallest triangulated category containing S is a (finite) iterated extension of shifts of objects belonging
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to S. Hence, Fact 9.2.7 implies that each object of Dm(A) is an iterated extension of shifts of objects of
A, and thus ψ is surjective.

Finally, we explain the relation between periodic complexes and usual complexes. We will not use
the following results and explanations in the rest of this paper but they give a good picture of periodic
derived categories.

Let A be an abelian category. The symbol C(A) (resp. Cb(A)) denotes the category of complexes
(resp. bounded complexes) over A. We introduce the functors ι and π as follows.

ι : Cm(A) −→ C(A), ι(V ) :=
(
V (i mod m), d

(i mod m)
V

)
i∈Z

,

π : Cb(A) −→ Cm(A), π(V ) :=

 ⊕
j≡i mod m

V j ,
⊕

j≡i mod m

djV


i∈Zm

.

The functors ι and π preserve quasi-isomorphisms, and induce triangulated functors ι : Dm(A)→ D(A)
and π : Db(A) → Dm(A), respectively. The functor π : Db(A) → Dm(A) is called the covering functor.
This name comes from the following fact.

Fact 9.2.9 ([Sai1, Corollary 3.29]). Let A be a skeletally small abelian category of finite global dimension
with enough projectives. Then, for any V,W ∈ Db(A), we have

HomDm(A)(πV, πW ) =
⊕
i∈Z

HomDb(A)(V,W [mi]).

In general, for an additive category C and an auto-equivalence F : C ∼−→ C, the orbit category C/F of
C by F is defined by

Ob(C/F ) := Ob C, HomC/F (X,Y ) :=
⊕
i∈Z

HomC(X,F
iY ).

The composition of two morphisms f : X → F pY and g : Y → F qZ is defined by (F pg)◦f : X → F p+qZ.
The natural functor π : C → C/F is called the covering functor in general. The identity idFX gives rise
to a natural isomorphism π(FX)

∼−→ π(X) in C/F for all X ∈ C. Roughly speaking, the orbit category
C/F is obtained by identifying the {Fn}n∈Z-orbits of objects of C.

Fact 9.2.9 means that Im π ⊆ Dm(A) can be identified with the orbit category Db(A)/[m] of the
bounded derived category by the m-shift functor. In fact, Dm(A) is the smallest triangulated category
containing the orbit category Db(A)/[m]. See [Kel05, Zha14] for the detailed accounts.

An abelian category is called hereditary if it is of global dimension 1 and has enough projectives. The
periodic derived categories of hereditary abelian categories are rather simple.

Fact 9.2.10 ([Bri13, Lemma 4.2], [Sta18, Lemma 5.1], c.f. [Sai1, Proposition 3.32]). Let A be a hereditary
abelian category. Then for any m-periodic complex V ∈ Dm(A), there exists an isomorphism V '⊕

i∈Zm
Hi(V )[−i] in Dm(A).

In particular, the covering functor π : Db(A) → Dm(A) is essentially surjective, and thus the m-
periodic derived category Dm(A) can be identified with the orbit category Db(A)/[m].

Example 9.2.11. Let kQ be a path algebra over a field k. By Fact 9.2.10, an indecomposable object
of Dm(mod kQ) is of the form M [i] for some M ∈ mod kQ and some i ∈ Zm. If m ≥ 2, then we have

HomDm(mod kQ)(M,N [i]) =


HomkQ(M,N) if i ≡ 0 mod m

Ext1kQ(M,N) if i ≡ 1 mod m

0 if i 6≡ 0, 1 mod m

for any M,N ∈ mod kQ by Fact 9.2.9.
The category Dm(mod kQ) admits Auslander-Reiten sequences [Fu12, Theorem 2.10], and the covering

functor π : Db(mod kQ)→ Dm(mod kQ) preserves Auslander-Reiten sequences [Fu12, Theorem 3.1]. For
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example, let us consider the quiver Q = 1 ← 2 ← 3. Then the Auslander-Reiten quiver of D2(mod kQ)
is the following:

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

.

9.3 The Grothendieck groups of periodic derived categories

The following theorem is the main result of this chapter. It indicates that the m-periodic derived
categories behave similarly as the usual derived categories if m is even. In contrast, they behave strangely
if m is odd. The even periodic case is a direct generalization of [Fu12, Proposition 2.11], but the odd
periodic case is a new one and includes a new insight of odd periodic triangulated categories.

Theorem 9.3.1. Let A be a skeletally small abelian category with enough projectives. Suppose that the
global dimension of A is finite. Then we have an isomorphism

K0(Dm(A)) '

{
K0(A) if m is even,

K0(A)F2
:= K0(A)⊗Z F2 if m is odd,

which is induced by the natural functor A → Dm(A). Here F2 is the finite field of two elements.

Proof. Let m be a positive integer, and p be the period of Dm(A). As explained in Remark 9.2.4, we
have the following three cases.
(i) m is even and p = m.
(ii) m is odd and p = m.
(iii) m is odd and p = 2m.
We prove Theorem 9.3.1 separately in these cases. The proof of the case (iii) will also work in the case
(ii), but we give separate proofs since the proof of the case (ii) is simple and motivates the proof of (iii).

In all the cases, we have a surjective homomorphism ψ : K0(A)→ K0 (Dm(A)) induced by the natural
exact functor A → Dm(A) by Proposition 9.2.8. Now we separate the argument into each case.
(i) If m is even, then the 0th cohomology functor H0 : Dm(A)→ A induces a homomorphism

φ : K0 (Dm(A)) −→ K0(A), [V ] 7−→
m∑
i=1

(−1)i[Hi(V )]

by Lemma 9.1.2. The homomorphism φ is a retraction of ψ, and hence ψ is injective. Thus ψ is
an isomorphism.

(ii) If m is odd and p = m, then Dm(A) is an odd periodic triangulated category. Thus K0 (Dm(A))
is an F2-vector space by Lemma 9.1.3, and ψ induces a surjective homomorphism ψF2

: K0(A)F2
→

K0 (Dm(A)). The 0th cohomology functor H0 : Dm(A)→ A also induces a homomorphism

φF2
: K0 (Dm(A)) −→ K0(A)F2

, [V ] 7−→
m∑
i=1

[Hi(V )] mod 2K0(A)

by Lemma 9.1.4. The homomorphism φF2 is clearly a retraction of ψF2 , and hence ψF2 is an
isomorphism.

(iii) If m is odd and p = 2m, then Dm(A) is an even periodic triangulated category. Before starting
the correct argument, let us give a try to do an analogous discussion as the case (i). Applying
Lemma 9.1.2 to the 0th cohomology functor H0 : Dm(A)→ A, we have an induced homomorphism
φ : K0 (Dm(A))→ K0(A), which turns out to be the zero map. Indeed, we have

ψ(V ) =

2m∑
i=1

(−1)i[Hi(V )] =

m∑
i=1

(−1)i[Hi(V )] +

2m∑
i=m+1

(−1)i[Hi(V )]
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=

m∑
i=1

(−1)i[Hi(V )]−
m∑
i=1

(−1)i[Hi(V )] = 0.

Thus, the proof of the case (i) does not work in the case (iii).
Although Dm(A) is even periodic, we can prove the similar results as Lemmas 9.1.3 and 9.1.4, that
is, K0 (Dm(A)) is an F2-vector space and the assignment φF2

(V ) :=
∑m
i=1[H

i(V )] mod 2K0(A)
defines a homomorphism φF2

: K0 (Dm(A)) → K0(A)F2
. We first prove that K0 (Dm(A)) is an F2-

vector space. An m-periodic complex V = (V i, di)i∈Zm and its m-shift ΣmV = (V i,−di)i∈Zm are
not necessary isomorphic in Dm(A) in general. However, we have [V ] = [ΣmV ] in K0 (Dm(A)).
We prove this by induction on the number nV of i ∈ Zm with V i 6= 0. It is clear if nV = 0 or 1.
Suppose nV ≥ 2. Then there exists i ∈ Zm such that V i 6= 0. We may assume that i = 0. There
exists the following exact sequences in Cm(A).

0 0 0 0

U : (· · · V m−1 Z0(V ) V 1 · · · )

V : (· · · V m−1 V 0 V 1 · · · )

V 0/Z0(V ) : (· · · 0 V 0/Z0(V ) 0 · · · ),

0 0 0 0

0

and
0 0 0 0

Z0(V ) : (· · · 0 Z0(V ) 0 · · · )

U : (· · · V m−1 Z0(V ) V 1 · · · )

W : (· · · V m−1 0 V 1 · · · ).

0 0 0 0

0

Noting that V i = (ΣmV )i and Zi(V ) = Zi(ΣmV ), we also have exact sequences 0 → ΣmU →
ΣmV → V 0/Z0(V ) → 0 and 0 → Z0(V ) → ΣmU → ΣmW → 0. Since nW < nV , we have [W ] =
[ΣmW ] in K0 (Dm(A)) by the induction hypothesis. The canonical exact functor Cm(A)→ Dm(A)
carries the exact sequences above to exact triangles in Dm(A), and thus we have

[V ] = [W ] + [Z0(V )] + [V 0/Z0(V )] = [ΣmW ] + [Z0(V )] + [V 0/Z0(V )] = [ΣmV ] = −[V ].

Hence K0 (Dm(A)) is an F2-vector space. The method above is Gorsky’s induction technique for
periodic complexes, which appears in the proof of Fact 9.2.7. See [Gor, Proposition 9.7].
Next, we prove that the assignment φF2

(V ) :=
∑m
i=1[H

i(V )] mod 2K0(A) defines a homomorphism
φF2

: K0 (Dm(A)) → K0(A)F2
. Let U → V → W → ΣU be an exact triangle in Dm(A). Note that

H0(U) = Hm(U) holds. Then we have two exact sequences in A:

Hm−1(W )
f−→ Hm(U) ' H0(U)

g−→ H0(V ),

0→ Ker g → H0(U)
g−→ H0(V )→ · · · → Hm−1(V )→ Hm−1(W )

f−→ Im f → 0.

A similar discussion as in Lemma 9.1.4 implies φF2(U)− φF2(V ) + φF2(W ) ≡ 0 mod 2K0(A).
The rest of the proof is similar to (ii).
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The proof is now finished.

As an immediate corollary, we have the following.

Corollary 9.3.2. Let Λ be an Artin algebra of finite global dimension, and let n be the number of
isomorphism classes of simple modules. Then we have

K0(Dm(modΛ)) '

{
Z⊕n if m is even,

F⊕n
2 if m is odd.

Let us explain the motivation of Theorem 9.3.1 and Corollary 9.3.2. In [Sai1], the author proves
the periodic tilting theorem, which gives a sufficient condition for a given triangulated category to be
equivalent to the periodic derived category of an algebra. We review some definitions and results in
[Sai1].

Definition 9.3.3. Let T be an m-periodic triangulated category.
(1) An object T ∈ T is called m-periodic tilting if it satisfies HomT (T,Σ

iT ) = 0 for any i ∈ Z \mZ
and the smallest thick triangulated category containing T coincides with T .

(2) An m-periodic tilting object T ∈ T is called strict if the global dimension of the endomorphism
algebra EndT (T ) is less than m.

We will not give the definitions of the conditions algebraic and idempotent complete in the following
theorem. See [Sai1] for the precise description. We can say that these conditions are mild, and in fact
they are satisfied by almost all concrete triangulated categories appearing in the study of representations
of algebras.

Fact 9.3.4 (The periodic tilting theorem [Sai1, Corollary 5.4]). Let T be an idempotent complete alge-
braic m-periodic triangulated category over a perfect field k. Suppose that HomT (X,Y ) is finite dimen-
sional over k for all objects X,Y ∈ T . If T has a strict m-periodic tilting object T , then there exists a
triangulated equivalence T → Dm(modΛ), where Λ := EndT (T ).

The periodic tilting theorem and periodic tilting objects are periodic analogue of the usual tilting
theorem and tilting objects (c.f. [Tilt07]). Hence, we expect that periodic tilting objects have properties
similar to the usual tilting objects. However, we have the following example which was taught by
Professor Osamu Iyama in the conference Algebraic Lie Theory and Representation Theory, 2021.

Example 9.3.5. Let kA3 be the path algebra of the quiver 1 ← 2 ← 3 of type A3 over a perfect field
k. The Auslander-Reiten quiver of D2(mod kA3) is the following (see also Example 9.2.11):

X1

X2

X3

Y1

◦

Y2

◦

◦

◦

Y3

◦

Y4

.

Then X :=
⊕3

i=1Xi and Y :=
⊕4

i=1 Yi are both 2-periodic tilting objects in D2(mod kA3). Thus,
the number of non-isomorphic summands of a periodic tilting object is not constant, while it is known
that the number of non-isomorphic summands of a tilting object is constant.

In the above Example 9.3.5, we observe that End(X) ' kA3 and End(Y ) is isomorphic to a self-
injective Nakayama algebra, and hence X is strict but Y is not. Thus, we can expect that the number
of non-isomorphic summands of a strict periodic tilting object is constant. It is true as the following
Corollary 9.3.6 shows.

Corollary 9.3.6. Let m be a positive integer, and T be an idempotent complete algebraic m-periodic
triangulated category over a perfect field k. Suppose that HomT (X,Y ) is finite dimensional over k for
all objects X,Y ∈ T . Then the number of non-isomorphic summands of a strict periodic tilting object is
constant.
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Proof. Let T1, T2 ∈ T be strict m-periodic tilting objects, and set Λi := EndT (Ti) (i = 1, 2). Then
we have two triangulated equivalences T ∼−→ Dm(modΛi) by Fact 9.3.4. Their composition induces an
isomorphism K0(Dm(modΛ1)) ' K0(Dm(modΛ2)) of the Grothendieck groups. Hence Λ1 and Λ2 have
the same number of isomorphism classes of simple modules by Corollary 9.3.2. Since the number of
non-isomorphic summands of Ti is equal to the number of isomorphism classes of simple modules over
Λi, we have the statement.
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