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Abstract

In this thesis, we consider a notion of a higher version of the relation be-
tween Courant-Dorfman algebras and Poisson vertex algebras. We define a higher
Courant-Dorfman algebra, and study the relationship with graded symplectic ge-
ometry. In particular, we give graded Poisson algebras of degree −n in the
non-degenerate case. For higher Courant-Dorfman algebras coming from finite-
dimensional vector bundles, they coincide with the algebras of functions of the
associated differential-graded(dg) symplectic manifolds of degree n.

We define a higher Lie conformal algebra and Poisson vertex algebra, and give a
higher (weak) Courant-Dorfman algebraic structure arising from them. Moreover,
we prove that the higher Lie conformal algebras and higher Poisson vertex algebras
have properties like Lie conformal algebras and Poisson vertex algebras. As an
example, we obtain an algebraic description of Batalin-Fradkin-Vilkovisky(BFV)
current algebras.
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Chapter 1

Introduction

A Courant algebroid is a 4-tuple (E, ρ, ⟨, ⟩, [, ]) where E is a vector bundle over a
smooth manifold M , ρ is an anchor map to tangent bundle, ⟨, ⟩ is a non-degenerate
metric, and [, ] is a Courant bracket on the sections of the bundle, satisfying a set of
compatibility conditions. It first appeared in [1] as the generalized tangent bundle
TM⊕T ∗M with a natural projection ρ : TM⊕T ∗M → TM , a natural pairing ⟨.⟩,
and a Dorfman bracket [, ], and a general definition was given in [10] to generalize
the double of Lie bialgebroids (Lie algebroid analogue of Lie bialgebras[3]). We can
obtain a map d : C∞(M) → Γ(E) by defining ⟨df, e⟩ = ρ(e)f for f ∈ C∞(M), e ∈
Γ(E). Courant algebroids play an important role in some areas of mathematics
and physics, for example, generalized geomtries[2], T-dualities[4], topological sigma
models[5],supergravity[6], and double field theories[7]. Moreover, there is a one-
to-one correspondence between the isomorphism class of differential-graded (dg
for short) symplectic manifolds of degree 2 and isomorphism class of Courant
algebroids[9].

A Courant-Dorfman algebra is a 5-tuple (R,E, ∂, ⟨, ⟩, [, ]), where R is a com-
mutative algebra, E is an R-module, ⟨, ⟩ : E ⊗ E → R is a symmetric bilinear
form, ∂ : R → E is a derivation, and [, ] : E ⊗ E → E is a Dorfman bracket,
satisfying a set of compatibility conditions. A Courant algebroid gives a Courant-
Dorfman algebra via (C∞(M),Γ(E), d, ⟨, ⟩, [, ]). Courant-Dorfman algebras gener-
alize Courant algebroids in two directions: first allowing for more general commu-
tative algebras R and modules E than algebras of smooth functions and modules
of smooth sections, and second allowing for degenerate ⟨, ⟩. The relation between
Courant-Dorfman algebras and Poisson vertex algebras was found in the context
of current algebras.

Current algebras are Poisson algebras consisting of functions on mapping spaces.
In classical field theories, a Poisson algebraic structure of currents plays important
roles when we consider symmetries of fields. The most basic example is Kac-
Moody algebra, which is the Lie algebraic structure on Map(S1, G), where G is
a Lie group. Let g be the Lie algebra of G and ea be generators of g such that
[ea, eb] = f c

abec. The bracket is of the form

{Ja(σ), Jb(σ′)} = f c
abJc(σ)δ(σ − σ′) + kδabδ

′(σ − σ′), (1.1)

where k is a constant. The algebra plays important roles as the symmetry of
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the Wess-Zumino-Witten model, 2-dimensional conformal invariant sigma model
whose target space is a Lie group[11].

Alekseev and Strobl observed there was more general current algebra whose
source manifold was S1 but a target manifold was a general smooth manifold[25].
Let M be a smooth manifold and choose a vector field v = vi(x)∂i and a 1-form
α = αi(x)dx

i on M . We associate to them a current,

J(v,α)(σ) = vi(x(σ))pi(σ) + αi(x(σ))∂σx
i(σ). (1.2)

The Poisson bracket of these currents is of the form,

{J(v,α)(σ), J(u,β)(σ′)} = J[(v,α),(u,β)](σ)δ(σ−σ′)+ ⟨(v, α), (u, β)⟩(σ)δ′(σ−σ′), (1.3)

where u, v is a vector field onM , α, β is a 1-form onM , [(v, α), (u, β)] = ([v, u], Lvβ−
ιudα) is the Dorfman bracket on the generalized tangent bundle TM ⊕ T ∗M and
⟨(v, α), (u, β)⟩ = ιuα+ ιvβ. Let M = G be a Lie group, and consider an Alekseev-
Strobl current of the form

J = p(σ)− k

4π
g−1(σ)∂σg(σ), (1.4)

where p ∈ TG is a left invariant momentum and g−1∂g ∈ T ∗G is the Maurer-
Cartan form. (The current of this type was first given in [36].) We can identify
TG⊕ T ∗G with g⊕ g∗ and, with the Killing form, we can identify g⊕ g∗ with g.
Thus we can decompose J on a basis ea of g, and the Poisson bracket of Ja’s is
a Kac-Moody algebra(1.1). Alekseev-Strobl currents appear in the description of
symmetries of 2-dimensional σ-models.

Inspired by [25], Ekstrand and Zabzine studied the algebraic structure under-
lying more general current algebras on loop spaces[26]. They found that a weak
notion of Courant-Dorfman algebras (weak Courant-Dorfman algebras) appears
when we consider the Poisson bracket of currents. As an example, we can obtain
the currents whose target are general Courant algebroids. In [30], (weak) Courant-
Dorfman algebras were derived using the language of Lie conformal algebras (LCA
for short) and Poisson vertex algebras (PVA for short).

A Lie conformal algebra is a module with a λ-bracket satisfying some conditions
like a Lie algebra, and a Poisson vertex algebra is defined as an algebra which
has a structure of a Lie conformal algebra and satisfies the Leibniz rule. They
first appeared in the context of vertex algebras, and the relation with the Poisson
bracket of currents was investigated in [15]. We can obtain a Lie conformal algebra
from the Poisson bracket of currents, and we can obtain a Poisson vertex algebra
by taking into account the multiplication of currents. A Poisson vertex algebra
can be seen as an algebraic generalization of a Poisson algebraic structure on loop
spaces, while a Lie conformal algebra can be seen as an algebraic generalization
of a Lie bracket on loop spaces. In [30], Ekstrand gave weak Couarnt-Dorfman
algebras from Lie conformal algebras and showed that the graded Poisson vertex
algebras generated by elements of degree 0 and 1 are in one-to one correspondence
with the Courant-Dorfman algebras.

The above discussions are summarized as follows.
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degree 2 dg symplectic manifolds oo
1−to−1// Courant algebroids (1.5)

Kac-Moody algebras
� _

��

generalized tangent bundles of Lie groups
target

oo
� _

��

Alekseev-Strobl current algebras

algebraic generalization

��

Courant algebroids
target

oo

algebraic generalization

��

Poisson vertex algebras oo
1−to−1 //

� _

��

Courant-Dorfman algebras
� _

��

Lie conformal algebras derive // weak Courant-Dorfman algebras

(1.6)
Courant algebroids are in one-to-one correspondence with degree 2 dg symplec-

tic manifolds, and Alekseev-Strobl current algebras can be described in the lan-
guage of dg symplectic geometry[31]. Moreover, Poisson algebras on the mapping
space whose source manifold was in higher dimensions were constructed (for exam-
ple, [18], [19]) and a general framework explaining these current algebras were given
using dg symplectic geometry.[32], [33], [34] These currents are called BFV(Batalin-
Fradkin-Vilkovisky) current algebras. There Courant algebroids(degree 2 dg sym-
plectic manifolds) are generalized to degree n dg symplectic manifolds. BFV cur-
rent algebras and degree n dg symplectic manifolds can be seen as a higher analog
of the second line of (1.6).

The aim of this paper is to give a higher analog of the third line and fourth line
of (1.6). In other words, we consider how to make higher Poisson vertex algebras,
higher Courant-Dorfman algebras, higher Lie conformal algebras and higher weak
Courant-Dorfman algebras which are generalizations of BFV current algebras and
algebras of functions of degree n dg symplectic manifolds. In particular, with
higher Courant-Dorfman algebras and higher Poisson vertex algebras, we may be
able to find and unify more general current algebras including the BFV current
algebras, and use the techniques of Poisson vertex algebras in the higher setting.

In this paper, we give a higher analog of the relation between Poisson vertex
algebras and Courant-Dorfman algebras. First, we define higher Courant-Dorfman
algebras by taking an algebraic structure of functions of degree n dg symplectic
manifolds. We give some examples, including ordinary Courant-Dorfman algebras
and higher Dorfman bracket on TM⊕∧n−1T ∗M . We also give an extended version
of higher Courant-Dorfman algebras, whose definition is more natural when we
consider the relation with higher PVAs.

Second, we check that non-degenerate higher Courant-Dorfman algebras have a
similar property to the non-degenerate Courant-Dorfman algebras. In particular,
we make a graded Poisson algebra of degree −n from a non-degenerate higher
Courant-Dorfman algebra. This graded Poisson algebra is a generalization of the
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graded Poisson algebra of degree −2 introduced in [27], [8]. For a non-degenerate
higher Courant-Dorfman algebra from a finite-dimensional graded vector bundle,
this graded Poisson algebra is isomorphic to the algebra of functions of degree n
dg symplectic manifolds.

Third, we define a higher analog of Lie conformal algebras and Poisson ver-
tex algebras, which are to higher Courant-Dorfman algebras what Poisson vertex
algebras are to Courant-Dorfman algebras. We derive a weak notion of higher
Courant-Dorfman algebras from higher Lie conformal algebras, and give the cor-
respondence between higher Poisson vertex algebras and higher Courant-Dorfman
algebras. This correspondence is a higher generalization of the correspondence be-
tween Courant-Dorfman algebras and Poisson vertex algebras, and the main result
of this thesis.

Theorem. There is a bijection between higher Poisson vertex algebras generated
by elements of degree 0 ≤ i ≤ n−1 and extended higher Courant-Dorfman algebras.

Moreover, we check higher Lie conformal algebras and higher Poisson vertex
algebras have LCA-like and PVA-like properties. In particular, we show we can
construct a graded Lie algebra out of the tensor product of a higher LCA and an
arbitrary differential graded-commutative algebra (dgca for short) and a graded
Poisson algebra out of the tensor product of a higher PVA and an arbitrary dgca.
Taking a tensor product of the higher Courant-Dorfman algebra arising from a dg
symplectic manifold of degree n and de-Rham complex of a n−1 dimensional man-
ifold, we see the associated Poisson algebras can be seen as an algebraic description
of BFV current algebras. This is the higher generalization of Alekseev-Strobl Pois-
son vertex algebras.

The higher generalization of (1.6) are summarized as follows.

BFV current alegbras

algebraic generalization

��

functions of degree n dg symplectic manifolds
target

oo

algebraic generalization

��

higher Poisson vertex algebras oo1-to-1//
� _

��

(extended) higher Courant-Dorfman algebras
� _

��

higher Lie conformal algebras derive // higher weak Courant-Dorfman algebras

(1.7)
In the case of n = 2, this coincides with (1.6). The bold parts (second line and

third line) are defined and studied in this paper.
The organization of this thesis is as follows. In chapter 2, we recall some ba-

sics about dg symplectic geometry. In chapter 3, we review the relation between
Poisson vertex algebras and Courant-Dorfman algebras, focusing on the Poisson
structure of loop spaces. In chapter 4, we define the higher Courant-Dorfman
algebra and give some examples. In chapter 5, we construct graded Poisson alge-
bras of degree −n, generalizing Keller-Waldman Poisson algebras. In chapter 6,
we define higher Lie conformal algebras and Poisson vertex algebras and see the
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relation with higher Courant-Dorfman algebras. Moreover, we show how we can
see these algebras as higher generalization of ordinary LCAs and PVAs.
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Chapter 2

Dg symplectic manifolds

In this chapter, we review some basics of dg symplectic manifolds. We refer to
[20], [21], [37].

A graded vector space is a collection of vector spaces V = ⊕i∈ZVi, where Vi is
the vector space of degree i. Denote the dual of V by V ∗ = ⊕i∈Z(V

∗
i )

−i. Define
the tensor algebra of V ∗ by

Tens(V ∗) = ⊕i≥0(V
∗)⊗i, (2.1)

and the symmetric algebra of V ∗ by

Sym(V ∗) = Tens(V ∗)/(v ⊗ w − (−1)|v||w|w ⊗ v), (2.2)

where |v|, |w| is the degree of the homogeneous elements v, w ∈ V ∗. The algebra
of functions on V is identified with Sym(V ∗).

A graded manifold M is a locally ringed space (M,C∞(M)) which is locally
isomorphic to (U,C∞(U) ⊗ SymV ∗), where U ⊂ Rn is open, and V is a finite-
dimensional graded vector space. A morphism of graded manifolds is a morphism
of graded-commutative algebras of functions.

Let V be a graded vector space with homogeneous coordinates (zi)ni=1 corre-
sponding to a basis of V ∗. A vector field X on V is an R-linear derivation on V
satisfying the Leibniz rule

X(fg) = X(f)g + (−1)k|f |fX(g) (2.3)

for f, g ∈ V . It is of the form

X =
n∑

i=1

X i ∂

∂zi
(2.4)

where X i ∈ Sym(V ∗), and ∂
∂zi

is the dual basis of V . A vector field X acts on V ∗

according to the following rules:

∂

∂zi
(zj) = δji , (2.5)

∂

∂zi
(fg) =

(
∂

∂zi
(f)

)
g + (−1)|z

i||f |f
∂

∂zi
(g). (2.6)

6



A vector field X is graded if |Xf | = |f |+k for homogeneous f and fixed k ∈ Z.
k is called the degree of X.

A graded vector field on a graded manifold M of degree k is a graded linear
map

X : C∞(M) → C∞(M)[k], (2.7)

where W [k]i = W k+i, which satisfies the graded Leibniz rule, i.e.

X(fg) = X(f)g + (−1)k|f |fX(g) (2.8)

holds for all homogeneous smooth functions f, g ∈: C∞(M).

Example 2.1. The Euler vector field E on M is a vector field of degree 0 which
satisfies

Ef = |f |f, (2.9)

for a homogeneous element f ∈ C∞(M). Locally, it is of the form,

E =
∑
i

|zi|zi ∂

∂zi
. (2.10)

Definition 2.1 ([20, Definition3.3.]). A cohomological vector field Q is a graded
vector field of degree 1 which satisfies Q2 = 0.

Every cohomological vector field onM corresponds to a differential on C∞(M).
A morphism of dg manifolds is a morphism of dg algebras of functions.

The space of graded differential forms consists of homomorphisms from the
graded vector fields on M to the functions on M,

Ω1(M) := HomC∞(M)(X(M), C∞(M)). (2.11)

Locally, the algebra of differential forms on a graded manifoldM is constructed
by adding new coordinates dzi to zi(|dzi| = |zi| + 1). We denote a space of k-th
differential forms by Ωk(M). Define the de-Rham differential and the Lie derivative
LV (V :a vector field) by

dω(V1, ..., Vn+1) =
n∑

i=1

(−1)|V
i|(|ω|−n+|V 1|+···+|V i−1|)V iω(V1, ..., Vi−1, V̂i, Vi+1, ..., Vn),

+
∑

1≤i<j≤n

(−1)(|V
i|+···+|V j−1|)|V j |ω(V1, ..., Vi−1, [Vi, Vj], Vi+1, ..., Vn)

(2.12)

LV = ιV d+ (−1)|V |dιV , (2.13)

where ω ∈ Ωn(M), Vi ∈ X and ιV is the contraction.

Definition 2.2 ([20, Definition4.3.]). A graded symplectic form of degree k on a
graded manifold M is a two-form ω which has the following properties;
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• ω is homogeneous of degree k,

• ω is closed with respect to the de-Rham differential,

• ω is non-degenerate, i.e. the induced morphism,

ω : TM → T ∗[k]M, (2.14)

is an isomorphism. There [k] means degree shifting the fibres of the vector
bundle.

A graded symplectic manifold of degree k is a pair (M, ω) of a graded manifold
M and a graded symplectic form ω of degree k on M.

Lemma 2.1 ([20, Lemma4.5.]). Let ω be a graded symplectic form of degree k ̸= 0.
Then ω is exact.

Proof. Let E be the Euler vector field. Then,

kω = LEω = (dιE + ιEd)ω = d(ιEω), (2.15)

which implies ω = dιEω
k

(E:Euler vector field).

Definition 2.3 ([20, Definition4.6.]). Let ω be a graded symplectic form on a
graded manifold M. A vector field X is called symplectic if LXω = 0, and Hamil-
tonian if there is a smooth function H such that ιXω = dH.

Lemma 2.2 ([20, Lemma4.7.]). Let ω be a graded symplectic form of degree k ̸= 0
and X be a symplectic vector field of degree l. If k+ l ̸= 0, then X is Hamiltonian.

Proof. For the Euler vector field E,

−lιXω = ι[E,X]ω = ιXd(ιEω)− d(ιXιEω)

= kιXω + d(ιEιXω) (2.16)

Let H := ιEιXω, Then
dH = (k + l)ιXω. (2.17)

Hence ιXω = dH
k+l

.

For a degree k graded symplectic manifold (M, ω), we can define a Poisson
bracket {−,−} on C∞(M) via

{f, g} := (−1)|f |+1Xf (g) (2.18)

where Xf is the unique graded vector field that satisfies ιXf
ω = df . Xf is called a

Hamiltonian vector field of f . If the vector field Q is Hamiltonian, one can find a
Hamiltonian function S such that

Q = {S,−}. (2.19)
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Since
Q2(f) = {{S, S}, f} (2.20)

Q2 = 0(i.e. Q is cohomological) is equivalent to {S, S} being a constant.
Assume that Q is a cohomological vector field. Then, |S| = k + 1, while

|{−,−}| = −k. Consequently, |{S, S}| = k + 2. If k ̸= −2, then

{S, S} = 0. (2.21)

This equation is known as the classical master equation. A cohomological vector
field with a Hamiltonian function S such that Q = {S,−} is called a symplectic
cohomological vector field.

Definition 2.4 ([20, Definition4.10.]). A graded manifold endowed with a graded
symplectic form and a symplectic cohomological vector field is called a differential
graded symplectic manifold, or dg symplectic manifold for short.

A morphism between two dg symplectic manifolds is a morphism of the Poisson
algebras of functions respecting the differential induced by the symplectic coho-
mological vector field.

We consider some special cases of dg symplectic manifolds (M,ω, S), where
S is the Hamiltonian function associated to a cohomological vector field. When
k = −1, these manifolds correspond to BV theories. A BV theory is a formulation
of a Lagrangian formalism of a gauge theory based on dg manifold([22]). In this
case, the Poisson bracket induced by ω corresponds to the BV antibracket and the
Hamiltonian function corresponds to the BV action. When k = 0, they emerge in
the BFV theories. A BFV theory is a formulation of a constrained Hamiltonian
system based on a dg manifold, which is a Hamiltonian counterpart of the BV
theory([23], [24]). In this case, the Poisson bracket induced by ω corresponds
to the BFV Poisson bracket and the Hamiltonian function corresponds to the
BRST charge. Note that the physical Hamiltonian cannot be decided from the dg
symplectic manifold.

Suppose k > 0 and that all the coordinates are of non-negative degree. Then
M is called an N-manifold. N-manifolds of degree 1 and 2 are analyzed in [9].

k = 1. Every graded symplectic manifold of degree 1 is canonically isomorphic
to the graded cotangent bundle T ∗[1]M of the base manifold M . We denote the
coordinates of degree 0 by xi, and the coordinates in degree 1 by pi.

The Hamiltonian S has degree 2, thus locally it must be of the form,

S =
1

2

n∑
i,j=1

πij(x)pipj. (2.22)

Hence, locally S corresponds to a bivector field Π = πij(x)∂i ∧ ∂j and {S, S} = 0
implies that S corresponds to a Poisson bivector field.

9



Let Ci(C∞(M)) be the subspace of C∞(M) generated by degree i coordinates.
For f, g ∈ C0(C∞(M))

{{f, S}, g} = {
n∑

i,j=1

∂f

∂xi
πijpj, g}

=
n∑

i,j=1

∂f

∂xi

∂g

∂xj
πij, (2.23)

which is a Poisson manifold structure.
Hence, there is a one-to-one correspondence between isomorphism class of dg

symplectic manifolds of degree 1 and isomorphism class of Poisson manifolds.

k = 2. The graded symplectic structure induces an isomorphism between the
coordinates of degree 0, which we denote by xi, and the coordinates in degree 2,
which we denote by pi. We denote the coordinates in degree 1 by ηα. The graded
symplectic form can be written as

ω =
n∑

i=1

dpidx
i +

1

2

n∑
α,β=1

d(gαβ(x)η
α)dηβ (2.24)

where gαβ is a symmetric non-degenerate form.
Globally, the dg symplectic manifold corresponds to the symplectic realization

of E[1] for a vector bundle E over M , equipped with a non-degenerate fibre pairing
g.

The Hamiltonian S has degree 3, thus locally it must be of the form

S =
∑
i,α

ρiα(x)piη
α +

1

6

∑
α,β,γ

fαβγ(x)η
αηβηγ. (2.25)

For e ∈ Γ(E), the first term corresponds to a bundle map ρ : E → TM defined
by ρ(eα) = ρiα(e)∂i, while the second one gives a bracket [, ] on Γ(E) defined by
[eα, eβ] = fγ

αβeγ. {S, S} = 0 implies that (E, g) is a Courant algebroid[9].

Definition 2.5 ([9, Definition4.2.]). A Courant algebroid is a vector bundle E
over a smooth manifold M , with a non-degenerate symmetric bilinear form ⟨, ⟩,
and a bilinear bracket ∗ on Γ(E). The form and the bracket must be compatiable,
in the meaning defined below, with the vector fields onM . We must have a smooth
bundle map, the anchor

π : E → TM. (2.26)

These structure satisfy the following five axioms, for all A,B,C ∈ Γ(E) and f ∈
C∞(M).

Axiom.1 : π(A∗B) = [π(A), π(B)] (The bracket of the right hand side is the Lie
bracket of vector fields).

Axiom.2 : A ∗ (B ∗ C) = (A ∗B) ∗ C +B ∗ (A ∗ C).
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Axiom.3 : A ∗ (fB) = (π(A)f)B + f(A ∗B).

Axiom.4 : ⟨A,B ∗ C + C ∗B⟩ = π(A)⟨B,C⟩.

Axiom.5 : π(A)⟨B,C⟩ = ⟨A ∗B,C⟩+ ⟨B,A ∗ C⟩.

From the above data, we can define a map, ∂ : C∞(M) → Γ(E) by

⟨∂f,A⟩ = π(A)f (2.27)

for all A ∈ Γ(E). A morphism of Courant algebroids is a bundle map respecting
all the operations.

We give a correspondence between Courant algebroids and dg symplectic man-
ifolds of degree 2. Denote Ci(C∞(M)) = {f ∈ C∞(M : |f | ≤ i}. Then

C0(C∞(M)) ≃ C∞(M), C1(C∞(M)) ≃ Γ(E). (2.28)

For f ∈ C0(C∞(M)) and A,B ∈ C1(C∞(M)), we define the anchor π and the
bilinear bracket ∗ as the derived brackets,

{{A, S}, B} = A ∗B, (2.29)

{{A, S}, f} = π(A)f = ∂(f)A = {{S, f}, A}. (2.30)

We can check this definition satisfies the conditions of a Courant algebroid.
Conversely, given a Courant algebroid (E,M, ⟨, ⟩, ∗, π), we can associate a de-

gree 2 dg symplectic manifold (M, ω, S). Locally,

S =
∑
i,α

π(eα)x
ipiη

α +
1

6

∑
α,β,γ

⟨[eα, eβ], eγ⟩(x)ηαηβηγ, (2.31)

where eα, eβ, eγ ∈ Γ(E). Hence, there is a one-to-one correspondence between the
isomorphism class of dg symplectic manifolds of degree 2 and isomorphism class
of Courant algebroids.

Theorem 2.1 ([9, Theorem4.5.]). Dg symplectic manifolds of degree 2 are in 1-1
correspondence with Courant algebroids.
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Chapter 3

Courant-Dorfman algebras and
Poisson vertex algebras

In this chapter we review the definitions of Courant-Dorfman algebras and Poisson
vertex algebras and the relation between these algebras.

Courant-Dorfman algebras are defined by Roytenberg in [8] as an algebraic
generalization of Courant algebroids[10]. These are to Courant algebroids what
Lie-Rinehart algebras are to Lie algebroids.

Definition 3.1 ([8, Definition2.1.]). A Courant-Dorfman algebra consists of the
following data:

• a commutative algebra R,

• an R-module E,

• a symmetric bilinear form ⟨, ⟩ : E ⊗ E → R,

• a derivation ∂ : R → E,

• a Dorfman bracket [, ] : E ⊗ E → E,

which satisfies the following conditions;

[e1, fe2] = f [e1, e2] + ⟨e1, ∂f⟩e2, (3.1)

⟨e1, ∂⟨e2, e3⟩⟩ = ⟨[e1, e2], e3⟩+ ⟨e2, [e1, e3]⟩, (3.2)

[e1, e2] + [e2, e1] = ∂⟨e1, e2⟩, (3.3)

[e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]], (3.4)

[∂f, e] = 0, (3.5)

⟨∂f, ∂g⟩ = 0, (3.6)

where f, g ∈ R and e1, e2, e3 ∈ E.
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For a Courant-Dorfman algebra, when ⟨, ⟩ is non-degenerate, we can make a
graded Poisson algebra of degree −2, and when R = C∞(M) and E = Γ(F ) for a
vector bundle F → M (i.e. E is a Courant algebroid), the graded Poisson algebra
is isomorphic to the Poisson algebra of functions of the associated degree n dg
symplectic manifolds([27], [8]).

An important property of Courant-Dorfman algebras is a relation with Poisson
vertex algebras.

Definition 3.2 ([12, Definition2.7]). A Lie conformal algebra is a C[∂]-module
W (i.e.∂ acts on elements of W ) with a λ-bracket {λ} : W ⊗W → W [λ], {aλb} =∑

j∈Z+
λja(j)b (a product a(j)b ∈ W is called j-th bracket) which satisfies the

following conditions. (Here λ is an indeterminate.)

Sesquilinearity :

{∂aλb} = λ{aλb}, {aλ∂b} = (∂ + λ){aλb}, (3.7)

(∂ is a derivation of the λ-bracket.)

Skew-symmetry :
{aλb} = −{b−λ−∂a}, (3.8)

Jacobi-identity :
{aλ{bµc}} = {{aλb}µ+λc}+ {bµ{aλc}}. (3.9)

Definition 3.3 ([15, Definition1.14.]). A Poisson vertex algebra is a commutative
algebra W with a derivation ∂(i.e.∂(ab) = (∂a)b + a(∂b)) and λ-bracket {λ} :
W ⊗W → W [λ] such that W is a Lie conformal algebra and satisfies the Leibniz
rule.

Leibniz rule :
{aλb · c} = {aλb} · c+ b · {aλc}. (3.10)

Poisson vertex algebras appear when we consider functions on phase spaces
T ∗LM of loop spaces LM = Map(S1,M). We denote local coordinates on T ∗LM
by X i(σ), Pi(σ) with a coordinate σ on S1, and define a Poisson bracket by

{X i(σ), Pi(σ
′)} = δijδ(σ − σ′). (3.11)

We can construct local functions on T ∗LM out of the coordinates X, P and
∂ = ∂σ. We consider local functions of the form

A(X, ∂X, ..., ∂kX,P, ..., ∂lP ) (3.12)

where k, l are finite. We can create a functional out of A by

ϵ(σ) ∈ C∞(S1) 7→ Jϵ(A) =

∫
S1

ϵ(σ)A(X, ∂X, ..., ∂kX,P, ..., ∂lP )dσ. (3.13)

Considering the Poisson brackets between them, we can find geometric and alge-
braic structures onM . In [25], the Poisson brackets between currents parametrised
by sections of a generalized tangent bundle TM ⊕ T ∗M is written in terms of
the Dorfman bracket. In [26], considering more general currents, weak Coutant-
Dorfman algebras are derived.
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Definition 3.4 ([30, Definition4.1]). A weak Courant-Dorfman algebra (E,R, ∂, ⟨, ⟩, [, ])
is defined by the following data:

• a vector space R,

• a vector space E,

• a symmetric bilinear form ⟨, ⟩ : E ⊗ E → R,

• a map ∂ : R → E,

• a Dorfman bracket [, ] : E ⊗ E → E,

which satisfy the following conditions:

[A, [B,C]] = [[A,B], C] + [B, [A,C]], (3.14)

[A,B] + [B,A] = ∂⟨A,B⟩, (3.15)

[∂f,A] = 0. (3.16)

The differences with the definition of a Courant-Dorfman algebra are the prop-
erties related to the algebraic structure of R and E . The relation between Poisson
brackets on the local functionals and Lie conformal and Poisson vertex algebras is
discussed in [15]. Denote the coordinates on T ∗LM by uα(σ) = {X i(σ), Pi−d(σ)}α,
where α = 1, ..., 2d and let uα(n) = ∂nuα. The local functions can be written as
polynomials

a(uα, ..., uα(N)). (3.17)

We have a total derivative operator by

∂ = uα(1) ∂

∂uα
+ · · ·+ uα(N+1) ∂

∂uα(N)
. (3.18)

The algebra of these polynomials with the total derivative is called an algebra
of differential equation V . When we integrate functions over S1, the function of
the form ∂σ(· · · ) doesn’t contribute. We can take the quotient V/∂V . We denote
the image of a ∈ V by

∫
a ∈ V/∂V .

A local Poisson bracket on the phase space can be described by

{uα(σ), uβ(σ′)} = Hαβ
0 (σ′)δ(σ−σ′)+Hαβ

1 (σ′)∂σ′δ(σ−σ′)+· · ·+Hαβ
N (σ′)∂N

σ′δ(σ−σ′).
(3.19)

For a, b ∈ V , we have

{a(σ), b(σ′)} =
∑
m,n

∂a(σ)

∂uα(m)

∂b(σ′)

∂uβ(n)
∂m
σ ∂n

σ′{uα(σ), uβ(σ′)}. (3.20)

Using the Fourier transformation of this Poisson bracket, we obtain a Poisson
vertex algebra. Define the Fourier transformed bracket by

{aλb} =

∫
S1

eλ(σ−σ′){a(σ), b(σ′)}dσ. (3.21)
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This bracket (called a λ-bracket) with V and ∂ satisfies the axioms of a Lie con-
formal algebra[15]. The algebra of differential functions V with ∂, the λ-bracket
and the multiplication of polynomials on V is a Poisson vertex algebra. Therefore,
we can translate the relation between (weak) Courant-Dorfman algebras and cur-
rents on the phase space into that between (weak) Courant-Dorfman algebras and
Poisson vertex algebras (Lie conformal algebras).

From Lie conformal algebras and Poisson vertex algebras, we can make Lie
algebras and Poisson algebras using formal power series. For a Lie conformal
algebra W , W ⊗ C[[t, t−1]]/Im(∂ + ∂t) is a Lie algebra with the Lie bracket

[a⊗ tm, b⊗ tn] =
∑
j∈Z+

(
m

j

)
(a(j)b)t

m+n−j. (3.22)

Moreover, for a Poisson vertex algebraW , W⊗C[[t, t−1]]/Im(∂+∂t)·W⊗C[[t, t−1]]
is a Poisson algebra with the same Lie bracket.

If we define a formal distribution a(z)(a ∈ W ) by

a(z) :=
∑
m∈Z

z−1−matm (3.23)

and the formal δ-function

δ(z − w) :=
∑
m∈Z

z−m−1wm, (3.24)

then we can check that

[a(z), b(w)] =
∑
j≥0

(a(j)b)(w)∂
j
wδ(z − w). (3.25)

This Lie bracket has a similar form to the bracket of local functions.
We can derive the properties of a weak Courant-Dorfman algebra from a Lie

conformal algebra by comparing the independent terms of λ on both sides of the
axioms.

Let
[aλb] =

∑
j≥0

a(j)bλ
j, a(0)b = [a, b], [aλb]− [a, b] = ⟨aλb⟩, (3.26)

⟨a, b⟩ = 1

2
(⟨a−∂b⟩+ ⟨b−∂a⟩). (3.27)

Then the sesquilinearity says that

[∂a, b] + o(λ) = {∂aλb} = λ{aλb} ⇒ [∂a, b] = 0, (3.28)

the skew-symmetry says that

[a, b]+o(λ) = {aλb} = −{b−λ−∂a} = −[b, a]+∂⟨b−∂a⟩+o(λ) ⇒ [a, b]+[b, a] = ∂⟨a, b⟩,
(3.29)
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and the Jacobi-identity says that

[a, [b, c]]+o(λ) = [[a, b], c]+[b, [a, c]]+o(λ) ⇒ [a, [b, c]] = [[a, b], c]+[b, [a, c]]. (3.30)

The right formulas are the conditions of a weak Courant-Dorfman algebra.
Moreover, in [30], a one-to-one correspondence between graded Poisson vertex

algebras generated by elements of degree 0 and 1 and Courant-Dorfman algebras
is established as Theorem 1. In this case, the λ-bracket is of the form

{aλb} = [a, b] + λ⟨a, b⟩. (3.31)

Substituting this for the axioms of Poisson vertex algebras, we can obtain the
axioms of Courant-Dorfman algebraic structure.

Theorem 3.1 ([30, Theorem4.1]). The Poisson vertex algebras that are graded
and generated by elements of degree 0 and 1 are in a one-to-one correspondence
with the Courant-Dorfman algebras via

W 0 = R, W 1 = E, ∂ = ∂ (3.32)

[eλe
′] = [e, e′] + λ⟨e, e′⟩, [eλf ] = ⟨e, ∂f⟩ (3.33)

In the case of E = TM ⊕ T ∗M , the associated Poisson vertex algebra can be
seen as the algebraic description of Alekseev-Strobl currents[25]. This correspon-
dence is used to study the duality of currents[16], and non-commutative analog is
considered [17].
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Chapter 4

Definitions and examples of
higher Courant-Dorfman algebras

In this chapter, we define higher Courant-Dorfman algebras of degree n and give
examples. The definition of these algebras of degree 2 coincides with that of
Courant-Dorfman algebras.

Let R = E0 be a commutative algebra over a ring K ⊃ Q, and E = ⊕1≤i≤n−1E
i

be a graded R-module, where Ei has degree i. Define a pairing ⟨, ⟩ : E ⊗ E → R
such that ⟨a, b⟩ = 0 unless |a|+ |b| = n. Consider the graded-commutative algebra
freely generated by E and denote it by Ẽ = (Ek)k∈Z. We restrict this graded-
commutative algebra to the elements of degree n − 1 ≥ k ≥ 0 and denote it by
E = (Ek)n−1≥k≥0. The pairing ⟨, ⟩ can be extended to E by the Leibniz rule

⟨a, b · c⟩ = ⟨a, b⟩ · c+ (−1)(|a|−n)|b|b · ⟨a, c⟩. (4.1)

Definition 4.1. E = (Ek)n−1≥k≥0 is a higher Courant-Dorfman algebra of degree
n if E has a differential d : Ek → Ek+1 which satisfies d2 = 0 and d(a · b) =
(da) · b+(−1)|a|a · (db) and a bracket [, ] : E ⊗E → E of degree 1−n which satisfies
the following condition:

sesquilinearity :
⟨da, b⟩ = −(−1)|a|−n[a, b], [da, b] = 0. (4.2)

skew-symmetry :

[a, b] + (−1)(|a|+1−n)(|b|+1−n)[b, a] = −(−1)|a|d⟨a, b⟩, (4.3)

⟨a, b⟩ = −(−1)(|a|−n)(|b|−n)⟨b, a⟩. (4.4)

Jacobi identity :

[a, [b, c]] = [[a, b], c] + (−1)(|a|+1−n)(|b|+1−n)[b, [a, c]], (4.5)

[a, ⟨b, c⟩] = ⟨[a, b], c⟩+ (−1)(|a|+1−n)(|b|+1−n)⟨b, [a, c]⟩, (4.6)

⟨a, ⟨b, c⟩⟩ = ⟨⟨a, b⟩, c⟩+ (−1)(|a|−n)(|b|−n)⟨b, ⟨a, c⟩⟩. (4.7)
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Leibniz rule :
[a · b, c] = [a, b] · c+ (−1)(|a|+1−n)|b|b · [a, c]. (4.8)

Restricting the bracket to En−1⊗En−1 → En−1, it follows that En−1 is a Leibniz
algebra by the Jacobi identity.

Definition 4.2. A Leibniz algebra is an R-module E with a bracket [, ] : E⊗E →
E satisfying the Leibniz identity;

[a, [b, c]] = [[a, b], c] + [b, [a, c]]. (4.9)

Next, we define the non-degeneracy condition, and fullness condition, like
Courant-Dorfman algebras.

Definition 4.3. The bilinear form ⟨, ⟩ gives rise to a map

(−)♭ : Ei → (En−i)∨ = HomR(E
n−i, R) (4.10)

defined by
e♭(e′) = ⟨e, e′⟩. (4.11)

⟨, ⟩ is non-degenerate if (−)♭ is an isomorphism, and a higher Courant-Dorfman
algebra is non-degenerate if ⟨, ⟩ is strongly non-degenerate.

When a higher Courant-Dorfman algebra is non-degenerate, the inverse map
is denoted by

(−)♯ : (Ei)∨ → En−i (4.12)

and there is a graded-symmetric bilinear form

{−,−} : E∨ ⊗R E∨ → R (4.13)

defined by
{λ, µ} = ⟨λ♯, µ♯⟩. (4.14)

Definition 4.4. ⟨, ⟩ is full if ,for every 1 ≤ i ≤ n− 1, every a ∈ R can be written
as a finite sum a =

∑
j⟨xj, yj⟩ with xj ∈ Ei, y ∈ Em−i.

Define the anchor map

ρ : En−1 → X = Der(R,R) (4.15)

by setting
ρ(e) · f = ⟨e, df⟩. (4.16)

We can define a Dirac submodule, like an ordinary Couarnt-Dorfman algebra.

Definition 4.5. Suppose E is a higher Courant-Dorfman algebra. AnR-submodule
D ⊂ E is said to be a Dirac submodule if D is isotropic with respect to ⟨, ⟩ and
closed under [−,−].

We give some examples.
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Example 4.1. Consider the case n = 2. In this case, there is an R-module E1,
a pairing ⟨, ⟩ : E1 ⊗ E1 → R, a derivation d : R → E1, and three brackets
[, ] : R⊗ E1 → R,[, ] : E1 ⊗R → R,and [, ] : E1 ⊗ E1 → E1.

From the sesquilinearity, we can check that [e, f ] = ⟨e, df⟩, [f, e] = −⟨df, e⟩. For
other operations, one can see that the above definition reduces to the definition of
a Courant-Dorfman algebra.

Example 4.2. Given a commutative algebra R, let En−1 = X = Der(R,R), E1 =
Ω1(Kähler differential). In this case, En−1 = X ⊕ Ωn−1. It becomes a higher
Courant-Dorfman algebra with respect to

⟨v, α⟩ = ιvα, (4.17)

[v, α] = Lvα, [α, v] = d(ιvα)− Lvα, (4.18)

[v1, v2] = ιv1ιv2ω (ω ∈ Ωn+1,cl). (4.19)

and d is the de-Rham differential on Ωi. In the case of R = C∞(M), En−1 =
TM ⊕ ∧n−1T ∗M , and the bracket [, ] is called a higher Dorfman bracket.

Example 4.3. Let (M, ω,Θ) be a degree n dg symplectic manifold and C =
Cn−1(C∞(M)) = {f ∈ C∞(M : |f | ≤ n− 1}. This is a higher Courant-Dorfman
algebra with

[a, b] = {{a,Θ}, b}, ⟨a, b⟩ = {a, b}, da = {Θ, a}. (4.20)

In the previous example, the higher Courant-Dorfman algebra on En−1 = TM⊕
∧n−1T ∗M coincides the algebra on C = Cn−1(C∞(T ∗[n]T [1]M)).

Example 4.4. As a variant of Example 2, we can replace X by a Lie-Rinehart
algebra (R,L) and let En−1 = L,E1 = Ω1. In this case, En−1 = L ⊕ Ωn−1. It
becomes a higher Courant-Dorfman algebra with respect to

⟨a, α⟩ = ιρ(a)α, (4.21)

[v, α] = Lρ(a)α, [α, v] = d(ιρ(a)α)− Lρ(a)α, (4.22)

[v1, v2] = ι(ρ(v1))ι(ρ(v2))ω (ω ∈ Ωn+1,cl), (4.23)

and d is the de-Rham differential on Ωi.

In order to focus on the relation with higher Poisson vertex algebras, we should
define extended higher Courant-Dorfman algebras, relaxing the condition on ⟨, ⟩.

Definition 4.6. Let R = E0 be a commutative algebra, and E = Ei(1 ≤ i ≤ n−1)
be a graded R-module. Consider the graded-commutative algebra freely generated
by E and denote it by Ẽ = (Ek)k∈Z. We restrict this graded-commutative algebra
to the elements of degree n− 1 ≥ k ≥ 0 and denote it by E = (Ek)n−1≥k≥0.

E = (Ek)n−1≥k≥0 is an extended higher Courant-Dorfman algebra of degree
n if E has a differential d : Ek → Ek+1 which satisfies d2 = 0 and d(a · b) =
(da) · b + (−1)|a|a · (db), a pairing ⟨, ⟩ : E ⊗ E → E of degree −n and a bracket
[, ] : E ⊗ E → E of degree 1− n which satisfies the sesquilinearity, skew-symmetry,
Jacobi identity, and Leibniz rule.
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The difference from a higher Courant-Dorfman algebra is that an extended
Courant-Dorfman algebra allows the pairing ⟨, ⟩ : Ei ⊗ Ej → Ei+j−n with i+ j ≥
n + 1. From the viewpoint of graded geometry, these algebras include the case
that the base manifold is a graded manifold.
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Chapter 5

Non-degenerate higher
Courant-Dorfman algebras and
degree n dg symplectic manifolds

In this chapter, we consider the case that ⟨, ⟩ is non-degenerate, and study the
relationship between the algebras and functions of degree n dg symplectic man-
ifolds. We construct a graded Poisson algebra of degree −n, generalizing the
Keller-Waldman Poisson algebras[27]. We assume that each Ei is a projective,
finitely generated module over R, and that ⟨, ⟩ is non-degenerate and full.

Definition 5.1. We assume r ≥ n. Cr(E) ⊂ ⊕1≤j≤n−1⊕1≤k≤r−j⊕∑k
t=1 it=r−jHomK(E

n−i1⊗
· · ·⊗En−ik , Ej) consists of elements C for which there exists a K-multilinear map

σC ∈ ⊕1≤k≤r−j ⊕∑k−1
t′=1

it′=r−n HomK(E
n−i1 ⊗ · · · ⊗ En−ik−1 ,X), (5.1)

satisfying the following conditions:
(1)For all x1, ..., xk−1, u, w ∈ E, we have

σC(x1, ..., xk−1)⟨u,w⟩ = ⟨C(x1, ..., xk−1, u), w⟩+ ⟨u,C(x1, ..., xk−1, w)⟩. (5.2)

(2)For all x1, ..., xk, u ∈ E, we have

⟨C(x1, ...xi, xi+1, ..., xk)− (−1)(|xi|−n)(|xi+1|−n)C(x1, ...., xi+1, xi, ..., xk), u⟩
= σC(x1, ..., xi−1, xi+2, ...., xk, u)⟨xi, xi+1⟩. (5.3)

Furthermore, C0(E) = R, Ci(E) = E i for 1 ≤ i ≤ n− 1 and define

C•(E) = ⊕r≥0Cr(E). (5.4)

We call σC the symbol of C.

Define dC ∈ ⊕1≤l≤r−n−k ⊕∑l
t′=1 it′=r−n−k HomK(E

n−i1 ⊗ · · · ⊗En−il ,X⊗Ek) by

⟨dC(x1, ..., xl)a, y⟩ := σC(x1, ..., xl, y)a. (5.5)

We can use instead of elements C ∈ Cr(E)K-multilinear forms ω ∈ ⊕1≤k≤r⊕∑k
t=1 it=r

HomK(E
n−i1 ⊗ · · · ⊗ En−ik , R) defined by ω(x1, ..., xt) = ⟨C(x1, ..., xt−1), xt⟩.
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Definition 5.2. For r ≥ 1 the subspace Ωr
C(E) ⊂ ⊕1≤k≤r⊕∑k

t=1 it=rHomK(E
n−i1 ⊗

· · · ⊗ En−ik , R) consists of elements ω satisfying the following conditions;
(1)

ω(x1, ..., axk) = aω(x1, ..., xk), (5.6)

for all a ∈ R.
(2)For r ≥ 2, there exists a multilinear map,

σω ∈ ⊕1≤k≤r ⊕∑k−2
t′=1

it′=r−n HomK(E
n−i1 ⊗ · · · ⊗ En−ik−2 ,X), (5.7)

such that

ω(x1, ...xi, xi+1, ..., xk)− (−1)(|xi|−n)(|xi+1|−n)ω(x1, ...., xi+1, xi, ..., xk)

= σω(x1, ...
∧i

...∧
i+1

, xk)⟨xi, xi+1⟩. (5.8)

By the non-degeneracy of ⟨, ⟩, we obtain the following Lemma:

Lemma 5.1. There is an isomorphism of graded R-modules

C•(E) → Ω•
C(E), (5.9)

given by
ω(x1, ..., xt) = ⟨C(x1, ..., xt−1), xt⟩. (5.10)

Proposition 5.1. The map

[, ] : Cr(E)⊗ Cs(E) → Cr+s−n(E), (5.11)

defined by

[a, b] = 0, [a, x] = 0 = [x, a], [x, y] = ⟨x, y⟩, [D, a] = σDa = −[a,D], (5.12)

[C, x] = ιxC = −(−1)(r+n)(|x|+n)[x,C], (5.13)

for elements a, b ∈ R, x, y ∈ Cs(E) for s ≤ n, D ∈ Cn(E), C ∈ Cr(E) for r ≥ n,
and by the recursion,

ιx[C1, C2] = [[C1, C2], x] = [C1, [C2, x]]− (−1)(|C1|+n)(|C2|+n)[C2, [C1, x]], (5.14)

is well-defined and makes C•(E) a graded Lie algebra.

Proof. It suffices to show that the recursion (5.14) is consistent with (5.12) and
(5.13), that [C1, C2] ∈ Cr+s−n(E), and that the bracket satisfies the conditions for
a graded Lie algebra.

The consistency can be checked as follows:

[[D, x], y] = ⟨D(x), y⟩ = (−1)(|x|−n)(|y|−n)⟨D(y), x⟩+ σC⟨x, y⟩
= (−1)(|x|−n)(|y|−n)[[D, y], x] + [D, [x, y]]. (5.15)
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[[C, x], y] = ιyιxC = (−1)(|x|−n)(|y|−n)ιxιyC + dC⟨x, y⟩
= (−1)(|x|−n)(|y|−n)[[C, y], x] + [[C, [x, y]]. (5.16)

Next, we check that [C1, C2] is an element in Cr+s−n(E). For N ≤ 2n− 1, the
claim is clear. For N = 2n, we consider three cases. If a ∈ R and C ∈ C2n(E),
then [C, a] = dCa ∈ Cn(E) and

[[C, a], b] = [C, [a, b]]− (−1)n[a, [C, b]]. (5.17)

If x ∈ Ei and C ∈ C2n−i(E), then [C, a] = dCa ∈ Cn(E) and

[[C, x], a] = [C1, [x, a]]− (−1)(n−i)(i+n)[x, [C, a]]. (5.18)

If D1, D2 ∈ Cn(E), then [D1, D2] ∈ Cr(E) with

σ[D1,D2]a = σD1σD2a− σD2σD1a, (5.19)

[[D1, D2], a] = [D1, [D2, a]]− [D2, [D1, a]]. (5.20)

Let C1 ∈ Cr(E), C2 ∈ Cs(E) with r + s ≥ 2n + 1. Consider a map h : R →
Cr+s−2n(E) defined by

h(a) = [C1, [C2, a]]− (−1)(r+n)(s+n)[C2, [C1, a]]. (5.21)

Then [C1, C2] ∈ Cr+s−n(E) and the symbol is

σ[C1,C2](x1, ..., xt)a = ⟨h(a)(x1, ..., xt−1), xt⟩. (5.22)

The skew symmetry is clear by the construction. We check the Jacobi identity.
It suffices to show

J(C1, C2, C3) := [[C1, C2], C3]− [C1, [C2, C3]]− (−1)(|C1|+n)(|C2+n|)[C2, [C1, C3]] = 0.
(5.23)

We prove the claim by induction for N =
∑

|Ci|. For 1 ≤ N ≤ 2n, it is clear.
By the recursion,

[J(C1, C2, C3), x]

=(−1)(|C2−n|)(|x|−n)+(|C3|−n)(|x|−n)J([C1, x], C2, C3)

+(−1)(|C3|−n)(|x|−n)J(C1, [C2, x], C3) + J(C1, C2, [C3, x]) (5.24)

and by induction, we obtain [J(C1, C2, C3), x] = 0. ForN ≥ 2n+1, |J(C1, C2, C3)| ≥
1, therefore we conclude J(C1, C2, C3) = 0.

Proposition 5.2. There exists an associative, graded-commutative K-bilinear prod-
uct ∧ of degree 0 on C•(E) uniquely defined by

a ∧ b = ab = b ∧ a, a ∧ x = ax = x ∧ a, (5.25)

for a, b ∈ R and x ∈ E and by the recursion rule

[C1 ∧ C2, x] = (−1)(r−n)sC2 ∧ [C1, x] + C1 ∧ [C2, x]. (5.26)
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Proof. We prove that

(x1, ..., xt) → [C1 ∧ C2, x1](x2, ..., xt), (5.27)

is an element in Cr+s(E), and that

[C1 ∧ C2, a] = (−1)(r−n)sC2 ∧ [C1, a] + C1 ∧ [C2, a]. (5.28)

If N ≤ n, the claim is clear. If N = r + s ≥ n+ 1, the map

h(a) = (−1)(r−n)sC2 ∧ [C1, a] + C1 ∧ [C2, a], (5.29)

is dC1∧C2 .

Theorem 5.1. (C•(E), [, ],∧) is a graded Poisson algebra of degree −n.

Proof. It suffices to show the Leibniz rule

[C1 ∧ C2, C3] = (−1)(r−n)sC2 ∧ [C1, C3] + C1 ∧ [C2, C3]. (5.30)

We can check by direct calculations and the recursions.

Since C•(E) ≃ Ω•
C(E), we can define a graded Poisson algebraic structure on

Ω•
C(E). This bracket is an extension of {−,−} : E∨ ⊗R E∨ → R.
We can construct m ∈ Ω•

C(E) ≃ Cr(E) from the map ϕ : E i1 ⊗E i2 ⊗· · ·⊗E im →
E i1+···+im−mn+r by

ωϕ(e1, e2, ..., ek) = ⟨· · · ⟨ϕ(e1, ..., em), em+1⟩ · · · ⟩, ek⟩. (5.31)

Let ϕ be the bracket of the higher Courant-Dorfman algebra. Then, ωϕ satisfies
|ωϕ| = n+1 and [ωϕ, ωϕ] = 0 and the map [ωϕ,−] is degree 1 and squares to 0, thus
it defines a differential on C•(E). This is a higher derived bracket of this algebra
[29].

Next, we define another Poisson algebra R•(E) generalizing the Rothstein al-
gebra.

Definition 5.3. A connection ∇ for the graded module E = (Ei) is a map ∇ :
X× E → E of degree 0 such that

∇aDx = a∇Dx, (5.32)

∇D(ax) = a∇Dx+D(a)x, (5.33)

for all a ∈ R x, y ∈ E and D ∈ X. If ⟨, ⟩ : E ⊗ E → R is a K-bilinear form, then
∇ is called metric if in addition

D⟨x.y⟩ = ⟨∇Dx, y⟩+ ⟨x,∇Dy⟩, (5.34)

for all x, y ∈ E and D ∈ X.
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If each Ei is finitely generated and projective then it allows for a connection
∇. If ⟨, ⟩ : E ⊗ E → R is non-degenerate, then ∇ can be chosen to be a metric
connection. Indeed, if ∇̃ is any connection and ⟨, ⟩ is strongly non-degenerate then
∇ defined by

⟨∇Dx, y⟩ =
1

2
(⟨∇̃Dx, y⟩ − ⟨x, ∇̃Dy⟩+D⟨x, y⟩) (5.35)

is a metric connection.
Next we introduce the curvature of ∇. A given connection for E extends to

Sym(E) by imposing the Leibniz rule. Thus we can consider

R(D1, D2)ξ := ∇D1∇D2ξ −∇D2∇D1ξ −∇[D1,D2]ξ, (5.36)

for Di ∈ X and ξ ∈ Sym(E). It defines an element

R(D1, D2) ∈ End(Sym(E)). (5.37)

Restricting R(D1, D2) to E gives a map R(D1, D2) : E → E. For x ∈ Ei and
y ∈ En−i,

⟨R(D1, D2)x, y⟩ = (−1)i(n−i)⟨R(D1, D2)y, x⟩. (5.38)

Ei is projective and finitely generated, thus using the strongly non-degenerate
inner product ⟨, ⟩ on E we can define r(D1, D2) ∈ Sym2E|deg=n by

R(D1, D2)x = ⟨r(D1, D2), x⟩. (5.39)

With this preparation, the higher Rothstein algebra can now be defined. (The
ordinary Rothstein algebra is defined in [27].)

Definition 5.4. The higher Rothstein algebra is defined as a graded symmetric
algebra by

R•(E) = Sym(⊕1≤i≤n−1E
i[−i]⊕ X[−n]). (5.40)

Theorem 5.2. Let ∇ be a metric connection on E. Then there exists a unique
graded Poisson structure {−,−}R on R•(E) of degree −n such that

{a, b}R = 0 = {a, x}R, (5.41)

{x, y}R = ⟨x, y⟩ = −(−1)(|x|−n)(|y|−n){y, x}R, (5.42)

{D, a}R = −D(a) = −{a,D}R, (5.43)

{D, x}R = −∇Dx = −{x,D}R, (5.44)

{D1, D2}R = −[D1, D2]− r(D1, D2) = −{D2, D1}R, (5.45)

for a, b ∈ R, x, y ∈ E and D1, D2 ∈ X.

Proof. We can extend the bracket {}R to R(E) by the Leibniz rule from the above
definition. The skew symmetry is clear by construction.

Jacobi identity follows from the following Bianchi identity.

∇D1r(D2, D3) +∇D2r(D3, D1) +∇D3r(D1, D2)

+r(D1, [D2, D3]) + r(D2, [D3, D1]) + r(D3, [D1, D2]) = 0. (5.46)
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Next, we find the relation between R•(E) and C•(E).

Definition 5.5. Let the R-linear map J : R•(E) → C•(E) be defined by

J (a) = a,J (x) = x,J (D) = −∇D (5.47)

for a ∈ R, x ∈ E and D ∈ X and extend by the Leibniz rule.

Proposition 5.3. (1) The map J is a homomorphism of Poisson algebras.
(2) Let ϕ ∈ R•(E) with r ≥ n, then

J (ϕ)(x1, ..., xk) = {{...{ϕ, x1}R, ...}R, xk}R, (5.48)

and
σJ (ϕ)(x1, ..., xk−1)a = {{...{ϕ, x1}R, ...}R, xk−1}R, a}R, (5.49)

for all xi ∈ E and a ∈ R.

Proof. (1):From the definition this is obvious for generators and it is true for all
R•(E) by the Leibniz rule.

(2)[J (ϕ), x] = [J (ϕ),J (x)] = J ({ϕ, x}R) and induction for k.

Lemma 5.2. Let ϕ ∈ Rr(E) with r ≥ 1, then

J (ϕ)(x1, ..., xk) = {{...{ϕ, x1}R, ...}R, xk}R = 0, (5.50)

if and only if ϕ = 0.

Proof. It is true for r = 1, ..., n− 1 due to the non-degeneracy of ⟨, ⟩. Suppose for
it is true for 1, 2, ..., r − 1. For ϕ ∈ Rr(E), we have |{ϕ, x}R| < r, thus it satisfies
the condition if and only if {ϕ, x}R = 0 Then

{ϕ, ⟨x, y⟩} = {ϕ, {x, y}} = {{ϕ, x}, y}+ (−1)(ϕ+n)(|x|+n){x, {ϕ, y}} = 0, (5.51)

and due to fullness {ϕ, a}R = 0. Then, ϕ = 0.

Corollary 5.1. Let Ĉ•(E) be the subalgebra of C•(E) generated by R,E and Cn(E).
Then Ĉ•(E) is closed under the bracket [, ] and J is an isomorphism of Poisson
algebras

J : R•(E) → Ĉ•(E). (5.52)

Proof. J is injective due to the above lemma. If D ∈ Cn(E) we can define an
element ξ ∈ Sym(E)|deg.=n by ⟨ξ, x⟩ = D(x) − ∆σD

x, hence D ∈ J (Rn(E)),
therefore Cn(E) ≃ Rn(E).

Lemma 5.3. We have Ĉn+1(E) = Cn+1(E).

Proof. Let C ∈ Cn+1(E) and let dC ∈ Der(R,E1) be given ⟨dCr, x⟩ = σC(x)r.
We can find D1, ..., Dn ∈ X and e1, ..., en ∈ E such that dC(r) = Di(r)ei. Let
T = C −∇Di ∧ ei. Then, T ∈ En+1.
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Let m ∈ Cn+1(E) with [m,m] = 0. Then δm = [m,−] squares to 0, and we
obtain a subcomplex Ĉ•(E). This complex is isomorphic to R•(E) with differential
δJ (m) = [J (m),−].

When R = C∞(M) and Ei = Γ(M,F i) for a graded vector bundle F i → M ,
this Poisson algebra is isomorphic to the associated dg symplectic manifold(M, ω,Θ).

Lemma 5.4. Let (F i(1 ≤ i ≤ n− 1)) be a graded bundle over a smooth manifold
M , and ⟨, ⟩ : F i ⊗ F n−i → C∞(M) a fiberwise non-degenerate graded-symmetric
bilinear form. Degree n graded symplectic manifolds (with a choice of splitting in
the sense of Remark5.1) are in one-to-one correspondence with such graded vector
bundles with ⟨, ⟩.

Proof. Any graded manifold is noncanonically diffeomorphic to a graded manifold
associated to a graded vector bundle([28],Theorem 1). Let (M, ω) be a degree
n symplectic manifold and let F i the associated graded vector bundle. Then,
En = Γ(TM) and the Poisson bracket of degree −n induced by ω is an extension
of ⟨, ⟩ as a derivation. (In this case C∞(M) ≃ R•(E).)

Remark 5.1. The diffeomorphism between a graded manifold and a graded man-
ifold associated to a graded vector bundle is noncanonical. Denote the algebra
of degree i functions of a graded manifold M by Ai. There exists a short exact
sequence

0 // (A1)2 // A2 // Γ(F 2) // 0, (5.53)

where F 2 is a vector bundle over the base manifold M of M. Fixing a splitting, we
can identify A2 with (A1)2⊕Γ(F 2). For Ai(i ≥ 2), we can choose such a splitting.
Thus graded manifolds with a choice of splittings are in one-to-one correspondence
with graded vector bundles.

Theorem 5.3. Let (R,Ei(1 ≤ i ≤ n − 1), ⟨, ⟩, d, [−,−]) be a higher Courant-
Dorfman algebra. Suppose R = C∞(M) for a smooth manifold M , and each
Ei = Γ(F i) for a graded vector bundle F i over M. Degree n dg symplectic manifolds
are in one-to-one correspondence with higher Courant-Dorfman algebras of these
types.

Proof. Let (M, ω) be a degree n symplectic manifold corresponding to (Ei, ⟨, ⟩),
with A its graded Poisson algebra of polynomial functions. Then A0 = C∞(M)
and Ai = E i for 1 ≤ i ≤ n − 1, and {−,−} restricted to Ai is an extension of
⟨, ⟩. Let Θ ∈ An+1 satisfy {Θ,Θ} = 0. Given arbitrary e, e1, e2 ∈ Ai, define a
differential d and bracket [, ] by

d(e) = {Θ, e}, [e1, e2] = {{e1,Θ}, e2}. (5.54)

This construction gives a higher Courant-Dorfman algebra.
Conversely, given a higher Courant-Dorfman algebraic structure on (Ei, {, }),

we can define Θ = J (ωϕ). Locally, Θ can be written as follows. In a Darboux
chart (ξa(k)) = (qa(l), pa(n−l))(1 ≤ k ≤ n, 1 ≤ l ≤ ⌊n

2
⌋), corresponding to a chart

(xi) on M and a local basis ea(k) of sections of Ek such that ⟨ea(k), eb(n−k)⟩ = δab

Θ =
∑

∑
it=n+1

ϕ(q)ξa1(i1) · · · ξamim (5.55)

27



ϕ(q) = ⟨· · · ⟨[ea1(n−i1), ea2(n−i2)], ea3(n−i3)⟩, · · · , eam(n−im)⟩. (5.56)

This satisfies {Θ,Θ} = 0 due to the properties of a higher Coutant-Dorfman
algebra.
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Chapter 6

Higher PVAs from higher
Courant-Dorfman algebras

In this chapter, we define higher PVAs corresponding to higher Courant-Dorfman
algebras and check these algebras have a PVA-like property. In particular, a tensor
product of a higher PVA and an arbitrary dgca has a structure of degree 0 graded
Poisson algebra.

First, we define higher Lie conformal algebras and derive properties of higher
weak Courant-Dorfman algebras, in a similar way that we derive the properties of
Courant-Dorfman algebras from Lie conformal algebras.

Definition 6.1. A higher Lie conformal algebra of degree n is a graded C[d]-
module W = ⊕m∈Z≥0

Wm(i.e. d acts on elements of W ) with |d| = 1, which has
a degree 1 − n map which we call Λ-bracket [Λ] : W ⊗ W → W [Λ] with |Λ| = 1
which satisfy the conditions. (Here, Λ is an indeterminate.)

Sesquilinearity

[daΛb] = −(−1)−nΛ[aΛb], [aΛdb] = −(−1)|a|−n(d+ Λ)[aΛb] (6.1)

Skewsymmetry
[aΛb] = −(−1)(|a|+1−n)(|b|+1−n)[b−Λ−da] (6.2)

Jacobi identity

[aΛ[bΓc]] = [[aΛb]Λ+Γc] + (−1)(|a|+1−n)(|b|+1−n)[bΓ[aΛc]]. (6.3)

We derive the properties of higher weak Courant-Dorfman algebras from higher
Lie conformal algebras.

The Λ-bracket is of the form

[aΛb] =
∑
j≥0

Λja(j)b (a(j)b ∈ W |a|+|b|+1−n−j). (6.4)

Let
[a, b] = a(0)b, ⟨aΛb⟩ =

∑
j≥1

Λja(j)b. (6.5)
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⟨a, b⟩ = ⟨a−db⟩. (6.6)

Then we derive the properties of a higher Courant-Dorfman algebra by comparing
the independent terms of Λ on the both sides of the axioms.

From the sesquilinearity, we can see that

[da, b] + o(Λ) = {daΛb} = (−1)−nΛ{aΛb} ⇒ [da, b] = 0, (6.7)

from the skew-symmetry, we can see that

[a, b] + o(Λ) = {aΛb} = −(−1)(|a|+1−n)(|b|+1−n){b−Λ−da}
= −(−1)(|a|+1−n)(|b|+1−n)([b, a] + d⟨b−da⟩) + o(Λ)

⇒[a, b] + (−1)(|a|+1−n)(|b|+1−n)[b, a] = (−1)(|a|+1−n)(|b|+1−n)d⟨b, a⟩, (6.8)

and from the Jacobi-identity, we can see that

[a, [b, c]] + o(Λ) = [[a, b], c] + (−1)(|a|+1−n)(|b|+1−n)[b, [a, c]] + o(Λ)

⇒ [a, [b, c]] = [[a, b], c] + (−1)(|a|+1−n)(|b|+1−n)[b, [a, c]]. (6.9)

These are properties of a higher weak Courant-Dorfman algebras.

Definition 6.2. A higher weak Courant-Dorfman algebra of degree n consists of
the following data:

• a graded vector space E = (E i),

• a graded symmetric bilinear form of degree −n ⟨, ⟩ : E ⊗ E → E ,

• a map of degree 1 d : E → E ,

• a Dorfman bracket of degree 1− n [, ] : E ⊗ E → E ,

which satisfies the following conditions.

[e1, [e2, e3]] = [[e1, e2], e3] + (−1)(|e1|+1−n)(|e2|+1−n)[e2, [e1, e3]], (6.10)

[e1, e2] + (−1)(|e1|+1−n)(e2+1−n)[e2, e1] = (−1)(|e1|+1−n)(|e2|+1−n)d⟨e2, e1⟩, (6.11)

[de1, e2] = 0. (6.12)

Next, we define higher Poisson vertex algebras. We did not assume that d is
a differential so far. From now on, we assume d2 = 0. Then, C = (Ck, d) is a
cochain complex.

Definition 6.3. Let C = (Ck, d) a cochain complex. C is a higher Lie conformal
algebra of degree n if it endows with a Λ-bracket [Λ] : C ⊗ C → C[Λ] defined by

a⊗ b 7→ [aΛb] = a(0)b+ Λa(1)b (6.13)

satisfying the axioms of higher Lie conformal algebras. C is a higher Poisson vertex
algebra of degree n if it is a higher LCA and a differential graded-commutative
algebra which satisfies
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the Leibniz rule
[aΛbc] = [aΛb]c+ (−1)(|a|+1−n)|b|b[aΛc]. (6.14)

From extended higher Courant-Dorfman algebras, we obtain the following the-
orem.

Theorem 6.1. The above higher Poisson vertex algebras generated by elements of
degree 0 ≤ i ≤ n − 1 are in one-to-one correspondence with the extended higher
Courant-Dorfman algebras

Proof. Assume we have a higher PVA (C = (Ck, d), {Λ}). We denote R = C0, E i =
Ci(1 ≤ i ≤ n − 1). C = (Ck, d) is a dgca, thus R is a commutative algebra and
each E i is an R-module. We denote the Λ-bracket by

a(0)b = [a, b] a(1)b = (−1)|a|⟨a, b⟩. (6.15)

Sesquilinearity says that

(da)(0)b+ Λ(da)(1)b = −(−1)−nΛ(a(0)b+ Λa(1)b). (6.16)

Comparing the 0th-order terms and the first-order terms of Λ, we have

[da, b] = 0, ⟨a, b⟩ = −(−1)|a|−n[a, b]. (6.17)

In a similar way, from the skewsymmetry,

a(0)b+ Λa(1)b = −(−1)(|a|+1−n)(|b|+1−n)(b(0)a− (Λ + d)b(1)a), (6.18)

we can see that

[a, b] + (−1)(|a|+1−n)(|b|+1−n)[b, a] = −(−1)|a|d⟨b, a⟩, (6.19)

⟨a, b⟩ = −(−1)(|a|−n)(|b|−n)⟨b, a⟩. (6.20)

From the Jacobi-identity

a(0)(b(0)c) + a(0)(Γb(1)c) + Λa(1)(b(0)c) + Λa(1)(Γb(1)c)

= (a(0)b)(0)c+ (Λ + Γ)(a(0)b)(1)c+ (Λa(1)b)(0)c+ (Λ + Γ)(Λa(1)b)(1)c

+ (−1)(|a|+1−n)(|b|+1−n){b(0)(a(0)c) + b(0)(Λa(1)c) + Γb(1)(a(0)c) + Γb(1)(Λa(1)c)},
(6.21)

we can see that

[a, [b, c]] = [[a, b], c] + (−1)(|a|+1−n)(|b|+1−n)[b, [a, c]], (6.22)

[a, ⟨b, c⟩] = ⟨[a, b], c⟩+ (−1)(|a|+1−n)(|b|+1−n)⟨b, [a, c]⟩, (6.23)

⟨a, ⟨b, c⟩⟩ = ⟨⟨a, b⟩, c⟩+ (−1)(|a|−n)(|b|−n)⟨b, ⟨a, c⟩⟩. (6.24)

From the Leibniz rule

a(0)(bc) + Λa(1)(bc) = (a(0)b)c+Λ(a(1)b)c+ (−1)(|a|+1−n)|b|b(a(0)c+Λa(1)c), (6.25)

31



we can see that

[a · b, c] = [a, b] · c+ (−1)(|a|+1−n)|b|b · [a, c], (6.26)

⟨a · b, c⟩ = ⟨a, b⟩ · c+ (−1)(|a|−n)|b|b · ⟨a, c⟩. (6.27)

The conditions coincide the definition of extended higher Courant-Dorfman alge-
bras.

Conversely, assuming that we have an extended higher Courant-Dorfman alge-
bra (E = (Ek, d), ⟨, ⟩, [, ]), define a Λ-bracket {aΛb} = [a, b] + (−1)|a|Λ⟨a, b⟩. Then,
this bracket satisfies the conditions of a Λ-bracket.

Next, we check this algebra has a PVA-like property. In particular, we show we
can construct a graded Lie algebra from a tensor product of a higher LCA and an
arbitrary differential graded-commutative algebra (dgca for short) and a graded
Poisson algebra out of that of a higher PVA and an arbitrary dgca.

Lemma 6.1. Let C = (Ck, d1) be a higher LCA and (E, d2) be a dgca. Then,
the tensor product C ⊗ E of cochain complexes is also a higher LCA by defining
a bracket as [a ⊗ fΛb ⊗ g] = (−1)(|b|+1−n)|f |[aΛ+d2b] ⊗ fg, d(a ⊗ f) = d1a ⊗ f +
(−1)|a|a⊗ d2f .

Proof. sesquilinearity:

[d(a⊗ f)Λb⊗ g] = [d1a⊗ fΛb⊗ g] + (−1)|a|[a⊗ d2fΛb⊗ g]

= (−1)(|b|+1−n)|f |{[d1aΛ+d2b]⊗ fg + (−1)|a|+|b|+1−n[aΛ+d2b]⊗ (d2f)g}
= (−1)(|b|+1−n)|f |{−(−1)−n(Λ + d2)[aΛ+d2b]⊗ fg + [aΛ+d2b]⊗ (d2f)g}
= (−1)(|b|+1−n)|f |{−(−1)−nΛ[aΛ+d2b]⊗ fg − (−1)|a|+|b|+1−n[aΛ+d2b]⊗ (d2f)g

+ (−1)|a|+|b|+1−n[aΛ+d2b]⊗ (d2f)g}
= −(−1)−nΛ[a⊗ fΛb⊗ g]. (6.28)

skew-symmetry:

[a⊗ fΛb⊗ g] = [aΛ+d2b]⊗ fg]

= −(−1)(|a|+1−n)(|b|+1−n)+(|b|+1−n)|f |[b−Λ−d2−d1a]⊗ fg

= −(−1)(|a|+|f |+1−n)(|b|+|g|+1−n)−(|a|+1−n)|g|[b−Λ−da]⊗ gf

= −(−1)(|a|+|f |+1−n)(|b|+|g|+1−n)[b⊗ g−Λ−da⊗ f ]. (6.29)

Using the Jacobi identity of the original higher LCAs, we can check the Jacobi
identity in a similar way.

Definition 6.4. A graded Lie algebra C of degree n ∈ Z is a cochain complex of
vector spaces with a bilinear operation [, ] : C ⊗ C → C of degree n satisfying:

(1)skew-symmetry:[a, b] = −(−1)(|a|+n)(|b|+n)[b, a],
(2)Jacobi identity:[a, [b, c]] = [[a, b], c] + (−1)(|a|+n)(|b|+n)[b, [a, c]].
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Lemma 6.2. Let C = (Ck, d) be a higher Lie conformal algebra of degree n. Then
C/Imd is naturally a graded Lie algebra of degree (1− n) with bracket

[a+ dC, b+ dC] = [aΛb]Λ=0 + dC (6.30)

Proof. The well-definedness follows from the sesquilinearity.

[dα, b] = −(−1)−n(Λ[αΛb])Λ=0 = 0, (6.31)

[a, dβ] = −(−1)|a|−n((Λ + d)[aΛβ])Λ=0 = d[aΛβ] ≃ 0. (6.32)

The skew-symmetry follows from the skew-symmetry of the complex.

[a, b] = [aΛb]Λ=0

= −(−1)(|a|+1−n)(|b|+1−n)[b−Λ−da]Λ=0

≃ −(−1)(|a|+1−n)(|b|+1−n)[bΛa]Λ=0

= −(−1)(|a|+1−n)(|b|+1−n)[b, a] (6.33)

In the similar way, we can check the Jacobi-identity follows from the Jacobi-
identity of the complex.

Lemma 6.3. Let L be a graded Lie algebra of degree n. Then, L[−n] is a graded
Lie algebra with the same bracket.

Proof. It satisfies the skewsymmetry and the Jacobi identity due to the grade-
shifting.

For any higher LCA of degree n C and dgca E, we put L(C,E) = C ⊗E/Imd
and Lie(C,E) = L(C,E)[n− 1]. By the above lemmas, Lie(C,E) is a graded-Lie
algebra via

{a⊗ f, b⊗ g} = (−1)(|b|+1−n)|f |(a(0)b⊗ fg + (−1)|a|a(1)b⊗ (df)g). (6.34)

Next, we discuss the Poisson algebraic structure. Let C = (Cn, d) be a higher
PVA of degree n. Then, C ⊗ E[n − 1] is a dgca with products a ⊗ f · b ⊗ g =
(−1)|b||f |a · b ⊗ f · g, and Lie(C,E) is a graded Lie algebra. We put P (C,E) =
C ⊗ E[n− 1]/(Imd) · (C ⊗ E[n− 1]).

Theorem 6.2. P (C,E) is a graded Poisson algebra with

[a⊗ f ] · [b⊗ g] = (−1)|b||f |[a · b⊗ fg], (6.35)

{[a⊗ f ], [b⊗ g]} = (−1)(|b|+1−n)|f |(a(0)b⊗ fg + (−1)|a|a(1)b⊗ (df)g). (6.36)

Proof. Let Id = (Imd) · (C ⊗E[n− 1]). If a, b ∈ Id, then a · b, da ∈ Id. Therefore,
Id is a dg ideal of C ⊗ E[n − 1] and P (C,E) is a dgca. If a, b ∈ Id/(Imd), then
[a, b] ∈ Id/(Imd) by the Leibiniz identity of C, thus Id/(Imd) is a graded Lie
ideal of Lie(C,E) and P (C,E) is a Lie algebra with the Lie bracket. The Leibiniz
identity follows from the Leibniz identity of C. Therefore, P (C,E) is a Poisson
algebra.
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By the above theorem, we obtain a graded Poisson algebra from a higher PVA
and a dgca.

Example 6.1. We define the BFV analog of formal distribution Lie algebras.
Define the algebra of power series

C[[t1, t−1
1 , ...tn, t

−1
n ]][θ1, ..., θn] (6.37)

where ti are even coordinates of degree 0, θi are odd coordinates of degree 1.
Define the ”de-Rham differential” as

df :=
∑
i

∂f

∂ti
θi. (6.38)

Let C = (Cn, Q) be a higher LCA of degree n+ 1. For

V := C ⊗ C
[
[t1, t

−1
1 , ...tn, t

−1
n ]][θ1, ..., θn

]
[n]/((Qα)⊗ f + α⊗ df), (6.39)

the bracket

[a⊗ tp11 · · · tpnn θJ , b⊗ tq11 · · · tqnn θK ] (6.40)

= (a(0)b)t
p1+q1
1 · · · tpn+qn

n θJ ·K +
n∑

k=1

(a(1)b)pkt
p1+q1
1 · · · tpk+qk−1

k tpn+qn
n θJ ·{k}·K , (6.41)

J,K ⊂ {1, ..., n}, J ·K =

{
ϕ (J ∩K ̸= ϕ),
J ∪K (J ∩K = ϕ),

(6.42)

makes the graded Lie algeraic structure.
We define a formal distribution,

a(Z1, ..., Zn) = a(z1, ..., zn, ζ1, ..., ζn)

=
∑

mi∈Z,J⊂{1,...,n}

z−1−m1
1 · · · z−1−mn

n ζ{1,...,n}\Jαtm1
1 · · · tmn

n θJ , (6.43)

and the formal δ-function,

δ(Z −W ) = δ(z1 − w1) · · · δ(zn − wn)δ(ζ1 − ξ1) · · · δ(ζn − ξn)

=
∑
mi∈Z

z−m1−1
1 wm1

1 · · · z−mn−1
n wmn

n (ζ1 − ξ1) · · · (ζn − ξn), (6.44)

Then, we obtain

[a(Z), b(W )] = [a, b](W )δ(Z −W ) + ⟨a, b⟩(W )d(δ(Z −W )). (6.45)

(For another example of formal distribution Lie algebra using superfields, see
[14].)

Consider the case n = 2. Let C = (Cn, Q) be a higher PVA of degree 2. Then
P (C,C[[t, t−1]][θ]) is a graded Poisson algebra via

{atm, btn} = (a(0)b)t
m+n + (a(1)b)mtm+n−1θ, {atmθ, btn} = (a(0)b)t

m+nθ. (6.46)
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An extended higher Courant-Dorfman algebra of degree 2 is the same as a
Courant-Dorfman algebra, and there is a PVA corresponding to a given higher
PVA. We denote the PVA by C̃. We restrict P (C,C[[t, t−1]][θ]) to the degree 0
part. Explicitly,

P (C,C[[t, t−1]][θ])|degree0 = {atm1 , btm2θ|a ∈ C1, b ∈ C0,m1,m2 ∈ Z}. (6.47)

We can define an isomorphism of Poisson algebras between P (C,C[[t, t−1]][θ])|degree0
and the Poisson algebra arising from the associated Poisson vertex algebra C̃ ⊗
C[[t, t−1]]/Im(d + ∂t) · C̃ ⊗ C[[t, t−1]] by sending atm1(a ∈ C1) to atm1 , and
btm2θ(b ∈ C0) to btm2 . This subalgebra corresponds to the physical current al-
gebra of a BFV current algebra.

Example 6.2. Let (M, ω,Q = {Θ,−}) be a degree n dg symplectic manifold
and C = Cn−1(C∞(M)) = {a ∈ C∞(M) : |a| ≤ n − 1} and consider a higher
Courant-Dorfman algebra on C. Let Σn−1 be a n − 1 dimensional manifold and
E = (Ω•(Σn−1), D) be their de-Rham complex. Then, P (C,E) is equipped with
degree 0 Poisson bracket with

[a⊗ ϵ1, b⊗ ϵ2] = {{a,Θ}, b} ⊗ ϵ1ϵ2 + {a, b} ⊗ (Dϵ1)ϵ2, (6.48)

where a, b ∈ C and ϵ1, ϵ2 ∈ E. This is an algebraic description of BFV current
algebras from dg symplectic manifolds[32], [34].

BFV current algebras are Poisson brackets on C∞(Map(T [1]Σn−1,M)), where
T [1]Σn−1 is the shifted tangent space of Σn−1. In order to obtain the currents, we
have to take a proper Lagrangian submanifold of Map(T [1]Σn−1,M). One way is
the zero-locus reduction[35].

Proposition 6.1 ([34, P roposition1]). We take a degree −n graded Poisson alge-
bra P with a differential Z, and take a quotient P/IZ, where IZ is the ideal of P
generated by Z-exact terms.

Then, P/IZ is a degree −n+ 1 Poisson algebra with the derived bracket

{[a], [b]} = [{a, Z(b)}]. (6.49)

Applying to the BFV current algebras we obtain the Poisson bracket on
C∞(Map(T [1]Σn−1,M))/ID̃+Q̃, where D̃ and Q̃ is a differential onMap(T [1]Σn−1,M)

induced by D and Q.
For a ∈ C∞(M) and ϵ ∈ C∞(T [1]Σn−1), We define Jϵ (a) ∈ C∞(Map(T [1]Σn−1,M))

by

Jϵ (a) (ϕ) =

∫
T [1]Σn−1

ϵ · ϕ∗(a)(σ, θ)dn−1σdn−1θ, (6.50)

where ϵ ∈ C∞(Σn−1) are test functions on T [1]Σn−1, σ, θ are coordinates on
T [1]Σn−1 of degree 0 and 1, ϕ ∈ Map(T [1]Σn−1,M) and ϕ∗(a) is the pullback
of a. Then the Poisson bracket is

{Jϵ1 (a) , Jϵ2 (b)}(ϕ)

=

∫
T [1]Σn−1

ϵ1ϵ2 · ϕ∗({{a,Θ}, b})(σ, θ)dn−1σdn−1θ

+

∫
T [1]Σn−1

(Dϵ1)ϵ2 · ϕ∗({a, b})(σ, θ)dn−1σdn−1θ, (6.51)
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where ϵ1, ϵ2 ∈ C∞(T [1]Σn−1) are test functions on T [1]Σn−1, σ, θ are coordinates
on T [1]Σn−1 of degree 0 and 1,

Comparing to (6.48) and (6.51), we see that taking the quotient corresponds
to the zero-locus reduction.
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Chapter 7

Outlooks

In this thesis, we gave higher analogs of Lie conformal algebras and Poisson vertex
algebras. It is natural to ask whether they have the same applications as ordinary
Lie conformal algebras and Poisson vertex algebras. For example, our higher
PVAs may be used to analyze multi-variable Hamiltonian PDEs. Considering the
algebraic description of more general currents would be important.

Another interesting problem is the non-commutative analog. In [17], non-
commutative version of Courant-Dorfman algebras and Poisson vertex algebras,
which are called double Courant-Dorfman algebras and double Poisson vertex al-
gebras, are considered. Their higher generalization would be given using our al-
gebras. Another way taking the non-commutative version is the quantization, in
analogy with vertex algebras.
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