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Chapter 1

The Basics

In this chapter, we provide some basic ideas about the framework in which data assimilation can be used.

1.1 Background Information

Definition 1.1.1 (From Wikipedia). Data assimilation is a mathematical discipline that seeks to optimally
combine theory with observations.

The main applications of data assimilation (DA) include:

1) The forecast of the evolution of a dynamical system,

2) The determination of the current state of a partially observed system,

3) The determination of an initial condition for the evolution of a system,

4) The determination of the value of some unknown parameters.

As mentioned in the above definition, data assimilation is a mathematical discipline, but was mainly devel-
oped by meteorologists and earth scientists. Now, its usefulness has been recognized and applied to several
research fields. Let us also emphasize that data assimilation always requires two ingredients: a model and
some data. A typical flowchart for any data assimilation process is given in Figure 1.1. Alternatively, a typical

Figure 1.1: A typical flowchart of a data assimilation process.
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Figure 1.2: A typical representation of a data assimilation process with three simulations.

representation of a data assimilation process with three simulations is represented in Figure 1.2. The above
definition also contains the idea of optimality, but this is subject to many constraints (as developed later) : the
model error (since a model is always a simplification), the precision error (no system is perfectly known or
described), the partial observations (in space and time), the computational errors, the simplifications due to
high dimensionality, the mathematical restriction (no exact solution known), etc. Note also that data assimila-
tion consists of many techniques and approaches, a diagram showing these developments is given on page 12
of [1].

The goal of this course is to develop the mathematical tools for fully understanding Figures 1.1 and 1.2,
and to understand some of the data assimilation methods. In addition, we shall describe some of the most
familiar data assimilation algorithms. Note that we shall always work in the discrete time setting. This
assumption simplifies part of the mathematics, and is sufficient for most of the applications. In addition, even
for continuous time systems, a discretization in time is usually applied during the computation process.

Let us finally stress that we will not implement these tools in any programming language (e.g. Python). This
is certainly unfortunate, but it would require too much additional time. On the other hand, students are
encouraged to work on the applications and on the implementations by themselves, and to look at many
examples available on internet.

1.2 Synthetic Data and Tests

We start by mentioning synthetic data since they are often used for testing any data assimilation algorithm.
We sketch how they are generated and how they can be used in some elementary data assimilation techniques.
This section is slightly cumbersome since we have not introduced the mathematical tools yet: they will be
introduced in Chapter 2.

Consider a (discrete time) physical system whose evolution is described by a function f : RN × Z→ RN , and
a function x : Z→ RN satisfying the equation

x(n + 1) = f
(
x(n), n

)
. (1.2.1)

Here x(n) represents the state of the physical system at time n, and the space RN is called the state space. For
example, it can be the position space, or the position × velocity space, or a much more complicated space, as
we shall see in some examples later. Observe that the evolution of the system is provided by the function f
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in (1.2.1), which gives the state of the system at time n + 1 as a function of the state of the system at time n.
Note that the function f can also depend explicitly on the time n, as emphasized by the second variable of f .

Let us now emphasize that the equation (1.2.1) is already a model, an idealization of the reality, also called
the truth. Thus, we assume that the true system xt : Z→ RN has an evolution given by:

xt(n + 1) = f
(
xt(n), n

)
+ g(n) (1.2.2)

where g : Z → RN is a function which is never known. This means that xt can also never be known exactly.
Since g is not known, this approach can not be used for generating synthetic data. We shall thus introduce an
equivalent trick.

For the creation of synthetic data, we usually assume that the truth xt : Z→ RN satisfies the equation (1.2.1),
but that the model described by x : Z→ RN satisfies the following equation:

x(n + 1) = f
(
x(n), n

)
+ ξ(n), (1.2.3)

where ξ(n) is called the model error at time n, and this model error is usually not known explicitly. In this
setting, the evolution of the truth follows the perfect system described by (1.2.1), while the evolution of the
model is described by (1.2.3) and involves an error related to the simplification of our model compared to the
truth.

Now even if the state of the true system at time n is supposed to be fully described by xt(n), it is usually not
possible to observe it in its entirety. The observations are possible only on part of the system, or through a
function defined on the system. For that reason, we define the observation y(n) of the physical system at time
n by

y(n) := H
(
xt(n)

)
+ ε(n), (1.2.4)

where H : RN → RM corresponds to what is measured on the system, and ε(n) is the observation error, namely
the error in the measurement process. The function H is called the observation operator, or the observation
matrix in the simplest situation where H is a M ×N matrix. Note that usually, M ≤ N, but this is not required.
In this setting, the set of observations {y(n)}n∈Z corresponds to the synthetic data.

Based on the notations introduced above, we can now describe more precisely one of the goals of data assimi-
lation. As a time reference, we assume that the present time is denoted by n∗. Let us assume that {y(n)}n≤n∗ are
known. These observations can be either real observations, or synthetic observations as constructed above.
Then, one of the aims of data assimilation is to determine the observation forecasts {y f (n)} for n > n∗, or the
more challenging aim, to determine the system forecasts {x f (n)} for n > n∗. Uncertainties have to be attached
to these forecasts.

For testing the forecasts {y f (n)}n>n∗ one can usually only compare them with the set {y(n)}n>n∗ when these
observations are available (which means in the future, if n∗ is the current time). However, in the present setting
with synthetic data, we can compare them with

{
H

(
xt(n)

)}
n>n∗ , or compare

{
x f (n)

}
n>n∗

with
{
xt(n)

}
n>n∗ , since

these quantities exist. One simple way to measure the error is with the Root Mean Square Error, abbreviated
RMSE.

The RMSE for a window of length p can be found by evaluating any one of the three expressions:√√ p∑
i=1

1
p

∣∣∣y f (n∗ + i) − y(n∗ + i)
∣∣∣2 (1.2.5)
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or √√ p∑
i=1

1
p

∣∣∣y f (n∗ + i) − H
(
xt(n∗ + i)

)∣∣∣2 (1.2.6)

or √√ p∑
i=1

1
p

∣∣∣x f (n∗ + i) − xt(n∗ + i)
∣∣∣2 (1.2.7)

Let us emphasize that (1.2.5) is always possible, if we wait until the time n∗ + p, while (1.2.6) and (1.2.7) are
usually unavailable. They are available precisely in the framework of synthetic data, and this is the interest of
this framework. In fact, by comparing (1.2.6) with the expression√√ p∑

i=1

1
p

∣∣∣y(n∗ + i) − H
(
xt(n∗ + i)

)∣∣∣2 (1.2.8)

we can conclude that the forecast process has been efficient if (1.2.6) is smaller than (1.2.8), while the predic-
tion scheme is not efficient if (1.2.6) is bigger than (1.2.8).

As a final remark, observe that having fixed n∗ to the present time is arbitrary, n∗ can also be fixed at any
particular time point in the past. This does not change any outcome, except that y(n) for some n > n∗ might
already be available for comparisons.

1.3 Data Driven Forecasting

In this section, we mention the simplest forecasting methods, and give a flavour of future developments.
Clearly, everything is very simple, since no mathematical tools have been introduced yet.

Let us start with polynomial interpolation. We consider a family {ti}ℓi=0 ⊂ R, ti , t j for i , j, and set ci : R→ R
with

ci(t) :=
∏

j,i(t − t j)∏
j,i(ti − t j)

=
(t − t0)(t − t1) . . . (t − ti−1)(t − ti+1) . . . (t − tℓ)

(ti − t0)(ti − t1) . . . (ti − ti=1)(ti − ti+1) . . . (ti − tℓ)
.

Clearly, ci(ti) = 1 but ci(t j) = 0 if i , j .

If {y(t0), . . . , y(tℓ)} ⊂ RM are observations at time t0, . . . , tℓ, then one can set q : R→ RM as:

q(t) :=
ℓ∑

i=0

ci(t)y(ti) (1.3.1)

Thus, q is a function of the variable t with values in RM. Observe that the graph of this function goes through
the points

(
ti, y(ti)

)
, since q(ti) = y(ti), for any i ∈ {0, 1, . . . , ℓ}. Then, for any any t < {t0, . . . , tℓ} we can set

the observation forecast y f (t) := q(t). Clearly, this approach can be applied to the discrete time example of
Section 1.2, but it performs poorly in general.

Exercise 1.3.1 (Linear interpolation). Write the expression for y f (t) if the two observations y(t0) at time t0
and y(t1) at time t1 are provided. Prove that the corresponding polynomial represents a line in RM.

The next forecast scheme consists in a linear combination with training set. The idea is still to use a linear
combination of the past ℓ + 1 observations, as in (1.3.1), but without imposing the explicit coefficients ci(t).
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For simplicity, we shall assume that M = 1 and that ti+1 − ti = cst for all i, meaning that the observations
are taken at regular time intervals. We then define the residual r j as the difference between observation and
forecast, namely for j ∈ {1, . . . , J}

r j := y
(
t j+ℓ+1

)
− y f (t j+ℓ+1

)
= y

(
t j+ℓ+1

)
−

ℓ∑
i=0

xi y
(
t j+ℓ−i

)
. (1.3.2)

Clearly, the sum term is a linear combination of the ℓ + 1 previous observations, but the coefficients xi are not
fixed yet.

Suppose that we have J + ℓ + 1 data available, then we can write in a matrix form:

r :=


r1
...

rJ

 =

y(t1+ℓ+1)
...

y(tJ+ℓ+1)

 −A

x0
...

xℓ

 ∈ RJ with A =


y(tℓ+1) y(tℓ) . . . y(t1)
y(tℓ+2) y(tℓ+1) . . . y(t2)
...

...
...

y(tℓ+J) y(tℓ+J−1) . . . y(tJ)

 ∈ MJ×ℓ+1(R)

Let us emphasize that the above construction is based on the assumption of the stationarity of the time series,
in the sense that the coefficients x0, . . . , xℓ can be used at any time! The regularity of the time between the
observations is necessary for this assumption.

We write the matrix equation above as r = y−Ax, where x is still unknown. If J = ℓ+1 and ifA is invertible,
we can set x := A−1y, and then r = 0 ∈ RJ , but often J ≫ ℓ + 1, and then there is in general no x ∈ Rℓ+1 such
that r = 0.

The method of least squares consists of finding x such that ∥r∥2 :=
∑J

j=1 r2
j is minimum. Note that such an x

might not be unique, but at least there exists one. Thus, we denote these value(s) of x as x∗, and write

x∗ := arg min ∥r∥2 = arg minx∈Rℓ+1∥Ax − y∥2. (1.3.3)

Once one x∗ are found (see exercise below), we can use (1.3.2) and obtain:

y f (tn∗+1
)
=

ℓ∑
i=0

(x∗)iy
(
tn∗−i

)
.

In the sequel, we shall often consider square matrices with a special property: A matrix A ∈ MN×N(R) is
positive definite ifA is symmetric and xTAx > 0 for all x ∈ RN \ {0}. We write simplyA > 0 ifA is positive
definite. Note that sinceA is symmetric, its eigenvalues are well-defined, and this condition means that its N
eigenvalues are strictly positive.

Exercise 1.3.2. Consider F : Rℓ+1 → R, with F(x) = ∥Ax − y∥2 = ⟨Ax − y,Ax − y⟩, where the last notation
denotes the scalar product in RJ . Show that ∇F(x) = 2AT (Ax − y), and that the Hessian Matrix of F is
HF = 2ATA ∈ Mℓ+1×ℓ+1(R). Show that AT A is positive definite if rankA = ℓ + 1. If so, show that the
solution of

ATAx = AT y

is the unique solution to the least squares equation (1.3.3). This implies that x∗ in the equation is unique.

Let us finally remark that the two approaches introduced above do not rely on any model for the dynamical
system generating the observations, they are part of the so-called autoregressive models based on data only.
In other words, there are instances of purely data driven models. More sophisticated models of this type exist,
but they use random variables, introduced in Section 2.1, as for example the ARIMA model.
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1.4 Model Driven Forecasting

We come back to the construction of Section 1.2, and assume that the evolution of the model is described by

x(n + 1) = f
(
x(n)

)
with f : RN → RN . This is a simplification of (1.2.1) once the system is assumed to be autonomous.

Recall also that true evolution xt is supposed to satisfy xt(n + 1) = f
(
xt(n)

)
+ g(n) but g is not known, see

(1.2.2). Suppose also that an initial condition x(n∗) is given. Then, for generating the forecast at n∗ + k one
has

x(n∗ + k) = f
(
x(n∗ + k − 1)

)
= · · · = f

(
f
(
. . . f

(
x(n∗)

)
. . .

))
= f ◦k

(
x(n∗)

)
, (1.4.1)

where f ◦k means “ f composed k times”. On the other hand, for the truth one has

xt(n∗+k) = f
(
xt(n∗ + k − 1)

)
+g(n∗+k−1) = f

(
f
(
xt(n∗+k−2)

)
+g(n∗+k−2)

)
+g(n∗+k−1) = . . . (1.4.2)

Observe that a new term g(x∗ + ℓ) enters at each step. Due to these additional terms, and in particular if f is
non-linear, the difference between x(n∗ + k) and xt(n∗ + k) will quickly grow, and the same for the difference
between

y(n∗ + k) = H
(
xt(n∗ + k)

)
+ ε(n∗ + k) and y f (n∗ + k) = H

(
x(n∗ + k)

)
, (1.4.3)

where H denotes the observation operator, and ε the observation error, as introduced in (1.2.4). In addition,
this construction depends on the initial value x(n∗), which is not precisely known in general. If we define the
residual at time n∗ + k by

r(n∗ + k) := y(n∗ + k) − y f (n∗ + k)

then one observes with (1.4.1), (1.4.2), and (1.4.3), that this residual is highly dependent on x(n∗), with a very
complicated dependence on this initial condition.

Let us now present how past observations can improve our knowledge of x(n∗), and therefore improve the
forecast x(n∗ + k). The approach is again based on the method of least squares. For simplicity we assume that
M = 1 and that the observation operator H : RN → R is linear, i.e. H(x) = Hx ∈ R for some H ∈ M1×N(R).

Figure 1.3: A window with ℓ past observations, and a window with ℓ forecast values.

We assume that ℓ past observations are available at regular time intervals, and denote them by {y(n∗−ℓ+i)}ℓi=1 ⊂

R. Set L : RN → R defined by:

L(x) :=
1
2

ℓ∑
i=1

(
r(n∗ − ℓ + i)

)2
=

1
2

ℓ∑
i=1

(
y f (n∗ − ℓ + 1) − y(n∗ − ℓ + 1)

)2

=
1
2

ℓ∑
i=1

(
Hx(n∗ − ℓ + 1) − y(n∗ − ℓ + i)

)2
=

1
2

ℓ∑
i=1

(
H f ◦i(x) − y(n∗ − ℓ + i)

)2
.

In the last step, we set : x = x(n∗ − ℓ). A representation is given in Figure 1.3. Hence, we shall look for an
initial condition x ≡ x(n∗ − ℓ) which minimizes L, and then use x(n∗) as the initial condition for forecasting
x(n∗ + 1), . . . , x(n∗ + ℓ). This operation is repeated every ℓ intervals of time, often called a window of length ℓ.
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Let us emphasize that the minimization problem is much more involved than the one seen in Section 1.3,
since the x-dependence is much more complicated. A local extremum x∗ of L satisfies ∇L(x∗) = 0, but even
if we find one it is necessary to check that it is indeed a local minimum and not a local maximum. We set
H = (h1, . . . , hN) and observe firstly that

∇

[
1
2

(
H f ◦i(x) − y(n∗ − ℓ + i)

)2
]
=

(
H f ◦i(x) − y(n∗ − ℓ + i)

)
∇H f ◦i(x)

= −r(n∗ − ℓ + i)∇
N∑

j=1

h j
(

f ◦i(x)
)

j

= −r(n∗ − ℓ + i)
((

J f ◦i
)
(x)

)T
HT .

For the last equality, we recall that for a continuously differentiable function k : RN → RN , the Jacobian
matrix Jk is given by

Jk(x) =


∂k1
∂x1

· · ·
∂k1
∂xN

...
...

∂kN
∂x1

· · ·
∂kN
∂xN

 (x).

Exercise 1.4.1. Check and justify the above computations.

Thus, by collecting the previous equalities we infer that

∇L(x) = −
ℓ∑

i=1

r(n∗ − ell + 1)
((

J f ◦i
)
(x)

)T
HT

Let us emphasize that the expression ∇L(x) is very complicated but the orange part does not depend on any
data, it depends only on the model and can be computed once for all. The cyan part depends on the data and
has to be updated every variational data assimilation cycle of length ℓ.

There exist algorithms for finding x∗ such that ∇L(x∗) ≈ 0, such as the gradient descent method. Once an
optimal x∗ is chosen, we set xa(n∗) := f ◦ℓ(x∗), where a stands to analysis, and define the forecasts y f (n∗+1) :=
f
(
xa(n∗)

)
, up to y f (n∗ + ℓ) := f ◦ℓ

(
xa(n∗)

)
. Usually, these forecasts are quite good, meaning that they are quite

close to the truth. When x f (n∗ + ℓ) := f ◦ℓ
(
xa(n∗)

)
is forecast, we add the superscript f for forecast. Later,

when the observations y(n∗ + 1), . . . , y(n∗ + ℓ) are available, and when the method described above is applied
on the window n∗ + 1, . . . , n∗ + ℓ, one gets an improved initial condition for x f (n∗ + ℓ) for the next cycle, and
denotes it by xa(n∗ + ℓ). Figure 1.4 corresponds to this scheme with ℓ = 5.

Figure 1.4: An illustration of the model driven forecasting scheme.
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Remark 1.4.2. 1) If M > 1, the same approach holds, but one instead has to sum over the components of(
y f (n∗ − ℓ + i) − y(n∗ − ℓ + i)

)
.

2) If H is non-linear, the same approach is possible, the same (cyan and orange) separation holds, but the
orange part is slightly more complicated.

3) What is missing are confidence intervals, or information about how much we can trust a forecast. This
notion is related to probability, which are going to be discussed in Section 2.1.
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Chapter 2

Mathematical Background

This chapter contains the mathematical background necessary for the understanding of data assimilation tech-
niques.

2.1 Probability and Random Variables

The aim of this section is to describe and quantify any non-predictable experiment. We give a framework
suitable for many applications.

Definition 2.1.1 (Measurable space). A measurable space (Λ, E) is a set Λ together with a collection of
subsets E closed under complement, countable unions and countable intersections: if A ∈ E, Ac := Λ\A ∈ E,
if {A j} j∈N ⊂ E, then ∪ jA j ∈ E and ∩ jA j ∈ E. One also says that E is a σ-algebra.

If Λ also belongs to E, then one condition can be dropped, as one can show in this exercise:

Exercise 2.1.2. Prove this statement: if E is a collection of subsets of Λ with Λ ∈ E and which is closed under
complement and countable unions, then it is closed under countable intersections.

An example of a measurable space is the usual space RN together with the family of sets generated by intervals
by considering countable unions, intersections, and complements. In this case, one speaks about the Borel
σ-algebra σB. Thus, (RN , σB) is the most common measurable space, and one usually denotes it simply by
RN . An other example of a measurable space is provided by Λ = {λ1, . . . , λN} a finite set and E the power set
of Λ consisting of all subsets of Λ. Two standard examples are

Λ = {heads, tails} or Λ =

{
1 ,2 ,3 ,4 ,5 ,6

}
.

This second example can also be extended to an infinite set, like for example Λ = N or Λ = Z, also endowed
with their respective power set.

Definition 2.1.3 (Probability space). A probability space (Ω,F ,P) consists of a measurable space (Ω,F ) with
Ω ∈ F , and a function P : F → [0, 1] satisfying P(Ω) = 1, P(Ø) = 0 and

P
(
∪ j∈NA j

)
=

∑
j∈N

P(A j)

whenever A j ∩ Ak = Ø ∀ j , k. We call Ω the sample space, F the event space, ω ∈ Ω an elementary event
and A ∈ F an event, and finally P the probability measure.
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Usually, Ω is very complicated or unknown. Functions defined on Ω are more important.

Definition 2.1.4 (Random variable). Consider a probability space (Ω,F ,P) and a measurable space (Λ,E).
A random variable X : Ω→ Λ is a function satisfying for any A ∈ E{

ω ∈ Ω | X(ω) ∈ A
}
≡ X−1(A) ∈ F . (2.1.1)

In the special case Λ = RN , or more precisely if we consider (Λ,E) = (RN , σB), then (2.1.1) is satisfied if
X = (X1, . . . , XN) verifies {

ω ∈ Ω | X j(ω) ≤ x j ∀ j = 1, . . . ,N
}
∈ F

for any (x1, . . . , xN) ∈ RN . Note that the special case N = 1 corresponds to the standard univariate random
variables, while N > 1 corresponds to the multivariate random variables. Based on the notion of random
variable, we can define a new measure:

Definition 2.1.5 (Induced probability measure). When X : Ω → Λ is a random variable from a probability
space (Ω,F ,P) to a measurable space (Λ,E), the map µX : E → [0, 1] defined by

µX(A) = P
(
{ω ∈ Ω | X(ω) ∈ A}

)
= P

(
X−1(A)

)
≡ P(X ∈ A)

is called the induced probability measure. µX is also called the law of X, and we write X ∼ µX for this
correspondence.

Usually, µX is much simpler than X, since it is defined on (Λ,E), as for example on (RN , σB), and not on
(Ω,F ). Let us mention that there exist two principal types of random variables (but others also exist). Quite
often, only these 2 types are mentioned.

Definition 2.1.6 (Absolutely continuous random variable). The random variable X : Ω → RN is absolutely
continuous if the induced probability measure is absolutely continuous with respect to the Lebesgue measure,
namely if there exists a (measurable) function ΠX : RN → [0,∞) satisfying for any A ∈ σB

µX(A) =
∫

A
ΠX(x)dx.

The function ΠX is called the probability density function, or simply the pdf.

Definition 2.1.7 (Discrete valued random variable). The random variable X : Ω → Λ is discrete valued if
X(Ω) = {X(ω) | ω ∈ Ω} is finite or countable. In this case, we define the function pX : X(Ω)→ [0, 1] by

pX(x) := P
(
X−1({x}))

for any x ∈ X(Ω). The function pX is called the the probability mass function, or simply pmf.

In these two situations, we still write X ∼ ΠX or X ∼ pX . It is clear that the following properties hold:∫
RN ΠX(x)dx = 1 and

∑
x∈X(Ω) pX(x) = 1. Observe also that for any absolutely continuous random variable X,

one has µX(x) = 0 for any x ∈ RN while ΠX(x) ∈ [0,∞) for (almost every) x ∈ RN .

Remark 2.1.8. Any function Π : RN → [0,∞) satisfying
∫
Π(x) dx = 1, or any function p from a finite set or

a countable set Λ to [0, 1] satisfying
∑

x p(x) = 1, defines the pdf or the pmf of a random variable. However, in
such a situation we don’t have the probability space (Ω,F ,P), we just have the law. If necessary, a probability
space can be constructed, but it is somewhat artificial.
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Let us still introduce a new measurable space (Ξ,G). In applications, this space will always be either R, or RN ,
or Mn×m(R), the set of n × m matrices with entries in R. Since Mn×m(R) can be identified with Rnm, it is also
a measurable space. We then consider functions f : Λ → Ξ. These functions are measurable if f −1(B) ∈ E
for all B ∈ G. Note that this notion of measurability was already the one imposed on the random variable
X : Ω→ Λ.

Definition 2.1.9 (Expectation). Let X : Ω → Λ be a random variable. For any measurable function f : Λ →
Ξ, the expectation of f (X) is defined by (the Lebesgue type integral)

E
(
f (X)

)
=

∫
Λ

f (x) µX(dx). (2.1.2)

Note that when writing such an expression, we assume that it exists even with f replaced by | f | (absolute
convergence of the integral). When Λ is R, or RN , or Mn×m(R), we simply write E(X) for E

(
id(X)

)
, where id

denotes the identity function satisfying id(x) = x,

For any A ∈ E, we define the characteristic function 1A by 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x < A. Thus,
1A : Λ→ R is a measurable function, and one observe that the following equalities hold:

P(X ∈ A) ≡ P
({
ω ∈ Ω | X(ω) ∈ A

})
= µX(A) =

∫
A
µX(dx) =

∫
Λ

1A(x) µX(dx) = E
(
1A(X)

)
.

Exercise 2.1.10. For σ > 0 and x̄ ∈ R set Π : R→ [0,∞) by

Π(x) =
1
√

2πσ
exp

(
−

1
2σ2 (x − x̄)2

)
.

Check that
∫
Π(x) dx = 1. We write X = N(x̄, σ2) for the corresponding univariate random variable, called

Gaussian random variable. Check that E(X) ≡ E
(
id(X)

)
= x̄. and Var(X) := E

((
X − E(X)

)2
)
= E

(
(X − x̄)2

)
=

σ2.

More generally, for x̄ ∈ RN and P ∈ MN×N(R) with P > 0, set Π : RN → [0,∞) with

Π(x) :=
1

(2π)N/2|P|1/2
exp

(
−

1
2

(x − x̄)T P−1(x − x̄)
)
,

with |P| := det(P). Check that
∫
Π(x)dx = 1. We write X = N(x̄, P) for the corresponding multivariate random

variable, called N-dim Gaussian random variable. Check that E(X) = x̄, and that P = E
(
(X − x̄)(X − x̄)T

)
.

Here, P is called the covariance matrix.

Exercise 2.1.11. If X : Ω → RN is absolutely continuous with pdf ΠX and if ϕ : RN → RN is bijective and
C∞, show that Y := ϕ(X) : Ω → RN is a new absolutely continuous random variable, with pdf ΠY given by
ΠY (y) = ΠX

(
ϕ−1(y)

)
|Jϕ−1(y)|. Here, |Jϕ−1(y)| denotes the determinant of the Jacobian matrix of ϕ−1.

Consider now two measurable spaces (Λ1,E1) and (Λ2,E2), and two random variables X1 : Ω → Λ1 and
X2 : Ω→ Λ2 defined on the same probability space (Ω,F ,P). The induced probability measures are denoted
by µX1 and µX2 . Set Z = (X1, X2) : Ω → Λ1 × Λ2 with Λ1 × Λ2 =

{
(x1, x2) | x1 ∈ Λ1, x2 ∈ Λ2}. The set

Λ1 ×Λ2 is endowed with the σ-algebra generated by boxes A1 × A2 =
{(

x1, x2) | x1 ∈ A1 and x2 ∈ A2} for any
A1 ∈ E1 and A2 ∈ E2. This σ-algebra is denoted by E1 ×E2. The induced probability measure µZ is called the
joint measure. By definition, for any set A ∈ E1 × E2, one has

P
({
ω ∈ Ω |

(
X1(ω), X2(ω)

)
∈ A

})
= µZ(A) =

∫
A
µZ

(
dx1 × dx2) = ∫

Λ1×Λ2
1A

(
x1, x2)µZ

(
dx1 × dx2).
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The following equalities then hold:

µX1(A1) = µZ(A1 × Λ2) and µX2(A2) = µZ(Λ1 × A2)

for any A1 ∈ E1 and A2 ∈ E2. The probability measures µX1 and µX2 are called the marginal measures of µZ .

Let us now assume that Λ j = RN j and and that X j are absolutely continuous random variables. Then Z : Ω→
RN1+N2 is absolutely continuous, with pdf denoted by ΠX1,X2 and its marginal pdfs given by

ΠX1
(
x1) = ∫

RN2
ΠX1,X2

(
x1, x2)dx2 and ΠX2

(
x2) = ∫

RN1
ΠX1,X2

(
x1, x2)dx1.

For X j : Ω→ RN j we set E
(
X j) := E

(
id

(
X j)) ∈ RN j and the cross-covariance matrix

Cov
(
X1, X2) = E

((
X1 − E

(
X1)) (X2 − E

(
X2))T

)
∈ MN1×N2(R).

In particular, for X : Ω → RN the covariance matrix is given by Cov(X) = Cov(X, X) ∈ MN×N(R). In the
special case N1 = N2 = 1 (a univariate random variable), the correlation is defined by

Corr
(
X1, X2

)
=

E
((

X1 − E
(
X1)) (X2 − E

(
X2)))√

E
((

X1 − E(X1)
)2
)
· E

((
X2 − E(X2)

)2
) ∈ [−1, 1].

Definition 2.1.12 (Independence). The random variables X1 : Ω → Λ1 and X2 : Ω → Λ1 are independent if
for any A1 ∈ E1, A2 ∈ E2 one has

µZ
(
A1 × A2) = µX1

(
A1) µX2

(
A2).

In the special case of absolutely continuous random variables X1 : Ω → RN1 and X2 : Ω → RN2 , the
independence of X1 and X2 is equivalent to the condition ΠX1,X2 = ΠX1ΠX2 .

So far, X1 and X2 were defined on the same probability space (Ω,F ,P), and so does Z = (X1, X2). Let us now
briefly mention a converse situation, which is related to the famous optimal transportation problem.

Definition 2.1.13 (Transference plan). Given two probability measures µ1, µ2 on Λ, a coupling for them
consists in a pair of random variables Z :=

(
X1, X2) on a probability space (Ω,F ,P) such that X j : Ω → Λ

has induced probability measure µ j. The joint measure µZ is called the transference plan, and the set of all
transference plans is denoted by Π(µ1, µ2).

Note that a coupling always exists by considering X1, X2 independent, with the resulting joint measure given
by the product of the two initial measures. Another special situation is considered in:

Definition 2.1.14 (Deterministic coupling). Let µ1, µ2 be two probability measures on RN . If there exists
ϕ : RN → RN bijective, differentiable and with inverse differentiable such that∫

RN
f
(
x2)µ2

(
dx2) = ∫

RN
f
(
ϕ
(
x1))µ1

(
dx1)

for all “suitable” f : RN → R, then there exists a coupling Z =
(
X, ϕ(X)

)
with transference plan

µZ
(
dx1 × dx2) = δ(x2 − ϕ(x1)

)
µ1

(
dx1)dx2,

where δ denotes the Dirac delta function. Such couplings are called deterministic couplings.
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Usually, one looks for a coupling having a special property:

Definition 2.1.15 (Monge-Kantorovitch problem). A transference plan µ∗Z is a solution of the Monge-Kanto-

rovitch problem for µ1, µ2 : RN → [0,∞) with cost function c
(
x1, x2) = ∥∥∥x1 − x2

∥∥∥2
if µ∗Z satisfies

µ∗Z = arg inf
µZ∈Π(µ1,µ2)

E
(∥∥∥X1 − X2

∥∥∥2
)
.

Exercise 2.1.16. If N = 1, show that this problem is equivalent to the maximization of Cov
(
X1, X2).

For discrete-valued random variables, the notion of conditional pmf is quite clear, as for example when two
random variables are defined on (Ω,F ,P) and one of them takes a given value, what is the probability dis-
tribution of the other one? For absolutely continuous random variables, we shall use the following definition
(but heuristic derivations exist).

Definition 2.1.17 (Conditional probability). For j ∈ {1, 2} let X j : Ω→ RN j be absolutely continuous random
variables, we set

ΠX2 |X1
(
x2 | x1) = ΠX2,X1

(
x2, x1)

ΠX1
(
x1) (2.1.3)

whenever the denominator is not 0, and call ΠX2 |X1
(
· | x1) the conditional probability distribution function for

X2 under the assumption that X1 takes the value x1.

Informally, we shall also say that ΠX2 |X1
(
· | x1) is the pdf of X2 knowing x1. For the numerator of (2.1.3)

observe that ΠX1,X2
(
x1, x2) = ΠX2,X1

(
x2, x1).

Definition 2.1.18 (Disintegration formula). Let X0, X1, . . . , Xn be a family of random variables on (Ω,F ,P).
The following formula holds and is called the disintegration formula:

ΠXn,...,X0
(
xn, . . . , x0) =ΠXn |Xn−1,...,X0

(
xn | xn−1, . . . , x0) · ΠXn−1 |Xn−2,...,X0

(
xn−1 | xn−2, . . . , x0) . . .

. . .ΠX1 |X0
(
x1 | x0) · ΠX0

(
x0).

Lemma 2.1.19 (Marginal and conditional pdf). In the above framework one has

ΠX1
(
x1) = E

(
ΠX1 |X0

(
x1 | X0)) .

Exercise 2.1.20. Prove the above lemma.

2.2 Discrete Time Markov Process

Recall that a discrete time dynamical system is defined by x : Z → RN and by f : RN × Z → RN satisfying
(1.2.1).

Definition 2.2.1 (Autonomous system). A system is autonomous if the function f does not depend explicitly
on n, namely f : RN → RN .

Given x(n∗) we have seen that x(n∗ + k) can be obtained by applying (1.2.1) k times. Instead of considering
points, we can also consider sets A(n∗) ⊂ RN and assume that x(n∗) is inside A(n∗). Then A(n∗ + 1) =
f (A(n∗), n∗) = { f (x, n∗) | x ∈ A(n∗)}, and similarly for A(n∗ + k). We also would like to associate some
probabilities to these sets, and use the framework of Section 2.1.
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Let A ∈ σB and set Pn(A) to be the probability that x(n) is in A. Then, do we have Pn+1( f (A, n)
)
= Pn(A)?

or what is the relation between Pn+1(B) and Pn(A) if B is another Borel set of RN? Thus, we are interested in
defining a probability space (Ω,F ,P) and a random variable Xn : Ω → RN with pdf Πn : RN → [0,∞) such
that for any A ∈ σB

Pn(A) = P
(
Xn ∈ A

)
= E

(
1A

(
Xn) ) = ∫

A
Πn(x) dx ≡

∫
A
Πn (

xn) dxn.

In this setting, Πn represents the probability density that the system is at the point x ∈ RN at time n.

We are also interested in knowing the relation between Xn and Xn+1, or equivalently between Πn and Πn+1,
in order to see the relation between Pn(A) and Pn+1(A), if any? For example, if X0 is given and allows us
to define for any Borel set of RN the probability that x(0) belongs to this set, can one deduce X1, which will
define for any Borel set of RN the probability that x(1) is in this set? This question can (and will) be answered
iteratively.

Definition 2.2.2 (Stochastic process). Consider a probability space (Ω,F ,P) and set N := {0, 1, 2, . . . }.
A (discrete time) stochastic process is a family (Xn)n∈N defined on (Ω,F ,P) and taking values in a fixed
measurable space (Λ,E).

This definition is too general for our purposes. A more convenient definition is:

Definition 2.2.3 (Absolutely continuous discrete time Markov process). An absolutely continuous discrete
time Markov process with values in RN consists of a stochastic process with each Xn : Ω → RN absolutely
continuous and satisfying for any n ≥ 1 and x0, . . . , xn ∈ RN

ΠXn |Xn−1,...,X0
(
xn | xn−1, xn−2, . . . , x0) = ΠXn |Xn−1

(
xn | xn−1). (2.2.1)

In other words, in a discrete time Markov process, if Xn−1 is known, knowing Xn−2, . . . , X0 does not bring any
additional information.

Remark 2.2.4. 1) Discrete time Markov process can be defined without the assumption of absolute continu-
ity, but then the general definition is more involved since one can not use the notion of densities. However,
discrete valued Markov process can easily be defined and are mentioned below. In the sequel, we shall
only consider absolutely continuous or discrete valued Markov processes, and simply call them Markov
process.

2) Equation (2.2.1) can also be stated by the disintegration formula:

ΠXn,...,X0
(
xn, xn−1, . . . , x0) = ΠXn |Xn−1

(
xn | xn−1)ΠXn−1 |Xn−2

(
xn−1 | xn−2) . . .ΠX1 |X0

(
x1 | x0)ΠX0(x0).

3) It also follows from (2.2.1) that the Chapman-Kolmogorov equation holds:

ΠXn(xn) =
∫

RN
ΠXn |Xn−1

(
xn | xn−1)ΠXn−1

(
xn−1) dxn−1. (2.2.2)

This equation is often written as ΠXn = PΠXn−1 , or simply Πn = PΠn−1. P is the transition operator,
assumed to be autonomous. If it is not autonomous, it is denoted by Pn.

Consider Λ a finite set {λi}
N
i=1 or a countable set {λi}i∈N, and let {Xn}n∈N with Xn : Ω → Λ. This stochastic

process is a discrete valued discrete time Markov process for any x0, . . . , xn ∈ Λ the following condition is
satisfied:

P(Xn = xn | Xn−1 = xn−1, . . . , X0 = x0) = P(Xn = xn | Xn−1 = xn−1).
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In this setting and if assume that the system is autonomous, then one sets

p jk := P(Xn = λ j | Xn−1 = λk)

and this quantity is independent of n. It follows that p jk ≥ 0 and that
∑

j p jk = 1. In this setting, equation
(2.2.2) becomes

P
(
Xn = λ j

)
=

∑
k

p jk P
(
Xn−1 = λk

)
.

The matrix (p jk) is called the transition matrix in the finite case, or the transition operator in the countable
case. For shortness, we still write Πn = PΠn−1 with Πn

j = P(Xn = λ j).

Definition 2.2.5 (Steady state). Let P be a transition operator for a discrete time Markov process. A solution
of the equation Πn = PΠn is called a steady state Π∗. The corresponding measure Π∗dx in the absolutely
continuous case, or Π∗ in the discrete valued case, is called an invariant measure.

If Π0 is a steady state, all Πn := (P)nΠ0 have the distribution Π0, and E
(
f (Xn)

)
= E

(
f (X0)

)
for any f : Λ→ Ξ.

Definition 2.2.6 (Weakly stationary). A discrete time Markov process is weakly stationary if for all n1, n2,
and n ∈ N, E(Xn1) = E(Xn2) and Cov(Xn1+n, Xn2+n) = Cov(Xn1 , Xn2).

For a weakly stationary Markov process, we define the autocovariance function

C(n,m) := Cov
(
Xn, Xm)

and observe that C(n,m) = C(0,m − n) for any m ≥ n. This function provides information about the loss of
memory of the Markov process. Let us check that our initial example defines a Markov process:

Consider f : RN → RN , let
(
ξn

)
n∈N be a sequence of i.i.d (independent and identically distributed) absolutely

continuous random variables of law Πξ, and let X0 be an absolutely continuous random variable. Assume that

Xn+1 = f
(
Xn) + ξn,

and observe that the deterministic part of this equation is autonomous. Then one has

ΠXn |Xn−1,...,X0
(
xn | xn−1, . . . , x0) = ΠXn |Xn−1

(
f (xn−1) + ξn−1 | xn−1) .

This relation corresponds to the Markov property. It also follows from the assumption that for fixed xn and
for any A ∈ σB

Xn+1 = f (xn) + ξn =⇒ΠXn+1 |Xn
(
xn+1 | xn) = Πξ(xn+1 − f (xn)

)
=⇒P

(
Xn+1 ∈ A | xn) = ∫

A
Πξ

(
xn+1 − f (xn)

)
dxn+1 (2.2.3)

Exercise 2.2.7. Check the veracity of the relations (2.2.3).

We also have that

P
(
Xn+1 ∈ A

)
=

∫
A
ΠXn+1(xn+1) dxn+1 (2.2.4)

=

∫
A

[ ∫
RN
ΠXn+1

(
xn+1 | xn)ΠXn(xn) dxn

]
dxn+1
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=

∫
A

[ ∫
RN
Πξ

(
xn+1 − f (xn)

)
ΠXn(xn) dxn

]
dxn+1 (2.2.5)

By comparing (2.2.4) and (2.2.5) one then infers that

ΠXn+1(xn+1) =
∫

RN
Πξ

(
xn+1 − f (xn)

)
ΠXn(xn) dxn

Alternatively, one writes this equation as

ΠXn+1 = PΠXn with
[
PΠ

]
(x) :=

∫
RN
Πξ

(
x − f (x′)

)
Π(x′) dx′ . (2.2.6)

Observe that this is the form of the Chapman-Kolmogorov equation mentioned in the item 3) of Remark 2.2.4.

2.3 Bayesian Inference

The aim of this section is to quantify everything (prior and posterior uncertainty) by using Bayes’ theorem.

Recall that for any probability space (Ω,F ,P), the conditional probability is defined for A, B ∈ F by

P(A | B) =
P(A ∩ B)

P(B)
.

Then Bayes’ relation reads

P(A | B) = P(B | A)
P(A)
P(B)

.

Similarly, if X1, X2 are absolutely continuous random variables on (Ω,F ,P), one has

ΠX1 |X2
(
x1 | x2) = ΠX2 |X1

(
x2 | x1)ΠX1(x1)

ΠX2(x2)
. (2.3.1)

As an example of application, let us come back to the inference model:

Y = H(X) + ε

Here, Y ∈ RM is the observation, H : RN → RM the continuous observation operator, X an absolutely con-
tinuous random variable with values in RN and law ΠX , and ε the observation error, an absolutely continuous
random variable with values in RM and law Πε. In this case, Y is also an absolutely continuous random
variable with

ΠY (y) =
∫

RN
Πε

(
y − h(x)

)
ΠX(x) dx. (2.3.2)

The proof for this equality can be mimicked from the argument given at the end of the previous section.
Computing Y , given X, is called the forward problem, but computing X, given Y , is the inverse inference
problem. In this setting, one has:

ΠX|Y
(
x | y

)
=
ΠY |X(y | x)ΠX(x)

ΠY (y)
. (2.3.3)

Here, ΠX is the distribution of X before any observation, called the prior pdf. ΠX|Y (· | y) is the distribution of
X after the observation, named the posterior pdf. Lastly, ΠY |X(· | x) is the likelihood of the observation given
a particular value of X, called the likelihood function. Equation (2.3.3) is often written as

ΠX|Y
(
x | y

)
∝ ΠY |X

(
y | x

)
ΠX(x) , (2.3.4)
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since we know that the density must integrate to 1. When y = yobs, which means after that the observations
took place, we write ΠXa for ΠX|Y (· | yobs) and rewrite (2.3.4) as

ΠXa(x) ∝ ΠY |X
(
yobs | x

)
ΠX f (x) , (2.3.5)

where ΠX f is the distribution of X before the observation. In this setting, ΠXa is called the the pdf of the
analysis random variable, while ΠX f is called the pdf of the forecast random variable.

Let us now work on the simplest but seminal example.

Example 2.3.1. Consider Y = H(X) + ε with the following assumptions:

H ∈ MM×N(R),

X ∼ N(x̄, P) with x̄ ∈ RN and P ∈ MN×N(R), P > 0,

ε ∼ N(0,R) with 0 ∈ RM and R ∈ MM×M(R), R > 0.

We are to solve both the forward problem and the inverse inference problem. Recall that

ΠX(x) =
1

(2π)N/2|P|1/2
exp

(
−

1
2

(x − x̄)T P−1(x − x̄)
)

Πε(z) =
1

(2π)M/2|R|1/2
exp

(
−

1
2

zT P−1z
)
.

For the forward problem, by using (2.3.2) one has

ΠY (y) =
∫

RN

(2π)−(N+M)/2

|P|1/2|R|1/2
exp

(
−

1
2
(
y − Hx

)T R−1(y − Hx
)
−

1
2
(
x − x̄

)T P−1(x − x̄
))

dx

∝ exp
(
−

1
2

yT R−1y +
1
2

dTC−1d
)
,

where
C := P−1 + HT R−1H > 0 and d := HT R−1y + P−1 x̄ ∈ RN .

For this computation, the completing-the-square formula

xTCx − 2dT x =
(
x −C−1d

)TC
(
x −C−1d

)
− dTC−1d

has been used.

For the inverse inference problem, one infers from (2.3.4) that

ΠX|Y
(
x | y

)
∝ ΠY |x

(
y | x

)
ΠX(x)

∝ exp
(
−

1
2
(
y − Hx

)T R−1(y − Hx
)
−

1
2
(
x − x̄

)T P−1(x − x̄
))

∝ exp
(
−

1
2
(
x −C−1d

)TC
(
x −C−1d

))
.

This means that ΠXa ≡ ΠX|Y (· | yobs) ∼ N(x̄a, Pa) with

Pa := C−1 =
(
P−1 + HT R−1H

)−1 (2.3.6)

x̄a := C−1d = x̄ − PaHT R−1(Hx̄ − yobs
)

(2.3.7)
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Exercise 2.3.2. Prove equations (2.3.6) and (2.3.7).

Note that the previous expressions for Pa is quite inefficient since it involves the inverse of three matrices.
This can be improved with the following lemma:

Lemma 2.3.3 (Woodbury formula). If E ∈ Mn×n(R), G ∈ Mm×m(R), both invertible, and if F ∈ Mn×m(R),
H ∈ Mm×n(R), then the following equality holds:(

E + FGH
)−1
= E−1 − E−1F

(
G−1 + HE−1F

)−1HE−1 . (2.3.8)

Exercise 2.3.4. Prove Woodbury formula.

By using this formula one gets the following expressions:

Pa = P − PHT (
HPHT + R

)−1HP

x̄a = x̄ − PHT (
HPHT + R)−1(Hx̄ − yobs

)
.

These formulae are called the Kalman update formula.

In the previous expressions, the posterior probability distribution ΠX|Y of X knowing Y could be obtained.
This is usually not the case, and one often gets only a partial information on this distribution, as for example
a point estimate, namely a single value instead of a distribution. Let us introduce two general definitions:

Definition 2.3.5 (Cost function). A cost function, or a loss function is a measurable function from Λ × Λ to
R, where (Λ,E) is the target space of some random variable.

Definition 2.3.6 (Bayesian estimator). Given a posterior pdf ΠX|Y (· | y), a Bayesian estimator for X with loss
function ℓ is defined by

x∗ := arg min
x′∈Λ

∫
Λ

ℓ(x′, x)ΠX|Y (x | y) dx . (2.3.9)

Note that in the previous definition, we have assumed that Λ = RN , which allows us to write the integral, but
it could be more general. We continue with RN since this situation appears often.

Examples 2.3.7. 1) If ℓ is the quadratic loss function defined by ℓ(x′, x) = (x′ − x)2, then,

x∗ =
∫

RN
xΠX|Y

(
x | y

)
dx.

This estimator is called the posterior mean estimate.

2) If ℓ is the absolute loss function defined by ℓ(x′, x) = |x′ − x| and if N = 1, then x∗ satisfies∫ x∗

−∞

ΠX|Y
(
x | y

)
dx =

∫ ∞

x∗
ΠX|Y

(
x | y

)
dx.

This estimator is called the posterior median estimate.

3) If the loss function is given by

ℓε(x′, x) =

1 if
∥∥∥x′ − x

∥∥∥ > ε
0 otherwise,

then in the limit ε → 0+, it leads to the maximum a posterior (MAP) estimate, where ΠX|Y (· | y) takes its
global maximum.
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The Bayesian estimators still rely on the knowledge of the posterior distributions. Since these distributions
are rarely known explicitly, we often use sampling techniques. Let us introduce the notion of importance
sampling. For this, we come back to a measurable space (Λ,E), and recall that a measure on it is a function
µ : Λ→ [0,∞] satisfying µ(Ø) = 0 and

µ
(
∪ j∈NA j

)
=

∑
j∈N

µ(A j)

whenever A j ∈ E and A j ∩ Ak = Ø ∀ j , k. If ν is another measure on (Λ,E), then ν is absolutely continuous
with respect to a measure µ if ν(A) = 0 whenever A ∈ E verifies µ(A) = 0. In this case and if we assume an
additional small technical assumption (µ is σ-finite, namely Λ can be decomposed into a countable union of
measurable sets of finite µ-measure), then there exists a function ρ : Λ → [0,∞) called the Radon-Nikodym
derivative such that

ν(A) =
∫

A
ρ(x)µ(dx) .

Observe that the notion just introduced is a generalization of the notion already discussed in Definition 2.1.6.

Now, if Λ = RN , if ν is absolutely continuous with respect a σ-finite measure µ, and if µ is iself absolutely
continuous with respect to the usual Lebesgue measure on RN , then µ(dx) = Πµ(x)dx (or equivalently µ(A) =∫

AΠµ(x) dx ) in which case ν(A) =
∫

A ρ(x)Πµ(x)dx which means that ν is absolutely continuous with respect
to the Lebesgue measure. In this case we write ν(dx) = ρ(x)Πµ(x) dx for an equality between measures, or
equivalently Πν(x) = ρ(x)Πµ(x) for an equality between pdfs.

In the discrete case, the notion of absolutely continuity of one measure with respect to another one is easy
to understand. More precisely, if Λ is finite or countable, and if µ, ν are measures on Λ, then ν is absolutely
continuous with respect to µ if ν(x) , 0 for any x ∈ Λ satisfying µ(x) , 0.

Definition 2.3.8 (Importance sampling). Let X, X′ be random variables with values in Λ and such that µX is
absolutely continuous with respect to µX′ . Assume that µX′ is a σ-finite measure, and let ω denote the Radon-
Nikodym derivative. If {x j}

J
j=1 ⊂ Λ are J independent samples from the random variable X, and if {x′j}

J′
j=1 ⊂ Λ

are J′ independent samples from the random variable C′, then for any measurable function g : Λ → Ξ one
has

E
(
g(X)

)
�

1
J

J∑
j=1

g(x j) �
1∑J′

k=1 ω(x′k)

J′∑
j=1

ω(x′j)g(x′j). (2.3.10)

If µX and µX′ have a pdf or a pmf (in which case Λ = RN) denoted respectively by ΠX and ΠX′ , then ω(x′j) =
ΠX(x′j)
ΠX′ (x′j)

.

This approach is useful if we need the distribution of X while only the distribution of X′ is provided. In the
framework of the inference problem satisfying (2.3.5), one infers that for g : RN → Ξ,

E
(
g(Xa)

)
�

J∑
j=1

ΠY |X(yobs | x
f
j )∑J

k=1ΠY |X(yobs | x
f
k )

g(x f
j )

where {x f
j }

J
j=1 are J independent samples from the random variable X f .

20



Chapter 3

Basic Algorithms of Data Assimilation

This chapter contains a few basic algorithms of data assimilation, such as the Kalman filter.

We firstly introduce the general framework. Consider a function f : RN × Z→ RN , A family of i.i.d. random
variables (ξn)n∈Z following a common distribution ξ, and let (Xn)n∈Z be an absolutely continuous discrete time
Markov process with values in RN . The evolution is described by the discrete time dynamical system defined
by

Xn+1 = f
(
Xn, n

)
+ ξn. (3.0.1)

The observations in this framework is described by the random variables

Y t j = H
(
Xt j , t j

)
+ εt j ,

where {t1, . . . , tk} ⊂ Z are the time point of the observations, H : RN × Z → RM is the observation operator
which can be time dependent, and

{
εt j

}
are the observation noise, namely a family of i.i.d. random variables

with values in RM.

Remark 3.0.1. As already mentioned in Section 1.2, the model error (ξn)n∈Z is replacing the unknown function
g which is related to the true evolution, see (1.2.2).

Set yt1:tk
obs :=

(
yt1 , . . . , ytk) ∈ MM×k for a matrix of observations. We then want to find the pdfΠXn |Y t1:tk

(
·, n | yt1:tk

obs
)
.

Definition 3.0.2 (Names of processes). If n > tk, the process is called a prediction process. If n ≈ tk, the
process is called a filtering process, while for n < tk one speaks about a smoothing process.

This distinction is important since the tools developed for the 3 processes are slightly different.

3.1 The Filtering Process

Suppose that the observation error ε follows a N(0,R), and assume for simplicity that the observations take
place at tn = n for n ≥ 1. By the Chapman-Kolmogorov equation (2.2.2),

ΠX1, f
(
x1) := ΠX1

(
x1) = ∫

RN
ΠX1 |X0

(
x1 | x0)ΠX0

(
x0)dx0 . (3.1.1)

By Bayes’ theorem,

ΠX1,a
(
x1) := ΠX1 |Y1

(
x1 | y1) = ΠY1 |X1

(
y1 | x1)ΠX1, f

(
x1)∫

ΠY1 |X1
(
y1 | x1)ΠX1, f

(
x1)dx1

, (3.1.2)
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and with the assumption on ε, the first factor is given by:

ΠY1 |X1
(
y1 | x1) = 1

(2π)M/2|R|1/2
exp

(
−

1
2
(
y1 − H(x1, 1)

)T R−1(y1 − H(x1, 1)
))
. (3.1.3)

By Chapman-Kolmogorov, we can predict the pdf of X2 (and this prediction includes the information obtained
by the first observation):

ΠX2, f
(
x2) := ΠX2 |Y1

(
x2 | y1) = ∫

RN
ΠX2 |X1

(
x2 | x1)ΠX1,a

(
x1)dx1 . (3.1.4)

In (3.1.1) and (3.1.4), the expressions ΠX1 |X0
(
x1 | x0) and ΠX2 |X1

(
x2 | x1) are referred to as the Markov kernel,

and are related to the equation (3.0.1). In this sense, it is natural to call these expressions a forecast, and to
attach the superscript f to them. Once a new observation y2 is available, one gets by Bayes’ formula and as in
(3.1.2):

ΠX2,a
(
x2) := ΠX2 |Y1:2

(
x2 | y1:2) = ΠY2 |X2

(
y2 | x2)ΠX2, f

(
x2)∫

ΠY2 |X2
(
y2 | x2)ΠX2, f

(
x2)dx2

, (3.1.5)

where the first factor takes the form

ΠY2 |X2
(
y2 | x2) = 1

(2π)M/2|R|1/2
exp

(
−

1
2
(
y2 − H(x2, 2)

)T R−1(y2 − H(x2, 2)
))
. (3.1.6)

The expression (3.1.5) is called the analysis for X2 and uses all available information. For arbitrary tn = n,
one has:

ΠXn, f
(
xn) := ΠXn |Y1:n−1

(
xn | y1:n−1) = ∫

RN
ΠXn |Xn−1

(
xn | xn−1)ΠXn−1,a

(
xn−1)dxn−1 , (3.1.7)

ΠXn,a
(
xn) := ΠXn |Y1:n

(
xn | y1:n) = ΠYn |Xn

(
yn | xn)ΠXn, f

(
xn)∫

Rn ΠYn |Xn
(
yn | xn)ΠXn, f

(
xn)dxn

. (3.1.8)

This approach is called the sequential data assimilation.

Remark 3.1.1. 1) In the previous construction, we have assumed that observations are available at every
tn = n. If not, if we suppose that observations are available only every ℓ steps, then we evolve the system
ℓ times with the Chapman-Kolmogorov equation, namely compute the forecast ℓ times, before performing
the analysis step. This corresponds to applying the transition operator ℓ times instead of one time between
each assimilation step.

2) In the previous construction, we have assumed that the observation operator could be explicitly time
dependent, but the same possibility holds for the model error ξn and for the observation errors εn. In this
case, the expression for the Markov kernel would be different at each time step, and the expressions (3.1.3)
and (3.1.6) would have additional dependences on n.

3.2 Kalman Filter (KF)

The Kalman filter is a special instance of the previous construction with the following additional assumptions:

εn ∼ N(0,R),

ξn ∼ N(0,Q),
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f (x) = Dx + b, D ∈ MN×N(R), b ∈ RN ,

H(x) = Hx, H ∈ MM×N(R),

where Q ∈ MN×N(R) with Q > 0, and R ∈ MM×M(R) with R > 0. Thus, the Kalman filter corresponds to a
“linear” and autonomous evolution

Xn+1 = DXn + b + ξn (3.2.1)

together with a “linear” and autonomous observation

Yn = HXn + εn .

Here, εn and ξn are Gaussian distributions of mean 0.

Remark 3.2.1. 1) Recall that if Xn ∼ N(x̄, Pn), then as a consequence of Equation (3.2.1),

Xn+1 ∼ N
(
Dx̄n + b,DPnDT + Q

)
.

2) Recall from Example 2.3.1 and from Equation (2.3.8) that if X f ∼ N(x̄ f , P f ), then Xa ∼ N(x̄a, Pa) with

Pa := P f − KHP f

x̄a := x̄ f − K
(
Hx̄ f − yobs

)
K := P f HT (

HP f HT + R
)−1

The matrix K is known as the Kalman gain matrix.

Thus, if we summarize the above results, and if X0 ≡ X0,a ∼ N(x̄0, P0), one gets:

Algorithm 3.2.2 (Kalman filter). The Kalman filter algorithm (KF) is given by:

Xn, f ∼ N
(
Dx̄n−1,a + b,DPn−1,aDT + Q

)
=: N

(
x̄n, f , Pn, f ),

Xn,a ∼ N
(
x̄n, f − Kn(Hx̄n, f − yn), Pn, f − KnHPn, f

)
=: N

(
x̄n,a, Pn,a),

Kn := Pn, f HT (
HPn, f HT + R

)−1.

Remark 3.2.3. In the previous setting, D (the evolution matrix), b (the evolution vector), Q (the model error
covariance matrix), R (the observation error covariance matrix), and H (the observation matrix) could be
time dependent.

3.3 Variational Data Assimilation

This section is an improvement of what was sketched in Section 1.4 with the method of least squares. This
variational approach is a smoothing technique which leads to the “best” initial condition, illustrated in Figure
3.1. We consider the autonomous model with no error: xn+1 = f (xn), and the observation operator H : RN →

RM. Let xt0,b ∈ RN be a prior (background) knowledge of the system at time t0. If the assimilation window
consists of n observations, then we define the cost function L : RN → R by

L(x) =
1
2
(
x − xt0,b)T B−1(x − xt0,b) + 1

2

n∑
i=1

(
H

(
f ◦i(x)

)
− yti

)T
R−1

(
H

(
f ◦i(x)

)
− yti

)
.
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Figure 3.1: An illustration of the smoothing process, and the resulting corrected forecast.

Here, {yt1 , . . . , ytn} ⊂ RM are the observations, R ∈ MM×M(R) is the observation error covariance matrix, and
B ∈ MN×N(R) is the prior (background) covariance matrix. R and B are chosen a priori, and are related to our

confidence in the observations and in our prior knowledge of the system. The choice R =
(
1 0
0 1

)
and B−1 = 0

leads to the least squares method.

By a minimization process, we determine xt0 which provides the minimum value for L. Then we get some
forecast by computing f ◦i(xt0) for any i. In particular, we can use f ◦tn(xt0) as the prior knowledge for the next
step (the next assimilation window).

Remark 3.3.1. If we set xb := xt0,b and x = xb + h with h “small”, then we can linearize some expansions:

H
(
f ◦i(xb + h)

)
≃ H

(
f ◦i(xb)

)
+ JH

(
f ◦i(xb)

)
J f ◦i(xb)h =: H

(
f ◦i(xb)

)
+H iLih

with J f ◦i(xb) =
∏i−1

k=0 J f
(
f ◦k(xk)

)
. Then,

L(h) =
1
2

hT B−1h +
1
2

n∑
i=1

(
H iLih − δi

)T R−1(H iLih − δi
)
,

where δi = yti − H
(
f ◦i(xb)

)
.

There exist several methods for finding the minimum of a function. The gradient descent method is a pop-
ular one, but the Gauss-Newton algorithm or the nonlinear conjugate gradient method are other (and more
powerful) methods.

It is possible to add some randomness in the model by considering Xn+1 = f (Xn) + ξn, but the framework
becomes more complicated: see weak constraint 4DVar on pages 198–199 of [5].

3.4 Particle Filter

This is a method based on an ensemble of prediction combined with the importance sampling approach, see
Definition 2.3.8. Numerous predictions are made, and the best ones are selected with the likelihood function,
as introduced in equation (2.3.3).

We keep the general framework with ξn, εn i.i.d. random variables and the system of equations

Xn+1 = f (Xn, n) + ξn
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Yn = H(Xn, n) + εn

without imposing any specific form to f , H, ξn, εn. We also assume that an observation is available at every
n ∈ N, but this is not a restriction, as emphasized in Remark 3.1.1 (otherwise we evolve the system ℓ steps
before performing the assimilation).

We now further discuss two types of particle filters.

3.4.1 Sequential Importance Sampling (SIS)

Consider a random variable X0and a sample
{
x0

j
}J

j=1 from this random variable. Set the weights ω0
j := 1

J . The

forecast system is realized at time 1 by
{
x1

j , ω
0
j
}J

j=1 with x1
j := f (x0

j , 0) + ξ0j . For any measurable g : RN → Ξ,
the expectation value of the forecast is given by

E
(
g(X1, f )

)
:=

J∑
j=1

ω0
j g(x1

j ).

Once the observation y1 is available, we set

ω1
j ;=

ω0
jΠY1 |X1

(
y1 | x1

j
)∑J

j=1 ω
0
jΠY1 |X1

(
y1 | x1

j
) ,

with ΠY1 |X1
(
y1 | x1

j
)

the likelihood of the observation y1 given x1
j .

Example 3.4.1. If we assume that Yn = H(Xn) + εn with εn ∼ N(0,R), then

ΠY1 |X1
(
y1 | x1

j
)
=

1
(2π)M |R|1/2

exp
(
−

1
2
(
y1 − H(x1

j )
)T R−1(y1 − H(x1

j )
))
.

Thus, the weight ω1
j is small if H(x1

j ) is far from the observation y1.

The analysis (assimilated) system consists of
{
x1

j , ω
1
j
}J

j=1, and one sets E
(
g(X1,a)

)
:=

∑J
j=1 ω

1
j g(x1

j ).

Iteratively, given the assimilated system
{
xn

j , ω
n
j
}

at time n, the forecast system at time n + 1 is given by{
xn+1

j , ω
n
j
}

with xn+1
j = f (xn

j , n) + ξnj , and the analysis system at time n + 1 is given by
{
xn+1

j , ω
n+1
j

}n+1
j=1 with

ωn+1
j =

ωn
jΠYn+1 |Xn+1

(
yn+1 | xn+1

j
)∑J

j=1 ω
n
jΠYn+1 |Xn+1

(
yn+1 | xn+1

j
) .

The expectation values are respectively given by

E
(
g(Xn+1, f )

)
=

J∑
j=1

ωn
j g(xn+1

j ) and E
(
g(Xn+1,a)

)
=

J∑
j=1

ωn+1
j g(xn+1

j ).

Unfortunately, this approach does not work well generally, because the weight will quickly concentrate on
very few particles, and the system will become very unstable. Therefore, we need to concentrate more on
realistic systems.
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Figure 3.2: An illustration of the SIR process

3.4.2 Sequential Importance Resampling (SIR)

This method is also known as bootstrap filter or condensation algorithm. The approach is the same as the
SIS, but a resampling is triggered whenever necessary.

Set Jn
eff := 1∑J

j=1(ωn
j )

2 to be the effective sampling size, and observe that Jn
eff = J if ωn

j =
1
J ∀ j, while Jn

eff ≃ 1 if

ωn
j ≃ 1 for one j, and ωn

k ≃ 0 for all k , j. Thus, Jn
eff is a way to measure the uniformity of the set of weights.

The SIR consists of the SIS together with a resampling when Jn
eff < αJ for a fixed α < 1. Once this threshold

is met, a new sampling following the distribution {ωn
j}

J
j=1 is chosen. More precisely, we use a multinomial

distribution: Multinomial distribution To each j ∈ {1, . . . , J} we associate the probability ωn
j (with

∑J
j=1 ω

n
j =

1) and draw J independent numbers in {1, . . . , J} according to these probabilities. An illustration is given in
Figure 3.2. Clearly, some j’s will be chosen more than once, while some j’s might not be chosen at all. It
turns out that E(choosing particle j at the resampling) = Jωn

j . We denote
{
zn

k
}J
k=1 the corresponding set of new

particles (for example, zn
1 = xn

2, zn
2 = xn

6, zn
3 = xn

6, . . . ) according to the J trials. It then follows that

E
(
g(Xn,a)

)
=

J∑
j=1

ωn
j g(xn

j ) �
J∑

j=1

1
J

g(zn
j).

We can then continue the SIS process with
{
zn

j , ω
n
j := 1

J
}J

j=1 until the next threshold is met. Thus, the re-
sampling allows us to concentrate on the most meaningful particles. When the resampling takes place, some
particles will be identical, but because of the randomness, their trajectories will quickly move apart.

Remark 3.4.2. This approach can be used for estimating some parameters, even time-dependent parameters,
as we shall see in the next section.

3.5 Application of Particle Filter to COVID-19

This section is about an application of the SIR approach introduction in the previous section. Its goal is to
outline a method to estimate the effective reproduction number in real time for COVID-19, by using an agent-
based model and a particle filter scheme. In this setting, one particle is one simulation of the epidemic in
Tokyo, and we shall deal with J = 100000.

The model that we will be using is illustrated in Figure 3.3. Here, PS , Pa, Pq, Pt, Pd, and Pr are probabilities.
To each compartment (box), one associates a distribution for the number of days spent in the compartment
(based on the medical information). In this setting, n represents the time in days. Then the random variable
Xn is defined by

Xn :=
(
En, In

a , I
n
s ,T

n,Dn,Rn,Rt(n), Pd(n),Th(n)
)
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Figure 3.3: The model, with various boxes representing various states in the proliferation of COVID-19.

with Xn ∈ N6 × [0,∞) × [0, 1] × [0,∞) ⊂ R9. There are three unknown parameters, namely the effective
reproduction number Rt, the probability of dying Pd, and the average time Th spent in compartment T . We
also define the random variable of observations Yn := (T n,Dn,Rn) ∈ N3 ⊂ R3 since they are the only reliable
observations (highlighted pink in the figure).

In this setting, the observation operator H : R9 → R3 is simply the projection on variables 4, 5, and 6, so
H ∈ M3×9(R). Then, we get the system: Xn+1 = f (Xn),

Yn = HXn + εn,

with εn ∼ N(0,Rn), and f defined as a function of several variables and with values in R9. Note that the precise
content of f is depends on the model chosen, but its nine components are sketched below. Note that we do
not indicate the dependence on the fixed probabilities PS , Pa, Pq, Pt, Pd, and Pr, but only on the components
of the random variable Xn:

En+1 = f1
(
In
a ,Rt(n), n

)
In+1
a = f2

(
En, n

)
In+1

s = f3
(
In
a , n

)
T n+1 = f4

(
In

s ,Th(n), n
)

Dn+1 = f5
(
T n,Th(n), Pd(n), n

)
Rn+1 = f6

(
T n,Th(n), 1 − Pd(n), n

)
Rt(n + 1) = f7

(
Rt(n), n

)
Pd(n + 1) = f8

(
Pd(n), n

)
Th(n + 1) = f9

(
Tn(n), n

)
Note that each function contains some randomness, implicitly represented by the explicit dependence on the
time variable n. By choosing a diagonal covariance matrix

Rn =

σT (n)2 0 0
0 σ2

D 0
0 0 σ2

R

 ∈ M3×3(R),

one gets the likelihood function

ΠYn |Xn
(
yn | xn) ∝ exp

−
(
T n − T n

obs
)2

2σT (n)2 −

(
Dn − Dn

obs
)2

2σ2
D

−

(
Rn − Rn

obs
)2

2σ2
R
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with yn = (T n
obs,D

n
obs,R

n
obs) the observations provided by the ministry of health.

By evolving simultaneously J systems like this, and by computing the weights ωn
j for each of them, a SIR

process can be implemented. Then, if Xn
k represents the k component of Xn for k ∈ {1, . . . , 9} one infers its

analysis value by

E
(
Xn,a

k
)
=

J∑
j=1

ωn
j
(
xn

j
)
k.

For k = 7, one gets the effective reproduction number Rt. For more details, see [8].
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Chapter 4

Variants and Extensions of the Kalman
Filter

In this chapter, we extend the algorithms discussed in Chapter 3.

4.1 Extended Kalman Filter (EKF)

We consider again the system Xn+1 = f (Xn, n) + ξn

Yn = H(Xn, n) + εn , (4.1.1)

where f : RN × Z → RN and H : RN × Z → RM are C1−functions. We also suppose that all ξn and εn are
independent and satisfy

E
(
ξn

)
= 0

E
(
εn) = 0.

The covariance matrices Qn ∈ MN×N(R) and Rn ∈ MM×M(R) as then defined by

Qn := E
(
ξnξnT )

Rn := E
(
εnεnT )

Let us now assume that the analyzed random variable Xn,a := Xn | Y1:n is known by its mean value x̄n,a =

E
(
Xn,a) and by its covariance matrices Pn,a = E

((
Xn,a − x̄n,a)(Xn,a − x̄n,a)T

)
. We then set

x̄n+1, f := E
(
f (Xn,a, n) + ξn

)
= E

(
f (Xn,a, n)

)
,

but this quantity is usually not computable since the full distribution of Xn,a is not known. Thus we shall do
an approximation, namely we assume that

f (xn,a, n) � f (x̄n,a, n) +
[
J f (x̄n,a, n)

]
(xn,a − x̄n,a) (4.1.2)
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where J f (·, n) is the Jacobian matrix of f (·, n), obtained for any fixed n. The approximation is suitable if the
system f is not too chaotic, and if the distribution of Xn,a is rather peaked around its mean value. By (4.1.2),
we infer that

x̄n+1, f = E
(
f (Xn,a, n)

)
� f (x̄n,a, n) (4.1.3)

and also deduce that

Pn+1, f = E
((

f (Xn,a, n) + ξn − f (x̄n,a, n)
)(

f (Xn,a, n) + ξn − f (x̄n,a, n)
)T

)
� E

(([
J f (x̄n,a, n)

]
(Xn,a − x̄n,a)

)([
J f (x̄n,a, n)

]
(Xn,a − x̄n,a)

)T )
+ E

(
ξnξnT )

=
[
J f (x̄n,a, n)

]
Pn,a[J f (x̄n,a, n)

]T
+ Qn. (4.1.4)

The second equivalence is by using the approximation (4.1.2). With (4.1.3) and (4.1.4), we have obtained the
mean value and the covariance matrix of the forecast random variable Xn+1, f based on the mean value and on
the covariance matrix of the analysed random variable Xn,a.

Now we compute x̄n+1,a by updating x̄n+1, f . Suppose the observation yn+1 is available and adopt the following
update strategy

x̄n+1,a = x̄n+1, f + Kn+1
(
yn+1 − E

(
H(Xn+1, f , n + 1)

))
, (4.1.5)

where Kn+1 is the Kalman gain matrix defined below. Again, since the full distribution of Xn+1, f is not known,
we do an approximation similar to the one of (4.1.2), namely

H(xn+1, f , n + 1) � H(x̄n+1, f , n + 1) +
[
JH(x̄n+1, f , n + 1)

]
(xn+1, f − x̄n+1, f ),

from which we get

x̄n+1,a = x̄n+1, f + Kn+1
(
yn+1 − H(x̄n+1, f , n + 1)

)
. (4.1.6)

For the Kalman gain matrix, if H is linear, the expression proposed in Algorithm 3.2.2 can be used, and in
this case JH(·, n) = H(·, n). This expression leads to the smallest covariance matrix Pn+1,a, as shown by a
variational approach in [1, Sec. 3.4]. If H is non-linear, one uses the linear approximation of H, namely its
Jacobian matrix. By collecting the various steps, one finally gets:

Algorithm 4.1.1 (Extended Kalman filter). The extended Kalman filter (EKF) consists in the following steps:

x̄n, f = f (x̄n−1,a, n − 1)

Pn, f =
[
J f (x̄n−1,a, n − 1)

]
Pn−1,a[J f (x̄n−1,a, n − 1)

]T
+ Qn−1

Kn = Pn, f [JH(x̄n, f , n)
]T

([
JH(x̄n, f , n)

]
Pn, f [JH(x̄n, f , n)

]T
+ Rn

)−1

x̄n,a = x̄n, f + Kn
(
yn − H(x̄n, f , n)

)
Pn,a = Pn, f − Kn[JH(x̄n, f , n)

]
Pn, f .

The linearization is the main difference between EKF and KF. Contrary to KF, the distributions of Xn, f and Xn,a

are not assumed to be Gaussian in EKF: only their mean values and their covariance matrices are evaluated.
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4.2 Ensemble Kalman Filter (EnKF)

We summarize the algorithms we have discussed so far:

• Kalman filter (KF): the procedure is simple but strong assumptions are needed,

• Variational DA (4DVar): it requires a lot of analysis and minimization processes,

• Particle filter (PF): an intuitive method with almost no assumption, but the computations are heavy,

• Extended Kalman filter (EKF): weaker assumptions are required, but not suitable for highly non-linear
systems.

Note that in the particle filter, all particles evolve independently, only weights depend on all particles. In the
forthcoming developments, the particles will interact at every observation / assimilation step. In this section,
we introduce an algorithm called ensemble Kalman filter (EnKF) that possess the advantages of both the
particle filter and the Kalman filter. We shall present two main approaches of EnkF: the stochastic EnKF and
the deterministic EnKF.

4.2.1 The Stochastic EnKF

The underlying model is same as the one used in Section 4.1, namely (4.1.1). The main idea is to consider a
set of particles

{
xn, f

j
}J

j=1 at time n, known as forecast ensemble, and to obtain the analysis ensemble
{
xn,a

j
}J

j=1
by the Kalman update formula

xn,a
j = xn, f

j + Kn(yn
j − H(xn, f

j , n)
)
,

where Kn is the Kalman gain matrix and yn
j will be defined later. Note that without the assumption of linearity

of the model, the formula of Kalman gain given by Algorithm 3.2.2 can not be applied, and has to be suitably
adapted.

Let’s start with the forecast ensemble
{
xn, f

j
}J

j=1 and define the ensemble forecast mean at time n by

x̄n, f :=
1
J

J∑
j=1

xn, f
j .

Assume that the observation error εn follows a normal distribution N(0,Rn), and let us draw a sample
{
εn

j
}J

j=1

following this distribution N(0,Rn). Then the sample mean is ε̄n := 1
J
∑J

j=1 ε
n
j . When the observation yn

obs at
time n is available, we define a family of observations

yn
j := yn

obs + ε
n
j − ε̄

n,

which clearly satisfy

ȳn :=
1
J

J∑
j=1

yn
j = yn

obs.

In the sequel, each particle will be updated by using one of these observations yn
j . This approach is consistent

with the structure of the system where the observation error εn is added to the observation yn
obs, and this trick

also leads to a more stable algorithm.
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For a second, let us assume that H(·, n) is linear, and denote it by Hn. Then, recall that the forecast sample
covariance matrix is given by

Pn, f =
1

J − 1

J∑
j=1

(xn, f
j − x̄n, f )(xn, f

j − x̄n, f )T

and observe that

Pn, f (Hn)T =
1

J − 1

J∑
j=1

(xn, f
j − x̄n, f )(xn, f

j − x̄n, f )T (Hn)T

=
1

J − 1

J∑
j=1

(xn, f
j − x̄n, f )

(
Hnxn, f

j −
1
J

J∑
k=1

Hnxn, f
k

)T
(4.2.1)

and also

HnPn, f (Hn)T =
1

J − 1

J∑
j=1

(
Hnxn, f

j −
1
J

J∑
k=1

Hnxn, f
k

)(
Hnxn, f

j −
1
J

J∑
k=1

Hnxn, f
k

)T
. (4.2.2)

The point is to observe that (4.2.1) and the r.h.s. of (4.2.2) are well defined even if the observation operator
Hn ≡ H(·, n) is not linear. Indeed, the observation operator Hn is always suitably associated with the forecast
ensemble members, Thus we can re-write Pn, f (Hn)T and HnPn, f (Hn)T as

1
J − 1

J∑
j=1

(xn, f
j − x̄n, f )

(
H(xn, f

j , n) −
1
J

J∑
k=1

H(xn, f
k , n)

)T

and as

1
J − 1

J∑
j=1

(
H(xn, f

j , n) −
1
J

J∑
k=1

H(xn, f
k , n)

)(
H(xn, f

j , n) −
1
J

J∑
k=1

H(xn, f
k , n)

)T
.

These expressions can be understood as a cross-variance matrix and a covariant matrix.

For a fixed n, given a forecast ensemble
{
xn, f

j
}J

j=1, the algorithm of stochastic EnKF reads as follows:

Algorithm 4.2.1 (Stochastic EnKF).

(1) Draw
{
εn

j
}J

j=1 and set yn
j := yn

obs + ε
n
j − ε̄

n,

(2) Set Xn, f
j := 1√

J−1
(xn, f

j −x̄n, f ) and H
n, f
j := 1√

J−1

(
H(xn, f

j , n)− 1
J
∑J

k=1 H(xn, f
k , n)

)
, and consider the matrices

Xn, f ∈ MN×J(R) and Hn, f ∈ MM×J(R) with the j−th columns Xn, f
j and H

n, f
j respectively,

(3) Compute the Kalman gain matrix

Kn := Xn, f (Hn, f )T
(
Hn, f (Hn, f )T + Rn

)−1
, (4.2.3)

(4) Compute the analysis ensemble
{
xn,a

j
}J

j=1 by

xn,a
j := xn, f

j + Kn
(
yn

j − H(xn, f
j , n)

)
,
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(5) Compute the forecast ensemble
{
xn+1, f

j
}J

j=1 at time n + 1 by

xn+1, f
j := f (xn, f

j , n) + ξn.

Remark 4.2.2. Step (3) can be modified by the following alternative expressions:

(a) Replace Rn by the sample covariance matrix 1
J−1

∑J
j=1

(
(εn

j − ε̄
n)(εn

j − ε̄
n)T

)
.

(b) Replace H
n, f
j by 1√

J−1

(
H(xn, f

j , n) − 1
J
∑J

k=1 H(xn, f
k , n) + εn

j − ε̄
n
)

and omit Rn in the expression of Kn.

Note that these expressions for Kn are not equal, but they converge to the same expression in the limit J → ∞.
Note also that the particles are no more independent since Kn depends on all of them. The stochastic EnKF
adopts the Kalman update formula without the assumption of the linearity of the system. A big difference
between EnKF and the particle filter introduced in Section 3.4 is that the evolution of each particle of EnKF
takes the observations into account, while this is not the case for the particle filter approach. As a result, the
particles in EnKF are constraint by the observations, and the algorithm is efficient already for a relatively
small number of particles. This is rarely the case for the particle filter approach.

4.2.2 The Deterministic EnKF

The philosophy of the subsequent approach is similar to the stochastic EnKF, but the observations yn
obs are not

perturbed. We adopt the notations Xn, f
j and H

n, f
j introduced in Algorithm 4.2.1.

Given a forecast ensemble
{
xn, f

j
}J

j=1, suppose that the analysis mean is computed by the formula

x̄n,a := x̄n, f + Kn(yn
obs − H(x̄n, f , n)

)
= x̄n, f + Xn, f (Hn, f )T (

Hn, f (Hn, f )T + Rn)−1(yn
obs − H(x̄n, f , n)

)
= x̄n, f + Xn, f

(
1J×J + (Hn, f )T (Rn)−1Hn, f

)−1
(Hn, f )T (Rn)−1(yn

obs − H(x̄n, f , n)
)

(4.2.4)

where the expression for Kn is borrowed from (4.2.3) of Algorithm 4.2.1. The last equality uses the Woodbury
identity, namely given appropriate matrices F, G and H,

F(G−1 + HF)−1 = (1 + FGH)−1FG. (4.2.5)

Note that the inverse in the expression (4.2.4) is taking place in RJ , which is usually a low-dimensional space.

Now, recall that the forecast sample covariance matrix is defined by

Pn, f :=
1

J − 1

J∑
j=1

(xn, f
j − x̄n, f )(xn, f

j − x̄n, f )T = Xn, f (Xn, f )T .

Our aim is to construct an analysis sample covariance matrix Pn,a of a similar form, and to compute the
corresponding analysis ensemble. Thus, we shall consider

Pn,a = Xn,a(Xn,a)T ,

where Xn,a is some matrix which has to be defined. We shall also adopt the relation Pn,a = (1 − KnHn)Pn, f

used by KF and EKF. This relation is at the root of determining the best Kalman gain matrix, see [1, pp.
92-95].
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By the formula of Kn in Algorithm 4.2.1, one has

Pn,a = (1 − KnHn)Pn, f

= Pn, f − KnHnPn, f

= Xn, f (Xn, f )T − Xn, f (Hn, f )T
(
Hn, f (Hn, f )T + Rn

)−1
Hn, f (Xn, f )T

= Xn, f
(
1J×J − (Hn, f )T (

Hn, f (Hn, f )T + Rn)−1
Hn, f

)
(Xn, f )T . (4.2.6)

Note that 0 ≤ (Hn, f )T (
Hn, f (Hn, f )T + Rn)−1

Hn, f ≤ 1, and consequently 1J×J − (Hn, f )T (
Hn, f (Hn, f )T +

Rn)−1
Hn, f ≥ 0. It follows that the square root of 1J×J − (Hn, f )T (

Hn, f (Hn, f )T + Rn)−1
Hn, f in the follow-

ing definition will be well-defined. Be aware that one is dealing with the square root of a matrix, namely for
any A ≥ 0 there exists B ≥ 0 with B2 = A.

Set

Xn,a := Xn, f
[
1J×J − (Hn, f )T (

Hn, f (Hn, f )T + Rn)−1
Hn, f

] 1
2 U,

and one gets Pn,a = Xn,a(Xn,a)T by (4.2.6) if U ∈ MJ×J(R) satisfies UUT = 1. This relation means precisely
that U is an orthogonal matrix. By Woodbury identity (4.2.5), one infers that

(Hn, f )T (
Hn, f (Hn, f )T + Rn)−1

=
(
1J×J(Hn, f )T (Rn)−1Hn, f )−1(Hn, f )T (Rn)−1

which leads to

1J×J − (Hn, f )T
(
Hn, f (Hn, f )T + Rn

)−1
Hn, f

= 1J×J −
(
1J×J + (Hn, f )T (Rn)−1Hn, f

)−1
(Hn, f )T (Rn)−1Hn, f

=
(
1J×J + (Hn, f )T (Rn)−1Hn, f

)−1[
1J×J + (Hn, f )T (Rn)−1Hn, f − (Hn, f )T (Rn)−1Hn, f

]
=

(
1J×J + (Hn, f )T (Rn)−1Hn, f

)−1

and thus

Xn,a = Xn, f
(
1J×J + (Hn, f )T (Rn)−1Hn, f

)− 1
2 U.

Let us now set

T :=
(
1J×J + (Hn, f )T (Rn)−1Hn, f

)−1
,

and then we can re-write the formula of Xn,a as

Xn,a = Xn, f T
1
2 U.

From the general expression for the sample covariance matrix Pn,a = Xn,a(Xn,a)T = 1
J−1

∑J
j=1(xn,a

j − x̄n,a)(xn,a
j −

x̄n,a)T , one is led to define

xn,a
j := x̄n,a +

√
J − 1(Xn,a) j

where (Xn,a) j is the j-th column of the matrix Xn,a.

The previous construction corresponds to the ensemble transform Kalman filter (ETKF) which is one variant
of EnKF. The algorithm of ETKF is summarized as below:
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Algorithm 4.2.3 (Ensemble transform Kalman filter). Given a set of forecast ensemble members
{
xn, f

j
}J

j=1 at
time n, the Ensemble transform Kalman filter (ETKF) corresponds to:

(1) Set x̄n, f := 1
J
∑J

j=1 xn, f
j , and X

n, f
j := 1√

J−1
(xn, f

j − x̄n, f ), and H
n, f
j := 1√

J−1

(
H(xn, f

j , n)− 1
J
∑J

k=1 H(xn, f
k , n)

)
,

and set Xn, f :=
(
xn, f

1 , . . . , x
n, f
J

)
∈ MN×J(R), Hn, f :=

(
H

n, f
1 , . . . ,H

n, f
J

)
∈ MM×J(R).

(2) Set T :=
(
1J×J + (Hn, f )T (Rn)−1Hn, f

)−1
∈ MJ×J(R).

(3) Choose U ∈ MJ×J(R), orthogonal and satisfying

U


1
1
...

1

 =

1
1
...

1


and set

xn,a
j := x̄n, f + Xn, f T (Hn, f )T (Rn)−1(yn

obs − H(x̄n, f , n)
)
+
√

J − 1
[
Xn, f T

1
2 U

]
j
. (4.2.7)

(4) One has Pn,a = Xn,a(Xn,a)T , and one sets xn+1, f
j := f (xn,a

j , n) + ξnj .

Remark 4.2.4. For the analysis ensemble
{
xn,a

j
}J

j=1 computed by ETKF, one would like to check that it satisfies

1
J

J∑
j=1

xn,a
j = x̄n,a

or equivalently

J∑
j=1

(
Xn, f T

1
2 U

)
j
= 0.

If we set I =


1
1
...

1

, this reads Xn, f T
1
2 UI = 0. By the assumption on U, this means Xn, f T

1
2 I = 0. By the definition

of Xn, f , one observes that Xn, f I = 0, then it is enough to show that T
1
2 I = I. It means that 1 is an eigenvalue of

the symmetric matrix T
1
2 with the eigenvector I. However, by diagonalization, this is equivalent to T−1I = 1I.

Namely
(
1J×J + (Hn, f )T (Rn)−1Hn, f

)
I = 1I. Since Hn, f I = 0 (as Xn, f 1 = 0), one ends up with 1J×JI = 1I,

which is obviously true.

4.3 Inflation and Localisation

In many applications, the components of the random variables Xn or Yn represent a certain quantity at a
certain point pℓ in space and at time n. For example, the discretization of a continuous model leads typically
to 106 ∼ 1010 such points

{
pℓ

}L
ℓ=1 with pℓ ∈ Rd for d = 2 or 3. For comparison, the ensemble size J is usually

of order 10 or 100.
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An intuitive question is then raised: Can one really represent the covariance matrix of the physical system
with so few members? In other words, can one represent the spread of all possible evolutions with so few
simulations? If the spread of the ensemble members (measured with the covariance) becomes too small, then
the observations can not be suitably assimilated. This situation is called a filter divergence. For solving this
problem, one applies a so-called covariance inflation. There exist two main types of covariance inflation:

1. Multiplicative inflation: Right after the forecast step, we replace xn, f
j by x̄n, f +ϱ(xn, f

j − x̄n, f ) for some ϱ > 1.
As a result, the new forecast mean is not changed, but the covariance matrix is multiplied by ϱ2.

2. Additive inflation: This corresponds to adding a larger model error ξnj . Thus, after the forecast step, we add

to xn+1, f
j := f (xn,a

j , n) + ξnj a new term ξ
′n
j which is a realization of variable ξ

′n with E(ξ
′n) = 0. Or we add

a term ξ
′n
j − ξ̄

′n where the mean value ξ̄
′n on the sample {ξ

′n
j }

J
j=1 takes the value 0. As a result, this does not

change the mean value of the forecast sample, but it increases its covariance matrix.

Note that the two inflation methods can be applied separately or simultaneously. Note also that the role of ξnj
and of ξ

′n
j is not exactly the same: ξnj should correct a model error, which means that it can encode some prior

knowledge and in particular it can be biased (mean different from 0) if necessary. The new term ξn
′

j is added
for increasing the covariance matrix and has no particular meaning. As a result, it is natural to impose that
it is unbiased. There exists another subtle difference between the two inflation methods: the multiplication
inflation preserves the subspace generated by the ensemble

{
xn, f

j
}J

j=1, while the additive inflation might add
some contributions in any directions of RN .

Another problem which often takes place for large system is related to localisation, as presented now. So far,
the Kalman gain matrix is a global object, defined simultaneously with all components of Xn, often through
the term Pn, f . However, this construction creates some spurious correlation between quantities at related to
different points pℓ which can be far apart in space. For solving this problem, we need to introduce the notion
of space localisation, and thus provide a more suitable indexation for the components of Xn and of Yn.

Thus, let us consider a set Λ := {pℓ}Lℓ=1 of points in space, and let I := {1, . . . , I} denote an indexation of all
possible information related to each point pℓ of Λ. More concretely, the set Λ could be a grid on earth, and the
index I could be used for indexing information like temperature, three components of wind, humidity, etc, at
each point of Λ. In the sequel, we shall consider ΛX and IX as the set of all points and all information used
for describing the model, while the set ΛY ⊂ ΛX and IY ⊂ IY correspond respectively to the points and to the
information related to the observations. Typically, the observations are taken at fewer points, compared to the
grid necessary for running the model, and the measurements can not be obtained on all variables necessary for
the simulations. Observe that if we set |Ω| for the cardinality of the set Ω (namely the number of its elements),
then the following relations hold

N = |ΛX | |IX | = L I and M = |ΛY | |IY |. (4.3.1)

Note also that these sets ΛX , ΛY , IX , and IY , could be time dependent (with an additional index n) but that
we do not consider this additional dependence here, mainly for simplicity.

With the notations introduced above, we shall index the components of Xn by Xn
p,i ∈ R with p ∈ ΛX and

i ∈ IX , meaning that this component of Xn corresponds to the information i at the point p. Similarly, the
components of Yn are denoted by Yn

p,i with p ∈ ΛY and i ∈ IY . We are now ready for introducing two methods
of localisation, the covariance localisation and the R-localisation.
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4.3.1 Covariance localisation

The covariance matrix for the forecast ensemble is defined by

Pn, f =
1

J − 1

J∑
j=1

(
xn, f

j − x̄n, f )(xn, f
j − x̄n, f )T

which means that the element (p, i)(p′, i′) of the matrix is given by

(Pn, f )(p,i)(p′,i′) =
1

J − 1

J∑
j=1

(
xn, f

j − x̄n, f )
(p,i)

(
xn, f

j − x̄n, f )
(p′,i′),

with p, p′ ∈ ΛX and i, i′ ∈ IX . We also introduce a correlation matrix providing the information about the
correlation, namely, ρ ∈ MN×N(R) with

ρ(p,i)(p′,i′) = Cii′
(
||p − p′||

)
(4.3.2)

where Cii′ = Ci′i : R+ → [0, 1] describes the range of correlation. Here ∥p − p′∥ denotes the Euclidean
distance between the points p and p′. Usually, we impose that the functions Cii′ vanishes rather quickly,
implying later that two points far apart are not going to have any correlation. Note also that we can choose the
same function for all pairs (i, i′) if the correlation does not depend on the precise information. In the general
case the decay of correlation would depend on the information (for example different correlation decays for
the wind, the temperature, or the humidity, ...). Very importantly, we impose that ρ ≥ 0, meaning that ρ is a
positive semi-definite matrix, see for example [6, Sec. 2.2].

We can then define a new covariance matrix

Pn, f
ρ := ρ ◦ Pn, f =

(
ρ(p,i)(p′,i′)P

n, f
(p,i)(p′,i′)

)
(p,i),(p′,i′)

.

The Hadamard product ◦, also called pointwise product, has the property that given two matrices A and B
with A ≥ 0 and B ≥ 0, then one has A ◦ B ≥ 0. As a result, since ρ is positive semi-definite and since Pn, f is
positive definite, the resulting matrix Pn, f

ρ is also positive semi-definite. As a result of this construction, the
correlation coefficient (Pn, f

ρ )(p,i)(p′,i′) is going to be 0 or very small if p and p′ are far apart.

If we assume now that H is linear, then the expression Pn, f
ρ can be introduced in the expression of the Kalman

gain matrix, namely one gets

Kn = Pn, f
ρ HT

(
HPn, f
ρ HT + R

)−1
= (ρ ◦ Pn, f )HT

(
H(ρ ◦ Pn, f )HT + R

)−1
. (4.3.3)

In addition, if Cii′ does not depend on i and i′ (which means that ρ(p,i)(p′,i′)=C(∥p−p′∥)≡ρpp′ ) and if H is local, then
one can go one step further. Here H local means that H(p,i)(p′,i′) = hp,i,i′δpp′ for all p ∈ ΩY , p′ ∈ ΩX , i ∈ IY ,
i′ ∈ IX , and δpp′ represents the Kronecker delta function. In other words, the entry H(p,i)(p′,i′) of he matrix H
is 0 whenever p is not equal to p′, and when p = p′ the entry is the number hp,i,i′ . With this assumption, one
gets: (

(ρ ◦ Pn, f )HT
)
(p,i)(p′,i′)

=
∑
q, j

ρpqPn, f
(p,i)(p′,i′)hp′,i′, jδp′q

= ρpq

∑
j

Pn, f
(p,i)(p′,i′)hp′,i′, j
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=
(
ρ ◦

(
Pn, f HT ))

(p,i)(p′,i′)
.

Similarly, one gets
H

(
ρ ◦ Pn, f )HT = ρ ◦

(
HPn, f HT )

which leads to the final expression

Kn = ρ ◦
(
Pn, f HT )(

ρ ◦
(
HPn, f HT )

+ Rn
)−1

(4.3.4)

which is often the formula provided for the covariance localisation in the literature.

Remark 4.3.1. 1. If H is not linear, we can either consider its linearization, as in the EKF approach, or
adapt the approach provided in Algorithm 4.2.1.

2. If H is not local but only approximately local, meaning that H(p,i)(p′,i′) = 0 as soon as ∥p− p′∥ is bigger
than a fixed constant, then formula (4.3.4) can be adapted.

3. In ETKF, in which Pn, f does not play any role, this approach can not be applied.

4.3.2 R-localisation

As mentioned in the last remark, the covariance localisation can not be used (of justified) when Pn, f does not
appear explicitly in the analysis step. On the other hand, even in Algorithm 4.2.3 about ETKF, the observation
error covariance matrix Rn appears, and we shall use it for the localisation process. The name R-localisation
comes from this matrix.

Recall from (4.2.7) that the analysis ensemble at time n for ETKF is given by

xn,a
j := x̄n,a +

√
J − 1

[
Xn, f T

1
2 U

]
j
. (4.3.5)

with

x̄n,a := x̄n, f + Xn, f T (Hn, f )T (Rn)−1(yn
obs − H(x̄n, f , n)

)
T :=

(
1J×J + (Hn, f )T (Rn)−1Hn, f

)−1
∈ MJ×J(R).

(4.3.6)

With the notations introduced above and for each p ∈ ΛX and i ∈ IX , let us also introduce a diagonal matrix
D(p, i) ∈ MM×M(R) with

D(p, i)(p′,i′)(p′,i′) = Cii′(∥p − p′∥) (4.3.7)

with Cii′ : R+ → [0, 1] a decreasing function. As before, in the simplest case, this function does not depend
on i and i′, which means that D(p, i)(p′,i′)(p′,i′) = C(∥p − p′∥) for some decreasing function C : R+ → [0, 1].
Note also that only the diagonal element of D(p, i) are defined in (4.3.7) since the off-diagonal term are 0.

Clearly, the matrix D(p, i) provides an information about the distance between a fixed point p and another
point p′. If we consider p, p′ ∈ ΛY , the set of points where observations are taken, and if i, i′ ∈ IY , the set
related to the measured quantities at each observation points, then the matrix D(p, i) is a M × M diagonal
matrix, see also (4.3.1). Thus, when computing

(
xn,a

j
)
(p,i) (the component (p, i) of the random variable Xn,a

j

corresponding to the jth member of the analysis ensemble at time n) with formula (4.3.5), one can replace(
Rn)−1 by D(p, i)

(
Rn)−1 in the formula for x̄n,a and T , see (4.3.6). Since Rn is often diagonal, it follows that the

computations of
(
Rn)−1 and of D(p, i)

(
Rn)−1 are usually quite simple. As a result, when computing

(
xn,a

j
)
(p,i),

only quantities close to the point p matter, and in particular, only the information of the innovation term
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yn
obs − H(x̄n, f , n) close to the point p is taken into account. This happens to be true since this expression will

be preceded by D(p, i)
(
Rn)−1.

This R-localisation procedure leads to the so-called local ensemble transform Kalman filter or in short LETKF.
Very briefly, it corresponds to a ETKF applied locally to each component of Xn,a

j .

4.4 Parameter estimation

Quite often a model involves some unknown parameters and one aim of data assimilation techniques is to
evaluate them. Let Θn ∈ Rd denote these parameters, which can be time (n) dependent or not. We review
some of the algorithms considered so far, and emphasize how these parameters can be evaluated.

In the framework of particle filters, as developed in Section 3.4, an initial value for Θ0
j is provided according

to an initial distribution or according to some prior knowledge. As a consequence, the evolution of the J
particles begin with independent values for the unknown parameters Θ0. At the forecast step, a new value for
the parameters is obtained with the equationΘn+1

j = Θn
j+ζ

n
j , where ζn

j usually follows a distribution of mean 0.
Depending on the system and on the knowledge for the evolution of the parameters, some information can be
encoded in the distribution for ζn. If J is large enough, “all” possible values of the parameters will be visited,
and the weight ωn

j will select the particles with the most suitable parameters. As developed in Section 3.4, a
resampling process is often necessary for tracking the correct values. Finally, the set {Θn

j , ω
n
j}

J
j=1 provides a

distribution of Θn and its mean value is given by
∑J

j=1Θ
n
jω

n
j .

For the Kalman filter or for its extensions, we consider the parameter Θ as a new random variable Θn with
values in Rd. If the correlation between the observations and the parameters is strong enough (this can usually
be checked with a scatter plot) then the parameter can be estimated together with the data assimilation process.
The suitable framework is the so-called “augmented state space” consisting in the system

Xn+1 = f (Xn, n) + ξn,
Θn+1 = Θn + ζn,

Yn = H(Xn, n) + εn,

where ζn is a random variable following a prescribed distribution, usually of mean 0. As for particle filter,
some information can be encoded in the distribution for ζn, depending on the system and on the knowledge
for the evolution of the parameters, Even if the evolution of Θn is essentially trivial, it will be updated with
the assimilation process. Note that ζn should neither be too small (in which case the evolution of Θn is not
possible or too slow), nor too big (in which case arbitrary values will be taken at every time step). In other
words, the role of ζn is to increase the spread of Θn as n increases. Note that this approach works for ensemble
Kalman filter as well, an augmented state space can also be considered.

Let us finally and briefly come back to the general framework of filtering processes, as introduced in Section
3.1, and consider an additional random variable Θn. In this framework the analysis distribution (3.1.8) reads

ΠXn,a,Θn,a(xn, θn) ≡ ΠXn,Θn |Y1:n(xn, θn | y1:n)

from which one infers the marginal distribution for the parameters:

ΠΘn,a(θn) =
∫

RN
ΠXn,Θn(xn, θn | y1:n)dxn.

This computation can be performed with a MCMC (Markov chain Monte Carlo) algorithm, and even more
efficiently with a pseudo-marginal MCMC method, see [5, Sec. 9.2] for additional information.
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Chapter 5

Conclusion

Data assimilation consists in a set of techniques for emulating models and observations. Both are necessary,
there is no data assimilation without model, and reciprocally no data assimilation without data! There exist
many variants of data assimilation techniques, they have been developed for different purposes and according
to many physical or technical constraints. Applications in environmental sciences, atmosphere sciences, geo-
sciences, biology, chemistry, social sciences are for example presented in [1, Ch. 8 - 12]. For understanding
the material presented in these notes, and for getting used to the algorithms, it is now highly recommended to
start implementing some of them and to solve some problems. Many examples and exercises are presented in
the reference books provided in the bibliography.

Good luck, and thank you.

40



Index

Absolute loss function, 19
Absolutely continuous, 11, 20
Additive inflation, 36
Analysis random variable, 18
Autocovariance function, 16
Autonomous system, 14
Autoregressive models, 6

Bayesian estimator, 19
Bayesian inference, 17
Bootstrap filter, 26

Chapman-Kolmogorov equation, 15
Condensation algorithm, 26
Conditional probability, 14
Correlation, 13
Cost function, 19
Coupling, 13
Covariance localisation, 37
Covariance matrix, 12
Cross-covariance matrix, 13

Data assimilation, 2
Data driven forecasting, 5
Data driven models, 6
Deterministic coupling, 13
Deterministic EnKF, 33
Discrete time Markov process, 14, 15
Discrete valued random variable, 11
Disintegration formula, 14

Effective sampling size, 26
EKF, 29
Elementary event, 10
EnKF, 31
Ensemble covariance matrix, 32
Ensemble forecast mean, 31
Ensemble Kalman filter, 31
Ensemble transform Kalman filter, 35
ETKF, 35
Event, 10
Event space, 10
Expectation, 12
Extended Kalman filter, 29

Filter divergence, 36
Filtering process, 21
Forecast random variable, 18

Gaussian random variable, 12
Gradient descent method, 8

IID, 16
Importance sampling, 20
Independence, 13
Induced probability measure, 11
Inflation, 35
Innovation, 39
Invariant measure, 16

Joint measure, 12

41



Kalman filter, 22
Kalman gain matrix, 23
Kalman update formula, 19
KF, 22

Law, 11
LETKF, 39
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