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Abstract

Let p be a prime number. In this thesis, we define the Iwasawa invariants of
links and prove two asymptotic formulae for the first homology groups of Zdp-covers
of links in rational homology 3-spheres, which are generalizations of the Iwasawa type
formulae proven by Hillman–Matei–Morishita and Kadokami–Mizusawa under a mild
assumption. We also provide examples of these formulae. Moreover, when d ≤ 2,
considering the twisted Whitehead links, we prove that Iwasawa µ-invariants can be
arbitrary non-negative integers. This thesis also includes an example of p-adic torsions
for d = 2. This thesis is based on a paper [28] that is a joint work with Jun Ueki.
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1 Introduction

Let p be a prime number. For an abelian group G whose p-torsion subgroup is a finite group,
let e(G) denote the p-exponent of the order of the p-torsion subgroup. For a number field
k, let Cl(k) denote the ideal class group of k. The size of Cl(k) is known to be finite and is
called the class number of k.

In [10], Iwasawa proved the following result, which is so-called Iwasawa’s class number
formula. Let Zp denote the ring of p-adic integers.

Theorem ([10, Theorem 4]). Let k∞/k be a Zp-extension and kpn be the subfields corre-
sponding to the subgroups pnZp of Zp. Then there exist invariants µ, λ ∈ Z≥0 and ν ∈ Z,
depending only on k∞/k, such that

e(Cl(kpn)) = µpn + λn+ ν

for every sufficiently large n.

This result is known to be the first asymptotic formula that describes the regularity of
the variation of the class numbers in certain towers of number fields. The values µ, λ, ν are
called the Iwasawa invariants of k∞/k.

On the other hand, let M be a closed connected orientable 3-manifold. M is called a
rational homology 3-sphere (QHS3) if Hi(M ;Q) ∼= Hi(S

3;Q) for all i ≥ 0. M is called an
integral homology 3-sphere (ZHS3) if Hi(M ;Z) ∼= Hi(S

3;Z) for all i ≥ 0. By the Poincare
duality and the universal coefficient theorem, we have

• M is a QHS3 if and only if H1(M ;Z) is a finite group.
• M is a ZHS3 if and only if H1(M ;Z) = 0.

In this sense with a deeper background as we explain later, QHS3’s in topology correspond
to number fields in number theory, and ZHS3’s correspond to number fields with the class
number 1. In what follows, we write H1(M) = H1(M ;Z).

After a work of Hillman–Matei–Morishita [7, Theorem 5.1.7], Kadokami and Mizusawa
proved the following topological analogue of Iwasawa’s formula. This is so called the Iwasawa
type formula.
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Theorem ([13, Theorem 2.1]). Let L be a link in a QHS3 M , let X = M − N(L) denote
the exterior of an open tubular neighbourhood of L, let τ : π1(X) � Z be a surjective
homomorphism, and let X∞ → X denote the corresponding Z-cover. Let (Mpn → M)n
denote the system of the branched Z/pnZ-covers obtained by the Fox completion and suppose
that every Mpn is a QHS3. Then there exist invariants µ, λ ∈ Z≥0 and ν ∈ Z, depending
only on X∞ → X and p, such that

e(H1(Mpn)) = µpn + λn+ ν

for every sufficiently large n.

These µ, λ, ν are called the Iwasawa invariants of (Mpn →M)n. As a remark, Ueki proved
that this formula also holds for a Zp-cover that does not necessarily derived from a Z-cover
in [31].

Let d ≥ 2. In [4], Cuoco and Monsky generalized the result of Iwasawa to Zdp-extensions.

Theorem ([4, Theorem I]). Let k∞/k be a Zdp-extension of number fields and kpn be the
subfields corresponding to the subgroups (pnZp)d of Zdp. Then there exist invariants µ, λ ∈
Z≥0, depending only on k∞/k, such that

e(Cl(kpn)) = (µpn + λn+O(1))p(d−1)n,

where O is the Bachmann–Landau notation with respect to n.

These µ, λ are called the Iwasawa invariants of k∞/k. We remark that Monsky showed
in [18] that the O(p(d−1)n) part can be refined to α∗ +O(np(d−2)n) for some α∗ ∈ R (α∗ ∈ Q
if d = 2).

To show this result, the power series ring Λ := Zp[[T1, . . . , Td]] and modules over Λ play
important roles. Let k be a number field and k∞/k a Zdp-extension. Let kpn denote the fixed
field of pnZdp and let l∞/k∞ be the maximal abelian unramified pro-p extension of k∞. Put
Γ := Gal(k∞/k) and X := Gal(l∞/k∞). Then it can be shown that l∞/k is Galois. Put
G := Gal(l∞/k). Then there is a well-defined action

Γ×X 3 (σ, x) 7→ σ̃xσ̃−1 ∈ X ,

where σ̃ ∈ G is a lifting of σ from Γ to G. Let Zp[[Γ]] denote the complete group ring of Γ over
Zp. Then X becomes a Zp[[Γ]]-module via this action. It is known that the Iwasawa-Serre
homomorphism

Zp[[Γ]] 3 γi → 1 + Ti ∈ Zp[[T1, . . . , Td]]

is an isomorphism of rings (cf. [27, Theorem 3.3.9]) and X is a finitely generated torsion
Λ-module.

On the other hand, let M be a QHS3 and L a link in M , that is, the image of a tame
embedding of S1t· · ·tS1 into M . Let N(L) be an open tubular neighbourhood of L and put
X = M−N(L). Let τ : π1(X) � Zd be a surjective homomorphism and let X∞ → X denote
the Zd-cover corresponding to ker(τ). Here, d does not need to coincide with the number of
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components of L. In addition, for each n ≥ 1, let Xn → X denote the (Zd/(nZ)d =)(Z/nZ)d-
subcover of X∞ → X and let Mn →M denote the branched (Z/nZ)d-covers obtained by the

Fox completion. An inverse system M̃ = (hpn : Mpn → M)n is called the branched Zdp-cover
over (M,L) derived from X∞ → X.

Let ΛZ = Z[t±1
1 , . . . , t±1

d ]. The Alexander polynomial ∆(t1, . . . , td) ∈ ΛZ of X∞ → X is
defined to be a generator of the divisorial hull of the finitely generated ΛZ-module H1(X∞).
Details of the theory of Alexander polynomials are written in [6, Chapter 3 and 4]. Note
that the ring ΛZ can be regarded as a subring of Λ by the homomorphism of rings

ΛZ 3 ti → 1 + Ti ∈ Λ.

Hence ∆(t1, . . . , td) in ΛZ can be seen as an element ∆(1 + T1, . . . , 1 + Td) of Λ.
In this thesis, we prove the following topological analogue of the result of Cuoco and

Monsky. This is a generalization of Hillman–Matei–Morishita and Kadokami–Mizusawa
under a mild additional assumption. Put W := {ξ ∈ Qp | ξp

n
= 1 for some n ≥ 0}.

Main result 1 (Theorem 7.4). Let M̃ be the branched Zdp-cover over (M,L) derived from
a Zd-cover X∞ → X, that is, the inverse system consisting of (Z/pnZ)d-branched covers
Mpn →M derived from X∞ → X, defined as above, and suppose that every Mpn is a QHS 3.
Let ∆(t1, . . . , td) denote the Alexander polynomial of X∞ → X and suppose that ∆(t1, . . . , td)
does not vanish on W d. Then there exist invariants µ, λ ∈ Z≥0, depending only on X∞ → X
and p, such that

e(H1(Mpn)) = (µpn + λn+O(1))p(d−1)n.

We remark that, when d = 1, it is known that every Mpn is a QHS3 if and only if ∆(t)
does not vanish on W \ {1} [31, Theorem 4.17]. Hence the QHS3 assumption in the result of
Kadokami–Mizusawa is slightly weaker than the assumption on Alexander polynomials for
our result. Also, as was the case with the result of Cuoco-Monsky, the O(p(d−1)n) part can
be refined to α∗ +O(np(d−2)n) for some α∗ ∈ R (α∗ ∈ Q if d = 2).

In order to obtain this result, we first establish a similar formula for a general Zp-cover
of compact connected orientable 3-manifolds derived from a Zd-cover (Theorem 7.3).

Greenberg conjectured that the p-exponent of the class numbers in Zdp-towers of number
fields ramified at finitely many primes is given by a polynomial in pn and n of total degree
at most d for every sufficiently large n (cf. [4, Section 7]). This means that the O(p(d−1)n)
part of the result of Cuoco–Monsky would be precisely described by such a polynomial.
By restricting the QHS3’s we consider to ZHS3’s, we obtained an evidence of Greenberg’s
conjecture in the link side.

If L is a d-component link in a QHS3 M and X∞ → X is its unique Zd-cover, then we will
denote the Alexander polynomial by ∆L(t1, . . . , td). In this situation, Iwasawa invariants µ
and λ are determined only by L and p. Hence we denote them by µL and λL.

Main result 2 (Theorem 7.6). Let M̃ be the branched Zdp-cover over (M,L) derived from a
Zd-cover X∞ → X. Suppose in addition that M is a ZHS3, L consists of d components, and
the Alexander polynomial ∆L(t1, . . . , td) of L does not vanish on (W \ {1})d. Then, every
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branched (Z/pnZ)d-cover Mpn is a QHS3, and there exists a unique f(U, V ) ∈ Q[U, V ] with
degV f ≤ 1 and total degree deg f ≤ d such that

e(H1(Mpn)) = f(pn, n).

for every sufficiently large n.

This means, we can express e(H1(Mn
p )) by

e(H1(Mpn)) = µLp
dn + λLnp

(d−1)n + µd−1p
(d−1)n + λd−1np

(d−2)n + . . .+ µ1p
n + λ1n+ ν

for every sufficiently large n, where µd−1, . . . , µ1, λd−1, . . . , λ1, ν ∈ Q. Hence the O(p(d−1)n)
part of Cuoco–Monsky type formula can be described by a polynomial with the form Green-
berg conjectured in the case of a pair of a ZHS3 and a d-component link.

In order to prove Main result 1, we investigate some basic properties of Zd-covers of
3-manifolds. Especially, the following result plays a key role. We define ideals In of ΛZ by
In = (tn1 − 1, tn2 − 1, . . . , tnd − 1).

Main result 3 (Theorem 6.1). Let X∞ → X be a Zd-cover of a compact connected orientable
3-manifold. Then we have

e(H1(Xpn)) = e(H1(X∞)/IpnH1(X∞)) +O(n) (n→∞).

We also exhibit several examples. For the twisted Whitehead link W2pk , we have

|H1(Mpn ,Zp)| = p(kpn+2n−2k)pn−2n+k.

We will calculate this example in Section 9. For this purpose, we calculate the Alexander
polynomial of the twisted Whitehead links W2m, which is already known, in Section 8 and
obtain

∆W2m(x, y) = m(x− 1)(y − 1).

i.e.,
∆W2m(1 +X, 1 + Y ) = mXY.

In particular, we obtain µW
2pk

= k. Therefore, we have

Main result 4 (Theorem 9.7). Suppose d = 2. Then, for arbitrary m ≥ 0, there exists a
link L in S3 such that µL = m.

This can be viewed as a topological analogue of the number theoretical results of Iwasawa
[11, Theorem 1] and Ozaki [22, Theorem 2]. We remark that a result of Kadokami–Mizusawa
[13] yields a similar result for d = 1 (Theorem 9.7), which is a refinement of a result of Ueki
[30, Theorem 5.2].

Our calculation yields a new example of Kionke’s p-adic torsions for d = 2 as well. In
[32], Ueki and Yoshizaki proved the following result.

5



Theorem ([32, Theorem B]). Let (Xpn → X)n be a Zp-cover of compact 3-manifold X.
Then, the sizes of the torsion subgroups H1(Xpn)tor, those of the non-p torsion subgroups
H1(Xpn)non- p, and those of the l-torsion subgroups H1(Xpn)(l) for each prime number l, of
the 1st homology groups converge in Zp.

For L = 62
1 (see Example 9.3) and p 6= 3, we will show that |H1(Mpn)| = 3p

n−1 and this
sequence converges in Zp. This can be regarded as an example of the above result for d = 2.

The structure of this thesis is as follows. In Section 2, we briefly explain a historical
context of our motivation and introduce some basic analogies between number theory and
knot(link) theory. In Section 3, we introduce the notion of Iwasawa invariants µ and λ for
links and explain what corresponds to the Weierstrass preparation theorem of one variable
Iwasawa theory for our case. In Section 4, we study some basic properties on Alexander
polynomials. In Section 5, we review results of Cuoco and Monsky on Λ-modules that we
use in Section 7. In Section 6, we prove a fundamental result for 3-manifolds that is crucial
to attain our main results. In Section 7, we prove our main results. In Section 8, we calculate
the Alexander polynomial of the twisted Whitehead links. In Section 9, as stated above, we
provide several examples to reinforce our results. By using Sage Math, we also place a table
of the Iwasawa invariants µ and λ for links that appear in tables of the Rolfsen’s book [24].
In Section 10, we give some remarks on our results.

2 Backgrounds

In this section, we briefly explain a historical context of our motivation and review basic
analogies between number theory and topology.

Let k be a number field, i.e., a finite extension of the field Q of rational numbers. The
class number of k is the size of the ideal class group Cl(k) of k. The notion of class numbers
in number theory has been crucial as a research object since the era of Kummer. Kummer
invented the notion of class numbers and successfully proved that the Fermat last theorem
holds for a prime number p if p does not divide the class number of p-th cyclotomic field. He
also proved that the class numbers of cyclotomic fields are related with the particular values
of the Riemann zeta function, which is closely related to the distribution of prime numbers.

That is being said, the regularity of class numbers has been mysterious and it is basi-
cally difficult to control. The Gauss conjecture, which states that there are infinitely many
quadratic real fields whose class numbers are one, is still an open problem. We do not even
know whether there are infinitely many number fields whose class numbers are one or not.

Under such a background, as stated in the introduction, Iwasawa found a formula that
controls the p-exponent of the class numbers in any Zp-tower of number fields.

To prove this formula, class field theory plays a key role. Let k be a number field and let
kur

ab denote the Hilbert class field, i.e., the maximal unramified abelian extension of k. Then
class field theory states that there is an isomorphism

Gal(kur
ab/k) ∼= Cl(k).
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This isomorphism is one of the major corollaries of the so-called Artin reciprocity law,
and this allows one to regard class numbers as sizes of Galois groups. Given a Zp-extension,
Iwasawa constructed the corresponding tower of Hilbert p-class fields and obtained the afore-
mentioned formula.

Because this isomorphism of class field theory can be seen as an analogue of the Hurewicz
isomorphism, we see that class numbers in the number theoretical side correspond to the
sizes of first homology groups in the topological side.

Hillman, Matei, and Morishita proved the formula for the first p-homology groups of
pn-fold cyclic covers of links in the 3-sphere S3 corresponding to Iwasawa’s class number
formula. Kadokami and Mizusawa generalized this result to any rational homology 3-sphere.

On the other hand, in 1981, Cuoco and Monsky proved that the corresponding formula
holds for Zdp-extension over number fields. Since the abelianizations of link groups are free
abelian groups, we commenced believing that the Iwasawa type formula for d ≥ 2 should
hold, and it is supposed to correspond to the result of Cuoco–Monsky.

Number theory Knot theory

number field k closed connected orientable
(the ring of integers SpecOk) 3-manifold

prime ideal p : SpecOk/p ↪→ SpecOk knot K : S1 ↪→M
family of primes = {p1, . . . , ps} link L : tS1 ↪→M

Q S3

Cl(k) H1(M ;Z) or torZH1(M ;Z)
Fact: h(k) is finite (Assumption: M is a QHS3)

Zp-extension k∞/k branched Zp-cover M̃ →M
subfield kpn corresponding to pnZp subcover Mpn corresponding to pnZ

Artin reciprocity law Hurewicz isomorphism
Cl(Kn)⊗Z Zp H1(Mpn ,Zp)

Zdp-extension k∞/k branched Zdp-cover M̃ →M

subfield kpn corresponding to (pnZp)d cover Mpn corresponding to (pnZ)d

3 On some estimates

In this section, we collect several results on some estimates that are related with pn-th roots
of unity.

3.1 Weierstrass preparation theorem

In this subsection, we introduce the notion of the Iwasawa invariants for Iwasawa modules
over Iwasawa algebras with multiple variables. We basically review the Section 1 of the paper
of Cuoco–Monsky [4] and check what corresponds to the Weierstrass preparation theorem
[34, Theorem 7.3] for the Iwasawa algebra with one variable in our situation.
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Let Γ be a free Zp-module of rank d written multiplicatively and fix a basis {γ1, . . . , γd}
of Γ. Let Zp[[Γ]] denote the complete group ring of Γ over Zp and let Λ := Zp[[T1, . . . , Td]]
be the power series ring over Zp. It is known that the map

Zp[[Γ]] 3 γi → 1 + Ti ∈ Zp[[T1, . . . , Td]]

is an isomorphism of rings (cf. [27, Theorem 3.3.9]). Hence Γ is a closed multiplicative
subgroup of Λ generated by 1+Tj via this isomorphism. Each element of GLd(Zp) induces an
automorphism of Γ that prolongs to a ring automorphism of Λ. We call such automorphisms
linear automorphisms of Λ. Let σ ∈ Γ\Γp, where Γp := {γ ∈ Γ | γ = γ′p for some γ′ ∈ Γ}.
Then there is a linear automorphism mapping σ to 1 + Tj. Let Ω := Fp[[T1, . . . , Td]]. For
F ∈ Λ, let F ∈ Ω denote the mod p reduction of F . Since (T j) is a height one prime ideal
of Ω, so is (σ − 1). If p is a prime ideal of height 1, then let vp be the associated discrete
valuation. From now on, let F be a nonzero element of Λ. Then there exists some nonzero
F0 ∈ Λ and µ = µ(F ) ∈ Z≥0 such that F = pµ(F )F0 and p - F0. Define

λ = λ(F ) :=
∑

vp(F0),

where the sum runs over all p of the form (σ − 1), σ ∈ Γ\Γp. Let

W := {ξ ∈ Qp | ξp
n

= 1 for some n ≥ 0}.

Let v : Qp → Q be the order function normalized so that v(p) = 1. We make the unusual
convention v(0) = 0. Let ζ = (ζ1, . . . , ζd) ∈ W d. Put F (ζ−1) := F (ζ1−1, . . . , ζd−1). Since
v(ζj − 1) > 0, one has v(F (ζ − 1)) ≥ 0. For n ≥ 0, define

Σn(F ) :=
∑

ζ∈W (n)d

v(F (ζ − 1)),

where W (n) := {ξ ∈ W | ξpn = 1}.

Example 3.1. (1) Let
σ = γ1γ2 = (1 + T1)(1 + T2).

Then
σ − 1 = T1T2 + T 1 + T 2.

(2) Suppose p 6= 2. Let
σ = γ2

1 = (1 + T1)2.

Then
σ − 1 = T

2

1 + 2T 1 = T1(T1 + 2).

Since T1 + 2 ∈ Λ∗, one has (σ − 1) = (T 1) as ideals. In general, if σ = γk1 and p - k,
then (σ − 1) = (T 1).
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Example 3.2. (1) For arbitrary m ∈ Z≥0, we have

Σn(pm) =
∑

ζ∈W (n)d

v(pm) =
∑
ζ

mv(p) = m
∑
ζ

1 = mpdn.

(2) If we fix a primitive p2-th root of unity ξ, then

Σ2(T1) =
∑

ζ∈W (2)d

v(ζ1 − 1)

= (v(ξ − 1) + v(ξ2 − 1) + . . .+ v(ξp
2 − 1))p2(d−1)

=

(
p− 1

p− 1
+
p(p− 1)

p(p− 1)

)
p2(d−1) = 2p2(d−1).

In general, we have
Σn(T1) = npn(d−1).

(3) If γe11 · · · γ
ed
d ∈ Γ\Γp, then we find that

Σn((1+T1)e1 · · · (1+Td)
ed−1) =

∑
ζ∈W (n)d

v(ζe11 · · · ζ
ed
d −1) =

∑
ζ∈W (n)d

v(ζ1−1) = Σn(T1).

Lemma 3.3 ([4, Lemma 1.4, 1.5, 1.6]). (1) Let G ∈ Λ with F = G 6= 0. Then

Σn(F )− Σn(G) = O(p(d−1)n).

(2) If there exist F1, F2 ∈ Λ such that F = F1F2, then

Σn(F ) = Σn(F1) + Σn(F2) +O(p(d−1)n).

(3) If µ(F ) = λ(F ) = 0, then Σn(F ) = O(p(d−1)n).

One can show Lemma 3.3 by using results of Monsky [17] on Λ.

Proposition 3.4 ([4, Theorem 1.7]). Let F be a nonzero element of Λ. Then we have

Σn(F ) = (µ(F )pn + λ(F )n+O(1))p(d−1)n.

Proof. Write F = pµ(F ) · F0 with F 0 6= 0. Since Ω is a unique factorization domain, there
exist F1, . . . , Fk ∈ Λ with F j irreducible in Ω such that F 0 = F 1 · · ·F k. By Lemma 3.3 (1),
(2), we have

Σn(F ) = Σn(pµ(F )) + Σn(F1) + · · ·+ Σn(Fk) +O(p(d−1)n).

By Lemma 3.3 (3), if λ(Fj) = 0, then Σn(Fj) = O(p(d−1)n). By Example 3.2 (1), (2), (3), we
have

Σn(F ) = µ(F )pdn + λ(F )np(d−1)n +O(p(d−1)n)

= (µ(F )pn + λ(F )n+O(1))p(d−1)n.

Remark 3.5. The proof of Proposition 3.4 is corresponding to the Weierstrass prepartion
theorem of one variable Iwasawa theory.
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3.2 Results of Monsky

In this subsection, we briefly review a result of Monsky, which is vital for our proof of Main
result 2.

Let Ed denote the Zp-module Hom(W d,W ).

Definition 3.6. S ⊂ W d is said to be semi-algebraic if it is a finite union of subsets each of
which is defined by finitely many conditions of the following three types

(a) τ(ζ) = ε,

(b) τ(ζ) 6= ε,

(c) logp |〈τ(ζ)〉| ≥ logp |〈τ ′(ζ)〉|+ r,

where τ, τ ′ ∈ Ed, ε ∈ W , and r ∈ Z.

Lemma 3.7. (W \ {1})d is semi-algebraic.

Proof. For each 1 ≤ i ≤ d, let πi denote the projection W d → W . Then we have

(W \ {1})d =
⋂

1≤i≤d

{ζ ∈ W d | πi(ζ) 6= 1}.

Proposition 3.8 ([17, Theorem 5.6]). Let S ⊂ W d be a semi-algebraic set and let F ∈ Λ.
Then there exists a unique f(U, V ) ∈ Q[U, V ] with degV f ≤ 1 and total degree deg f ≤ d
such that ∑

ζ∈S∩W (n)d

v(F (ζ − 1)) = f(pn, n)

for every sufficiently large n.

Proposition 3.9. Let F ∈ Λ. Then there exist µ, λ ∈ Z≥0 such that∑
ζ∈(W (n)\{1})d

v(F (ζ − 1)) = (µpn + λn+O(1))p(d−1)n.

Proof. We have∑
ζ∈W (n)d

v(F (ζ − 1)) =
∑

ζ∈(W (n)\{1})d
v(F (ζ − 1)) +

∑
others

v(F (ζ − 1)).

By Proposition 3.8, we have ∑
others

v(F (ζ − 1)) = O(p(d−1)n).

By Proposition 3.4, we complete the proof.
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4 On Alexander polynomials

In this section, we study some basic properties on Alexander polynomials. Details of the
theory of Alexander polynomials are written in [6, Chapter 3 and 4].

Let R be a Noetherian unique factorization domain and let M,N be finitely generated
R-modules. M is said to be pseudo-isomorphic to N if and only if, for each prime ideal
p of height one in R, the induced Rp-homomorphism Mp → Np is an isomorphism, where
Mp,Np denote the localizations of M,N at p respectively. Also, since R is Noetherian, we
may choose an exact sequence

Rr → Rs →M→ 0.

The ideal of R that is generated by the s-subdeterminants of the presentation matrix of
Rr → Rs is called the Fitting ideal of M, and we denote it by Fitt(M). If r < s, then we
define Fitt(M) = 0. It is known that the definition of Fitting ideals is independent of the
choices of exact sequences. Details of the theory of Fitting ideals are written in [20, Chapter
3]. The divisorial hull d.h.(a) of a is the intersection of the principal ideals that contain a.

Proposition 4.1. Let M be a finitely generated R-module. If d.h.(Fitt(M)) 6= 0, then M
is a torsion R-module.

Proof. By the definition of the divisorial hull, if Fitt(M) = 0, then d.h.(Fitt(M)) = 0. By
the theory of Fitting ideals, we have Fitt(M) ⊂ AnnR(M), where AnnR(M) denotes the
annihilator of M over R. Thus, the assumption d.h.(Fitt(M)) 6= 0 implies Fitt(M) 6= 0,
and hence AnnR(M) 6= 0. Therefore, M is a torsion R-module.

Remark 4.2. When d = 1, for link modules, it is known that d.h.(Fitt(M)) 6= 0 holds if and
only if M is a torsion R-module (cf. [13, Lemma 3.1]).

An R-module of the form
⊕s

i=1R/p
mi
i , where pi are height one prime ideals in R, is called

an elementary R-module.
Let M be a finitely generated torsion R-module. Then, by [27, Proposition 3.1.6] or

[21, Theorem 2.3.6(Japanese)], there is an elementary R-module E :=
⊕s

i=1R/p
mi
i such that

M is pseudo-isomorphic to E . Since R is a Noetherian unique factorization domain, every
height one prime ideal is principal. Hence

∏
pmii is generated by an element. The element

up to multiplication by units is called the characteristic element ofM, and we denote it by
CharM. For a finitely generated non-torsion R-module, we make a convention CharM = 0.

Proposition 4.3. Let M be a finitely generated torsion R-module. Then we have

(CharM) = d.h.(Fitt(M)).

Proof. SinceM is pseudo-isomorphic to an elementary R-module E :=
⊕s

i=1 R/p
mi
i , for each

height one prime ideal p in R, we have

Mp
∼= (
⊕

R/pmii )p.

This implies
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Fitt(M)p = Fitt(Mp) = Fitt((
⊕

R/pmii )p) = Fitt(
⊕

R/pmii )p.

Since Fitt(
⊕

R/pmii ) =
∏

i p
mi
i , we have

Fitt(M)p =
∏
i,pi=p

pmii .

By [6, Lemma 3.2], we have

d.h.(Fitt(M)) =
⋂
p

Fitt(M)p.

Therefore, we obtain

d.h.(Fitt(M)) =
∏

pmii = (CharM).

Now, we have an embedding

ΛZ 3 ti → 1 + Ti ∈ Λ.

Let M be a finitely generated ΛZ-module. Then, for each n ≥ 0, Mn := M/InM is

a Z[t
Z/nZ
1 , . . . , t

Z/nZ
d ]-module. Hence Mn ⊗ Zp is a Zp[tZ/nZ1 , . . . , t

Z/nZ
d ]-module. Therefore,

for any m ≥ n, Mpn ⊗ Zp is a Zp[tZ/p
mZ

1 , . . . , t
Z/pmZ
d ]-module. Accordingly, Mpn ⊗ Zp are Λ-

modules. Thus lim←−nMpn⊗Zp is also a Λ-module. Let M̂ denote the Λ-module lim←−nMpn⊗Zp.

Lemma 4.4. Let a1, . . . , an be elements in ΛZ and let g be their greatest common divisor in
ΛZ. Then g is their greatest common divisor in Λ as well.

Proof. By the definition of g, for each 1 ≤ i ≤ n, there exists a′i ∈ ΛZ such that ai = ga′i.
Suppose that there exists a prime element P of Λ and there exists a′′i for each 1 ≤ i ≤ d such
that a′i = Pa′′i . Since completions satisfy the going down property, PΛ ∩ ΛZ is a height one
prime ideal of ΛZ. Since ΛZ is a unique factorization domain, there exists a prime element
PZ of ΛZ such that PZΛZ = PΛ ∩ ΛZ. Therefore, for each 1 ≤ i ≤ n, ai can be divided by
PZ in ΛZ. This contradicts g is a greatest common divisor in ΛZ. Therefore, there exists no
such a prime element, and so g is a greatest common divisor in Λ as well.

Lemma 4.5. Let a be an ideal of ΛZ. Then we have

(d.h.(a))Λ = d.h.(aΛ)

in Λ.

12



Proof. Let S be a system of generators of a. Since ΛZ is a unique factorization domain,
d.h.(a) is the principal ideal generated by the greatest common divisor of the elements in S.
Since S generates aΛ in Λ and Λ is also a unique factorization domain, d.h.(aΛ) is also the
principal ideal generated by the greatest common divisor of the elements in S. Therefore,
by Lemma 4.4, we have

(d.h.(a))Λ = d.h.(aΛ)

in Λ.

Proposition 4.6. Let M be a finitely generated torsion ΛZ-module. Then we have

(CharM) = (CharM̂)

in Λ.

Proof. Consider an exact sequence

Λr
Z → Λs

Z →M→ 0.

Since taking tensor products, quotients, and projective limits are right exact, we have an
exact sequence

Λr → Λs → M̂ → 0.

Since the presentation matrices of these exact sequences coincide, we have

Fitt(M)Λ = Fitt(M̂).

Hence
d.h.(Fitt(M)Λ) = d.h.(Fitt(M̂)).

Therefore, by Lemma 4.5 and Proposition 4.3, we obtain

d.h.(Fitt(M))Λ = d.h.(Fitt(M̂)) = (CharM̂).

Definition 4.7. Let L be a link in a QHS3 M and X := M − N(L). Let X∞ → X be a
Zd-cover. Then, H1(X∞) is a finitely generated ΛZ-module, and a generator of d.h.(Fitt(M))
up to multiplication by units is called the Alexander polynomial of X∞ → X. We will denote
it by ∆(t1, . . . , td).

If L is a d-component link in a QHS3 M and X∞ → X is its unique Zd-cover, then the
Alexander polynomial of X∞ → X is called the Alexander polynomial of L. We will denote
it by ∆L(t1, . . . , td).

Remark 4.8. By Proposition 4.3, we have CharH1(X∞) = ∆(t1, . . . , td) up to multiplication
by units. Moreover, by Proposition 4.1, if ∆ 6= 0 in ΛZ, then H1(X∞) is a finitely generated
torsion ΛZ-module.

13



5 Lemmas on Λ-modules

In this section, we briefly review some results of Cuoco–Monsky [4, Theorem I] on Λ-modules,
which will be used in Section 7.

For each n ≥ 1, let Ipn be the ideal of Λ generated by {(1 + Tj)
pn − 1 | 1 ≤ j ≤ d}.

Proposition 5.1 ([4, Theorem 3.4]). Let M be a torsion Λ-module with characteristic ele-
ment F . Suppose rankZp(M/IpnM) = O(p(d−2)n). Then we have

e(M/IpnM) = (µ(F )pn + λ(F )n+O(1))p(d−1)n,

where µ(F ), λ(F ) are non-negative integers defined in Section 3.1.

Remark 5.2. The assumption rankZp(M/IpnM) = O(p(d−2)n) is equivalent to the condition
that ∆(1 + T1, . . . , 1 + Td) has no special prime factors in Λ in the sense of Cuoco–Monsky
[4, Theorem 3.13]. Also, Monsky [18, Theorem 3.12 with S = ∅] showed that the O(p(d−1)n)
part can be refined to α∗ +O(np(d−2)n) for some α∗ ∈ R (α∗ ∈ Q if d = 2).

For ζ = (ζ1, · · · , ζd) ∈ W d, define Zp[ζ] = Zp[ζ1, . . . , ζd]. Let M be a finitely generated
torsion Λ-module. For each ζ ∈ W d, put Mζ = M ⊗Λ Zp[ζ]. Then Mζ is a finitely
generated Zp[ζ]-module via the ring homomorphism Λ 3 F 7→ F (ζ − 1) ∈ Zp[ζ]. Let
rζ(Mζ) := rankZp[ζ]Mζ . Define

Z(M) := {ζ ∈ W d | rζ(Mζ) ≥ 1}

and
Zn(M) := Z(M) ∩W (n)d.

Lemma 5.3 ([4, Lemma 3.7]). There exists s ≥ 1 such that

|Zn(M)| ≤ rankZp(M/IpnM) ≤ s|Zn(M)|

for all n ≥ 1.

Lemma 5.4 ([4, Lemma 3.3]). Let M,N be finitely generated torsion Λ-modules. Suppose
M is pseudo-isomorphic to N . Then we have

|rankZp(M/IpnM)− rankZp(N /IpnN )| = O(p(d−2)n).

Lemma 5.5. Let M be a finitely generated torsion Λ-module and F the characteristic ele-

ment of M. Suppose that F (T1, . . . , Td) does not vanish on {ζ − 1 ∈ Qd

p | ζ ∈ W d}. Then
we have

rankZp(M/IpnM) = O(p(d−2)n).

Proof. Since M is torsion over Λ, M is pseudo-isomorphic to an elementary Λ-module E .
By the definition of characteristic element, we have F (T1, . . . , Td)E = 0. By the definition of
the action of Zp[ζ] on Eζ , we have F (ζ − 1)Eζ = 0. By assumption, we have F (ζ − 1) 6= 0 for
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any ζ ∈ W d. Therefore, Eζ is a torsion Zp[ζ]-module. Hence rζ(Eζ) = 0. Therefore, we have
Z(E) = ∅, and so is Zn(E). By Lemma 5.3, we have

rankZp(E/IpnE) = 0.

Thus, by Lemma 5.4, we have the assertion.

Remark 5.6. If there exists a polynomial f(t1, . . . , td) ∈ Z[t1, . . . , td] such that f(1+T1, . . . , 1+
Td) = F (T1, . . . , Td), then the assumption can be replaced by “f(t1, . . . , td) does not vanish
on W d.”

6 Fundamental result for 3-manifolds

In this section, we prove that the sizes of the torsion parts of the first homology groups
of certain 3-manifolds are sufficiently close to the sizes of the torsion parts of quotients of
homology groups of certain infinite coverings. The result in this section allows one to apply
multi-variable Iwasawa theory to link cases.

Let X be a compact connected orientable 3-manifold with a surjective homomorphism
π1(X) � Zd, where d is a positive integer, and let X∞ → X denote the corresponding Zd-
cover. Since π1(X)/π1(X∞) ∼= Zd, we may choose a basis {t1, . . . , td} of π1(X)/π1(X∞). Let
ΛZ := Z[t±1

1 , . . . , t±1
d ]. Then H1(X∞) is a finitely generated ΛZ-module. Let In := (tn1 − 1,

tn2 − 1, . . . , tnd − 1) be the ideal of ΛZ and let Xn be the (Z/nZ)d-cover corresponding to
ker(π1(X) � (Z/nZ)d).

Theorem 6.1. Under the setting as above, we have

e(H1(Xpn)) = e(H1(X∞)/IpnH1(X∞)) +O(n) (n→∞).

Proof. Put N := π1(X∞)ab = H1(X∞). We have an exact sequence of groups

1→ N → π1(X)/π1(X∞)c
P→ π1(X)/π1(X∞)→ 1,

where π1(X∞)c denotes the commutator subgroup of π1(X∞). Let x1, . . . , xd be elements in
the inverse images P−1(t1), . . . ,P−1(td) respectively. Then we have

H1(Xn) = 〈xn1 , . . . , xnd , N〉/〈[xni , xnj ], InN(1 ≤ i < j ≤ d)〉.

Indeed, we have an exact commutative diagram of groups

1 // N // π1(X)/π1(X∞)c P //

⋃ π1(X)/π1(X∞) //

⋃ 1

1 // N // P−1((nZ)d) // (nZ)d // 1.

Since
π1(Xn)/π1(X∞) = P−1((nZ)d) = 〈xn1 , . . . , xnd , N〉
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and
(ti − 1)y = yxiy−1 = xiyx

−1
i y−1 for each y ∈ N,

we obtain

H1(Xn) = 〈xn1 , . . . , xnd , N〉ab

= 〈xn1 , . . . , xnd , N〉/〈[xni , xnj ], InN(1 ≤ i < j ≤ d)〉.

Since P−1((nZ)d) is a normal subgroup of π1(X)/π1(X∞)c, so is (P−1((nZ)d))c = 〈[xni , xnj ], InN(1 ≤
i < j ≤ d)〉. This implies that 〈[xni , xnj ], InN(1 ≤ i < j ≤ d)〉 is a ΛZ-module. Therefore,

0→ N/〈[xni , xnj ], InN(1 ≤ i < j ≤ d)〉 → H1(Xn)→ (nZ)d → 0

is an exact sequence of ΛZ-modules. Since this exact sequence splits, we have

torZ(H1(Xn)) ∼= torZ(N/〈[xni , xnj ], InN(1 ≤ i < j ≤ d)〉).

as Z-modules. We compare this to torZ(H1(X∞)/InH1(X∞)) = torZ(N/InN). If we put
cij := [xi, xj] ∈ N and Tn(t) :=

∑n−1
k=0 t

k, then we have [xni , x
n
j ] = Tn(ti)Tn(tj)cij since

[xni , x
n
j ] = xi(x

n−1
i xnj x

−(n−1)
i x−nj )x−1

i (xix
n
j x
−1
i x−nj )

= [xn−1
i , xnj ]xi [xi, x

n
j ]

= ([xn−2
i , xnj ]xi [xi, x

n
j ])xi [xi, x

n
j ]

= . . .

= (tn−1
i + · · ·+ ti + 1)[xi, x

n
j ]

= (tn−1
i + · · ·+ ti + 1)[xi, xj][xi, x

n−1
j ]xj

= . . .

= (tn−1
i + · · ·+ ti + 1)(tn−1

j + · · ·+ tj + 1)[xi, xj]

= Tn(ti)Tn(tj)cij.

Put c
(n)
ij := [xni , x

n
j ]. Then we find that c

(n)
ii = 0 and c

(n)
ji = −c(n)

ij . Let Cn be the ΛZ-

submodule of N that is generated by {c(n)
ij (1 ≤ i < j ≤ d)}. Then we have an exact sequence

of ΛZ-modules

0→ (Cn + InN)/InN → N/InN → N/(Cn + InN)→ 0.

Since 〈[xni , xnj ], InN(1 ≤ i < j ≤ d)〉 is a ΛZ-module, we have

〈[xni , xnj ], InN(1 ≤ i < j ≤ d)〉 = Cn + InN. (6.1)

Therefore, we have torZ(N/(Cn + InN)) ∼= torZ(H1(Xn)).
We shall show that the action of ti on (Cn+InN)/InN is trivial. Indeed, for i, j, we have

(ti − 1)c
(n)
ij = (tni − 1)Tn(tj)cij ∈ InN
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and
(tj − 1)c

(n)
ij = (tnj − 1)Tn(ti)cij ∈ InN.

On the other hand, for k 6= i, j, by the Hall-Witt identity ([x, [y−1, z]]y · [y, [z−1, x]]z ·
[z, [x−1, y]]x = 1), we have

tj(t
−1
i − 1)[x−1

j , xk] + tk(tj − 1)[x−1
k , x−1

i ] + t−1
i (tk − 1)cij = 0.

(We remark that, by a further calculation, we have (ti− 1)cjk + (tj − 1)cki + (tk− 1)cij = 0.)
Mutiplying this equation by Tn(tj)Tn(ti), we obtain

−tjt−1
i (tni − 1)Tn(tj)[x

−1
j , xk] + tk(t

n
j − 1)Tn(ti)[x

−1
k , x−1

i ] + t−1
i (tk − 1)c

(n)
ij = 0.

Multiplying by ti, we conclude that

(tk − 1)c
(n)
ij = tj(t

n
i − 1)Tn(tj)[x

−1
j , xk]− titk(tnj − 1)Tn(ti)[x

−1
k , x−1

i ] ∈ InN.

Therefore, ti acts trivially on (Cn + InN)/InN . Moreover, by (6.1), we see that (Cn +

InN)/InN is a Z-module generated by at most d(d−1)
2

elements. Let Pn be the inverse
image of torZ(N/(Cn + InN)) under N/InN → N/(Cn + InN). Then, we have torZ(Pn) =
torZ(H1(X∞)/InH1(X∞)), and

0→ (Cn + InN)/InN → Pn → torZ(N/(Cn + InN))→ 0

is an exact sequence of ΛZ-modules. For an arbitrary pair of positive integers n | m, we have
an exact commutative diagram of ΛZ-modules

0 // (Cm + ImN)/ImN //

ϕ′m,n
��

Pm //

ϕm,n

��

torZ(N/(Cm + ImN)) //

ϕ′′m,n
��

0

0 // (Cn + InN)/InN // Pn // torZ(N/(Cn + InN)) // 0,

(6.2)

where ϕ′m,n, ϕm,n, ϕ
′′
m,n are the maps induced by the identity map of N respectively. Define a

ΛZ-homomorphism ψn,m : (Cn+InN)/InN → (Cm+ImN)/ImN by ψn,m = Tm/n(tn1 ) · · · Tm/n(tnd).
This is well-defined since

Tm/n(tni )Tn(ti)

= ((tni )m/n−1 + · · ·+ tni + 1)(tn−1
i + · · ·+ ti + 1)

= tm−1
i + · · ·+ ti + 1

= Tm(ti)

implies that tni − 1 maps to tmi − 1 via ×Tm/n(tni ). Since ti acts trivially on (Cn + InN)/InN ,
the map multiplying by

∏
1≤i≤d((t

n
i )m/n−1 + (tni )m/n−2 + · · · + tni + 1)) becomes the map
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multiplying by
∏

1≤i≤d(1 + 1 + · · · + 1 + 1) via ϕ′m,n ◦ ψn,m and ψn,m ◦ ϕ′m,n. This implies

ϕ′pn,n ◦ ψn,pn = pd and ψn,pn ◦ ϕ′pn,n = pd. Since we have

c
(m)
ij = Tm(ti)Tm(tj)cij

= Tm/n(ti)Tm/n(tj)Tn(ti)Tn(tj)cij

= Tm/n(ti)Tm/n(tj)c
(n)
ij

and ti acts trivially on (Cn + InN)/InN , one finds that

imϕ′pn,n = p2((Cn + InN)/InN).

Likewise, since

Tm/n(t1) · · · Tm/n(td)c
(n)
d−1,d = Tm/n(t1) · · · Tm/n(td−2)c

(m)
d−1,d,

we have
imψn,pn = pd−2((Cpn + IpnN)/IpnN).

Since there are Z-homomorphisms onto subgroups of finite indices each other, the finitely
generated Z-modules (Cn + InN)/InN and (Cpn + IpnN)/IpnN have the same Z-rank, and
so kerϕ′pn,n and kerψn,pn are finite. We shall show that

ψn,pn(torZ((Cn + InN)/InN)) = pd−2torZ((Cpn + IpnN)/IpnN).

Indeed, we have

imψn,pn = pd−2((Cpn + IpnN)/IpnN)

= pd−2(Zr ⊕ (torZ((Cpn + IpnN)/IpnN))

= pd−2Zr ⊕ pd−2torZ((Cpn + IpnN)/IpnN).

for some r ≥ 0. Now, ψn,pn induces a map

ψ−1
n,pn(pd−2torZ((Cpn + IpnN)/IpnN))→ pd−2torZ((Cpn + IpnN)/IpnN)),

and we have

torZ((Cn + InN)/InN) ⊂ ψ−1
n,pn(pd−2torZ((Cpn + IpnN)/IpnN)).

Since the kernel of this map is finite, we have that both the image and the kernel of this
map are Z-torsion. Therefore, we must have

torZ((Cn + InN)/InN) = ψ−1
n,pn(pd−2torZ((Cpn + IpnN)/IpnN)),

i.e.,
ψn,pn(torZ((Cn + InN)/InN)) = pd−2torZ((Cpn + IpnN)/IpnN).
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Since
0→ torZ((Cn + InN)/InN)→ torZ(Pn)→ torZ(N/(Cn + InN))

is an exact sequence of ΛZ-modules, we have

|torZ(H1(X∞)/InH1(X∞)|
|torZ((Cn + InN)/InN)|

divides | torZ(H1(Xn))|.

Since
ψn,pn(torZ((Cn + InN)/InN)) = pd−2torZ((Cpn + IpnN)/IpnN),

we have

|torZ((Cn + InN)/InN)|
= | kerψn,pn| · |pd−2torZ((Cpn + IpnN)/IpnN)|

= | kerψn,pn|·
|torZ((Cpn + IpnN)/IpnN)|

|torZ((Cpn + IpnN)/IpnN)/pd−2torZ((Cpn + IpnN)/IpnN)|
.

Since (Cpn + IpnN)/IpnN is generated by at most d(d−1)
2

elements over Z, we must have

|torZ((Cpn + IpnN)/IpnN)/pd−2torZ((Cpn + IpnN)/IpnN)| divides p
d(d−1)(d−2)

2 .

Therefore,

|torZ((Cpn + IpnN)/IpnN)| divides p
d(d−1)(d−2)

2 |torZ((Cn + InN)/InN)|.

By iterating this and putting A1 := |torZ((C1 + I1N)/I1N)|, we obtain that

|torZ((Cpm + IpmN)/IpmN)| divides A1p
m
d(d−1)(d−2)

2 ,

and so
|torZ(H1(X∞)/IpmH1(X∞))| divides A1p

m
d(d−1)(d−2)

2 |torZ(H1(Xpm))|.

This implies
e(H1(X∞)/IpnH1(X∞)) ≤ e(H1(Xpn)) +O(n) (n→∞). (6.3)

Applying the snake lemma to the commutative diagram (6.2), we have an exact sequence of
ΛZ-modules

0→ kerϕ′pn,n → kerϕpn,n → kerϕ′′pn,n → cokerϕ′pn,n → cokerϕpn,n → cokerϕ′′pn,n → 0.

Since kerϕ′pn,n, kerϕ′′pn,n, cokerϕ′pn,n, cokerϕ′′pn,n are finite, so are kerϕpn,n, cokerϕpn,n. Hence
we have

| kerϕ′′pn,n|
| cokerϕ′′pn,n|

=
| kerϕpn,n|
| cokerϕpn,n|

| cokerϕ′pn,n|
| kerϕ′pn,n|

.
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By the homomorphism theorem, we have

| kerϕ′′pn,n|
| cokerϕ′′pn,n|

=
|torZH1(Xpn)|
|torZH1(Xn)|

.

Since kerϕpn,n is finite, we have

ϕ−1
pn,n(torZ(Pn)) = torZ(Ppn).

Let ϕ′′′ : torZ(Ppn) → torZ(Pn) be the restriction map of ϕpn,n. Then we have kerϕ′′′ =
kerϕpn,n and cokerϕ′′′ ⊂ cokerϕpn,n. Therefore, we have

| kerϕ′′′|
| cokerϕ′′′|

=
|torZ(H1(X∞)/IpnH1(X∞))|
|torZ(H1(X∞)/InH1(X∞))|

.

Accordingly, we obtain

|torZH1(Xpn)|
|torZH1(Xn)|

=
|torZ(H1(X∞)/IpnH1(X∞))|
|torZ(H1(X∞)/InH1(X∞))|

| cokerϕ′pn,n|
| cokerϕpn,n/ cokerϕ′′′| · | kerϕ′pn,n|

.

Put A2 := |torZ(H1(X1))|. Since

| cokerϕ′pn,n| = |(Cn + InN)/(p2Cn + InN)| divides pd(d−1)(= p2
d(d−1)

2 ),

we obtain
|torZH1(Xpm)| divides A2p

d(d−1)m| torZ(H1(X∞)/IpmH1(X∞))|.
This implies

e(H1(Xpn)) ≤ e(H1(X∞)/IpnH1(X∞)) +O(n) (n→∞). (6.4)

Therefore, by (6.3) and (6.4), we obtain

e(H1(Xpn)) = e(H1(X∞)/IpnH1(X∞)) +O(n) (n→∞).

7 The main results

In this section, we prove our three main results.

7.1 Iwasawa type formula for links

In this subsection, we prove results that form the cornerstone of our proof of Main result 1.
Let {An}n be an inverse system of abelian groups. We say {An}n satisfies the Mittag-

Leffler condition(ML-condition) if and only if, for arbitrary n ≥ 0, there exists N0 ≥ n such
that

N > N0 =⇒ im(AN → An) = im(AN0 → An).

If the all morphisms of {An}n are surjective, then it satisfies the ML-condition.
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Lemma 7.1 ([12, §1]). Let {An}n, {Bn}n, {Cn}n be inverse systems of profinite Λ-modules
such that, for each n ≥ 0, an exact sequence of Λ-modules

0→ An → Bn → Cn → 0

is given. If {An}n satisfies the ML-condition, then the sequence

0→ lim←−An → lim←−Bn → lim←−Cn → 0

is exact.

Let X be a compact connected orientable 3-manifold with a surjective homomorphism
π1(X) � Zd with d a positive integer and let X∞ → X denote the corresponding Zd-cover.
Then H1(X∞) is a finitely generated ΛZ-module. Put H1(Xpn)′ := H1(X∞)/IpnH1(X∞),

H1(Xpn ,Zp)′ := H1(Xpn)′ ⊗ Zp, and H := lim←−nH1(Xpn ,Zp)′ = Ĥ1(X∞). Since all of the
morphisms of the inverse system {H1(Xpn)′}n are surjective, the same statement holds for
{H1(Xpn ,Zp)′}n as well. Therefore, {H1(Xpn ,Zp)′}n satisfies the ML-condition.

Lemma 7.2. We have
H/IpnH ∼= H1(Xpn ,Zp)′.

as Λ-modules.

In particular, by Theorem 6.1, we have

e(H/IpnH) = e(H1(X∞)/IpnH1(X∞)) = e(H1(Xpn)) +O(n) (n→∞).

Proof. Let n and N be non-negative integers. Consider the exact commutative diagram

0 // Ipn+NH1(X∞) //

��

H1(X∞) //

��

H1(Xpn+N )′ //

��

0

0 // IpnH1(X∞) // H1(X∞) // H1(Xpn)′ // 0.

By the snake lemma, we have

ker(H1(Xpn+N )′ → H1(Xpn)′) = coker(Ipn+NH1(X∞)→ IpnH1(X∞)).

Hence we have an exact sequence

0→ IpnH1(X∞)/Ipn+NH1(X∞)→ H1(Xpn+N )′ → H1(Xpn)′ → 0.

Since IpnH1(X∞)/Ipn+NH1(X∞) = Ipn(H1(X∞)/Ipn+NH1(X∞)),

0→ IpnH1(Xpn+N )′ → H1(Xpn+N )′ → H1(Xpn)′ → 0

is exact. This induces the exact sequence of Zp[tZ/p
n+NZ

1 , . . . , t
Z/pn+NZ
d ]-modules
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0→ IpnH1(Xpn+N ,Zp)′ → H1(Xpn+N ,Zp)′ → H1(Xpn ,Zp)′ → 0.

Taking N →∞, by Lemma 7.1, we obtain the exact sequence of Λ-modules

0→ IpnH → H → H1(Xpn ,Zp)′ → 0.

This completes the proof.

By Proposition 4.6, we have

(CharH) = (CharH1(X∞)).

in Λ.

Theorem 7.3. Let X be a compact connected orientable 3-manifold with a surjective ho-
momorphism π1(X) � Zd with d a positive integer and let X∞ → X be the corresponding
Zd-cover. Let F (t1, . . . , td) denote the characteristic element of H1(X∞) and suppose that
F (t1, . . . , td) does not vanish on W d. Then there exist invariants µ, λ ∈ Z≥0, depending only
on X∞ → X and p, such that

e(H1(Xpn)) = (µpn + λn+O(1))p(d−1)n.

Proof. Since F (t1, . . . , td) does not vanish on W d, by Lemma 5.5, we have

rankZp(H/IpnH) = O(p(d−2)n).

By Lemma 7.2 and Proposition 5.1, we obtain

e(H1(Xpn)) = (µ(F )pn + λ(F )n+O(1))p(d−1)n.

7.2 On branched Zdp-covers

In this subsection, we prove our main result, which is a generalization of the Iwasawa type
formula proven by Kadokami and Mizusawa to branched Zdp-covers of links in QHS3’s with
d ≥ 1 under a mild assumption.

Theorem 7.4. Let L be a link in a QHS 3 M and put X = M − N(L). Let (Mpn)n be the
branched Zdp-cover consisting of QHS 3’s over (M,L) derived from a Zd-cover X∞ → X. Let
∆(t1, . . . , td) denote the Alexander polynomial of X∞ → X and and suppose that ∆(t1, . . . , td)
does not vanish on W d. Then there exist µ, λ ∈ Z≥0, depending only on X∞ → X and p,
such that

e(H1(Mpn)) = (µpn + λn+O(1))p(d−1)n.
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Proof. We may assume that every component of L is truly branched in some Mpn → M .
In every Zp-cover corresponding to the direct product component of the Galois group Zdp,
by the Hilbert ramification theory for knots (cf. [29, Section 2], [19, Chapter 5]), the inertia
subgroup of Zp is of finite index. Hence, for every sufficiently large n, each of the components
of the inverse image of L in Mpn is branched in some Z/pZ-subcover of Mpn+1 → Mpn This
means that the meridians form a part of a Z-basis of the free quotient of H1(Xpn). Let α
denote the meridians of the inverse image of L in Mpn and let

H1(Mpn) ∼= H1(Xpn)/〈{α’s}〉

denote the natural isomorphism induced by the Fox completion. Since the meridians [α]’s
form a part of a Z-basis of the free quotient of H1(Xpn), this map induces

torZ(H1(Mpn)) ∼= torZ(H1(Xpn)).

In particular, we have
e(H1(Mpn)) = e(H1(Xpn)).

By Theorem 7.3, we obtain

e(H1(Mpn)) = (µ(∆)pn + λ(∆)n+O(1))p(d−1)n.

7.3 More precise estimate

In this subsection, after reviewing a result of Porti, we prove that the Bachmann-Landau
O-notation can be removed in the case where M is a ZHS3.

Let M be a ZHS3 and L a link in M with d components K1, . . . , Kd. In this case, the
variables t1, . . . , td of Alexander polynomial ∆L(t1, . . . , td) correspond to the components
K1, . . . , Kd. Put X := M − N(L). Let G be a finite abelian group and π : π1(X) � G
a surjective group homomorphism. Let Mπ denote the covering of M branched along L
corresponding to ker π. Let

Ĝ := {ξ̂ : G→ C∗ | ξ̂ is a group homomorphism}

be the Pontryagin dual of G. Fix meridians α1, . . . , αd ∈ H1(X). Here, αi are regarded

as elements of H1(X) via π. For arbitrary ξ̂ ∈ Ĝ, let Lξ̂ :=
⋃
ξ̂(αi)6=1Ki be a sublink of L

and ∆L
ξ̂
(ti1 , . . . , tik) denote the Alexander polynomial of Lξ̂. For the trivial representation

G→ C∗, one has L1 = ∅. We put ∆L1 := 1. Let

Ĝ(1) := {ξ̂′ ∈ Ĝ | Lξ̂′ = Ki for some 1 ≤ i ≤ d}.

For arbitrary ξ̂′ ∈ Ĝ(1), let i(ξ̂′) denote the corresponding i. Put

|H1(Mπ)| :=

{
#H1(Mπ) if finite

0 if infinite.
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Proposition 7.5 ([23, Theorem 1.1]). We have

|H1(Mπ)| = ±
∏
ξ̂∈Ĝ

∆L
ξ̂
(ξ̂(αi1), . . . , ξ̂(αik))

|G|∏
ξ̂′∈Ĝ(1)(1− ξ̂′(αi(ξ̂′)))

.

We consider the case when G = (Z/pnZ)d. Note that the equation of polynomials∏
ξ∈W (n)\{1}

(x− ξ) = xp
n−1 + xp

n−2 + · · ·+ x2 + x+ 1

implies ∏
ξ∈W (n)\{1}

(1− ξ) = pn.

Therefore, we have
|G|

(
∏

ξ∈W (n)\{1}(1− ξ))d
= 1.

Hence, by Proposition 7.5, we obtain

|H1(Mπ)| = ±
∏
L′

∏
ζ∈(W (n)\{1})c(L′)

∆L′(ζ),

where L′ runs over the sublinks of L and c(L′) is the number of components of L′.

Theorem 7.6. Let M be a ZHS3. Suppose ∆L(t1, . . . , td) does not vanish on (W \ {1})d.
Then, every branched (Z/pnZ)d-cover Mpn is a QHS3, and there exists a unique f(U, V ) ∈
Q[U, V ] with degV f ≤ 1 and total degree deg f ≤ d such that

e(H1(Mpn)) = f(pn, n).

for every sufficiently large n.

Proof. Since ∆L does not vanish on (W \ {1})d, neither does ∆L′ on (W \ {1})c(L′) for any
L′ ⊂ L by the Torres condition (cf. [3]). By Proposition 7.5, we have

e(H1(Mpn)) = v(±
∏
L′

∏
ζ∈(W (n)\{1})c(L′)

∆L′(ζ))

=
∑
L′

∑
ζ∈(W (n)\{1})c(L′)

v(∆L′(ζ)).

By Proposition 3.8, we have the assertion.

Remark 7.7. By Proposition 3.9, the Iwasawa µ-invariants and the λ-invariants in this asymp-
totic formula for ZHS3’s can also be obtained from Alexander polynomials in the way we
introduced in Section 3.
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8 Twisted Whitehead links

In this section, as a preparation to investigate examples, we recall the definition of twisted
Whitehead links Wk (k ∈ Z) and calculate the Alexander polynomial.

Definition 8.1. For each k ∈ Z≥0, the twisted Whitehead link Wk in S3 is defined by the
following diagram.

��

?? · · ·

· · ·
k crossings

· · ·

· · ·

Proposition 8.2. (1) If m ≥ 0, then

∆W2m+1(x, y) = 1 +m−mx−my + (1 +m)xy.

(2) If m ≥ 1, then
∆W2m(x, y) = m(1 + xy − x− y).

The case (1) can be found in Kidwell’s article [14, Section 3]. The case (2) is an exercise
in Rolfsen’s book [24, Chapter 7, I, Exercise 10]. In what follows, we present a proof.

8.1 Conway Potential function

We make use of the notion of the Conway potential function of a link defined in Hartley’s
article [8, Section 2]. Let ∇ ∈ ΛZ denote the Conway potential function of a link L.

Lemma 8.3 ([8, (5.5)]). We have

∇(t1, . . . , td) = (−1)d∇(t−1
1 , . . . , t−1

d ).

Lemma 8.4 ([8, (1.1)]). We have

∇(t1, . . . , td) = ∆(t21, . . . , t
2
d)t

m1
1 · · · t

md
d ,

where ∆ is the Alexander polynomial properly chosen with correct sign and mi are integers
that are uniquely determined by the requirement that ∇ satisfies the Lemma 8.3.

Lemma 8.5 (Replacement relations, [8, (5.1),(5.2)]). (1) Let L00 be a link that contains a
configuration
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a ??

b
��

where a, b are segments from distinct knots. Let L++, L−− be the links obtained by
replacing the configuration by

b
//

a //

and b
//

a //

.

Let ∇++, ∇−−, and ∇00 denote the Conway potential function of L++, L−−, and L00

respectively. Then we have

∇++ +∇−− = (tatb + t−1
a t−1

b )∇00.

(2) Consider the case where one of the arcs of (1) is oppositely oriented. Then we have

∇++ +∇−− = (tat
−1
b + t−1

a tb)∇00.

8.2 The Alexander polynomials of the twisted Whitehead links

Let us prove Proposition 8.2.

Proof. We prove

∇W2m+1 = −(m+ 1)(tatb + t−1
a t−1

b ) +m(tat
−1
b + t−1

a tb)

and
∇W2m = m(tatb − tat−1

b − t
−1
a tb + t−1

a t−1
b )

by induction on m. It is known that

1. If L is a split link, then ∇L = 0.

2. If L := OO �� , then ∇L = 1.

3. If L := OO OO , then ∇L = −1.

Let

L++ := ��
??

__
��

L−− := ��
??

__
��
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L00 :=
//
//

oo
oo

Then, by the replacement relation (1), we have

∇++ +∇−− = (tatb + t−1
a t−1

b )∇00.

Since L−− = W1 and L00 = OO OO , we obtain

∇W1 = −(tatb + t−1
a t−1

b ).

Let

L++ := �� ��

�� ��

L−− := �� ��

�� ��

L00 :=
//

oo
//

oo

Then, by the replacement relation (2), we have

∇++ +∇−− = (tat
−1
b + t−1

a tb)∇00.

Since L++ = W1, L−− = W2, L00 = OO OO , we have

∇W1 +∇W2 = −(tat
−1
b + ta

−1tb),

i.e.,
∇W2 = tatb − tat−1

b − t
−1
a tb + t−1

a t−1
b .

Iterating these arguments, we obtain

∇W2m+1 = −∇W2m − (tatb + t−1
a t−1

b )

and
∇W2m = −∇W2m−1 − (tat

−1
b + t−1

a tb).

By the induction hypotheses, we have

∇W2m+1 = −m(tatb − tat−1
b − t

−1
a tb + t−1

a t−1
b )− (tatb + t−1

a t−1
b )

= −(m+ 1)(tatb + t−1
a t−1

b ) +m(tat
−1
b + t−1

a tb))
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and

∇W2m = m(tatb + t−1
a t−1

b )− (m− 1)(tat
−1
b + t−1

a tb))− (tat
−1
b + t−1

a tb)

= m(tatb − tat−1
b − t

−1
a tb + t−1

a t−1
b ).

By Lemma 8.4, we must have

∆W2m+1(x, y) = ∆W2m+1(t2a, t
2
b)

= (m+ 1)(t2at
2
b + 1)−m(t2a + t2b)

and

∆W2m(x, y) = ∆W2m(t2a, t
2
b)

= m(t2at
2
b − t2a − t2b + 1).

9 Examples

In this section, we provide examples of Theorem 7.6 by considering twisted Whitehead links.
Moreover, we show that these examples assure us that Iwasawa µ-invariants can be arbitrary
non-negative integers when d ≤ 2. We also introduce an example of so-called “p-adic limits”
for d = 2 that we have succeeded in calculating. At the end of this section, we provide a
table of the µ and λ invariants for the links that appear in tables of the Rolfsen’s book [24].
We used Sage Math to compute the invariants.

9.1 Z2
p-covers

Here, based on Porti’s result (Proposition 7.5), we explicitly calculate the sizes of the p-
torsions in the Z2

p-covers of W2pn and L = 62
1, as examples of Theorem 7.6.

Example 9.1 (Twisted Whitehead links W2pk). Let p be any prime number and k ∈ Z≥0.
Then branched Z2

p-cover (Mpn → S3)n over (S3,W2pk) satisfies the following:

e(H1(Mpn)) = (kpn + 2n− 2k)pn − 2n+ k.

Hence we have µW
2pk

= k and λW
2pk

= 2.
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Proof. Since ∆W
2pk

(x, y) = pk(1 + xy − x− y), we have

|H1(Mpn)| =
∏

16=ζ2∈W (n)

∏
16=ζ1∈W (n)

∆(ζ1, ζ2)

=
∏
ζ2

∏
ζ1

pk(1− ζ1)(1− ζ2)

=
∏
ζ2

(pk)p
n−1(1− ζ2)p

n−1(1− ζ1)(1− ζ2
1 ) · · · (1− ζp

n−1
1 )

=
∏
ζ2

(pk)p
n−1(1− ζ2)p

n−1pn

= (pk)(pn−1)(pn−1)(pn)p
n−1(pn)p

n−1

= pk(p2n−2pn+1)+2npn−2n

= p(kpn+2n−2k)pn−2n+k.

In particular, we obtain

Theorem 9.2. Suppose d = 2. Then, for arbitrary k ∈ Z≥0, there exists a 2-component link
L such µL = k.

Example 9.3 (L = 62
1). The link L = 62

1 is defined by

and its Alexander polynomial is ∆L(x, y) = x2y2 +xy+1, which we have calculated by using
Rolfsen’s table [24]. In the branched Z2

p-cover over (S3, L), we have |H1(Mpn)| = 3p
n−1. If

p 6= 3, then all the Iwasawa invariants are zero.

For n ≥ 1, let Φn denote the n-th cyclotomic polynomial, i.e.,

Φn =
∏

1≤k≤n, gcd(k,n)=1

(x− e2πi k
n ).

We utilize the following result.

Lemma 9.4 (Apostol, [2, Theorem 1]). If m > n > 1 and (m,n) > 1, then we have

Res(Φm,Φn) =

{
lϕ(n) m

n
= le

1 otherwise,

where l is a prime number, Res(f, g) denotes the resultant of two polynomials, and ϕ(n) is
Euler’s totient function.
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Proof of Example 9.3. Put

rpn(x) := Res(yp
n − 1,∆L(x, y)).

Then we have

rpn(x) =
∏

ξ∈W (n)

(x2ξ2 + xξ + 1)

=
∏

(xξ − ω)(xξ − ω2)

=
∏

(x− ω

ξ
)(x− ω

ξ
)

=
∏

(x− ξω)(x− ξω2)

=
n∏
k=0

Φ3pk(x),

where ω is a primitive cube root of unity. By Lemma 9.4, we have

Res(xp
n − 1, rpn(x))

=
∏
l,k

Res(Φpl(x),Φ3·pk(x))

=
∏
l=k

Res(Φpl(x),Φ3·pl(x))

=
n∏
l=0

3ϕ(pl) = 31+
∑n
l=1 p

l−1(p−1)

= 3p
n

.

On the other hand, we have
∆L(1, 1) = 3.

By Lemma 9.4, we also have

Res(yp
n − 1,∆L(1, y)) = Res(yp

n − 1,Φ3) = Res(Φ1,Φ3) = 3

and
Res(xp

n − 1,∆L(x, 1)) = 3.

Therefore, we obtain

|H1(Mpn)| =
∏

16=ζ1,ζ2∈W (2n)

∆L(ζ1, ζ2) = 3p
n−1.
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9.2 TLN-cover and ν-invariant

Here, we briefly observe an example of the case with (c, d) = (2, 1) and give a remark.
The main reference for this section is [13]. Let L be a link in a QHS3 M consisting of
null-homologous components. The total linking number cover (TLN-cover) is the Z-cover
corresponding to the surjective homomorphism τ : π1(M −N(L)) → Z sending all positive

meridians to 1. In this situation, the reduced Alexander polynomial ∆̃L(t) = ∆L(t, . . . , t)

and a polynomial AX∞(t) = (t− 1)∆̃L(t) are defined, and we have

Proposition 9.5 (Kadokami–Mizusawa, [13, Theorem 3.3]). Let L be a link in a QHS3

M consisting of null-homologous components and let (Mpn → M)n denote the system of
branched Z/pnZ-covers obtained from the subcovers of the TLN-cover over (M,L) by the Fox
completions. Then

|H1(Mpn)|
#H1(M)

=

∣∣∣∣∣∣
∏

16=ξ∈W (n)

AX∞(ξ)

∣∣∣∣∣∣ .
Example 9.6. Let L = W2pk in S3 and let (Mpn → S3)n denote the sequence of branched
Z/pnZ-covers obtained from the TLN-cover. Then we have

∆̃L(t) = ∆L(t, t) ∈ ΛZ = pk(t− 1)2,

AX∞(t) = (t− 1)∆̃L(t) = pk(t− 1)3,

and
e(H1(Mpn)) = kpn + 3n− k.

Proof. By Proposition 9.5, we have

|H1(Mpn)| = |H1(Mpn)|
#H1(M)

= |
∏

16=ξ∈W (n)

AX∞(ξ)|

=
∏
ξ 6=1

pk(1− ξ)3

= (pk)p
n−1(pn)3

= pkp
n+3n−k.

Therefore, Theorem 9.2 can be improved to

Theorem 9.7. Both when d = 1, 2, for arbitrary k ∈ Z≥0, there exists a 2-component link
L in S3 such µL = k.

Remark 9.8. By Ueki–Yoshizaki [32], special interests of Iwasawa ν-invariants in Zp-covers
are known. Example 9.6 indicates that Iwasawa ν-invariants can be arbitrarily small as well.
Also, Example 9.1 indicates that Iwasawa ν-invariants for d = 2 can be arbitrarily large.
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9.3 p-adic torsions

Kisilevsky proved that in a Zp-extension of a global field the class numbers p-adically con-
verges [16, Corollary 1]. Yoshizaki and Ueki proved an analogous result for Zp-covers of
3-manifolds:

Proposition 9.9 (A part of Ueki–Yoshizaki, [32, Theorem 3.1]). Let (Xpn → X)n be a
compatible system of Z/pnZ-covers of a compact 3-manifold X. Then the sizes of the non-p
torsion subgroups H1(Xpn)non-p converges in Zp.

We remark that the p-adic limit of H1(Mpn)non-p coincides with Kionke’s p-adic torsion by
[15, Theorem 1.1]. Kionke’s framework is for arbitrary pro-p covers and the p-adic limits of
|H1(Mpn)non-p| in Zdp-covers of links also give examples of the p-adic torsions. Here we attach
an example for the case c = d = 2. Let Cp denote the p-adic completion of an algebraic
closure of the p-adic numbers Qp and fix an embedding Q ↪→ Cp of algebraic closure of Q.

Example 9.10. Let L = 62
1 in S3 and let p 6= 3. Then, by Example 9.3, we have

lim
n→∞

|H1(Mpn)non-p| = lim
n→∞

3p
n−1 = ξ/3,

where ξ denotes the unique root of unity of order prime to p satisfying |ξ − 3|p < 1, that is,
ξ ≡ 3 mod p holds. We have ξ/3 ∈ Q if and only if p = 2 and in this case we have ξ/3 = 1/3.

Proof. (1) By Fermat’s small theorem, we have 3p
n ≡ 3 mod p, and hence ξp

n
= ξ. By [32,

Lemma 5.6 (1)], lim
n→∞

(3p
n − ξpn) = 0 in Zp. Thus we obtain the assertion.

(2) Let us apply [32, Theorem 5.7] to verify the consistency. If p 6= 2, 3, then 3p
n−1 =

(sgn(1 − 3) · Res(tp
n − 1, t − 3) + 1)/3 = ((−1)(−1)p(ξ − 1) + 1)/3 = ξ/3. If p = 2, then

3p
n−1 = (sgn((1−3)(−1−3))·Res(tp

n−1, t−3)+1)/3 = ((−1)2(−1)2(ξ−1)+1)/3 = ξ/3.

9.4 µ and λ invariants for Rolfsen’s table

Table 1 is the table for µ and λ invariants of links that we have succeeded in calculating by
using Sage Math. We cite the data of Alexander polynomial from a table in Rolfsen’s book
[24]. We shall observe several interesting examples.

• λ(62
1) = 2 if p = 3 since

X2Y 2 + 2X2Y + 2XY 2 +X2 + 5XY + Y 2 + 3X + 3Y + 3

≡ ((1 +X)(1 + Y )− 1)2 mod 3.

• λ(63
3) = 1 since

−XY Z −XY −XZ − Y Z −X − Y − Z
= −((1 +X)(1 + Y )(1 + Z)− 1).

• λ(84
3) = 2 since

WXY Z +WXY +WXZ +WY Z +XY Z +WY +XY +WZ +XZ

= ((1 +X)(1 +W )− 1)((1 + Y )(1 + Z)− 1).
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Table 1: µ and λ invariants

link Alexander polynomial of ∆L(1 +X, 1 + Y ) µ λ

42
1 XY +X + Y + 2 0 1 if p = 2

52
1 XY 0 2

62
1 X2Y 2 + 2X2Y + 2XY 2 +X2 + 5XY + Y 2 + 3X + 3Y + 3 0 2 if p = 3

62
2 X2Y +XY 2 +X2 + 3XY + Y 2 + 3X + 3Y + 3 0 0

62
3 2XY +X + Y + 2 0 0

72
1 X2Y 2 +X2Y +XY 2 +XY −X − Y − 1 0 0

72
2 X2Y 2 +X2Y +XY 2 + 3XY +X + Y + 1 0 0

72
3 2XY 1 if p = 2 2

72
4 X3Y + 2X2Y + 2XY 0

4 if p = 2
2 if not

72
5 X3Y +X3 +X2Y + 3X2 +XY + 3X + Y + 2 0 1 if p = 2

72
6 X3Y +X2Y +XY 0 2

72
7 X3Y +X3 + 3X2Y + 3X2 + 3XY + 3X + Y + 2 0 1 if p = 2

72
8 XY 0 2

82
1

X3Y 3 + 3X3Y 2 + 3X2Y 3 + 3X3Y + 9X2Y 2 + 3XY 3 + 2X3 + 10X2Y + 10XY 2
0 0

+Y 3 + 7X2 + 13XY + 4Y 2 + 9X + 6Y + 4

82
2

X3Y +X2Y 2 +XY 3 +X3 + 4X2Y + 4XY 2 + Y 3 + 4X2 + 7XY
0 0

+4Y 2 + 6X + 6Y + 4

82
3 2X2Y 2 + 3X2Y + 3XY 2 +X2 + 7XY + Y 2 + 3X + 3Y + 3 0 0

82
4

X3Y 2 +X2Y 3 + 2X3Y + 4X2Y 2 + 2XY 3 +X3 + 7X2Y + 7XY 2 + Y 3
0 3 if p = 2

+4X2 + 10XY + 4Y 2 + 6X + 6Y + 4

82
5 X2Y 2 −X2 −XY − Y 2 − 3X − 3Y − 3 0 0

82
6 3XY +X + Y + 2 0 1 if p = 2

82
7 X2Y 2 −XY −X − Y − 1 0 0

82
8 X2Y 2 +XY +X + Y + 1 0 0

82
9 −X3 − 2X2Y −X2 + 3X + Y + 2 0 1 if p = 2

82
10 X3Y 0 4

82
11 −X3Y +X3 −X2Y + 3X2 −XY + 3X + Y + 2 0 1 if p = 2

82
12 X3Y 0 4

82
13 X3Y −X2Y −XY 0 2

82
14 X3Y +X3 −X2Y + 3X2 −XY + 3X + Y + 2 0 1 if p = 2

82
15 XY 0 2

82
16 −X3 −X2 + 2XY + 3X + Y + 2 0 1 if p = 2

92
1

X3Y 3 + 2X3Y 2 + 2X2Y 3 +X3Y + 4X2Y 2 +XY 3 +X2Y +XY 2 −X2
0 0

−2XY − Y 2 − 3X − 3Y − 2

92
2

X3Y +X2Y 2 +XY 3 + 2X2Y + 2XY 2 −X2 −XY − Y 2 − 3X − 3Y
0 0−2

92
3 2X2Y 2 + 2X2Y + 2XY 2 + 3XY −X − Y − 1 0 0

92
4 X3Y 2 +X2Y 3 +X3Y + 5X2Y 2 +XY 3 + 5X2Y + 5XY 2 + 5XY 0 2

92
5 X3Y + 2X2Y 2 +XY 3 + 4X2Y + 4XY 2 + 4XY 0

4 if p = 2
2 if not

92
6

−X3Y 2 −X2Y 3 −X3Y − 3X2Y 2 −XY 3 − 2X2Y − 2XY 2 +X2 +XY
0 1 if p = 2

+Y 2 + 3X + 3Y + 2

92
7

−X3Y 2 −X2Y 3 −X3Y − 2X2Y 2 −XY 3 −X2Y −XY 2 +X2 + 2XY
0 1 if p = 2

+Y 2 + 3X + 3Y + 2

92
8 2X2Y + 2XY 2 + 3XY −X − Y − 1 0 0

92
9

X3Y 2 −X2Y 3 +X3Y − 3X2Y 2 −XY 3 − 3X2Y − 3XY 2 − 2X2 − 3XY
0 1−2X

92
10 3XY 1 if p = 3 2

92
11 2X2Y 2 +X2Y +XY 2 +XY −X − Y − 1 0 0

92
12 X2Y 2 −X2Y −XY 2 −XY +X + Y + 1 0 0

92
13 X5Y + 4X4Y + 7X3Y + 6X2Y + 3XY 0

4 if p = 3
2 if not

92
14

X5 + 2X4Y + 5X4 + 6X3Y + 10X3 + 8X2Y + 10X2 + 4XY + 5X
0 1 if p = 2

+Y + 2

92
15 2X3Y + 3X2Y + 3XY 0

4 if p = 3
2 if not

92
16 2X3 + 4X2Y + 5X2 + 3XY + 3X + Y + 2 0 1 if p = 2

92
17 2X3 + 3X2Y + 5X2 + 2XY + 3X + Y + 2 0 1 if p = 2

92
18 2X3Y + 2X2Y + 2XY 1 if p = 2 2

92
19

X4Y +X3Y 2 + 5X3Y + 2X2Y 2 +X3 + 8X2Y + 2XY 2 + 2X2 + 6XY
0 0

+2X + Y + 1

92
20

X4 + 2X3Y + 2X2Y 2 + 4X3 + 7X2Y + 2XY 2 + 7X2 + 6XY + Y 2
0 0

+6X + 3Y + 3

92
21

X4Y 2 +X4Y + 3X3Y 2 + 5X3Y + 4X2Y 2 +X3 + 8X2Y + 2XY 2 + 2X2
0 0

+6XY + 2X + Y + 1

92
22

X4Y + 2X3Y 2 +X4 + 5X3Y + 4X2Y 2 + 4X3 + 10X2Y + 3XY 2 + 7X2
0 0

+8XY + Y 2 + 6X + 3Y + 3

92
23 X3Y + 2X2Y 2 +XY 3 + 3X2Y + 3XY 2 −X2 − Y 2 − 3X − 3Y − 2 0 1 if p = 2

92
24 3X2Y 2 + 3X2Y + 3XY 2 +X2 + 7XY + Y 2 + 3X + 3Y + 3 0 2 if p = 3
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link Alexander polynomial of ∆L(1 +X, 1 + Y, . . .) µ λ

92
25 X3Y − 2X2Y − 2XY 0

4 if p = 2
2 if not

92
26 X3Y −X3 −X2Y −X2 +XY + 3X + Y + 2 0 1 if p = 2

92
27 2X3Y + 3X2Y + 3XY 0

4 if p = 3
2 if not

92
28 X3Y −X3 −X2Y − 3X2 −XY − 3X − Y − 2 0 1 if p = 2

92
29 −2X4Y − 5X3Y − 6X2Y − 3XY + 1 0 0

92
30 −X3Y + 2X3 +X2Y + 5X2 + 3X + Y + 2 0 0

92
31 X5Y + 3X4Y + 4X3Y + 2X2Y +XY 0 2

92
32 2X3Y +X2Y +XY 0 2

92
33 2X3Y +X2Y +XY 0 2

92
34

X4Y 2 +X4Y + 2X3Y 2 + 3X3Y + 2X2Y 2 + 2X2Y +XY 2 −X2 − 2X
0 0−Y − 1

92
35

X4Y 2 +X4Y + 2X3Y 2 + 3X3Y + 2X2Y 2 + 4X2Y +XY 2 +X2 + 4XY
0 0

+2X + Y + 1

92
36 2X3Y + 2X2Y + 2XY 1 if p = 2 2

92
37 X5Y + 3X4Y + 5X3Y + 4X2Y + 2XY

0 4 if p = 2
2 if not

92
38 2X3Y +X2Y +X2 + 2XY + 3X + Y + 2 0 1 if p = 2

92
39

−X4Y − 2X3Y 2 −X4 − 4X3Y − 4X2Y 2 − 3X3 − 7X2Y − 3XY 2 − 4X2
0 0

−4XY − Y 2 − 2X − Y

92
40

X4Y 2 + 2X4Y +X3Y 2 +X4 + 5X3Y + 4X3 + 4X2Y +XY 2 + 7X2
0 2 if p = 3

+4XY + Y 2 + 6X + 3Y + 3

92
41 X3Y 3 + 2X3Y 2 +X2Y 3 +X3Y + 5X2Y 2 + 3X2Y + 3XY 2 + 3XY 0

4 if p = 3
2 if not

92
42

X4Y 2 +X4Y +X3Y 2 + 2X3Y −X2Y −X2 − 2XY − 2X − Y
0 0−1

92
43 X5 + 5X4 + 10X3 + 10X2 + 5X + Y + 2 0 1 if p = 2

92
44 X3Y + 2X2Y + 2XY 0

4 if p = 2
2 if not

92
45 2X3 + 5X2 −XY + 3X + Y + 2 0 1 if p = 2

92
46 2XY 1 if p = 2 2

92
47 XY 0 2

92
48 2X3 +X2Y + 5X2 + 3X + Y + 2 0 1 if p = 2

92
49 X4 + 4X3 +X2Y + 7X2 + 2XY + Y 2 + 6X + 3Y + 3 0 2 if p = 3

92
50 −X2Y −XY + Y 2 +X + Y + 1 0 0

92
51

X4Y +X4 + 3X3Y + 4X3 + 4X2Y +XY 2 + 7X2 + 4XY + Y 2
0 0

+6X + 3Y + 3

92
52 X2Y 2 +X2Y +XY − Y 2 −X − Y − 1 0 0

92
53

X2Y 2 +X3 + 2X2Y + 2XY 2 + Y 3 + 4X2 + 5XY + 4Y 2 + 6X
0 2 if p = 2

+6Y + 4

92
54 X2Y +XY 2 +XY −X − Y − 1 0 0

92
55 X3Y +X2Y +XY 0 2

92
56 X3Y +X2Y +XY 0 2

92
57 X3Y + 2X2Y +X2 + 3XY + 3X + Y + 2 0 0

92
58 X3Y +X2Y +X2 + 2XY + 3X + Y + 2 0 0

92
59

X5Y +X5 + 5X4Y + 5X4 + 9X3Y + 10X3 + 8X2Y + 10X2 + 4XY
0 0

+5X + Y + 2

92
60 X3Y + 2X3 + 2X2Y + 5X2 +XY + 3X + Y + 2 0 0

92
61

X3Y 2 + 2X3Y + 3X2Y 2 +XY 3 +X3 + 6X2Y + 6XY 2 + Y 3 + 4X2
0 2 if p = 2

+9XY + 4Y 2 + 6X + 6Y + 4

63
1 XY +XZ + Y Z +X + Y + Z 0 0

63
2 −XY Z 0 3

63
3 −XY Z −XY −XZ − Y Z −X − Y − Z 0 1

73
1 −XY Z + Y Z −X + Y + Z 0 0

83
1

−X2Y 2Z − 2X2Y Z −XY 2Z −X2Y +XY 2 −X2Z − 3XY Z −X2 + Y 2
0 0−2XZ − 2X + 2Y − Z

83
2

X2Y 2 +X2Y Z +XY 2Z + 2X2Y + 2XY 2 +X2Z + 2XY Z + Y 2Z +X2
0 0

+4XY + Y 2 + 2XZ + 2Y Z + 2X + 2Y + Z

83
3 XY Z −XY −XZ − Y Z −X − Y − Z 0 1 if p = 2

83
4

X3Y + 2X2Y Z +X3 + 3X2Y +X2Z + 2XY Z + 4X2 + 2XY + 2XZ
0

3 if p = 2
+4X 1 if not

83
5 X2Y 2Z +X2Y Z +XY 2Z + 2XY Z

0 4 if p = 2
3 if not

83
6 X2Y 2Z +X2Y Z +XY 2Z + 3XY Z +XZ + Y Z + Z 0 1

83
7

−X2Y 2Z −X2Y 2 − 2X2Y Z − 2XY 2Z − 2X2Y − 2XY 2 −X2Z − 4XY Z − Y 2Z
0 1

−X2 − 4XY − Y 2 − 2XZ − 2Y Z − 2X − 2Y − Z

83
8

XY 2Z −X2Y +XY 2 +XY Z + Y 2Z −X2 + Y 2 + 2Y Z − 2X
0 0

+2Y + Z

83
9 XY Z 0 3

83
10

X3Y Z +X3Y +X3Z + 3X2Y Z +X3 + 3X2Y + 3X2Z + 2XY Z + 4X2
0

3 if p = 2
+2XY + 2XZ + 4X 1 if not
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93
1 X2Y 2Z +X2Y Z +X2Y −XY 2 −XZ − Y Z − Z 0 0

93
2 X2Y 2Z +X2Y Z +X2Y −XY 2 + 2XY Z +XZ + Y Z + Z 0 0

93
3

−X3Y Z −X2Y Z −X3 +X2Y +X2Z −XY Z −X2 +XY +XZ
0 0

+Y Z −X + Y + Z

93
4

X3Y +X3Z + 2X2Y Z +X3 + 2X2Y + 2X2Z + 2XY Z +X2 + 2XY
0 0

+2XZ + Y Z +X + Y + Z

93
5

X2Y Z +XY 2Z + 2XY Z − Y 2Z +X2 − Y 2 − 2Y Z + 2X − 2Y
0 0−Z

93
6

X2Y 2Z +X2Y Z +X2Y −XY 2 +XY Z − Y 2Z +X2 − Y 2 − 2Y Z
0 0

+2X − 2Y − Z
93
7 2XY Z − Y Z +X − Y − Z 0 1 if p = 2

93
8 X3Y + 2X2Y Z + 2X2Y +XY Z

0 3 if p = 2, 3
0 2 if not

93
9 X3Y Z +X2Y Z +XY Z 0 3

93
10 X2Y 2Z 0 5

93
11

X2Y 2Z − 8XY Z − Y 2Z +X2 − Y 2 − 8XZ − 10Y Z + 2X − 2Y
0 0−9Z

93
12 X3Y Z 0 5

93
13 X2Y 2Z +X2Y 2 +X2Y Z +XY 2Z +X2Y +XY 2 −XZ − Y Z − Z 0 0

93
14

X2Y 2Z +X2Y 2 +X2Y Z +XY 2Z +X2Y +XY 2 + 2XY Z +XZ + Y Z
0 0

+Z

93
15

X3Y +X3Z +X3 + 2X2Y + 2X2Z +X2 + 2XY + 2XZ + Y Z
0 0

+X + Y + Z

93
16

−2X2Y Z +X3 −X2Y −X2Z − 2XY Z +X2 −XY −XZ − Y Z
0 0

+X − Y − Z
93
17 −X3 +X2Y +X2Z −X2 +XY +XZ + Y Z −X + Y

0 0
+Z

93
18 −XY Z 0 3

93
19 −X3Y Z −X3Y − 2X2Y Z − 2X2Y −XY Z 0 3

93
20 −X3Z −X2Y Z − 2X2Z 0

4 if p = 2
3 if not

84
1 −WXY −WXZ −WYZ −XY Z −WY −XY −WZ −XZ 0 0

84
2 −WXZ −WYZ −WY +XY −WZ −XZ 0 0

84
3 WXYZ +WXY +WXZ +WYZ +XY Z +WY +XY +WZ +XZ 0 2

84
4 WXYZ −WXZ −WYZ −WY +XY −WZ −XZ 0 0

10 Remarks

• In [33], Wan proved that Greenberg’s conjecture holds in the function field case. On
the other hand, in [5], DuBose and Vallières proved that Greenberg’s conjecture holds
in the graph case. It is mysterious whether Greenberg’s conjecture holds for our QHS3

case or not. It would be interesting if we could construct a non-Greenberg example.
We should continue comparing these four fields: number fields, function fields, links,
and graphs.

• As is well known, the relationship between the sizes of the torsion subgroups and the
Betti numbers is like siblings as research objects. The polynomial periodicity of Betti
numbers for Zd-coverings has been researched by Adams–Sarnak [1], Hironaka [9], and
Sakuma [26]. While Betti numbers are always trivial in number theoretical side, the
topological side deserves to be researched.
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