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Abstract

Let p be a prime number. In this thesis, we define the Iwasawa invariants of
links and prove two asymptotic formulae for the first homology groups of Zg—covers
of links in rational homology 3-spheres, which are generalizations of the Iwasawa type
formulae proven by Hillman—Matei—-Morishita and Kadokami—Mizusawa under a mild
assumption. We also provide examples of these formulae. Moreover, when d < 2,
considering the twisted Whitehead links, we prove that Iwasawa p-invariants can be
arbitrary non-negative integers. This thesis also includes an example of p-adic torsions
for d = 2. This thesis is based on a paper [28] that is a joint work with Jun Ueki.
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1 Introduction

Let p be a prime number. For an abelian group G whose p-torsion subgroup is a finite group,
let e(G) denote the p-exponent of the order of the p-torsion subgroup. For a number field
k, let Cl(k) denote the ideal class group of k. The size of Cl(k) is known to be finite and is
called the class number of k.

In [10], Iwasawa proved the following result, which is so-called Iwasawa’s class number
formula. Let Z, denote the ring of p-adic integers.

Theorem ([10, Theorem 4]). Let ko /k be a Z,-extension and kyn be the subfields corre-
sponding to the subgroups p"Z, of Z,. Then there exist invariants p, \ € Z>o and v € Z,
depending only on ks /k, such that

e(Cl(kpn)) = " + An +v
for every sufficiently large n.

This result is known to be the first asymptotic formula that describes the regularity of
the variation of the class numbers in certain towers of number fields. The values u, A\, v are
called the Iwasawa invariants of k../k.

On the other hand, let M be a closed connected orientable 3-manifold. M is called a
rational homology 3-sphere (QHS?) if H;(M;Q) = H;(S3;Q) for all i > 0. M is called an
integral homology 3-sphere (ZHS?) if H;(M;Z) = H;(S%,Z) for all i > 0. By the Poincare
duality and the universal coefficient theorem, we have

e M is a QHS? if and only if Hy(M;Z) is a finite group.
e M is a ZHS? if and only if H,(M;Z) = 0.

In this sense with a deeper background as we explain later, QHS?’s in topology correspond
to number fields in number theory, and ZHS?’s correspond to number fields with the class
number 1. In what follows, we write Hy(M) = H(M;Z).

After a work of Hillman-Matei-Morishita [7, Theorem 5.1.7], Kadokami and Mizusawa
proved the following topological analogue of Iwasawa’s formula. This is so called the Iwasawa
type formula.



Theorem ([13, Theorem 2.1]). Let L be a link in a QHS® M, let X = M — N(L) denote
the exterior of an open tubular neighbourhood of L, let 7 : m(X) — Z be a surjective
homomorphism, and let Xoo — X denote the corresponding Z-cover. Let (My — M),
denote the system of the branched Z/p™Z-covers obtained by the Fox completion and suppose
that every My is a QHS®. Then there exist invariants p, N € Zso and v € Z, depending
only on Xoo — X and p, such that

e(Hi(Mpn)) = pp" + An+v
for every sufficiently large n.

These p, A, v are called the Iwasawa invariants of (My» — M),,. As a remark, Ueki proved
that this formula also holds for a Z,-cover that does not necessarily derived from a Z-cover
in [31].

Let d > 2. In [4], Cuoco and Monsky generalized the result of Iwasawa to Zf-extensions.

Theorem ([4, Theorem I)). Let koo /k be a Zi-extension of number fields and ky. be the
subfields corresponding to the subgroups (p"Z,)* of Zz. Then there exist invariants p, X €
Z>o, depending only on k/k, such that

e(Cl(ky)) = (up™ + An + O(1))p“=1",
where O is the Bachmann—Landau notation with respect to n.

These p, A are called the Iwasawa invariants of k. /k. We remark that Monsky showed
in [18] that the O(p@~Y") part can be refined to a* + O(np@=2") for some o* € R (a* € Q
if d = 2).

To show this result, the power series ring A := Z,[[T1, ..., Ty]] and modules over A play
important roles. Let k be a number field and k., /k a Zg—extension. Let k,» denote the fixed
field of p”ZZ and let [ /ko be the maximal abelian unramified pro-p extension of k.. Put
I' := Gal(kw/k) and X := Gal(lw/kx). Then it can be shown that [ /k is Galois. Put
G := Gal(lx/k). Then there is a well-defined action

I'x X3 (0,0)—ca5 '€ X,

where ¢ € G is a lifting of o from I" to G. Let Z,[[I']] denote the complete group ring of I' over
Z,. Then X becomes a Z,[[I']]-module via this action. It is known that the Iwasawa-Serre

homomorphism
Zp[[F]] S Y — 1+7T; € Zp[[Tl, ce 7Td]]

is an isomorphism of rings (cf. [27, Theorem 3.3.9]) and X is a finitely generated torsion
A-module.

On the other hand, let M be a QHS® and L a link in M, that is, the image of a tame
embedding of S*U---1ST into M. Let N(L) be an open tubular neighbourhood of L and put
X =M~—N(L). Let 7 : m(X) — Z% be a surjective homomorphism and let X, — X denote
the Z9-cover corresponding to ker(7). Here, d does not need to coincide with the number of
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components of L. In addition, for each n > 1, let X,, — X denote the (Z%/(nZ)? =)(Z/nZ)%-
subcover of X, — X and let M,, — M denote the branched (Z/nZ)%-covers obtained by the
Fox completion. An inverse system M = (hpn © Myn — M), is called the branched Z2-cover
over (M, L) derived from X, — X.

Let Az = Z[t5",...,t3']. The Alexander polynomial A(ty,...,ts) € Az of Xoo — X is
defined to be a generator of the divisorial hull of the finitely generated Az-module Hy(X).
Details of the theory of Alexander polynomials are written in [6, Chapter 3 and 4]. Note
that the ring Az can be regarded as a subring of A by the homomorphism of rings

Ayt —1+T, €A,

Hence A(ty,...,tq) in Az can be seen as an element A(1+4T4,...,1+4 T}) of A.

In this thesis, we prove the following topological analogue of the result of Cuoco and
Monsky. This is a generalization of Hillman—Matei—-Morishita and Kadokami—Mizusawa
under a mild additional assumption. Put W := {£ € @p | €&7" =1 for some n > 0}.

Main result 1 (Theorem 7.4). Let M be the branched Z-cover over (M, L) derived from
a Z%-cover Xo, — X, that is, the inverse system consisting of (Z/p"Z)*-branched covers
My — M derived from Xo — X, defined as above, and suppose that every Myn is a QHS?.
Let A(ty, ..., tq) denote the Alexander polynomial of Xo — X and suppose that A(tq, ..., tq)
does not vanish on W<. Then there exist invariants yu, X € Zso, depending only on X — X
and p, such that

e(Hy (My)) = (" + An + O(1))pl=Im.

We remark that, when d = 1, it is known that every M, is a QHS? if and only if A(¢)
does not vanish on W\ {1} [31, Theorem 4.17|. Hence the QHS? assumption in the result of
Kadokami—Mizusawa is slightly weaker than the assumption on Alexander polynomials for
our result. Also, as was the case with the result of Cuoco-Monsky, the O(p(*~Y") part can
be refined to o* + O(np4=2") for some a* € R (o* € Q if d = 2).

In order to obtain this result, we first establish a similar formula for a general Z,-cover
of compact connected orientable 3-manifolds derived from a Z%-cover (Theorem 7.3).

Greenberg conjectured that the p-exponent of the class numbers in Zg—towers of number
fields ramified at finitely many primes is given by a polynomial in p” and n of total degree
at most d for every sufficiently large n (cf. [4, Section 7]). This means that the O(p(¢=1")
part of the result of Cuoco-Monsky would be precisely described by such a polynomial.
By restricting the QHS?*’s we consider to ZHS?’s, we obtained an evidence of Greenberg’s
conjecture in the link side.

If L is a d-component link in a QHS? M and X, — X is its unique Z%cover, then we will
denote the Alexander polynomial by Ay (¢y,...,t;). In this situation, Iwasawa invariants u
and A are determined only by L and p. Hence we denote them by py and Ap.

Main result 2 (Theorem 7.6). Let M be the branched Z-cover over (M, L) derived from a
Z%-cover Xoo — X. Suppose in addition that M is a ZHS®, L consists of d components, and
the Alexander polynomial Ap(ty, ... tq) of L does not vanish on (W \ {1})?. Then, every
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branched (Z/p"Z)*-cover Myn is a QHS®, and there exists a unique f(U,V) € Q[U, V] with
degy f <1 and total degree deg f < d such that

e(Hy(My)) = f(p", ).
for every sufficiently large n.

This means, we can express e(H,(M})) by

e(Hy(Myn)) = prp™ + Apnp' ™ D" + pigp =" 4 Xy inp=2" L pup™ + Ain + v

for every sufficiently large n, where jig_1,..., 1, A1, .., 1,7 € Q. Hence the O(pld=—1")
part of Cuoco—Monsky type formula can be described by a polynomial with the form Green-
berg conjectured in the case of a pair of a ZHS? and a d-component link.

In order to prove Main result 1, we investigate some basic properties of Z?-covers of
3-manifolds. Especially, the following result plays a key role. We define ideals I,, of Az by
L=y —1,t5—1,...,th —1).

Main result 3 (Theorem 6.1). Let Xo, — X be a Z%-cover of a compact connected orientable
3-manifold. Then we have

e(H (Xpn)) = e(H1(Xoo)/In Hi (X)) + O(n) (n — 00).
We also exhibit several examples. For the twisted Whitehead link Wy, we have
‘Hl(Mpn, Zp)‘ _ p(kp”+2n72k)p"72n+k.

We will calculate this example in Section 9. For this purpose, we calculate the Alexander
polynomial of the twisted Whitehead links Wj,,, which is already known, in Section 8 and
obtain

Aw,,, (z,y) =m(x —1)(y — 1).

ie.,
Aw,, (14+X,14+Y) =mXY.

In particular, we obtain Hw, . = k. Therefore, we have

Main result 4 (Theorem 9.7). Suppose d = 2. Then, for arbitrary m > 0, there ezists a
link L in S® such that puyp = m.

This can be viewed as a topological analogue of the number theoretical results of [wasawa
[11, Theorem 1] and Ozaki [22, Theorem 2]. We remark that a result of Kadokami—-Mizusawa
[13] yields a similar result for d = 1 (Theorem 9.7), which is a refinement of a result of Ueki
(30, Theorem 5.2].

Our calculation yields a new example of Kionke’s p-adic torsions for d = 2 as well. In
[32], Ueki and Yoshizaki proved the following result.



Theorem ([32, Theorem B|). Let (X,» — X), be a Z,-cover of compact 3-manifold X.
Then, the sizes of the torsion subgroups Hy(Xyn)ior, those of the non-p torsion subgroups
Hi(Xpn )non-p, and those of the l-torsion subgroups Hy(Xpn)qy for each prime number [, of
the 1st homology groups converge in Z,.

For L = 67 (see Example 9.3) and p # 3, we will show that |H;(M,.)| = 3?"~! and this
sequence converges in Z,. This can be regarded as an example of the above result for d = 2.

The structure of this thesis is as follows. In Section 2, we briefly explain a historical
context of our motivation and introduce some basic analogies between number theory and
knot(link) theory. In Section 3, we introduce the notion of Iwasawa invariants p and A for
links and explain what corresponds to the Weierstrass preparation theorem of one variable
Iwasawa theory for our case. In Section 4, we study some basic properties on Alexander
polynomials. In Section 5, we review results of Cuoco and Monsky on A-modules that we
use in Section 7. In Section 6, we prove a fundamental result for 3-manifolds that is crucial
to attain our main results. In Section 7, we prove our main results. In Section 8, we calculate
the Alexander polynomial of the twisted Whitehead links. In Section 9, as stated above, we
provide several examples to reinforce our results. By using Sage Math, we also place a table
of the Iwasawa invariants p and A for links that appear in tables of the Rolfsen’s book [24].
In Section 10, we give some remarks on our results.

2 Backgrounds

In this section, we briefly explain a historical context of our motivation and review basic
analogies between number theory and topology.

Let k& be a number field, i.e., a finite extension of the field Q of rational numbers. The
class number of k is the size of the ideal class group Cl(k) of k. The notion of class numbers
in number theory has been crucial as a research object since the era of Kummer. Kummer
invented the notion of class numbers and successfully proved that the Fermat last theorem
holds for a prime number p if p does not divide the class number of p-th cyclotomic field. He
also proved that the class numbers of cyclotomic fields are related with the particular values
of the Riemann zeta function, which is closely related to the distribution of prime numbers.

That is being said, the regularity of class numbers has been mysterious and it is basi-
cally difficult to control. The Gauss conjecture, which states that there are infinitely many
quadratic real fields whose class numbers are one, is still an open problem. We do not even
know whether there are infinitely many number fields whose class numbers are one or not.

Under such a background, as stated in the introduction, Iwasawa found a formula that
controls the p-exponent of the class numbers in any Z,-tower of number fields.

To prove this formula, class field theory plays a key role. Let k£ be a number field and let
k% denote the Hilbert class field, i.e., the maximal unramified abelian extension of k. Then
class field theory states that there is an isomorphism

Gal(k /k) = CI(k).



This isomorphism is one of the major corollaries of the so-called Artin reciprocity law,
and this allows one to regard class numbers as sizes of Galois groups. Given a Z,-extension,
Iwasawa constructed the corresponding tower of Hilbert p-class fields and obtained the afore-
mentioned formula.

Because this isomorphism of class field theory can be seen as an analogue of the Hurewicz
isomorphism, we see that class numbers in the number theoretical side correspond to the
sizes of first homology groups in the topological side.

Hillman, Matei, and Morishita proved the formula for the first p-homology groups of
p"-fold cyclic covers of links in the 3-sphere S? corresponding to Iwasawa’s class number
formula. Kadokami and Mizusawa generalized this result to any rational homology 3-sphere.

On the other hand, in 1981, Cuoco and Monsky proved that the corresponding formula
holds for Zg-extension over number fields. Since the abelianizations of link groups are free
abelian groups, we commenced believing that the Iwasawa type formula for d > 2 should
hold, and it is supposed to correspond to the result of Cuoco—Monsky.

’ Number theory ‘ Knot theory ‘
number field k closed connected orientable
(the ring of integers Spec Oy) 3-manifold
prime ideal p : Spec Oy /p — Spec O, knot K : St — M
family of primes = {py,...,ps} link L : US* — M
Q S?
Cl(k) H,(M;Z) or torgH,(M;7Z)
Fact: h(k) is finite (Assumption: M is a QHS?)
Z,-extension koo /k branched Z,-cover M — M
subfield k,» corresponding to p"Z, | subcover My, corresponding to p"Z
Artin reciprocity law Hurewicz isomorphism
Cl(Kn) ®z Ly Hl(Mp”’ Zp)
Zi-extension ks /k branched Zd-cover M — M
subfield kyn corresponding to (p"Z,)? | cover M, corresponding to (p"Z)?

3 On some estimates

In this section, we collect several results on some estimates that are related with p"”-th roots
of unity.

3.1 Weierstrass preparation theorem

In this subsection, we introduce the notion of the Iwasawa invariants for Iwasawa modules
over Iwasawa algebras with multiple variables. We basically review the Section 1 of the paper
of Cuoco-Monsky [4] and check what corresponds to the Weierstrass preparation theorem
[34, Theorem 7.3] for the Iwasawa algebra with one variable in our situation.
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Let I be a free Z,-module of rank d written multiplicatively and fix a basis {v1,...,74}
of I'. Let Z,[[I']] denote the complete group ring of I' over Z, and let A := Z,[[T1, ..., T4]]
be the power series ring over Z,. It is known that the map

Zp\l 27 = 1+T, € Z,)[[T1, ..., T4]]

is an isomorphism of rings (cf. [27, Theorem 3.3.9]). Hence I' is a closed multiplicative
subgroup of A generated by 147 via this isomorphism. Each element of GL4(Z,) induces an
automorphism of I' that prolongs to a ring automorphism of A. We call such automorphisms
linear automorphisms of A. Let o € T'\I'’, where I'? := {y € I' | v = 4/ for some 7' € T'}.
Then there is a linear automorphism mapping o to 1+ 7;. Let Q := F,[[T},...,T,]]. For
F € A, let F € Q denote the mod p reduction of F. Since (T;) is a height one prime ideal
of 2, sois (¢ —1). If p is a prime ideal of height 1, then let v, be the associated discrete
valuation. From now on, let F' be a nonzero element of A. Then there exists some nonzero
Fy € A and p = p(F) € Zsg such that F = p**) [ and p { Fy. Define

F) :va(FO

where the sum runs over all p of the form (¢ —1),0 € I'\I'?. Let
W:={€Q,]|&" =1 for somen > 0}.

Let v : @, — Q be the order function normalized so that v(p) = 1. We make the unusual
convention v(0) = 0. Let ¢ = ((1,...,() € W Put F((—1) := F(¢ ..,Ca—1). Since
v(¢; — 1) > 0, one has v(F(¢ — 1)) Z 0. For n > 0, define

Sa(F) = ) w(F(-1),
(eW(n)?
where W(n) :={£ € W | &" = 1}.

Example 3.1. (1) Let
o=mr=>0+T)1+T3).

Then

0'—1:T1T2+Tl +Tg.

(2) Suppose p # 2. Let
o= 712 =(1 +T1)2.
Then ,
o—1=T,+2T, =T\ (T, +2).

Since Ty + 2 € A*, one has (0 — 1) = (T1) as ideals. In general, if o = 7f and p { k,
then (o — 1) = (T1).
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Example 3.2. (1) For arbitrary m € Z>(, we have

Sap") = Y v =Y mu(p)=mY 1=mp™
¢ ¢

¢ceW (n)d

(2) If we fix a primitive p?-th root of unity &, then
%o(Th) = Z v(G—1)
Cew(2)4
= E=D)+u(E@ =1+ ... o —1))p" Y

-1 —1
(P + p(p )) pAA=D) — 9p2(d-1),
p—1 »plp-1)

In general, we have
Zn(z"l) = npn(d—l)'

(3) If 47t - -5t € I\I'?, then we find that
Sa((L4T) - (14T =1) = > (=)= > v(G—1)=I,(Th).
CEW (n)d CEW (n)?
Lemma 3.3 ([4, Lemma 1.4, 1.5, 1.6]). (1) Let G € A with F = G # 0. Then
Ya(F) = 2a(G) = O(p(dil)n)-
(2) If there exist Fy, Fy € A such that F = F\F5, then
Yo (F) = Zu(F1) + Zn(F) + O(p(d_l)n)~

(3) If W(F) = A(F) = 0, then ¥,(F) = O(pl4=tn).
One can show Lemma 3.3 by using results of Monsky [17] on A.
Proposition 3.4 ([4, Theorem 1.7]). Let F' be a nonzero element of A. Then we have
Eu(F) = (W(F)p" + A(F)n + O(1))p -1,
Proof. Write F' = pF) . Fy with Fy # 0. Since Q is a “unique factorization domain, there
exist [,..., F}, € A with F; irreducible in 2 such that Fg = F'; - - - Fy. By Lemma 3.3 (1),
(2), we have
Sn(F) = Sn(p") + Su(F) + -+ + T (Fi) + O "),
By Lemma 3.3 (3), if A(F};) = 0, then X,,(F}) = O(p'~Y"). By Example 3.2 (1), (2), (3), we
have
Sa(F) = u(E)p™ + AF)np D" + O(p ")
= (u(F)p" + A(F)n+O0(1))p ",
O

Remark 3.5. The proof of Proposition 3.4 is corresponding to the Weierstrass prepartion
theorem of one variable Iwasawa theory.



3.2 Results of Monsky

In this subsection, we briefly review a result of Monsky, which is vital for our proof of Main
result 2.
Let E4 denote the Z,-module Hom (W4, W).

Definition 3.6. S C W is said to be semi-algebraic if it is a finite union of subsets each of
which is defined by finitely many conditions of the following three types

(a) 7(¢) =¢,

(b) 7(¢) #e,

(c) log, [(7(¢))] = log, [(7'(O)| + 7,
where 7,7 € Ey, ¢ € W, and r € Z.
Lemma 3.7. (W \ {1})? is semi-algebraic.

Proof. For each 1 <i < d, let m; denote the projection W% — W. Then we have

W\ {1} = ﬂ {Ce W | m(C) # 1}

]

Proposition 3.8 ([17, Theorem 5.6]). Let S C W be a semi-algebraic set and let F' € A.
Then there ezists a unique f(U,V) € Q[U, V] with deg,, f < 1 and total degree deg f < d

such that
> w(F(—1) = f(p".n)

¢eSNW(n)d

for every sufficiently large n.

Proposition 3.9. Let F' € A. Then there exist j1, A € Z>o such that

Y w(F(C—1) = (" + An+O(1))pt.

Ce(W(n)\{1})4
Proof. We have
> wF(C-1) = o(F(C— 1)+ > o(F(C - 1)).
CeW (n)d ce(W(m)\{1})¢ others

By Proposition 3.8, we have

Y u(F(C—=1) = 0@ .

others

By Proposition 3.4, we complete the proof. O

10



4 On Alexander polynomials

In this section, we study some basic properties on Alexander polynomials. Details of the
theory of Alexander polynomials are written in [6, Chapter 3 and 4].

Let R be a Noetherian unique factorization domain and let M, N be finitely generated
R-modules. M is said to be pseudo-isomorphic to N if and only if, for each prime ideal
p of height one in R, the induced Ry-homomorphism M, — N, is an isomorphism, where
M, N, denote the localizations of M, N at p respectively. Also, since R is Noetherian, we
may choose an exact sequence

R"— R - M—0.

The ideal of R that is generated by the s-subdeterminants of the presentation matrix of
R" — R? is called the Fitting ideal of M, and we denote it by Fitt(M). If r < s, then we
define Fitt(M) = 0. It is known that the definition of Fitting ideals is independent of the
choices of exact sequences. Details of the theory of Fitting ideals are written in [20, Chapter
3]. The divisorial hull d.h.(a) of a is the intersection of the principal ideals that contain a.

Proposition 4.1. Let M be a finitely generated R-module. If d.h.(Fitt(M)) # 0, then M

1s a torsion R-module.

Proof. By the definition of the divisorial hull, if Fitt(M) = 0, then d.h.(Fitt(M)) = 0. By
the theory of Fitting ideals, we have Fitt(M) C Anng(M), where Anng(M) denotes the
annihilator of M over R. Thus, the assumption d.h.(Fitt(M)) # 0 implies Fitt(M) # 0,
and hence Anng(M) # 0. Therefore, M is a torsion R-module. n

Remark 4.2. When d = 1, for link modules, it is known that d.h.(Fitt(M)) # 0 holds if and
only if M is a torsion R-module (cf. [13, Lemma 3.1]).

An R-module of the form @;_, R/p;", where p; are height one prime ideals in R, is called
an elementary R-module.

Let M be a finitely generated torsion R-module. Then, by [27, Proposition 3.1.6] or
21, Theorem 2.3.6(Japanese)], there is an elementary R-module £ := @;_; R/p;" such that
M is pseudo-isomorphic to £. Since R is a Noetherian unique factorization domain, every
height one prime ideal is principal. Hence [[p." is generated by an element. The element
up to multiplication by units is called the characteristic element of M, and we denote it by
CharM. For a finitely generated non-torsion R-module, we make a convention CharM = 0.

Proposition 4.3. Let M be a finitely generated torsion R-module. Then we have
(CharM) = d.h.(Fitt(M)).

Proof. Since M is pseudo-isomorphic to an elementary R-module £ := @;_, R/p.", for each
height one prime ideal p in R, we have

M, = (@ R/pi™)p.

This implies
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Fitt(M), = Fitt(M,) = Fitt((@ R/pi™)p) = Fitt(@ R/pi™)p
Since Fitt(@ R/p;") =[], p;", we have

Fitt (M), = Hp

,pi=
By [6, Lemma 3.2], we have
d.h.(Fitt(M ﬂ Fitt(M
Therefore, we obtain
d.h.(Fitt(M H p" = (CharM).

Now, we have an embedding
Az >t = 14+T; € A

Let M be a finitely generated Az-module. Then, for each n > 0, M,, := M /I, M is
a Z[EY" %" module. Hence M, ® Z, is a Z[t7"", .. &7/ "Z] module. Therefore,
for any m > n, My @ Z, is a Z,|[t; e ,tf/p |]-module. Accordmgly, My @ Z,, are A-
modules. Thus Ln Mn®Z, is also a A-module. Let M denote the A-module @n MpnQZy,.

Lemma 4.4. Let ay,...,a, be elements in Ay and let g be their greatest common divisor in
Ay. Then g is their greatest common divisor in A as well.

Proof. By the definition of g, for each 1 < ¢ < n, there exists a; € Az such that a;, = ga..
Suppose that there exists a prime element P of A and there exists a for each 1 <i < d such
that a, = Pa/. Since completions satisfy the going down property, PA N Az is a height one
prime ideal of Az. Since Az is a unique factorization domain, there exists a prime element
Py, of Ay such that P,Az = PA N Ay. Therefore, for each 1 < i < n, a; can be divided by
Py in Az. This contradicts g is a greatest common divisor in Az. Therefore, there exists no
such a prime element, and so ¢ is a greatest common divisor in A as well. O]

Lemma 4.5. Let a be an ideal of Az. Then we have
(d.h.(a))A = d.h.(aA)

m A.

12



Proof. Let S be a system of generators of a. Since Az is a unique factorization domain,
d.h.(a) is the principal ideal generated by the greatest common divisor of the elements in S.
Since S generates aA in A and A is also a unique factorization domain, d.h.(aA) is also the
principal ideal generated by the greatest common divisor of the elements in §. Therefore,
by Lemma 4.4, we have

(d.h.(a))A = d.h.(aA)

in A. O

Proposition 4.6. Let M be a finitely generated torsion Az-module. Then we have

(CharM) = (CharM)
mn A.
Proof. Consider an exact sequence
A, — A - M —0.

Since taking tensor products, quotients, and projective limits are right exact, we have an

exact sequence e
A" — A - M — 0.

Since the presentation matrices of these exact sequences coincide, we have
Fitt (M)A = Fitt(M).
Hence .
d.h.(Fitt(M)A) = d.h.(Fitt(M)).

Therefore, by Lemma 4.5 and Proposition 4.3, we obtain
d.h.(Fitt(M))A = d.h.(Fitt(M)) = (CharM).
O

Definition 4.7. Let L be a link in a QHS® M and X := M — N(L). Let Xo,, — X be a
Z4-cover. Then, H,(X,,) is a finitely generated Az-module, and a generator of d.h.(Fitt(M))
up to multiplication by units is called the Alexander polynomial of X, — X. We will denote
it by A(tl, . ,td).

If L is a d-component link in a QHS? M and X, — X is its unique Z%-cover, then the
Alexander polynomial of X, — X is called the Alexander polynomial of L. We will denote
it by AL(tl, ce ,td).

Remark 4.8. By Proposition 4.3, we have CharH;(X ) = A(t1, ..., t;) up to multiplication
by units. Moreover, by Proposition 4.1, if A # 0 in Az, then H;(X) is a finitely generated
torsion Az-module.
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5 Lemmas on A-modules

In this section, we briefly review some results of Cuoco-Monsky [4, Theorem I] on A-modules,
which will be used in Section 7.
For each n > 1, let Z,» be the ideal of A generated by {(1+ T;)?" — 1|1 < j <d}.

Proposition 5.1 ([4, Theorem 3.4]). Let M be a torsion A-module with characteristic ele-
ment F. Suppose rankg, (M /Ln M) = O(p'4=2™). Then we have

e(M/In M) = (u(F)p" + ANF)n + O(1))p=",
where p(F), \(F) are non-negative integers defined in Section 3.1.

Remark 5.2. The assumption rankz, (M /L. M) = O(p'?~?") is equivalent to the condition
that A(1+T1,...,1+ Ty) has no special prime factors in A in the sense of Cuoco-Monsky
[4, Theorem 3.13]. Also, Monsky [18, Theorem 3.12 with S = (}] showed that the O(p(@~1n)
part can be refined to o + O(npl@=2") for some a* € R (o* € Q if d = 2).

For ¢ = (¢y,- -+ ,¢a) € WY, define Z,[¢] = Z,[Cy, ..., Ca). Let M be a finitely generated
torsion A-module. For each ¢ € W9 put M = M ®x Z,[¢]. Then M, is a finitely
generated Z,[(]-module via the ring homomorphism A > F +— F(( — 1) € Zy[(]. Let
r¢(M¢) := rankg, g M¢. Define

Z(M) = {< € Wd ‘ Tc(Mc) > 1}

and

Zn(M) = Z(M) N W (n).
Lemma 5.3 ([4, Lemma 3.7]). There exists s > 1 such that
|Z(M)| < rankz, (M /Ly M) < 5| Z,(M))]
for alln > 1.

Lemma 5.4 ([4, Lemma 3.3]). Let M, N be finitely generated torsion A-modules. Suppose
M is pseudo-isomorphic to N'. Then we have

[rankz, (M /Z,n M) — ranky, (N /I N)| = O(p(d=2m),

Lemma 5.5. Let M be a finitely generated torsion A-module and F the characteristic ele-

ment of M. Suppose that F(Ty,...,Ty) does not vanish on {( —1 € @Z | ¢ € W2}, Then
we have

rankz, (M /L M) = O(p'=2m).

Proof. Since M is torsion over A, M is pseudo-isomorphic to an elementary A-module £.
By the definition of characteristic element, we have F(Ty,...,T;)€ = 0. By the definition of
the action of Z,[¢] on &, we have F'(( —1)& = 0. By assumption, we have F'(( —1) # 0 for

14



any ¢ € W4 Therefore, & is a torsion Z,[¢]-module. Hence r¢(€;) = 0. Therefore, we have
Z(€) =0, and so is Z,(€). By Lemma 5.3, we have

ranky, (£/Z,nE) = 0.
Thus, by Lemma 5.4, we have the assertion. O

Remark 5.6. If there exists a polynomial f(ty,...,tq) € Z[t1, ..., t4] such that f(14+Ty,..., 1+
Ty) = F(11,...,Ty), then the assumption can be replaced by “f(t1,...,t;) does not vanish
on W4

6 Fundamental result for 3-manifolds

In this section, we prove that the sizes of the torsion parts of the first homology groups
of certain 3-manifolds are sufficiently close to the sizes of the torsion parts of quotients of
homology groups of certain infinite coverings. The result in this section allows one to apply
multi-variable Iwasawa theory to link cases.

Let X be a compact connected orientable 3-manifold with a surjective homomorphism
71 (X) — Z% where d is a positive integer, and let X,, — X denote the corresponding Z4-
cover. Since 7 (X)/m(Xo) = Z¢, we may choose a basis {t1,...,tq} of m(X)/m(Xs). Let
Ay = Z[t5", ... t5"]. Then H;(X,,) is a finitely generated Az-module. Let I, := (#} — 1,
2 —1,...,t% — 1) be the ideal of Az and let X, be the (Z/nZ)%cover corresponding to
ker(m (X)) — (Z/nZ)%).
Theorem 6.1. Under the setting as above, we have

e(H (X)) = e(H1(Xoo)/Ipn Hi (X)) + O(n) (n — 00).
Proof. Put N := m(X+)® = H;(X.). We have an exact sequence of groups
1= N = m(X)/m(Xeo)® 5 m(X)/m(Xe) = 1,

where 71 (X )¢ denotes the commutator subgroup of m1(X). Let z1,..., x4 be elements in
the inverse images P~ (1), ..., P~ 1(ty) respectively. Then we have

Hy(X,) = (@, .., 2 NY/ (2, "], LN(1 < i < j < d)).

1907]

Indeed, we have an exact commutative diagram of groups
1—> N ——m(X) /71 (Xoo)® L1 (X) /71 (X o) — 1

| g !
1—~N P1((nZ)%) (nZ)?

Since

T (Xn) /M (Xoo) = PTH(nZ)") = (af,... 2}, N)

15



and

(t; — Dy = y"y~' = zyyx; 'y~ for each y € N,

we obtain
H(X,) = («f,...,x

= <x1>

Since P~!((nZ)?) is a normal subgroup of m (X) /71 (Xoo )¢, so is (P~ ((nZ)%))* = ([2}, 7], [,N(1 <
i < j <d)). This implies that ([z},27}], [,N(1 <i < j < d)) is a Az-module. Therefore,

S,N>ab
s, N) [{[2f, 5], LN(1 <i < j < d)).

0 — N/([z7,27], ,N(1 <i < j <d)) = Hi(X,) = (nZ)" =0
is an exact sequence of Az-modules. Since this exact sequence splits, we have
torg (H1(X,)) = torg(N/([z}, 2], LN (1 <i < j < d))).

as Z-modules. We compare this to torg(H;(Xw)/InH1(X)) = torg(N/IL,N). If we put

¢ij = s, x5 € N and T,(t) := Y24} t*, then we have [}, 2] = To(t:) Tu(t;)cij since
n .n] n—1_n —Mm=1) —ny —1 n_—1_—n
o 7xj] = xi(7; L;T; Z; ); (5’715’7]5’71 Z; )
n—1 nlx; n
[} 737]'] [thj]
= ([%?_2,ZE?]$’[$,,ZL’?]) Z[Ilvxg]

I
=
=3

L
+
+
St
+
=
=’
8
>3

= (7t Dl ][, 25

= (DT e+ 1) [, 3]
= Talti)Tult;)cs;
Put cz(»?) = [z}, 2%]. Then we find that M = 0 and cg-?) = —cgl). Let C, be the Az-

submodule of N that is generated by {cg;l)(l <1< j <d)}. Then we have an exact sequence
of Az-modules

0= (Cy + L,N)/I,N — N/I,N — N/(Cp + I,N) — 0.
Since ([z}, %], [,N(1 <i < j < d)) is a Az-module, we have
(7, 27], LN(1 <i<j<d))=C,+ I,N. (6.1)

Therefore, we have tory(N/(C,, + I, N)) = torz(H1(X,,)).
We shall show that the action of ¢; on (C,, + I,,N)/I, N is trivial. Indeed, for i, j, we have

(t: = Dl = (& = DTalt))ey € LN
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and

(t; — et = (t7 — 1) To(t:)ciy € L.
On the other hand, for k& # 4,j, by the Hall-Witt identity ([z,[y™', z]]Y - [y, [z 7}, x]]* -
2 [, 5] = 1), wo have

z] + t(t; — Dl a7+t (8 — 1)ei; = 0.

(We remark that, by a further calculation, we have (¢; — 1)¢jx + (t; — 1)cgi + (8 — 1)c;; = 0.)
Mutiplying this equation by T, (¢;)T.(t;), we obtain

gt (8 = D Talt) o7 m) + (8 = DTl o7 + 47 (6 — ey = 0.

]’ )

Multiplying by t;, we conclude that

(th — Vel = 6517 — DTn(ty) eyt ) — Lty (10 = DTo(t) a7 € L.

VR

Therefore, t; acts trivially on (C,, + I,,N)/I,N. Moreover, by (6.1), we see that (C, +
I,N)/I,N is a Z-module generated by at most d(d; U clements. Let P, be the inverse
image of torz(N/(C, + I,N)) under N/I,N — N/(C,, + I,N). Then, we have torz(P,) =
torz(H1(Xso)/In Hl( X)), and

0— (C,+I,N)/I,N — P, — torz(N/(C,, + I,N)) = 0

is an exact sequence of Az-modules. For an arbitrary pair of positive integers n | m, we have
an exact commutative diagram of Az-modules

0—— (Cpy + InN)/IpyN —> Py —— torz(N/(Cyp + I,,N)) —— 0 (6.2)
l‘to;n,n lwmv" l‘plril n
0—— (Cyp + L,N)/I,N Py —— torg(N/(Cp + L,N)) —— 0,

where ¢}, ., Pmn; P, are the maps induced by the identity map of IV respectively. Define a

Az-homomorphism ¥, ,, : (Co+I,N)/I.N = (Cpp+-1nN) /1nN by Y = Tujn (1) - - Toayn(t5).

This is well-defined since

Tonyn () T (t:)
(t?

= )m/n 1+...+t’?+1)(t?*1—0—--~—|—ti+1)
= i+
= 7:11(1)

implies that ¢} — 1 maps to t;* — 1 via X7y, /,(t}'). Since t; acts trivially on (C, +1,N)/I, N,
the map multiplying by [T, ,_,((&7)™/"" + (¢2)™"=2 4 ... 4+ + 1)) becomes the map
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multiplying by [],o;cy(1 + 1+ -+ 14 1) via ¢, , 0 ¥y and ¥y, 0 @), . This implies
‘ann,n O Y pn = p? and Y pn © @;n,n = p?. Since we have

A" = Tt Tlt)ey
Jn () Ty () T (80) T () cij
)T

/n j

= To/m(ts
= Tyt /n(t])cg-l)

and t; acts trivially on (C), + I,N)/I,N, one finds that

i ¢l = 97(Co + LN)/LV).
Likewise, since

Ton(t1) - Tran(ta) ™y o = Toan(tr) - Toagn(ta2)c™) o

we have
im ¥y, pn = p*2((Cpn + Ly N) /Ly N).

Since there are Z-homomorphisms onto subgroups of finite indices each other, the finitely
generated Z-modules (C,, + I,,N)/I,N and (Cpy, + I,,N)/IL,,N have the same Z-rank, and
so ker oy, , and ker v, ,,, are finite. We shall show that

Vppn(torz((Cy, + I,N)/I,N)) = p*2torg((Cpp + Ly N)/LnN).
Indeed, we have

im wn,pn = pdiz((cpn + [pnN)/[pnN)
= pd_Q(ZT D (torZ((Cpn + ]pnN)/IpnN))
= p"?7" @ p?**tory((Cp + LnN) /L N).

for some r > 0. Now, 1, ,,, induces a map
Yo (0 24012((Cpn + LnN) [ 1pnN)) = p*?t0rz((Cpn + IpnN) /InN)),
and we have

torz((Cp + I,N)/I,N) C 9, L (p* *torz((Cpn + LnN)/LnN)).

n,pn

Since the kernel of this map is finite, we have that both the image and the kernel of this
map are Z-torsion. Therefore, we must have

torz((Cp + I,N)/I,N) =, L (07 2torz((Cpn + IL,nN) /Ly N)),

n,pn

ie.,

Vppn(torz((C, + I,N)/I,N)) = p*2torg((Cpp + Ly N)/LnN).
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Since
0 — torz((Cy, + I,N)/I,N) — torz(P,) — torz(N/(C, + I,N))

is an exact sequence of Az-modules, we have

|torz (Hy (Xoo)/In H1 (X . .
tora((Co £ LNV L] divides | torz(H(X,))|.
Since
Vnpn(torz((Cr, + L,N) /1, N)) = p**torz((Cpn + LpnN) /LnN),
we have

[torz((C, + I,N)/I,N)|
= |ker ¢y pnl - |pd72t0rZ((sz + Ly N) /1pnN)|
[torz ((Cpn + LpnN) /IpnN)|
2((Cpn + IpnN) [ 1pn N ) [ p?=2t0r7((Cpn + Lpn N )/ Ipn N) |

= | ker ¢, pnl- fror

Since (Cpy, + 1, N) /L, N is generated by at most @ elements over Z, we must have

d(d—1)(d—2)

[torz((Con + IpnN) /Ly N) /p*2tory ((Cpp + Ly N) /1, N)| divides p— 2

Therefore,

d(d—1)(d—2)

[torz ((Cpp + LynN) /L, N)| divides p~ 2 [torz((Cy, + I,N)/I,N)|.

By iterating this and putting A; := |torz((Cy + I;N)/I;N)|, we obtain that

d(d—1)(d—2)

[torz((Cpm + Lym N)/Lm N)| divides A;p™™ 2,

and so
d(d—1)(d—2)

ltory (Hy (Xoo)/ Lm Hy(Xo0))| divides Ap™ =2 |tors (Hy(X,m))].

This implies
e(H1(Xoo) /Ipp H1 (X)) < e(Hi(Xpn)) + O(n) (n — o0). (6.3)

Applying the snake lemma to the commutative diagram (6.2), we have an exact sequence of
Az-modules

'
pn7n

/!
pn,n

0 — kergy, , — ker @y, n — kergy, . — coker g, . — coker @y, , — coker ¢ — 0.

"

Since ker ! ker coker ¢’ coker ©”  are finite, so are ker ¢, ,, coker ©,,, ,,. Hence
pn,n’ pn.n? pn,n ) pn,ns pn,

pn,n’
we have . ,
| ker Sppn,n _ ‘ ker Sopn,n| | coker Sppn,n|
| coker O | coker @, 5| | ker gogm,n]

19



By the homomorphism theorem, we have

|k€l‘ Qogn,n _ |t0rZHl(Xpn)|
|coker o | |torgHy(X,,)|

pn,n

Since ker ¢, , is finite, we have

Ponn(t012(Fr)) = torz(Ppn).

Let ¢" : torz(P,,) — torz(P,) be the restriction map of ¢, ,,. Then we have ker ¢"” =
ker ., » and coker ¢ C coker ¢y, ,. Therefore, we have

| ker "] [torz (Hy(Xoo)/Ipn H1(Xoo))|

| coker | [torz(Hy(Xoo)/InHi1 (X))|

Accordingly, we obtain

[torz. H1 (Xpn) | [torz(H1(Xoo)/IpnHi (X)) | coker ¢, |
[torz H1(X,,)| [torz(H1(Xso)/InH1(Xx))| | coker gy, / coker ¢”| - | ker SO;m,n|‘

Put Ay := |torz(H;1(X1))|. Since

d(d—1)
2

| coker ¢;n7n| = |(C,, + I,N)/(p*C,, + I,N)| divides pd(d_l)(: P ),

we obtain
|torg Hy (X,m)| divides Ayp™ =™ torg(Hy(Xoo)/ Iym Hi (Xo0))|.

This implies
e(Hy(Xpr)) < e(H1(Xoo)/Ipn Hi(Xoo)) + O(n) (n — o0). (6.4)

Therefore, by (6.3) and (6.4), we obtain
e(Hy(Xpn)) = e(H1(Xoo) /I Hi (X)) + O(n) (n — 00).

7 The main results

In this section, we prove our three main results.

7.1 Iwasawa type formula for links

In this subsection, we prove results that form the cornerstone of our proof of Main result 1.

Let {A,}, be an inverse system of abelian groups. We say {A,}, satisfies the Mittag-
Leffler condition(ML-condition) if and only if, for arbitrary n > 0, there exists Ny > n such
that

If the all morphisms of {A,}, are surjective, then it satisfies the ML-condition.
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Lemma 7.1 ([12, §1]). Let {An}n, {Bn}n, {Cn}n be inverse systems of profinite A-modules
such that, for each n > 0, an exact sequence of A-modules

0—-A,—B,—C,—0
is gwen. If {A,}, satisfies the ML-condition, then the sequence
0—>l‘&nAn—>l'£an—>l'£10n—>0
15 exact.

Let X be a compact connected orientable 3-manifold with a surjective homomorphism
71 (X) — Z2 with d a positive integer and let X, — X denote the corresponding Z?-cover.
Then H;(X) is a finitely generated Az-module. Put Hy(X,n) = Hi(Xs)/Ipm H1(Xoo),
H(Xpn,Z,) = Hi(X,.) ®Z,, and H := lim Hi(X,n,Z,) = Hi(Xo). Since all of the
morphisms of the inverse system {H;(X,n)'},, are surjective, the same statement holds for
{H1(Xpn,Z,)'},, as well. Therefore, { Hy(Xyn,Z,)'},, satisfies the ML-condition.

Lemma 7.2. We have
H/LnH = Hl(Xpn,Zp),.

as A-modules.

In particular, by Theorem 6.1, we have
e(H/TynH) = e(H(Xoo)/Ipn Hi(X o)) = e(H (Xpn)) + O(n) (n — 00).
Proof. Let n and N be non-negative integers. Consider the exact commutative diagram

0 — Lywen Hy (Xoo) — Hy(Xoo) — Hy (X e ) ——0

| | |

0—>]p”H1(Xoo) —>H1(Xoo> —>H1(X n)/—>0

p

By the snake lemma, we have

ker(Hy (Xpnen ) — Hy (Xpn)') = coker(Lymen Hy (Xoo) = Tpn Hi(Xoso)).

Hence we have an exact sequence
0— Ip"Hl(Xoo)/Ipn+NHl(Xoo) — Hl(Xpn+N)/ — Hl(Xpn)/ — 0.
Since Ipn Hy(Xoo)/Ipn+n H1(Xoo) = Ipn (H1 (Xoo)/Lpn+n Hi(X o)),

0 — IynHy(Xpn+n) = Hi(Xpnin) — Hi(Xpn) — 0

Z/p"tN 7 tZ/p"+N y/
900y d

is exact. This induces the exact sequence of Z,|[t; ]-modules
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0 = Ipn Hy (Xpnin, Zp) = Hy(Xpnin, Zp) = Hy (X, Z,) = 0.

Taking N — oo, by Lemma 7.1, we obtain the exact sequence of A-modules

0—=ZpH —H— H(Xpm,Z,) — 0.
This completes the proof.

By Proposition 4.6, we have

(CharH) = (CharH, (X))
in A.
Theorem 7.3. Let X be a compact connected orientable 3-manifold with a surjective ho-
momorphism m (X) — Z% with d a positive integer and let Xo, — X be the corresponding
Z-cover. Let F(ty,...,tq) denote the characteristic element of Hi(X.) and suppose that

F(ty,...,tq) does not vanish on W<. Then there exist invariants p, A € Zsq, depending only
on Xo — X and p, such that

e(Hy(Xpn)) = (pp" + An + O(1))p“=D.
Proof. Since F(t,...,ts) does not vanish on W% by Lemma 5.5, we have
ranky, (H/ZyH) = O(p!=2m).
By Lemma 7.2 and Proposition 5.1, we obtain

e(H\(Xpn)) = (u(F)p" + MF)n + O(1)pl*=".

7.2 On branched Zg—covers

In this subsection, we prove our main result, which is a generalization of the Iwasawa type
formula proven by Kadokami and Mizusawa to branched Zg—covers of links in QHS?’s with
d > 1 under a mild assumption.

Theorem 7.4. Let L be a link in a QHS® M and put X = M — N(L). Let (My), be the
branched Zg—cover consisting of QHS?’s over (M, L) derived from a Z%-cover Xo, — X. Let
Alty, ..., tq) denote the Alexander polynomial of Xoo — X and and suppose that A(ty, ..., tq)
does not vanish on W4. Then there exist i, \ € Zso, depending only on X, — X and p,
such that

e(Hy (My)) = (up" + An + O(1))p=D".
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Proof. We may assume that every component of L is truly branched in some Mp. — M.
In every Z,-cover corresponding to the direct product component of the Galois group ng
by the Hilbert ramification theory for knots (cf. [29, Section 2], [19, Chapter 5]), the inertia
subgroup of Z,, is of finite index. Hence, for every sufficiently large n, each of the components
of the inverse image of L in M, is branched in some Z/pZ-subcover of Myn+1 — M, This
means that the meridians form a part of a Z-basis of the free quotient of Hy(X,n). Let o
denote the meridians of the inverse image of L in M, and let

Hy(Mpn) = Hi(Xpn)/({as})

denote the natural isomorphism induced by the Fox completion. Since the meridians [a]’s

form a part of a Z-basis of the free quotient of H;(X,n»), this map induces
tory (Hy(Myn)) = torg(Hy(Xpn)).
In particular, we have
e(Hy(Mpr)) = e(H1(Xpn)).
By Theorem 7.3, we obtain
e(Hi(Mpn)) = (u(A)p" + A(A)n + O(1))pl4=D.

7.3 More precise estimate

In this subsection, after reviewing a result of Porti, we prove that the Bachmann-Landau
O-notation can be removed in the case where M is a ZHS3.

Let M be a ZHS? and L a link in M with d components K7, ..., K, In this case, the
variables ¢y, ...,tq of Alexander polynomial Ay (ty,...,t;) correspond to the components
Ki,...,K4s. Put X := M — N(L). Let G be a finite abelian group and 7 : m(X) - G
a surjective group homomorphism. Let M, denote the covering of M branched along L
corresponding to ker 7. Let

G = {E G—C| gis a group homomorphism }

be the Pontryagin dual of G. Fix meridians ay,...,aq € Hi(X). Here, «; are regarded
as elements of H;(X) via m. For arbitrary € € G, let Lz = Ug(a,)»1 i be a sublink of L
and A Lg(til, ..., ;) denote the Alexander polynomial of Lg. For the trivial representation
G — C*, one has L; = . We put Ay, := 1. Let

G ::{g’EC/J\ILg,:Ki for some 1 < i < d}.
For arbitrary E’ € @(1), let z(g’ ) denote the corresponding i. Put

#H,(M,) if finite
0 if infinite.

|H1(M7r)‘ = {
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Proposition 7.5 (|23, Theorem 1.1]). We have

- G|
\H (M) =+ T AL (o), .. E(ow,)) :
1 E e Moccm(l - &(ae))

We consider the case when G = (Z/p"Z)?. Note that the equation of polynomials

H (z—&=a""+2" P4+ 2P+ +1
geW(m)\{1}
implies
(1-¢) =p"
£eW(n)\{1}

Therefore, we have

|G
(Heewmny (1 =€)

Hence, by Proposition 7.5, we obtain

| H1 (M) :iH H Ap(Q),

L ce(W(n)\{1})=+")

= 1.

where L' runs over the sublinks of L and ¢(L’) is the number of components of L'.

Theorem 7.6. Let M be a ZHS®. Suppose Ar(ty, ..., tq) does not vanish on (W \ {1})%.
Then, every branched (Z/p"Z)-cover My is a QHS®, and there exists a unique f(U,V) €
Q[U, V| with degy, f <1 and total degree deg f < d such that

e(Hy(Mpn)) = f(p",n).
for every sufficiently large n.

Proof. Since A, does not vanish on (W \ {1})?, neither does Az on (W \ {1})*) for any
L’ C L by the Torres condition (cf. [3]). By Proposition 7.5, we have

(M) = o] I Aw)

L ¢ce(W (m)\{1})«(+)

=> > <AL/<C>).

L ce(W(n)\ {1}«
By Proposition 3.8, we have the assertion. O

Remark 7.7. By Proposition 3.9, the [wasawa p-invariants and the A-invariants in this asymp-
totic formula for ZHS?’s can also be obtained from Alexander polynomials in the way we
introduced in Section 3.
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8 Twisted Whitehead links

In this section, as a preparation to investigate examples, we recall the definition of twisted
Whitehead links Wy, (k € Z) and calculate the Alexander polynomial.

Definition 8.1. For each k € Zs, the twisted Whitehead link W}, in S? is defined by the

following diagram.
k crossings v
N e

Proposition 8.2. (1) If m > 0, then
AVV2m+1($7y) =14+m—mx—my-+ (1 + m)xy

(2) If m > 1, then
Aw,y, (2,y) = m(l + 2y =z —y).

The case (1) can be found in Kidwell’s article [14, Section 3]. The case (2) is an exercise

in Rolfsen’s book [24, Chapter 7, I, Exercise 10]. In what follows, we present a proof.

8.1 Conway Potential function

We make use of the notion of the Conway potential function of a link defined in Hartley’s
article [8, Section 2]. Let V € Az denote the Conway potential function of a link L.

Lemma 8.3 ([8, (5.5)]). We have

Vit ... ta) = (1)L 0.
Lemma 8.4 ([8, (1.1)]). We have

V(ty,. .. ta) = A, .. )t -t

where A is the Alexander polynomial properly chosen with correct sign and m; are integers
that are uniquely determined by the requirement that V satisfies the Lemma 8.5.

Lemma 8.5 (Replacement relations, [8, (5.1),(5.2)]). (1) Let Lo be a link that contains a
configuration
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N
4

where a,b are segments from distinct knots. Let L., L__ be the links obtained by
replacing the configuration by

Let V., V__ and V, denote the Conway potential function of Ly, L__, and Ly
respectively. Then we have

Vi +V__ = (taty + 1, ', ) Voo

(2) Consider the case where one of the arcs of (1) is oppositely oriented. Then we have

V++ + V,, - (tatgl + t;ltb)VOO.

8.2 The Alexander polynomials of the twisted Whitehead links
Let us prove Proposition 8.2.
Proof. We prove

Viomes = —(m+ 1) (taty + t4,") + mltat, "+t ')

and
Vivy, = m(taty — oty — ;1 + 11,1

by induction on m. It is known that

1. If L is a split link, then V = 0.

2 T L= @ then Vj, = 1.
3 I L= @ Cthen V, = —1.

Let
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Then, by the replacement relation (1), we have

V++ + fo - (tatb + t;lt;I)VOo.

Since L__ = Wj and Loy = @ we obtain

—(taty + 't 1),

Then, by the replacement relation (2), we have

Let

V++ + fo == (tatgl + t;ltb)VQo.

Since Ly, = Wi, L = Wy, Lo = @ . we have

Vw, + Vi, = —(taly ' +ta 'ty),

ie.,
Vi, = taty — taty - —t, t, + 1,1, .

Iterating these arguments, we obtain
VW2m+1 = _VWQm - (tatb + tgltb_l)

and
vWQm = _VW2m_1 - (tatljl + t;ltb)

By the induction hypotheses, we have

Vivamer = —mltaty —taty =t + 1, ,1) — (taty + 1,11, 1)

= —(m+1)(taty + 't ") + mtaty, "+, 't))
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and

Vi, = mltaty 1,150 — (m— D) (taty t + 1) — (taty "+ 1, 't)
= m(taty — taty t —t, ty + 1,1 1).

By Lemma 8.4, we must have

AWzmH(m?y) = AWQmH(tz’tl%)
= (m+1)(t2 +1) — m(t2 +t3)

and

AW2m<x7y> = AWzm(tzatl%)
= m(t2F —t2 -1 +1).

9 Examples

In this section, we provide examples of Theorem 7.6 by considering twisted Whitehead links.
Moreover, we show that these examples assure us that Iwasawa p-invariants can be arbitrary
non-negative integers when d < 2. We also introduce an example of so-called “p-adic limits”
for d = 2 that we have succeeded in calculating. At the end of this section, we provide a
table of the y and A invariants for the links that appear in tables of the Rolfsen’s book [24].
We used Sage Math to compute the invariants.

9.1 Z%—covers

Here, based on Porti’s result (Proposition 7.5), we explicitly calculate the sizes of the p-
torsions in the Z2-covers of Wa,n and L = 63, as examples of Theorem 7.6.

Example 9.1 (Twisted Whitehead links W, ). Let p be any prime number and & € Zx.
Then branched Z2-cover (Mp» — S),, over (8%, Wo,) satisfies the following:

e(Hy(Mpn)) = (kp™ + 2n — 2k)p" — 2n + k.

Hence we have uw, , =k and Aw, , = 2.
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Proof. Since Awgpk (x,y) = pF(1 + 2y — x — ), we have

H(Me) = ] I a¢o

1£(eW (n) 1£GEW (n)

= HHPk(l —G)(1—-¢)

G2 (1

= J[0 a-r - )1 -¢"
G2

S § [ e
G2

= (ph)IEED T
pk(p2n—2p"+1)+2np"—2n

— p(kp" +2n—2k)p™ —2n+k

In particular, we obtain

Theorem 9.2. Suppose d = 2. Then, for arbitrary k € Z>q, there exists a 2-component link
L such pup, = k.

Example 9.3 (L = 6%). The link L = 62 is defined by

and its Alexander polynomial is Ar(z,y) = x?y? + 2y + 1, which we have calculated by using

Rolfsen’s table [24]. In the branched Z2-cover over (S%, L), we have |Hy(My)| = 37"~ If
p # 3, then all the Iwasawa invariants are zero.

For n > 1, let ®,, denote the n-th cyclotomic polynomial, i.e.,

o, = H (x — 627”%).

1<k<n, ged(k,n)=1
We utilize the following result.

Lemma 9.4 (Apostol, [2, Theorem 1]). If m >n > 1 and (m,n) > 1, then we have

[p(n)  m _ Je
Res(®,,, ®,,) = n ‘
1 otherwise,

where [ is a prime number, Res(f, g) denotes the resultant of two polynomials, and p(n) is
Euler’s totient function.
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Proof of Example 9.3. Put

Then we have

where w is a primitive cube root of unity. By Lemma 9.4, we have
Res(2?" — 1,70 (7))
=TI Res(@,(x). @4(x)
Lk

- H Res(®, (), P30 (7))

— H3s0(pl) — gH+Xi P -
1=0

.

= 3.

On the other hand, we have
Ar(1,1) =3.

By Lemma 9.4, we also have
Res(y”" —1,Ar(1,y)) = Res(y?" — 1, ®3) = Res(®,, ®3) = 3

and
Res(z"" — 1,Ap(z,1)) = 3.

Therefore, we obtain

Hi(Mp)| =[] AnGG)=3""

1#¢1,62€W(27)
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9.2 TLN-cover and v-invariant

Here, we briefly observe an example of the case with (¢,d) = (2,1) and give a remark.
The main reference for this section is [13]. Let L be a link in a QHS® M consisting of
null-homologous components. The total linking number cover (TLN-cover) is the Z-cover
corresponding to the surjective homomorphism 7 : (M — N(L)) — Z sending all positive
meridians to 1. In this situation, the reduced Alexander polynomial Af(t) = A(t,. .., 1)
and a polynomial Ax_(t) = (t — 1)AL(t) are defined, and we have

Proposition 9.5 (Kadokami-Mizusawa, [13, Theorem 3.3]). Let L be a link in a QHS®
M consisting of null-homologous components and let (M — M), denote the system of
branched 7./ p"7Z-covers obtained from the subcovers of the TLN-cover over (M, L) by the Fox

completions. Then

HL(My)| _
FH, (M)

Example 9.6. Let L = Wy, in S® and let (M» — S®),, denote the sequence of branched
Z/p™Z-covers obtained from the TLN-cover. Then we have

Ap(t) = AL(tt) € Ay = pF(t —1)2,

Ax (t) = (t = DALE) = p*(t — 1)%,

and
e(H (Mpn)) = kp" + 3n — k.

Proof. By Proposition 9.5, we have

| Hy1(Mp)]
Hi(My)| = =22 = Ax. (€
) =y = 1 I avcel
= [[»*a-¢?
E41
= ()"0
prrsnk

Therefore, Theorem 9.2 can be improved to

Theorem 9.7. Both when d = 1,2, for arbitrary k € Zs, there exists a 2-component link
L in S3 such up = k.

Remark 9.8. By Ueki-Yoshizaki [32], special interests of Iwasawa v-invariants in Z,-covers
are known. Example 9.6 indicates that Iwasawa v-invariants can be arbitrarily small as well.
Also, Example 9.1 indicates that Iwasawa v-invariants for d = 2 can be arbitrarily large.
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9.3 p-adic torsions

Kisilevsky proved that in a Z,-extension of a global field the class numbers p-adically con-
verges [16, Corollary 1]. Yoshizaki and Ueki proved an analogous result for Z,-covers of
3-manifolds:

Proposition 9.9 (A part of Ueki-Yoshizaki, [32, Theorem 3.1]). Let (X,» — X), be a
compatible system of Z/p"Z-covers of a compact 3-manifold X. Then the sizes of the non-p
torsion subgroups Hy(Xyn )nonp converges in Z,.

We remark that the p-adic limit of Hy(Mpn )nonp coincides with Kionke’s p-adic torsion by
[15, Theorem 1.1]. Kionke’s framework is for arbitrary pro-p covers and the p-adic limits of
| Hy (Mpn)nonp| In Zg—covers of links also give examples of the p-adic torsions. Here we attach
an example for the case ¢ = d = 2. Let C, denote the p-adic completion of an algebraic
closure of the p-adic numbers @, and fix an embedding Q— C, of algebraic closure of Q.

Example 9.10. Let L = 62 in S® and let p # 3. Then, by Example 9.3, we have

lim |H; (Mo )nonp| = lim 37" 71 = ¢/3,

n—oo n—o0
where £ denotes the unique root of unity of order prime to p satisfying |{ — 3|, < 1, that is,
¢ = 3 mod p holds. We have £/3 € Q if and only if p = 2 and in this case we have £/3 = 1/3.

Proof. (1) By Fermat’s small theorem, we have 3*" = 3 mod p, and hence 7" = £. By [32,
Lemma 5.6 (1)], lim (37" — &P") = 0 in Z,. Thus we obtain the assertion.
n—oo

(2) Let us apply [32, Theorem 5.7] to verify the consistency. If p # 2,3, then 37" 7! =
(sgn(l — 3) - Res(t?" — 1,t —3) +1)/3 = (=1)(=1)P(¢ = 1) +1)/3 = £/3. If p = 2, then
37"~ = (sgn((1—3)(=1-3))-Res(t?" —1,t—3)+1)/3 = ((—=1)3(=1)*(¢-1)+1)/3=¢/3. O

9.4 4 and ) invariants for Rolfsen’s table

Table 1 is the table for p and X invariants of links that we have succeeded in calculating by
using Sage Math. We cite the data of Alexander polynomial from a table in Rolfsen’s book
[24]. We shall observe several interesting examples.

e \(6%) =2 if p =3 since
X2Y2 42X +2XY? + X2+ 5XY +Y? +3X +3Y +3
= (1+X)1+Y)—1)* mod 3.
e \(63) =1 since
—XYZ-XY-XZ-Y/Z/-X-Y -7
= —(1+X)1+Y)1+2)-1).
e \(83) =2 since
WXYZ+WXY +WXZ+WYZ+XYZ+WY +XY+WZ+ X7
= (1+X)A+W)—=D)((1+Y)1+2)—1).
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Table 1: p and A invariants

link Alexander polynomial of Ap(1+ X,1+7Y) o A
47 XY + X +Y 2 0 lifp=2
57 XY 0 2
67 X2Y2 4+ 2X2%Y +2XY2 + X2 +5XY + Y2 +3X +3Y +3 0 2ifp=23
62 X2Y + XY2 + X2 +3XY +Y2+3X+3Y +3 0 0
65 | 2XY + X +Y +2 0 0
71 X2Y2 L X2Y + XY2 £ XY — X —Y — 1 0 0
75 X2Y? + X?Y + XY? +3XY + X + Y + 1 0 0
73 2XY Lifp =2 2
72 X3y +2X2y +2XY 0 421fﬂf’;t2
72 X3Y + X% + X2Y +3X%2 + XY +3X +Y +2 0 1ifp=2
72 X3Y + X2Y + XY 0 2
72 | X®Y + X% +3X2Y +3X2+3XY +3X +Y +2 0 lifp=2
72 XY 0 2
o2 X3y3 £ 3x3Y?2 £ 3X2Y3 £ 3X3Y +9X2Y?2 £ 3XYS +2X° 4 10X2Y + 10XY? 0 o
1 +Y3 +7X2% 4 13XY +4Y2 +9X +6Y +4
o2 X3Y + X2YZ £ XY® + X3 +4X?Y +4XY2 + Y% +4X%2 +7XY o o
2 4+4Y2 46X +6Y +4
82 | 2X2Y2 +3X°%Y +3XY? + X2 +7XY + Y2 +3X +3Y +3 0 0
o2 X3YZ 4 X2Y3 4 2X3Y +4X°Y? 4 2XY? £ X2 4+ 7XZY +7XY2 4 Y3 o 3iftp=2
4 44X2 4+ 10XY +4Y2 + 6X +6Y + 4 p=
82 | X2¥? - X2 - XY -Y2-3X-3Y -3 0 0
8¢ 3XY + X +Y +2 0 1ifp=2
82 XYy? XY - X-Y -1 0 0
82 X2Y2 F XY+ X +Y +1 0 0
832 —X3 —2X%Y — X2 43X +Y +2 0 1ifp=2
8%, | X°Y 0 4
87, | - X°v + X% - X%V +3XZ - XY +3X +VY +2 0 1ifp=2
8%, | X°Y 0 4
87, | XY — X2Y — XY 0 2
87, X3Y + X% - X?2Y +3X%2 — XY +3X +Y +2 0 1if p =
8%, | XY 0 2
87 | —X° - X?+2XY +3X +VY +2 0 1ifp=2
I X3Y3 4 2X3YZ +2X°Y° + X3Y +4X2Y?2 + XY2 + X2y + XY?Z — X2 o o
1 —2XY - Y2 —3X —3Y —2
2 X3Y + X2YZ £ XY +2X%Y +2XY?2 - XZ XY —YZ —3X — 3Y
93 —92 0 0
97 | 2X°Y? 42XV +2XY? +3XY — X —Y —1 0 0
97 | X3Y?+ X?yT + X3y +5X°Y? 4 XY° +5X°Y +5XY2 +5XY 0 2
92 X3Y +2X2y2 4+ XY3 +4X2Y +4XY2 +4XY 0 421fif”njt2
B —X3y?2 —X?2y3 X3y —3X%2y?2 - XY3 —2X2Y —2XY? + X2 + XY o
95 9 0 lifp=2
+Y2 43X +3Y +2
o2 —X3yZ - X%2y3 X3y —2X°Y? - XY3 - X?Y — XY? + XZ 4 2XY o Liftn—o2
7 | 4¥Y2 43X 43y +2 P=
92 2X%Y +2XY2 4+3XY — X —Y — 1 0 0
2 X3yZ - X%2y3 4+ X3y —3x2yZ - XY® —3X?%Y —3XY?2 —2X? —3XY
99 —2X 0 1
97, | 3XY Tifp=3 2
97, 2X2y2 + X2Y + XY2 + XY — X —Y — 1 0 0
97, | X2¥2 - X%Y —XYZ XY+ X +Y +1 0 0
97, | X°Y +4Xx%Y +7X3%Y +6X%Y +3XY 0 42‘fifp£t3
92 X% 42Xty + 55X +6X3Y +10X° +8X2Y + 10X2 +4XY +5X o Liftn—2
4 | 4y 42 P
975 | 2X%Y +3X2%Y 4+3XY 0 421fifp;t3
97 2X3 +4X2Y +5X2 +3XY +3X +Y +2 0 1ifp=2
97, | 2X5+3X7Y +5X° +2XY +3X +Y +2 0 1ifp=2
97 2X3Y +2X%Y +2XY Lifp =2 2
o2 XY + X3Y2 +5X3Y +2X2Y2 + X5 +8X2Y +2XY? +2X2 +6XY o o
19 | 42X +Y 41
02 XT 42Xy 4+ 2X2Y2 +4X3 +7X2Y +2XY2 +7X%2 4+ 6XY + Y2 o o
20 | 46X +3Y 43
o2 XAYZ 4 XYy +3X3Y2 £ 5X°Y +4X°2Y? + X3 +8X2Y +2XY?2 +2X2 o o
21 | 46XY +2X4+Y +1
92 XTY +2Xx3Y? £ X?T 4+ 5X3Y +4X2Y? +4X3 4 10X2Y +3XY? + 7X?2 0 o
22 | 48XY 4+ Y% 46X +3Y +3
92, | X3V +2X?YZ+ XY3 +3X%Y +3XY2 - X2 Y2 —3X —3Y — 2 0 1ifp=2
92, | 3X2Y?+3X%Y +3XY? + X2 +7XY +Y? +3X +3Y +3 0 2ifp=3
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link Alexander polynomial of Ay (1 4+ X,1+7Y,...) A
92, | X%y —2x%y —2XY 0 421fifpnjt2
92, | X3y - X3 - X°Y - X7+ XY +3X +Y +2 0 1ifp=2
92, | 2x3Y 4+ 3Xx2%Y +3XY 0 421fifpnjt3
92, | X3y —x3 - X’Y —3X2-XY -3X-Y -2 0 lifp=2
959 | —2XTY —5X3Y — 6X°Y —3XY +1 0 0
93, —X3Y +2X°% + X%2Y +5X2 +3X +Y +2 0 0
92, | X°Y +3x%Y +4x3Y +2X%Y + XY 0 2
93, | 2X°Y + XY + XY 0 2
93, | 2X°%Y + XY + XY 0 2

2 XTyZ 4 Xy +2X3YZ +3X°%Y +2X°Y? +2X°%Y + XY? - X% —2X
9%, | Ty _4 0 0
02 X2 1 XTy +2X3vZ +3X3Y +2X2Y2 +4X2Y + XY2 + X2 +4XY o o

35 | 42X 4+Y +1
936 | 2X°Y +2X7Y +2XY Lifp=2 2
92, | X5Y +3X%Y 4+ 5X3Y 4+ 4X2Y + 2XY 0 421fifpn32
92 2X3Y + X2V + X2 +2XY +3X +Y +2 0 lifp=2
o2 — Xty —2x3y? - XxT _4x3y —4x?Y? —3X3 —7X?Y —3XY? —4X? o o

39 | _4XY —Y2_2X—-Y
02 XTyZ 1 oxTy + XSy? + XT+5X3Yy +4X% +4X%Y + XY2 +7X°2 o 2 ifp— 3
40 | 44XY 4+Y24+6X4+3Y +3 p
97, | x3Y3 4+2x3v2 4+ X?2v3 4 X3y +5X2Y2 +3X2Y +3XY? +3XY 0 421fifp;t3
B XWYW?2 1 XTy + X3yZ +2X%Y — X?Y — X2 —2XY —2X - Y
9% | o 0 0
97, X5 +5xT 410X +10X2 +5X +Y +2 0 1ifp=2
92, | X3y +2x?y 42XV 0 42‘fif”n;2
97; | 2X%+5X%2 - XY +3X +Y +2 0 lifp=2
9%¢ | 2XY 1ifp =2 2
93, | XY 0 2
99 | 2X7+ X?Y +5X° +3X +Y +2 0 lifp=2
959 | XT+4X% 4+ X?Y +7X% +2XY + Y2 46X +3Y +3 0 2ifp=3
98, | XY XY 4+YZ+X+Y +1 0 0
02 XY + XT+3X3Y +4X% +4X%2Y + XY2 +7X2 +4XY +Y? o o

51 | 46X +3Y +3
92, | X2Y?+ XY + Xy —Y? - X-Y -1 0 0
02 XZyZ 4 X3 4 2X2%Y +2XY2 Y3 +4X?2 +5XY +4Y2 46X o Sifp—2
53 | 4+6Y +4 p=
92, X2Y + XY?2 4+ XY - X -Y — 1 0 0
9. | X?Y + X2Y + XY 0 2
925 | X°Y + X%Y + XY 0 2
92, [ XY +2X%Y + X2 +3XY +3X +Y +2 0 0
92, | X°Y + X%Y + X2 +2XY +3X +Y +2 0 0
02 X%y + X5 45Xy +5XT 1+ 9X3Y +10X° +8X2Y + 10X2 +4XY o o

59 +5X +Y +2
92, | XY +2X5 4+ 2X%Y +5X2+ XY +3X +Y +2 0 0
92 X3YZ 1 2X3Y +3X2YZ + XYS + X% 4 6X%Y +6XY2 + Y3 +4X? o 2ifp =2
61 +9XY +4Y2 +6X +6Y + 4

6 | XY+ XZ+YZ+X+Y +2Z 0 0

63 —-XYZ 0 3

63 —XYZ - XY —XZ-YZ—-X—-Y —Z 0 1

73 —XYZ+YZ - X+Y +2Z 0 0

g3 —X2YZ27 —2X32YZ — XY?Z — X?°Y + XY2 - X2Z —3XYZ — X2 +Y? o o

1 | —2XZ —2X 4+2Y — Z

3 XZYZ 4 X?YZ + XY?Z +2X2Y 4+ 2XY2 + X2Z +2XYZ +Y?Z + X2 o o

2 H4XY + Y2 4+ 2XZ+2YZ +2X +2Y + Z

83 XYZ—-XY - XZ—-YZ—-X—-Y —2Z 0 1ifp=2
g3 X3Y +2X2YZ + X2 +3X2Y + X2Z +2XYZ +4X2 +2XY +2XZ o 3ifp=2
4 +4X 1 if not
83 | X2Y22 4 X2YZ + XY2Z +2XYZ 0 431fifpnjt
88 | X2Y?Z + X2YZ+ XY?Z+3XYZ+XZ+YZ+ 2 0 1

o3 —X?Y?27Z — X%y?2 —2X?YZ —2XY?Z —2X?%Y —2XY? - X°’Z —4AXYZ - Y?Z 1

7 —X2 _4XY —Y?2 _2XZ—2YZ —2X —2Y — Z

o2 XY?Z - XY + XYZ + XYZ+Y?Z - X2 +Y?2+2YZ - 2X o o

8 | 42V 4+ Z

85 | xvz 0 3
o3 X3YZ + X3Y + X°Z +3X%2YZ + X3 +3X2Y +3X2Z +2XYZ +4X?2 o 3ifp=2
10 | 42XY +2XZ 44X 1 if not

34




link Alexander polynomial of Ay (1 4+ X,1+7Y,...) o A
93 X2Y2Z + X?YZ + X2Y —XY? - XZ—-YZ - Z 0 0
93 X2Y2Z + X2YZ + X2Y — XY2 +2XYZ+ XZ+YZ + Z 0 0
e —X3YZ - X?’YZ - X4+ X?’Y +X%2Z-XYZ-X2+XY +XZ o o
3 | 4YZ-X+Y +2Z

93 X3Y + X3Z +2X2YZ + X3 +2X%Y +2X2Z +2XYZ + X2 +2XY o o
4 | 2XZ4YZ+X+Y +Z

o3 X2YZ+ XY2Z +2XYZ-Y2Z+X%2 Y2 -2YZ+2X —2Y o o

4

o3 X2Y2Z + X2YZ+ X2Y - XY2 + XYZ -Y2Z+X2-Y?2 _2vZ o o
6 42X —2Y — Z

93 2XYZ —-YZ+X—-Y — 2 0 Tifp=2
93 X3y +2X2yZ 4+ 2X%Y + XYZ 8 3 'fo’fjoi’?’
9 | X’YZ+X?YZ+XYZ 0 3

93, | x%’vY?*z 0 5
3 X2Y?2Z —8XYZ - Y?Z 4+ X? —Y? —8XZ - 10YZ 42X — 2Y

971 —9z 0 0

9%, | X3vz 0 5

93, | X2Y2Z + X2Y? + X°YZ + XY Z+ X°Y +XY? - XZ-YZ -2 0 0
3 X2YZZ + X2Y?2 1 XY Z + XY2Z+ X°Y + XY? 4 2XYZ + XZ +Y 2

974 +Z 0 0

93 X3Y + X3Z + X2 +2X%Y 4+ 2X%2Z + X2 +2XY +2XZ+YZ o o
5 | 4X+Y +2Z

i —2X2YZ + X3 —X2Y — X2Z —2XYZ+ X2 - XY - XZ-YZ o o
6 | +X-Y -2

95, | —XZH+ XY +X2Z - X2+ XY +XZ+YZ-X+Y o o

+Z

93 —XYZ 0 3

950 | —X3YZ — X3y —2X?YZ —2X°Y — XYZ 0 3

93, | —x%z - x%vz-2x%z 0 43‘fifpnjt2
87 —WXY - WXZ-WYZ—-XYZ-WY —XY —WZ—XZ 0 0
83 —WXZ -WYZ-WY +XY —WZ— XZ 0 0
83 WXYZ+WXY +WXZ+WYZ+XYZA+WY + XY +WZ+XZ 0 2
8% WXYZ -WXZ-WYZ-WY +XY -—WZ—XZ 0 0

10 Remarks

e In [33], Wan proved that Greenberg’s conjecture holds in the function field case. On
the other hand, in [5], DuBose and Valliéres proved that Greenberg’s conjecture holds
in the graph case. It is mysterious whether Greenberg’s conjecture holds for our QHS?
case or not. It would be interesting if we could construct a non-Greenberg example.
We should continue comparing these four fields: number fields, function fields, links,
and graphs.

e As is well known, the relationship between the sizes of the torsion subgroups and the
Betti numbers is like siblings as research objects. The polynomial periodicity of Betti
numbers for Z?-coverings has been researched by Adams-Sarnak [1], Hironaka [9], and
Sakuma [26]. While Betti numbers are always trivial in number theoretical side, the
topological side deserves to be researched.
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