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Chapter 1

Linear operators on a Hilbert space

This chapter is mainly based on the first chapters of the book [Amr09]. All missing
proofs can be found in this reference.

1.1 Hilbert space

Definition 1.1.1. A (complex) Hilbert space H is a vector space on C with a strictly
positive scalar product (or inner product), which is complete for the associated norm
and which admits a countable basis. The scalar product is denoted by ⟨·, ·⟩ and the
corresponding norm by ∥ · ∥.

In particular, note that for any f, g, h ∈ H and α ∈ C the following properties hold:

(i) ⟨f, g⟩ = ⟨g, f⟩,

(ii) ⟨f + αg, h⟩ = ⟨f, h⟩+ α⟨g, h⟩,

(iii) ∥f∥2 = ⟨f, f⟩ > 0 if and only if f ̸= 0.

From now on, the symbol H will always denote a Hilbert space.

Examples 1.1.2. (i) H = Cd with ⟨α, β⟩ =
∑d

j=1 αj βj for any α, β ∈ Cd,

(ii) H = l2(Z) with ⟨a, b⟩ =
∑

j∈Z aj bj for any a, b ∈ l2(Z),

(iii) H = L2(Rd) with ⟨f, g⟩ =
∫
Rd f(x)g(x)dx for any f, g ∈ L2(Rd).

Let us recall some useful inequalities: For any f, g ∈ H one has

(i) |⟨f, g⟩| ≤ ∥f∥∥g∥ Schwarz inequality,

(ii) ∥f + g∥ ≤ ∥f∥+ ∥g∥,

(iii) ∥f + g∥2 ≤ 2∥f∥2 + 2∥g∥2,
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6 CHAPTER 1. LINEAR OPERATORS ON A HILBERT SPACE

(iv)
∣∣∥f∥ − ∥g∥

∣∣ ≤ ∥f − g∥
the last 3 inequalities are called triangle inequalities. In addition, let us recall that
f, g ∈ H are said orthogonal if ⟨f, g⟩ = 0.

Definition 1.1.3. A sequence {fn}n∈N ⊂ H is strongly convergent to f∞ ∈ H if
limn→∞ ∥fn − f∞∥ = 0, or is weakly convergent to f∞ ∈ H if for any g ∈ H one has
limn→∞⟨fn − f∞, g⟩ = 0.

Clearly, a strongly convergent sequence is also weakly convergent. The converse is
not true.

Definition 1.1.4. A subspace M of a Hilbert space H is a linear subset of H, or more
precisely ∀f, g ∈ M and α ∈ C one has f + αg ∈ M.

Note that if M is closed, then M is a Hilbert space in itself, with the scalar product
and norm inherited from H.

Examples 1.1.5. (i) If f1, . . . , fn ∈ H, then Vect(f1, . . . , fn) is the closed vector
space generated by the linear combinations of f1, . . . fn. Vect(f1, . . . , fn) is a closed
subspace.

(ii) If M is a closed subspace of H, then M⊥ := {f ∈ H | ⟨f, g⟩ = 0, ∀g ∈ M} is a
closed subspace of H.

Note that the closed subspaceM⊥ is called the orthocomplement of M in H. Indeed,
one has:

Lemma 1.1.6 (Projection Theorem). Let M be a closed subspace of a Hilbert space
H. Then, for any f ∈ H there exist a unique f1 ∈ M and a unique f2 ∈ M⊥ such that
f = f1 + f2.

Let us recall that the dual H∗ of the Hilbert space H consists in the set of all
bounded linear functionals on H, i.e. H∗ consists in all mappings φ : H → C satisfying
for any f, g ∈ H and α ∈ C
(i) φ(f + αg) = φ(f) + αφ(g), (linearity)

(ii) |φ(f)| ≤ c∥f∥, (boundedness)

where c is a constant independent of f . One sets

∥φ∥H∗ := sup
0̸=f∈H

|φ(f)|
∥f∥

.

Note that if g ∈ H, then g defines an element φg of H∗ by setting φg(f) := ⟨f, g⟩.
Lemma 1.1.7 (Riesz Lemma). For any φ ∈ H∗, there exists a unique g ∈ H such that
for any f ∈ H

φ(f) = ⟨f, g⟩.
In addition, g satisfies ∥φ∥H∗ = ∥g∥.

As a consequence, one often identifies H∗ with H itself.
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1.2 Bounded operators

First of all, let us recall that a linear map B between two complex vector spaces M
and N satisfies B(f + αg) = Bf + αBg for all f, g ∈ M and α ∈ C.

Definition 1.2.1. A map B : H → H is a bounded linear operator if B : H → H is a
linear map, and if there exists c ∈ R such that ∥Bf∥ ≤ c∥f∥ for all f ∈ H. The set of
all bounded linear operators on H is denoted by B(H).

For any B ∈ B(H), one sets

∥B∥ := sup
0 ̸=f∈H

∥Bf∥
∥f∥

. (1.2.1)

and call it the norm of B. Note that the same notation is used for the norm of an
element of H and for the norm of an element of B(H), but this does not lead to any
confusion.

Lemma 1.2.2. If B ∈ B(H), then ∥B∥ = supf,g∈H with ∥f∥=∥g∥=1 |⟨Bf, g⟩|.

Definition 1.2.3. A sequence {Bn}n∈N ⊂ B(H) is uniformly convergent to B∞ ∈
B(H) if limn→∞ ∥Bn − B∞∥ = 0, is strongly convergent to B∞ ∈ B(H) if for any
f ∈ H one has limn→∞ ∥Bnf − B∞f∥ = 0, or is weakly convergent to B∞ ∈ B(H)
if for any f, g ∈ H one has limn→∞⟨Bnf − B∞f, g⟩ = 0. In these cases, one writes
respectively u− limn→∞Bn = B∞, s− limn→∞Bn = B∞ and w − limn→∞Bn = B∞.

Clearly, uniform convergence implies strong convergence, and strong convergence
implies weak convergence. The reverse statements are not true.

Lemma 1.2.4. For any B ∈ B(H), there exists a unique B∗ ∈ B(H) such that for
any f, g ∈ H

⟨Bf, g⟩ = ⟨f,B∗g⟩.

The operator B∗ is called the adjoint of B, and the proof of this statement involves
Riesz Lemma.

Proposition 1.2.5. The following properties hold:

(i) B(H) is an algebra,

(ii) The map B(H) ∋ B 7→ B∗ ∈ B(H) is an involution,

(iii) B(H) is complete with the norm ∥ · ∥,

(iv) One has ∥B∗∥ = ∥B∥ and ∥B∗B∥ = ∥B∥2.

As a consequence of these properties, B(H) is a C∗-algebra, as we shall see later.
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Definition 1.2.6. For any B ∈ B(H) one sets

Ran(B) := BH = {f ∈ H | f = Bg for some g ∈ H},

and call this set the range of B.

Definition 1.2.7. An operator B ∈ B(H) is invertible if the equation Bf = 0 only
admits the solution f = 0. In such a case, there exists a linear map B−1 : Ran(B) → H
which satisfies B−1Bf = f for any f ∈ H, and BB−1g = g for any g ∈ Ran(B). If B
is invertible and Ran(B) = H, then B−1 ∈ B(H) and B is said boundedly invertible
or invertible in B(H).

Note that the two conditions B invertible and Ran(B) = H imply B−1 ∈ B(H) is
a consequence of the Closed graph Theorem.

Remark 1.2.8. In the sequel, we shall use the notation 1 ∈ B(H) for the operator
defined on any f ∈ H by 1f = f , and 0 ∈ B(H) for the operator defined by 0f = 0.

Lemma 1.2.9 (Neumann series). If B ∈ B(H) and ∥B∥ < 1, then the operator (1−B)
is invertible in B(H), with

(1−B)−1 =
∞∑
n=0

Bn,

and with
∥∥(1−B)−1

∥∥ ≤ (1− ∥B∥)−1.

Note that we have used the identity B0 = 1.

1.3 Special classes of operators

Definition 1.3.1. An element U ∈ B(H) is a unitary operator if UU∗ = 1 and if
U∗U = 1.

Note that in this case, U is boundedly invertible with U−1 = U∗. Indeed, observe
first that Uf = 0 implies f = U∗(Uf) = U∗0 = 0. Secondly, for any g ∈ H, one has
g = U(U∗g), and thus Ran(U) = H. Finally, the equality U−1 = U∗ follows from the
unicity of the inverse.

Definition 1.3.2. An element P ∈ B(H) is an orthogonal projection if P = P 2 = P ∗.

In this case, PH is a closed subspace of H. Alternatively, for each closed subspace
M of H, there exists an orthogonal projection P such that PH = M.

Now, for any family {gj, hj}nj=1 ⊂ H and for any f ∈ H one sets

Anf :=
n∑

j=1

⟨f, gj⟩hj. (1.3.1)

Then An ∈ B(H), and Ran(An) ⊂ Vect(h1, . . . , hn). Such an operator An is called a
finite rank operator. In fact, any operator B ∈ B(H) with dim

(
Ran(B)

)
< ∞ is a

finite rank operator.
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Exercise 1.3.3. For the operator An defined in (1.3.1), give an upper estimate for
∥An∥ and compute A∗

n.

Definition 1.3.4. An element B ∈ B(H) is a compact operator if there exists a family
{An}n∈N of finite rank operators such that limn→∞ ∥An−B∥ = 0. The set of all compact
operators is denoted by K (H).

Proposition 1.3.5. The following properties hold:

(i) B ∈ K (H) ⇐⇒ B∗ ∈ K (H),

(ii) K (H) is a ∗-algebra, complete for the norm ∥ · ∥,

(iii) If B ∈ K (H) and A ∈ B(H), then AB and BA belong to K (H).

As a consequence, K (H) is a C∗-algebra and an ideal of B(H).

Extension 1.3.6. There are various subalgebras of K (H), for example the algebra of
Hilbert-Schmidt operators, the algebra of trace class operators, and more generally the
Schatten classes. Note that these algebras are not closed with respect to the norm ∥ · ∥
but with respect to some stronger norms |||·|||. These algebras are ideals in B(H).

1.4 Operator valued maps

Let I be an open interval on R, and let us consider a map F : I → B(H).

Definition 1.4.1. The map F is continuous in norm on I if for all x ∈ I

lim
ε→0

∥∥F (x+ ε)− F (x)
∥∥ = 0.

The map F is strongly continuous on I if for any f ∈ H and all x ∈ I

lim
ε→0

∥∥F (x+ ε)f − F (x)f
∥∥ = 0.

The map F is weakly continuous on I if for any f, g ∈ H and all x ∈ I

lim
ε→0

〈(
F (x+ ε)− F (x)

)
f, g

〉
= 0.

One writes respectively u − limε→0 F (x + ε) = F (x), s − limε→0 F (x + ε) = F (x) and
w − limε→0 F (x+ ε) = F (x).

Definition 1.4.2. The map F is differentiable in norm on I if there exists a map
F ′ : I → B(H) such that

lim
ε→0

∥∥∥1
ε

(
F (x+ ε)− F (x)

)
− F ′(x)

∥∥∥ = 0.

The definitions for strongly differentiable and weakly differentiable are similar.
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If I is an open interval of R and if F : I → B(H), one defines
∫
I
F (x) dx as a

Riemann integral (limit of finite sums over a partition of I) if this limiting procedure
exists and is independent of the partitions of I. Note that these integrals can be defined
in the weak topology, in the strong topology, or in the norm topology (and in other
topologies). For example, if F : I → B(H) is strongly continuous and if

∫
I
∥F (x)∥dx <

∞, then the integral
∫
I
F (x)dx exists in the strong topology.

Proposition 1.4.3. Let I is an open interval of R and F : I → B(H) such that∫
I
F (x)dx exists (in an appropriate topology). Then,

(i) For any B ∈ B(H) one has

B

∫
I

F (x)dx =

∫
I

BF (x)dx and
(∫

I

F (x)dx
)
B =

∫
I

F (x)Bdx,

(ii) one also has
∥∥∥ ∫I F (x)dx∥∥∥ ≤

∫
I
∥F (x)∥dx,

(iii) If C ⊂ B(H) is a subalgebra of B(H), closed with respect to a norm |||·|||, and
if the map F : I → C is continuous with respect to this norm and satisfies∫
I
|||F (x)|||dx <∞, then

∫
I
F (x)dx exists, belongs to C and satisfies∣∣∣∣∣∣∣∣∣∣∣∣∫
I

F (x)dx

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ∫
I

|||F (x)|||dx.

Note that the last statement is very useful, for example when C = K (H) or any
Schatten class.

1.5 Unbounded operators

In this section, we define an extension of the notion of bounded linear operators. Obvi-
ously, the following definitions and results are also valid for bounded linear operators.

Definition 1.5.1. A linear operator onH is a pair
(
A,D(A)

)
, where D(A) is a subspace

of H and A is a linear map from D(A) to H. D(A) is called the domain of A. One says
that the operator

(
A,D(A)

)
is densely defined if D(A) is dense in H.

Note that one often just says the linear operator A, but its domain D(A) is implicitly
taken into account. For such an operator, its range Ran(A) is defined by

Ran(A) := AD(A) = {f ∈ H | f = Ag for some g ∈ D(A)}.

In addition, one defines the kernel Ker(A) of A by

Ker(A) := {f ∈ D(A) | Af = 0}.
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Example 1.5.2. Let H := L2(R) and consider the operator X defined by [Xf ](x) =
xf(x) for any x ∈ R. Clearly, D(X) = {f ∈ H |

∫
R |xf(x)|

2dx <∞} ⊊ H. In addition,

by considering the family of functions {fy}y∈R ⊂ D(X) with fy(x) := e−|x−y|2, one easily

observes that sup0 ̸=f∈D(X)
∥Xf∥
∥f∥ = ∞, which can be compared with (1.2.1).

Definition 1.5.3. For any pair of linear operators
(
A,D(A)

)
and

(
B,D(B)

)
satisfying

D(A) ⊂ D(B) and Af = Bf for all f ∈ D(A), one says that
(
B,D(B)

)
is an extension

of
(
A,D(A)

)
to D(B), or that

(
A,D(A)

)
is the restriction of

(
B,D(B)

)
to D(A).

Let us note that if
(
A,D(A)

)
is densely defined and if there exists c ∈ R such that

∥Af∥ ≤ c∥f∥ for all f ∈ D(A), then there exists a natural continuous extension A of
A with D(A) = H. This extension satisfies A ∈ B(H) with ∥A∥ ≤ c, and is called the
closure of the operator A.

Exercise 1.5.4. Construct this natural extension and show that ∥A∥ ≤ c.

Let us stress that the sum A + B for two linear operators is a priori only defined
on the subspace D(A)∩D(B), and that the product AB is a priori defined only on the
subspace {f ∈ D(B) | Bf ∈ D(A)}. These two sets can be very small.

Definition 1.5.5. Let
(
A,D(A)

)
be a densely defined linear operator on H. The adjoint

A∗ of A is the operator defined by

D(A∗) :=
{
f ∈ H | ∃f ∗ ∈ H with ⟨f ∗, g⟩ = ⟨f, Ag⟩ for all g ∈ D(A)

}
and A∗f := f ∗ for all f ∈ D(A∗).

Let us note that the density of D(A) is necessary to ensure that A∗ is well defined.
Indeed, if f ∗

1 , f
∗
2 satisfy for all g ∈ D(A)

⟨f ∗
1 , g⟩ = ⟨f, Ag⟩ = ⟨f ∗

2 , g⟩,

then ⟨f ∗
1 − f ∗

2 , g⟩ = 0 for all g ∈ D(A), and this equality implies f ∗
1 = f ∗

2 only if D(A)
is dense in H. Note also that once

(
A∗,D(A∗)

)
is defined, one has

⟨A∗f, g⟩ = ⟨f, Ag⟩ ∀f ∈ D(A∗) and ∀g ∈ D(A).

Lemma 1.5.6. Let
(
A,D(A)

)
be a densely defined linear operator on H. Then

Ker(A∗) = Ran(A)⊥.

Proof. Let f ∈ Ker(A∗), i.e. f ∈ D(A∗) and A∗f = 0. Then, for all g ∈ D(A), one has

0 = ⟨A∗f, g⟩ = ⟨f, Ag⟩

meaning that f ∈ Ran(A)⊥. Conversely, if f ∈ Ran(A)⊥, then for all g ∈ D(A) one has

⟨f, Ag⟩ = 0 = ⟨0, g⟩

meaning that f ∈ D(A∗) and A∗f = 0, by the definition of the adjoint of A.
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Definition 1.5.7. A densely defined linear operator
(
A,D(A)

)
is self-adjoint if

D(A∗) = D(A) and A∗f = Af for all f ∈ D(A).

Note that whenever the operator A is self-adjoint one has

⟨Af, g⟩ = ⟨f, Ag⟩ ∀f, g ∈ D(A).

Let us stress that self-adjoint operators are very important in relation with quan-
tum mechanics: any physical system is described with such an operator. Self-adjoint
operators are the natural generalisation of Hermitian matrices.

Extension 1.5.8. Self-adjoint operators are a special class of closed and symmetric
linear operators. These notions, as well as the graph or the essential self-adjointness of
an operator are important topics for the study of unbounded linear operators.

1.6 Resolvent and spectrum

Definition 1.6.1. For a closed1 linear operator A, a value z ∈ C is an eigenvalue of
A if there exists f ∈ D(A), f ̸= 0, such that Af = zf . In such a case, the element f is
called an eigenfunction of A associated with the eigenvalue z. The set of all eigenvalues
of A is denoted by σp(A).

Lemma 1.6.2. Let A be a self-adjoint operator on H. Then,

(i) All eigenvalues of A are real,

(ii) Two eigenfunctions of A associated with two different eigenvalues of A are or-
thogonal.

Proof. (i) Assume that Af = zf for some z ∈ C and f ∈ D(A) with f ̸= 0. Then, one
has

z∥f∥2 = ⟨zf, f⟩ = ⟨Af, f⟩ = ⟨f, Af⟩ = ⟨f, zf⟩ = z∥f∥2,

which implies that z ∈ R.
(ii) Assume that Af = λf and that Ag = µg with λ, µ ∈ R and λ ̸= µ, and

f, g ∈ D(A), with f ̸= 0 and g ̸= 0. Then

λ⟨f, g⟩ = ⟨Af, g⟩ = ⟨f, Ag⟩ = µ⟨f, g⟩,

which implies that ⟨f, g⟩ = 0, or in other words that f and g are orthogonal.

1An operator A is closed if the three conditions (i) fn ∈ D(A), (ii) s− limn→∞ fn = f , (iii) {Afn} is
strongly Cauchy, imply that f ∈ D(A) and s− limn→∞ Afn = Af . Note that any self-adjoint operator
as well as any bounded operator are closed.
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By analogy to the bounded case, we say that A is invertible if Ker(A) = {0}. In this
case, the inverse A−1 gives a bijection from Ran(A) onto D(A). Note now that if z is an
eigenvalue of a linear operator A, then (A− z) is not invertible since (A− z)f = 0 for
some f ∈ D(A) with f ̸= 0. Then, the spectrum of the operator A is a generalization of
the notion of eigenvalues which is based on the previous observation.

Definition 1.6.3. The resolvent set ρ(A) of a closed linear operator A is defined by

ρ(A) :=
{
z ∈ C | (A− z) is invertible in B(H)

}
=
{
z ∈ C | Ker(A− z) = {0} and Ran(A− z) = H

}
.

The spectrum σ(A) of A is the complement of ρ(A) in C, i.e. σ(A) := C \ ρ(A).

Definition 1.6.4. For any closed linear operator A and for any z ∈ ρ(A), the operator
(A− z)−1 ∈ B(H) is called the resolvent of A at the point z.

Exercise 1.6.5. For any closed linear operator A and any z1, z2 ∈ ρ(A), show the first
resolvent equation, namely

(A− z1)
−1 − (A− z2)

−1 = (z1 − z2)(A− z1)
−1(A− z2)

−1. (1.6.1)

Lemma 1.6.6. The spectrum of a self-adjoint operator A is real, i.e. σ(A) ⊂ R.

Proof of Lemma 1.6.6. Let us consider z = λ+ iε with ε ̸= 0, and show that z ∈ ρ(A).
Indeed, for any f ∈ D(A) one has

∥(A− z)f∥2 = ∥(A− λ)f − iεf∥2

=
〈
(A− λ)f − iεf, (A− λ)f − iεf

〉
= ∥(A− λ)f∥2 + ε2∥f∥2.

It follows that ∥(A− z)f∥ ≥ |ε|∥f∥, and thus A− z is invertible.
Now, for any g ∈ Ran(A− z) let us observe that

∥g∥ =
∥∥(A− z)(A− z)−1g

∥∥ ≥ |ε|
∥∥(A− z)−1g

∥∥.
Equivalently, it means for all g ∈ Ran(A− z), one has∥∥(A− z)−1g

∥∥ ≤ 1

|ε|
∥g∥. (1.6.2)

Let us finally observe that Ran(A− z) is dense in H. Indeed, by Lemma 1.5.6 one
has

Ran(A− z)⊥ = Ker
(
(A− z)∗

)
= Ker(A∗ − z) = Ker(A− z) = {0}

since all eigenvalues of A are real. Thus, the operator (A− z)−1 is defined on the dense
domain Ran(A − z) and satisfies the estimate (1.6.2). As explained just before the
Exercise 1.5.4, it means that (A − z)−1 continuously extends to an element of B(H),
and therefore z ∈ ρ(A).
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1.7 Spectral theory for self-adjoint operators

1.7.1 Stieltjes measures

Let us consider a function F : R → R satisfying the following properties:

(i) F is monotone non-decreasing, i.e. λ ≥ µ =⇒ F (λ) ≥ F (µ),

(ii) F is right continuous, i.e. F (λ) = F (λ+ 0) := limε↘0 F (λ+ ε) for all λ ∈ R,

(iii) F (−∞) := limλ→−∞ F (λ) = 0 and ρ := F (+∞) := limλ→∞ F (λ) <∞.

Note that F (λ + 0) := limε↘0 F (λ + ε) and F (λ− 0) := limε↘0 F (λ− ε) exist since F
is a monotone and bounded function.

With a function F having these properties, one can associate a bounded Borel
measure mF on R, called Stieltjes measure, starting with

mF

(
(a, b]

)
:= F (b)− F (a), a, b ∈ R

and extending then this definition to all Borel sets of R. With this definition, note that
mF (R) = ρ and that

mF

(
(a, b)

)
= F (b− 0)− F (a), mF

(
[a, b]

)
= F (b)− F (a− 0)

and therefore mF

(
{a}

)
= F (a)− F (a− 0) is different from 0 if F is not continuous at

the point a.

Note that starting with a bounded Borel measure m on R and setting F (λ) :=
m
(
(−∞, λ]

)
, then F satisfies the conditions (i)-(iii) and the associated Stieltjes measure

mF verifies mF = m.

Theorem 1.7.1. Any Stieltjes measure m admits a unique decomposition

m = mp +mac +msc

where mp is a pure point measure, mac is an absolutely continuous measure with respect
to the Lebesgue measure on R, and msc is a singular continuous measure with respect
to the Lebesgue measure R.

This result is based on Lebesgue Decomposition Theorem. Let us simply stress that
msc is singular with respect to the Lebesgue measure but msc({λ}) = 0 for any λ ∈ R.
On the other hand, for any Borel set V , mp(V ) =

∑
λ∈V m({λ}), where this sum

contains at most a countable number of contributions.
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1.7.2 Spectral measures

We shall now define a spectral measure, by analogy with the Stieltjes measure defined
in the previous section. For an arbitrary Hilbert space H we write P(H) for the set of
orthogonal projections in H.

Definition 1.7.2. A spectral family, or a resolution of the identity, is a family {Eλ}λ∈R
of orthogonal projections in H satisfying:

(i) The family is non-decreasing, i.e. EλEµ = Emin{λ,µ},

(ii) The family is strongly right continuous, i.e. Eλ = Eλ+0 = s− limε↘0Eλ+ε,

(iii) s− limλ→−∞Eλ = 0 and s− limλ→∞Eλ = 1,

It is important to observe that the condition (i) implies that the elements of the
families are commuting, i.e. EλEµ = EµEλ. We also define the support of the spectral
family as the following subset of R:

supp{Eλ} = {µ ∈ R | Eµ+ε − Eµ−ε ̸= 0, ∀ε > 0}.

With such a spectral family one first defines

E
(
(a, b]

)
:= Eb − Ea, a, b ∈ R, (1.7.1)

and extends this definition to all Borel sets on R (we denote by AB the set of all Borel
sets on R). One ends up with a projection-valued map E : AB → P(H) which satisfies
E(∅) = 0, E(R) = 1, E(V1)E(V2) = E(V1 ∩ V2) for any Borel sets V1, V2. In addition,

E
(
(a, b)

)
= Eb−0 − Ea, E

(
[a, b]

)
= Eb − Ea−0

and therefore E
(
{a}

)
= Ea − Ea−0.

Definition 1.7.3. The map E : AB → P(H) defined by (1.7.1) is called the spectral
measure associated with the family {Eλ}λ∈R. This spectral measure is bounded from
below if there exists λ− ∈ R such that Eλ = 0 for all λ < λ−.

Let us note that for any spectral family {Eλ}λ∈R and any f ∈ H one can set

Ff (λ) := ∥Eλf∥2 = ⟨Eλf, f⟩.

Then, one easily checks that the function Ff satisfies the conditions (i)-(iii) of the
beginning of Section 1.7.1. Thus, one can associate with each element f ∈ H a finite
Stieltjes measure mf on R which satisfies mf (V ) = ∥E(V )f∥2 = ⟨E(V )f, f⟩ for any
V ∈ AB.

Our next aim is to define integrals of the form∫ b

a

φ(λ)E(dλ) (1.7.2)
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for a continuous function φ : [a, b] → C and for any spectral family {Eλ}λ∈R. Such
integrals can be defined in the sense of Riemann-Stieltjes by first considering a partition
a = x0 < x1 < ... < xn = b of [a, b] and a collection {yj} with yj ∈ (xj−1, xj) and by
defining the operator

n∑
j=1

φ(yj)E
(
(xj−1, xj]

)
. (1.7.3)

It turns out that by considering finer and finer partitions of [a, b], the corresponding
expression (1.7.3) strongly converges to an element of B(H) which is independent of
the successive choice of partitions. The resulting operator is denoted by (1.7.2).

Proposition 1.7.4 (Spectral integrals). Let {Eλ}λ∈R be a spectral family, let −∞ <
a < b <∞ and let φ : [a, b] → C be continuous. Then one has

(i)
∥∥∥∫ b

a
φ(λ)E(dλ)

∥∥∥ = supµ∈[a,b]∩supp{Eλ} |φ(µ)|,

(ii)
(∫ b

a
φ(λ)E(dλ)

)∗
=

∫ b

a
φ(λ)E(dλ),

(iii) For any f ∈ H,
∥∥∥∫ b

a
φ(λ)E(dλ)f

∥∥∥2

=
∫ b

a
|φ(λ)|2mf (dλ),

(iv) If ψ : [a, b] → C is continuous, then∫ b

a

φ(λ)E(dλ) ·
∫ b

a

ψ(λ)E(dλ) =

∫ b

a

φ(λ)ψ(λ)E(dλ).

Let us now observe that if the support supp{Eλ} is bounded, then one can consider∫ ∞

−∞
φ(λ)E(dλ) = s− lim

M→∞

∫ M

−M

φ(λ)E(dλ). (1.7.4)

Similarly, by taking property (iii) of the previous proposition into account, one observes
that this limit can also be taken if φ ∈ L∞(R,C). On the other hand, if φ is not bounded
on R, the r.h.s. of (1.7.4) is not necessarily well defined. In fact, if φ is not bounded
on R and if supp{Eλ} is not bounded either, then the r.h.s. of (1.7.4) is an unbounded
operator and can only be defined on a dense domain of H.

Lemma 1.7.5. Let φ : R → C be continuous, and let us set

Dφ :=
{
f ∈ H |

∫ ∞

−∞
|φ(λ)|2mf (dλ) <∞

}
.

Then the pair
( ∫∞

−∞ φ(λ) E(dλ),Dφ

)
defines a densely defined linear operator on H.

This operator is self-adjoint if and only if φ is a real function.
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A function φ of special interest is the function defined by the identity function id,
namely id(λ) = λ.

Definition 1.7.6. For any spectral family {Eλ}λ∈R, the operator
( ∫∞

−∞ λE(dλ),Did

)
with

Did :=
{
f ∈ H |

∫ ∞

−∞
λ2mf (dλ) <∞

}
is called the self-adjoint operator associated with {Eλ}.

By this procedure, any spectral family defines a self-adjoint operator on H. The
spectral Theorem corresponds to the converse statement:

Theorem 1.7.7 (Spectral Theorem). With any self-adjoint operator (A,D(A)) on a
Hilbert space H one can associate a unique spectral family {Eλ}, called the spectral
family of A, such that D(A) = Did and A =

∫∞
−∞ λE(dλ).

In summary, there is a bijective correspondence between self-adjoint operators and
spectral families. This theorem extends the fact that any n × n hermitian matrix is
diagonalizable. The proof of this theorem is not trivial and is rather lengthy. In the
sequel, we shall assume it, and state various consequences of this theorem.

Extension 1.7.8. Study the proof of the Spectral Theorem, starting with the version
for bounded self-adjoint operators.

1.7.3 Bounded functional calculus

Let A be a self-adjoint operator in H and {Eλ} be the corresponding spectral family.

Definition 1.7.9. For any bounded and continuous function φ : R → C one sets
φ(A) ∈ B(H) for the operator defined by

φ(A) :=

∫ ∞

−∞
φ(λ)E(dλ).

Exercise 1.7.10. Show the following equality: supp{Eλ} = σ(A). Note that part of the
proof consists in showing that if φz(λ) = (λ − z)−1 for some z ∈ ρ(A), then φz(A) =
(A− z)−1, where the r.h.s. has been defined in Section 1.6.

For the next statement, we set Cb(R) for the set of all continuous and bounded
complex functions on R.

Proposition 1.7.11. a) For any φ ∈ Cb(R) one has

(i) φ(A) ∈ B(H) and ∥φ(A)∥ = supλ∈σ(A) |φ(λ)|,

(ii) φ(A)∗ = φ(A), and φ(A) is self-adjoint if and only if φ is real,
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(iii) φ(A) is unitary if and only if |φ(λ)| = 1.

b) The map Cb(R) ∋ φ 7→ φ(A) ∈ B(H) is a ∗-homomorphism.

In the point (iii) above, one can consider the function φt ∈ Cb(R) defined by φt(λ) :=
e−itλ for any fixed t ∈ R. Then, if one sets Ut := φt(A) one can observe that UtUs = Ut+s

and that the map R ∋ t 7→ Ut ∈ B(H) is strongly continuous. Such a family {Ut}t∈R is
called a strongly continuous unitary group.

Theorem 1.7.12 (Stone Theorem). There exists a bijective correspondence between
self-adjoint operators on H and strongly continuous unitary groups on H. More pre-
cisely, if A is a self-adjoint operator on H, then {e−itA}t∈R is a strongly continuous
unitary group, while if {Ut}t∈R is a strongly continuous unitary group, one sets

D(A) :=
{
f ∈ H | ∃ s− lim

t→0

1

t
[Ut − 1]f

}
and for f ∈ D(A) one sets Af = s− limt→0

i
t
[Ut − 1]f .

Remark 1.7.13. If the inverse Fourier transform φ̌ of φ belongs to L1(R), then the
following equality holds

φ(A) =
1√
2π

∫ ∞

−∞
φ̌(t)e−itAdt.

1.7.4 Spectral parts of a self-adjoint operator

In this section, we consider a fixed self-adjoint operator A (and its associated spectral
family {Eλ}), and show that there exists a natural decomposition of the Hilbert space
H with respect to this operator. First of all, recall from Lemma 1.6.6 that the spectrum
of any self-adjoint operator is real. In addition, let us recall that for any µ ∈ R, one has

Ran
(
E({µ})

)
= {f ∈ H | E({µ})f = f}.

Then, one observes that the following equivalence holds:

f ∈ Ran
(
E({µ})

)
⇐⇒ f ∈ D(A) with Af = µf.

Indeed, this can be inferred from the equality

∥Af − µf∥2 =
∫ ∞

−∞
|λ− µ|2mf (dλ)

which itself can be deduced from the point (iii) of Proposition 1.7.4. Indeed, since the
integrand is strictly positive for each λ ̸= µ, one can have ∥Af − µf∥ = 0 if and only
if mf (V ) = 0 for any Borel set V on R with µ ̸∈ V . In other words, the measure mf is
supported only on {µ}.



1.7. SPECTRAL THEORY FOR SELF-ADJOINT OPERATORS 19

Definition 1.7.14. The set of all µ ∈ R such that Ran
(
E({µ})

)
̸= 0 is called the point

spectrum of A or the set of eigenvalues of A. One then sets

Hp(A) :=
⊕

Ran
(
E({µ})

)
where the sum extends over all eigenvalues of A.

In accordance with what has been presented in Theorem 1.7.1, we define two addi-
tional subspaces of H.

Definition 1.7.15.

Hac(A) :=
{
f ∈ H | mf is an absolutely continuous measure

}
=

{
f ∈ H | the function λ 7→ ∥Eλf∥2 is absolutely continuous

}
,

Hsc(A) :=
{
f ∈ H | mf is a singular continuous measure

}
=

{
f ∈ H | the function λ 7→ ∥Eλf∥2 is singular continuous

}
,

for which the comparison measure is always the Lebesgue measure on R.

Theorem 1.7.16. Let A be a self-adjoint operator in a Hilbert space H.
a) This Hilbert space can be decomposed as follows

H = Hp(A)⊕Hac(A)⊕Hsc(A),

and the restriction of the operator A to one of these subspaces defines a self-adjoint
operator denoted respectively by Ap, Aac and Asc.

b) For any φ ∈ Cb(R), one has the decomposition

φ(A) = φ(Ap)⊕ φ(Aac)⊕ φ(Asc).

Moreover, the following equality holds

σ(A) = σ(Ap) ∪ σ(Aac) ∪ σ(Asc).

Note that one often writes Ep(A), Eac(A) and Esc(A) for the orthogonal projection
on Hp(A), Hac(A) and Hsc(A), respectively, and with these notations one has Ap =
AEp(A), Aac = AEac(A) and Asc = AEsc(A). In addition, note that the relation between
the set of eigenvalues σp(A) introduced in Definition 1.6.1 and the set σ(Ap) is

σ(Ap) = σp(A).

Two additional sets are often introduced in relation with the spectrum of A, namely
σd(A) and σess(A).
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Definition 1.7.17. An eigenvalue λ belongs to the discrete spectrum σd(A) of A if
and only if Ran

(
E({λ})

)
is of finite dimension, and λ is isolated from the rest of the

spectrum of A. The essential spectrum σess(A) of A is the complementary set of σd(A)
in σ(A), or more precisely

σess(A) = σ(A) \ σd(A).

We end this section with an other characterization of the spectrum of the operator
A.

Proposition 1.7.18 (Weyl’s criterion). Let A be a self-adjoint operator in a Hilbert
space H.

a) A real number λ belongs to σ(A) if and only if there exists a sequence {fn}n∈N ⊂
D(A) such that ∥fn∥ = 1 and s− limn→∞(A− λ)fn = 0.

b) A real number λ belongs to σess(A) if and only if there exists a sequence {fn}n∈N ⊂
D(A) such that ∥fn∥ = 1, w − limn→∞ fn = 0 and s− limn→∞(A− λ)fn = 0.



Chapter 2

C∗-algebras

This chapter is mainly based on the first chapters of the book [Mur90]. Material bor-
rowed from other references will be specified.

2.1 Banach algebras

Definition 2.1.1. A Banach algebra C is a complex vector space endowed with an
associative multiplication and with a norm ∥ · ∥ which satisfy for any A,B,C ∈ C and
α ∈ C

(i) (αA)B = α(AB) = A(αB),

(ii) A(B + C) = AB + AC and (A+B)C = AC +BC,

(iii) ∥AB∥ ≤ ∥A∥∥B∥ (submultiplicativity)

(iv) C is complete with the norm ∥ · ∥.

One says that C is abelian or commutative if AB = BA for all A,B ∈ C . One also
says that C is unital if 1 ∈ C , i.e. if there exists an element 1 ∈ C with ∥1∥ = 1 such
that 1B = B = B1 for all B ∈ C . A subalgebra J of C is a vector subspace which is
stable for the multiplication. If J is norm closed, it is a Banach algebra in itself.

Examples 2.1.2. (i) C, Mn(C), B(H), K (H) are Banach algebras, where Mn(C)
denotes the set of n×n-matrices over C. All except K (H) are unital, and K (H)
is unital if H is finite dimensional.

(ii) If Ω is a locally compact topological space, C0(Ω) and Cb(Ω) are abelian Banach
algebras, where Cb(Ω) denotes the set of all bounded and continuous complex func-
tions from Ω to C, and C0(Ω) denotes the subset of Cb(Ω) of functions f which
vanish at infinity, i.e. for any ε > 0 there exists a compact set K ⊂ Ω such
that supx∈Ω\K |f(x)| ≤ ε. These algebras are endowed with the L∞-norm, namely
∥f∥ = supx∈Ω |f(x)|. Note that Cb(Ω) is unital, while C0(Ω) is not, except if Ω is
compact. In this case, one has C0(Ω) = C(Ω) = Cb(Ω).

21
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(iii) If (Ω, µ) is a measure space, then L∞(Ω), the (equivalent classes of) essentially
bounded complex functions on Ω is a unital abelian Banach algebra with the es-
sential supremum norm ∥ · ∥∞.

(iv) For any n ∈ N, the set BCu(Rd) of bounded and uniformly continuous complex
functions on Rd is a unital abelian Banach algebra. Recall that f : Rd → C is
uniformly continuous if for any ε > 0, there exists δ > 0 such that whenever
x, y ∈ Rd with |x− y| ≤ δ one has |f(x)− f(y)| ≤ ε. Note that this property can
be defined not only on Rd but on all uniform spaces.

If S is a subset of a Banach algebra C , the smallest closed subalgebra of C which
contains S is called the closed algebra generated by S.

Definition 2.1.3. An ideal in a Banach algebra C is a (non-trivial) subalgebra J of
C such that AB ∈ J and BA ∈ J whenever A ∈ J and B ∈ C . An ideal J is
maximal in C if J is proper (⇔ not equal to C ) and J is not contained in any other
proper ideal of C .

In the examples presented above, C0(Ω) is an ideal of Cb(Ω), while K (H) is an
ideal of B(H).

Lemma 2.1.4. If C is a Banach algebra and J is a closed ideal in C , the quotient
C /J of C by J , endowed with the multiplication (A + J )(B + J ) = (AB + J )
and with the quotient norm ∥A+ J ∥ := infB∈J ∥A+B∥, is a Banach algebra.

Proof. The algebraic properties of the quotient are easily verified, and the submulti-
plicativity is shown below. The completeness of the quotient with respect to the norm
is a standard result of normed vector spaces, see for example [Ped89, Prop. 2.1.5].

Let ε > 0 and let A,B ∈ C . Then

∥A+ A′∥ < ∥A+ J ∥+ ε ∥B +B′∥ < ∥B + J ∥+ ε

for some A′, B′ ∈ J . Hence, by setting C := A′B + AB′ + A′B′ ∈ J one has

∥AB + C∥ ≤ ∥A+ A′∥∥B +B′∥ ≤
(
∥A+ J ∥+ ε

)(
∥B + J ∥+ ε

)
.

Thus, ∥AB + J ∥ ≤
(
∥A + J ∥ + ε

)(
∥B + J ∥ + ε

)
. By letting then ε ↘ 0, we get

∥AB +J ∥ ≤ ∥A+J ∥∥B +J ∥, which corresponds to the submultiplicativity of the
quotient norm.

Definition 2.1.5. A homomorphism φ between two Banach algebras C and Q is a
linear map φ : C → Q which satisfies φ(AB) = φ(A)φ(B) for all A,B ∈ C . If C
and Q are unital and if φ(1) = 1, one says that φ is unit preserving or a unital
homomorphism.
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It is easily seen that if φ : C → Q is a homomorphism, its kernel Ker(φ) is an
ideal in C and its range φ(C ) is a subalgebra of Q. Alternatively, if J is an ideal in
a Banach algebra C , then the quotient map q : C → C /J is a homomorphism.

Let us now consider an arbitrary unital Banach algebra C , and let A ∈ C . One
says that A is invertible if there exists B ∈ C such that AB = 1 = BA. In this case,
the element B is denoted by A−1 and is called the inverse of A. The set of all invertible
elements in a unital Banach algebra C is denoted by Inv(C ).

Exercise 2.1.6. By using the Neumann series, show that Inv(C ) is an open set in a
unital Banach algebra C , and that the map Inv(C ) ∋ A 7→ A−1 ∈ C is differentiable.

On the other hand, let us show that maximal ideals in a unital Banach algebra C
are closed. For this, observe first that for every ideal J ̸= C we have J ∩ Inv(C ) = ∅.
Indeed, if one has A ∈ J ∩ Inv(C ), then for any B ∈ C \ J one would have B =
A(A−1B) ∈ J , which is absurd. As a consequence, it follows that ∥1 − A∥ ≥ 1 since
otherwise A would be invertible with the Neumann series. Consequently, J can not
be dense in C , and thus the closure J of J is a proper and closed ideal in C . One
infers from this that any maximal ideal in C is closed.

2.2 Spectral theory

The main notions of spectral theory introduced before in the context of B(H) can be
generalized to arbitrary unital Banach algebra.

For any A in a unital Banach algebra C we define the spectrum σC (A) of A with
respect to C by

σC (A) :=
{
z ∈ C | (A− z) ̸∈ Inv(C )

}
. (2.2.1)

Note that the spectrum σC (A) of A is never empty, see for example [Mur90, Thm. 1.2.5].
This result is not completely trivial and its proof is based on Liouville’s Theorem in
complex analysis.

Based on this observation, we state two results which are often quite useful.

Theorem 2.2.1 (Gelfand-Mazur). If C is a unital Banach algebra in which every
non-zero element is invertible, then C = C1.

Proof. We know from the observation made above that for any A ∈ C , there exists
z ∈ C such that A− z ≡ A− z1 ̸∈ Inv(C ). By assumption, it follows that A = z1.

Lemma 2.2.2. Let J be a maximal ideal of a unital abelian Banach algebra C , then
C /J = C1.

Proof. As seen in Lemma 2.1.4, C /J is a Banach algebra with unit 1+J ; the quotient
map C → C /J is denoted by q. If I is an ideal in C /J , then q−1(I ) is an ideal of
C containing J , which is therefore either equal to C or to J , by the maximality of
J . Consequently, I is either equal to C /J or to 0, and C /J has no proper ideal.
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Now, if A ∈ C /J and A ̸= 0, then A ∈ Inv
(
C /J

)
, since otherwise A(C /J )

would be a proper ideal of C /J . In other words, one has obtained that any non-zero
element of C /J is invertible, which implies that C /J = C1, by Theorem 2.2.1.

Lemma 2.2.3. Let C be a unital Banach algebra and let A ∈ C . Then σC (A) is a
closed subset of the disc in the complex plane, centered at 0 and of radius ∥A∥.

Proof. If |z| > ∥A∥, then ∥z−1A∥ < 1, and therefore (1 − z−1A) is invertible (use
the Neumann series). Equivalently, this means that (z −A) is invertible, and therefore
z ̸∈ σC (A). Thus, one has obtained that if z ∈ σC (A), then |z| ≤ ∥A∥.

Since Inv(C ) is an open set in C , one easily infers that C \ σC (A) is an open set in
C, which means that σC (A) is a closed set in C.

Another notion related to the spectrum of A is sometimes convenient. If A belongs
to a unital Banach algebra C , its spectral radius r(A) is defined by

r(A) := sup
z∈σC (A)

|z|.

Clearly, it follows from the previous lemma that r(A) ≤ ∥A∥. In addition, the following
property holds:

Theorem 2.2.4 (Beurling). If A is an element of a unital Banach algebra, then

r(A) = inf
n≥1

∥An∥1/n = lim
n→∞

∥An∥1/n.

Proof. See [Mur90, Thm. 1.2.7] or [Ped89, Thm. 4.1.13].

For the next statement, recall that if K is a non-empty compact set in C, it com-
plement C \K admits exactly one unbounded component, and that the bounded com-
ponents of C \K are called the holes of K.

Proposition 2.2.5. Let C be a closed subalgebra of a unital Banach algebra A which
contains the unit of A . Then,

(i) The set Inv(C ) is a clopen (⇔ open and closed) subset of C ∩ Inv(A ),

(ii) For each A ∈ C ,

σA (A) ⊆ σC (A) and ∂σC (A) ⊆ ∂σA (A),

(iii) If A ∈ C and σA (A) has no hole, then σA (A) = σC (A).

Proof. Clearly Inv(C ) is an open set in C ∩ Inv(A ). To see that it is also closed, let
(An) be a sequence in Inv(C ) converging to a point A ∈ C ∩ Inv(A ). Then, from the
equality A−1

n − A−1 = A−1
n (A− An)A

−1, one infers that (A−1
n ) converges to A−1 in A ,

so A−1 ∈ C (by the completeness of C ), which implies that A ∈ Inv(C ). Hence, Inv(C )
is clopen in C ∩ Inv(A ).
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If A ∈ C , the inclusion σA (A) ⊆ σC (A) is immediate from the inclusion Inv(C ) ⊆
Inv(A ).

If z ∈ ∂σC (A), then there is a sequence (zn) in C \ σC (A) converging to z. Hence,
(A− zn) ∈ Inv(C ), and (A− z) ̸∈ Inv(C ), so (A− z) ̸∈ Inv(A ), by the point (i). Also,
A− zn ∈ Inv(A ), so zn ∈ C \σA (A). Therefore, z ∈ ∂σA (A). This proves the point (ii).

If A ∈ C and σA (A) has no hole, then C \ σA (A) is connected. Since C \ σC (A)
is a clopen subset of C \ σA (A) by the points (i) and (ii), it follows that C \ σA (A) =
C \ σC (A), and therefore σA (A) = σC (A).

Let us end this section with a construction which can be used if a Banach algebra
C has no unit. Consider the set C̃ := C ⊕ C with the multiplication

(A, z)(B, y) = (AB + zB + yA, zy).

This algebra contains a unit 1 = (0, 1) and is call a unitization of C . Clearly, the map
C ∋ A 7→ (A, 0) ∈ C̃ is an injective homomorphism, which can be used to identify C
with an ideal of C̃ . It is quite common to write simply A+ z for the element (A, z) of
C̃ . Endowed with the norm ∥A+ z∥ := ∥A∥+ |z|, C̃ is a unital Banach algebra, which
is abelian if C is abelian.

If C is a non-unital Banach algebra and A ∈ C , one sets σC (A) := σC̃ (A).

2.3 The Gelfand representation

In this section, we concentrate on abelian Banach algebras and state a fundamental
result for these algebras. First of all, let us observe that if φ : C → Q is a unital ho-
momorphism between the unital Banach algebras C and Q, then φ

(
Inv(C )

)
⊂ Inv(Q),

and therefore σQ(φ(A)) ⊂ σC (A) whenever A ∈ C .

Definition 2.3.1. A character τ on an abelian algebra C is a non-zero homomorphism
from C to C. The set of all characters of C is denoted by Ω(C ).

Let us immediately observe that if τ ∈ Ω(C ) for a unital abelian Banach algebra
C , then ∥τ∥ = 1. Indeed, if A ∈ C , one has τ(A) ⊂ σC (A), and therefore |τ(A)| ≤ ∥A∥.
Hence ∥τ∥ ≤ 1, but τ(1) = 1 since τ(1) = τ(1)2 and τ(1) ̸= 0.

For the next statement, we introduce the notation M(C ) for the set of maximal
ideals of a Banach algebra C .

Proposition 2.3.2. Let C be a unital abelian Banach algebra. There is a bijection
τ ↔ Ker(τ) between the set Ω(C ) of characters of C and the set M(C ). Additionally,
for each A ∈ C one has

σC (A) =
{
τ(A) | τ ∈ Ω(C )

}
.

Proof. Let us first take J ∈ M(C ) and consider the quotient Banach algebra C /J .
By Lemma 2.2.2, it follows that C /J = C1, and therefore the quotient map τ : C →
C /J belongs Ω(C ). Conversely, if τ ∈ Ω(C ), then Ker(τ) is an ideal in C . In addition,
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one has C = Ker(τ) + C1, since
(
A − τ(A)1

)
∈ Ker(τ). Consequently, Ker(τ) is of

co-dimension 1, and therefore is maximal.
Now, we show that any A ∈ C \ Inv(C ) is contained in a maximal ideal. Indeed,

one easily observes that A ∈ CA, with CA an ideal of C which does not contain 1.
Then, the set of ideals that contains A but not 1 is inductively ordered by induction
(because a union of an increasing family of ideals is an ideal), and a maximal element
of this ordering is a maximal ideal. From Zorn’s Lemma, it follows that A is contained
in a maximal ideal.

Finally, if A ∈ C and z ∈ σC (A), then (A − z) ̸∈ Inv(C ). Therefore, there exists a
character τ ∈ Ω(C ) such that (A−z) ≡ (A−z1) belongs to the corresponding maximal
ideal Ker(τ). Accordingly, τ(A − z1) = 0 ⇐⇒ τ(A) = z. Conversely, if τ(A) = z for
some τ ∈ Ω(C ), then z ∈ σC

(
τ(A)

)
⊂ σC (A), by the observation made at the beginning

of the section.

Remark 2.3.3. In the previous statement, if C is not unital one has for any A ∈ C

σC (A) =
{
τ(A) | τ ∈ Ω(C )

}
∪ {0}. (2.3.1)

Indeed, if τ∞ : C̃ → C denotes the character defined by τ∞(A, z) = z, then one has
Ω(C̃ ) =

{
τ̃ | τ ∈ Ω(C )

}
∪ {τ∞} with τ̃(A, z) = τ(A) + z, and

σC (A) = σC̃ (A) = {τ(A, 0) | τ ∈ Ω(C̃ )} = {τ(A) | τ ∈ Ω(C )} ∪ {0}. (2.3.2)

Since for any abelian Banach algebra C , any A ∈ C and any τ ∈ Ω(C ) one has
|τ(A)| ≤ ∥A∥, it follows that Ω(C ) is contained in the closed unit ball of the dual space
C ∗. Thus, we can endow Ω(C ) with the relative weak∗ topology and call the topological
space Ω(C ) the character space, or spectrum of C .

Proposition 2.3.4. If C is an abelian Banach algebra, then Ω(C ) is a locally compact
Hausdorff1 space. If C is unital, then Ω(C ) is compact.

Proof. If C is unital, then it can be checked that Ω(C ) is weak∗ closed in the closed
unital ball B of C ∗. Since B is weak∗ compact (Banach-Alaoglu Theorem), it follows
that Ω(C ) is weak∗ compact.

If C is not unital, then Ω(C ) ∼= Ω(C̃ ) \ {τ∞}, and therefore one obtains that Ω(C̃ )
is only locally compact.

For any A in an abelian algebra C one defines the function Â by

Â : Ω(C ) ∋ τ 7→ Â(τ) ∈ C

with Â(τ) := τ(A). The topology of Ω(C ) makes this function continuous. In addition,
since for any ε > 0 the set {τ ∈ Ω(C ) | |τ(A)| ≥ ε} is weak∗ closed in the closed
unit ball of C ∗, and weak∗ compact by the Banach-Alaoglu Theorem, it follows that
Â ∈ C0

(
Ω(C )

)
. Note that the map A 7→ Â is called the Gelfand transform.

1A Hausdorff space is a topological space in which distinct points have disjoint neighbourhoods.
The weak∗ topology is Hausdorff.
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Theorem 2.3.5. Let C be an abelian Banach algebra. Then the map

C ∋ A 7→ Â ∈ C0

(
Ω(C )

)
is a norm decreasing homomorphism, and ∥Â∥∞ = r(A). If C is unital, then σC (A) =
Â
(
Ω(C )

)
, while if C is not unital, σC (A) = Â

(
Ω(C )

)
∪ {0}, for any A ∈ C .

Proof. It is easily checked that the mentioned map is a homomorphism. The spectral
properties are direct consequences of (2.3.1) and (2.3.2), while the property on the norm
follows from the observation that ∥Â∥∞ = r(A) ≤ ∥A∥.

Note that the interpretation of the character space as a sort of generalized spectrum
is motivated by the following result.

Lemma 2.3.6. Let C be a unital Banach algebra, and let A be the unital subalgebra
generated by 1 and an element A ∈ C . Then A is abelian and the map

ϕA : Ω(A ) → σA (A), ϕA(τ) := τ(A) (2.3.3)

is a homeomorphism.

Proof. It is clear that the algebra A is abelian, and that ϕA is a continuous bijection.
Since Ω(A ) and σA (A) are compact Hausdorff spaces, the map ϕA is a homeomorphism
(open mapping theorem).

2.4 Basics on C∗-algebras

Definition 2.4.1. A Banach ∗-algebra or B∗-algebra is a Banach algebra C together
with an involution ∗ satisfying for any A,B ∈ C and α ∈ C

(i) (A∗)∗ = A,

(ii) (A+B)∗ = A∗ +B∗,

(iii) (αA)∗ = αA∗,

(iv) (AB)∗ = B∗A∗.

Clearly, if C is a unital B∗-algebra, then 1∗ = 1.

Exercise 2.4.2. Show that ∥A∗∥ = ∥A∥ whenever A belongs to a B∗-algebra.

Definition 2.4.3. A C∗-algebra is a B∗-algebra C for which the following additional
property is satisfied:

∥A∗A∥ = ∥A∥2 ∀A ∈ C . (2.4.1)
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Examples 2.4.4. All examples mentioned in Examples 2.1.2 are in fact C∗-algebras,
once complex conjugation is considered as the involution for complex functions. In ad-
dition, let us observe that for a family {Ci}i∈I of C∗-algebras, the direct sum ⊕i∈ICi,
with the pointwise involution and the supremum norm, is also a C∗-algebra.

Note that a C∗-subalgebra of a C∗-algebra C is a norm closed subalgebra of C which
is stable for the involution. It is clearly a C∗-algebra in itself. Note also that if C and
Q are C∗-algebras, then φ : C → Q is a ∗-homomorphism if φ is a homomorphism and
if in addition φ(A∗) = φ(A)∗ for all A ∈ C . An ideal J in a C∗-algebra is self-adjoint
if it is stable for the involution.

Definition 2.4.5. Let C be a C∗-algebra. An element A ∈ C satisfying A = A∗ is
called self-adjoint or hermitian, an element P ∈ C satisfying P = P 2 = P ∗ is called an
orthogonal projection, and an element A ∈ C satisfying AA∗ = A∗A is called a normal
element of C . In addition, if C is unital, an element U ∈ C satisfying UU∗ = 1 = U∗U
is called a unitary,

Note that it then follows from relation (2.4.1) that ∥U∥ = 1 for any unitary in C ,
and that ∥P∥ = 1 for any (non-trivial) orthogonal projection in C .

For the next statement, let us set

T := {z ∈ C | |z| = 1}.

Lemma 2.4.6. Any self-adjoint element A in a unital C∗-algebra C satisfies σC (A) ⊂
R. If U is a unitary element of C , then σC (U) ⊂ T.

Proof. First of all, from the equality
(
(C − z)−1

)∗
= (C∗ − z)−1, one infers that if

z ∈ σC (C), then z ∈ σC (C
∗), for any C ∈ C . Furthermore, from the equality

z−1(z − C)C−1 = −(z−1 − C−1),

one also deduces that if z ∈ σC (C) for some C ∈ Inv(C ), then z−1 ∈ σC (C
−1).

Now, for a unitary U ∈ C , one deduces from the above computations that if z ∈
σC (U), then z

−1 ∈ σC

(
(U∗)−1

)
= σC (U). Since ∥U∥ = 1 one then infers from Lemma

2.2.3 that |z| ≤ 1 and |z−1| ≤ 1, which means z ∈ T.
If A = A∗ ∈ C , one sets eiA :=

∑∞
n=0

(iA)n

n!
and observes that

(eiA)∗ = e−iA = (eiA)−1.

Therefore, eiA is a unitary element of C and it follows that σC

(
eiA

)
⊂ T. Now, let us

assume that z ∈ σC (A), set B :=
∑∞

n=1
in(A−z)n−1

n!
, and observe that B commutes with

A. Then one has
eiA − eiz = (ei(A−z) − 1)eiz = (A− z)Beiz.

It follows from this equality that eiz ∈ σC (e
iA). Indeed, if

(
eiA − eiz

)
∈ Inv(C ), then

Beiz
(
eiA − eiz

)−1
would be an inverse for (A − z), which can not be since z ∈ σC (A).

From the preliminary computation, one deduces that |eiz| = 1, which holds if and only
if z ∈ R. One has thus obtains that σC (A) ⊂ R.
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The following statement is an important result for the spectral theory in the frame-
work of C∗-algebras. It shows that the computation of the spectrum does not depend
on the surrounding algebra.

Theorem 2.4.7. Let C be a C∗-subalgebra of a unital C∗-algebra A which contains
the unit of A . Then for any A ∈ C ,

σC (A) = σA (A).

Proof. First of all, suppose that A is a self-adjoint element of C . Then, since σA (A) ⊂ R,
it follows from Proposition 2.2.5.(iii) that σA (A) = σC (A). Alternatively, this means
that A is invertible in C if and only if A is invertible in A .

Now suppose that A is an arbitrary element of C which is invertible in A , i.e. there
exists B ∈ A such that AB = BA = 1. Then A∗B∗ = B∗A∗ = 1, so that AA∗B∗B =
1 = B∗BAA∗, and this means that AA∗ is invertible in A , and therefore also in C .
Hence, there exists C ∈ C such that AA∗C = 1 = CAA∗. One infers then that A∗C =
B, which implies that B ∈ C and thus that A is invertible in C . As a consequence, for
any A ∈ C its invertibility in A is equivalent to its invertibility in C , which directly
implies the statement of the theorem.

Because of the previous result, it is common to denote by σ(A) the spectrum of
an element A of a C∗-algebra, without specifying in which algebra the spectrum is
computed. Let us also mention an additional result concerning the spectral radius:

Exercise 2.4.8. If A is a self-adjoint element of a C∗-algebra C , show that r(A) = ∥A∥.

Let us observe that this simple result has an important corollary:

Corollary 2.4.9. There is at most one norm on a ∗-algebra making it a C∗-algebra.

Proof. If ∥ · ∥1, ∥ · ∥2 are norms on a ∗-algebra C making it a C∗-algebra, then for any
A ∈ C one has ∥A∥2j = ∥A∗A∥j = r(A∗A), and therefore ∥A∥1 = ∥A∥2.

We have already seen at the end of Section 2.2 how we can construct a unital
Banach algebra C̃ from a non-unital Banach algebra C . However, if C is a C∗-algebra,
the resulting algebra C̃ is not a C∗-algebra in general. We shall now see how the
construction can be adapted.

A double centralizer for a C∗-algebra C is a pair (L,R) of bounded linear maps on
C such that for all A,B ∈ C one has

L(AB) = L(A)B, R(AB) = AR(B), and R(A)B = AL(B).

For example, if C ∈ C , then one can define a double centralizer (LC , RC) by LC(A) :=
CA and RC(A) := AC. One then easily checks that

∥C∥ = sup
∥A∥≤1

∥CA∥ = sup
∥A∥≤1

∥AC∥,

and therefore ∥LC∥ = ∥RC∥ = ∥C∥.
More generally one has:
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Exercise 2.4.10. If (L,R) is a double centralizer for a C∗-algebra, show that ∥L∥ =
∥R∥.

Thus, for any C∗-algebra C , one denotes by M (C ) the set of double centralizers
of C and endows it with the norm ∥(L,R)∥ := ∥R∥ = ∥L∥. M (C ) becomes then a
closed vector subspace of B(C ) ⊕ B(C ). If in addition, one endows this set with the
multiplication

(L1, R1)(L2, R2) = (L1L2, R2R1)

and with the involution (L,R)∗ = (R∗, L∗) with L∗(A) =
(
L(A∗)

)∗
and R∗(A) =(

R(A∗)
)∗
, then one ends up with:

Proposition 2.4.11. If C is a C∗-algebra, then M (C ) is also a C∗-algebra.

Proof. We only prove the property that ∥(L,R)∗(L,R)∥ = ∥(L,R)∥2, the other condi-
tions being quite straightforward. For that purpose, let A ∈ C with ∥A∥ ≤ 1. Then one
has

∥L(A)∥2 =
∥∥(L(A))∗L(A)∥∥ = ∥L∗(A∗)L(A)∥ =

∥∥AR∗(L(A))∥∥
≤ ∥R∗L∥ =

∥∥(L,R)∗(L,R)∥∥,
which implies that

∥(L,R)∥2 = sup
∥A∥≤1

∥L(A)∥2 ≤ ∥(L,R)∗(L,R)∥ ≤ ∥(L,R)∥2.

One thus infers that ∥(L,R)∗(L,R)∥ = ∥(L,R)∥2.

The C∗-algebra M (C ) is called the multiplier algebra of C , and the map C ∋
A 7→ (LA, RA) ∈ M (C ) is an isometric ∗-homomorphism of C into M (C ). We can
therefore identify C with a C∗-subalgebra of M (C ). In fact, C is an ideal in M (C ),
and since 1 ∈ B(C ) the algebra M (C ) is a unital C∗-algebra with unit (1,1). Note that
C = M (C ) if and only if C is unital, and that M (C ) is in fact the largest unitization
of C in the following sense:

Theorem 2.4.12. If J be a closed self-adjoint ideal in a C∗-algebra C , then there
exists a unique ∗-homomorphism φ : C → M (J ) such that φ is the identity map on
J . Moreover, φ is injective if and only J is essential2 in C .

Proof. See Proposition 2.2.14 of [W-O93] or Theorem 3.1.8 of [Mur90].

Let us recall that a ∗-isomorphism is a bijective ∗-homomorphism. In the next
lemma, we deduce a consequence of the previous theorem.

Lemma 2.4.13. If C is a C∗-algebra, then there exists a unique norm on its unitization
C̃ making it a C∗-algebra.

2One says that a closed ideal J in a C∗-algebra C is essential if AB = 0 for all B ∈ J implies
A = 0.
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Proof. Uniqueness of the norm is given by Corollary 2.4.9. The proof of the existence
falls into two cases, depending on whether C is unital or not.

Let us consider first the case of a unital C∗-algebra C . Then, the map φ : C̃ → C⊕C
defined by φ(A, z) = (A + z1, z) is a ∗-isomorphism. Hence, one gets a C∗-norm on C̃
by setting ∥(A, z)∥ := ∥φ(A, z)∥.

Suppose now that C has no unit. If 1 denotes the unit of M (C ), then C ∩C1 = 0.
The map φ from C̃ to the subalgebra C ⊕ C1 of M (C ) defined by φ(A, z) = A + z1
is a ∗-isomorphism, so we get a C∗-norm on C̃ by setting ∥(A, z)∥ := ∥φ(A, z)∥.

From now on, we shall always consider the unitization C̃ of a C∗-algebra endowed
with its C∗-norm. Note in addition, that M (C ) is usually much bigger than C̃ . For
example, if C = C0(Ω) for a locally compact space Ω, then M (C ) = Cb(Ω).

It is easily observed that if φ : C → Q is a ∗-homomorphism between ∗-algebras,
then φ extends uniquely to a unital ∗-homomorphism φ̃ : C̃ → Q̃.

Lemma 2.4.14. A ∗-homomorphism φ : C → Q from a B∗-algebra C to a C∗-algebra
Q is necessarily norm decreasing.

Proof. Without lost of generality, one can consider C and Q unital (by going to C̃ and
Q̃ if necessary). For A ∈ C one has σQ

(
φ(A)

)
⊂ σC (A), and therefore

∥φ(A)∥2 =
∥∥φ(A)∗φ(A)∥∥ = ∥φ(A∗A)∥ = r

(
φ(A∗A)

)
≤ r(A∗A) ≤ ∥A∗A∥ ≤ ∥A∥2.

It thus follows that ∥φ(A)∥ ≤ ∥A∥.

Let us observe that an important corollary can be deduced from the previous lemma,
namely any ∗-isomorphism between C∗-algebras is necessarily isometric.

Our next aim is to show that the Gelfand representation contained in Theorem 2.3.5
can be improved in the context of abelian C∗-algebras. For that purpose, observe first
that any character on a C∗-algebra preserves adjoints. Indeed, let C be a C∗-algebra
and let τ be a character on C . Then, for any A ∈ C , let us set A = ℜ(A)+ iℑ(A) (with
ℜ(A) := A+A∗

2
and ℑ(A) := A−A∗

2i
self-adjoint) and observe that

τ(A∗) = τ
(
ℜ(A)− iℑ(A)

)
= τ

(
ℜ(A)

)
− iτ

(
ℑ(A)

)
= τ

(
ℜ(A) + iℑ(A)

)
= τ(A).

Theorem 2.4.15 (Gelfand representation). For any non-zero abelian C∗-algebra C ,
the Gelfand representation

C ∋ A 7→ Â ∈ C0

(
Ω(C )

)
(2.4.2)

is an isometric ∗-isomorphism.

Proof. Let us denote by φ the homomorphism defined in (2.4.2). It follows from Theo-
rem 2.3.5 that φ is a norm decreasing homomorphism, with ∥Â∥ = r(A), for any A ∈ C .
Now, if τ ∈ Ω(C ) one has [φ(A∗)](τ) = τ(A∗) = τ(A) = [φ(A)](τ) = [φ(A)∗](τ), which
means that φ is a ∗-homomorphism. Moreover, φ is an isometry since

∥φ(A)∥2 = ∥φ(A)∗φ(A)∥ = ∥φ(A∗A)∥ = r(A∗A) = ∥A∗A∥ = ∥A∥2.
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Then, φ(C ) is a closed ∗-subalgebra of C0

(
Ω(C )

)
separating the points of Ω(C ), and

having the property that for any τ ∈ Ω(C ) there is an element A ∈ C such that
[φ(A)](τ) = τ(A) ̸= 0. The Stone-Weierstrass Theorem implies therefore that φ(C ) =
C0

(
Ω(C )

)
.

The following exercise shows the coherence of the theory:

Exercise 2.4.16. Let Ω be a compact Hausdorff space, and for each x ∈ Ω let τx be
the character on C(Ω) defined by τx(f) = f(x) for any f ∈ C(Ω). Show that the map

Ω ∋ x 7→ τx ∈ Ω
(
C(Ω)

)
is a homeomorphism.

The Gelfand representation has various useful applications. One is contained in the
proof of the following statement. For this proof, we also need the following observation:
If ϕ : Ω → Ω′ is a continuous map between compact Hausdorff spaces Ω and Ω′, then
the transpose map:

ϕt : C(Ω′) → C(Ω), ϕt(f) := f ◦ ϕ
is a unital ∗-homomorphism. Moreover, if ϕ is a homeomorphism, then ϕt is a ∗-
isomorphism.

Proposition 2.4.17. Let A be a normal element of a unital C∗-algebra C , and let z
be the inclusion map of σ(A) in C. Then there exists a unique unital ∗-homomorphism
φ : C

(
σ(A)

)
→ C such that φ(z) = A. Moreover, φ is isometric and the image of φ is

the C∗-subalgebra of C generated by A and 1.

Proof. Let A be the unital C∗-subalgebra of C generated by A and 1, and let ψ : A →
C
(
Ω(A )

)
be the Gelfand representation. By Theorem 2.4.15 ψ is a ∗-isomorphism. In

addition, we know from Lemma 2.3.6 that the map ϕA defined in (2.3.3) is a homeo-
morphism, and therefore the map ϕt

A : C
(
σ(A)

)
→ C

(
Ω(A )

)
is also a ∗-isomorphism.

It then follows that the composed map φ := ψ−1 ◦ ϕt
A : C

(
σ(A)

)
→ A is a unital

∗-homomorphism, with φ(z) = A since φ(z) = ψ−1
(
ϕt
A(z)

)
= ψ−1(Â) = A. From

the Stone-Weierstrass Theorem, we know that C
(
σ(A)

)
is generated by 1 and z; φ is

therefore the unique unital ∗-homomorphism from C
(
σ(A)

)
to C such that φ(z) = A.

The remaining part of the proof is rather clear.

Based on the idea developed in the previous proof, it is natural to set the following
definitions: If S is any subset of a C∗-algebra, we denote by C∗(S) the smallest C∗-
algebra generated by S. Clearly, C∗(S) ⊂ C , and C∗(A) := C∗({A}) is an abelian
algebra if A is normal. If A is self-adjoint, C∗(A) is the closure of the set of polynomials
in A with zero constant term. On the other hand, C∗({A,1}) is the closure of the set
of polynomials in A with constant terms.

Let us finally mention that a bounded functional calculus similar to the one devel-
oped in Section 1.7.3 can also be defined in the C∗-algebraic framework. We mention
below a useful result, but refer to [Mur90, Thm. 2.1.14] for its proof.
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Theorem 2.4.18 (Spectral mapping). Let A be a normal element in a unital C∗-algebra
C , and let φ ∈ C

(
σ(A)

)
. Then the following equality holds:

σ
(
φ(A)

)
= φ

(
σ(A)

)
.

Moreover, if ψ ∈ C
(
σ(φ(A))

)
, then [ψ ◦ φ](A) = ψ

(
φ(A)

)
.

2.5 Additional material on C∗-algebras

In this section we add some standard material on C∗-algebras. More information can
be found in Chapters 2 and 3 of [Mur90].

Let us first observe that if C = C0(Ω) for a locally compact space Ω, then a natural
notion of positivity on C exists. Indeed, if Csa denote the subset of C made of real
functions on Ω, then for f ∈ Csa one writes f ≥ 0 if and only if f(x) ≥ 0 for any x ∈ Ω.
In addition, any f ≥ 0 has a unique positive square root in C , namely the function
x 7→

√
f(x). This notion of positivity endowed Csa with a partial order: if f, g ∈ Csa

one sets f ≥ g if and only if f − g ≥ 0. We shall now define a similar partial order on
an arbitrary C∗-algebra.

By analogy, for any C∗-algebra C we denote by Csa the set of all self-adjoint elements
in C . For any A ∈ C , one says that A is positive if A is self-adjoint, and σ(A) ⊂ [0,∞).
We also write A ≥ 0 to mean that A is positive, and denote by C + the set of positive
elements in C . If J is a subalgebra of C , one clearly has J + = J ∩ C +.

Theorem 2.5.1. Let C be a C∗-algebra and let A ∈ C +. Then there exists a unique
B ∈ C + such that B2 = A.

Proof. That there exists B ∈ C∗(A) such that B ≥ 0 and B2 = A follows from the
Gelfand representation, since we may use it and identify C∗(A) with C0(Ω), where
Ω := Ω

(
C∗(A)

)
, and then apply the above observation, see also Proposition 2.4.17.

Now, suppose that there exists another element C ∈ C + such that C2 = A. Since C
commute with A, C also commute with the elements generated by A, and therefore C
commute with B. So, let us set Q := C∗({B,C}) which is an abelian C∗-subalgebra of
C , and let φ : Q → C0

(
Ω(Q)

)
be its Gelfand representation. Then, φ(C) and φ(B) are

positive square root of φ(A), which means that φ(C) = φ(B). Since φ is is an isometric
∗-isomorphism, it follows that C = B.

If A is a positive element of a C∗-algebra C , we usually write A1/2 for its unique
positive square root in C . For A,B ∈ Csa we also set A ≥ B if A− B ≥ 0. Let us add
some elementary information about C +

Proposition 2.5.2. Let C be a C∗-algebra. Then,

(i) The sum of two positive elements of C is a positive element of C ,

(ii) The set C + is equal to {A∗A | A ∈ C },
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(iii) If A,B ∈ Cas and C ∈ C , then A ≥ B ⇒ C∗AC ≥ C∗BC,

(iv) If A ≥ B ≥ 0, then A1/2 ≥ B1/2,

(v) If A ≥ B ≥ 0, then ∥A∥ ≥ ∥B∥,

(vi) If C is unital and A,B are positive and invertible elements of C , then A ≥ B ⇒
B−1 ≥ A−1 ≥ 0,

(vii) For any A ∈ C there exist A1, A2, A3, A4 ∈ C + such that

A = A1 − A2 + iA3 − iA4.

Proof. See Lemma 2.2.3, Theorem 2.2.5 and Theorem 2.2.6 of [Mur90].

Let us stress that the implication A ≥ B ≥ 0 ⇒ A2 ≥ B2 is NOT true in general.

Definition 2.5.3. For a C∗-algebra C , an approximate unit is an upwards-directed set
{Ij}j∈J ⊂ C + with ∥Ij∥ ≤ 1 and such that A = limj IjA for any A ∈ C .

In order to show that each C∗-algebra C possesses such an approximate unit, let
us first observe that the set of elements of C + with norm strictly less than 1 is a
partially ordered set which is upwards-directed (⇔ if A,B ∈ C + then there exists
C ∈ C + such that C ≥ A and C ≥ B). For that purpose, let us set C +

1 := {A ∈
C + | ∥A∥ < 1}. Observe first that if A ∈ C +, then 1 + A is invertible in C̃ , and
A(1 + A)−1 = 1 − (1 + A)−1 ∈ C . We next show that if A,B ∈ C + with B ≥ A,
then B(1 + B)−1 ≥ A(1 + A)−1. Indeed, if B ≥ A ≥ 0, then 1 + B ≥ 1 + A in C̃ ,
and by Proposition 2.5.2.(vi) it follows that (1+A)−1 ≥ (1+B)−1. As a consequence,
1−(1+B)−1 ≥ 1−(1+A)−1, that is B(1+B)−1 ≥ A(1+A)−1 in C . Observe now that if
A ∈ C +, then A(1+A)−1 ∈ C +

1 (use the Gelfand representation applied to C∗({A,1})).
Suppose finally that A,B ∈ C +

1 , and set A′ := A(1 − A)−1, B′ := B(1 − B)−1 and
C := (A′ + B′)(1 + A′ + B′)−1. Then, C ∈ C +

1 , and since A′ + B′ ≥ A′ we have
C ≥ A′(1 + A′)−1 = A. Similarly, C ≥ B, and therefore C +

1 is upwards-directed, as
claimed.

Theorem 2.5.4. Every C∗-algebra C admits an approximate unit.

The idea of the proof is to show that the upwards-directed set C +
1 provide such an

approximate unit. More precisely, for any Λ ∈ C +
1 , we set IΛ := Λ and show that the

family {IΛ}Λ∈C+
1
is an approximate unit. This approximate unit is called the canonical

approximate unit. We refer to [Mur90, Thm. 3.1.1] for the details. Note that in the
applications, more natural approximate units appear quite often.

If {Ij}j∈J is an approximate unit for a C∗-algebra, then, one has by definition
limj ∥(1 − Ij)A∥ = 0 for all A ∈ C . Let us also observe that limj ∥A(1 − Ij)∥ = 0.
Indeed, from the relations

∥A(1− Ij)∥2 = ∥(1− Ij)A
∗A(1− Ij)∥ ≤ ∥(1− Ij)A

∗A∥

one directly infers the statement.
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Theorem 2.5.5. Let J be a closed self-adjoint ideal in a C∗-algebra C . Since J is
itself a C∗-algebra, there exists an approximate unit {Ij}j∈J for J , and then for each
A ∈ C one has

∥A+ J ∥ = lim
j

∥A− IjA∥ = lim
j

∥A− AIj∥

Proof. Let A ∈ C and let ε > 0. From the definition of the norm of A+J there exists
B ∈ J such that ∥A+B∥ < ∥A+ J ∥+ ε/2. Since B = limj IjB there exists j0 such
that ∥(1− Ii)B∥ < ε/2 for all j ≥ j0, and therefore

∥A− IjA∥ ≤ ∥(1− Ij)(A+B)∥+ ∥(1− Ij)B∥ ≤ ∥A+B∥+ ∥(1− Ij)B∥
< ∥A+ J ∥+ ε.

It follows that ∥A+J ∥ = limj ∥A− IjA∥. The second equality can be shown similarly.

Let us now state three useful corollaries which can be deduced from this statement,
and refer to [Mur90, Sec. 3.1] for their proofs. These statements correspond to extensions
to the framework of C∗-algebras of results which have already been discussed for Banach
algebras.

Corollary 2.5.6. If J is a closed self-adjoint ideal in a C∗-algebra, then the quotient
algebra C /J is a C∗-algebra.

Corollary 2.5.7. If φ : C → Q is an injective ∗-homomorphism between C∗-algebras,
then φ is necessarily isometric.

Corollary 2.5.8. If φ : C → Q is a ∗-homomorphism between C∗-algebras, then φ(C )
is a C∗-subalgebra of Q.

Extension 2.5.9. With the use of an approximate unit, give the proof the three corol-
laries.

We now state an important result for the theory of C∗-algebra, the GNS construc-
tion. It will then allow us to consider any C∗-algebra as a C∗-subalgebra of B(H), for
some Hilbert space H.

Definition 2.5.10. A representation of a C∗-algebra C is a pair (H, π), where H is a
Hilbert space and π : C → B(H) is a ∗-homomorphism. This representation is faithful
if π is injective.

Theorem 2.5.11 (Gelfand-Naimark-Segal (GNS) representation). For any C∗-algebra
C there exists a faithful representation.

Extension 2.5.12. The proof of this theorem is based on the notion of states (positive
linear functionals) on a C∗-algebra, and on the existence of sufficiently many such
states. The construction is rather explicit and can be studied.
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With the GNS construction at hand, we can end this chapter by considering again
the multiplier algebra M (C ) for a C∗-algebra C , and add some information concerning
this algebra. More precisely, let us assume that the C∗-algebra C ⊂ B(H) acts non-
degenerately on H, i.e. for any f ∈ H\ {0} there exists A ∈ C such that Af ̸= 0. Note
that this is not really any constraint since one can always ”eliminate” any superfluous
part of the Hilbert space. Then it is natural to set

MH(C ) :=
{
B ∈ B(H) | BA ∈ C and AB ∈ C for all A ∈ C

}
.

Theorem 2.5.13. Let C be a C∗-subalgebra of B(H) acting non-degenerately on H.
Then, the correspondence

MH(C ) ∋ C 7→ (LC , RC) ∈ M (C )

is an isometric ∗-isomorphism.

We refer to [W-O93, Prop. 2.2.11] for the proof of this statement. Note that the
non-trivial part of the proof consists in constructing the inverse map M (C ) → MH(C ).
Because of the previous results, we shall simply write M (C ) for MH(C ) and also call
it the multiplier algebra. This should not lead to any confusion.

Definition 2.5.14. Let C ⊂ B(H) be a C∗-algebra acting non-degenerately on H.
The strict topology on M (C ) is the weakest topology making the maps B 7→ BA and
B 7→ AB norm continuous, for any B ∈ M (C ) and A ∈ C . In other words, the
strict topology is the topology generated by the family of seminorms B 7→ ∥BA∥ and
B 7→ ∥AB∥.

It can be shown that M (C ) is strictly complete, or equivalently that every strict
Cauchy net in M (C ) is strictly convergent in M (C ). In fact, M (C ) is the strict
completion of C . We refer to Section 2.3 of [W-O93] for a friendly approach to the
strict topology.



Chapter 3

Crossed product C∗-algebras

The aim of this chapter is to present an introduction to the theory of crossed product
C∗-algebras. Our main references will be Chapter 7 of [Ped79] and the first chapters
of [Wil07]. We shall also heavily rely on [Fol95] for the preliminary sections on locally
compact groups, and refer to [Tom87] for a nice introduction to C∗-dynamical systems
and crossed product algebras in a restricted setting.

3.1 Locally compact groups

We start with some information on locally compact group. The main reference is [Fol95].

Definition 3.1.1. A locally compact group is a group G equipped with a locally compact
and Hausdorff1 topology with respect to which the group operations are continuous,
i.e. G×G ∋ (x, y) 7→ xy ∈ G is continuous, and G ∋ x 7→ x−1 ∈ G is continuous. The
unit of G is denoted by 1.

Note that we use the multiplicative notation for the group, and therefore the unit is
denoted by 1. If the additive notation is used (and this will be the case at some places
in the sequel), then the continuity requirements read G × G ∋ (x, y) 7→ x + y ∈ G is
continuous, and G ∋ x 7→ −x ∈ G is continuous, and the unit of G is denoted by 0. In
the sequel, G will always denote a locally compact group.

If V is a subset of G, we write V −1 := {x−1 ∈ G | x ∈ V } and say that V is
symmetric if V = V −1. For two subsets V1, V2 of G, we write V1V2 for {xy ∈ G | x ∈
V1 and y ∈ V2}. A subgroupH of G is normal if xHx−1 = H for all x ∈ G. In particular,
if H is a normal subgroup of G, then its quotient G/H is also a locally compact group.

For any bounded map f : G → C, we define the left and right translates of f by
[Lyf ](x) := f(y−1x) and [Ryf ](x) := f(xy). These definitions make the maps y 7→
Ly and y 7→ Ry group homomorphisms. We say that f is left uniformly continuous,
resp. right uniformly continuous, if ∥Lyf − f∥∞ → 0, resp. ∥Ryf − f∥∞ → 0, as y → 1
in G.

1This condition is often tacitly assumed in the literature, and we will always assume it implicitly.

37
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Let us start with a simple result which is well-known for continuous functions on Rd

with compact support. We use the notation Cc(G) for the set of compactly supported
continuous complex functions on G.

Lemma 3.1.2. If f ∈ Cc(G), then f is left and right uniformly continuous.

Proof. We give the proof for the right uniform continuity, the argument for the other
one is similar. Let f ∈ Cc(G), K := supp f and ε > 0. For every x ∈ K, let Ux be a
neighbourhood of 1 such that |f(xy) − f(x)| < ε/2 for any y ∈ Ux, and let Vx be a
symmetric neighbourhood of 1 such that VxVx ⊂ Ux. The sets xVx define a covering of
K, so there exists x1, . . . , xn ∈ K such thatK ⊂ ∪n

j=1xjVxj
. Let us set V := ∩n

j=1Vxj
and

show that supy∈V ∥Ryf − f∥∞ < ε. Indeed, for any x ∈ K there exists j ∈ {1, . . . , n}
such that x−1

j x ∈ Vxj
, so that xy = xj(x

−1
j x)y ∈ xjUxj

for any y ∈ V . Then, one has

|f(xy)− f(x)| ≤ |f(xy)− f(xj)|+ |f(xj)− f(x)| < ε/2 + ε/2 = ε.

Similarly, if xy ∈ K, one obtains |f(xy)− f(x)| < ε. If neither xy ∈ K nor x ∈ K, then
f(xy)− f(x) = 0− 0 = 0, and the statement is proved.

Definition 3.1.3. A left Haar measure, resp. a right Haar measure, on G is a non-zero
Radon measure2 µ on G that satisfies µ(xV ) = µ(V ), resp. µ(V x) = µ(V ), for every
Borel set V ⊂ G and every x ∈ G.

For any Radon measure µ and any set V we write (µ̃)(V ) := µ(V −1). From now
on, we also denote by C+

c (G) the subset of compactly supported continuous functions
on G which are non-negative.

Lemma 3.1.4. Let µ be a Radon measure on G.

(i) µ is a left Haar measure if and only if µ̃ is a right Haar measure,

(ii) µ is a left Haar measure if and only if
∫
G
Lyfdµ =

∫
G
fdµ for any f ∈ C+

c (G)
and any y ∈ G.

The proof of this statement is rather simple, see [Fol95, Prop. 2.9]. In view of this
result, it is not really relevant to consider differently a left Haar measure or a right
Haar measure. We shall follow the more common choice which consists in considering
left Haar measures only.

The following statement is of fundamental importance for performing analysis on
locally compact groups. We refer to Theorem 2.10 and 2.20 of [Fol95] for its proof, and
for various examples of locally compact group with their Haar measure.

Theorem 3.1.5. Every locally compact group possesses a left Haar measure, which is
unique up to a scaling constant.

2A Radon measure is a measure on the algebra of Borel sets of a Hausdorff topological space X that
is locally finite and inner regular.
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Note that if µ is a Haar measure on G, then µ(V ) > 0 for every non-empty open
set V , and that

∫
G
fdµ > 0 for any f ∈ C+

c (G) with f ̸= 0.

Extension 3.1.6. It has not been assumed that the locally compact group G is σ-
compact (⇔ the union of countably many compact subsets). Consequently, the Haar
measure is not always σ-finite (⇔ G might not be a countable union of measurable sets
with finite measure). In such a situation, some standard results of analysis which are
well-known on Rd present some complications for their generalization on G, but these
problems are manageable, see [Fol95, Sec. 2.3] for details.

Let us fix a locally compact group G with a left Haar measure µ. We shall denote
by Lp(G, dµ) the Lp-spaces constructed with this measure. Now, for any x ∈ G and
V ⊂ G, let us define the measure µx by µx(V ) := µ(V x). µx is again a left Haar
measure, and by Theorem 3.1.5 there exists ∆(x) ∈ (0,∞) such that µx = ∆(x)µ. Note
that the value ∆(x) is independent of the original choice for the Haar measure µ. The
map ∆ : G → R+ is called the modular function of G. An important result concerning
this function is:

Lemma 3.1.7. The map ∆ is a continuous homomorphism from G to the group multi-
plicative on R+. Moreover, for any f ∈ L1(G, dµ) one has

∫
G
Ryfdµ = ∆(y−1)

∫
G
fdµ.

Proof. For any x, y ∈ G and V ⊂ G one has

∆(xy)µ(V ) = µ(V xy) = ∆(y)µ(V x) = ∆(y)∆(x)µ(V ),

so that ∆ is a homomorphism from G to R+. For the rest of the proof, we refer to
[Fol95, Prop. 2.24].

Definition 3.1.8. A locally compact group G is called unimodular if ∆ = 1.

Abelian groups and discrete groups are unimodular, but many others groups are
unimodular too.

Lemma 3.1.9. If K is any compact subgroup of G, then ∆|K = 1.

Proof. ∆(K) is a compact subgroup of R+, and therefore ∆(K) = {1}.

Corollary 3.1.10. If G is compact, then G is unimodular.

Let us now denote by M(G) the space of all complex bounded Radon measures on
G, and endow this set with a convolution and an involution: For any µ, ν ∈M(G) and
f ∈ C0(G) we define the convolution µ ∗ ν by the formula∫

G

f(x)d(µ ∗ ν)(x) =
∫
G

∫
G

f(xy)dµ(x)dν(y)

and the involution by the formula
∫
G
f(x)dµ∗(x) =

∫
G
f(x−1)dµ(x). Endowed with this

product and involution, M(G) becomes a B∗-algebra, see [Ped79, Sec. 7.1.2].
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The closed self-adjoint ideal L1(G) consisting of measures which are absolutely
continuous with respect to a left Haar measure on G can clearly be identified with the
space L1(G, dµ). With this identification one has for any f, g ∈ L1(G)

f ∗ g(x) =
∫
G

f(y)g(y−1x)dµ(y) =

∫
G

f(xy)g(y−1)dµ(y)

and f ∗(x) = ∆(x)−1f(x−1). The B∗-algebra L1(G) is called the L1-group algebra of G.
Note that M(G) is always unital, with unit δ1 (the point mass at 1) while L1(G) is
unital if and only if G is discrete. However, approximate unit exists for L1(G):

Theorem 3.1.11. For any locally compact group G, there exists an approximate unit for
L1(G), i.e. there exists an increasing net {Ij}j∈J ⊂ L1(G) with Ij ≥ 0, Ij(x

−1) = Ij(x),
and

∫
G
Ij(x)dµ(x) = 1, such that limj ∥f ∗ Ij − f∥1 = 0.

Proof. We refer to [Fol95, Prop. 2.42] for a constructive proof.

Exercise 3.1.12. We state in this exercise a couple of useful formulas which can be
deduced from the definition of the modular function. Let f ∈ Cc(G) and x ∈ G:∫

G

f(xy)dµ(y) =

∫
G

f(y)dµ(y),∫
G

f(yx)dµ(y) = ∆(x)−1

∫
G

f(y)dµ(y),∫
G

∆(y−1)f(y−1)dµ(y) =

∫
G

f(y)dµ(y).

We end this section with some information on representations. In particular, we
shall prove a result about the equivalence between unitary representations of the group
and non-degenerate representations of the corresponding L1-group algebra. Note that
we use the notation U (H) for the set of all unitary operators in a Hilbert space H.

Definition 3.1.13. A unitary representation of G is a pair (H, U), where H is a Hilbert
space and where U : G→ U (H) is a homomorphism which is strongly continuous. One
usually writes Ux for U(x) ∈ U (H).

Note that on U (H), weak and strong topologies coincide. Recall also that a repre-
sentation of a B∗-algebra C is a pair (H, π) with H a Hilbert space and π : C → B(H)
a continuous ∗-homomorphism. This representation is non-degenerate if for any h ∈ H
there exists A ∈ C such that π(A)h ̸= 0.

Proposition 3.1.14. There are bijective correspondences between the sets of unitary
representations of G, representations of M(G) whose restrictions to L1(G) are non-
degenerate, and non-degenerate representations of L1(G).
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Proof. If (H, U) is a unitary representation of G, we define for each µ ∈ M(G) and
each h, h′ ∈ H

⟨π(µ)h, h′⟩ :=
∫
G

⟨Uxh, h
′⟩dµ(x). (3.1.1)

Then (H, π) us a representation of M(G), and by using an approximate unit for L1(G)
we can check that the restriction to L1(G) is non-degenerate.

Conversely, let (H, π) be a non-degenerate representation of L1(G) and let {Ij}j∈J
be an approximate unit for L1(G). Since elements of the form π(f)h with f ∈ L1(G)
and h ∈ H are dense in H, it follows that {π(Ij)} converges strongly to the operator 1.
In addition, this representation can be extended to a representation of M(G) (we use
the same symbols for this extension) by defining

π(µ)(π(f)h) = π(µ ∗ f)h (3.1.2)

for any µ ∈M(G), f ∈ L1(G) and h ∈ H. Equivalently, one has

π(µ)h = s− lim
j
π(µ ∗ Ij)h, (3.1.3)

which shows that the extension is unique. The restriction of M(G) to point measures
δx with x ∈ G, provides then a unitary representation of G whose extension to L1(G)
is precisely the representation (H, π).

We refer to [Fol95, Sec. 3.2] for more details in the above proof. Note that a unitary
representation of G always exists, namely its left regular representation: We consider
H := L2(G, dµ) where µ is a Haar measure on G, and set

[Uxf ](y) = [Lxf ](y) = f(x−1y). (3.1.4)

By the construction exhibited in the proof of the previous proposition, one also ob-
tains a non-degenerate representation of L1(G) on L2(G, dµ), whose norm closure in
B
(
L2(G, dµ)

)
is called the reduced group C∗-algebra, and is usually denoted by C ∗

r (G).
On the other hand, the completion of L1(G) with the norm

∥f∥ := sup{∥π(f)∥ | (H, π) is a unitary representation of G}

is called the group C∗-algebra C ∗(G).
Let us now consider a unitary representation (H, U) of G. If there exists a non-

trivial closed subspace M of H such that UxM ⊂ M for all x ∈ G, then M is called
an invariant subspace for U . In such a case, the restriction (M, U |M) is a unitary
subrepresentation of G. If such a subrepresentation exists, the original representation
(H, U) is called reducible, and otherwise irreducible.

The following statement is important in this context. Its proof is not difficult but
requires some preliminary lemmas, see [Fol95, Lem. 3.5].

Theorem 3.1.15 (Schur’s Lemma). A unitary representation (H, U) of G is irreducible
if and only if the set of elements of B(H) which commute with Ux for all x ∈ G is
reduced to C1.
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The set mentioned in the previous statement is usually called the commutant or the
centralizer of (H, U).

Corollary 3.1.16. If G is abelian, then every irreducible representation of G is one-
dimensional.

Proof. If (H, U) is a representation of G, then Ux commute will all elements Uy for
any y ∈ G. Therefore, Ux belongs to the commutant of (H, U) for any x ∈ G. If this
representation is irreducible, this commutant is equal to C1, and therefore we have
Ux = cx1, with cx ∈ C, for all x ∈ G. Since every one-dimensional subspace of H is
then invariant for U , it follows that dim(H) = 1.

Extension 3.1.17. The notion of amenable locally compact group is important and
could be studied, cf. [Ped79, Sec. 7.3]. Note that abelian groups and compact groups are
amenable.

3.2 Locally compact abelian groups

We shall now develop the theory of locally compact abelian groups, and refer to [Fol95,
Sec. 4] for more details. In particular, one of our aims is to show that the usual Fourier
transform is nothing but a Gelfand representation in the context of locally compact
abelian groups.

In the section, G will always denote a locally compact abelian group. For them, left
and right continuity coincide, convolution is commutative, and the modular function is
identically equal to 1. For simplicity, we shall simply denote by dx a Haar measure on
G (which is unique up to a scaling constant), and Lp(G) for Lp(G, dx) with the norm
denoted by ∥ · ∥p.

Let us recall from Corollary 3.1.16 that all unitary irreducible representation of G
are one-dimensional. Thus, for each such representation (H, U) one can take H = C
and then Ux = ξ(x), where ξ : G→ T is a continuous homomorphism.

Definition 3.2.1. For a locally compact abelian group G, a character ξ is a continuous
homomorphism from G to T. The set of all characters is denoted by Ĝ.

Note that we shall use both notations ξ(x) or ⟨x, ξ⟩. As a consequence of Proposition
3.1.14, this unitary representation induces a non-degenerate representation (C, τξ) of
L1(G) by the formula

τξ(f) =

∫
G

⟨x, ξ⟩f(x)dx (3.2.1)

for any f ∈ L1(G). Since B(C) is clearly identified with C, such a representation
is nothing but a character on the algebra L1(G), i.e. an element of Ω

(
L1(G)

)
, see

Definition 2.3.1. Conversely, any character τ on L1(G) defines a character on G. Indeed,
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observe first that any τ ∈ Ω
(
L1(G)

)
= L1(G)∗ is obtained by integration against some

ξ ∈ L∞(G). Then, choose f ∈ L1(G) such that τ(f) ̸= 0. For any g ∈ L1(G) one has

τ(f)

∫
G

ξ(y)g(y)dy = τ(f)τ(g) = τ(f ∗ g)

=

∫
G

∫
G

ξ(x)f(xy−1)g(y)dydx =

∫
G

τ(Lyf)g(y)dy

so that ξ(y) = τ(Lyf)

τ(f)
locally a.e. We can thus redefine ξ such that ξ(y) = τ(Lyf)

τ(f)
for

every y ∈ G, and then ξ is continuous. As a consequence, one has

ξ(xy)τ(f) = τ(Lxyf) = τ(LxLyf) = ξ(x)ξ(y)τ(f)

which means ξ(xy) = ξ(x)ξ(y). Finally, ξ(xn) = ξ(x)n for any n ∈ Z, and since ξ is
bounded it implies that |ξ(x)| = 1. As a consequence, ξ is a character on G, as expected.

We have thus proved that:

Theorem 3.2.2. For any locally compact abelian group, the set of characters Ĝ can be
identified with Ω

(
L1(G)

)
through formula (3.2.1).

Ĝ is an abelian group under pointwise multiplication, its identity is the constant
function 1 on G, and

⟨x, ξ−1⟩ := ⟨x−1, ξ⟩ = ⟨x, ξ⟩.

By endowing Ĝ with the topology of compact convergence on G, one infers that Ĝ is a
locally compact abelian group, called the dual group of G.

Examples 3.2.3. (i) For G = R, Ĝ ∼= R with the pairing ⟨x, ξ⟩ = eiξx,

(ii) For G = T, Ĝ ∼= Z with the pairing ⟨α, n⟩ = αn,

(iii) For G = Z, Ĝ ∼= T with the pairing ⟨n, α⟩ = αn.

Let us add some information in the case of compact or discrete groups.

Lemma 3.2.4. If G is a compact abelian group with a Haar measure normalized such
that

∫
G
dx = 1, then Ĝ is an orthonormal set in L2(G).

Proof. If ξ ∈ Ĝ then |ξ| = 1 and therefore ∥ξ∥2 = 1. If ξ, η ∈ Ĝ with ξ ̸= η there exists
x0 ∈ G such that ⟨x0, ξη−1⟩ ≠ 1, and then we have∫

G

⟨x, ξη−1⟩dx = ⟨x0, ξη−1⟩
∫
G

⟨x−1
0 x, ξη−1⟩dx = ⟨x0, ξη−1⟩

∫
G

⟨x, ξη−1⟩dx,

which implies that
∫
G
⟨x, ξη−1⟩dx = 0.

Proposition 3.2.5. If G is discrete, then Ĝ is compact. If G is compact, then Ĝ is
discrete.
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Proof. If G is discrete, then L1(G) has a unit, and therefore Ω
(
L1(G)

)
is compact. By

Theorem 3.2.2, it follows that Ĝ is compact.
If G is compact (with Haar measure satisfying

∫
G
dx = 1), then the constant func-

tion 1 belongs to L1(G). It follows from Lemma 3.2.4 that
∫
G
⟨x, ξ⟩dx = 1 if ξ = 1

while
∫
G
⟨x, ξ⟩dx = ⟨1, ξ⟩L2(G) = 0 if ξ ∈ Ĝ with ξ ̸= 1. Since the set {f ∈ L∞(G) |

|
∫
G
f(x)dx| > 1/2} is a weak∗ open set, it follows that {1} is an open set in Ĝ, and

therefore Ĝ is discrete.

Henceforth, it is more convenient (and more common) to use a slightly different
identification of Ĝ with Ω

(
L1(G)

)
than the one given in (3.2.1). Namely, we associate

with ξ ∈ Ĝ the functional

f 7→
∫
G

⟨x, ξ⟩f(x)dx.

The Gelfand transform for the abelian Banach algebra L1(G) becomes then the map
F : L1(G) → C0(Ĝ) defined by

[Ff ](ξ) ≡ f̂(ξ) =

∫
G

⟨x, ξ⟩f(x)dx

and is usually called in this context the Fourier transform. A rephrasing of Theorem
2.3.5 together with some simple verifications lead to:

Theorem 3.2.6. The Fourier transform is a norm decreasing ∗-homomorphism from
L1(G) to C0(Ĝ), or to C(Ĝ) if Ĝ is compact. It extends to a ∗-isomorphism between
C ∗(G) and C0(Ĝ).

Extension 3.2.7. In the setting presented above, many classical results of Fourier
analysis on Rd can be extended to arbitrary locally compact abelian groups. This subject
is nicely presented in Section 4 of [Fol95]. A look at Plancherel Theorem, at some
Fourier inversions formula or at Pontrjagin duality theorem is certainly valuable.

3.3 C∗-dynamical systems

In the sequel, we shall go on with the convention of simply writing dx for a left Haar
measure on G, and denote by Lp(G) the spaces Lp(G, dx).

Definition 3.3.1. A C∗-dynamical system consists in a triple (C , G, θ), where C is a
C∗-algebra, G is a locally compact group, and θ is a continuous homomorphism from G
to Aut(C ), with Aut(C ) the group of ∗-automorphisms of C equipped with the topology
of pointwise convergence.

Note that the topology on Aut(C ) means that for each A ∈ C , the map

G ∋ x 7→ θx(A) ∈ C

is continuous.
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Example 3.3.2. Let us present an example which will be important later on. We con-
sider the C∗-algebra C := BCu(Rd), the group G = Rd (with the additive notation)
and the action θ of G on C by translation, i.e. [θxf ](y) = f(y − x) for any f ∈ C and
x, y ∈ Rd. Almost by definition, the algebra BCu(Rd) is the largest algebra of functions
on Rd for which this action is continuous, namely ∥θxf − f∥∞ → 0 as x → 0. Then
the triple (C , G, θ) is a C∗-dynamical system. Note that any C∗-subalgebra of BCu(Rd)
which is stable under translations would also be suitable for such a dynamical system,
as for example C0(Rd).

Exercise 3.3.3. Let G be a locally compact group, Ω be a locally compact space, and
assume that the group G acts continuously on Ω, i.e. there exists a continuous map

G× Ω ∋ (x, ξ) 7→ x · ξ ∈ Ω

such that 1 · ξ = ξ and x · (y · ξ) = xy · ξ for all x, y ∈ G and ξ ∈ Ω. Such a system is
called a locally compact transformation group, and Ω is also called a locally compact
G-space. Then, let us define an automorphism of C0(Ω) by [θxf ](ξ) := f(x−1 · ξ) for
any f ∈ C0(Ω), x ∈ G and ξ ∈ Ω. Check that the triple

(
C0(Ω), G, θ

)
is a C∗-dynamical

system. In fact, it turns out that all C∗-dynamical systems with C abelian arise from
locally compact transformation groups, see [Wil07, Prop. 2.7] for details.

Definition 3.3.4. A covariant representation of a C∗-dynamical system (C , G, θ) con-
sists in a triple (H, π, U), where (H, π) is a representation of C , (H, U) is a unitary
representation of G, and the following compatibility condition holds

π
(
θx(A)

)
= Uxπ(A)U

∗
x

for all A ∈ C and x ∈ G. This covariant representation is non-degenerate if the repre-
sentation (H, π) of C is non-degenerate.

Examples 3.3.5. Covariant representations of the dynamical systems (C , {1}, id) cor-
respond exactly to representation of C . On the other hand, covariant representations of
the dynamical systems (C, G, id) coincide with unitary representations of G.

Example 3.3.6 (Regular representation). Let (C , G, θ) be a C∗-dynamical system, and
let (H, π) be a representation of C . Consider the Hilbert space L2(G;H) ∼= L2(G)⊗H,
and let us then define π̃ : C → B

(
L2(G;H)

)
and Ũ : G→ U

(
L2(G;H)

)
by

[π̃(A)h](x) := π
(
θ−1
x (A)

)
h(x) and [Ũxh](y) := h(x−1y),

for any A ∈ C , h ∈ L2(G;H) and x, y ∈ G. Let us now check that

[Ũxπ̃(A)Ũ
∗
xh](y) = [π̃(A)Ũ∗

xh](x
−1y) = π

(
θ−1
x−1y(A)

)(
Ũ∗
xh(x

−1y)
)

= π
[
θ−1
y

(
θx(A)

)](
h(y)

)
=

[
π̃
(
θx(A)

)
h
]
(y).

Thus, the triple
(
L2(G;H), π̃, Ũ

)
is a covariant representation of the C∗-dynamical sys-

tem, called its regular representation. As a consequence, any C∗-dynamical system has
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at least one covariant representation. It can also be shown that the regular representa-
tion is non-degenerate if the representation (H, π) of C is non-degenerate, cf. [Wil07,
Lem. 2.17].

Exercise 3.3.7. Let G be a locally compact group and its left action on elements
of C0(G), i.e. [Lxf ](y) = f(x−1y). In this setting, check that

(
C0(G), G, L

)
is a C∗-

dynamical system. Now, let H := L2(G) and define Id : C0(G) → B(H) be the identifi-
cation map defined by [Id(f)h](x) = f(x)h(x) for any f ∈ C0(G) and h ∈ H. Finally,
let Ux ∈ U (H) defined by [Uxh](y) = h(x−1y). Check that (H, Id, U) is a covariant
representation of

(
C0(G), G, L

)
.

3.4 Crossed product algebras

This section is mainly based on [Ped79, Sec. 7.6] together with [Wil07, Sec. 2.3]. How-
ever, note that quite a lot of explicit computations are explicitly written in [Sko12].

Let (C , G, θ) be a C∗-dynamical system, and let us define a product and an invo-
lution on the linear space Cc(G;C ) of continuous functions from G to C with compact
support: for any f, g ∈ Cc(G;C ) and x ∈ G one sets

[f ∗ g](x) :=
∫
G

f(y)θy
(
g(y−1x)

)
dy

f ∗(x) := ∆(x)−1θx
(
f(x−1)∗

)
.

Some lengthy but straightforward computations show that these definitions endow
Cc(G;C ) with an associative product and with an involution. In addition, if one sets
∥f∥1 :=

∫
G
∥f(y)∥dy, then Cc(G;C ) becomes a norm algebra with a submultiplicative

norm, i.e. ∥f ∗ g∥1 ≤ ∥f∥1∥g∥1. The completion of Cc(G;C ) with this norm is denoted
by L1(G;C ) which is therefore a B∗-algebra.

Clearly, if C = C, the above construction leads simply to the algebra L1(G). Let
us also observe that if f ∈ L1(G) and A ∈ C , then the element f ⊗ A is an element of
L1(G;C ). In addition, the linear span of elements of the form f ⊗ A with f ∈ Cc(G)
and A ∈ C is dense in L1(G;C ).

Let us now state an important result relating a covariant representation of a C∗-
dynamical system to a representation of the corresponding L1-algebra:

Theorem 3.4.1. If (H, π, U) is a covariant representation of the C∗-dynamical system
(C , G, θ), then there is a norm-decreasing representation (H, π⋊U) of L1(G;C ) defined
by

π ⋊ U(f) =

∫
G

π
(
f(y)

)
Uydy (3.4.1)

for every f ∈ Cc(G;C ). Moreover, (H, π ⋊ U) is non-degenerate if (H, π) is non-
degenerate.

The representation (H, π ⋊ U) is called the integrated representation of (H, π, U).
We provide below a sketch of the proof, and refer to [Wil07, Prop. 2.23] for the details.
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Proof. Let f ∈ Cc(G;C ) and define π ⋊ U(f) ∈ B(H) by (3.4.1). Then, one observes
that

π ⋊ U(f ∗) =

∫
G

π
[
∆(y)−1θy

(
f(y−1)∗

)]
Uydy

=

∫
G

∆(y)−1Uyπ
(
f(y−1)∗

)
dy =

∫
G

U∗
yπ

(
f(y)∗

)
dy =

(
π ⋊ U(f)

)∗
,

and (with g ∈ Cc(G;C ))

π ⋊ U(f ∗ g) =
∫
G

π
[ ∫

G

f(y)θy
(
g(y−1x)

)
dy

]
Uxdx

=

∫
G

[ ∫
G

π
[
f(y)

]
Uyπ

[
g(y−1x)

]
U∗
yUxdy

]
dx

=

∫
G

[ ∫
G

π
[
f(y)

]
Uyπ

[
g(x)

]
Uxdy

]
dx

= π ⋊ U(f) π ⋊ U(g).

In addition, one also has ∥π⋊U(f)∥ ≤
∫
G

∥∥π(f(y))Uy

∥∥dy = ∥f∥1. These relations show
that

(
H, π ⋊ U

)
extends to a norm-decreasing representation of L1(G;C ).

For the non-degeneracy, we refer to the proof of [Wil07, Prop. 2.23].

Definition 3.4.2. For any C∗-dynamical system (C , G, θ) and any f ∈ Cc(G;C ) let
us set

∥f∥ := sup{∥π ⋊ U(f)∥B(H) | (H, π, U) is a covariant representation of (C , G, θ)}.
(3.4.2)

The norm ∥ · ∥ on Cc(G;C ) is called the universal norm, and is dominated by the ∥ · ∥1-
norm. The completion of Cc(G;C ) with respect to the norm ∥ · ∥ is called the crossed
product C∗-algebra of C by G and is denoted by C ⋊θ G.

Example 3.4.3. If G is a locally compact group and if θ corresponds to the left action
on C0(G), i.e. [θxf ](y) = f(x−1y) for all f ∈ C0(G), then C0(G)⋊θ G is ∗-isomorphic
to the compact operators on L2(G).

Remark 3.4.4. If the C∗-algebra C is abelian, with C ∼= C0(Ω), the corresponding
crossed product algebra C ⋊θ G is also called transformation group C∗-algebra. More-
over, it is possible to describe the ∗-algebraic structure on Cc

(
G;C0(Ω)

)
in terms of

functions on G× Ω. Indeed, observe first that by obvious identifications one has

Cc(G× Ω) ⊂ Cc

(
G;Cc(Ω)

)
⊂ Cc

(
G;C0(Ω)

)
.

Then, if one denotes the action of G on Ω by · (note that such an action always exists,
see Proposition 2.7 of [Wil07]) one ends up with the following formula:

[f ∗ g](x, ξ) =
∫
G

f(y, ξ)g(y−1x, y−1 · ξ)dy

f ∗(x, ξ) = ∆(x)−1f(x−1, x−1 · ξ)

for f, g ∈ Cc(X × Ω) and (x, ξ) ∈ G× Ω.
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Except in some very special cases, the crossed product algebra C ⋊θ G contains
neither a copy of the algebra C nor a copy of L1(G). However, its multiplier algebra
M

(
C ⋊θG

)
does, as we shall observe now. Indeed, for any A ∈ M (C ), µ ∈M(G) and

f ∈ Cc(G;C ) let us define

[L(A,µ)f ](x) := A

∫
G

θy
(
f(y−1x)

)
dµ(y)

[R(A,µ)f ](x) :=

∫
G

f(xy−1)θxy−1(A)∆(y)−1dµ(y).

One can check that L(A,µ) and R(A,µ) are bounded by ∥A∥∥µ∥, and thus extend by con-
tinuity to linear operators on L1(G;C ). In addition, some straightforward computations
(see [Ped79, Lem. 7.6.3]) show that

L(A,µ)(f ∗ g) = (L(A,µ)f) ∗ g, R(A,µ)(f ∗ g) = f ∗ (R(A,µ)g)

and that (R(A,µ)f) ∗ g = f ∗ (L(A,µ)g). Thus, the pair (L(A,µ), R(A,µ)) defines a double
centralizer on the B∗-algebra L1(G;C ), see Section 2.4. With these notions at hand,
one can deduce that:

Theorem 3.4.5. For any C∗-dynamical system (C , G, θ), there exist a non-degenerate
faithful ∗-homomorphism

iC : C → M
(
C ⋊θ G

)
and an injective homomorphism

iG : G→ M
(
C ⋊θ G

)
defined by the formulas iC (A) := (L(A,δ1), R(A,δ1)) and iG(x) := (L(1,δx), R(1,δx)).

Proof. See [Ped79, Sec. 7.6] and Proposition 2.34 of [Wil07] for the details.

By using the alternative representation of the multiplier algebra, as introduced at
the end of Chapter 2, one also infers the following corollary:

Corollary 3.4.6. Let (H, π, U) be a non-degenerate covariant representation of the C∗-
dynamical system (C , G, θ) such that the representation π of C is faithful. Then, the
maps C ∋ A 7→ π(A) ∈ B(H) and G ∋ x 7→ Ux ∈ U (H) are injective homomorphisms
into M

(
π ⋊ U(C ⋊θ G)

)
⊂ B(H).

Proof. The mentioned formula are obtained from the previous theorem by observing
that for any f ∈ Cc(G,C ) one has

π ⋊ U(L(A,δ1)f) =

∫
G

π
(
[L(A,δ1)f ](x)

)
Uxdx =

∫
G

π
(
Af(x)

)
Uxdx = π(A)π ⋊ U(f),
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and

π ⋊ U(L(1,δx)f) =

∫
G

π
(
[L(1,δx)f ](y)

)
Uy dy =

∫
G

π
(
θxf(x

−1y)
)
Uy dy

=

∫
G

Uxπ
(
f(x−1y)

)
U∗
xUy dy =

∫
G

Uxπ
(
f(y)

)
Uy dy = Uxπ ⋊ U(f).

Remark 3.4.7. In the context of the previous corollary and by starting again with the
double centralizer (L(A,µ), R(A,µ)) as above, with A = 1 and µ an element of L1(G),
one can also infer that there exists a ∗-homomorphism iG : L1(G) → M

(
π ⋊ U(C ⋊θ

G)
)
⊂ B(H) such that one has iG(f) =

∫
G
f(x)iG(x) dx for any f ∈ L1(G). In fact,

this ∗-homomorphism continuously extends to a ∗-homomorphism from C ∗(G) to the
multiplier algebra M

(
π ⋊ U(C ⋊θ G)

)
.

By using the multiplier algebra and the two maps introduced above, it is rather
straightforward to improve Theorem 3.4.1:

Theorem 3.4.8. For any C∗-dynamical system (C , G, θ), the map sending a covariant
representation (H, π, U) to the integrated form (H, π⋊U) is a bijective correspondence
between non-degenerate covariant representations of (C , G, θ) and non-degenerate rep-
resentations of C ⋊θ G.

We stress that this theorem asserts in particular that any representation of the C∗-
algebra C ⋊θ G corresponds to the integrated form of a covariant representation of the
underlying dynamical system. Let us now end this section with a technical result which
will be important later on. Its proof is not complicated but is based on some preliminary
results which are not trivial, see Lemma 2.45 and Corollary 2.48 of [Wil07]. Note that
in this section, most of the difficulties do not come from the algebraic computations
but from some topological considerations.

Lemma 3.4.9. Let (C 1, G, θ1) and (C 2, G, θ2) be C∗-dynamical systems, and let φ :
C 1 → C 2 be an equivariant ∗-homomorphism3. Then there is a ∗-homomorphism

φ⋊ id : C 1 ⋊θ1 G→ C 2 ⋊θ2 G

mapping Cc(G;C 1) into Cc(G;C 2) and such that [φ ⋊ id(f)](x) = φ
(
f(x)

)
for any

f ∈ Cc(G;C 1) and x ∈ G.

Extension 3.4.10. Consider the special case C = C(T), G = Z and [θnf ](z) =
f(ei2πnϑz) for any f ∈ C , z ∈ T and some fixed ϑ ∈ [0, 1]. Depending if ϑ is rational
or irrational, the corresponding algebra C(T) ⋊θ Z is called the rational or irrational
rotation algebra. Its study has been a hot topic in the early 80’s, and continues to be of
interest. Some preliminary information can be grasp for example in [Wil07, Prop. 2.56]
and in many other references.

3In the present context, the ∗-homomorphism φ is equivariant if φ
(
θ1x(A)

)
= θ2x

(
φ(A)

)
for all

A ∈ C 1 and x ∈ G.
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3.5 Invariant ideals and crossed product

Let us consider a C∗-dynamical system (C , G, θ), and let J be a closed and self-
adjoint ideal in C which is θ-invariant (⇔ θx(A) ∈ J for any A ∈ J and x ∈ G).
Then, each θx restricts to a ∗-automorphism of J , and this defines a C∗-dynamical
system (J , G, θ) as well as a quotient C∗-dynamical system (C /J , G, θ), where

θx(A+ J ) = θx(A) + J .

Note that we have kept the same notation for the ∗-automorphism θx acting on J and
for its action on the quotient algebra C /J . Since the inclusion map ι : J → C and the
quotient map q : C → C /J are equivariant ∗-homomorphisms, they define by Lemma
3.4.9 ∗-homomorphisms ι⋊ id : J ⋊θG→ C ⋊θG and q⋊ id : C ⋊θG→ (C /J )⋊θG.

Clearly, Cc(G;J ) is a self-adjoint ideal in Cc(G;C ), and therefore its closure is an
ideal in C⋊θG, which corresponds to the image of J⋊θG through the ∗-homomorphism
ι⋊ id. In addition, it can be shown that ι⋊ id is isometric on Cc(G;J ), which implies
that ι ⋊ id is in fact a ∗-isomorphism onto the closure of Cc(G;J ) in C ⋊θ G, see
[Wil07, Lem. 3.17] for the proof of the isometry.

Let us now state an important result about the functoriality of the crossed product:

Lemma 3.5.1. Let (C , G, θ) be a C∗-dynamical system, and let J be a self-adjoint
closed ideal in C which is θ-invariant. Then we have the following short sequence of
C∗-algebras:

0 −→ J ⋊θ G
ι⋊id

−−−−→ C ⋊θ G
q⋊id

−−−−→ (C /J )⋊θ G −→ 0.

The fact that ι⋊id is a ∗-isomorphism has already been mentioned in the paragraph
preceding the statement. Thus it only remains to show that

Ker
(
q ⋊ id

)
= ι⋊ id

(
J ⋊θ G

)
which can be achieved with the use of an approximate unit, see [Wil07, Prop. 3.19] for
the details.

Let us close this section by considering the previous result in the context of trans-
formation group C∗-algebras, see Remark 3.4.4. More precisely, let us consider the
C∗-dynamical system (C0(Ω), G, θ) with [θxf ](ξ) = f(x−1 · ξ) for any f ∈ C0(Ω), x ∈ G
and ξ ∈ Ω. In this framework, the θ-invariant ideals of C0(Ω) corresponds to subal-
gebras C0(Ω

′) with Ω′ a G-invariant open subset of Ω. Then, let us set F := Ω \ Ω′,
which is a G-invariant closed subset of Ω, and let us identify C0(F ) with the quotient
C0(Ω)/C0(Ω

′) (notice that the ∗-homomorphism q : C0(Ω) → C0(F ) is equivariant). A
special case of the previous lemma reads then:

Corollary 3.5.2. Let us consider the C∗-dynamical system (C0(Ω), G, θ), and let Ω′ be
an open G-invariant subset of Ω. Then we have the following short exact sequence of
C∗-algebras

0 −→ C0(Ω
′)⋊θ G

ι⋊id

−−−−→ C0(Ω)⋊θ G
q⋊id

−−−−→ C0(Ω \ Ω′)⋊θ G −→ 0. (3.5.1)



Chapter 4

Schrödinger operators and essential
spectrum

The aim of this chapter is to show how crossed product C∗-algebras can be used for the
computation of some spectral information on self-adjoint operators. These operators
appeared naturally in the context of quantum mechanics, but then their investigations
has been developed on a pure mathematical level. For simplicity, all the following con-
siderations will be based on the group Rd, but with the content of the previous chapters
these investigations could be made on an arbitrary locally compact abelian group. This
natural generalization should hold mutatis mutandis, and it is certainly a very useful
exercise to check this statement (note that the main difficulties come from the constants
and from some historical conventions).

4.1 Multiplication and convolution operators

In this section, we introduce two natural classes of operators on Rd. This material is
standard and can be found for example in the books [Amr09] and [Tes09]. We start by
considering multiplication operators on the Hilbert space L2(Rd).

For any measurable complex function φ on Rd let us define the multiplication op-
erator φ(X) on H := L2(Rd) by

[φ(X)f ](x) = φ(x)f(x) ∀x ∈ Rd

for any

f ∈ D
(
φ(X)

)
:=

{
g ∈ H |

∫
Rd

|φ(x)|2|g(x)|2dx <∞
}
.

Clearly, the properties of this operator depend on the function φ. More precisely:

Lemma 4.1.1. Let φ(X) be the multiplication operator on H. Then φ(X) belongs to
B(H) if and only if φ ∈ L∞(Rd), and in this case ∥φ(X)∥ = ∥φ∥∞.

51
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Proof. One has

∥φ(X)f∥2 =
∫
Rd

|φ(x)|2|f(x)|2dx ≤ ∥φ∥2∞
∫
Rd

|f(x)|2dx = ∥φ∥2∞∥f∥2.

Thus, if φ ∈ L∞(Rd), then D
(
φ(X)

)
= H and ∥φ(X)∥ ≤ ∥φ∥∞.

Now, assume that φ ̸∈ L∞(Rd). It means that for any n ∈ N there exists a measur-
able set Wn ⊂ Rd with 0 < |Wn| < ∞ such that |φ(x)| > n for any x ∈ Wn. We then
set fn = χWn and observe that fn ∈ H with ∥fn∥2 = |Wn| and that

∥φ(X)fn∥2 =
∫
Rd

|φ(x)|2|fn(x)|2dx =

∫
Wn

|φ(x)|2dx > n2∥fn∥2,

from which one infers that ∥φ(X)fn∥/∥fn∥ > n. Since n is arbitrary, the operator φ(X)
can not be bounded.

Let us finally show that if φ ∈ L∞(Rd), then ∥φ(X)∥ ≥ ∥φ∥∞. Indeed, for any ε > 0,
there exists a measurable set Wε ⊂ Rd with 0 < |Wε| <∞ such that |φ(x)| > ∥φ∥∞− ε
for any x ∈ Wε. Again by setting fε = χWε one gets that ∥φ(X)fε∥/∥fε∥ > ∥φ∥∞ − ε,
from which one deduces the required inequality.

If φ ∈ L∞(Rd), one easily observes that φ(X)∗ = φ(X), and thus φ(X) is self-adjoint
if and only if φ is a real function. If φ is real but does not belong to L∞(Rd), one can
show that the pair

(
φ(X),D

(
φ(X)

))
defines a self-adjoint operator if D

(
φ(X)

)
is dense

in H. In particular, if φ ∈ C(Rd) or if |φ| is polynomially bounded, then the mentioned
operator is self-adjoint, see [Amr09, Prop. 2.29]. For example, for any j ∈ {1, . . . , d}
the operator Xj defined by [Xjf ](x) = xjf(x) is a self-adjoint operator with domain
D(Xj). Note that the d-tuple (X1, . . . , Xd) is often referred to as the position operator
in L2(Rd). More generally, for any α ∈ Nd one also sets

Xα = Xα1
1 . . . Xαd

d

and this expression defines a self-adjoint operator on its natural domain. Other useful
multiplication operators are defined for any s > 0 by the functions

Rd ∋ x 7→ ⟨x⟩s :=
(
1 +

d∑
j=1

x2j

)s/2

∈ R.

The corresponding operators
(
⟨X⟩s,Hs

)
, with

Hs :=
{
f ∈ H | ⟨X⟩sf ∈ H

}
=

{
f ∈ H |

∫
Rd

⟨x⟩2s|f(x)|2dx <∞
}
,

are again self-adjoint operators on H. Note that one usually calls Hs the weighted
Hilbert space with weight s since it is naturally a Hilbert space with the scalar product
⟨f, g⟩s :=

∫
Rd f(x)g(x)⟨x⟩2sdx.



4.1. MULTIPLICATION AND CONVOLUTION OPERATORS 53

Exercise 4.1.2. For any φ ∈ Cb(Rd), show that the spectrum of the multiplication
operator φ(X) coincides with the closure of φ(Rd) in C.

We shall now introduce a new type of operators on H, but for that purpose we need
to recall a few results about the usual Fourier transform1 on Rd. The Fourier transform
F is defined on any f ∈ Cc(Rd) by the formula2

[Ff ](ξ) ≡ f̂(ξ) :=
1

(2π)d/2

∫
Rd

e−iξ·xf(x)dx. (4.1.1)

This linear transform maps the Schwartz space S(Rd) onto itself, and its inverse is
provided by the formula [F−1f ](x) ≡ f̌(x) := 1

(2π)d/2

∫
Rd e

iξ·xf(ξ) dξ. In addition, by

taking Parseval’s identity
∫
Rd |f(x)|2dx =

∫
Rd |f̂(ξ)|2dξ into account, one obtains that

the Fourier transform extends continuously to a unitary map on L2(Rd). We shall keep
the same notation F for this continuous extension, but one must be aware that (4.1.1)
is valid only on a restricted set of functions.

Let us use again the multi-index notation and set for any α ∈ Nd

(−i∂)α = (−i∂1)α1 . . . (−i∂d)αd = (−i)|α|∂α1
1 . . . ∂αd

d

with |α| = α1 + · · · + αd. With this notation at hand, the following relations hold for
any f ∈ S(Rd) and any α ∈ Nd:

F(−i∂)αf = XαFf,

or equivalently (−i∂)αf = F∗XαFf . Keeping these relations in mind, one defines for
any j ∈ {1, . . . , d} the self-adjoint operator Dj := F∗XjF with domain F∗D(Xj).
Similarly, for any s > 0, one also defines the operator ⟨D⟩s := F∗⟨X⟩sF with domain

Hs :=
{
f ∈ H | ⟨X⟩sFf ∈ H

}
≡

{
f ∈ H | ⟨X⟩sf̂ ∈ H

}
.

Note that the space Hs is called the Sobolev space of order s, and (D1, . . . , Dd) is usually
called the momentum operator 3.

We can now introduce the usual Laplace operator −∆ acting on any f ∈ S(Rd) as

−∆f = −
d∑

j=1

∂2j f =
d∑

j=1

(−i∂j)2f =
d∑

j=1

D2
jf. (4.1.2)

1In the more general framework of arbitrary locally compact abelian group, the Fourier transform
has been defined at the end of Section 3.2. The constants are chosen here such that the Fourier
transform extends to a unitary map on L2(Rd).

2Even if the group Rd is identified with its dual group, we will keep the notation ξ for points of its
dual group.

3In physics textbooks, the position operator is often denoted by (Q1, . . . , Qd) while (P1, . . . , Pd) is
used for the momentum operator.
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This operator admits a self-adjoint extension with domain H2, i.e.
(
− ∆,H2

)
is a

self-adjoint operator in H. However, let us stress that the expression (4.1.2) is not
valid (pointwise) on all the elements of the domain H2. On the other hand, one has
−∆ = F∗X2F , with X2 =

∑d
j=1X

2
j , from which one easily infers that σ(−∆) = [0,∞).

Indeed, this follows from the content of Exercise 4.1.2 together with the invariance of
the spectrum through the conjugation by a unitary operator.

More generally, for any measurable function φ on Rd one sets φ(D) := F∗φ(X)F ,
with domain D

(
φ(D)

)
=

{
f ∈ H | f̂ ∈ D

(
φ(X)

)}
, and as before this operator is

self-adjoint if this domain is dense in H, as for example for a continuous function φ
or for a polynomially bounded function φ. Then, if one defines the convolution of two
(suitable) functions on Rd by the formula

[k ∗ f ](x) = 1

(2π)d/2

∫
Rd

k(y)f(x− y)dy

and if one takes the equality ǧ ∗ f = F∗(gf̂) into account, one infers that the operator
φ(D) corresponds to a convolution operator, namely

φ(D)f = φ̌ ∗ f. (4.1.3)

Obviously, the meaning of such an equality depends on the class of functions f and g
considered.

Exercise 4.1.3. Show that the following relations hold on the Schwartz space S(Rd):
[iXj, Xk] = 0 = [Dj, Dk] for any j, k ∈ {1, . . . , d} while [iDj, Xk] = 1δjk.

4.2 Schrödinger operators

In this section, we introduce the main operator we want to investigate.
First of all, let h : Rd → R be a continuous real function which diverges at infinity.

Equivalently, we assume that h satisfies (h − z)−1 ∈ C0(Rd) for some z ∈ C \ R.
The corresponding convolution operator h(D), defined by F∗h(X)F , is a self-adjoint
operator with domain F∗D

(
h(X)

)
. Clearly, the spectrum of such an operator is equal

to the closure of h(Rd) in R.
Some examples of such a function h which are often considered in the literature are

the functions defined by h(ξ) = ξ2, h(ξ) = |ξ| or h(ξ) =
√
1 + ξ2 − 1. In these cases,

the operator h(D) = −∆ corresponds to the free Laplace operator, the operator h(D) =
|D| is the relativistic Schrödinger operator without mass, while the operator h(D) =√
1−∆ − 1 corresponds to the relativistic Schrödinger operator with mass. In these

three cases, one has σ
(
h(D)

)
= σac

(
h(D)

)
= [0,∞) while σsc

(
h(D)

)
= σp

(
h(D)

)
= ∅.

Let us now perturb this operator h(D) with a multiplication operator V (X). If
the measurable function V : Rd → R is not essentially bounded, then the operator
h(D) + V (X) can only be defined on the intersection of the two domains, and checking
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that there exists a self-adjoint extension of this operator is not always an easy task. On
the other hand, if one assumes that V ∈ L∞(Rd), then we can define the operator

H := h(D) + V (X) with D(H) = D
(
h(D)

)
(4.2.1)

and this operator is self-adjoint.
A lot of investigations have been performed on such an operator H when V vanishes

at infinity, in a suitable sense. On the other hand, much less is known on this operator
when the multiplication operator V (X), also called the potential, has an anisotropic
behavior. The main idea of the approach presented here is to encode the anisotropy
in an algebra C of functions on Rd. Then, if the potential belongs to this algebra of
functions, we can show that the operatorH itself belongs to the crossed product algebra.
More explanations about this construction are provided in the next section.

4.3 Affiliation

The main ideas of this section are borrowed from [Măn02]. Some other references using
similar ideas are [GI02, AMP02, GI06, DG13, Măn013]. From now on, we consider an
algebra of functions on Rd satisfying the following assumptions:

Assumption 4.3.1. C is a unital C∗-subalgebra of BCu(Rd) which is Rd-invariant and
which contains the subalgebra C0(Rn).

Recall that this algebra is Rd-invariant if whenever φ ∈ C and x ∈ Rd, then
θx(φ) := φ(· − x) ∈ C . As a consequence of Theorem 2.4.15, there exists a compact
space Ω such that C is isometrically ∗-isomorphic to C(Ω). In addition, note that from
the requirement C0(Rd) ⊂ C one infers that Ω is a compactification of Rd (⇔ a compact
space in which Rd is dense). Indeed, each point x ∈ Rd defines a distinct element of the
character space Ω by setting x→ δx where δx is the evaluation at x, i.e. δx(φ) := φ(x)
for any φ ∈ C . Finally, one also observes that the action of Rd continuously extends to
an action on Ω defined by the formula:

[θx(τ)](φ) = τ
(
θx(φ)

)
, (4.3.1)

for any φ ∈ C , x ∈ Rd and τ ∈ Ω. Note that we use the same symbol for the action
of Rd on itself and for its extension on Ω. In summary, the Assumptions 4.3.1 imply
that the triple

(
C(Ω),Rd, θ

)
defines a C∗-dynamical system, see also Example 3.3.2 and

Exercise 3.3.3.

Exercise 4.3.2. Find a unital C∗-subalgebra of BCu(Rn) which is Rd-invariant but for
which the space Ω is not a compactification of Rd.

Let us now construct a covariant representation of this dynamical system in the
Hilbert space H := L2(Rd). First of all, the algebra C(Ω) is faithfully represented in
B(H) by operators of multiplication. Indeed, if one defines the ∗-homomorphism π by

C(Ω) ∼= C ∋ φ 7→ π(φ) := φ(X) ∈ B(H),
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then π : C(Ω) → B(H) is faithful and non-degenerate. In addition, let us consider the
unitary representation of the group Rd on H, namely {Ux}x∈Rd given by [Uxf ](y) =
f(y − x) for any f ∈ H. With this definition, the following compatibility condition
holds for any φ ∈ C

π
(
θx(φ)

)
= π

(
φ(· − x)

)
= φ(X − x) = Uxφ(X)U∗

x = Uxπ(φ)U
∗
x . (4.3.2)

As a consequence, the triple (H, π, U) defines a covariant representation of the dy-
namical system

(
C(Ω),Rd, θ

)
, and thus a non-degenerate representation of the crossed

product algebra C(Ω) ⋊θ Rd in B(H), by Theorem 3.4.8. This representation corre-
sponds to the integrated representation π ⋊ U(C(Ω)⋊θ Rd).

Exercise 4.3.3. Check that the above operator Ux is equal to the operator e−ix·D, where
D is the momentum operator introduced in Section 4.1.

In order to get a better understanding of the C∗-algebra π⋊U(C(Ω)⋊θ Rd), recall
that C(Ω) is unital, and therefore that L1(Rd) ⊂ C(Ω) ⋊θ Rd. Thus, by applying the
integrated representation π ⋊ U defined in (3.4.1) to some u ∈ L1(Rd), one gets

[π ⋊ U(u)f ](x) =
[ ∫

Rd

u(y)Uyf dy
]
(x) =

∫
Rd

u(y)f(x− y)dy = (2π)d/2[û(D)f ](x),

where we have taken equation (4.1.3) into account. More generally, by considering
products u ⊗ φ ⊂ L1(Rd) ⊙ C(Ω) ⊂ L1

(
Rd;C(Ω)

)
, we get that operators of the form

(2π)d/2φ(X)û(D) belong to π ⋊ U(C(Ω) ⋊θ Rd). Finally, by considering linear combi-
nations, one infers that:

Theorem 4.3.4. Let C satisfy Assumption 4.3.1 and let Ω be defined by the Gelfand
∗-isomorphism C ∼= C(Ω). Then π ⋊ U(C(Ω)⋊θ Rd) is equal to

⟨C · C0(R̂d)⟩ := C∗
(
φ(X)v(D) | v ∈ C0(Rd) and φ ∈ C(Ω)

)
, (4.3.3)

and the C∗-algebra C(Ω)⋊θ Rd is isometrically ∗-isomorphic to this algebra.

Proof. By construction, and since π ⋊ U(C(Ω) ⋊θ Rd) is norm closed, it is quite clear
that this algebra and the C∗-algebra defined in the r.h.s. of (4.3.3) are equal. However,
it remains to show that the representation π ⋊ U of C(Ω) ⋊θ Rd is faithful. Such a
statement has been proved for example in [GI02, Thm 4.1] and is based on the regular
representation introduced in Example 3.3.6. We do not provide the arguments here since
we are going to prove a more general result in the context of twisted crossed product
C∗-algebras in a forthcoming chapter.

Remark 4.3.5. In the previous statement, if one chooses4 C0(Rd) for the algebra C ,
then the resulting C∗-algebra ⟨C0(Rd) · C0(R̂d)⟩ coincides with C∗-algebra K

(
L2(Rd)

)
.

It means that the integrated representation π ⋊ U provides the ∗-isomorphism already
mentioned in Example 3.4.3.

4Obviously, C0(Rd) is not unital, but this lack of a unity can easily be taken into account in the
previous construction.
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We are now in a suitable position for explaining the link between the Schrödinger
operator H and the C∗-algebra introduced in (4.3.3).

Lemma 4.3.6. Let C satisfy Assumption 4.3.1 and let Ω be defined by the Gelfand
∗-isomorphism C ∼= C(Ω). Let h ∈ C(Rd;R) be diverging at infinity, let V ∈ C(Ω;R),
and let H := h(D) + V (X). Then, for some z ∈ C \ R with |ℑz| large enough, the
resolvent (H − z)−1 belongs to the C∗-algebra ⟨C · C0(R̂d)⟩.
Proof. Let us consider the Neumann series

(H − z)−1 =
(
h(D)− z + V (X)

)−1

=
(
h(D)− z

)−1
(
1+ V (X)

(
h(D)− z

)−1
)−1

=
(
h(D)− z

)−1
∞∑
n=0

(−1)n
[
V (X)

(
h(D)− z

)−1]n
,

where we have used the result of Lemma 4.1.1 and suitably chosen z such that∥∥V (X)
(
h(D)− z

)−1∥∥ < 1.

Since each term in the series belongs to ⟨C · C0(R̂d)⟩, and since the series converges in
norm of B(H), it follows that the series converges in ⟨C · C0(R̂d)⟩.

Note that from the resolvent equation (1.6.1), one infers the equalities

(H − z)−1 = (H − z0)
−1
(
1+ (z − z0)(H − z0)

−1
)−1

=
∞∑
n=0

(z − z0)
n
(
(H − z0)

−1
)n+1

.

By starting then from the result of the previous lemma and by a approximation ar-
gument, one deduces that if (H − z0)

−1 ∈ ⟨C · C0(R̂d)⟩ for some z0 ∈ C \ R, then
(H − z)−1 ∈ ⟨C ·C0(R̂d)⟩ for all z ∈ C \R. By a density argument, it even follows that
φ(H) ∈ ⟨C ·C0(R̂d)⟩ for any φ ∈ C0(R), and the operator φ(H) corresponds to the one
also mentioned in Definition 1.7.9. Thus, H defines a ∗-homomorphism from C0(R) to
⟨C · C0(R̂d)⟩. More generally, one sets:

Definition 4.3.7. (i) An observable affiliated to a C∗-algebra C is a ∗-homomor-
phism Φ : C0(R) → C.

(ii) The spectrum σ(Φ) of an observable Φ consists in the set of λ ∈ R such that
Φ(φ) ̸= 0 whenever φ ∈ C0(R) and φ(λ) ̸= 0.

Let us stress that for the previous definition of an observable, the C∗-algebra C does
not need to be represented in a Hilbert space. On the other hand, with the observation
made just before the definition, one observes that if H is a self-adjoint operator on a
Hilbert space H, and if C is a C∗-subalgebra of B(H) with (H − z)−1 ∈ C for some
z ∈ C \R, then H defines an observable affiliated to C, which we denote by ΦH (in this
case one has ΦH(φ) = φ(H)).

Exercise 4.3.8. In the framework of the previous paragraph, show that σ
(
ΦH

)
= σ(H).
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4.4 J-essential spectrum

Let us consider a C∗-algebra C and one ideal J in C (in this section ideals of C∗-
algebras will always be considered closed and self-adjoint). By Corollary 2.5.6, the
quotient algebra C/J is a C∗-algebra, and let us denote by q : C → C/J the quotient
∗-homomorphism. Then, if Φ is an observable affiliated to C, the composed map q ◦Φ :
C0(R) → C/J defines an observable affiliated to the quotient algebra. In this setting,
one has:

Definition 4.4.1. Let C be a C∗-algebra, with J an ideal in C, and let Φ be an observable
affiliated to C. The spectrum σ(q ◦ Φ) of the observable q ◦ Φ is called the J-essential
spectrum of Φ and will be denoted by σJ(Φ), i.e. σJ(Φ) = σ(q ◦ Φ).

Exercise 4.4.2. In the framework of the previous definition, show that λ ∈ σJ(Φ) if
and only if Φ(φ) ̸∈ J whenever φ ∈ C0(R) with φ(λ) ̸= 0.

To motivate the introduction of this notion of J-essential spectrum, let us derive
the original result in this setting:

Lemma 4.4.3. Let H be a Hilbert space, and H be a self-adjoint operator on H. Then
the following equality holds:

σess(H) = σK (H)
(
ΦH

)
,

or in other words, the essential spectrum of H can be computed by considering the
K (H)-essential spectrum of the corresponding observable affiliated to B(H).

Proof. From the definition of the essential spectrum provided in Definition 1.7.17, it is
easily observed that λ ∈ σess(H) if and only if E

(
(λ−δ, λ+δ)

)
H is infinite dimensional

for any δ > 0, where E(·) denotes the spectral measure associated with the self-adjoint
operator H, see Section 1.7.2. This property in then equivalent to the fact that if
φ ∈ C0(R) with φ(λ) > 0, the corresponding operator ΦH(φ) = φ(H) ̸∈ K (H).
Indeed:

⇐: let δ > 0 and choose φ ∈ Cc

(
(λ − δ, λ + δ)

)
with φ(λ) > 0. By assumption

φ(H) ̸∈ K (H), and therefore E
(
(λ − δ, λ + δ)

)
̸∈ K (H) since otherwise one would

have φ(H) = φ(H)E
(
(λ− δ, λ+ δ)

)
∈ K (H).

⇒: By absurd let us assume that there exists φ ∈ C0(R) with φ(λ) > 0 such that
φ(H) ∈ K (H). Therefore, for any ε > 0 with φ(λ)/2 > ε there exist {gj, hj}nj=1 ⊂ H
such that ∥φ(H)− An∥ < ε, see equation (1.3.1) for the definition of An. Then, let us
choose δ > 0 such that φ(λ′) > φ(λ)− ε for any λ′ ∈ (λ− δ, λ+ δ). By assumption, the
subspace E

(
(λ− δ, λ+ δ)

)
H is infinite dimensional, and so is the subspace

E
(
(λ− δ, λ+ δ)

)
H ∩ Vect

(
{gj, hj | j ∈ {1, . . . , n}}

)⊥
.

It finally follows from Proposition 1.7.4.(iii) for any f in the above set one has

∥φ(H)f∥2 =
∫ λ+δ

λ−δ

|φ(λ′)|2mf (dλ
′) > (φ(λ)− ε)2

∫ λ+δ

λ−δ

mf (dλ
′) = (φ(λ)− ε)2∥f∥2,
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implying that ∥φ(H)f∥ > (φ(λ)− ε)∥f∥ > φ(λ)∥f∥/2 > ε∥f∥. However, this estimate
contradicts the initial assumption which stated that

∥φ(H)f∥ =
∥∥(φ(H)− An

)
f
∥∥ < ε∥f∥.

Now, if J is an ideal in a C∗-algebra C, the computation of the J-essential spectrum
of an observable Φ affiliated to C can sometimes be eased by the existence of a larger
family of ideals Ji in C which satisfy ∩iJi = J. Our interest in such a family is that
the quotient algebras C/Ji might be more easily understandable than the quotient C/J.
Note that in this framework we shall denote by q the quotient map C → C/J and by qi
the quotient map C → C/Ji. Our next aim is to show that with such a construction, the
spectral properties are preserved. Note that we shall use the notation ↪→ for injective
∗-homomorphisms.

Proposition 4.4.4. Let C be a C∗-algebra, and J, Ji be ideals in C satisfying ∩iJi = J.

(i) There is a canonical injective ∗-homomorphism C/J ↪→ Πi C/Ji,

(ii) If Φ is an observable affiliated to C, and if one sets Φi := qi ◦Φ for the observable
affiliated to C/Ji, then one has

σJ(Φ) = ∪i σ(Φi) (4.4.1)

Proof. With the notation introduced before the statement, one has that the kernel of
qi is Ji. Thus, the kernel of (qi)i : C → Πi C/Ji is ∩iJi = J.

By definition, one has

σJ(Φ) = σ(q ◦ Φ)
=

{
λ ∈ R | q

(
Φ(φ)

)
̸= 0 ∀φ ∈ C0(R) with φ(λ) ̸= 0

}
= ∪i

{
λ ∈ R | qi

(
Φ(φ)

)
̸= 0 ∀φ ∈ C0(R) with φ(λ) ̸= 0

}
= ∪iσ(Φi).

Alternatively, we can use that for any φ ∈ C0(R) one has

σ
(
q ◦ Φ(φ)

)
= σ

[
q
(
Φ(φ)

)]
= σ

[
Πiqi

(
Φ(φ)

)]
= ∪iσ

(
Φi(φ)

)
where we have used that the spectrum is invariant under an injective ∗-homomorphism5

and that the spectrum of an operator belonging to a direct product is the closure of
the union of the spectrum of its components.

5Indeed, if C , Q are C∗-algebras and if φ : C → Q is an injective ∗-homomorphism, it follows
from Corollary 2.5.8 that C and φ(C ) ⊂ Q are isometrically ∗-isomorphic, and thus computing the
spectrum of A ∈ C or of φ(A) ∈ Q provides the same result.
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Remark 4.4.5. In the above framework, if C = B(H) and if J = K (H) then the
quotient algebra B(H)/K (H) is called the Calkin algebra. In this situation, there does
not exist any other ideal in B(H), and thus the construction provided in the previous
proposition is useless. However, if C is a C∗-subalgebra smaller than B(H) but with
K (H) ⊂ C, then the above construction might provide lots of information, as we shall
see in the following section.

4.5 Orbits and essential spectrum

Our aim in this section is to compute the essential spectrum of the operatorH = h(D)+
V (X), with h : Rd → R a continuous real function which diverges at infinity, and with
V ∈ C , this C∗-algebra satisfying itself Assumptions 4.3.1. Since by Lemma 4.3.6 the
operatorH corresponds to an observable affiliated to the C∗-algebra ⟨C ·C0(R̂d)⟩ defined
in (4.3.3), and since by Remark 4.3.5 we already know that K (H) ⊂ ⟨C · C0(R̂d)⟩,
Proposition 4.4.4 encourages us to find a suitable family of other ideals of ⟨C ·C0(R̂d)⟩
surrounding K (H) in the sense of that proposition. Thanks to the functoriality of the
crossed product, as presented in Corollary 3.5.2, these investigations can be performed
quite easily at an abelian level.

Recall first that Ω is a compactification of Rd. In addition, the group Rd acts
continuously on Ω, and we use the notation θx(τ) for the action of x ∈ Rd on τ ∈ Ω, see
also Exercise 3.3.3. Clearly, Rd is an open and Rd-invariant subset of Ω, and therefore
C0(Rd) corresponds to a Rd-invariant ideal of C(Ω), see the end of Section 3.5. Now, if
we denote by ∂Ω the boundary of Ω (⇔ Ω\Rd), then ∂Ω is a closed Rd-invariant subset
of Ω. By taking into account corollary 3.5.2 we deduce the existence of the following
short exact sequence of C∗-algebras:

0 −→ C0(Rd)⋊θ Rd −→ C(Ω)⋊θ Rd −→ C(∂Ω)⋊θ Rd −→ 0. (4.5.1)

Note that by Theorem 4.3.4 and Remark 4.3.5 we already know faithful representations
of the first two algebras in the Hilbert space H. Our aim is thus to obtain a better
understanding of the third algebra, by decomposing it into suitable components.

Definition 4.5.1. Let (Ω, G, θ) be a locally compact transformation group, and let τ ∈
Ω. The orbit Oτ of τ is the set {θx(τ) | x ∈ G}, while the quasi-orbit Qτ of τ corresponds
to the closure of Oτ in Ω.

Clearly, each orbit and each quasi-orbits are Rd-invariant subsets of Ω. In addition,
observe that if τ ∈ Rd ⊂ Ω, then Oτ is a dense orbit in Ω, and therefore Qτ = Ω.
On the other hand, if we choose τ ∈ Ω \ Rd, then Oτ ⊂ ∂Ω and Qτ is therefore a
closed subset of ∂Ω. Remark however that the set of all quasi-orbits is not a partition
of Ω, since quasi-orbits may overlap or there may even be a strict inclusion between
them. For that reason, a quasi-orbit is said maximal if it is not strictly contained in
some other quasi-orbit. On the other hand, note that a subset Ω′ of Ω is minimal if
this set is non-empty, closed and invariant and if no proper subset of Ω′ has these three
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properties. For example, a quasi-orbit is minimal if it does not contain any other proper
quasi-orbit. Note that any quasi-orbit contains a minimal one (it may be the quasi-orbit
itself).

Exercise 4.5.2. For any τ ∈ ∂Ω and for any f ∈ C(Qτ ), check that the map

Rd ∋ x 7→ f
(
θx(τ)

)
∈ C (4.5.2)

is an element of BCu(Rd), and that the map f 7→ f
(
θ·(τ)

)
is injective. Note that from

now on and with a slight abuse of notation, we shall always identify C(Qτ ) with its
realization as a subalgebra of BCu(Rd), as prescribed by (4.5.2).

Let us now consider {Qτi}i a covering of ∂Ω by quasi-orbits. Clearly, it implies the
existence of an injective ∗-homomorphism

φ : C(∂Ω) ∋ f ↪→ (fi)i ∈ Πi C(Qτi),

where fi corresponds to the restriction of f to Qτi . Note that this morphism is rarely
surjective, but that the following condition holds, namely

lim
x→0

sup
i

∥θix(fi)− fi∥ = lim
x→0

sup
i

∥∥θix(f |Qτi
)− f |Qτi

∥∥ = lim
x→0

∥θx(f)− f∥ = 0. (4.5.3)

Here θix denotes the restriction of θx to Qτi . In order to keep track of the property
(4.5.3), we denote by Π′

iC(Qτi) the C
∗-subalgebra of ΠiC(Qτi) on which this continuity

property holds. From these considerations, one infers that
(
Π′

iC(Qτi),Rd,Πiθ
i
)
is a C∗-

dynamical system and that

φ′ : C(∂Ω) ∋ f ↪→ (fi)i ∈ Π′
i C(Qτi)

is an equivariant ∗-homomorphism. Then, by the functoriality of the crossed product
(see Lemma 3.4.9), one infers that

C(∂Ω)⋊θ Rd ↪→
(
Π′

i C(Qτi)
)
⋊Πiθi R

d ↪→ Πi

(
C(Qτi)⋊θ Rd

)
,

where we have taken into account the identification of C(Qτi) with a C∗-subalgebra of
BCu(Rd) as mentioned in Exercise 4.5.2.

By summarizing our findings, one has obtained that

⟨C · C0(R̂d)⟩
/

K
(
L2(Rd)

)
= ⟨C · C0(R̂d)⟩

/
⟨C0(Rd) · C0(R̂d)⟩

∼= C ⋊θ Rd
/
C0(Rd)⋊θ Rd

∼= C(∂Ω)⋊θ Rd

↪→
(
Π′

i C(Qτi)
)
⋊Πiθi R

d

↪→ Πi

(
C(Qτi)⋊θ Rd

)
∼= Πi ⟨C(Qτi) · C0(R̂d)⟩. (4.5.4)

We shall denote by ιess the resulting injective ∗-homomorphism.
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Remark 4.5.3. Note that the same result would have been obtained if we had considered
the ideals C0(Ω \ Qτi) of C(Ω), and observed that ∩i C0(Ω \ Qτi) = C0(Rd). Then, by
identifying in Proposition 4.4.4 the algebra C with C(Ω) ⋊θ Rd and the ideals Ji with
C0(Ω \ Qτi) ⋊θ Rd, the first statement of this proposition would have coincide with the
above result.

We can now state the main result of this section:

Theorem 4.5.4. Let H = h(D) + V (X) be the self-adjoint operator defined in Lemma
4.3.6. Let {Qτi}i be a covering of ∂Ω by quasi-orbits, and let us set Vi := V

(
θ·(τi)

)
∈

BCu(Rd) and Hi := h(D) + Vi(X). Then

σess(H) = ∪iσ(Hi). (4.5.5)

Proof. In fact, most of the proof has already been performed before the statement.
Indeed, by Lemma 4.3.6 we already know that H defines an observable ΦH affiliated to
the algebra ⟨C ·C0(R̂d)⟩. Then, by keeping track of the form of all the ∗-homomorphisms,

we see that ιess transforms the class modulo K (H) of the element V (X)
(
h(D)− z

)−1

into
(
Vi(X)

(
h(D)− z

)−1)
i
. Thus, if q denotes the map

q : ⟨C · C0(R̂d)⟩ → ⟨C · C0(R̂d)⟩
/

K
(
L2(Rd)

)
then by taking the Neumann series into account, one deduces that ιess(q◦ΦH) =

(
ΦHi

)
i
.

Finally, since the spectrum is invariant under an injective ∗-homomorphism and since
the spectrum of an operator belonging to a direct product is the closure of the union
of the spectrum of its components, one directly gets

σess(H) = σ(q ◦ ΦH) = ∪iσ(ΦHi) = ∪iσ(Hi).

Note that this result should be compared with the content of Proposition 1.7.18.
Note also that such a result holds for more general observables affiliated to the algebra
⟨C · C0(R̂d)⟩, but stronger affiliation criteria are then necessary.

In the publications [Măn02] and [AMP02], highly non-trivial applications of the
previous result have been presented. In part of these examples, the index i belongs to
a continuum, and the corresponding result could hardly be guessed by constructing
Weyl sequences, as introduced in Proposition 1.7.18. On the other hand, let us present
a situation which is much more tractable, see [Ric05] for details.

Example 4.5.5 (Cartesian anisotropy). Let C be the C∗-algebra made of functions on
R2 having a cartesian anisotropy, i.e. V ∈ C if and only if there exists V ±

1 , V ±
2 in

BCu(R) such that

lim
x→±∞

sup
y∈R

∣∣V (x, y)− V ±
2 (y)

∣∣ = 0 and lim
y→±∞

sup
x∈R

∣∣V (x, y)− V ±
1 (x)

∣∣ = 0.
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In this case, the compact space Ω is rather easy to describe, namely

Ω = [−∞,∞]× [−∞,∞],

and if one sets H±
j = h(D) + V ±

j (X), then (4.5.5) reads:

σess(H) = σ(H+
1 ) ∪ σ(H−

1 ) ∪ σ(H+
2 ) ∪ σ(H−

2 ).

Exercise 4.5.6. Consider the cartesian anisotropy in an arbitrary dimension, as in-
troduced in Section 3 of [Ric05].

In the previous example, the space Ω was easily understandable. However, even if
Ω is not so explicit, computations can be performed based on our understanding of
quasi-orbits. We present a final example in this direction.

Example 4.5.7 (Vanishing oscillations). Let us consider the C∗-algebra C = V O(Rd)
of functions with vanishing oscillations, i.e. V ∈ V O(Rd) if and only if V ∈ Cb(Rd) and
for any x ∈ Rd, the function V (· − x) − V (·) belongs to C0(Rd). Clearly, V O(Rd) is a
unital Rd-invariant C∗-subalgebra of BCu(Rd), and contains C0(Rd). Therefore, Ω is a
compactification of Rd, and each point of ∂Ω is an orbit in itself. Indeed, if τ ∈ ∂Ω,
then τ(φ) = 0 for any φ ∈ C0(Rd), and then by (4.3.1) one has for any x ∈ Rd and
φ ∈ V O(Rd):

[θx(τ)](φ) = τ
(
φ(· − x)

)
= τ

(
φ(· − x)− φ(·)

)
+ τ

(
φ(·)

)
= τ(φ).

Thus, the only covering of ∂Ω is obtained by {τi}i∈∂Ω, the asymptotic potentials are just
constants, and in this case (4.5.5) reads:

σess(H) = ∪i∈∂Ωσ
(
h(D) + V |τi

)
=

[
minh+minV (Rd)asy,∞

)
where V (Rd)asy := ∩KV (Rd \K) and K are arbitrary compact neighbourhoods of 0 in
Rd.
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Chapter 5

Twisted crossed product
C∗-algebras

This chapter is mainly dedicated to a brief introduction on twisted C∗-dynamical sys-
tems, twisted crossed products and on their representations. We mainly follow the
survey article [MPR05] which is based on the standard references [BS70, Pac94, PR89,
PR90]. To simplify, we undertake various hypotheses which are not needed for part
of the arguments. Primarily, we assume that an abelian locally compact group acts
upon an abelian C∗-algebra. This will allow us to use the Fourier transform and the
Gelfand theory. Note that the general framework can easily be guessed from Section 3.1
on locally compact groups and from Section 3.4 on crossed product C∗-algebras. Note
also that from now on, the additive notation will be used for the group, since in the
applications we shall mainly consider the group Rd.

To make the transition towards pseudodifferential operators and the magnetic case,
we introduce at the end of the chapter a special type of twisted crossed products,
in which the algebra is composed of continuous functions defined on the group. It is
preceded and prepared by some considerations in group cohomology.

5.1 Twisted C∗-dynamical systems

Let us directly start with the definition of twisted dynamical systems. This definition
corresponds to a generalization of Definition 3.3.1 in which no twist was introduced.

Definition 5.1.1. An (abelian) twisted C∗-dynamical system consists in a quadruplet
(C , G, θ, ω), where C is an abelian C∗-algebra, G is a locally compact abelian group, θ :
G → Aut(C ) is a continuous homomorphism from G to the group of ∗-automorphisms
of C (endowed with the pointwise convergence topology), and ω is a strictly continuous
normalized 2-cocycle on G with values in the unitary group of the multiplier algebra of
C .

Note that the pair (θ, ω) is often called a twisted action of G on C . Very often, we
shall use the shorter expression twisted dynamical system for the quadruplet (C , G, θ, ω).

65
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Remark 5.1.2. (i) Almost everything in this section would be true, with only some
minor modifications, without assuming C and G to be abelian. However, our main
interest lies in the connection between twisted dynamical systems and pseudodif-
ferential theories. And for this purpose commutativity is extremely useful, almost
essential. Therefore we do assume it from the very beginning.

(ii) A strictly continuous 2-cocycle is a function ω : G × G → U (C ) (the unitary
group in the multiplier algebra M (C ) of C ), continuous with respect to the strict
topology on U (C ), and such that for all x, y, z ∈ G :

ω(x+ y, z)ω(x, y) = θx[ω(y, z)]ω(x, y + z). (5.1.1)

We shall also assume it to be normalized:

ω(x, 0) = ω(0, x) = 1, for all x ∈ G. (5.1.2)

It is known that any automorphism of C extends uniquely to a ∗-automorphism of
M (C ) and, obviously, leaves U (C ) invariant. By applying this fact to θx and by
denoting the extension with the same symbol, one gives a sense to (5.1.1). Actually,
by suitable particularizations in (5.1.1), we get θ−x[ω(x, 0)] = ω(0, 0) = ω(0, x),
∀x ∈ G, hence for normalization it suffices to ask ω(0, 0) = 1. The required
continuity (see Definition 2.5.14) can be rephrased in this abelian setting by saying
that for any φ ∈ C , the map

G×G ∋ (x, y) 7→ φω(x, y) ∈ C

is continuous. In fact Borel conditions could be imposed instead of continuity for
most of the constructions and results; we do not pursue this here.

(iii) Since C is abelian, we know by Gelfand theory that there exists a locally compact
space Ω such that C is isometrically ∗-isomorphic to C0(Ω), i.e. C ∼= C0(Ω). If
the C∗-algebra C0(Ω) is not unital, then Cb(Ω), the C

∗-algebra of all bounded and
continuous complex functions on Ω, surely is. It contains C0(Ω) as an essential
ideal. In fact Cb(Ω) can be identified with the multiplier algebra M (C ) of C . Thus
the unitary group of C is identified with C(Ω;T), the family of all continuous
functions on Ω taking values in the group T of complex numbers of modulus 1.
Moreover, the strict topology on C(Ω;T) coincides with the topology of uniform
convergence on compact subsets of Ω.

We can now go on with covariant representations, by slightly adapting Definition
3.3.4.

Definition 5.1.3. A covariant representation of an (abelian) twisted C∗-dynamical
system (C , G, θ, ω) consists in a triple (H, π, U), where

(i) (H, π) is a (non-degenerate) representation of C ,
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(ii) (H, U) is a strongly continuous map from G to U (H) which satisfies

UxUy = π
(
w(x, y)

)
Ux+y ∀x, y ∈ G, (5.1.3)

(iii) the following compatibility condition holds

π
(
θx(φ)

)
= Uxπ(φ)U

∗
x x ∈ G,φ ∈ C . (5.1.4)

One observes that in this framework U is a sort of generalized projective represen-
tation of G. The usual notion of projective representation corresponds to the case in
which for all x, y ∈ G, ω(x, y) ∈ T, i.e. ω(x, y) is a constant function on the spectrum
Ω of C .

For twisted C∗-dynamical systems, regular representations also exist, see Exam-
ple 3.3.6 in the context of dynamical systems without twist. We present below the
construction borrowed from Definition 3.10 of [PR89] (note that the conventions are
slightly different from Example 3.3.6 since here the right action is used instead of the
left action, but these modifications are not really relevant).

Example 5.1.4 (Regular representation). Let (C , G, θ, ω) be an (abelian) twisted C∗-
dynamical system, and let (H, π) be a faithful representation of C . Consider the Hilbert
space H̃ := L2(G;H), and define π̃ : C → B(H̃) and Ũ : G→ U (H̃) by

[π̃(φ)h](x) := π
(
θx(φ)

)
h(x) and [Ũyh](x) := π

(
ω(x, y)

)
h(x+ y), (5.1.5)

for any φ ∈ C , h ∈ H̃ and x, y ∈ G. It is then checked straightforwardly that the triple(
H̃, π̃, Ũ

)
is a covariant representation of the (abelian) twisted C∗-dynamical system.

Exercise 5.1.5. Check carefully the statements contained in the previous example.

5.2 Twisted crossed product algebras

Let (C , G, θ, ω) be an (abelian) twisted dynamical system. As for the non-twisted case,
we start by mixing together the algebra C and the space Cc(G) in a way to form
a ∗-algebra. We define Cc(G;C ), the set of compactly supported C -valued functions,
and endow it with the norm ∥f∥1 :=

∫
G
∥f(x)∥dx. Let us also fix an element τ of the

set End(G) of continuous endomorphisms of G. Particular cases are 0,1 ∈ End(G),
0(x) := 0 and 1(x) := x, for all x ∈ G. Addition and subtraction of endomorphisms are
well-defined. For elements f, g of Cc(G;C ) and for any point x ∈ G we set

(f ∗ωτ g)(x) :=
∫
G

θτ(y−x) [f(y)] θ(1−τ)y [g(x− y)] θ−τx [ω(y, x− y)] dy (5.2.1)

and
f ∗ωτ (x) := θ−τx[ω(x,−x)−1]θ(1−2τ)x

[
f(−x)

]
, (5.2.2)

where f(−x) corresponds to the involution of C applied to f(−x). Note that the ex-
pression (5.2.2) becomes much simpler if ω(x,−x) = 1, which will be the case in most
of the applications.
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Exercise 5.2.1. Check that the above product is associative, and that ∗ωτ is an involu-
tion.

Remark 5.2.2. In the corresponding Section 3.4, and more generally in the literature,
only the special case τ = 0 is considered. We introduced all these isomorphic structures
because they help in understanding τ -quantizations in pseudodifferential theory.

Lemma 5.2.3. For two functions f and g in Cc(G;C ) and for τ ∈ End(G), the function
f ∗ωτ g belongs to Cc(G;C ). With the composition law ∗ωτ and the involution ∗ωτ , the
completion L1(G;C ) of Cc(G;C ) with respect to the norm ∥ · ∥1 is a B∗-algebra. These
B∗-algebras are isomorphic for different τ ’s.

Proof. The fact that L1(G;C ) is stable under the product ∗ωτ follows from the relations

∥θτ(y−x) [f(y)] θ(1−τ)y [g(x− y)] θ−τx [ω(y, x− y)] ∥ ≤ ∥f(y)∥∥g(x− y)∥,

and ∫
G

∥(f ∗ωτ g)(x)∥dx ≤
∫
G

[ ∫
G

∥f(y)∥∥g(x− y)∥dy
]
dx = ∥f∥1∥g∥1.

The associativity of this composition law is easily deduced from the 2-cocycle property
of ω. All the other requirements also follow by routine computations.

The isomorphisms are the mappings

mτ,τ ′ : L
1(G;C ) → L1(G;C ), (mτ,τ ′f) (x) := θ(τ ′−τ)x[f(x)], x ∈ G.

On the first copy of L1(G;C ) one considers the structure defined by τ ′ and on the second
that defined by τ . Note the obvious relations mτ,τ ′mτ ′,τ ′′ = mτ,τ ′′ and [mτ,τ ′ ]

−1 = mτ ′,τ

for all τ, τ ′, τ ′′ ∈ End(G).

We recall that a C∗-norm on a ∗-algebra has to satisfy ∥A∗A∥ = ∥A∥2. Since C∗-
norms have many technical advantages and since ∥·∥1 has not this C∗-property, we shall
make now some adjustments, valid in an abstract setting (see Definition 3.4.2 for a sim-
plified version of the following construction). A B∗-algebra C with norm ∥·∥ is called an
A∗-algebra when it admits a C∗-norm or, equivalently, when it has an injective represen-
tation in a Hilbert space [Tak02, Def. 9.19]. In this case we can consider the standard C∗-
norm on it, defined as the supremum of all the C∗-norms, that we shall denote by ||| · |||. A
rather explicit formula for ||| · ||| is |||A||| = sup{∥π(A)∥B(H) | (H, π) is a representation}.
One has by Lemma 2.4.14 that |||A||| ≤ ∥A∥ for all A ∈ C. The completion with re-
spect to this norm will be a C∗-algebra containing C as a dense ∗-subalgebra. We call
it the enveloping C∗-algebra of C. It is known that

(
L1(G;C ), ∗ωτ , ∗

ω
τ , ∥ · ∥1

)
is indeed an

A∗-algebra1.

1In the general setting of twisted crossed product C∗-algebra, this fact is not trivial. The argument
uses the existence of an approximate unit, see [PR89, Rem. 2.6], [BS70, Thm. 3.3] and the Appendix of
[PR90]. Fortunately, for our (abelian) twisted C∗-dynamical system, the regular representation induces
the necessary injective representation of L1(G;C ), as we shall see in the proof of Proposition 5.4.6.
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Definition 5.2.4. The enveloping C∗-algebra of
(
L1(G;C ), ∗ωτ , ∗

ω
τ , ∥ · ∥1

)
is called the

twisted crossed product of C by G associated with the twisted action (θ, ω) and the
endomorphism τ . It will be denoted by C ⋊ω

θ,τ G.

The C∗-algebra C ⋊ω
θ,τ G has a rather abstract nature. But most of the time one

uses efficiently the fact that L1(G;C ) is a dense ∗-subalgebra, on which everything is
very explicitly defined. Let us even observe that the algebraic tensor product L1(G)⊙C
may be identified with the dense ∗-subspace of L1(G;C ) (hence of C ⋊ω

θ,τG also) formed
of functions with finite-dimensional range. The isomorphism mτ,τ ′ extends nicely to an
isomorphism from C ⋊ω

θ,τ ′ G to C ⋊ω
θ,τ G.

The next lemma shows clearly the importance of twisted crossed products as a way
to bring together the information contained in a twisted dynamical system, see Theorem
3.4.1 for the untwisted version.

Lemma 5.2.5. Let (H, π, U) be a covariant representation of the (abelian) twisted C∗-
dynamical system (C , G, θ, ω), and let τ ∈ End(G). Then π ⋊τ U defined on L1(G;C )
by

(π ⋊τ U)f :=

∫
G

π
[
θτy

(
f(y)

)]
Uy dy

extends to a representation of C ⋊ω
θ,τ G, called the integrated form of (π, U). One has

π ⋊τ ′ U = (π ⋊τ U) ◦mτ,τ ′ if τ, τ
′ ∈ End(G).

Proof. Some easy computations show that π⋊τ U is a representation of the B∗-algebra(
L1(G;C ), ∗ωτ , ∗

ω
τ
)
. Then, by taking into account that ∥(π ⋊τ U)f∥ ≤ ∥f∥1, ∀f ∈

L1(G;C ), one gets that π⋊τ U extends to C ⋊ω
θ,τ G by density and, by approximation,

this extension has all the required algebraic properties.
The relation π⋊τ ′U = (π ⋊τ U)◦mτ,τ ′ is checked readily on L1(G;C ) and obviously

extends to the full twisted crossed product.

Let us mention that an analogue of Theorem 3.4.8 also holds in this more general
setting. Indeed, one can recover the covariant representation from π ⋊τ U . Actually,
there is a bijective correspondence between covariant representations of a twisted dy-
namical system and non-degenerate representations of the twisted crossed product. This
correspondence preserves equivalence, irreducibility and direct sums. We do not give
explicit formulae, since we do not use them.

5.3 Group cohomology

We recall some definitions in group cohomology. They will be used in the next sections
to show that standard matters as gauge invariance and τ -quantizations have a coho-
mological flavour. Now they will serve to isolate twisted dynamical systems for which
a generalization of the Schrödinger representation exists.

Let G be an abelian, locally compact group and U a topological abelian group.
Note that in our applications U will usually not be locally compact, being the unitary
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group of the multiplier algebra of an abelian C∗-algebra, as in Section 5.1. We also
assume that there exists a continuous action θ of G by automorphisms of U . We shall
use for G and U additive and multiplicative notations, respectively.

The class of all continuous functions : Gn → U is denoted by Cn(G;U ); it is
obviously an abelian group (we use once again multiplicative notations). Elements of
Cn(G;U ) are called (continuous) n-cochains. For any n ∈ N, we define the coboundary
map δn : Cn(G;U ) ∋ ρ 7→ δn(ρ) ∈ Cn+1(G;U ) by

[δn(ρ)] (x1, . . . , xn, xn+1)

:= θx1 [ρ(x2, . . . , xn+1)]
n∏

j=1

ρ(x1, . . . , xj + xj+1, . . . , xn+1)
(−1)jρ(x1, . . . , xn)

(−1)n+1

.

It is easily shown that δn is a group morphism and that δn+1
(
δn(ρ)

)
= 1 for any n ∈ N.

It follows that Ran(δn) ⊂ Ker(δn+1).

Definition 5.3.1. (i) Zn(G;U ) := Ker(δn) is called the set of n-cocycles (on G,
with coefficients in U ).

(ii) Bn(G;U ) := Ran(δn−1) is called the set of n-coboundaries.

Let us note that Zn(G;U ) and Bn(G;U ) are subgroups of Cn(G;U ), and that
Bn(G;U ) ⊂ Zn(G;U ).

Definition 5.3.2. The quotient Hn(G;U ) := Zn(G;U )/Bn(G;U ) is called the n’th
group of cohomology (of G with coefficients in U ). Its elements are called classes of
cohomology.

In the sequel, we shall need only the cases n = 0, 1, 2, which we outline now
for convenience. For n = 0, parts of the definitions are simple conventions. We set
C0(G;U ) := U . One has [δ0(φ)] (x) = θx(φ)φ

−1, for any φ ∈ U , x ∈ G. This implies
that Z0(G;U ) = {φ ∈ U | φ is a fixed point}. By convention, B0(G;U ) = {1}.

The mapping δ1 : C1(G;U ) → C2(G;U ) is given by[
δ1(λ)

]
(x, y) = λ(x)θx[λ(y)]λ(x+ y)−1.

Thus a 1-cochain λ is in Z1(G;U ) if it is a crossed morphism, i.e. if it satisfies
λ(x)θx[λ(y)] = λ(x+y) for any x, y ∈ G. Particular cases are the elements of B1(G;U )
(called principal morphisms), those of the form λ(x) = θx(φ)φ

−1 for some φ ∈ U .
For n = 2 one encounters a situation which was already taken into account in the

definition of twisted dynamical systems. The formula for the coboundary map is[
δ2(ω)

]
(x, y, z) = θx[ω(y, z)]ω(x+ y, z)−1ω(x, y + z)ω(x, y)−1.

Thus a 2-cocycle is just a function satisfying the relation (5.1.1). B2(G;U ) is composed
of 2-cocycles of the form ω(x, y) = λ(x)θx[λ(y)]λ(x+ y)−1 for some 1-cochain λ.
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In the applications, we shall consider for U the unitary group of an algebra of
functions defined on the group G itself. An example of special importance will be the
group U = C(G;T), endowed with the strict topology, which correspond to the unitary
group of the multiplier algebra of C0(G). In this case, the groups of cohomology are
particularly simple.

Lemma 5.3.3. For any locally compact abelian group G and for any n ≥ 1, one has
Hn

(
G;C(G;T)

)
= {1}.

Proof. Let ρn ∈ Zn
(
G;C(G;T)

)
, i.e. ρn is a continuous n-cochain satisfying for any

y1, . . . , yn+1 ∈ G

θy1 [ρ
n(y2, . . . , yn+1)]

n∏
j=1

ρn(y1, . . . , yj + yj+1, . . . , yn+1)
(−1)jρn(y1, . . . , yn)

(−1)n+1

= 1.

We set in this relation y1 = q, yj = xj−1 for j ≥ 2 and rephrase it as

θq [ρ
n(x1, . . . , xn)]

=ρn(q + x1, x2, . . . , xn)
n−1∏
j=1

ρn(q, x1, . . . , xj + xj+1, . . . , xn)
(−1)jρn(q, x1, . . . , xn−1)

(−1)n ,

which is an identity in C(G;T). One calculates both sides at the point x = 0 and obtain

[ρn(x1, . . . , xn)] (q) = [ρn(q + x1, x2, . . . , xn)] (0)

·
n−1∏
j=1

[
ρn(q, x1, . . . , xj + xj+1, . . . , xn)

(−1)j
]
(0)

[
ρn(q, x1, . . . , xn−1)

(−1)n
]
(0).

This means exactly ρn = δn−1(ρn−1) for[
ρn−1(z1, . . . , zn−1)

]
(q) := [ρn(q, z1, . . . , zn−1)] (0) (5.3.1)

and thus any n-cocyle is at least formally a n-coboundary.
We show now that ρn−1 has the right continuity properties. Let us recall that if

C(G;T) is endowed with the topology of uniform convergence on compact sets of G
and if Y is a locally compact space, then C

(
Y ;C(G;T)

)
can naturally be identified

with C(G × Y ;T) (the proof of this statement is an easy exercise). So ρn can be in-
terpreted as an element of C(G×Gn;T). Being obtained from ρn by a restriction ρn−1

belongs to C(Gn;T), and thus can be interpreted as an element of C
(
Gn−1;C(G;T)

)
≡

Cn−1
(
G;C(G;T)

)
, which finishes the proof.

Let us add one more definition which will play a crucial role in the sequel.

Definition 5.3.4. Let U be a topological abelian group endowed with a continuous
action θ of G by automorphisms of U , and let ω ∈ Z2(G;U ). We say that ω is
pseudo-trivial if there exists another topological abelian group U ′ with a similar action
θ′ of G such that U is a subgroup of U ′, for each x ∈ G one has θx = θ′x|U , and such
that ω ∈ B2(G;U ′).
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Thus, to produce pseudo-trivial 2-cocycles, one has to find some ω ∈ B2(G;U ′)
such that ω(x, y) ∈ U ⊂ U ′ for any x, y ∈ G and such that (x, y) 7→ ω(x, y) ∈ U
is continuous with respect to the topology of U . This is possible in principle because
the product λ(x)θx[λ(y)][λ(x+ y)]

−1 can be better-behaved than any of its factors. The
particular choice [λ(z)](q) = [ω(q, z)](0) we made in (5.3.1) will lead later on to the
familiar transversal gauge for magnetic systems.

Let us emphasize that most of the time pseudo-triviality cannot be improved to a
bona fide triviality. Very often, all the functions λ for which one has ω = δ1(λ) do not
take all their values in U or miss the right continuity. We shall outline such a situation
in the next section.

5.4 Standard twisted crossed products

When trying to transform the formalism of twisted crossed products into a pseudodif-
ferential theory, one has to face the possible absence of an analogue of the Schrödinger
representation and this would lead us too far from the initial motivation. The existence
of a generalized Schrödinger representation is assured by the pseudo-triviality of the
2-cocycle, and thus we restrict ourselves to a specific class of twisted dynamical sys-
tems. In the same time we also restrict to algebras C of complex continuous functions
on G. This also is not quite compulsory for a pseudodifferential theory, but it leads to
a simple implementation of pseudo-triviality (by Lemma 5.3.3) and covers easily the
important magnetic case.

We first extend of framework introduced in Assumption 4.3.1.

Definition 5.4.1. Let G be an locally compact abelian group. We call G-algebra a C∗-
subalgebra C of BCu(G) which is G-invariant, i.e. θx(φ) := φ(·+x) ∈ C for any φ ∈ C
and x ∈ G, and which contains C0(G).

The C∗-algebra BCu(G) is the largest one on which the action θ of translations with
elements of G is norm-continuous. But we shall denote by θx even the x-translation on
C(G), the ∗-algebra of all continuous complex functions on G (which is not a normed
algebra if G is not compact). The restriction of θx on BC(G) is only strictly continuous.

Note that in the previous definition, the assumption C0(G) ⊂ C implies that G can
be identified with a dense subset of the Gelfand spectrum Ω of C . If C is unital, then Ω
is a compactification of G, see the beginning of Section 4.3 for the special case G = Rd.

Now, if C is a G-algebra, then (C , G, θ) is a C∗-dynamical system. If we twist it,
we get:

Definition 5.4.2. A standard twisted dynamical system is an (abelian) twisted C∗-
dynamical system (C , G, θ, ω) for which C is a G-algebra. The C∗-algebra C ⋊ω

θ,τ G is
called a standard twisted crossed product.

Proposition 5.4.3. If (C , G, θ, ω) is a standard twisted dynamical system, then ω is
pseudo-trivial.
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Note that a slightly more general statement and proof is provided in [MPR05,
Prop.2.14]. In our context, if is sufficient to observe that U (C ) can naturally be identi-
fied with a subgroup of C(G;T), and that the strict topology on U (C ) is finer than the
strict topology of C(G;T). The 2-cocycle ω can hence be considered as an element of
Z2

(
G;C(G;T)

)
, which coincides with B2

(
G;C(G;T)

)
by Lemma 5.3.3, and this proves

the statement.

Remark 5.4.4. If ω, ω′ are two cohomologous elements of Z2
(
G;U (C )

)
, i.e. ω =

δ1(λ)ω′ for some λ ∈ C1
(
G;U (C )

)
, then the C∗-algebras C ⋊ω

θ,τ G and C ⋊ω′

θ,τ G

are naturally isomorphic: on L1(G;C ) the isomorphism is given by
[
iλτ (f)

]
(x) :=

θ−τx[λ(x)]f(x). Thus C0(G) ⋊ω
θ,τ G does not depend on ω but on its class of coho-

mology; this will be strengthened in Proposition 5.4.6. However this does not work if
λ only belongs to C1

(
G;C(G;T)

)
and C is not C0(G); in general θ−τx[λ(x)]f(x) gets

out of C and iλτ is no longer well-defined. For ω and ω′ defining different classes of
cohomology, C ⋊ω

θ,τ G and C ⋊ω′

θ,τ G are in general different C∗-algebras.

In the sequel we fix a standard twisted dynamical system (C , G, θ, ω). One observes
that the untwisted system (C , G, θ) always has an obvious covariant representation
(H, π, U), withH := L2(G) (with the Haar measure), π(φ) ≡ φ(X) = the multiplication
operator with φ, and [Uyu](x) := u(x+y). Note that the right action is again considered,
as in Example 5.1.4. Let us now choose λ ∈ C1

(
G;C(G;T)

)
such that δ1(λ) = ω (this

identity taking place in Z2
(
G;C(G;T)

)
). We set Uλ

y := π
(
λ(y)

)
Uy. Explicitly, for any

x ∈ G and u ∈ H,
[
Uλ
y u

]
(x) = [λ(y)](x)u(x + y) ≡ λ(x; y)u(x + y). Let us already

mention that the point (ii) in the next proposition is at the root of gauge invariance for
magnetic pseudodifferential operators.

Proposition 5.4.5. (i) (H, π, Uλ) is a covariant representation of (C , G, θ, ω),

(ii) If µ is another element of C1
(
G;C(G;T)

)
such that δ1(µ) = ω, then there ex-

ists φ ∈ C(G;T) such that µ(x) = θx(φ)φ
−1λ(x), ∀x ∈ G. Moreover, Uµ

x =
π(φ−1)Uλ

x π(φ) for all x ∈ G.

Proof. The proof of the first statement consists in trivial verifications. For the second
statement, one first notes that µλ−1 belongs to Ker(δ1) = Z1

(
G;C(G;T)

)
. Since this set

is equal to B1
(
G;C(G;T)

)
by Lemma 5.3.3, there exists φ ∈ C0

(
G;C(G;T)

)
≡ C(G;T)

satisfying µ(x) = θx(φ)φ
−1λ(x), ∀x ∈ G. The last claim of the proposition follows from

π[θx(φ)]Ux = Uxπ(φ).

We call (H, π, Uλ) the Schrödinger covariant representation associated with the 1-
cochain λ. Let us now recall the detailed form of the composition laws on L1(G;C ). For
simplicity we shall use notations as f(x; y) for [f(y)](x) and ω(x; y, z) for [ω(y, z)](x).
With these notations and for any f, g ∈ L1(G;C ), the relations (5.2.1) and (5.2.2) read
respectively

(f ∗ωτ g)(q;x) =
∫
G

f
(
q + τ(y − x); y

)
g
(
q + (1− τ)y;x− y

)
ω
(
q − τx; y, x− y

)
dy
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and
(f ∗ωτ )(q;x) = ω

(
q − τx;x,−x

)−1
f
(
q + (1− 2τ)x;−x

)
,

where x, y, q are elements of G.
Let us also denote for convenience by Repλτ the integrated representation π ⋊τ U

λ

in L2(G) of the twisted crossed product C ⋊ω
θ,τ G, see also Lemma 5.2.5. Its explicit

action on f ∈ L1(G;C ) and u ∈ L2(G) is given by

[(
Repλτ (f)

)
u
]
(x) =

∫
G

f(x+ τy; y)λ(x; y)u(x+ y)dy

=

∫
G

f
(
(1− τ)x+ τy; y − x

)
λ(x; y − x)u(y)dy.

We gather some important properties of Repλτ in:

Proposition 5.4.6. (i) Repλτ [C0(G)⋊ω
θ,τG] = K

(
L2(G)

)
, the C∗-algebra of all com-

pact operators in L2(G).

(ii) Repλτ is a irreducible and faithful representation of C ⋊ω
θ,τ G in L2(G), for any

G-algebra C ,

(iii) In the setting of Proposition 5.4.5.(ii), one has Repµτ (f) = π(φ−1)Repλτ (f)π(φ).

Proof. (i) Since δ1(λ) = ω in Z2
(
G;C(G;T)

)
, we can then consider the following iso-

morphism

iλτ :
(
L1

(
G;C0(G)

)
, ∗10, ∗

1
0

)
→

(
L1

(
G;C0(G)

)
, ∗ωτ , ∗

ω
τ
)
,[

iλτ (f)
]
(x) = θ−τx

[
λ−1(x)f(x)

]
, (5.4.1)

that extends to an isomorphism between the non-twisted crossed product C0(G)⋊1
θ,0G

and the twisted crossed product C0(G) ⋊ω
θ,τ G (this is consistent with Remark 5.4.4).

One easily checks that Repλτ
[
iλτ (f)

]
=

∫
G
π[f(x)]Ux dx for all f in

(
L1(G;C ), ∗10, ∗

1
0

)
.

But it is known that the image of C0(G)⋊1
θ,0G through the representation π⋊U ≡ Rep10

is equal to the algebra K
(
L2(G)

)
of compact operators in L2(G), cf. for example [GI02,

Cor. 4.1].
(ii) Since C0(G) ⊂ C , then C0(G) ⋊ω

θ,τ G can be identified to a C∗-subalgebra of

C ⋊ω
θ,τ G and the irreducibility of Repλτ

(
C ⋊ω

θ,τ G
)
follows from the irreducibility of

K
(
L2(G)

)
, by (i).

Let us now recall that the regular representation of the twisted dynamical sys-
tem (C , G, θ, ω) has been introduced in Example 5.1.4. In particular, we can choose
in this representation the Hilbert space L2(G) and the representation π of C by op-
erators of multiplication. One thus obtained the representation

(
L2

(
G;L2(G)

)
, π̃, Ũ

)
,

with the maps π̃ and Ũ defined in (5.1.5). Since L2
(
G;L2(G)

)
is canonically iso-

morphic to L2(G × G), let us set ξ(·;x) := ξ(x) and introduce the unitary operator
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W λ : L2(G × G) → L2(G × G), [W λξ](x; y) := λ(x; y) ξ(x;x + y). Its adjoint is given
by [(W λ)∗ξ](x; y) = λ−1(x; y − x) ξ(x; y − x). Some easy computations show then that[
(W λ)∗ π̃(φ)W λ ξ

]
(x; y) = φ(y)ξ(x; y). Moreover, one has[

(W λ)∗ ŨzW
λ ξ

]
(x; y) = λ−1(x; y − x)ω(x; y − x, z)λ(x; y − x+ z)ξ(x; y + z)

= λ(y; z)ξ(x; y + z),

where we have used that ω = δ1(λ). Equivalently, one has (W λ)∗ π̃(φ)W λ = 1⊗ φ(X)
and (W λ)∗ Uz W

λ = 1 ⊗ λ(X; z)Uz ≡ 1 ⊗ Uλ
z in L2(G) ⊗ L2(G). Thus the regular

representation is unitarily equivalent to the representation (L2(G)⊗L2(G),1⊗π,1⊗Uλ).
Since the regular representation induces a faithful representation π̃ ⋊ U of C ⋊ω

θ,0 G in

L2
(
G;L2(G)

)
, cf. Theorem 3.11 of [PR89], the Schrödinger representation induces a

faithful representation of C ⋊ω
θ,τ G in L2(G) for any τ ∈ End(G).

(iii) The proof of this statement consists in a simple verification.

Exercise 5.4.7. Check that the map iλτ introduced in the previous proof defines an iso-

morphism between the B∗-algebras
(
L1

(
G;C0(G)

)
, ∗10, ∗

1
0

)
and

(
L1

(
G;C0(G)

)
, ∗ωτ , ∗

ω
τ
)
.
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Chapter 6

Pseudodifferential calculus

The aim of this chapter is to stress the link between the algebraic framework intro-
duced so far, and the usual pseudodifferential calculus. The first section is related to
the content of Chapter 4, and is based on [MPR05, Sec. 1.1]. It consists mainly in an
introduction to the Weyl calculus and to the corresponding Moyal product. The subse-
quent sections are slightly more general and closely related to Chapter 5. The arguments
are borrowed from [MPR05, Sec. 3], and the mentioned link is clearly established.

6.1 The Weyl calculus

In section 4.1 we have seen how to define multiplication operators φ(X) and convolution
operators φ(D) on the Hilbert space H := L2(Rd). A natural question is how to define
a more general operator f(X,D) on L2(Rd) for a function f : Rd × Rd → C.

This can be seen as the problem of constructing a functional calculus f 7→ f(X,D)
for the family X1, . . . , Xd, D1, . . . , Dd of 2d self-adjoint, non-commuting operators. One
also would like to define a multiplication (f, g) 7→ f ◦ g satisfying (f ◦ g)(X,D) =
f(X,D)g(X,D) as well as an involution f → f ◦ leading to f ◦(X,D) = f(X,D)∗. The
deviation of ◦ from pointwise multiplication is imputable to the fact that X and D do
not commute.

The solution of these problems is called the Weyl calculus, or simply the pseudod-
ifferential calculus. In order to define it, let us set Ξ := Rd × R̂d, which corresponds
to the direct product of a locally compact abelian group G and of its dual group Ĝ.
Elements of Ξ will be denoted by x = (x, ξ), y = (y, η) and z = (z, ζ). We also set

σ(x, y) := σ
(
(x, ξ), (y, η)

)
= y · ξ − x · η

for the standard symplectic form on Ξ. The prescription for f(X,D) ≡ Op(f) with
f : Ξ → C is then defined for u ∈ H and x ∈ Rd by

[Op(f)u](x) :=
1

(2π)d

∫
Rd

∫
R̂d

ei(x−y)·ηf

(
x+ y

2
, η

)
u(y)dydη, (6.1.1)

77
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the involution is f ◦(x) := f(x) and the multiplication (called the Moyal product) is

(f ◦ g)(x) := 4d

(2π)2d

∫
Ξ

∫
Ξ

e−2iσ(x−y,x−z)f(y)g(z)dydz. (6.1.2)

Obviously, these formulas must be taken with some care: for many symbols f and g
they need a suitable reinterpretation. Also, the normalization factors should always be
checked once again, since they mainly depend on the conventions of each author.

Exercise 6.1.1. Check that if f(x, ξ) = f(ξ) (f is independent of x), then Op(f) =
f(D), while if f(x, ξ) = f(x) (f is independent of ξ), then Op(f) = f(X).

Beside the encouraging results contained in the previous exercise, let us try to show
where all the above formulas come from. We consider the strongly continuous unitary
maps Rd ∋ x 7→ Ux ∈ U (H) and R̂d ∋ ξ 7→ Vξ := e−iX·ξ ∈ U (H), acting on H as

[Uxu](y) = u(y + x) and [Vξu](y) = e−iy·ξ u(y), u ∈ H, y ∈ Rd.

These operators satisfy the Weyl form of the canonical commutation relations

UxVξ = e−ix·ξ VξUx, x ∈ Rd, ξ ∈ R̂d, (6.1.3)

as well as the identities UxUx′ = Ux′Ux and VξVξ′ = Vξ′Vξ for x, x′ ∈ Rd and ξ, ξ′ ∈ R̂d.
These can be considered as a reformulation of the content of Exercise 4.1.3 in terms of
bounded operators.

A convenient way to condense the maps U and V in a single one is to define the
Schrödinger Weyl system {W (x, ξ) | x ∈ Rd, ξ ∈ R̂d} by

W (x) ≡ W (x, ξ) := e
i
2
x·ξ UxVξ = e−

i
2
x·ξ VξUx, (6.1.4)

which satisfies the relationW (x)W (y) = e
i
2
σ(x,y) W (x+y) for any x, y ∈ Ξ. This equality

encodes all the commutation relations between the basic operators X and D. Explicitly,
the action of W on u ∈ H is given by

[W (x, ξ)u](y) = e−i( 1
2
x+y)·ξ u(y + x), x, y ∈ Rd, ξ ∈ R̂d. (6.1.5)

Now, recall that for a family of m commuting self-adjoint operators S1, . . . , Sm one
usually defines a functional calculus by the formula f(S) := 1

(2π)m/2

∫
Rm f̌(t)e

−it·Sdt,

where t · S = t1S1 + . . . + tmSm and f̌ is the inverse Fourier transform of f , see
Remark 1.7.13 for a simplified version of this equality. The formula (6.1.1) can be
obtained by a similar computation. For that purpose, let us define the symplectic Fourier
transformation FΞ : S ′(Ξ) → S ′(Ξ) by

(FΞf)(x) :=
1

(2π)d

∫
Ξ

e−iσ(x,y)f(y)dy.
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Now, for any function f : Ξ → C belonging to the Schwartz space S(Ξ), we set

Op(f) :=
1

(2π)d

∫
Ξ

(F−1
Ξ f)(x)W (x)dx. (6.1.6)

By using (6.1.5), one gets formula (6.1.1). Then it is easy to verify that the relation
Op(f)Op(g) = Op(f ◦g) holds for f, g ∈ S(Ξ) if one uses the Moyal product introduced
in (6.1.2).

Exercise 6.1.2. Check that the above statements are correct, and in particular that the
normalization factors are suitably chosen.

6.2 Generalized pseudodifferential algebras

We have introduced in Section 5.4 the standard twisted crossed products (C , G, θ, ω), as
well as their family of Schrödinger representations (H, π, Uλ) with H = L2(G), defined
by pseudo-trivializations of the 2-cocycle ω. We shall now observe that by a partial
Fourier transformation, we get from these data a sort of pseudodifferential calculus.
More precisely, certain classes of functions on G × Ĝ will be organised in C∗-algebras
with a natural involution and a product involving ω and generalizing the Moyal product
introduced in (6.1.2). The composition between the partial Fourier transformation and
the Schrödinger representation will lead to a rule of assigning operators to symbols
belonging to these C∗-algebras.

Let us consider the locally compact abelian group G and its dual group Ĝ endowed
with normalized Haar measures in such a way that the Fourier transformations

FG : L1(G) → C0(Ĝ), (FG b) (ξ) =
∫
G

ξ(x)b(x)dx

and

FG : L1(G) → C0(Ĝ),
(
FG b

)
(ξ) =

∫
G

ξ(x)b(x)dx

induce unitary maps from L2(G) to L2(Ĝ). The inverses of these maps act on L2(Ĝ) ∩
L1(Ĝ) as

(
FĜ c

)
(x) =

∫
Ĝ
ξ(x)c(ξ)dξ and (FĜ c) (x) =

∫
Ĝ
ξ(x)c(ξ)dξ.

Let us now consider the standard twisted C∗-dynamical system (C , G, θ, ω). We de-
fine the mapping 1⊗FG : L1(G;C ) → C0(Ĝ;C ) by

[(
1⊗FG

)
(f)

]
(ξ) =

∫
G
ξ(x)f(x)dx

(equality in C ). We recall that L1(G)⊙C is a dense subspace of L1(G;C ) and observe
that

(
1⊗FG

)
(a⊗b) = a⊗

(
FG b

)
. Let us now also fix an element τ ∈ End(G). We trans-

port all the structure of the Banach ∗-algebra (L1(G;C ), ∗ωτ ,∗
ω
τ , ∥·∥1) to the correspond-

ing subset of C0(Ĝ;C ) via 1⊗FG. The space
(
1⊗FG

)
L1(G;C ) will also be a Banach

∗-algebra with a composition law ◦ωτ , an involution ◦ωτ and the norm ∥(1⊗F−1

G ) · ∥1. Its
enveloping C∗-algebra will be denoted by Cω

C ,τ . The map 1⊗FG extends canonically to

an isomorphism between C ⋊ω
θ,τG and Cω

C ,τ . We remark that
(
1⊗FG

)
[L1(G)⊙ C ] is al-

ready not very explicit, since one has no direct characterization of the space FG [L1(G)].
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Concerning Cω
C ,τ , we do not even know if it consists entirely of C -valued distributions

on Ĝ (whenever this makes sense). However, usually one can work efficiently on suitable
dense subsets.

We deduce now the explicit form of the composition law and of the involution. Let
us simply denote 1⊗ FG by F. One gets for any f, g ∈ FL1(G;C ) (be careful with the
position of the arguments)

(f ◦ωτ g)(x; ξ) :=
(
F
[
(F−1f) ∗ωτ (F−1g)

])
(x; ξ)

=

∫
G

∫
G

∫
Ĝ

∫
Ĝ

ξ(y)η(z)ζ(y − z) f(x+ τ(z − y); η)·

· g(x+ (1− τ)z; ζ) ω(x− τy; z, y − z)dydzdηdζ

and (
f ◦ωτ

)
(x; ξ) :=

(
F
[(
F−1f

)∗ωτ ]) (x; ξ)

=

∫
G

∫
Ĝ

[
ξ · η−1

]
(y) ω(x− τy; y,−y)−1 f(x+ (1− 2τ)y; η)dydη.

Both expressions make sense as iterated integrals; under more stringent conditions on
f and g, the integrals will be absolutely convergent.

Exercise 6.2.1. Show that in the special case τ = 1
2
1 and ω = 1, the above formulas

correspond to the Moyal product ◦ and to the involution ◦ introduced in Section 6.1.

The constructions and formulae presented above can be given (with some slight
adaptations) for any (abelian) twisted dynamical system. However, since we are con-
sidering a standard twisted dynamical system, it means that ω is pseudo-trivial. Thus,
for any continuous function λ : G → C(G;T) such that δ1(λ) = ω, the corresponding
Schrödinger covariant representation (H, π, Uλ) gives rise to the Schrödinger representa-
tion of C⋊ω

θ,τG that we have denoted byRepλτ in the previous chapter. As a consequence,
we get a representation of Cω

C ,τ just by composing with F−1; and this representation will

be denoted by Opλτ . By simple computations one obtains:

Proposition 6.2.2. (i) The representation Opλτ := Repλτ ◦ F−1 : Cω
C ,τ → B(H) is

faithful and acts on f ∈ FL1(G;C ) with u ∈ H and x ∈ G by the formula[
Opλτ (f)u

]
(x) =

∫
G

∫
Ĝ

η(x− y)λ(x; y − x)f
(
(1− τ)x+ τy; η

)
u(y)dydη (6.2.1)

where the right-hand side is viewed as an iterated integral.

(ii) If µ ∈ C1
(
G;C(G;T)

)
is another 1-cochain, giving a second pseudo-trivialization

of the 2-cocycle ω, then µ = δ0(c)λ for some c ∈ C(G;T) and Opλτ , Opµτ are
unitarily equivalent:

π(c−1)Opλτ (f)π(c) = Opµτ (f), ∀f ∈ Cω
C ,τ . (6.2.2)
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Remark 6.2.3. One can again observe that in the special case τ = 1
2
1 and with the

choice λ = 1 (absence of 2-cocycle), the formula provided in (6.2.1) corresponds to the
expression provided in (6.1.1).

Let us recall from from Section 5.2 that for different τ ’s, the C∗-algebras C ⋊ω
θ,τ G

and C ×ω
θ,τ G are isomorphic, and therefore Cω

θ,τ and Cω
θ,τ are also isomorphic. More

precisely, recall that (mτ,τ ′f) (q;x) = f(q + (τ ′ − τ)x;x) for any x, q ∈ G and f ∈
L1(G;A). Note that this isomorphism satisfies then Opλτ ′ = Opλτ ◦mτ,τ ′ (here ◦ is simply
the composition) and thus gives the transformation of the τ -symbol of a generalized
pseudodifferential operator into its τ ′-symbol.

As already mentioned, in the general literature on twisted crossed product C∗-
algebras only the special case τ = 0 is considered. However, in order to make the
connection with the usual Weyl calculus on the group Rd, the special choice τ = 1

2
1

had to be considered, and this is the reason why we have introduced the larger family
τ ∈ End(G). We now support the assertion that the choice of the parameter τ is in
fact a matter of ordering. Indeed, let us assume that the G-algebra C is unital, see
Definition 5.4.1 for the notion of G-algebra. Then any element f = 1 ⊗ b is in Cω

θ,τ for

any b : Ĝ→ C with FĜ b ∈ L1(G). In addition, the operator Opλτ (1⊗b) does not depend
on τ , see formula (6.2.1). We denote it by opλ(b); its action on u ∈ H is given by

[
opλ(b)u

]
(x) =

∫
G

λ(x; y − x) [FĜ b](y − x)u(y)dy.

Finally, by considering then arbitrary element a ∈ C , simple computations for τ = 0
and τ = 1 show that Opλ0(a⊗ b) = π(a)opλ(b) and Opλ1(a⊗ b) = opλ(b)π(a), where π(a)
denotes the multiplication operator by the function a.

Extension 6.2.4. Let us stress once more that the set of functions for which the above
integrals are absolutely convergent can be rather small, and certainly too small for var-
ious applications. Several possible extensions are then possible. A first approach would
be to deal with multiplier algebras, as sketched in [MPR05, Sec. 3.3]. An approach by
duality (but in a less general framework) has been introduced in [MP04]. Alternatively,
technics involving oscillatory integrals have been discussed in [LMR10], also in the mag-
netic framework introduced in the following chapter. All these extensions allow us to
consider the expressions introduced in this chapter for a much larger class of symbols.
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Chapter 7

Magnetic systems

In this chapter we shall see how all the previous constructions can be used when a
magnetic field is considered on Rd.

Very briefly, a continuous magnetic field is described by a closed continuous 2-
form B defined on Rd. It is well-known that any such field B may be written as the
differential dA of a 1-forms A called a vector potential, which is highly non-unique (the
gauge ambiguity). By using coordinates, one has

Bjk = ∂jAk − ∂kAj for any j, k ∈ {1, . . . d}.

In the presence of the field B = dA, the prescription (6.1.1) has to be modified. This
topic was very rarely touched in the literature and the following wrong solution appears:
The minimal coupling principle says roughly that the momentum D should be replaced
with the magnetic momentum ΠA = D−A(X). This originated in Lagrangian classical
mechanics and works well also at the quantum level as long as we consider operators
which are polynomials of order less or equal to 2. But if one just replaces in (6.1.1) the
expression f

(
(x + y)/2, η

)
by f

(
(x + y)/2, η − A(x + y)/2

)
one gets a formula which

misses the right gauge covariance. Indeed, let us denote the result of this procedure for
some function f in phase space by OpA(f). If another vector potential A

′ is chosen such
that A′ = A +∇ρ with ρ a scalar function, then dA′ = dA. But the expected formula
OpA′(f) = eiρOpA(f)e

−iρ is verified for some simple cases (A,A′ linear and f arbitrary,
or f polynomial of order strictly less than 3 in η and A,A′ arbitrary), but it fails in
general.

Thus, the aim of the following sections is two show that the correct solution can
directly be inferred from the formalism constructed before, without the invocation of
a minimal coupling principle. The content of this chapter is borrowed from the three
references [MPR05, MPR07, LMR10].

7.1 Magnetic twisted dynamical systems

From now on, the group G will always be Rd, with its usual action θ by translations. The
2-cocycle will be defined in terms of the magnetic field. More precisely, the magnetic

83
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field on Rd is a closed continuous 2-form B. Since on Rd we have canonical global
coordinates, we shall speak freely of the components Bjk of B; they are continuous real
functions on Rd satisfying Bkj = −Bjk and (in the distributional sense)

∂jBkl + ∂lBjk + ∂kBlj = 0 ∀j, k, l ∈ {1, . . . , d}.

It is well-known that B = dA for some 1-form A on Rd, called a vector potential,
which is highly non-unique. For simplicity, we shall consider only continuous A; this is
always possible since at least one continuous vector potential always exists, namely the
transversal gauge which is defined by

Aj(x) := −
d∑

k=1

∫ 1

0

Bjk(sx)sxk ds. (7.1.1)

Given a k-form C on Rd and a compact k-surface γ ⊂ Rd, we define

ΓC(γ) :=

∫
γ

C,

this integral having a well-defined parametrization independent meaning. We shall
mainly encounter circulations of 1-forms along linear segments γ = [x, y] and fluxes
of 2-forms through triangles γ = ⟨x, y, z⟩. In particular, for a continuous magnetic field
B one defines

ωB(q;x, y) := e−iΓB(⟨q,q+x,q+x+y⟩) for all x, y, q ∈ Rd. (7.1.2)

From now on, let us fix a Rd-algebra C , i.e. a C∗-subalgebra of BCu(Rd) which is
invariant under the actions of Rd by translations. Note that in Definition 5.4.1 we have
also assumed that C0(Rd) ⊂ C , but that this additional condition is not necessary here.
By Gelfand representation, we know that C ∼= C0(Ω), with Ω the spectrum of C . In
this setting, the additional assumption C0(Rd) ⊂ C allowed one to identify Rd with a
dense subset of Ω. Let us now consider C(Ω), the set of continuous functions on Ω. If C
is not unital, then such functions can be unbounded. The simplest example is obtained
by considering C = C0(Rd) with Ω equal to Rd. Taking this observation into account,
let us now define a magnetic field which is related to the Rd-algebra C :

Definition 7.1.1. A magnetic field B is of type C with C ∼= C0(Ω) if all its components
{Bjk}dj,k=1 belong to C(Ω;R).

Clearly, if Bjk ∈ C for any j, k ∈ {1, . . . , d}, then B is a magnetic field of type
C . However, the previous definition is more general, and unbounded magnetic field can
be considered in this setting. We recall that the notion of standard twisted system has
been introduced in Definition 5.4.2.

Lemma 7.1.2. If B is a magnetic field of type C , then (C ,Rd, θ, ωB) is a standard
twisted dynamical system.
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Proof. The proof that ωB is a normalized 2-cocyle, i.e. that it satisfies relations (5.1.1)
and (5.1.2), follows easily by direct computations (for the first one use the Stokes
Theorem for the closed 2-form B and the tetrahedron of vertices q, q+ x, q+ x+ y, q+
x+ y + z).

We now show that ωB has the right continuity properties. It should define a mapping

Rd × Rd ∋ (x, y) →
[
ωB(x, y)

]
(·) ≡ ωB(·;x, y) ∈ C(Ω;T), (7.1.3)

continuous with respect to the topology of uniform convergence on compact subsets of
Ω. But this is equivalent to the fact that ωB defines un element of C(Ω× Rd × Rd;T).
Note that this type of statement already appeared in the proof of Lemma 5.3.3. Taking
into account obvious properties of the exponential, this amounts to the fact that the
function

φB : Rd × Rd × Rd → R, φB(q;x, y) := ΓB(⟨q, q + x, q + x+ y⟩)

can be viewed as a continuous function on Ω× Rd × Rd.
We use the parametrization

φB(q;x, y) =
d∑

j,k=1

xj yk

∫ 1

0

∫ 1

0

sBjk(q + sx+ sty)dsdt.

Since the continuous action θ on C defines a continuous mapping θ on Ω, one has the
continuous correspondence Ω × Rd × Rd ∋ (q;x, y) → q + sx + sty = θsx+sty(q) ∈ Ω.
Since Bjk is seen as a continuous function from Ω to R, the assertion follows easily.

Exercise 7.1.3. Work out the details of the previous proof, and in particular show that
ωB satisfies the two conditions (5.1.1) and (5.1.2).

From now on, we can call (C ,Rd, θ, ωB) the twisted dynamical system associated
with the abelian algebra C and the magnetic field B. In most of the cases the 2-cocycle
ωB ∈ Z2

(
Rd;U (C )

)
is not trivial. But as Proposition 5.4.3 shows, it is pseudo-trivial.

In fact, its pseudo-trivialization can be achieved by a vector potential. Any continuous
1-form A defines a 1-cochain λA ∈ C1

(
Rd;C(Rd;T)

)
via its circulation:[

λA(x)
]
(q) ≡ λA(q;x) = e−iΓA([q,q+x]) = e−ix·

∫ 1
0 A(q+sx)ds. (7.1.4)

As soon as dA = B, we have δ1(λA) = ωB
(
a priori with respect to C(Rd;T)

)
, by a

suitable version of Stokes Lemma. As said above, the transversal gauge offers a contin-
uous vector potential corresponding to a given B. Actually, this is consistent with the
choice (5.3.1) of a pseudo-trivialization of ωB: for q, x ∈ Rd, λ(q;x) := ωB(0; q, x) =
e−iΓB(⟨0,q,q+x⟩) and it follows immediately that ΓB(⟨0, q, q + x⟩) = ΓA([q, q + x]), with A
given by (7.1.1).

Since specific standard twisted dynamical systems can be constructed based on any
magnetic field of type C , the whole formalism of the preceding chapters is available. In
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particular, twisted crossed product algebra C ⋊ωB

θ,τ Rd, also denoted by C ⋊B
θ,τ Rd and

their Schrödinger representations are at hand. Note that as always, the dependence on
τ is within isomorphism, and that for any continuous B the C∗-algebra C0(Rd)⋊B

θ,τ Rd

is isomorphic to K (H), the ideal of all compact operators in H = L2(Rd).
Let us close this section with some comments on the magnetic momentum, already

introduced in the preamble of this chapter. The fact that the magnetic 2-cocycle ωB

satisfies
ωB(q; sx, tx) = 1, ∀q, x ∈ Rd and ∀s, t ∈ R (7.1.5)

leads directly to the magnetic momenta. Indeed, let us fix some continuous A such that
dA = B, and thus δ1(λA) = ωB. Then λA satisfies for all q, x ∈ Rd and all s, t ∈ R:
λA(q; sx+ tx) = λA(q; sx)λA(q+sx; tx) (note that in general, if λ is not the exponential
of a circulation this will not be true). We consider then the Schrödinger covariant
representation (H, π, UA) with H = L2(Rd), π(a) = a(X) and UA = UλA

defined by

[UA
y u](x) ≡ [UA(y)u](x) = λA(x; y)u(x+ y), x, y ∈ Rd, u ∈ H.

The unitary operators {UA(y)}y∈Rd are called the magnetic translations. They often
appear in the physical literature. One has, by a short computation,

UA(sx+ tx) = UA(sx)UA(tx), ∀x ∈ Rd, ∀s, t ∈ R (7.1.6)

and this also implies UA(−x) = UA(x)−1 = UA(x)∗ for all x ∈ Rd. In fact, the formula

UA(y)UA(z) = π[ωB(y, z)]UA(y + z), y, z ∈ Rd

shows that (7.1.6) is equivalent with (7.1.5). For t ∈ R and x ∈ Rd, let us set UA
t (x) :=

UA(tx). By (7.1.6), we observe that {UA
t (x)}t∈R is a strongly continuous unitary group

in H for any x. Thus, by Stone Theorem (see Theorem 1.7.12), it has a self-adjoint
generator that moreover depends linearly (as a linear operator on H) on the vector x ∈
Rd. Thus we denote it by x·ΠA and call it the projection on x of the magnetic momentum
associated with the vector potential A. For any index j ∈ {1, ..., n} we set ΠA

j := ej ·ΠA

the projection of the magnetic momentum on the j’th vector of the canonical base in
Rd. A direct computation shows that on C∞

c (Rd) one has ΠA
j = Dj − Aj(X).
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7.2 Magnetic pseudodifferential calculus

In this section, we adapt the results presented in Section 6.1 when a magnetic field
is also present. Most of the following formulas appeared already in the more general
setting of Section 6.2, but this section can be seen as a useful résumé for the interested
reader.

Let us directly start by introducing the analog of the Weyl system recalled in (6.1.4)
but in the presence of a magnetic field. For the time being, B is any continuous magnetic
field on Rd and A is any corresponding continuous vector potential. Associated with
the Schrödinger covariant representation (H, π, UA) defined above, we can now define
the magnetic Weyl system WA by

Ξ ∋ x 7→ WA
(
x) := e−

i
2
x·ξ VξU

A(x) ∈ U (H).

These unitary operators satisfy then the relations

WA(x)WA(y) = e
i
2
σ(x,y)π[ωB(x, y)]WA(x+ y)

for any x = (x, ξ) and y = (y, η).

Exercise 7.2.1. Check the above relations

For any f ∈ S(Ξ) we can then write explicitly the operator OpA(f) := Opλ
A

1/2(f) in
H which has been introduced in Proposition 6.2.2, namely

[
OpA(f)u

]
(x) =

1

(2π)d

∫
Rd

∫
R̂d

ei(x−y)·ηe−iΓA([x,y])f

(
x+ y

2
, η

)
u(y)dydη.

Note that this formula can be called the magnetic Weyl calculus. Furthermore, it is
easily observed that this is an integral operator with kernel

KA := λ̃AS−1 (1⊗FR̂d)

where λ̃A(x, y) := λA(x; y−x) and
(
S−1h

)
(x, y) = h

(
x+y
2
, x− y

)
. With this formula, we

can now extend the map KA and thus define OpA(F ) for any F ∈ S ′(Ξ) as the integral
operator with kernelKA(F ), defined on S(Rd) with values in S ′(Rd). It seems legitimate
to view the correspondence f → OpA(f) as a functional calculus for the family of self-
adjoint operators X1, . . . , Xd,Π

A
1 , . . . ,Π

A
d . The high degree of non-commutativity of

these 2d operators stays at the origin of the sophistication of the symbolic calculus.
The commutation relations

i[Xj, Xk] = 0, i[ΠA
j , Xk] = δjk, i[ΠA

j ,Π
A
k ] = −Bjk(X), j, k = 1, . . . , d (7.2.1)

collapse for B = 0 to the canonical commutation relations satisfied by X and D,
see Exercise 4.1.3. But they are much more complicated, especially when B is not a
polynomial. The main mathematical miracle that allows, however, a nice treatment is
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the fact that (7.2.1) can be recast in the form of a covariant representation of a twisted
dynamical system.

Let us stress once more that the functional calculus that we have defined is gauge
covariant, in the sense that it satisfies the property: If A′ = A +∇φ with φ : Rd → R
continuous, then OpA

′
(f) = eiφ(X)OpA(f)e−iφ(X). This gauge covariance property may

be seen as a special instance of Proposition 6.2.2.
The extension of the usual Moyal product has a particular form in the magnetic

setting. More precisely, by adapting the formula obtained in Section 6.2 to the magnetic
2-cocyle and for τ = 1/2, one obtains on S(Ξ) the composition and the involution:

(f ◦B g)(x) = 4d

(2π)d

∫
Ξ

∫
Ξ

e−2iσ(x−y,x−z)e−iΓB(⟨x−z+y,y−x+z,z−y+x⟩)f(y)g(z)dydz, (7.2.2)

with x, y, z ∈ Ξ, and

f ◦B(x) = f(x), ∀x ∈ Ξ.

Note that with these formulas, one has (f ◦B g)◦B = g◦
B ◦B f ◦B as well as

OpA(f ◦B g) = OpA(f)OpA(g), and OpA(f ◦B) = OpA(f)∗.

Exercise 7.2.2. Without relying on the content of the previous sections, check directly
these equalities.

We remark that the involution ◦B and the product ◦B are defined intrinsically,
without any choice of a vector potential. The choice is only needed when we represent
the resulting structures on the Hilbert space L2(Rd). We call (7.2.2) the magnetic Moyal
product. The involution ◦B does not depend on B at all. This is no longer true if τ ̸= 1/2.
The property ωB(x,−x) = 1, ∀x ∈ Rd, is also used to get the simple form of ◦B .

Let us now assume that B is of type C for some Rd-algebra C . The C∗-algebra
CωB

C ,1/2, introduced in Section 6.2, will be denoted by CB
C . We call it the C∗-algebra of

pseudodifferential symbols of class C associated with B. We recall that it is essentially
a partial Fourier transform of the twisted crossed product C ⋊B

θ,1/2 Rd. The formulas

defining the magnetic Weyl calculus make sense at least on the dense subset (1 ⊗
FRd)L1(Rd;C ), with iterated integrals. The extension of OpA is a faithful representation
of the C∗-algebra CB

C for any continuous A with dA = B. If C0(Rd) ⊂ C , then OpA is
irreducible.

We close this section with some arguments about one possible extension for the
product ◦B. Indeed, as already mentioned in the Extension 6.2.4, the integrals defining
f ◦B g are absolutely convergent only for restricted classes of symbols. In order to
deal with more general distributions, an extension by duality was proposed in [MP04]
under an additional smoothness condition on the magnetic field. So let us assume that
the components of the magnetic field are C∞

pol(Rd)-functions, i.e. they are indefinitely
derivable and each derivative is polynomially bounded. The duality approach is based
on the observation [MP04, Lem. 14] : For any f, g in the Schwartz space S(Ξ), we have
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f ◦B g ∈ S(Ξ), and∫
Ξ

[f ◦B g](x)dx =
∫
Ξ

[g ◦B f ](x)dx =
∫
Ξ

f(x)g(x)dx = ⟨f, g⟩ =: (f, g).

As a consequence, by using the associativity of ◦B and the symmetry of (·, ·), one easily
deduces that for f, g, h ∈ S(Ξ), one has

(f ◦B g, h) = (f, g ◦B h) = (g, h ◦B f).

Definition 7.2.3. For any distribution F ∈ S ′(Ξ) and any function f, h ∈ S(Ξ) we
define

(F ◦B f, h) := (F, f ◦B h), (f ◦B F, h) := (F, h ◦B f)

The expressions F ◦B f and f ◦B F are a priori tempered distributions. The Moyal
algebra is precisely the set of elements of S ′(Ξ) that preserves regularity by composition.

Definition 7.2.4. The magnetic Moyal algebra M (Ξ) is defined by

M (Ξ) :=
{
F ∈ S ′(Ξ) | F ◦B f ∈ S(Ξ) and f ◦B F ∈ S(Ξ) for all f ∈ S(Ξ)

}
.

For two distributions F and G in M (Ξ), the magnetic Moyal product can be extended
by

(F ◦B G, h) := (F,G ◦B h) for all h ∈ S(Ξ).

Clearly, the set M (Ξ) with this composition law and the complex conjugation
F 7→ F ◦ is a unital ∗-algebra. An important result [MP04, Prop. 23] concerning the
Moyal algebra is that it contains C∞

pol,u(Ξ), the space of infinitely derivable complex
functions on Ξ having uniform polynomial growth at infinity. Finally let us quote a
result linking M (Ξ) with the functional calculus OpA [MP04, Prop. 21] : For any vector
potential A belonging to C∞

pol(Rd), OpA is an isomorphism of ∗-algebras between M (Ξ)

and B[S(Rd)]∩B[S ′(Rd)], where B[S(Rd)] and B[S ′(Rd)] are, respectively, the spaces
of linear continuous operators on S(Rd) and S ′(Rd).

Remark 7.2.5. The extension by duality also gives compositions M (Ξ) ◦B S ′(Ξ) ⊂
S ′(Ξ) and S ′(Ξ) ◦B M (Ξ) ⊂ S ′(Ξ). One checks plainly that associativity holds for any
three factors product with two factors belonging to M (Ξ) and one in S ′(Ξ).

7.3 Magnetic Schrödinger operators

From now on, we consider for simplicity a Rd-algebra C which is unital and which
contains C0(Rd). As a consequence, C ∼= C(Ω) with Ω a compactification of Rd. Then,
given a magnetic field B of type C , cf. Definition 7.1.1, a continuous vector potential
A that generates B and a suitable symbol h : R̂d → R, our aim is to show that the
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magnetic Schrödinger operator h(ΠA) (which needs to be carefully defined) defines an
observable affiliated to the C∗-algebra

OpA(CB
C ) = RepA

(
C ⋊B

θ,1/2 Rd
)
≡ Repλ

A

1/2

(
C ⋊B

θ,1/2 Rd
)
⊂ B(H),

see Definition 4.3.7 for the precision notion of affiliation. The proof of such a statement
is rather difficult and we shall do it under some smoothness conditions on the magnetic
field B and on the symbol h. We point out that we prove in fact in Theorem 7.3.2 a
stronger result that does not depend on the choice of any particular vector potential.

Definition 7.3.1. (i) For s ∈ R, a function h ∈ C∞(R̂d) is a symbol of type s,
written h ∈ Ss(R̂d), if the following condition is satisfied:

∀α ∈ Nd, ∃cα > 0 such that |(∂αh)(ξ)| ≤ cα⟨ξ⟩s−|α| for all ξ ∈ R̂d.

(ii) The symbol h is called elliptic if there exist R > 0 and c > 0 such that

c⟨ξ⟩s ≤ h(ξ) for all ξ ∈ R̂d and |ξ| ≥ R.

We denote by Ss
el(R̂d) the family of elliptic symbols of type s, and set S∞

el (R̂d) :=

∪sS
s
el(R̂d). Note that all the classes Ss(R̂d) are naturally contained in C∞

pol,u(Ξ), thus in
M (Ξ). For any z ∈ C \ R, we also set rz : R → C by rz(·) := (· − z)−1.

We are in a position to state the main results about affiliation. The proofs of these
statements are postponed until the next section.

Theorem 7.3.2. Assume that B is a magnetic field whose components belong to C ∩
BC∞(Rd). Then each real h ∈ S∞

el (R̂d) defines an observable ΦB
h affiliated to CB

C , such
that for any z ∈ C \ R one has

(h− z) ◦B ΦB
h (rz) = 1 = ΦB

h (rz) ◦B (h− z). (7.3.1)

In fact one even has ΦB
h (rz) ∈ F

(
L1(Rd;C )

)
⊂ S ′(Ξ), so the compositions can be

interpreted as M (Ξ)× S ′(Ξ) → S ′(Ξ) and S ′(Ξ)× M (Ξ) → S ′(Ξ).

We shall now consider a scalar potential V ∈ C . As seen in Theorem 3.4.5 the
algebra C can be identified with part of the multiplier algebra of F

(
L1(Rd;C )

)
. Then,

a straightforward reformulation of the perturbative argument presented in [ABG96,
p. 365–366] allows one to define the observable ΦB

h,V := ΦB
h + V . Considering now

h+ V ∈ S ′(Ξ) we remark that we can compute the Moyal product

(h+ V − z) ◦B ΦB
h,V (rz) = (h− z) ◦B ΦB

h,V (rz) + V ◦B ΦB
h,V (rz) = 1

by using the explicit formula of ΦB
h,V given in [ABG96, p. 366]. This leads then to the

following statement:
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Corollary 7.3.3. Assume that B is a magnetic field whose components belong to C ∩
BC∞(Rd). Let also V be a real function in C . Then ΦB

h,V is an observable affiliated to
CB

C , such that for any z ∈ C \ R one has

(h+ V − z) ◦B ΦB
h,V (rz) = 1 = ΦB

h,V (rz) ◦B (h+ V − z).

These statements are elegant, being abstract, but in applications one also needs the
represented version:

Corollary 7.3.4. Assume that B is a magnetic field whose components belong to C ∩
BC∞(Rd), and let V be a real function in C . Let A be a continuous vector potential that
generates B. Then OpA(h) + V (X) defines a self-adjoint operator in H with domain
given by the image of the operator OpA [(h− z)−1] (which do not depend on z ∈ C\R).
This operator is affiliated to OpA(CB

C ).

We finally give a description of the essential spectrum of the observables affiliated
to the C∗-algebra CB

C . For the generalized magnetic Schrödinger operators of Theorem
7.3.2, this is expressed in terms of the spectra of so-called asymptotic operators. The
affiliation criterion and the algebraic formalism introduced above play an essential role
in the proof of this result. Note that we shall mimic the approach already used in
Section 4.5 in the absence of a magnetic field, and freely use the notations and concepts
introduced there.

Recall that C ∼= C(Ω) with Ω a compactification of Rd. Then, for any τ ∈ Ω \ Rd,
one sets Oτ for the orbit generated by τ , and Qτ for the corresponding quasi-orbit. In
this setting, for any f ∈ C(Ω), the function x 7→ f

(
θx(τ)

)
is an element of BCu(Rd),

see Exercise 4.5.2 for details. In particular, this construction holds for V and Bjk if
both belong to C .

Theorem 7.3.5. Let B be a magnetic field whose components belong to C ∩BC∞(Rd)
and let V ∈ C be a real function. Assume that {Qτi}i is a covering of ∂Ω by quasi-orbits.
Then for each real h ∈ S∞

el (R̂d) one has

σess
[
OpA(h) + V (X)

]
= ∪iσ

[
OpAi(h) + Vi(X)

]
, (7.3.2)

where A, Ai are continuous vector potentials for B, Bi ≡ B|Qτi
, and Vi ≡ V |Qτi

.

Clearly, the computation of the essential spectrum is first performed at an abstract
level, i.e. without using any representation. This computation is more simple since
no vector potentials are involved. Only for convenience and tradition, the previous
represented version is also stated. Note also that the proof of this theorem is similar to
the one presented in Section 4.5, the 2-cocycles fitting very well with the functoriality
of the crossed products. We do not give any details here and refer to [MPR07, Sec. 3]
for the interested reader.
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7.4 Affiliation in the magnetic case

In this section we provide the proofs of Theorem 7.3.2 and of Corollary 7.3.4. Some
technical arguments are postponed to the end of the section. Throughout the section,
we assume tacitly all the assumptions of Theorem 7.3.2.

The proof of Theorem 7.3.2 will be based on the following strategy: Let M be an
associative algebra with a composition law denoted by ◦ and let h be an element of
M . Our aim is to find the inverse for h. Assume that h′ is another element such that
h ◦ h′ and h′ ◦ h are invertible. These inverses are written (h ◦ h′)(−1) and (h′ ◦ h)(−1)

respectively. Then, the element h′ ◦ (h ◦ h′)(−1) is obviously a right inverse for h and the
element (h′ ◦ h)(−1) ◦ h′ a left inverse for h. Both expressions are thus equal to h(−1).

In the sequel, we shall take for h the strictly positive symbol h + a, with a large
enough, and for h′ its pointwise inverse (h + a)−1. Finding an inverse (h + a)(−1) for
h + a with respect to the composition law ◦B will lead rather easily to an observable.
In the calculations below we shall use tacitly the some approximation procedures. For
several arguments we will be forced to get out of the algebra M = M (Ξ). This will be
easily dealt with by a suitable use of elements of S ′(Ξ).

Note finally that for simplicity, elements of R̂d will be denoted by p, k or l.

Proof of Theorem 7.3.2. (i) Let us consider an elliptic symbol h of order s and fix some
real number a ≥ − inf h + 1. We set ha := h + a, and denote by h−1

a its inverse with
respect to pointwise multiplication, i.e. h−1

a (p) := (h(p)+ a)−1 for all p ∈ R̂d. It is clear
that h−1

a is a symbol of type −s. Since both functions ha and h−1
a belong to C∞

pol,u(Ξ),
and thus to the Moyal algebra M (Ξ), one can calculate their product. By using (7.2.2)
we obtain(
ha ◦B h−1

a

)
(q, p) =

4d

(2π)d

∫
Rd

dx

∫
R̂d

dk

∫
Rd

dy

∫
R̂d

dl e−2i(k·y−l·x)γB(q; 2x, 2y)
ha(p− k)

ha(p− l)
,

(7.4.1)
with

γB(q; 2x, 2y) := ωB
(
q − x− y; 2x, 2(y − x)

)
. (7.4.2)

The last factor in the integral does not depend on x and y; it can be developed:

ha(p− k)

ha(p− l)
= 1+

d∑
j=1

(lj−kj)
∫ 1

0
dt(∂jh)

(
p− l + t(l − k)

)
h(p− l) + a

=: 1+
d∑

j=1

Fa,j(p; k, l) . (7.4.3)

Moreover, let

γ̃B(q; k, l) ≡ (FγB)(q; k, l) :=
1

(2π)d

∫
Rd

dx

∫
Rd

dy e−ik·y eil·x γB(q;x, y).

Then the following equality holds (in the sense of distributions):∫
R̂d

dk

∫
R̂d

dl γ̃B(q; k, l) = γB(q; 0, 0) = 1. (7.4.4)
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Thus, by inserting (7.4.3) and (7.4.4) into (7.4.1), we obtain

ha ◦B h−1
a = 1 +

d∑
j=1

fa,j,

with

fa,j(q; p) :=

∫
R̂d

dk

∫
R̂d

dl γ̃B(q; k, l)Fa,j(p; k, l) =
〈
(FγB)(q; ·, ·), Fa,j(p; ·, ·)

〉
. (7.4.5)

The last notation is used in order to emphasize the duality between C∞
pol,u(R̂d× R̂d) and

its dual. Indeed, for q, p fixed, Lemma 7.4.2 proves that Fa,j(p; ·, ·) ∈ C∞
pol,u(R̂d × R̂d),

and Lemma 7.4.1 proves that γB(q; ·, ·) ∈ C∞
pol(Rd × Rd), from which one infers that

(FγB)(q; ·, ·) ∈
[
C∞

pol,u(R̂d × R̂d)
]′
, see [Sch73, Chap. VII, Thm. XV].

(ii) We are now going to deduce some useful estimates on fa,j. We set ⟨Dx⟩ ≡ ⟨−i∂x⟩.
For α, j fixed and m,n integers that we shall choose below, one has

|(∂αp fa,j)(q; p)| ≤ sup
x,y∈Rd

|⟨x⟩−n⟨y⟩−n⟨Dx⟩m⟨Dy⟩m γB(q;x, y)| ·∥∥⟨x⟩−d ⟨y⟩−d
∥∥
L2(Rd×Rd)

∥∥⟨Dk⟩n+d⟨Dl⟩n+d⟨k⟩−m⟨l⟩−m
(
∂αp Fa,j

)
(p; ·, ·)

∥∥
L2(R̂d×R̂d)

.

(7.4.6)

By taking into account (7.4.11), and by some simple computations, one can fix m such
that the last factor of (7.4.6) is dominated by cna

−1/µ ⟨p⟩s/µ−1−|α|, with µ > max{1, s}.
Then, by using Lemma 7.4.1, one can choose n (depending on m) such that the first
factor on the r.h.s. term of (7.4.6) is bounded. Altogether, one obtains

|(∂αp fa,j)(q; p)| ≤ ca−1/µ ⟨p⟩s/µ−1−|α|, (7.4.7)

where c depends on α and j but not on p, q or a.
(iii) Let us now show that for each j, F−1(fa,j) is an element of L1(Rd;C ), and thus

belongs to the C∗-algebra CB
C .

By taking into account Lemma 7.4.1, the r.h.s. of the equation (7.4.5) can be
rewritten as

〈
γB(q; ·, ·), (F∗Fa,j)(p, ·, ·)

〉
, in which the duality between C∞

pol(Rd × Rd)

and
(
C∞

pol(Rd ×Rd)
)′
= F∗C∞

pol,u(R̂d × R̂d) is emphasized. As γB defines a function from

Rd×Rd to C (see Lemma 7.4.1) that is of class C∞
pol(Rd×Rd), we can easily prove that

fa,j(·; p) belongs to C , for all p ∈ R̂d (by using partitions of unity on Rd × Rd and by
approximating the duality pairing with finite linear combinations of elements in C ).

This observation together with (7.4.7) imply that the hypotheses of Lemma 7.4.4
are fulfilled for each fa,j, with t = − (1− s/µ) < 0. It follows that F−1(fa,j) belongs to
L1(Rd;C ) and that there exists C > 0 such that

∥F−1(fa,j)∥1 ≤ C a−1/µ.
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Thus, for a large enough, the strict inequality
∥∥∑d

j=1 F
−1(fa,j)

∥∥
1
< 1 holds. It follows

that F−1(1+
∑d

j=1 fa,j) is invertible in L̃
1, the minimal unitization of L1(Rd;C ). Equiv-

alently, ha ◦B h−1
a ≡ 1 +

∑d
j=1 fa,j is invertible in F̃(L1), the minimal unitization of

F
(
L1(Rd;C )

)
. Its inverse will be denoted by

(
ha ◦B h−1

a

)(−1)
.

(iv) We recall that h−1
a ∈ S−s(R̂d). Then, by Lemma 7.4.4 we get that h−1

a ∈
F
(
L1(Rd)

)
⊂ F

(
L1(Rd;C )

)
. Thus h−1

a ◦B (ha ◦B h−1
a )(−1) is a well defined element of

F
(
L1(Rd;C )

)
. Moreover, one readily gets ha ◦B [h−1

a ◦B (ha ◦B h−1
a )(−1)] = 1. For this,

just think of ha and h−1
a as elements of the Moyal algebra M (Ξ) and interpret (ha ◦B

h−1
a )(−1) ∈ F̃(L1) as an element of S ′(Ξ). The needed associativity follows easily from

the definition by duality of the composition law as stated in Remark 7.2.5. In the same
way one obtains [(h−1

a ◦B ha)(−1) ◦B h−1
a ] ◦B ha = 1 in M (Ξ). In conclusion, there exists

a0 ≥ − inf h+1 such that for any a > a0 the symbol ha possess an inverse with respect
to the Moyal product

h(−1)
a := h−1

a ◦B (ha ◦B h−1
a )(−1) = (h−1

a ◦B ha)(−1) ◦B h−1
a ∈ S ′(Ξ)

that also belongs to F
(
L1(Rd;C )

)
⊂ CB

C . The second equality follows from Remark
7.2.5 by straightforward arguments.

(v) We define ΦB
h (rx) := h

(−1)
−x for x < −a0. Then ΦB

h (rx) ∈ F
(
L1(Rd;C )

)
⊂ CB

C ∩
S ′(Ξ), its norm is uniformly bounded for x in the given domain and (h−x)◦BΦB

h (rx) =
ΦB

h (rx) ◦B (h − x) = 1, as shown above. This allows us to obtain an extension to the
half-strip {z = x+ iy | x < −a0, |y| < δ} for some δ > 0 by setting

ΦB
h (rz) := ΦB

h (rx) ◦B {1 + (x− z)ΦB
h (rx)}(−1). (7.4.8)

It follows that

(h− z)◦B ΦB
h (rz) = {(h−x)◦B ΦB

h (rx)+(x− z)ΦB
h (rx)}◦B {1+(x− z)ΦB

h (rx)}(−1) = 1.

We now prove that the map

{z = x+ iy | x < −a0, |y| < δ} ∋ z 7→ ΦB
h (rz) ∈ F

(
L1(Rd;C )

)
satisfies the resolvent equation. Let us choose two complex numbers z and z′ in this
domain and subtract the two equations

(h− z) ◦B ΦB
h (rz) = 1, (h− z′) ◦B ΦB

h (rz′) = 1 (7.4.9)

in order to get (h− z) ◦B {ΦB
h (rz)− ΦB

h (rz′)}+ (z′ − z)ΦB
h (rz′) = 0. By multiplying at

the left with ΦB
h (rz) and by using the associativity, we obtain the resolvent equation

ΦB
h (rz)− ΦB

h (rz′) = (z − z′)ΦB
h (rz) ◦B ΦB

h (rz′).

Now, setting z′ = z = x− iy with y > 0 and taking norms we get

∥ΦB
h (rz)∥F(L1(Rd;C )) ≤ y−1.
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With this estimate and formula (7.4.8), the function z 7→ ΦB
h (rz) can be extended to

the domain C\ [−a0,+∞), preserving the relations (7.4.9). The resolvent equation may
be proved in a similar way to hold on the entire domain C \ [−a0,+∞) and analyticity
of the defined function follows in an evident way.

(vi) Thus we have got an analytic map C\[−a0,+∞) ∋ z → ΦB
h (rz) ∈ F

(
L1(Rd;C )

)
satisfying the resolvent equation and the symmetry condition. A general argument
presented in [ABG96, p. 364] allows now to extend in a unique way the map ΦB

h to a
C∗-algebra morphism C0(R) → CB

C .

We can now provide the represented version of our affiliation criterion.

Proof of Corollary 7.3.4. We shall first consider the case V = 0 and then add V as a
bounded perturbation.

Let us denote by Dz the range of the operator OpA[ΦB
h (rz)] ∈ B(H). By the resol-

vent identity it follows immediately that it is a subspace of H that does not depend
on z ∈ C \ R. Thus we set Dz ≡ D. Since h ∈ M (Ξ), one has OpA(h) ∈ B[S(Rd)] ∩
B[S ′(Rd)]. We interpret it as a linear operator in S ′(Rd) and set H(A, 0) := OpA(h)|D.

Now, by applying OpA to (7.3.1) we get

{H(A, 0)− z1}OpA[ΦB
h (rz)] = 1

and
OpA[ΦB

h (rz)]{OpA(h)− z1S(Rd)} = 1S(Rd).

The first identity shows that H(A, 0)D ⊂ H. Straightforwardly it is hermitian. The
second equality implies that S(Rd) ⊂ D and thus D is dense in H. By the first equality
above the ranges of H(A, 0)± i both coincide with H. Thus, by a fundamental criterion
of self-adjointness, H(A, 0) is self-adjoint.

By construction, {OpA[ΦB
h (rz)] | z ∈ C\R} is the resolvent family of H(A, 0), which

is therefore affiliated to OpA
(
CB

C

)
.

Then we define the standard operator sum H(A, V ) := H(A, 0)+V : D → H. Using
the second resolvent equation and the Neumann series the conclusion of the Corollary
follows easily using [MPR05, Prop. 2.6]. A different proof could start from the result of
Corollary 7.3.3.

We can now present several technical lemmas which have already been used in the
previous proofs.

Lemma 7.4.1. Assume that the components of the magnetic field B belong to C ∩
BC∞(Rd). Then γB, defined in (7.4.2), belongs to C∞

pol(Rd ×Rd;C ), or more precisely:

(a) for each x, y ∈ Rd, γB(·;x, y) ∈ C ,

(b) for each α, β ∈ Nd, there exist c > 0, s1 ≥ 0 and s2 ≥ 0 such that for all
q, x, y ∈ Rd: ∣∣∂αx ∂βy γB(q;x, y)∣∣ ≤ c⟨x⟩s1 ⟨y⟩s2 .



96 CHAPTER 7. MAGNETIC SYSTEMS

Proof. We use the explicit parameterized form of γB

γB(q;x, y) = exp
{
− i

d∑
j,k=1

xj yk

∫ 1

0

[ ∫ 1

0

sBjk

(
q − 1

2
x− 1

2
y + sx+ st(y − x)

)
ds

]
dt

}
.

(7.4.10)
A careful examination of (7.4.10) leads directly to the results (a) and (b). See also the
proof of Lemma 4.2 in [MPR05].

For the next statement, recall that Fa,j(·; ·, ·) has been introduced in (7.4.3).

Lemma 7.4.2. For each j ∈ {1, . . . , d}, each α, β, γ ∈ Nd and each µ > max{1, s}
there exists c > 0 such that∣∣∂αp ∂βk ∂γl Fa,j(p; k, l)

∣∣ ≤ ca−1/µ ⟨p⟩s/µ−1−|α| ⟨k⟩s ⟨l⟩2s (7.4.11)

for all p, k, l ∈ R̂d and a ≥ − inf h+ 1.

Proof. It is enough to show that the expression

sup
t∈[0,1]

∣∣∣∂αp ∂βk ∂γl [(lj − kj) (∂jh)
(
p+ (t− 1)l − tk

)
h−1
a (p− l)

]∣∣∣ (7.4.12)

is dominated by the r.h.s. term of (7.4.11) with a constant c not depending on p, k, l
and a.

It is easy to see that for any δ ∈ Nd, we have ∂δh−1
a = h−1

a ua,δ, where ua,δ ∈
S−|δ|(R̂d) uniformly in a. By using this, the Leibnitz formula and the inequality ⟨x+y⟩ ≤√
2⟨x⟩⟨y⟩, it follows straightforwardly that (7.4.12) is dominated by

c1h
−1
a (p− l)⟨p⟩s−1−|α|⟨k⟩s⟨l⟩s

for some c1 > 0 independent of p, k, l and a. Furthermore, by using the ellipticity
of h, we see that there exist c2 > 0 and c3 > 0 independent of p, l and a such that
h−1
a (p− l) ≤ c2 ⟨l⟩s[a+ c3 ⟨p⟩s]−1 for all p, l ∈ R̂d. The final step consists in taking into

account the inequality a + c3⟨p⟩s ≥ µ1/µ (νc3)
1/ν a1/µ ⟨p⟩s/ν , valid for any µ ≥ 1, ν ≥ 1

with µ−1 + ν−1 = 1.

In order to state the next lemma in its full generality, we need the definition:

Definition 7.4.3. For s ∈ R, Ss(R̂d;C ) denotes the set of all functions f : Rd×R̂d → C
that satisfy:

(i) f(·; p) ∈ C for all p ∈ Rd,

(ii) f(q; ·) ∈ C∞(R̂d), ∀q ∈ Rd, and for each α ∈ Nd

sup
q∈Rd

∥f(q; ·)∥s,α := sup
q∈Rd

sup
p∈R̂d

[
⟨p⟩−s+|α| |∂αp f(q; p)|

]
<∞ .
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It is easily seen that the algebraic tensor product C ⊙ Ss(R̂d) is contained in
Ss(R̂d;C ).

Lemma 7.4.4. Let f be an element of St(R̂d;C ) with t < 0. Then its partial Fourier
transform F−1f is an element of L1(Rd;C ) that satisfies for a suitable large integer m

∥F−1f∥L1(Rd;C ) ≤ c max
|α|≤m

sup
q∈Rd

∥f(q; ·)∥t,α . (7.4.13)

Proof. This is a straightforward adaptation of the proof of [ABG96, Prop. 1.3.3] (see
also [ABG96, Prop. 1.3.6]). We decided to present it in order to put into evidence the
explicit bound (7.4.13). Actually, the arguments needed to control the behavior in the
variable q are easy and we leave them to the reader; we take simply f ∈ St(R̂d).

Since the case t ≤ −d is rather simple, we shall concentrate on the more difficult
one: −d < t < 0. Let us first choose a cutoff function χ ∈ C∞

c (Rd) that is 1 in a
neighbourhood of 0. One has the estimates (with F the Fourier transform but without
the constant factor):

∥(1− χ)F−1f∥L1 ≤ C
∑
|α|=m

∥|Q|−2m(1− χ)F−1(∂2αf)∥L1

≤ C
(∫

Rd

(
1− χ(x)

)2|x|−4mdx
)1/2 ∑

|α|=m

∥∂2αf∥L2

≤ C ′
(∫

Rd

(
1− χ(x)

)2|x|−4mdx
)1/2 (∫

R̂d

⟨p⟩2(t−2m)dp
)1/2

max
|α|=2m

∥f∥t,α ,

where we take m ∈ N with 4m > d to make the integrals convergent.
We study now the behavior of F−1f near the origin, a more difficult matter. Let us

fix a second cutoff function φ ∈ C∞(R̂d) such that 0 ≤ φ ≤ 1, φ(p) = 0 for |p| ≤ 1 and
φ(p) = 1 for |p| ≥ 2. For b > 0 we set φb(p) := φ(bp). We have:∣∣{F−1

(
(1− φb)f

)}
(y)

∣∣ ≤
∫

|p|≤2/b

|f(p)|dp ≤ ∥f∥t,0
∫

|p|<2/b

|p|tdp ≤ C ∥f∥t,0 b−d−t.

Moreover, if m ∈ 2N with m ≥ d+ 1, then one has:

|y|m|[F−1(φbf)](y)| ≤ C
∑
|α|=m

∣∣[F−1
(
∂α(φbf)

)]
(y)

∣∣
≤ C

∑
|α|=m

∑
β≤α

Cβ
α b

|α−β|
∫
R̂d

|(∂α−βφ)(bp)| |(∂βf)(p)|dp

≤ C ′max
|α|≤m

∥f∥t,α
{ ∫
|p|≥1/b

|p|t−mdp+
∑
|β|<m

bm−|β|
∫

1/b<|p|<2/b

|p|t−|β|dp
}

= C ′′ max
|α|≤m

∥f∥t,α bm−d−t.
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By fixing b := |y|, we get |[F−1(φ|y|f)](y)| ≤ C ′′ max
|α|≤m

∥f∥t,α |y|−d−t. The singularity at

the origin is integrable, and putting all the inequalities together we obtain (7.4.13).
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1215–1232.

[BS70] R. Busby, H. Smith, Representations of twisted group algebras, Trans. Amer.
Math. Soc. 149, 503–537, 1970.

[DG13] E.B. Davies, V. Georgescu, C*-algebras associated with some second order dif-
ferential operators, J. Operator Theory 70 (2013), no. 2, 437–450.

[Fol95] G.B. Folland, A course in abstract harmonic analysis, Studies in Advanced
Mathematics. CRC Press, Boca Raton, FL, 1995.

[GI02] V. Georgescu, A. Iftimovici, Crossed products of C*-algebras and spectral anal-
ysis of quantum Hamiltonians, Comm. Math. Phys. 228 (2002), no. 3, 519–560.

[GI06] V. Georgescu, A. Iftimovici, Localizations at infinity and essential spectrum of
quantum Hamiltonians I: General theory, Rev. Math. Phys. 18 (2006), no. 4, 417–
483.
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