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Chapter 1

Groups

In this chapter, we discuss the definitions and basic concepts required to understand group theory.

1.1 Groups and subgroups

We start with the definition of a group.

Definition 1.1.1 (Group). A group is a set G together with a map G ×G → G (denoted by “·”, “ ”, or “+”)
that satisfies the following three conditions ∀a, b, c ∈ G:

1) (ab)c = a(bc) (associativity),

2) ∃ e ∈ G such that ea = ae = a (existence of an identity element),

3) ∀ a ∈ G, ∃ a−1 ∈ G such that aa−1 = a−1a = e (existence of an inverse for each element).

In this definition we have used the multiplicative notation. If the additive notation is chosen, then the map is
denoted by “+”, the identity element is denoted by 0, and the inverse a−1 of a is denoted by −a. We sometimes
write (G,+) of (G, ·) if we want to emphasize the additive notation or the multiplicative notation, but the
simpler notation G for a group is also commonly used. Most of the time in these notes, the multiplicative
notation will be preferred. Let us immediately mention some easy consequences of this definition.

Remark 1.1.2. 1) Observe that for any group G, the identity element e is unique.

2) Observe that e−1 = e, (a−1)−1
= a, (ab)−1 = b−1a−1. It also follows from the definition that for any element

a, its inverse a−1 is unique.

3) The equality ab = ac implies the equality b = c. Similarly, ba = ca implies b = c.

Exercise 1.1.3. Prove the statement contained in the previous remark.

Let us now mention two special instances of groups:

Definition 1.1.4 (Abelian and finite groups). 1) The group G is Abelian or commutative if ab = ba for all
a, b ∈ G,

2) The group G is finite if it contains a finite number of elements.

Usually, we write |G| for the cardinality of a set. Thus, the group G is finite if |G| < ∞.
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Examples 1.1.5 (Examples of Groups). 1) The most common groups are (Zn,+), (Rn,+) for n ∈ N, and
(R+, ·).

2) The cyclic group Cn: For n ∈ N, consider the set Cn = {e, a1, a2, a3, a4, . . . , an−1} endowed with the
following rules: e ≡ a0 ≡ an, a jak = a j+k mod n, (a j)−1

= an− j. One can check that this set with these rules
define an Abelian group.

3) The symmetric group S n: For n ∈ N, the group S n corresponds to the group of permutations of n elements,
or equivalently the group of all bijective maps from a set of n elements to itself. This group contains n!
elements, and is not Abelian if n ≥ 3. A convenient way to represent it is obtained by using the two-line
notation for each bijection. For example, for n = 3 its elements can be represented by(

1 2 3
1 2 3

) (
1 2 3
1 3 2

) (
1 2 3
2 1 3

) (
1 2 3
3 2 1

) (
1 2 3
2 3 1

) (
1 2 3
3 1 2

)
.

The group operation of S n is the standard composition of permutations, or the composition of bijective
maps.

4) Groups of n × n matrices are very useful and commonly used. We introduce the main ones. The group law
is always given by the multiplication of matrices. We set Det for the determinant, and denote by M−1 the
inverse of a matrix M, and by MT its transpose.
The general linear group GL(n,R), GL(n,C), the set of n × n invertible matrices,

The special linear group SL(n,R), SL(n,C), the set of n × n invertible matrices with determinant 1,
The unitary group U(n), the set of invertible matrices such that M∗ := M

T
= M−1. The matrix M∗ is

called the adjoint matrix of M, and it follows from the property M∗ = M−1 that |Det(M)| = 1,
The special unitary group SU(n), the set {M ∈ U(n) | Det(M) = 1},
The orthogonal group O(n), the subset of GL(n,R) that contains all A satisfying AT = A−1. It follows from
this property that Det(A) = ±1,
The special orthogonal group SO(n), the set {A ∈ O(n) | Det(A) = 1}.

It is easily observed that all these groups of matrices consist of subsets of the set GL(n,R) or GL(n,C) of all
real or complex invertible matrices. In fact, they are subgroups:

Definition 1.1.6 (Subgroup). A subgroup G0 of a group G is a subset of the group G which is also a group
itself. A subgroup G0 is proper if G0 , G, and G0 is not trivial if G0 , {e}.

Exercise 1.1.7. Determine some subgroups in each groups introduced in Examples 1.1.5. Prove that they are
indeed subgroups.

1.2 Conjugation and equivalence classes

We now introduce some relations between elements of a group G.

Definition 1.2.1 (Conjugation). For a, b ∈ G, we say that a is conjugate to b if ∃ c ∈ G such that a = cbc−1.
In this case, we write a ∼ b.

Exercise 1.2.2. Prove that the conjugation defines an equivalence relation, namely the following three prop-
erties are satisfied:

1) a ∼ a (reflexivity),

2) If a ∼ b then b ∼ a (symmetry),
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3) If a ∼ b and b ∼ c, then a ∼ c (transitivity).

Whenever an equivalence relation is available, it is natural to put together the elements which are conjugate.

Definition 1.2.3 (Equivalence class, conjugacy class). Let G be a set endowed with an equivalence relation
∼. For any a ∈ G, the equivalence class [a] containing a is defined by [a] := {b ∈ G | b ∼ a}. When the
equivalence relation is given by a conjugation, [a] is also called the conjugacy class containing a.

This notion of conjugacy class for a group G is very important, and the following properties should be checked:

1) Each element a ∈ G is in a single conjugacy class,

2) The identity element e generates a class on its own,

3) If G is Abelian, each element generates its own class,

4) If G0 is a subgroup of G and for any c ∈ G, the set

cG0 c−1 := {cac−1 | a ∈ G0}

defines another subgroup of G. One then says that cG0 c−1 is a subgroup conjugated to G0.

The construction of a conjugated subgroup leads naturally to the following definition:

Definition 1.2.4 (Invariant or normal subgroup). Let G be a group, and G0 be a subgroup. We say that G0 is
an invariant subgroup, or a normal subgroup of G if cG0 c−1 = G0 for all c ∈ G. We write G0 ◁G for a normal
subgroup G0 of G.

Some examples of invariant subgroups are provided below. It is interesting to guess other examples among
the groups introduced in Examples 1.1.5.

Examples 1.2.5 (Examples of invariant subgroups). 1) For G = (R,+), G0 = (Z,+) is a normal subgroup.

2) For G = GL(n,C), G0 = C1n×n is a normal (and Abelian) subgroup.

The notion of normal subgroup leads then to the concept of simple or semi-simple groups:

Definition 1.2.6 (Simple and semi-simple group). A group G is simple if {e} is the only proper and normal
subgroup of G. The group G is semi-simple if {e} is the only proper and normal Abelian subgroup of G.

Clearly, a semi-simple group might or might not be simple, while any simple group is automatically semi-
simple. For this reason, simplicity is a stronger requirement than semi-simplicity.

Exercise 1.2.7. Show that SO(3) is a simple group.

Let us now introduce another definition leading to equivalence classes.

Definition 1.2.8 (Left conjugation). Let G be a group, and let G0 be a subgroup. For any a, b ∈ G we set
a ℓ
∼ b if a−1b ∈ G0, or equivalently if b = ac for some c ∈ G0.

One easily checks the following properties:

1) a ℓ
∼ a for any a ∈ G,

2) If a ℓ
∼ b, then b ℓ

∼ a,

3) If a ℓ
∼ b and b ℓ

∼ c, then a ℓ
∼ c.
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As in Exercise 1.2.2, one infers from these properties that ℓ
∼ defines an equivalence relation. It is then natural

to define equivalence classes, as introduced in Definition 1.2.3: For any a ∈ G

G0[a] := {b | a ℓ
∼ b} = aG0. (1.2.1)

These equivalence classes are also called left coset. Equivalently, we can define a r
∼ b if ba−1 ∈ G0 and

check that r
∼ also defines an equivalence relation. The corresponding equivalence classes are denoted by [ ]G0

and are called right coset. Observe that [a]G0 = G0a. Let us emphasize that in general, aG0 and G0a are not
subgroups of G, and

{
G0[a] | a ∈ G

}
and

{
[a]G0 | a ∈ G

}
are not groups. However, the following statement

holds:

Proposition 1.2.9. Let G be a group and G0 a subgroup.

1. G0 is a normal subgroup if and only if G0[a] = [a]G0 for any a ∈ G,

2. If G0 is a normal subgroup, then the operation [a]G0[b]G0 := [ab]G0 defines a product on the equivalence
classes. By defining [a]−1

G0
:= [a−1]G0 and the identity given by G0 itself, these operations define a group,

denoted by G/G0 and called the quotient group or the factor group.

As an example of the previous construction, recall that (Z,+) is a normal subgroup of (R,+). Then, the
quotient group (R,+)/(Z,+) corresponds to

(
[0, 1),+mod 1

)
, often denoted by S1.

Exercise 1.2.10. Show that the above proposition holds. In addition, if G if finite, and if G0 is a normal
subgroup of G, show that the following equality holds:∣∣∣G/G0

∣∣∣ = |G|
|G0|

.

We also define another notion which is of central importance for the study of groups: the set of elements
which commute with all the other ones:

Definition 1.2.11 (Center). The center Z(G) of a group G is defined by Z(G) := {a ∈ G | ab = ba ∀ b ∈ G}.

Exercise 1.2.12. Prove that Z(G) is an Abelian and normal subgroup of G.

So far, we have considered only one group G. We shall now consider two groups, and some relations or maps
between them.

Definition 1.2.13 (Homomorphism, isomorphism, endomorphism, automorphism). Let G and G′ be two
groups. A (group) homomorphism is a map ϕ : G → G′ such that ∀ a, b ∈ G, ϕ(ab) = ϕ(a) ϕ(b). An
isomorphism is a bijective homomorphism, and if an isomorphism exists between the two groups G and G′,
we write G ≃ G′ and say that G and G′ are isomorphic. A homomorphism from a group G to itself is called
an endomorphism, and a bijective endomorphism is called an automorphism.

Let us stress that the relation ϕ(ab) = ϕ(a) ϕ(b) involves the group law of G and of G′: The product on the
left-hand side is the product in G, while on the right-hand side it is the product in G′. Usually, we say that the
map ϕ preserves the group laws of G and G′. The following statements then hold for ϕ a group homomorphism
from G to G′:

Proposition 1.2.14. 1) ϕ(eG) = eG′ and ϕ(a−1) =
(
ϕ(a)

)−1,

2) Ker(ϕ) := {a ∈ G | ϕ(a) = eG′} is a normal subgroup of G,

3) G/Ker(ϕ) is isomorphic to ϕ(G) through the isomorphism ϕ̃ defined by ϕ̃
(
[a]Ker(ϕ)

)
:= ϕ(a) for any a ∈ G,
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4) If G0 is a subgroup of G, then ϕ(G0) is a subgroup of G′.

Exercise 1.2.15. Prove the statements of the previous proposition.

Let us provide an example of a homomorphism which plays an important role in various fields. For it, we
firstly introduce the Pauli matrices

σ1 ≡ σx :=
(
0 1
1 0

)
, σ2 ≡ σy :=

(
0 −i
i 0

)
, σ3 ≡ σz :=

(
1 0
0 −1

)
(1.2.2)

together with the 2×2 identity matrixσ0 := 1. It is known that for any A ∈ M2(C) there exists a0, a1, a2, a3 ∈ C
such that

A = a0σ0 + a1σ1 + a2σ2 + a3σ3 =: a01 + a · σ,

with a = (a1, a2, a3) and σ = (σ1, σ2, σ3), and that Det(A) = (a0)2 − a2. In the next statement, Tr denotes the
usual trace of a matrix.

Proposition 1.2.16. The map ϕ : SU(2)→ SO(3) defined for any U ∈ SU(2) and for j, k ∈ {1, 2, 3} by

ϕ(U) jk =
1
2

Tr
(
σ jUσkU−1)

is a surjective homomorphism, with Ker(ϕ) = {1,−1}, where {1,−1} corresponds to the group containing just
these two elements.

Exercise 1.2.17. Prove this proposition (it is a standard result available in many textbooks). An illustration
of this map is provided in Figure 1.1.

Figure 1.1: Schematic representation of the 2 − 1 map from SU(2) to SO(3).

1.3 Direct and semi-direct products

In this section, we briefly mention how two groups can generate a third one, and provide some converse
constructions.

Definition 1.3.1 (Direct product). For j ∈ {1, 2} let G j be a group with identity element denoted by e j.
The direct product of G1 and G2 is defined by the set G := {(a1, a2) | a j ∈ G j} together with the product
(a1, a2)(b1, b2) := (a1b1, a2b2), the inverse (a1, a2)−1 := (a−1

1 , a−1
2 ), and the identity e := (e1, e2). This group is

usually denoted by G1 ×G2.
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The proof that G1×G2 is indeed a group is left as an easy exercise. One also observes that {(a1, e2) ∈ G1×G2 |

a1 ∈ G1} and {(e1, a2) ∈ G1×G2 | a2 ∈ G2} define normal subgroups of G1×G2. These subgroups can naturally
be identified with G1 and G2, respectively.

Conversely, suppose that a group G possesses two normal subgroups G1 and G2 satisfying the following
properties:

1) G1 ∩G2 = {e} with e the identity element of G,

2) Each element a of G admits a decomposition a = a1a2 with a1 ∈ G1 and a2 ∈ G2.

Then G is isomorphic to G1 ×G2, and one has G/G1 ≃ G2 and G/G2 ≃ G1.

Examples 1.3.2. Clearly for any m, n ∈ N, (Rm+n,+) is isomorphic to (Rm,+) × (Rn,+). If m and n do not
possess any common divisor except 1, then Cm ×Cn is isomorphic to Cmn.

Exercise 1.3.3. For n odd, show that O(n) is isomorphic to SO(n) × {1,−1}. Is it still the case if n is even ?

In the previous construction, the normality of the two subgroups is a very strong requirement. If only one
subgroup is normal, then one ends up with the following concept:

Definition 1.3.4 (Inner semi-direct product). A group G is called an inner semi-direct product if there exist
two subgroups N and H of G satisfying the following properties

1) N is normal,

2) N ∩ H = {e} with e the identity element of G,

3) Each element a of G admits a decomposition a = nh with n ∈ N and h ∈ H.

In this case we write G = N ⋊ H, and often say that G is the inner semi-direct product of N and H.

It is then natural to wonder if G can be constructed from two groups N and H, as for the direct product. It
is indeed possible, but the construction is slightly more involved, and is called the outer semi-direct product.
For this, we firstly recall that an automorphism ϕ of a group N is a bijective map ϕ : N → N satisfying
ϕ(ab) = ϕ(a)ϕ(b) for any a, b ∈ N, and observe that the set Aut(N) of all automorphisms of N is itself a group,
with the usual composition of maps. We now consider two groups N and H, with identity eN and eH , and
consider a map ψ : H → Aut(N). We then consider the set

{
(n, h) | n ∈ N, h ∈ H

}
together with the product

(n1, h1)(n2, h2) :=
(
n1[ψ(h1)](n2), h1h2

)
,

the inverse (n, h)−1 :=
(
[ψ(h−1)](n−1), h−1), and the identity e := (eN , eH). It turns out that this set and these

operations define a group, denoted by N⋊ψH and called the outer-direct product of N and H. One can naturally
identify N with {(n, eH) | n ∈ N} and H with {(eN , h) | h ∈ H}. With these identifications, one observes that N
is a normal subgroup of N ⋊ψ H, and that N ⋊ψ H corresponds to the inner semi-direct product of N and H.

Exercise 1.3.5. Check the assertions about N ⋊ψ H, in particular check that it is a group and that N is a
normal subgroup.

Exercise 1.3.6 (Dihedral groups). For any n ∈ N, define the dihedral group Dn with 2n elements, and show
that this group is an inner semi-direct product, or that this group is is isomorphic to the outer semi-direct
product of the cyclic groups Cn and C2.

Exercise 1.3.7 (r). Check that any inner semi-direct product is also an outer semi-direct product. In other
words, check that these two concepts are equivalent. You can get some inspiration from
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1.4 Transformation groups

Quite often, groups are related to a space and to some properties associated with this space. This leads to the
following notion:

Definition 1.4.1 (Transformation group). Let X be a set and let x denote the element of X. A transformation
group of X consists in a group G and of a map ◦ : G × X → X satisfying for any x ∈ X the following two
properties: e ◦ x = x for any x ∈ X and a ◦ (b ◦ x) = (ab) ◦ x for any a, b ∈ G.

Let us immediately stress that the notation ◦ is introduced for this abstract definition, but in the applications
various notations are used, depending on the context. Also, it is often assumed that a certain property of X is
preserved under the application of the transformation group G.

Examples 1.4.2. 1) Let X be usual Euclidean space Rn, and let d : X × X → [0,∞) denote the distance
function, namely for any x, y ∈ X,

d(x, y) := ∥x − y∥ =

√√√ n∑
j=1

(x j − y j)2. (1.4.1)

Then, the translation group T (n) corresponds to (Rn,+) acting as

a ◦ x := x + a for any a ∈ T (n) and x ∈ Rn.

Clearly, T (n) preserves the distance, namely d(a ◦ x, a ◦ y) = d(x, y) for any a ∈ T (n) and x, y ∈ Rn. In this
situation, it is an “accident” that the space X and the transformation group T (n) acting on X can both be
identified with Rn. Clearly, T (n) contains several subgroups, as for example (Zn,+).

2) Let X be usual Euclidean space Rn, and let ⟨·, ·⟩ : X × X → R denote the scalar product on X defined for
any x, y ∈ X by

⟨x, y⟩ :=
n∑

j=1

x jy j. (1.4.2)

Then, the rotation group R(n) consists in all linear transformations Rn → Rn preserving the scalar product,
namely ⟨a ◦ x, a ◦ y⟩ = ⟨x, y⟩ for any a ∈ R(n) and x, y ∈ X. Since linear transformations of Rn are described
by matrices, for any a ∈ R(n) there exists A ∈ GL(n,R) such that a ◦ x = Ax, and then the invariance relation
reads:

⟨x,1y⟩ = ⟨x, y⟩ = ⟨a ◦ x, a ◦ b⟩ = ⟨Ax, Ay⟩ = ⟨x, AT Ay⟩

meaning that AT A = 1, or equivalently AT = A−1. Thus, the rotation group can be identified with the group
O(n)1, as introduced in Examples 1.1.5.

Before going on with additional examples, let us provide a few more natural definitions.

Definition 1.4.3 (Orbit and stabilizer). Let G be a transformation group of a set X, and let x ∈ X. The set
Ox := {a ◦ x | a ∈ G} ⊂ X is called the orbit of x. The set Gx := {a ∈ G | a ◦ x = x} ⊂ G is called the stabilizer
of x.

1Be aware that some authors would call rotations only the elements of SO(n), and that this different might lead to some confusions.
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For the next statement, we recall that a partition of a set Ω consists in a family {Ω j} j of subsets of Ω satisfying
∪ jΩ j = Ω and Ω j ∩Ωk = ∅ whenever j , k.

Lemma 1.4.4. For any transformation group G of a set X one has:

1) The set of orbits defines a partition of X,

2) Gx is a subgroup of G, for any x ∈ X,

3) If x′ ∈ Ox, then Gx′ ≃ Gx.

The proof is not difficult and can be done as an exercise. Whenever G is a finite group, an additional relation
holds:

Lemma 1.4.5. Let G be a finite transformation group of a set X. Then, for any x ∈ X one has

|Gx| |Ox| = |G|.

1.5 Euclidean group and Poincaré group

In this section, we consider two famous transformation groups. The first one was studied much before the
development of group theory.

For the Euclidean group, the set X corresponds the Euclidean space Rn, and recall that d : X × X → [0,∞) is
the distance function introduced in (1.4.1).

Definition 1.5.1 (Euclidean group). The Euclidean group E(n) consists in the group of all transformations
of Rn that preserve the Euclidean distance between any two points, namely d(a ◦ x, a ◦ y) = d(x, y) for any
a ∈ E(n) and for any x, y ∈ Rn.

Clearly, the group T (n) introduced in Examples 1.4.2 is a subgroup of E(n), since it preserves the distance.
The rotation group R(n) introduced in Examples 1.4.2 is also a subgroup of E(n). Indeed, since any element
of ∈ R(n) can be represented by B ∈ O(n), it is sufficient to observe that for B ∈ O(n) one has

d(Bx, By)2 = ∥Bx − By∥2 = ⟨B(x − y), B(x − y)⟩ = ⟨(x − y), BT B(x − y)⟩

= ⟨(x − y),1(x − y)⟩ = ⟨(x − y), (x − y)⟩ = ∥x − y∥2 = d(x, y)2.

More generally, any pair (b, B) with b ∈ T (n) and B ∈ O(n) defines an element of E(n) by acting on x ∈ X
as (b, B) ◦ x := Bx + b. In fact, it turns out that all elements of E(n) are of this form. It thus follows that the
composition law on E(n) is given by

(b, B)(b′, B′) = (b + Bb′, BB′) b, b′ ∈ T (n) and B, B′ ∈ O(n),

the inverse of (b, B) is given by (b, B)−1 =
(
− B−1b, B−1), and the identity is e = (0, 1).

Exercise 1.5.2. Check that
(
T (n), 1

)
is a normal subgroup of E(n), and that E(N) is isomorphic to the semi-

direct product T (n) ⋊ R(n). Exhibit different types of subgroups of E(n), see for example

https://en.wikipedia.org/wiki/Euclidean group

We now move to the study of the Poincaré group. For that purpose, we consider X = R4 and denote its element
by x = (x0, x1, x2, x3) with x j ∈ R for j ∈ {0, 1, 2, 3}. We endow this space with the following bilinear form:

x · y = x0y0 − x1y1 − x2y2 − x3y3 for any x, y ∈ R4. (1.5.1)
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It is indeed easily observed that the map R4 × R4 ∋ (x, y) 7→ x · y ∈ R is linear in both arguments. If we
introduce the diagonal matrix

g :=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


and use the notation of the scalar product defined in (1.4.2), then the following equality holds:

x · y = ⟨gx, y⟩. (1.5.2)

The set R4 together with this bilinear form is called the Minkowski space and is denoted by M.

Definition 1.5.3 (Lorentz group). The Lorentz group L consists in the set of all matrices Λ ∈ M4(R) that
preserve the bilinear map, namely

(Λx) · (Λy) = x · y for any x, y ∈ M. (1.5.3)

Note that the relation introduced in this definition has also a purely matricial version. By taking (1.5.2) into
account the above relation reads

ΛT gΛ = g. (1.5.4)

Thus, the Lorentz group L consists of all Λ ∈ M4(R) satisfying (1.5.4).

Exercise 1.5.4. Define the restricted Lorentz group, and study the notions of orthochronous and proper
Lorentz transformations.

The Euclidean group is the group preserving the distance defined by the Euclidean norm. We can now define
the Poincaré group with a similar approach. For that purpose, we define an analog of d2 introduced in (1.4.1)
but in the Minkowski setting:

t(x, y) := (x − y) · (x − y).

Definition 1.5.5 (Poincaré group). The Poincaré group P (also called the Lorentz inhomogeneous group)
consists in the group of all transformations of M that leave invariant the quantity t(x, y) invariant, namely
t(a ◦ x, a ◦ y) = t(x, y) for any a ∈ P and x, y ∈ M .

It turns out that the elements of P consist of pairs (b,Λ) with b ∈ T (4) and Λ ∈ L. Their action on x ∈ M is
given by (b,Λ) ◦ x := Λx + b, which leads to the composition law of P:

(b,Λ)(b′,Λ′) = (b + Λb′,ΛΛ′), (1.5.5)

the inverse of (b,Λ) is given by (b,Λ)−1 =
(
− Λ−1b,Λ−1), and the identity is e = (0,1).

Exercise 1.5.6. Check that
(
T (4),1

)
is a normal subgroup of P, and that P is isomorphic to the semi-direct

product T (4) ⋊L.
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Chapter 2

Linear representations

In this chapter, we introduce the notion of linear representations of a group, which play a very important role
in many fields.

2.1 Vector spaces and Hilbert spaces

In this section we recall the notion of a vector space, and then concentrate on Hilbert spaces. They are special
instances of vector spaces endowed with a scalar product. The underlying vector space can be of finite or
infinite dimension. Usually, we consider complex vector spaces and complex Hilbert spaces, but real versions
also exist.

Recall that a complex vector space V is a set endowed with two operations: An addition, which gives one
new element from two elements of this set, usually written +, and a scalar multiplication of the elements by
any complex number. Additional compatibility requirements are summarized here

https://en.wikipedia.org/wiki/Vector space

A linear map on V is a function T : V → V satisfying T ( f + λg) = T f + λTg for any f , g ∈ V and λ ∈ C.
The set of all linear maps onV is denoted by L(V). Observe that 1 defined by 1 f = f is an element of L(V).

Definition 2.1.1 (Hilbert space). A (complex) Hilbert space H is a complex vector space, endowed with a
scalar product ⟨·, ·⟩ which is complete for the induced norm ∥ f ∥ := ⟨ f , f ⟩1/2. We also assume H to be
separable1.

Recall that a scalar product satisfies the following conditions, for any f , g, h ∈ H and λ ∈ C:

1) ⟨g, f ⟩ = ⟨ f , g⟩,

2) ⟨ f , λg + h⟩ = λ⟨ f , g⟩ + ⟨ f , h⟩,

3) ⟨ f , f ⟩ ≥ 0, with equality if and only if f = 0.

Note that we have chosen the linearity of the scalar product in the second argument, but we could also have

1Separable means that there exists a countable basis for H . Not all Hilbert spaces are separable, but the non-separable ones are
less frequently used.
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chosen the linearity in the first argument. Completeness means that any Cauchy sequence2 converges in H .
An analogy to this concept can be made with Q and R: Q is not complete because many converging sequences
have their limit in R and not in Q, even if all the elements of the sequence are in Q. Let us also emphasize that
the scalar product satisfies the Schwarz inequality

|⟨ f , g⟩| ≤ ∥ f ∥∥g∥,

and that ∥ f ∥ := ⟨ f , f ⟩1/2 is a norm, which means that it satisfies the triangle inequality

∥ f + g∥ ≤ ∥ f ∥ + ∥g∥.

Examples 2.1.2. We present a few Hilbert spaces which appear very often:

1) Cn with scalar product ⟨a, b⟩ :=
∑n

j=1 a jb j for a, b ∈ Cn,

2) L2(Rn) :=
{
f : Rn → C |

∫
Rn | f (x)|2 dx < ∞

}
with scalar product

⟨ f , g⟩ :=
∫

Rn
f (x)g(x)dx for f , g ∈ L2(Rn),

3) ℓ2(Zn) :=
{
(a j) j∈Zn |

∑
j∈Zn |a j|

2 < ∞
}

with scalar product〈
(a j) j∈Zn , (b j) j∈Zn

〉
=

∑
j∈Zn

a jb j for (a j) j∈Zn , (b j) j∈Zn ∈ ℓ2(Zn).

The next definition contains a generalization of matrices acting on Cn. Note that a matrix is always bounded,
but this is not always the case in the more general framework of a Hilbert space.

Definition 2.1.3 (Bounded linear operator). A bounded linear operator T on a Hilbert space H consists in a
linear map T : H → H satisfying ∥T f ∥ ≤ c∥ f ∥ for some c > 0 and all f ∈ H . The infimum over all c is
denoted by ∥T∥ and is called the norm of T . The set of all bounded linear operators is denoted by B(H).

For example, the operator 1 acting as 1 f = f belongs toB(H), with ∥1∥ = 1. Observe also that if T,R ∈ B(H),
then TR is defined by [TR]( f ) := T

(
R f

)
, it belongs to B(H) and its norm satisfies ∥TR∥ ≤ ∥T∥∥R∥.

Exercise 2.1.4. In L2(R) or in ℓ2(Z), exhibit a linear operator which is not bounded (and prove that it is not
bounded). Can you also exhibit one in an abstract Hilbert space as introduced in Definition 2.1.1.

Like for matrices, we define an adjoint for any T ∈ B(H), namely the adjoint T ∗ of T is the bounded linear
operator satisfying for any f , g ∈ H :

⟨ f ,Tg⟩ = ⟨T ∗ f , g⟩.

It can be shown that this adjoint always exists and is unique. Note that ifH = Cn, then B(Cn) = Mn(C) which
means that any T ∈ B(H) is nothing but a matrix. In this situation, T ∗ corresponds to the adjoint matrix
(transpose and complex conjugate).

Let us now look at special instances of bounded linear operators.

Definition 2.1.5 (Self-adjoint, positive, unitary, invertible operators). Let T ∈ B(H).

2A Cauchy sequence in H is a sequence ( fn)n∈N ⊂ H satisfying the condition: for any ϵ > 0 there exists N ∈ N such that
∥ fn − fm∥ ≤ ϵ for all n,m ≥ N. Note that any convergent sequence is Cauchy, but the converse is not true.
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1) T is self-adjoint or Hermitian if T ∗ = T,

2) T is positive if ⟨ f ,T f ⟩ ≥ 0, for any f ∈ H ,

3) T is unitary if TT ∗ = T ∗T = 1,

4) T is invertible (in B(H)) if T is bijective.

Observe that the first three properties depend on the scalar product, and thus can not be defined for a vector
spaceV without a scalar product. On the other hand, the invertibility property does not depend on the scalar
product, and can also be defined onV. We set GL(V) or GL(H) for the set of invertible elements ofV or of
H , and observe that they are groups with identity 1.

Remark 2.1.6. Observe that a finite dimensional complex vector space can always be identified with Cn for
some n ∈ N, and that Cn is endowed with a scalar product. It means that any finite dimensional complex
vector space can always be identified with a finite dimensional Hilbert space. The same is not true for infinite
dimensional vector spaces.

2.2 Linear representations

We can now define the notion of a linear representation of a group. For the initial definition, observe that the
scalar product is not really necessary, which means that the vector space structure is sufficient. However, the
theory is much richer if the representation is taking place in a Hilbert space, but it is also less general!

Definition 2.2.1 (Linear representation). Let G be a group, and letV be a vector space. A linear representation
of G inV corresponds to a map U : G → L(V) satisfying U(e) = 1 and U(ab) = U(a)U(b) for any a, b ∈ G.
One writes (V,U) for this representation, or (H ,U) if the vector spaceV is a Hilbert spaceH .

In particular, it follows from this definition that U(a−1) = U(a)−1, which means that all elements of the
range of U are invertible, or equivalently Ran(U) ⊂ GL(V). As a consequence, the map U corresponds
to a homomorphism G → GL(V). In the sequel, we shall simply say a representation instead of a linear
representation, since these representations are the most common ones. Also, let us stress that all statements
for (V,U) apply to (H ,U) (since any Hilbert space is a special instance of a vector space) but the converse is
not true: some statements for (H ,U) are simply meaningless for (V,U).

Remark 2.2.2 (Unitary representation). If the representation is taking place in a Hilbert spaceH , and if the
operator U(a) is unitary for any a ∈ G, then the map G → U(H) is called a unitary representation of G.
Here, we have used the notationU(H) for the set of all unitary operators onH .

Definition 2.2.3 (Trivial, faithful representation, dimension). A representation (V,U) of a group G is trivial if
U(a) = 1 for any a ∈ G, while U is faithful if U(a) , 1 for any a ∈ G \ {e}. The dimension of a representation
corresponds to the dimension ofV, denoted by dim(V).

Clearly, the definition of dimension generates two types of representations: the finite dimensional representa-
tions, with U(a) being a matrix for any a ∈ G, and the infinite dimensional ones, with U(a) being a linear map
on the infinite dimensional vector spaceV.

Lemma 2.2.4. Let G be a group, andV be a vector space.

1. If U : G → L(V) is a representation, then the set G0 := {a ∈ G | U(a) = 1} is a normal subgroup of G,

2. If G is simple, then all non-trivial representations are faithful,
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3. If G0 is a normal subgroup of G and if U : G/G0 → L(V) is a representation, then the map U : G →
L(V) given by U(a) := U

(
[a]G0

)
, for any a ∈ G, defines a representation of G.

The proof of this lemma is an easy exercise. Let us emphasize the meaning of the third statement: Starting
from a representation of the quotient group, we can define a representation of the group itself. Quite often, we
are trying to identify representations which are either equivalent, or inequivalent, in a precise sense.

Definition 2.2.5 (Equivalent or similar representations). Let U : G → L(V) and U′ : G → L(V′) be two
representations of a group G. These representations are equivalent or similar if there exists a bijective linear
map T : V → V′ satisfying U′(a) = TU(a)T−1 for any a ∈ G. In this case, we write (V,U) ≃ (V′,U′). The
bijective map T is called a similarity transformation. If V,V′ are Hilbert spaces, and if T is a unitary map
between them, then the two representations are said to be unitarily equivalent.

In this definition, we used the concept of a unitary map between two Hilbert spacesH andH ′. It means that
T∗T = 1 and TT∗ = 1, where T∗ is defined by the equality

⟨ f ′,T f ⟩H ′ = ⟨T∗ f ′, f ⟩H for f ∈ H and f ′ ∈ H ′.

The scalar product has been indexed for clarity.

Before moving on, observe that the notion of equivalent representations define an equivalence relation, as pre-
sented in Exercise 1.2.2. We now present a result which says that for finite groups, only unitary representations
are really important. Keep in mind that this statement is not true for general groups.

Proposition 2.2.6. Let G be a finite group, and let (H ,U) be a representation of G in a Hilbert space H .
Then, U is equivalent to unitary representation (H ′,U′).

A proof for this result is provided in [1, Thm. 2.8] and is based on an average over the group. For finite groups,
such an average is well defined, while it is generally not the case for infinite groups. Nevertheless, a similar
statement exists for other groups, as for example compact Lie groups.

2.3 Reducible / irreducible representations

LetV0 be a subspace of a vector spaceV, meaning thatV0 is stable for the addition of its elements and for the
multiplication by elements of C. Another subspaceV1 ofV is called a complementary subspace if any f ∈ V
admits a unique decomposition f = f0 + f1 with f0 ∈ V0 and f1 ∈ V1. In this case we writeV = V0 ⊕V1. If
V is a Hilbert spaceH , we assume that the subspaces are closed, meaning that they are complete for the norm
of H 3. Then, if H0 is a subspace of H , there exists a unique subspace H⊥0 complementary to H0 satisfying
⟨ f , g⟩ = 0 for any f ∈ H0 and g ∈ H⊥0 . In this setting, we always choose this distinct subspace and call H⊥0
the orthogonal complement. We still writeH = H0 ⊕H

⊥
0 .

Let us now consider T ∈ L(V). In a decompositionV0 ⊕V1 ofV, this operator takes the form

T =
(
T00 T01
T10 T11

)
with clear meaning for each entry of the matrix. We are now ready for the main definition of this section.

Definition 2.3.1 (Invariance, minimality, and irreducibility). Let (V,U) be a representation of a group G.

3The completeness means that any Cauchy sequence inH0 converges inH0. By analogy, one can think about {(x, 0) ∈ R2 | x ∈ R}
as a closed real subspace of R2.
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1. A subspaceV0 ⊂ V is invariant if U(a)V0 ⊂ V0 for any a ∈ G. This subspace is proper ifV0 , V, and
non-trivial if V0 , {0}. It is minimal if it does not contain any other non-trivial and proper invariant
subspace.

2. The representation is irreducible if {0} andV are the only invariant subspaces, and reducible otherwise.

Based on this definition, one directly infers the following:

Exercise 2.3.2. If G is finite and if the representation (V,U) is irreducible, show thatV is finite dimensional
and has dimension at most equal to |G|.

Observe that if a subspace V0 ⊂ V is invariant, and if V1 is a complementary subspace, then in the decom-

position V0 ⊕ V1 of V, any operator U(a) takes the form
(
U00(a) U01(a)

0 U11(a)

)
, for any a ∈ G. If V1 is also

invariant, then U(a) takes the simplest form
(
U00(a) 0

0 U11(a)

)
, for any a ∈ G. In this case, one says that the

representation is decomposable with respect to the direct sumV0 ⊕V1.

Definition 2.3.3 (Complete reducibility). A representation (V,U) of a group G is completely reducible if for
any invariant subspaceV0 ⊂ V, there exists a complementary subspace which is also invariant.

As already mentioned, if the vector space is a Hilbert space H and if H0 ⊂ H is an invariant subspace,
then the distinct complementary subspace is the orthogonal complementH⊥0 . Clearly, if (V,U) is completely
reducible and if dim(V) < ∞, then this representation can be decomposed into a direct sum of irreducible
representations. If dim(V) = ∞, the statement is not true in general since the decomposition into invariant
subspaces might never end. Nevertheless it can be shown that some representations are completely reducible.

Theorem 2.3.4. 1) If G is a finite group, any representation (H ,U) in a Hilbert space is completely reducible,

2) Any unitary representation (H ,U) of a group G in a Hilbert space is completely reducible. In particular, if
dim(H) < ∞, then the Hilbert space admits an orthogonal decompositionH = ⊕kH

k and each subspace
Hk is a minimal invariant subspace.

By Remark 2.1.6, observe that the first statement also holds for an arbitrary representation (V,U) ifV is finite
dimensional.

Exercise 2.3.5. Provide a proof for the previous statement. In particular, show that if a subspaceH0 ofH is
invariant under a unitary representation of G, thenH⊥0 is also invariant under this representation.

The next statement provides a criterion for the equivalence of two representations. We refer to [14, p. 55] for
the proof, or leave it as an exercise.

Lemma 2.3.6 (Schur’s Lemma). Let (V,U),V′,U′ be two irreducible representations of a group G. Assume
that there exists a linear map T : V → V′ satisfying for all a ∈ G

TU(a) = U′(a)T.

Then, either T = 0, or T defines a similarity transformation, as introduced in Definition 2.2.5. In particular,
if (V,U) and (V′,U′) are inequivalent, then T = 0.

Let us state and prove two corollaries of Schur’s Lemma.

Corollary 2.3.7. Let (V,U) be a finite dimensional irreducible representation of a group G, and assume that
there exists T ∈ L(V) satisfying T U(a) = U(a)T for all a ∈ G. Then T = λ1 for some λ ∈ C.
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Proof. Since V is finite dimensional, T is a matrix which has at least one eigenvalue λ, which means that
Ker(T −λ1) , ∅. It then follows from the assumption that (T −λ1)U(a) = U(a) (T −λ1) for any a ∈ G. Since
T − λ1 can not be bijective, it follows from Schur’s Lemma that (T − λ1) = 0, meaning that T = λ1. □

Corollary 2.3.8. If G is Abelian, any finite dimensional irreducible representation of G is of dimension 1.

Proof. Let (V,U) be a finite and irreducible representation of G. Since U(a) U(b) = U(b) U(a) for any
a, b ∈ G it follows from Corollary 2.3.7 that U(b) = λ(b)1 for some λ(b) ∈ C which depends on b. Then,
for any f ∈ V with f , 0, for any α ∈ C, and for any b ∈ G one has U(b) α f = λ(b) α f , which means
that C f is an invariant subspace. Since the representation (V,U) is irreducible, it follows thatV = C f . As a
consequence,V is one dimensional. □

The last statement of this section is also about finite groups, and complements the content of Exercise 2.3.2.
Its proof is left as an exercise, but it is not completely trivial, see for example [1, Prop. 2.19] or [12, Corollary
p. 25].

Proposition 2.3.9. Let G be a finite group and assume that G0 is an Abelian subgroup of G. Then any
irreducible representation of G is of dimension at most |G|/|G0|.

2.4 Representation of finite groups

In this section, we concentrate on finite groups and develop some of the special features of their representa-
tions. In particular, we are interested in inequivalent irreducible representations of such groups. Thanks to
Exercise 2.3.2 or to Proposition 2.3.9, we know that all irreducible representations of a finite group are finite
dimensional, which means that all vector spaces in this section are finite dimensional.

Proposition 2.4.1 (Orthogonality relation). Let (V,U) and (V′,U′) be two irreducible representations of a
finite group G, and let T : V → V′ be a linear map. Set

ZT :=
1
|G|

∑
a∈G

U′(a)T U(a)−1. (2.4.1)

Then,

1. If (V,U) ; (V′,U′), then ZT = 0,

2. If (V,U) = (V′,U′), then ZT =
1
n Tr(T )1 with n = dim(V).

Proof. 1) One easily checks that U′(b) ZT = ZT U(b) for any b ∈ G. Thus, it follows from Lemma 2.3.6 that
ZT = 0.

2) By Corollary 2.3.7 one infers that ZT = λ1 for some λ ∈ C. Then, observe that

nλ = Tr(λ1) = Tr
( 1
|G|

∑
a∈G

U′(a)T U(a)−1
)
=

1
|G|

∑
a∈G

Tr
(
U′(a)T U(a)−1) = Tr(T ),

leading to λ = 1
n Tr(T ). Note that the relation Tr(AB) = Tr(BA) has been used for the last equality. □
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Recall that the notion of equivalent representation (see Definition 2.2.5) defines an equivalent relation, which
allows us to define the set {ηk}k of all equivalent classes of inequivalent irreducible representations of a finite
group G. For each equivalent class, we choose a representative which is a unitary representation (Hk,Uk).
Thanks to Proposition 2.2.6, note that there is no restriction in requiring that this representation is unitary.

For an irreducible unitary representation (Hk,Uk), let us fix an orthonormal basis {ek
j}

nk
j=1 with nk := dim(Hk).

For any a ∈ G and for i, j ∈ {1, . . . , nk} we also set

Uk
i j(a) ≡ Uk(a)i j := ⟨ek

i ,U
k(a)ek

j⟩Hk (2.4.2)

for the element i j of the matrix Uk(a). Clearly, the finite sequence
(
Uk

i j(a)
)
a∈G belongs to C|G|. In the sequel

we shall use the notation δmn for the Kronecker delta function, namely δmn = 0 if m , n while δmn = 1 if
m = n.

Let us now consider a special linear operator T in Proposition 2.4.1, namely the operator T := |eℓs⟩⟨e
k
j | : H

k →

Hℓ with s ∈ {1, . . . , nℓ} and j ∈ {1, . . . , nk}. This operator acts on any f ∈ Hk as

|eℓs⟩⟨e
k
j | f := ⟨ek

j, f ⟩eℓs.

If then follows that

⟨eℓr ,ZT ek
i ⟩ =

1
|G|

∑
a∈G

〈
eℓr ,U

l(a)eℓs
〉〈

ek
j,U

k(a)−1ek
i
〉
=

1
|G|

∑
a∈G

Uℓ
rs(a)Uk

i j(a). (2.4.3)

If we choose ℓ , k, then it follows from Proposition 2.4.1 that ZT = 0, which implies by (2.4.3) that 0 =
1
|G|

∑
a∈G Uℓ

rs(a)Uk
i j(a). In other words, one has Uℓ

rs⊥Uk
i j in C|G|. On the other hand, if we choose ℓ = k, it also

follows from Proposition 2.4.1 that

ZT =
1
nk

Tr
(
|ek

s⟩⟨e
k
j |
)
1 =

1
nk
δs j 1,

which leads by (2.4.3) to

1
|G|

∑
a∈G

Uk
rs(a)Uk

i j(a) = ⟨ek
r ,ZT ek

i ⟩ =
1
nk
δs j⟨ek

r ,1ek
i ⟩ =

1
nk
δs j δri.

Thus, if we summarize these relations one has shown that

1
|G|

∑
a∈G

Uℓ
rs(a)Uk

i j(a) =
1
nk
δkℓ δs j δri. (2.4.4)

The following statement is a direct consequence of the previous orthogonality relation. Note that a stronger
statement will be proved later on.

Corollary 2.4.2. Let G be a finite group, and let {ηk}k be the set of equivalence classes of inequivalent
irreducible representations of G, each of dimension nk. Then the following relation holds:∑

k

n2
k ≤ |G|.

Proof. For each equivalent class of representations, one has n2
k elements

(
Uk

i j
)nk
i, j=1 which are orthogonal in

C|G|. Since dim(C|G|) = |G|, it follows that
∑

k n2
k ≤ |G|. □
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Let us emphasize one important outcome of the previous statement: the inequivalent and irreducible represen-
tations of a finite group are only in finite number. We now introduce a very useful concept for representations
of finite groups.

Definition 2.4.3 (Character). Let (H ,U) be a finite dimensional representation of a finite group G. For any
a ∈ G, the character of a in U is defined by

χ(a) := Tr
(
U(a)

)
.

Since for any invertible matrix B one has Tr(BAB−1) = Tr(A), it follows that elements in a conjugacy class
have the same character, and that characters are identical for two equivalent representations. One also observes
that χ(·) ∈ C|G|, but more can be said:

Corollary 2.4.4. Let (Hk,Uk) and (Hℓ,Uℓ) be two unitary and irreducible representations of a finite group
G, with respective characters denoted by χk and χℓ. Then,

1
|G|

∑
a∈G

χk(a)χℓ(a) =

1 if (Hk,Uk) ≃ (Hℓ,Uℓ)
0 otherwise

.

Exercise 2.4.5. Provide a proof of this statement, by using (2.4.4).

Consider now (H ,U) a finite dimensional representation of a finite group G. By Theorem 2.3.4 this represen-
tation is completely reducible, and therefore there exists a unique set {νk}k ⊂ N such that H ≃ ⊕kνkH

k and
U ≃ ⊕kνkUk. Here, (Hk,Uk) represents a unitary irreducible representation of G in the equivalence class ηk,
and the notation 2Hk means Hk ⊕ Hk (and similarly for any natural number bigger than 2). In the sequel,
we shall assume that (H ,U) is unitary, and identify it with the direct sum of irreducible representations. The
following statement provides a formula for computing νk.

Theorem 2.4.6. Let (H ,U) be a unitary and finite dimensional representation of a finite group G, and let
{νk}k ⊂ N the set mentioned above.

1) νk =
1
|G|

∑
a∈G χ(a)χk(a), where χ(a) and χk(a) denote the character of a in U and in Uk, respectively,

2) (H ,U) is irreducible if and only if 1
|G|

∑
a∈G |χ(a)|2 = 1,

3) If (H ′,U′) is a second finite dimensional representation of G, then (H ,U) ≃ (H ′,U′) if and only if their
characters are equal.

We provide below the proof for the first two statements. For the third one, the necessity condition has already
been mentioned after Definition 2.4.3. For the sufficiency, we refer to [1, Prop. 2.26] or to [13, Cor. III.2.6].

Proof. 1) By Theorem 2.3.4 this representation is completely reducible. Thus, writing U = ⊕k′νk′Uk′ , one
gets χ(a) =

∑
k′ νk′χ

k′(a). Then, by Corollary 2.4.4 one infers that

1
|G|

∑
a∈G

χ(a)χk(a) =
1
|G|

∑
k′
νk′

∑
a∈G

χk′(a)χk(a) =
∑

k′
νk′ δkk′ = νk.

2) As before, we write U = ⊕k′νk′Uk′ , then one gets

1
|G|

∑
a∈G

|χ(a)|2 =
1
|G|

∑
a∈G

(∑
k

νk χk(a)
)(∑

ℓ

νℓ χ
ℓ(a)

)
=

∑
k

νk

∑
ℓ

νℓ
1
|G|

∑
a∈G

χk(a)χℓ(a)
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=
∑

k

νk

∑
ℓ

νℓ δkℓ =
∑

k

ν2
k .

Clearly, the equality
∑

k ν
2
k = 1 holds if and only if there exists only one νk = 1, and all the other ones are 0.

This situation corresponds to an irreducible representation, leading directly to the statement. □

We now introduce a representation which plays a very important role: the group acting on itself. In the next
statement, ℓ2(G) means all functions from G to C (they are automatically square summable when G is finite),
and observe that ℓ2(G) can be identified with C|G|, scalar product included.

Definition 2.4.7 (Regular representation). Let G be a finite group, and consider the Hilbert space H reg :=
ℓ2(G). The regular representation of G is given by (H reg,Ureg) with [Ureg(a) f ](b) = f (a−1b) for any f ∈ H reg.

Exercise 2.4.8. Check that the regular representation is indeed a representation. Is it a unitary representa-
tion ?

As before, the regular representation is completely reducible, which means that it can be written as H reg =

⊕kνkH
k and Ureg = ⊕kνkUk with

∑
k νknk = dim(H reg) = |G|. Let us now choose an orthonormal basis of

H reg given by {δa}a∈G with δa(b) = 1 if b = a and δa(b) = 0 if b , a. Then one has

Ureg
bc (a) := ⟨δb,Ureg(a)δc⟩ = ⟨δb, δc(a−1·)⟩ =

∑
d∈G

δb(d)δc(a−1d) = δc(a−1b) =

1 if a−1b = c
0 otherwise.

In particular one has

Ureg
bb (a) =

1 if a−1b = b
0 otherwise

=

1 if a = e
0 otherwise

,

from which one infers that

χreg(a) =

|G| if a = e
0 otherwise

. (2.4.5)

The following important result can now be deduced:

Theorem 2.4.9. Consider a finite group G and let {ηk}k be the set of equivalence classes of its inequiva-
lent irreducible representations, with (Hk,Uk) a unitary irreducible representation in the class ηk and with
dim(Hk) = nk. Then,

1) Ureg = ⊕knkUk,

2)
∑

k n2
k = |G|.

Let us comment on the first statement: it means that the regular representation contains each irreducible
representations a number of times equal to their dimension, namely νk = nk. Then, the second statement can
be directly inferred from

|G| = dim(H reg) =
∑

k

νknk =
∑

k

n2
k .

Proof. For the statement 1) and with the notation already introduced one gets from (2.4.5)

νk =
1
|G|

∑
a

χreg(a)χk(a) =
1
|G|
|G|χk(e) = nk

since the trace of the nk × nk identity matrix is nk. □
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Let us add one more statement about the conjugacy classes of a finite group. These classes were introduced in
Definition 1.2.3. The proof is left as an exercise, but is not completely trivial, see for example [1, Prop. 2.29
& Thm 2.30].

Theorem 2.4.10 (r). For any finite group, the number of its conjugacy classes is equal to the number of
inequivalent irreducible representations.

Exercise 2.4.11. Look at a few examples of finite groups and determine all their inequivalent irreducible
representations.

2.5 Tensor product of representations

In this section, we construct new representations, and decompose them... but let us start with the underlying
Hilbert space. The first construction is abstract, but the subsequent lemma will help a lot.

Let H1 and H2 be two Hilbert spaces, and consider f j ∈ H j for j ∈ {1, 2}. We set f1 ⊗ f2 : H1 × H2 → C
acting on (g1, g2) ∈ H1 ×H2 as

[ f1 ⊗ f2](g1, g2) = ⟨g1, f1⟩H1 ⟨g2, f2⟩H2 .

Clearly, f1 ⊗ f2 is a bi-antilinear map on H1 × H2. We denote by E the set of linear combinations of such
f1 ⊗ f2, and define a scalar product on E by

⟨ f1 ⊗ f2, f ′1 ⊗ f ′2⟩ := ⟨ f1, f ′1⟩H1 ⟨ f2, f ′2⟩H2 . (2.5.1)

Based on this, we provide the main definition for a new Hilbert space:

Definition 2.5.1 (Tensor product of Hilbert spaces). Let H1 and H2 be Hilbert spaces. The completion of
the set E with respect to the norm defined by the scalar product (2.5.1) is a new Hilbert space, denoted by
H1 ⊗H2 and called the tensor product ofH1 andH2.

The previous construction is abstract, but a basis of this Hilbert space is easy to exhibit. We refer to [10,
Sec. II.4] for more details and a proof of the following statement.

Lemma 2.5.2. Let {e1
j} j and {e2

k}k be orthonormal bases ofH1 andH2, respectively. Then, the set {e1
j ⊗ e2

k} j,k

defines a basis ofH1 ⊗H2.

Let us now consider A1 ∈ B(H1) and A2 ∈ B(H2). We can define a new operator A1 ⊗ A2 belonging to
B(H1⊗H2) by [A1⊗A2]( f1⊗ f2) = (A1 f1)⊗(A2 f2), simply written A1 f1⊗A2 f2. We then get the multiplication
rule (A1 ⊗ A2)(B1 ⊗ B2) = A1B1 ⊗ A2B2. In addition, if H1 and H2 are finite dimensional, then we also get
Tr(A1 ⊗ A2) = Tr(A1)Tr(A2).

Exercise 2.5.3. Check the above simple statements, and show that ∥A1 ⊗ A2∥ = ∥A1∥∥A2∥.

We now come back to the representations of groups. Assume that (H1,U1) is a representation of a group G1,
and that (H2,U2) is a representation of a group G2. Then we can define for a1 ∈ G1 and a2 ∈ G2 the element
(a1, a2) ∈ G1 ×G2, and the operator U

(
(a1, a2)

)
:= U1(a1) ⊗ U2(a2) acting on H1 ⊗ H2. We formulate in the

first part of the next statement some easy outcomes of this construction, and leave the proof as an exercise.
For the second part of the statement, we refer to [1, Prop. 2.37].

Lemma 2.5.4. 1) The map U : G1 ×G2 → B(H1 ⊗H2) is a linear representation of the direct product group
G1 × G2. If H1 and H2 are finite dimensional, then H1 ⊗ H2 is also finite dimensional, and the following
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equality holds for the characters: χU
(
(a1, a2)

)
= χ1(a1)χ2(a2), where χ j is the character in the representation

(H j,U j) for j ∈ {1, 2}.

2) If (H1,U1) is an irreducible representation of a finite group G1, and (H2,U2) is an irreducible representa-
tion of a finite group G2, then (H1 ⊗ H2,U) is an irreducible representation of G1 × G2, and all irreducible
representations of G1 ×G2 are of this form.

The above construction is called the tensor product representation of G1 ×G2. If we consider now representa-
tions of a single group G, the situation is very different. More precisely, we assume that (H1,U1) and (H2,U2)
are representations of the same group G, and define the tensor product representation U : G → B(H1 ⊗ H2)
by U(a) := U1(a) ⊗ U2(a) for any a ∈ G. Even if (H1,U1) and (H2,U2) are irreducible representations, it is
not clear if (H1 ⊗ H2,U) is an irreducible representation of G, and in general it is not. However, if H1 and
H2 are finite dimensional, observe that the representations (H1 ⊗ H2,U1 ⊗ U2) and (H2 ⊗ H1,U2 ⊗ U1) are
equivalent. This property follows from the equalities valid for any a ∈ G:

χU1⊗U2(a) = χ1(a)χ2(a) = χ2(a)χ1(a) = χU2⊗U1(a)

and from the uniqueness of the characters, as mentioned in 3) of Theorem 2.4.6.

Let us come back to the representation (H1 ⊗H2,U) with U = U1 ⊗ U2 We shall assume that G is finite, and
consider (H1,U1) and (H2,U2) two irreducible unitary representations of G. Recall that (Hℓ,Uℓ) denotes a
unitary representation in the equivalence class ηℓ of the set of all irreducible representations of G. Then there
exist j, k such that (H1,U1) = (H j,U j) and (H2,U2) = (Hk,Uk). The decomposition of the tensor product
representation into irreducible representations can be obtained with the formula introduced in 1) of Theorem
2.4.6, namelyH j ⊗Hk = ⊕ℓνℓH

ℓ and U = U j ⊗ Uk = ⊕ℓνℓUℓ with

νℓ =
1
|G|

∑
a∈G

χU(a)χℓ(a) =
1
|G|

∑
a∈G

χ j(a)χk(a)χℓ(a).

We also fix an orthonormal basis {eℓi }
nℓ
i=1 for each Hilbert space Hℓ. As mentioned in Lemma 2.5.2, the set

{e j
r ⊗ ek

s}r,s defines an orthonormal basis of H j ⊗ Hk, sometimes called the uncoupled basis. On the other
hand, the family

{
eℓ,mi | 1 ≤ m ≤ νℓ, i ∈ {1, . . . , nℓ}

}
ℓ defines a basis of the direct sum ⊕ℓνℓHℓ. Thus, having

two natural bases for the same Hilbert space, one can express the elements of one basis in terms of the other
basis. Such relations are known under the name of Clebsch-Gordan coefficients and have been extensively
studied by physicists. The weakness of this notion is that these coefficients depend on the choice of a basis in
each spaceHℓ. With the notations introduced above, one has

eℓ,mi =
∑
r,s

C(ℓ,m, i; j, k)r,se
j
r ⊗ ek

s

where the coefficients C(ℓ,m, i; j, k)r,s are precisely the Clebsch-Gordan coefficients. They express one vector
of the basis of the direct sum as a linear combination of the vectors of the basis of the tensor product of Hilbert
spaces.

Let us briefly sketch further results in the same direction. These results appear in the framework of quantum
mechanics but have their roots in representation theory.

Let (H ,U) be a unitary representation of a group G, and observe that this representation induces a repre-
sentation of G in B(H). Indeed, B(H) is a vector space, and for any T ∈ B(H) and any a ∈ G one can
set

U(a)T := U(a)T U(a)−1.
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Exercise 2.5.5. Check thatU : G → L
(
B(H)

)
defines a representation.

Then, let us assume that this representation
(
B(H),U

)
can be decomposed into a direct sum B(H) = ⊕ℓµℓLℓ

andU = ⊕ℓµℓUℓ of irreducible representations, with µℓ ∈ N. Note that Lℓ is made of linear operators acting
on H . If H is finite dimensional, then B(H) is also finite dimensional and such a decomposition holds, but
if H is infinite dimensional, one may have to accept that µℓ = ∞. The fact that (Lℓ,Uℓ) is an irreducible
representation means that there exist an irreducible representation (Hℓ,Uℓ) of the equivalent class ηℓ of all
irreducible representations of G, and a bijective map Tℓ : Hℓ → Lℓ satisfying (see Definition 2.2.5) for any
f ∈ Hℓ and any a ∈ G

TℓUℓ(a) f = U(a)Tℓ f ⇔ Tℓ
(
Uℓ(a) f

)
= U(a)Tℓ( f )⇔ Tℓ

(
Uℓ(a) f

)
= U(a)Tℓ( f )U(a)−1.

Similarly, the initial unitary representation (H ,U) can be decomposed into a direct sum of irreducible repre-
sentationsH =

∑
j ν jH

j and U = ⊕ jν jU j. In this framework, it turns out that information on the quantity

⟨ fk,Tℓ( f ) f j⟩ (2.5.2)

can be obtained, for fk ∈ Hk,m, f j ∈ H
j,n for m ∈ {1, . . . , νk}, n ∈ {1, . . . , ν j}, and for f ∈ Hℓ. More precisely:

Theorem 2.5.6 (Selection rule). In the framework introduced above, one has ⟨ fk,Tℓ( f ) f j⟩ = 0 except if there
exists a representation of the class ηk in the decomposition of the tensor product representation (Hℓ⊗H j,Uℓ⊗

U j) into irreducible representations of G.

When a representation of the class ηℓ appears in the decomposition of the tensor product representation (H j ⊗

Hk,U j ⊗ Uk) into irreducible representations of G, then the quantity (2.5.2) can be different from 0. It can
be computed by using the Clebsch-Gordan coefficients already introduced, and such a result is known as
Wigner-Eckart theorem.

Exercise 2.5.7. Provide a proof of the selection rule, and study the Wigner-Eckart theorem.

2.6 Symmetries and projective representations

It is very often useful to consider elements of a Hilbert space modulo C, or more precisely Ĥ := H/C. It
means that for any element f̂ ∈ Ĥ there exists f ∈ H with ∥ f ∥ = 1 and f̂ = {λ f | λ ∈ C}. In other words, each
element of Ĥ is a one dimensional vector space. The space Ĥ is also called the projective Hilbert space and
its elements are called rays or projective rays. The idea behind this construction is that the complex phase of
a quantum system can never be recovered.

Alternatively, the elements of Ĥ are also in bijection with the set of pure states which plays a very important
role in quantum mechanics. The set of pure states can be described by the one dimensional projection | f ⟩⟨ f |
for f ∈ H and ∥ f ∥ = 1, and acting as | f ⟩⟨ f |g = ⟨ f , g⟩ f for any g ∈ H . One easily observes that | f ⟩⟨ f | is an
orthogonal projection, namely an element P ∈ B(H) satisfying P2 = P = P∗. For any ray f̂ ∈ Ĥ we denote
by Pf̂ the pure state defined by Pf̂ :=

∣∣∣ f 〉〈 f
∣∣∣.

Exercise 2.6.1. Check that rays and pure states are in bijection.

Definition 2.6.2 (Transition probability). For any rays f̂ , ĝ ∈ Ĥ , the transition probability from f̂ to ĝ is
defined by

Tr
(
Pf̂ Pĝ

)
= |⟨ f , g⟩|2.

We are now looking for operations which do no change these transition probabilities.
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Definition 2.6.3 (Symmetry). A symmetry is a map S : Ĥ → Ĥ satisfying

Tr
(
PS f̂ PS ĝ

)
= Tr

(
Pf̂ Pĝ

)
.

Clearly, if U : H → H is a unitary operator, then we can set SU f̂ := Û f , and SU is a symmetry. Indeed,
observe firstly that

∥U f ∥2 = ⟨U f ,U f ⟩ = ⟨U∗U f , f ⟩ = ⟨ f , f ⟩ = ∥ f ∥2 = 1

and that the following equalities hold:

Tr
(
PS U f̂ PS U ĝ

)
= |⟨U f ,Ug⟩|2 = |⟨U∗U f , g⟩|2 = |⟨ f , g⟩|2 = Tr

(
Pf̂ Pĝ

)
.

Note that if λ ∈ C with |λ| = 1, then λU is another unitary operator in H but SU and SλU define the same
symmetry. Observe also that the same construction holds if U : H → H is an anti-unitary operator, namely if
U satisfies U( f +λg) = U f +λUg and ⟨U f ,Ug⟩ = ⟨ f , g⟩. As an example of an anti-unitary operator U on Cn,
one can consider the complex conjugation: U(a1, a2, . . . , an) = (a1, a2, . . . , an). Then, a rather deep theorem
of Wigner states that all symmetries are implemented by unitary or anti-unitary operators. We state the result
below, and refer to the following link for more information:

https://en.wikipedia.org/wiki/Wigner’s theorem

For shortness, we introduce the notation T for T := {z ∈ C | |z| = 1}.

Theorem 2.6.4 (Wigner’s theorem). Let S : Ĥ → Ĥ be a symmetry. Then there exists U : H → H , either
unitary or anti-unitary, such that S = SU . The operator U is unique modulo λ ∈ T.

Let us now extend this notion of symmetries to the notion of group of symmetries. More precisely, we shall
consider a map S from a group G to the set of symmetries satisfying S (ab) = S (a) S (b) and S (e) = 1, where
S (a) and S (b) are symmetries for any a, b ∈ G. By Wigner’s theorem, for each a ∈ G there exists a unitary
or an anti-unitary operator U(a) acting onH satisfying S (a) = SU(a) with the notation introduced above. For
simplicity, suppose that all U(a) are unitary. Then, a natural question is about the map G ∋ a 7→ U(a) ∈ U(H),
is this map a unitary representation ? Unfortunately (or fortunately because it makes life more interesting) the
answer is NO. Indeed, if for any a ∈ G we fix a unitary operator U(a) satisfying S (a) = SU(a), then we only
get

U(a)U(b) = ω(a, b)U(ab)

with ω(a, b) ∈ T. This additional factor is coming from the non-uniqueness of the unitary operator corre-
sponding to any symmetry. Observe also that if we had chosen U′(a) := ρ(a)U(a) for some ρ(a) ∈ T and any
a ∈ G, then one would get

U′(a)U′(b) = ρ(a)ρ(b)U(a)U(b) = ρ(a)ρ(b)ω(a, b)U(ab) =
ρ(a)ρ(b)
ρ(ab)

ω(a, b)U′(ab) ≡ ω′(a, b)U′(ab),

meaning that a different choice of unitary operators would provide a change of ω of the form

ω′(a, b) =
ρ(a)ρ(b)
ρ(ab)

ω(a, b) (2.6.1)

for any a, b ∈ G.

Having this motivation in mind, one is naturally led to a more general definition for the representation of a
group.
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Definition 2.6.5 (Projective representation). Let G be a group, and let V be a vector space. A projective
representation of G in V corresponds to a map U : G → L(V) satisfying U(e) = 1 and U(a) U(b) =
ω(a, b) U(ab) for any a, b ∈ G, with ω(a, b) ∈ C∗. The map ω : G ×G → C∗ is called a 2-cocycle. We denote
by (V,U, ω) any projective representation.

Let us immediately mention one important property of the 2-cocycles:

Exercise 2.6.6. Check that any 2-cocycle satisfies the following property for any a, b, c ∈ G:

ω(a, b)ω(ab, c) = ω(a, bc)ω(b, c).

This relation, called the 2-cocycle relation, can be obtained by computing U(a) U(b) U(c) by two different
approaches, using the associativity of the product of operators acting onH .

In addition, there exists a natural notion of equivalence of 2-cocycles, as already exhibited in (2.6.1).

Definition 2.6.7 (Equivalence and triviality of 2-cocycles). Two 2-cocycles ω : G×G → C∗ and ω′ : G×G →
C∗ are called equivalent if there exists ρ : G → C∗ such that relation (2.6.1) holds, for any a, b ∈ G. We say
that a 2-cocycle ω is trivial if there exists ρ : G → C∗ satisfying ω(a, b) = ρ(a)ρ(b)

ρ(ab) .

Let us enumerate several remarks related to 2-cocycles:

1) Projective representations are very natural and appear quite often. They are more general than linear
representations and contain them,

2) If ω is trivial, then the map ρ(a)−1U(a) define a linear representation,

3) If the 2-cocycles ω and ω′ are equivalent, we say that the two projective representations (V,U, ω) and
(V,U′, ω′) are equivalent,

4) In the above definition for ω and ρ we have not assumed any regularity (continuity, measurability, . . .) of
these maps. Depending on the context, and in particular if the group G has additional structures, then some
regularity conditions have to be imposed on these functions,

5) Quite often, the maps ω and ρ are taking values in T and not in C∗.

A new natural question occurs in this context: Can one always trivialize a 2-cocycle ? In general, the answer is
NO, but it depends on the group. Investigations in this direction corresponds to the study of group cohomology.

Let us finally provide another example of how projective representations appear. Suppose that G is isomorphic
to a quotient group, see Proposition 1.2.9. More precisely, we assume that there exist a group G with a
normal subgroup G0 and a bijective homomorphism ϕ : G/G0 → G. Let also U : G → L(V) be a linear
representation of G, and assume that U(a) = σ(a)1 for any a ∈ G0 with σ(a) ∈ C∗. For any a ∈ G, let us
denote by a an element of G satisfying ϕ

(
[a]G0

)
= a. We then define a map U : G → L(V) by U(a) := U(a)

and check that this map U defines a projective representation of G.

For the proof of this statement, let us consider a, b ∈ G, set c := ab, and let a, b and c some chosen elements of
G which satisfy ϕ

(
[a]G0

)
= a, ϕ

(
[b]G0

)
= b, and ϕ

(
[c]G0

)
= c. Note that these elements are not unique. Then

we have
ϕ
(
[c]G0

)
= c = ab = ϕ

(
[a]G0

)
ϕ
(
[b]G0

)
= ϕ

(
[a]G0[b]G0

)
= ϕ

(
[ab]G0

)
which implies that [c]G0 = [ab]G0 . Thus, there exists d ∈ G0 (which depends on the initial choice of a, b and c)
such that ab = dc. As a consequence, it follows that

U(a)U(b) = U(a)U(b) = U(ab) = U(dc) = U(d)U(c) = σ(d)U(c) = σ(d)U(c) = σ(d)U(ab).
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Thus, if we set ω(a, b) := σ(d), which depends indeed on a and b, and on the choices made above, then we
observe that we have obtained a projective representation of G.

If we summarize this construction, observe that a representation of G having the property that it takes scalar
values on a normal subgroup G0 leads naturally to a projective representation of its quotient group G/G0 (or
any group isomorphic to its quotient group). A converse question then holds: Given a group G, can one find
a larger group G with a normal subgroup G0 such that the quotient group is isomorphic to G, and such that
any projective representations of G can be lift to a linear representation of G ? If so, the group G is called
the universal cover of G, or the universal covering group. Sometimes such a cover group exists, sometimes
not. For example, SU(2) is the universal cover of SO(3), with G0 = {1,−1}, and any finite group possesses a
universal cover which can be constructed explicitly. But such a construction is not possible for all groups.

Exercise 2.6.8 (r). Describe the universal cover of any finite group.
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Chapter 3

Lie groups and Lie algebras

Lie groups are special groups with an additional differential structure compatible with the group law. In this
chapter, we introduce them and provide some examples. We also introduce Lie algebras and link them with
Lie groups.

3.1 Topological notions and manifolds

We start by introducing a few notions from topology, since Lie groups are special instances of topological
spaces. Topology is at the root of many subjects in mathematics, as for example calculus...

Definition 3.1.1 (Topological space). A topological space (M,T) consists of a setM together with a collection
T of subsets ofM satisfying

1) ∅,M ∈ T,

2) If Vα ∈ T, then
⋃
α Vα ∈ T (stability of T under arbitrary union),

3) If V1, . . . ,Vn ∈ T, then
⋂n

i=1 Vi ∈ T (stability of T under finite intersection).

The elements of T car called open sets and their complementsM\ V are called closed sets, for any V ∈ T.

An example of a topological space is provided by R, together with the set of all open intervals, their arbitrary
unions and their finite intersections. Clearly, it is not easy to describe all open sets, and a better notion will be
introduced below. We continue with a few additional definitions related to topological spaces. The first one is
related to all open sets containing a given point.

Definition 3.1.2 (Neighborhood). Let (M,T) be a topological space and let p ∈ M be one point in M. A
neighborhood of p is any open set containing p. We write νp for the set of all neighborhoods of the point p,
or in other words for the set of all open sets containing p.

The next definition is about the separability of points: can one always find neighborhoods of two distinct
points with an empty intersection ? Yes, is the space is Hausdorff ! Fortunately, most of the usual spaces have
the Hausdorff property.

Definition 3.1.3 (Hausdorff property). A topological space (M,T) is Hausdorff if for any p1, p2 ∈ M with
p1 , p2 there exist V1 ∈ νp1 and V2 ∈ νp2 with V1 ∩ V2 = ∅.
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Exercise 3.1.4. Provide an example of a topological space which is not Hausdorff.

As already mentioned, providing a list of all open sets is rather long and difficult. As a result, we introduce
the notion of a basis of a topological space.

Definition 3.1.5 (Basis of a topological space). A subsetB := {Vα}α ⊂ T is a basis of (M,T) is for any p ∈ M
and any V ∈ νp, there exists U ∈ B with p ∈ U ⊂ V.

It is not difficult to observe thatB := {(a, b) | a, b ∈ R} define a basis of R with the open sets mentioned above.
The same holds for Rn with B := {B(X, r) | X ∈ Rn, r > 0} the set of all open balls (here B(X, r) := {Y ∈ Rn |

∥X − Y∥ < r}). A natural question is then about the size of a basis, is it countable (meaning in bijection with
N) or not ?

Definition 3.1.6 (Second countable). A topological space (M,T) is second countable if it admits a countable
basis.

Exercise 3.1.7. Show that Rn with the usual topology provided by open sets is second countable.

There is one more notion which is defined without any additional concept: the notion of continuous map.

Definition 3.1.8 (Continuous map). Let (M,T) and (N , S) be two topological spaces, and let f : M → N .
The map f is continuous if f −1(U) ∈ T for any U ∈ S, where

f −1(U) = {p ∈ M | f (p) ∈ U}.

Since the set S is usually difficult to describe, one conveniently observes that f is continuous if f −1(U) ∈ T

for all U is a basis of (N , S). Clearly, there is now one exercise which has to be done:

Exercise 3.1.9. Let M = N = R with the usual topology defined by open sets. Check that the notion of
continuity introduced above corresponds to the standard definition of a continuous function f : R → R in
terms of ϵ and δ.

In the framework of Definition 3.1.8, if f is continuous and bijective, and if f −1 is also continuous, we say that
the two topological spaces (M,T) and (N , S) are homeomorphic, and that f is a homeomorphism. Having
these topological notions in mind, we can now define the next central object.

Definition 3.1.10 (Topological manifold). A topological manifold of dimension n (and without boundary) is
a Hausdorff and second countable topological space (M,T) such that for any p ∈ M there exist an open
set V ∈ νp and a continuous and injective function φ : V → Rn with φ(V) open and φ−1 : φ(V) → M also
continuous.

In this definition, note that checking the continuity of φ means checking that for any open set W of Rn,
φ−1(W ∩ φ(V)

)
belongs to T 1. We usually say that φ is a homeomorphism from V to its image, or simply

a local homeomorphism. Let us also mention that for any p, the map φ, defined on a neighborhood V of p,
provides a local coordinate system or a local chart at p. Indeed, if we set

(
x1(q), x2(q) . . . , xn(q)

)
:= φ(q) for

any q in V , then the map
V ∋ q 7→

(
x1(q), x2(q) . . . , xn(q)

)
∈ Rn

defines a local description ofM around the point p. If necessary, we can even fix φ such that φ(p) = 0 ∈ Rn.
In simpler terms, it means that the manifoldM can be parameterized locally by n real parameters.

1More generally, if Ω ⊂ M is a subset of a topological space (M,T), the subspace topology on Ω is provided by the set TΩ :=
{V ∩Ω | V ∈ T}, and (Ω,TΩ) is a topological space.
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Let us mention one “famous” outcome of this definition: A cup and a doughnut can not be distinguished by a
mathematician. Indeed, both manifolds are locally and globally identical, from a topological point of view.

For Lie groups, continuity conditions are not enough, we need smoothness, and therefore a stronger version
of the previous definition. Note however that one can not really define the meaning of differentiability directly
on the manifold, another trick is necessary. For this, let us denote generically by φ the local homeomorphic
maps, namely the bijective and bi-continuous maps from an open set ofM to an open set of Rn.

Definition 3.1.11 (Smooth manifold). A smooth manifold of dimension n is a topological manifold of dimen-
sion n with the composition maps φ j ◦ φ

−1
k and φk ◦ φ

−1
j of class C∞, wherever and whenever they exist.

In the previous definition, the function φ j ◦ φ
−1
k exists if Dom(φ j) ∩ Dom(φk) =: V jk , ∅ and then φ j ◦ φ

−1
k

is defined from φk(V jk) ⊂ Rn to φ j(V jk) ⊂ Rn. A similar definition holds for φk ◦ φ
−1
j , and these functions are

called transition functions.

3.2 Lie groups

The setting introduced in the previous definition has no relation with groups. However, some groups have the
structure of a smooth manifold, and such groups correspond precisely to Lie groups.

Definition 3.2.1 (Lie group). A Lie group G is a group that is also a finite dimensional smooth manifold, for
which the group law and the inversion are smooth maps.

As already mentioned, the smoothness condition can not be directly read on the manifold, it appears through
the local charts.

Exercise 3.2.2. Write the smoothness condition for the product and for the inversion in terms of local charts,
as precisely as possible.

Let us mention a few examples of Lie groups: (Rn,+),
(
(0,∞), ·

)
, (T, ·) are very simple Lie groups. The rotation

group mentioned in Section 1.4, the Euclidean group, the Lorentz group, and the Poincaré group introduced
in Section 1.5 are also examples of Lie groups. The groups of n × n matrices introduced in Example 1.1.5 are
Lie groups as well. We shall come back to most of these groups in the sequel.

Our first aim is to consider Lie groups which have properties quite similar to finite groups. Clearly, Lie groups
contain an infinite number of elements, so what is the concept of smallness for infinite sets ?

Definition 3.2.3 (Compact space, compact subset). A topological space (M,T) is compact if any covering of
M by open sets admits a finite subcover. A subset Ω ⊂ M is compact is any covering of Ω by open sets ofM
admits a finite subcover.

More explicitly, it means that if one coversM by a family of open sets Vα (meaning that any p ∈ M belongs
to at least one set Vα), then one can select a finite family of these open sets which still covers entirely M.
For the subset Ω, observe that the definition corresponds to the compactness of the topological space (Ω,TΩ),
where TΩ is the subspace topology.

Exercise 3.2.4. On R show that any closed interval is a compact set, while any open interval is not compact.
More generally, any closed and bounded set in Rn is compact, can you prove it ?

Examples of compact Lie groups are T, O(n) and SO(n), U(n) and SU(n). As a result of this definition, compact
Lie groups can be considered as small Lie groups, and their properties are quite similar to finite groups. In
particular, compact Lie groups possess a left and right invariant finite Haar measure. In the next statement,
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we do not provide the exact definition of a Haar measure, but we emphasize its effect for the definition of the
integral on G. For it, we introduce the set Cc(G) of continuous and compactly supported functions on G with
values in C. Compactly supported means that these functions are not 0 only on a compact set.

Proposition 3.2.5. Let G be a Lie group. There exist a map I : Cc(G)→ C satisfying the following properties
for any f , g ∈ Cc(G), a ∈ G, and λ ∈ C:

1) I( f + λg) = I( f ) + λI(g) (linearity),

2) If f ≥ 0, then I( f ) ≥ 0 (positivity),

3) I
(
f (a ·)

)
= I( f ) (invariance by left multiplication).

If in addition the group G is compact, then the following properties also hold:

4) For f = 1, one has I( f ) = 1 (normalization),

5) I
(
f (·a)

)
= I( f ) (invariance by right multiplication),

6) I( f · −1) = I( f ) (invariance under taking the inverse).

One usually writes I( f ) =:
∫

G f (a)µ(da), where µ denotes the Haar measure on G.

Let us stress that the properties 4), 5) and 6) do not hold in general if the group G is not compact. In this case,
Haar measures have to be divided into left Haar measures and right Haar measures. The difference between
these measures can be encoded into the so-called modular function. In fact, existence of a Haar measure holds
for all locally compact Hausdorff groups, such groups are more general than Lie groups.

Exercise 3.2.6 (r). Study the definitions of locally compact Hausdorff groups, left Haar measures, right Haar
measures, and modular functions.

One of the main interests of the Haar measure for compact groups is that the averaging process mentioned for
example in (2.4.1) can be replaced by the average∫

G
U(a)T U(a)−1µ(da) (3.2.1)

once the different objects appearing in this expression are defined. For non compact groups, this averaging
process is usually not well defined, because of the lack of property 4).

Let us now be precise about linear representations of Lie groups. Clearly, the setting is still the same: a map
U : G → L(V) or a map U : G → B(H) satisfying U(e) = 1 and U(ab) = U(a) U(b) for any a, b ∈ G.
However, we shall impose some continuity properties to the map U, and these properties will depend on the
context. In the Hilbert space setting, one usually considers strongly continuous representations, meaning that
for any fixed f ∈ H one has ∥U(a) f − U(a0) f ∥ → 0 whenever a → a0. Alternatively, once can also consider
weakly continuous representations, meaning that for any fixed f , g ∈ H , one has

〈
f ,

(
U(a)g − U(a0)

)
g
〉
→ 0

whenever a → a0, or uniformly continuous representations, meaning that ∥U(a) − U(a0)∥ → 0 whenever
a→ a0.

Exercise 3.2.7. Show that a uniformly continuous representation is also a strongly continuous representation,
and that a strongly continuous representation is also a weakly continuous representation. IfH is finite dimen-
sional, show that the three notions coincide. In this case, one just speak about a continuous representation of
G.
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Based on (3.2.1), several results available for any finite group can be extended to any compact Lie group G.
We list a few of them:

1) For any continuous representation of G in a finite dimensional Hilbert space H , there exists a new scalar
product onH making this representation unitary, see [13, Thm. VII.9.1]. This result is similar to Proposi-
tion 2.2.6 and allows us to consider only unitary representations G on finite dimensional Hilbert spaces,

2) All strongly continuous irreducible representations of G are finite dimensional. This statement is similar
to the content of Exercise 2.3.2 for finite group and its proof can be found in [6, Thm. 5.2],

3) Any strongly continuous unitary representation of G is a direct sum of irreducible representations. This
statement corresponds for compact Lie groups to Theorem 2.3.4 and to the infinite direct sum mentioned
in the last part of Section 2.5. The proof is also provided in [6, Thm. 5.2] or in [13, Thm. VII.10.8],

4) The analogue of formula (2.4.4) holds for G, namely∫
G

Uℓ
rs(a)Uk

i j(a)µ(da) =
1
nk
δkℓ δs j δri,

where Uℓ
rs(a) and Uk

ik(a) are defined in (2.4.2), with the indices k and ℓ referring to irreducible representa-
tions and the other indices indicating the elements of matrices, see [13, Thm. VII.9.5],

5) For characters, Corollary 2.4.4 can be adapted to G and reads∫
G
χk(a)χℓ(a)µ(da) = δkℓ.

If (H ,U) is a finite dimensional unitary representation of G, the number of times the representation
(Hk,Uk) appears in its decomposition into irreducible representations is given by νk =

∫
G χ(a)χk(a)µ(da),

as in Theorem 2.4.6. We refer to [13, Thm. VII.9.5 & Corol. VII.9.6] for these statements,

6) Definition 2.4.7 of the regular representation holds for G, and the first statement of Theorem 2.4.9 holds
as well, namely H reg = L2(G, µ) = ⊕knkH

k and Ureg = ⊕knkUk. This statement is part of the so-called
Peter-Weyl Theorem, see for example [6, Thm. 5.12] or [13, Corol. VII.10.2].

The representations theory of general Lie groups is more involved, since infinite dimensional irreducible
representations exist.

3.3 Lie algebras

Let us start this section by a few additional topological definitions.

Definition 3.3.1 (Connected, path-connected, simply connected). Let (M,T) be a topological space.

1) M is connected if it is not the disjoint union of two non-empty open sets,

2) M is path-connected if for any a, b ∈ M there exists a continuous map f : [0, 1] →M with f (0) = a and
f (1) = b,

3) M is simply connected if it is path-connected and if any loop defined by a continuous map f : [0, 1]→M
with f (0) = f (1) can be continuously contracted to a point.
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Figure 3.1: Two path connected sets (one simply connected, the other one not simply connected) and a dis-
connected set.

Some of these notions are represented in Figure 3.1. Be aware that connected but not path-connected sets
exist, but they are not easy to exhibit.

In a Lie group G, the identity component G0 is going to play an important role. It is defined as the set of all
points which are path-connected to the identity e. One important property of G0 is stated in the following
exercise:

Exercise 3.3.2. Show that the identity component G0 of any Lie group is a normal subgroup.

Before studying the structure of the identity component of G, let us provide the following abstract definition:

Definition 3.3.3 (Lie algebra). Let K be R or C. A Lie algebra on K is a finite dimensional vector space L on
K endowed with a composition rule [·, ·] : L × L→ L satisfying for any X,Y,Z ∈ L and α, β ∈ K:

1) [αX + βY,Z] = α[X,Z] + β[Y,Z] (linearity),

2) [X,Y] = −[Y, X] (anti-commutativity).

3)
[
X, [Y,Z]

]
+

[
Y, [Z, X]

]
+

[
Z, [X,Y]

]
= 0 (Jacobi identity).

The composition rule [·, ·] is called the Lie bracket.

Clearly, it follows from this definition that [X, X] = 0, and that the Lie algebra is called Abelian or commutative
if [X,Y] = 0 for all X,Y ∈ L. The following statement can also be easily checked:

Exercise 3.3.4. Let L be a set of n × n matrices and assume that [X,Y] := XY − YX ∈ L for any X,Y in L.
Check that the above properties then hold.

If we consider a basis {X1, . . . , Xd} of L, then any element of L can be expressed as a linear combination of
these d elements, and so does the expression [X j, Xk]. Thus, let us set

[X j, Xk] :=
d∑
ℓ=1

cℓjk Xℓ (3.3.1)

and call the coefficients cℓjk ∈ K the structure coefficients of L. Observe that these coefficients are not indepen-
dent, since for example cℓjk = −cℓk j, from the property 2). Additional relations follow from the Jacobi identity,
namely

d∑
r=1

(
cs

ir cr
jk + cs

jr cr
ki + cs

kr cr
i j

)
= 0, ∀i, j, k ∈ {1, . . . , n}. (3.3.2)
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Note however that these coefficients depend on the choice of the initial basis.

Exercise 3.3.5. Check (3.3.2).

For the link between Lie groups and Lie algebras, we shall mainly consider linear Lie groups. Not all Lie
groups are linear, but quite many of them belong to this family, and their theory is simpler (less concepts of
differential geometry are necessary). First of all, let us consider the groups GL(n,R) or GL(n,C), and define
the distance function d given by

d(A, B) :=
( n∑

j=1

n∑
k=1

|a jk − b jk|
2
)1/2

where A = (a jk) and B = (b jk) belong to GL(n,K) with K = R or K = C. Clearly, we use the same notation
for the absolute value of a real number or for the modulus of a complex number. Based on this notion we
can construct open balls B(A, r) := {C ∈ GL(n,K) | d(C, A) < r} and then a basis for a topology of GL(n,K).
With these topologies, these groups become topological groups, and the notions of open or closed sets are
then available.

Definition 3.3.6 (Linear Lie groups). A linear Lie group, or matrix Lie group is a closed subgroup of GL(n,R)
or of GL(n,C). For linear Lie groups, the identity element is denoted by 1 instead of e.

As one of the simplest example, observe that the set
{(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
| θ ∈ R

}
defines the Lie group SO(2).

Exercise 3.3.7. 1) Check that the Euclidean group and the Poincaré group, introduced in Section 1.5, can be
rewritten as linear Lie groups. The underlying concept is the notion of affine group.

2) Provide additional example of linear Lie groups.

Observe that the definition of Lie groups provided in Definition 3.2.1 does not correspond to the above one,
and the link is not so clear. However, it is a consequence of a rather deep theorem, namely Cartan’s theorem,
or closed subgroup theorem

https://en.wikipedia.org/wiki/Closed-subgroup theorem

that every linear Lie group in the sense of Definition 3.3.6 is a Lie group in the sense of Definition 3.2.1.

The advantage of considering linear Lie groups is that they are very concrete objects, and that a local para-
metrization of its elements are usually easy to exhibit. Thus, let us consider a linear Lie group G ⊂ GL(n,R)
of dimension d, and let (V, φ) be a local coordinate system at an element B ∈ G, namely a neighborhood
V of B and a local homeomorphic map φ : V → Rd. Because of the underlying structure (and this is not
trivial) it turns out that the map φ−1 : φ(V) → G ⊂ GL(n,R) is smooth, which means that the n2 entries
(φ−1) jk : φ(V) → R are C∞ functions. Similarly, if we consider a linear Lie group G ⊂ GL(n,C), then the
2n2 maps ℜ

(
(φ−1) jk

)
: φ(V) → R and ℑ

(
(φ−1) jk

)
: φ(V) → R are C∞ functions, where we have used ℜ and

ℑ for the real and the imaginary part of a complex number. Since φ(V) ⊂ Rd, we can think about φ−1 as a
d-dimensional parametrization of the linear Lie group G in a neighborhood of the element B ∈ G. Let us stress
that even if G is a closed subgroup of GL(n,R) or of GL(n,C), the dimension d of G is independent of n (but
is smaller than or equal to n2 or to 2n2).

Let us now fix the special element B = 1 and assume that φ(1) = 0 ∈ Rd (this is always possible, by a
translation of φ, if necessary). Then for ℓ ∈ {1, . . . , d} we set

Xℓ := lim
t→0

φ−1(tEℓ) − 1
t

, (3.3.3)

32

https://en.wikipedia.org/wiki/Closed-subgroup_theorem


where {Eℓ}
d
ℓ=1 is the standard basis of Rd with the vector Eℓ taking the value 1 at the entry ℓ, and 0 elsewhere.

If we think about entries of a matrix, we have

(Xℓ) jk := lim
t→0

(
φ−1(tEℓ)

)
jk − δ jk

t
.

Clearly, Xℓ belong to Mn(R) or to Mn(C). Sometimes, the definition provided in (3.3.3) is simply written
Xℓ = [∂ℓφ−1](0).

Let us now list two easy consequences of the previous construction:

1) The d matrices X1, . . . , Xd are linearly independent on R. These d matrices generate a real vector space (it
means that the coefficients for any linear combination are real) which is denoted by L(G). This space is
called the tangent space of G at 1, and has dimension d.

2) If x : (−ϵ, ϵ) ∋ t 7→ x(t) ∈ φ(V) ⊂ Rd is a smooth parametric curve in Rd, with x(0) = 0, then the map
X : (−ϵ, ϵ) ∋ t 7→ X(t) := φ−1(x(t)

)
∈ G with X(0) = 1 defines a smooth curve in G, and one has

d
dt

X(t)|t=0 =
d
dt
φ−1(x(t)

)
|t=0 =

d∑
ℓ=1

x′ℓ(0) Xℓ ∈ L(G).

It means that the derivative of any smooth curve at 1 belongs to the tangent space L(G), and the set of
derivatives of all such curves generates this tangent space.

The next statement contains the link between linear Lie groups and Lie algebras, as introduced in Definition
3.3.3. Recall that the commutator of two matrices has been introduced in Exercise 3.3.4 and is defined by
[X,Y] := XY − YX.

Proposition 3.3.8. Let G be a linear Lie group, and let L(G) be the vector space generated by the family
{Xℓ}dℓ=1 introduced in (3.3.3). Endowed with the commutator [·, ·], L(G) turns into a real Lie algebra of
dimension d.

The following proof holds if one assumes that the two maps (defined in the proof below) t 7→ A(t) and t 7→ B(t)
are analytic. With this requirement, these functions admit a Taylor expansion. In general, smoothness and
analyticity are two different concepts, but in the context of groups, any Lie group admits a unique real analytic
structure (which is thus implicitly chosen). Note that some authors call analytic group any connected Lie
group.

Proof. As emphasized in Exercise 3.3.4, one only has to check that [X j, Xk] belongs to L(G). For that purpose,
let us consider two analytic curves on G, namely t 7→ A(t) and t 7→ B(t) satisfying A(0) = B(0) = 1, A′(0) = X j,
and B′(0) = Xk, where A′(t) := d

dt A(t) and B′(t) = d
dt B(t). For example, one can choose A(t) := φ−1(tE j) and

B(t) := φ−1(tEk) for |t| small enough and for (V, φ) an analytic local coordinate system at 1, but other analytic
curves are possible. By performing a Taylor expansion near t = 0, observe that A

(√
t
)
= 1 +

√
tX j + tA2 + o(t)

and that B
(√

t
)
= 1 +

√
tXk + tB2 + o(t), with A2 := 1

2
d2

dt2 A(t)|t=0 and B2 := 1
2

d2

dt2 B(t)|t=0. Accordingly, observe
that A

(√
t
)−1
= 1 −

√
tX j + t

(
X2

j − A2
)
+ o(t) and that B

(√
t
)−1
= 1 −

√
tXk + t

(
X2

k − B2
)
+ o(t). Then, by

considering the map
t 7→ C(t) := A

(√
t
)
B
(√

t
)
A
(√

t
)−1B

(√
t
)−1
∈ G

(the image is in G, since it is a group) one observes that C(t) = 1 + t[X j, Xk] + o(t), which means that
d
dtC(t)|t=0 = [X j, Xk] belongs to the tangent space at 1, or equivalently [X j, Xk] ∈ L(G). □
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Since each linear Lie group defines a Lie algebra, one usually keeps a related name for the two objects.
For example, the Lie algebra of SU(n) is denoted by su(n), while the Lie algebra of SO(n) is denoted by
so(n). More generally, the name of the Lie group is written with uppercase letters, while the name of the
corresponding Lie algebra is denoted with lowercase letters.

Remark 3.3.9. So far, only linear Lie groups have been studied, mainly because the definition of (3.3.3)
would not hold in the general framework of Lie groups. However, let us observe that the use of smooth
parametric curves on G for defining the tangent space is available in the general framework of Lie groups,
see the above observation 2). In fact, the tangent space at p of any smooth manifold is defined as the vector
space generated by the derivative at 0 of smooth curves (−ϵ, ϵ) ∋ t 7→ γ(t) ∈ G with γ(0) = p. Then, in the
context of Lie groups, a composition rule can be defined on the tangent space at e, and this turns the tangent
space into a real Lie algebra. As a consequence, Proposition 3.3.8 holds even in the general context of Lie
groups, once the right notions of tangent space and of Lie bracket are introduced. We refer to [2, Sec. IV.7]
for more information on this construction.

3.4 More relations between Lie groups and Lie algebras

In this section, we further develop some relations between Lie groups and Lie algebras. For simplicity, we still
concentrate on linear Lie groups, but most of the results are valid in the more general framework of arbitrary
Lie groups. We recall that if B ∈ Mn(C), one sets

exp(B) :=
∞∑
j=0

1
j!

B j

with exp(B) ∈ Mn(C) satisfying the norm estimate ∥ exp(B)∥ ≤ e∥B∥.

Proposition 3.4.1. Let G be a linear Lie group, and let L(G) be its Lie algebra. Fix X ∈ L(G) and consider
s, t ∈ R.

1) The element exp(tX) belongs to the identity component G0 of G,

2) The set {A(t)}t∈R with A(t) := exp(tX) is a 1-parameter family of elements of G0, namely the following
equalities hold: A(0) = 1, A(s) A(t) = A(s + t), and A(t)−1 = A(−t),

3) The previous 1-parameter family is the only one satisfying d
dt A(t)|t=0 = X.

We refer to [3, Thm. 8.3.1] for a proof of this statement. Note that the following equalities also hold, with the
notation A(t) := exp(tX):

d
dt

A(t) = X A(t) = A(t) X.

With the previous statement, one infers that the exponentiation of elements of the Lie algebra generates el-
ements of the identity component of the corresponding linear Lie group. The next statement says that it is
possible to generate all elements of G0, by a suitable procedure. Note that since L(G) is a real vector space,
tX belongs to L(G) whenever X ∈ L(G) and t ∈ R.

Proposition 3.4.2. Let G be a linear Lie group, and let L(G) be its Lie algebra.

1) There exists an open set V in G0 with 1 ∈ V such that for any A ∈ V, A = exp(X) for some X ∈ L(G),
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2) For any A ∈ G0, there exist X1, X2, . . . , XN ∈ L(G) with N < ∞ such that

A = exp(X1) exp(X2) . . . exp(XN), (3.4.1)

3) If G is compact, then we can always choose N = 1, which means that for any A ∈ G0, there exists X ∈ L(G)
with A = exp(X).

The proof of the above result is more involved. We refer for example to [3, Thm. 8.5.VII & 8.5.VIII] and to
the references cited therein, or to [1, Sec. 4.2.2].

An easy consequence of 1) is that in a neighborhood V of 1 all elements A satisfy A = B2 for some B ∈ V .
Observe also that (3.4.1) triggers a natural question: do we have exp(X) exp(Y) = exp(X + Y) for arbitrary
elements of Mn(C) ? The answer is clearly NO, but the following formula holds:

exp(X) exp(Y) = exp(Z)

with
Z = X + Y +

1
2

[X,Y] +
1
12

{[
X, [X,Y]

]
+

[
Y, [Y, X]

]}
+ . . . , (3.4.2)

where the r.h.s. is a series containing commutators of increasingly higher orders. This formula is known as
Campbell-Baker-Hausdorff formula. Note that an integral version of this formula also exists, which provides
a closed formula (without the . . .). A systematic presentation is provided in [8, Sec. 3.2–3.5], but the general
formula involves the logarithm of a matrix, a concept that we have not introduced so far.

Let us now look at additional relations between linear Lie groups and Lie algebras through representations.
Recall that the representation of a group was introduced in Definition 2.2.1. For a Lie algebra, as introduced
in Definition 3.3.3 and with K = R or C, one sets:

Definition 3.4.3 (Representation of a Lie algebra). A representation of a Lie algebra L consists in a pair (V, h)
with V a K-vector space, and h : L → L(V) a homomorphism, namely h satisfies h(0) = 0, h(αX + βY) =
αh(X) + βh(Y), and

h(X)h(Y) − h(Y)h(X) = h
(
[X,Y]

)
for any X,Y ∈ L and α, β ∈ K.

The following statement can be proved as an exercise, see also [8, Prop. 4.4].

Lemma 3.4.4. Let (V,U) be a representation of a Lie group in a (real or complex) finite dimensional vector
spaceV. Then the map Γ : L(G)→ L(V) given for any X ∈ L(G) by

Γ(X) :=
d
dt

U
(

exp(tX)
)∣∣∣

t=0 (3.4.3)

defines a representation of its Lie algebra L(G). In addition, the following equality holds for any t ∈ R:

exp
(
tΓ(X)

)
= U

(
exp(tX)

)
.

It is then natural to wonder if a converse statement is true, but clearly it can not be. Indeed, the Lie algebra
provides only information on the identity component G0 of the corresponding Lie group G. More precisely,
since two linear Lie groups which are isomorphic in a neighborhood of their respective identity, have isomor-
phic Lie algebras2, any representation of these Lie algebras won’t be able to provide distinct information on

2Two Lie algebras L1, L2 are isomorphic if there exists a bijective linear map ϕ : L1 → L2 satisfying ϕ([X,Y]) = [ϕ(X), ϕ(Y)] for
any X,Y ∈ L1. We then write L1 ≃ L2.
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the two corresponding groups. However, a partial converse is true for connected linear Lie groups, see [8,
Prop. 4.5] for a precise statement.

Let us now mention a very important application of Lie algebras. Assume that the evolution of a quantum
system is described by the unitary evolution group {e−itH}t∈R, where H is a self-adjoint operator on a Hilbert
spaceH . Assume that there exists a Lie group G with a unitary representation (H ,U) commuting with e−itH

for all t ∈ R, namely U(a)e−itH = e−itH U(a) for all t ∈ R and a ∈ G. Then any X ∈ L(G) defines a constant of
motion. More precisely, for any X ∈ L(G) the operator Γ(X) defined in (3.4.3) satisfies e−itH Γ(X)eitH = Γ(X),
meaning that this operator is constant under the evolution. Note that ifH is infinite dimensional, the operator
Γ(X) can be unbounded, and some care is necessary for the previous equality. Observe also that if the Lie
group G is d-dimensional, then there exist d independent constants of motion.

Let us gather below a few remarks about the linear Lie groups O(3), SO(3),U(2) which appear in several
contexts. Recall that a surjective homomorphism ϕ : SU(2) → SO(3) has been introduced in Proposition
1.2.16, with kernel {1,−1}.

The following properties can be checked, see various sections and examples in [3] and in [8], or in [1, Sec. 4.3]:

1) The three groups O(3), SO(3), U(2) are compact linear Lie groups of dimension 3,

2) O(3) is not connected,

3) SO(3) is connected but not simply connected,

4) SU(2) is simply connected,

5) SO(3) and SU(2) are isomorphic near the identity, which means that L
(
SO(3)

)
is isomorphic to L

(
SU(2)

)
,

6) With the Pauli matrices σ j introduced in (1.2.2), the set {X j}
3
j=1, with X j := − i

2σ j, defines the Lie algebra
of su(2) and verifies [X j, Xk] := ε jkℓ Xℓ, where

ε jkℓ :=


1 if ( j, k, ℓ) is an even permutation of (1, 2, 3),
−1 if ( j, k, ℓ) is an odd permutation of (1, 2, 3),
0 otherwise.

It means that the structure coefficients for su(2) are given by cℓjk = ε jkℓ. Similarly, the three matrices

Y1 :=

0 0 0
0 0 −1
0 1 0

 , Y2 :=

 0 0 1
0 0 0
−1 0 0

 , Y3 :=

0 −1 0
1 0 0
0 0 0

 (3.4.4)

define the Lie algebra so(3) and satisfy the same commutation relations, namely [Y j,Yk] := ε jkℓ Yℓ.

Exercise 3.4.5. Prove part of or all the above statements.

Exercise 3.4.6 (r). Study the finite dimensional representations of SU(2), or equivalently the finite dimen-
sional representation of su(2). There exists a unique irreducible representation of SU(2) (up to equivalence)
in each vector space Cn.

3.5 Complexification

In this short section, we describe an importance construction, the complexification of real Lie algebras.
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Let us firstly stress that despite the appearance of the factor i in the statement 6) above for the Lie algebra
of su(2), it does not mean that it is a complex Lie algebra. It is still a real Lie algebra, as it is the case
for all Lie algebras obtained from Lie groups. On the other hand, it is often useful to complexify a real Lie
algebra. We start with the simplest situation: Let {X1, . . . , Xd} be a basis for a real Lie algebra, and assume
that these elements are also linearly independent over C. In this case, one can directly consider complex linear
combinations of these d elements, and one obtains a complex Lie algebra of the same dimension and with the
same structure coefficients. This procedure applies for example to the Lie algebra su(2), with a basis given by
the set {

1
2

(
0 −i
−i 0

)
,

1
2

(
0 −1
1 0

)
,

1
2

(
−i 0
0 i

)}
. (3.5.1)

Let us however observe that this procedure does not always lead to a new object. Consider for example the
real Lie algebra sl(n,C) given by the set of matrices{(

1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
i 0
0 −i

)
,

(
0 i
0 0

)
,

(
0 0
i 0

)}
.

Clearly, these matrices are linearly independent over R (and generate the real Lie algebra) but they are not
linearly independent over C. In this case, the previous construction does not produce anything interesting.
When the elements of a real Lie algebra L are not linearly independent over C, the complexification of L is
slightly more involved: It consists of pairs (X,Y) ∈ L × L with the addition defined componentwise, with the
multiplication by complex numbers given by (α + iβ)(X,Y) := (αX − βY, αY + βX) for any α, β ∈ R, and with
the composition rule defined by

[(X1,Y1), (X2,Y2)] :=
(
[X1, X2] − [Y1,Y2], [X1,Y2] + [Y1, X2]

)
.

With these structures, the set L × L defines a complex Lie algebra, usually denoted by LC and is called the
complexification of L. Note that this construction is also available if the initial vectors are linearly independent
over C.

In the following exercise, it is asked to show that LC is indeed a Lie algebra, but also to show the equivalence
of the two constructions if the elements of L are linearly independent over C.

Exercise 3.5.1. 1) Show that the above construction leads to a complex Lie algebra LC of the same dimension
as the initial real Lie algebra L. Show that a basis of LC is given by {(Xℓ, 0)}d

ℓ=1, if {Xℓ}dℓ=1 is a basis of L.

2) If the element of L are linearly independent over C, set ϕ
(
(X,Y)

)
:= X + iY for any (X,Y) ∈ LC and show

that ϕ defines an isomorphism of complex Lie algebra between LC and the initial construction provided, see
also [5, Sec. 13.3].

Consider a complex Lie algebra L. We say that L′ is a real form of L if the complexification of L′ is isomorphic
to L. Note that not all complex Lie algebras have a real form, and two real forms of a complex Lie algebra
can be non isomorphic. For example, u(n)C and gl(n,R)C are both complex algebras isomorphic to gl(n,C),
but the algebras u(n) and gl(n,R) are not isomorphic for n ≥ 2.

Exercise 3.5.2. Prove the previous statement about u(n)C, gl(n,R)C, and gl(n,C).
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Chapter 4

Semi-simple theory

In this chapter, we further develop the theory for semi-simple Lie groups and Lie algebras. Several important
Lie groups are of this form, as already seen in Chapter 1.

4.1 Simple, semi-simple Lie groups and Lie algebras

We gather in this first section the main definitions related to simplicity and semi-simplicity.

Definition 4.1.1 (Lie subalgebra, invariant Lie subalgebra). Let L be a Lie algebra over K.

1) A Lie subalgebra of L consists in a subset of L which is itself a Lie algebra over K with the same Lie
bracket,

2) A Lie subalgebra L′ of L is invariant if [X,Y] ∈ L′ whenever X ∈ L′ and Y ∈ L.

In the context of Lie algebras, a Lie subalgebra will simply be called a subalgebra. Note that an invariant
subalgebra of L is also referred to as an ideal. One example of an Abelian ideal is provided by the next
definition:

Definition 4.1.2 (Center). The center of a Lie algebra L is defined by {Y ∈ L | [Y, X] = 0 for all X ∈ L}.

In order to make a link between Lie subalgebras and subgroups of Lie groups, let us recall that the notion of
subgroup has been introduced in Definition 1.1.6. For Lie groups, this notion has to be strengthened, namely
a Lie subgroup G′ of a Lie group G consists in a subgroup of G which is itself a Lie group and such that the
inclusion map G′ ↪→ G is an immersion1. By the already mentioned theorem of Cartan, any closed subgroup
of a Lie group is a Lie group, but not all Lie subgroups are of this form. In fact, the latter situation corresponds
to embedding instead of an immersion. For the link with Lie subalgebras, one has (see [9, Sec. 9.1] or [1,
Lem. 5.14]) :

Proposition 4.1.3. Let G be a connected Lie group. A Lie subgroup G0 is normal if and only if the corre-
sponding Lie algebra L(G0) is an invariant subalgebra of L(G).

Let us now move to the definition of simplicity and semi-simplicity for a Lie algebra.

1The notions of immersion and embedding are central concepts of differential geometry, and the difference is rather subtle. We
refer to https://en.wikipedia.org/wiki/Immersion (mathematics) for more information, or to any book on differential geometry.
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Definition 4.1.4 (Simple, semi-simple Lie algebra). 1) A Lie algebra is simple if it is not Abelian and does
not possess a proper and non-trivial invariant subalgebra,

2) A Lie algebra is semi-simple if it does not possess a non-trivial Abelian invariant subalgebra.

Observe that a semi-simple algebra can not be Abelian, because the any algebra is an invariant subalgebra of
itself. The related notions of simple or semi-simple groups have already been introduced in Definition 1.2.6.
Note that the following definitions are not universally accepted and differ slightly depending on the authors.

Definition 4.1.5 (Simple, semi-simple Lie group). 1) A connected Lie group G is a simple Lie group if G is
non-Abelian, and {e} is the only proper and normal, connected and closed subgroup,

2) A connected Lie group G is a semi-simple Lie group if G is non-Abelian, and {e} is the only proper and
normal, connected and closed Abelian subgroup.

Let us emphasize an important technical point: a simple Lie group may contain discrete normal subgroups,
hence being a simple Lie group is different from being simple as an abstract group, in the sense of Definition
1.2.6. The same remark applies to semi-simple Lie groups.

In the next statement, we provide links between Lie groups and Lie algebras, and also mention a relation with
complexification introduced in Section 3.5. We refer to [5, Sec. 13.3] for the proof.

Theorem 4.1.6. 1) A connected Lie group group is a simple Lie group if and only if its Lie algebra is simple,

2) A connected Lie group group is a semi-simple Lie group if and only if its Lie algebra is semi-simple,

3) A real Lie algebra L is semi-simple if and only if its complex Lie algebra LC is semi-simple,

4) For a real Lie algebra L, if its complexification LC is simple, then L is also simple.

Additional information on the structure of Lie groups and Lie algebras will be provided in the subsequent
sections

4.2 Adjoint representation and Killing form

Let L be a Lie algebra over K, and let us consider the map ad defined by

ad : L ∋ X 7→ adX ∈ L(L)

with adX(Y) := [X,Y]. Clearly, the following properties hold, for any X, X′ ∈ L and β ∈ K

1) ad0 = 0,

2) adX+βX′ = adX + βadX′ ,

3) ad[X,Y] = adX adY − adY adX =
[
adX , adY

]
.

Exercise 4.2.1. Check that the above properties hold, and that ad defines a representation of L in L(L) in the
sense provided in Definition 3.4.3. Check that 3) can also be rewritten as

adX([Y,Z]) =
[
adX(Y),Z

]
+

[
Y, adX(Z)

]
. (4.2.1)

This representation of the Lie algebra L in L(L) is called the adjoint representation. In other words, the set
{adX | X ∈ L} is a vector space over K, and once endowed with the composition rule [adX , adY ] := ad[X,Y], it
becomes a Lie algebra over K, called the adjoint Lie algebra.
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Since L, and consequently L(L), are finite dimensional, the following definition is meaningful:

Definition 4.2.2 (Killing2 form). The Killing form of L consists of the symmetric bilinear map K : L× L→ C
defined by K(X,Y) := Tr

(
adX adY

)
for any X,Y ∈ L.

Some properties of the Killing form are gathered in the following exercise:

Exercise 4.2.3. Check the following properties of the Killing form:

1) If {X1, . . . , Xd} is a basis of L with structure coefficients cℓjk, as defined in (3.3.1), then the following equal-
ities hold:

g jk := K(X j, Xk) =
d∑

r,s=1

cs
jr cr

ks, (4.2.2)

2) K
(
[X,Y],Z

)
= K

(
X, [Y,Z]

)
for any X,Y,Z ∈ L,

3) The following statements are equivalent:

(a) K(Y, X) = 0 for all Y ∈ L⇒ X = 0,

(b) Det
(
(g jk)

)
, 0,

4) The property Det
(
(g jk)

)
, 0 is independent of the initial choice for the basis chosen for defining the

structure coefficients cℓjk.

If the property Det
(
(g jk)

)
, 0 holds, we say that the Killing form is non-degenerate. In fact, this property is

very important, as seen in the following statement. The subsequent results are all borrowed from [3, Sec. 11.2]
to which we refer for the proofs.

Theorem 4.2.4 (Cartan’s criterion). A Lie algebra L is semi-simple if and only if its Killing form is non-
degenerate.

For the next statement (whose proof relies on the Killing form), we use the notion of irreducible representation
of a Lie algebra by analogy to the representation of a group, see Definition 2.3.1: The representation is
irreducible if {0} or the full space are the only invariant subspaces.

Lemma 4.2.5. If L is a semi-simple Lie algebra, its adjoint representation is faithful, namely adX , adY

whenever X , Y. In addition, if L is simple, then its adjoint representation is irreducible.

The proof of the following statement can be found in [5, Sec. 14.2] and in the corresponding appendix.

Lemma 4.2.6 (Weyl’s lemma). A semi-simple connected Lie group G is compact if and only if the Killing
form of its Lie algebra L(G) is negative definite, namely if and only if K(X, X) < 0 for all X ∈ L(G) with
X , 0.

The previous results can be used in particular for showing that SU(n) is a semi-simple compact Lie group for
any n ≥ 2.

Exercise 4.2.7 (r). For su(n), show that K(X,Y) = 2nTr(XY) for any X,Y ∈ su(n). Check also that su(n) ={
X ∈ Mn(C) | X = −X∗ and Tr(X) = 0

}
. Deduce from these results and from the above statements that SU(n)

is a semi-simple compact Lie group.

2Wilhelm Karl Joseph Killing (10 May 1847–11 February 1923) was a German mathematician who made important contributions
to the theories of Lie algebras, Lie groups, and non-Euclidean geometry.
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Let us close with section with one more result about the structure of semi-simple Lie algebras, showing that
their study reduces to the study of simple Lie algebras. It corresponds to [5, Thm. VI p. 488] with a proof
given in the appendix E of this reference.

Proposition 4.2.8. Every semi-simple Lie algebra is either simple or is the direct sum of a finite set of simple
Lie algebras, that is

L = L1 ⊕ L2 ⊕ . . . ⊕ LN

with L j simple Lie algebras. Moreover, this decomposition is unique.

4.3 Roots of complex semi-simple Lie algebras

Recall that any real Lie algebra can be complexified, and that the adjoint representation of a Lie algebra L is
a representation of L taking place in L(L). In particular, for any X ∈ L with X , 0, the map adX : L → L is a
linear map, and since L is finite dimensional, we can look for eigenvalues and eigenvectors of adX . Namely,
we look for λ ∈ C and Y ∈ L such that the equality

adX(Y) = λY ⇐⇒ [X,Y] = λY

holds. Note that 0 is always an eigenvalue, with corresponding eigenvectors X, since the equalities

adX(X) = [X, X] = 0 = 0 X

always hold.

Exercise 4.3.1. Recall that for any element of Mn(C), there exist d eigenvalues (multiplicity included), which
correspond to the roots of the characteristic polynomial. However, be aware that it does not mean that there
exist d eigenvectors. Study the notion of generalized eigenvectors for an arbitrary matrix in Mn(C), and also
the Jordan normal form of this matrix. Observe that not all elements of Mn(C) are diagonalizable, and provide
an example of a matrix which is not diagonalizable.

Let us consider a special subalgebra of any complex semi-simple Lie algebra.

Definition 4.3.2 (Cartan subalgebra). Let L be a complex semi-simple Lie algebra. A Cartan subalgebra L0
of L is a maximal Abelian subalgebra of L such that for all X ∈ L0 the linear maps adX are simultaneously
diagonalizable. In other words, L0 is a complex subspace of L such that the following conditions hold:

1) If X1, X2 ∈ L0, then [X1, X2] = 0, (Abelian subalgebra)

2) If [X,Y] = 0 for all X ∈ L0, then Y ∈ L0, (maximality)

3) For any X ∈ L0, the linear map adX is diagonalizable (diagonalization)

In fact, one easily check that [X1, X2] = 0 implies that
[
adX1 , adX2

]
= 0. Then, this commutation relation and

the fact that all adX can be diagonalized, imply that they can be diagonalized simultaneously.

It can be shown that any complex semi-simple Lie algebra possesses at least one Cartan subalgebra, and that
if it possesses more than one, then all of them are isomorphic. In particular, their dimension is the same. This
property leads to the following definition:

Definition 4.3.3 (Rank). The rank of a complex semi-simple Lie algebra is defined as the dimension of any
of its Cartan subalgebra. If the rank of the complex semi-simple Lie algebra is denoted by d, then its rank is
denoted by d0.
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Let us now fix a Cartan subalgebra L0 of a complex semi-simple Lie algebra, and let {Y1, . . . ,Yd} be a basis of
L satisfying adX(Y j) := λ j(X)Y j for any X ∈ L0. This condition means that the basis of L is chosen according
to the diagonalization of the linear maps adX for any X ∈ L0. Then, observe that for any X, X′ ∈ L0 and any
β ∈ C one has

adX+βX′(Y j) = [X + βX′,Y j] = [X,Y j] + β[X′,Y j] = λ j(X)Y j + βλ j(X′)Y j =
(
λ j(X) + βλ j(X′)

)
Y j. (4.3.1)

However, since L0 is also a complex vector space, then X+βX′ belongs to L0 and adX+βX′(Y j) = λ j(X+βX′)Y j.
These two expressions imply that

λ j(X + βX′) = λ j(X) + βλ j(X′),

or in other words the map λ j : L0 → C is linear, for any j ∈ {1, . . . , d}. Note that the set of all linear maps
from L0 to C is called the dual space of L0, and is usually denoted by L∗0. Thus, we have obtained that λ j ∈ L∗0
for any j ∈ {1, . . . , d}.

Remark 4.3.4. Since adX(Y) = 0 for any X,Y ∈ L0, it is possible to choose the basis {Y1, . . . ,Yd} such that
Y1, . . . ,Yd0 belong to L0, and Yd0+1, . . . ,Yd do not belong to L0. Thus, for j ∈ {1, . . . , d0} one has λ j(X) = 0
for all X ∈ L0. On the other hand, for any j ∈ {d0 + 1, . . . , d}, the map L0 ∋ X 7→ λ j(X) ∈ C can not be the
0-map, since otherwise the maximality of the Cartan subalgebra would be violated. As a consequence, there
exist d − d0 elements of L∗0 which are not the 0-maps.

Let us try to make the above construction less dependent on the choice of a basis, and make it more abstract.

Definition 4.3.5 (Root). For a complex semi-simple Lie algebra L with Cartan subalgebra L0, a root of L is
an element α ∈ L∗0 with α not the 0-map, such that there exists Yα ∈ L, Yα , 0, with adX(Yα) = α(X)Yα for all
X ∈ L0. The set of all roots is denoted by R.

Clearly, the notion of root corresponds to a generalization of an eigenvalue, when several linear maps are
commuting. More precisely, Yα is a common eigenvector for all adX with X ∈ L0, and the corresponding
eigenvalues are α(H). Note that if we fix a basis X1, . . . , Xd0 of L0, then α is fully determined by the d0
complex values α(X1), . . . , α(Xd0).

Now, for any α ∈ R we set
Lα :=

{
Y ∈ L | adX(Y) = α(X)Y, ∀X ∈ L0

}
, (4.3.2)

and call it the root subspace associated with the root α. Since the linear maps adX commute, for all X ∈ L0,
and can be diagonalized simultaneously, one infers that

L = L0 ⊕
⊕
α∈R

Lα.

Note that we can not say that these direct sums are orthogonal direct sums, since no scalar product has been
introduced so far. In this representation the linear map adX takes the form

adX = 0 ⊕
⊕
α∈R

α(X)1.

Exercise 4.3.6. Check the above statement.

For the next statement, we write Lα as defined in (4.3.2) if α ∈ R, L0 := L0 . . .,, and Lα = {0} if α < R and
α , 0.

Lemma 4.3.7. For any α, β ∈ L∗0 and for Yα ∈ Lα and Yβ ∈ Lβ one has [Yα,Yβ] ∈ Lα+β.
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Let us be more explicit about the content of this lemma. Clearly, if α or β are not roots or 0, then [Yα,Yβ] = 0.
This equality also holds if α and β are roots, but if α + β is not a root or 0. On the other hand, if α and −α are
roots, then [Yα,Y−α] ∈ L0.

Exercise 4.3.8. Prove the previous lemma by using the Jacobi identity, see also [8, Prop. 6.18].

We now add one more result about roots. The proof is given in [8, Prop. 6.19 & Thm. 6.20], but involves a
few tools not introduced in these notes.

Proposition 4.3.9. Let L be complex semi-simple Lie algebra of rank d0.

1) If α ∈ R, then −α ∈ R,

2) If α ∈ R, then the only multiples of α that are roots are α and −α,

3) If α ∈ R, then Lα is one dimensional,

4) There exist d − d0 different roots,

5) The roots span L∗0,

Note that there are a lot of algebraic relations on the set of roots and on the choices of bases, and that this
theory is very well developed. It would be too long to present these results, we simply mention one main
outcome: It is possible to endow L with a basis having some specific properties. More precisely, there exists
a standard basis {H1, . . . ,Hd0 , Eα, E−α, . . . , Eγ, E−γ} of L having the following properties:

1) [Hi,H j] = 0 for all i, j ∈ {1, . . . , d0},

2) [H j, Eα] = adH j(Eα) = α(H j)Eα with α(H j) ∈ R,

3) [Eα, Eβ] =


∑d0

j=1 α(H j)H j if α + β = 0,

ταβEα+β if α + β ∈ R, (where ταβ , 0)
0 otherwise.

In addition, if the roots are arranged in the order α,−α, β,−β, . . ., then the matrix (g jk) given by g jk =

Tr(adX jadXk ) with X j, Xk ∈ {H1, . . . ,Hd0 , Eα, . . . , E−γ} takes the form

(g jk) =



1 0 0 . . . 0 0 0 0 0 . . .

0 1 0 . . . 0 0 0 0 0 . . .

0 0 1 . . . 0 0 0 0 0 . . .
...

...
...

. . .
...

...
...

...
... . . .

0 0 0 . . . 0 1 0 0 0 . . .

0 0 0 . . . 1 0 0 0 0 . . .

0 0 0 . . . 0 0 0 1 0 . . .

0 0 0 . . . 0 0 1 0 0 . . .
...

...
...

...
...

...
...

...
...

. . .



(4.3.3)

We refer to [1, Sec. 5.4.3] for this construction.

In the above basis, all α(H j) ∈ R for j ∈ {1, . . . , d0}, which means that roots can be identified with elements
of Rd0 . We then say that a root α is positive if the first non-zero of the list

(
α(Hd0), α(Hd0−1), . . . , α(H1)

)
is

positive, and the root is negative otherwise. Thus, the set of roots can be divided into two sets: the set of
positive roots R+ and the set of negative roots R− satisfying R = R− ∪ R+ and R− ∩ R+ = ∅. We can also
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endow the set of roots with the lexicographic order, namely α > β if α − β ∈ R+. Some positive roots are
playing a special role:

Definition 4.3.10 (Simple root). With respect to the standard basis introduced above, a root is simple if it is
positive and can not be expressed as a linear combination(with positive coefficients) of other positive roots.

We now provide a final statement about roots, and refer to [1, Prop. 5.33] for its proof.

Theorem 4.3.11. Let L be a complex semi-simple Lie algebra of dimension d and of rank d0, and endowed
with the standard basis introduced above.

1) There are exactly d0 simple roots α1, . . . αd0 ,

2) These d0 simple roots are linearly independent and general L∗0,

3) For any β ∈ R there exist a1, . . . ad0 ∈ Z with β =
∑d0

j=1 a jα
j, and either all a j > 0 or all a j < 0,

4) If α, β are simple roots, then α − β is not a root,

Let us now illustrate the above construction with two examples, and a few exercises.

Exercise 4.3.12. Show that su(n) =
{
X ∈ Mn(C) | X = −X∗ and Tr(X) = 0

}
, and that its dimension d is n2 − 1.

Show also that the elements of this Lie algebra are linearly independent over C. Since a Cartan subalgebra
of su(n)C consists of d0 matrices simultaneously diagonalizable, and since all elements of su(n)C have a trace
equal to 0, deduce that the rank d0 of su(n)C is equal to n − 1.

In the special case su(2)C, one basis has been exhibited in (3.5.1), but it is clearly not a standard basis. In this
case, observe that the rank of su(2)C is 1, and one can choose:

H :=

 1
2
√

2
0

0 − 1
2
√

2

 , Eα :=
(
0 1

2
0 0

)
, E−α :=

(
0 0
1
2 0

)
.

In this standard basis, one has α(H) = 1√
2
, and −α(H) = − 1√

2
, and

(g jk) =

1 0 0
0 0 1
0 1 0

 .
For su(3)C, its dimension is 8 and its rank is 2. Thus, there exist 6 different roots in R. The standard basis is
given by

H1 :=
1

2
√

3

1 0 0
0 −1 0
0 0 0

 , H2 :=
1
6

1 0 0
0 1 0
0 0 −2

 , Eα :=
1
√

6

0 0 1
0 0 0
0 0 0

 , E−α :=
1
√

6

0 0 0
0 0 0
1 0 0

 ,
Eβ :=

1
√

6

0 0 0
0 0 1
0 0 0

 , E−β :=
1
√

6

0 0 0
0 0 0
0 1 0

 , Eγ :=
1
√

6

0 1 0
0 0 0
0 0 0

 , E−γ :=
1
√

6

0 0 0
1 0 0
0 0 0

 .
(4.3.4)

In this basis, the matrix (g jk) possesses the standard form of (4.3.3), and the roots are

α =
( 1

2
√

3
,

1
2

)
, β =

(
−

1

2
√

3
,

1
2

)
, γ =

( 1
√

3
, 0

)
.

together with −α,−β,−γ. Note that only β and γ are simple roots, since α = β + γ.
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4.4 Weights of complex semi-simple Lie algebras

Let L be a complex semi-simple Lie algebra, and let (V, h) be a finite dimensional representation of L, as
introduced in Definition 3.4.3. As for the adjoint representation we look for elements v ∈ V, with v , 0, such
that the equality h(H)v = µ(H)v holds for all H in the Cartan subalgebra L0 of L, and where µ(H) ∈ C. If
such an element v exists, it is called a weight vector of the representation, and the map µ : L0 → C is called a
weight of the representation. By a computation similar to (4.3.1), one easily infers that µ ∈ L∗0, which means
that µ is a linear map on L0. More generally, for any µ ∈ L∗0 we can set

Lµ :=
{
v ∈ V | h(H)v = µ(H)v, ∀H ∈ L0

}
,

and the dimension of Lµ is called the multiplicity of the weight µ. Observe that this construction is in fact
a generalization of the one provided for roots, which correspond to weights for the adjoint representation
(V = L and h = ad·).

Let us consider again the standard basis {H1, . . . ,Hd0 , Eα, E−α, . . . , Eγ, E−γ} of L, and set H j := h(H j), Eα :=
h(Eα). Then the following relations hold:

1) [Hi,H j] = 0 for all i, j ∈ {1, . . . , d0},

2) [H j,Eα] = α(H j)Eα with α(H j) ∈ R,

3) [Eα,Eβ] =


∑d0

j=1 α(H j)H j if α + β = 0,

ταβEα+β if α + β ∈ R, (where ταβ , 0)
0 otherwise.

The main difference with the same relations for the elements of the basis {H1, . . . ,Hd0 , Eα, E−α, . . . , Eγ, E−γ}
of L is that the linear independence of the elements {H1, . . . ,Hd0 ,Eα,E−α, . . . ,Eγ,E−γ} is no more ensured, it
depends on the representation.

We now stress the role of roots for any representation.

Proposition 4.4.1. Let L be a complex semi-simple Lie algebra endowed with the standard basis, and let
(V, h) be a finite dimensional representation of L. Let µ be a weight with a weight vector v ∈ Lµ.

1. µ(H j) ∈ R for any j ∈ {1, . . . , d0},

2. For any α ∈ R, if Eαv , 0, then Eαv ∈ Lµ+α and µ + α is a weight,

3. The weight vectors associated with different weights are linearly independent,

4. The number of different weights for (V, h) is at most equal to dim(V).

The first statement corresponds in fact to a corollary of Proposition 4.4.2 but we prefer to present it immedi-
ately, for simplicity. Let us prove the second statement, the third one being slightly more involved, and the
fourth one following directly from the third one. One has for any H ∈ L0 :

h(H)Eαv = Eαh(H)v + [h(H),Eα]v = µ(H)Eαv + α(H)Eαv =
(
µ(H) + α(H)

)
Eαv,

which means precisely that Eαv ∈ Lµ+α. Because of these relations, for α or for −α, the operators Eα is often
called a raising operator and E−α a lowering operator.
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We now consider a root α and a weight µ, and define

α · µ :=
d0∑
j=1

d0∑
k=1

g jkα(Hk)µ(H j), (4.4.1)

with (g jk) the inverse matrix of the matrix (g jk) introduced in (4.2.2). In fact, it turns out that this expression
is independent of the choice of a basis {X1, . . . , Xd0} of L0. In particular, in the standard basis of L, one has
g jk = δ jk for j, k ∈ {1, . . . , d0}, and then α · µ =

∑d0
j=1 α(H j)µ(H j).

If we consider for (V, h) the adjoint representation, then µ = β for some β ∈ R, and we end up with expressions
of the form α · β between roots. In particular, for α ∈ R we set

∥α∥2 := α · α =
d0∑
j=1

α(H j)α(H j) > 0

if the standard basis is chosen for L0.

Let us now answer a natural question. It follows from Proposition 4.4.1 that if µ is a weight, then µ + kα can
also be a weight, for some k ∈ Z. Clearly, this can not be the case for too many k since the number of weights
is at most equal to the dimension ofV. Thus, for which k is µ + kα still a weight ?

For answering this question, let us again endow L with the standard basis, and set α j := α(H j) ∈ R, and also
set µ j := µ(H j) ∈ R for a weight of a representation (V, h). We also define α⊥ := {x ∈ Rd0 | α · x = 0} the
hyperplane perpendicular to α. Finally, let µ̄ denote the point in Rd0 obtained from µ by a mirror symmetry
with respect to the hyperplane α⊥, namely

µ̄ := µ − 2
µ · α

∥α∥

α

∥α∥
= µ − 2

µ · α

∥α∥2
α.

The following statement provides several properties of this geometric construction. Its proof is rather techni-
cal, we refer for example to [1, Prop. 5.37].

Proposition 4.4.2. In the framework introduced above:

1. N := −2 µ·α

∥α∥2
∈ Z,

2. For any k ∈ Z ∩ [0,N], or any k ∈ Z ∩ [N, 0] if N ≤ 0, the vector µ + kα is a weight,

3. µ − 2 µ·α

∥α∥2
α is also a weight.

Let us illustrate this statement with Figure 4.1, with a Cartan sublagebra of dimension 2, and six roots. The
three positive roots generate three planes which are represented, and the weights have to satisfy the relations
mentioned in the above statement.

In order to illustrate more concretely the above construction, let us come back to the Lie algebra su(2)C

already introduced at the end of Section 4.3. We always assume that the algebra is endowed with its standard
basis. Let (V, h) be a finite dimensional representation of this Lie algebra. Since L0 is one dimensional, all
weights belong to R, and therefore there exists a maximal weight. Let us denote by µ this maximal weight.
Since R contains only the two roots α = ± 1√

2
, it follows that ∥α∥2 = 1

2 , and then for α = 1√
2

one gets

N := −2 µ·α

∥α∥2
= − 4√

2
µ. As a consequence of the previous proposition (and since µ > 0) one infers that N ∈ Z

with N < 0, and that µ = −
√

2
4 N. Therefore, the possible weights are

µ, µ −
1
√

2
, µ − 2

1
√

2
, . . . , µ −

4
√

2
µ

1
√

2
= µ − 2µ = −µ.
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Figure 4.1: Representations of the three planes and of various weights satisfying the relations mentioned in
Proposition 4.4.2.

Thus, these values correspond to the eigenvalues of the operator

h(H) = h
((

1
2
√

2
0

0 − 1
2
√

2

))
=

1

2
√

2
h(σ3) =

1
√

2
J3

where the notation J3 is commonly used for 1
2 h(σ3) in quantum mechanics. It thus follows that the eigenvalues

of J3 belong to 1
2Z. It turns out that value µ, of equivalently the maximal eigenvalue of J3, given by

√
2µ,

determines uniquely an equivalence class of irreducible representation of su(2)C, or of SU(2). More precisely
one has:

Proposition 4.4.3. For any n ∈ N∗. there exists a unique (up to equivalence) irreducible representation of
su(2)C. In this representation the maximal value of j is n

2 .

This result is a very standard result and a proof can be found in many textbooks, as for example in [8, Sec. 4.4].

Let us now come back to the general setting. We consider a complex semi-simple Lie algebra L endowed with
its standard basis, and let L0 denote its Cartan subalgebra. Let also (V, h) be a finite dimensional irreducible
representation. We denote by µmax the maximal weight, once Rd0 is endowed with the lexicographic order,
starting from the last component. Clearly, if α is a positive root, then Lµmax+α = {0}, otherwise one would get
a contradiction. Equivalently. Eαvmax = 0 for the maximal weight vector vmax. By collecting the information
obtained some far, the following exercise is rather instructing:

Exercise 4.4.4. In the framework introduced above, show that

V = Span
{
vmax,Eαvmax,EαEβvmax, . . . | α, β, . . . ∈ R−

}
= Span

{
vmax,E−αvmax,E−αE−βvmax, . . . | α, β, . . . ∈ {simple roots}

}
.
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More generally, for any weight vector v show that

V = Span
{
v,Eαv,EαEβv, . . . | α, β, . . . ∈ R

}
.

If we generalize and summarize the content of this section, we end up with the following statement:

Proposition 4.4.5. Let (V, h) be an irreducible finite dimensional representation of a complex Lie algebra L,
and let µmax be its maximal weight. Then,

1. All operators h(H), with H ∈ L0, are simultaneously diagonalizable,

2. Any weight is given by µ = µmax −
∑
α∈Rs nαa with nα ∈ N and Rs the set of simple roots,

3. The sum of all weights, multiplicity counted, is equal to the dimension ofV,

4. The dimension of Lµmax is 1.

Let us conclude this section with a few more deep results. It can be shown that if two irreducible representa-
tions share the same maximal weight, then these representations are equivalent. Thus, it is important to know
the set of all maximal weights. In fact, an indexation of all maximal weights is possible, and a formula for the
dimension in which this representation is taking place exists. Namely, if µmax is a maximal weight, then

n :=
∏

α∈R+ α · (µmax + δ)∏
α∈R+ α · δ

, with δ :=
1
2

∑
α∈R+

α,

provides the dimension of an irreducible representation for which µmax is the maximal weight. Note that the
multiplicity of a weight can also be computed with the so-called Kostant’s formula. Details can be found in
the literature.
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Chapter 5

Examples

In this final chapter, we illustrate the general theory with two examples which are rather famous.

5.1 Representations of SU(3)

Let us recall that from the end of Section 4.3 that the dimension of su(3) is 8 and that the dimension of
its Cartan subalgebra is 2, or equivalently d = 8 and d0 = 2. The standard basis of su(3)C has also been
introduced at the end of this section. We also recall that its positive roots are

α =
( 1

2
√

3
,

1
2

)
, β =

(
−

1

2
√

3
,

1
2
)
, γ =

( 1
√

3
, 0

)
.

We now define a new basis, namely

I3 :=
√

3H1 =
1
2

1 0 0
0 −1 0
0 0 0

 , I+ :=
√

6Eγ =

0 1 0
0 0 0
0 0 0

 , I− :=
√

6E−γ =

0 0 0
1 0 0
0 0 0

 , (5.1.1)

U3 :=
3
2

H2 −

√
3

2
H1 =

1
2

0 0 0
0 1 0
0 0 −1

 , U+ :=
√

6Eβ =

0 0 0
0 0 1
0 0 0

 , U− :=
√

6E−β =

0 0 0
0 0 0
0 1 0

 ,
(5.1.2)

V3 := −
3
2

H2 −

√
3

2
H1,=

1
2

−1 0 0
0 0 0
0 0 1

 , V+ :=
√

6E−α =

0 0 0
0 0 0
1 0 0

 , V− :=
√

6Eα =

0 0 1
0 0 0
0 0 0

 .
(5.1.3)

By looking at the exact form of these matrices one infers that U3,U−,U+ leave the subspace {(k, 0, 0)t | k ∈ R}
invariant, that V3,V−,V+ leave the subspace {(0, k, 0)t | k ∈ R} invariant, and that I3, I−, I+ leave the subspace
{(0, 0, k)t | k ∈ R} invariant. In addition, by checking the exact form of these matrices, one observes that
these three triples generate three representations of su(2)C which are not irreducible because of the invariant
subspace. In other words, there exist three subgroups of SU(3) which are isomorphic to SU(2).

Consider now a finite dimensional and irreducible representation (V, h) of su(3)C, and set H j := h(H j) and
Eα := h(Eα) for j ∈ {1, 2} and α ∈ R, and also U3 := h(U3), V3 := h(V3), and I3 := h(I3). Since U3, V3
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Figure 5.1: Representations of the possible weights, starting from a maximal weight denoted by µ̂.

and I3 are equal to 1
2σ3 ⊕ 0, it follows as for su(2)C, that the eigenvalues of U3, V3 and I3 belong 1

2Z. As a
consequence, we infer from (5.1.1), (5.1.2), and (5.1.3) that if µ = (µ1, µ2) =

(
µ(H1), µ(H2)

)
is a weight, then√

3µ1 ∈
1
2Z and 3µ2 ∈

1
2Z. It thus follows that

µ1 ∈
1

2
√

3
Z, µ2 ∈

1
6

Z.

By acting with the operators E±α, E±β, and E±γ on the corresponding weight vector, one then gets the new
possible weights (as long as the corresponding new weight vector is not 0)

µ ± α =
(
µ1 ±

1

2
√

3
, µ2 ±

1
2

)
, µ ± β =

(
µ1 ∓

1

2
√

3
, µ2 ±

1
2

)
, µ ± γ =

(
µ1 ±

1
√

3
, µ2

)
.

It remains now to list the maximal weights, leading to the irreducible representations. These maximal weights
are indexed by (κ1, κ2) ∈ N × N, and the relations with µmax are of the form κ1 := 2

√
3µmax,1 and κ2 :=

3µmax,2 −
√

3µmax,1 (inspired from (5.1.2)), or equivalently

µmax :=
( κ1

2
√

3
,
κ1 + 2κ2

6

)
.

Starting from different maximal weights, it is possible to represent all possible weights, see Figure 5.1.

From the irreducible representations of su(3)C, indexed by (κ1, κ2), one gets by exponentiation the irreducible
and unitary representations of SU(3), denoted by D(κ1,κ2). The dimension of these representations can be
computed explicitly, namely they take place in Cn with

n :=
1
2

(κ1 + 1)(κ2 + 1)(κ1 + κ2 + 2).
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Figure 5.2: Alternative names for the irreducible representations, and their dimension.

Figure 5.3: Weight diagrams for a few irreducible representations, with the values indicated corresponding to
(
√

3µ1, 2µ2). The circled points correspond to weights of multiplicity 2.
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In Figure 5.2, alternative and shorter names to some irreducible representations are introduced. We also list
in Figure 5.3 the weight diagram of a few representations of small dimensions.

Let us recall from Section 2.5 that tensor products of irreducible representations can be decomposed, and often
contain other representations. For example, with the notation introduced in Figure 5.2, one can construct the
tensor products of irreducible representations, and decompose them, leading to the formulas (which can be
computed with the characters):

3 ⊗ 3 = 6 ⊕ 3, 3 ⊗ 3 = 8 ⊕ 1, 6 ⊗ 3 = 10 ⊕ 8, 3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1. (5.1.4)

Let us close this section with an important remark which goes beyond the content of this course.

Remark 5.1.1. Each semi-simple Lie algebra L possesses d0 independent Casimir operator(s), where d0 is its
rank, or in other words the dimension of its Cartan subalgebra. These operators can be constructed in terms
of the elements of L, but they are non-linear expressions. As a consequence, they don’t belong to L, and their
definitions require the introduction of the notion of the universal enveloping algebra, see

https://en.wikipedia.org/wiki/Casimir element

Usually, these Casimir operators are denoted by C2, . . . ,Cd0+1 and they satisfy [C j,Y] = 0 for any Y ∈ L,
once a suitable meaning to this expression has been given. In addition, in any finite dimensional irreducible
representation (V, h) they satisfy h(C j) = c j1 for some c j ∈ C. For su(3)C and if L is endowed with the
standard basis one has

C2 = H2
1 + H2

2 + EαE−α + E−αEα + EβE−β + E−βEβ + EγE−γ + E−γEγ.

In the representation D(κ1,κ2) the corresponding constant c2 can be computed explicitly, and one has

c2 =
1
9

(κ2
1 + κ1κ2 + κ

2
2) +

1
3

(κ1 + κ2).

Still for su(3)C, the second Casimir operator is a polynomial of order 3 in the generators of L, and in the
representation D(κ1,κ2) it taks the values

c3 =
1
9

(κ1 − κ2)(2κ1 + κ2 + 3)(κ1 + 2κ2 + 3).

5.2 Application of SU(3) in physics

Already a long time ago, it had been observed that particles with similar properties can be organized in
families of 1, 8, or 10 members, It was then realized that these numbers appeared in the decomposition of
tensor product of representation of SU(3), as shown in (5.1.4). Thus, it has been decided to describe particles
with irreducible representations of su(3). In fact, this turns out to be a rather successful approach since some
particles predicted with this construction were only discovered later.

By looking at the simplest and non-trivial irreducible representations of SU(3), namely 3 := D(1,0) and 3 :=
D(0,1), see Figures 5.2 and 5.3, it has been decided that each weight of the corresponding representation of
su(3) would be associated with one elementary particle, namely the quarks u, d, or s, and the anti-quarks u,
d, and s, see Figure 5.4. Since the rank of su(3) is 2, each weight is two dimensional and corresponds to
the eigenvalues of two matrices which can be simultaneously diagonalized. A standard choice is to use the
isospin I3 :=

√
3H1, taking values in 1

2Z, and the hypercharge Y := 2H2, taking values in 1
3Z. Note that the
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Figure 5.4: The choice of 3 quarks and their anti-quarks, based on the irreducible representations 3 and 3 of
su(3).

charge Q can also be used for indexing the particles, and that the relation between these three quantities is
Y = 2(Q − I3).

Based on this idea and by looking at the tensor product 3 ⊗ 3 = 8 ⊕ 1, an eightfold of particles, called
mesons, corresponds to the irreducible representation 8 := D(1,1). It turns out that six of these particles can be
described with the tensor products of one quark and one anti-quark, as indicated in Figure 5.5. For the meson

Figure 5.5: The eightfold of mesons, each of them made of one quark and one anti-quark.

with isospin 0 and hypercharge 0, the following relations hold:

π0 :=
1
√

2

(
d ⊗ d − u ⊗ u

)
, η ≡ η0

8 :=
1
√

6

(
d ⊗ d + u ⊗ u − 2s ⊗ s

)
.

Finally, for the meson which does not belong to the eightfold but generates a trivial representation by itself,
the formula is

η′ ≡ η0
1 :=

1
√

3

(
d ⊗ d + u ⊗ u + s ⊗ s

)
.

As it should be, the three vectors π0, η, and η′ are orthogonal and general a subspace of dimension 3, corre-
sponding to an isospin 0 and to a hypercharge 0.

By considering then the decomposition of the tensor product 3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1 into irreducible
representations, it is possible to generate families of particles containing three quarks. The construction is
more involved and is not presented here. An illustration for two of these families is provided in Figure 5.6.
Note that this initial and simple model has then been further refined and improved.
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Figure 5.6: Other families of particles, made of three quarks.

5.3 Classification theorem

It has been mentioned in Proposition 4.2.8 that every semi-simple Lie algebra is either simple or the direct
sum of a finite set of simple Lie algebras. Thus, the building blocks of the theory are the simple Lie algebras,
and we would like to classify them. For that purpose, recall that roots are very special weights, the ones in
the adjoint representation. Thus, if L is a simple Lie algebra endowed with the standard basis one infers from
Proposition 4.4.2 that for any simple roots α, β

−2
α · β

∥α∥2
∈ Z and − 2

α · β

∥β∥2
∈ Z.

Equivalently, one has −2α · β = N1∥α∥
2 and −2α · β = N2∥β∥

2 for some N1,N2 ∈ Z, or still

N1∥α∥
2 = N2∥β∥

2 and
(α · β)2

∥α∥2∥β∥2
=

(
α · β

∥α∥ ∥β∥

)2

=
N1N2

4
.

By observing that the later expression corresponds to cos2(ϕα,β) with ϕα,β the angle between the two roots,
one obtain that N1N2 ∈ [0, 4], which limits drastically the possible choice for N1 and N2. In fact, with the
other condition one must also choose N1 and N2 of the same sign. By one more geometric argument, see [8,
Prop. 8.11], it turns out that for simple roots, one has α · β ≤ 0, meaning that both N1 and N2 are positive.
Thus, the only alternatives are provided in Table 5.1

(N1,N2) (2, 2) (1, 3) or (3, 1) (1, 2) or (2, 1) (1, 1) (1, 4) or (4, 1) (0, 0)
ϕα,β 0o or 180o 30o or 150o 45o or 135o 60o or 120o 0o or 180o 90o

Table 5.1: Possible angles between roots.

Note that the last option, with N1 = N2 = 0 leads to an undetermined ratio N1/N2. On the other hand, the
angles of 0o or 180o are not possible, since the roots are assumed to be linearly independent (the case β = −α
is not possible for simple roots). Also, since α · β < 0, we have to choose the obtuse angles. It is then
possible to have a schematic representation of the possible angles between simple roots, namely if we denote
any simple root by a small circle, then the angle between two roots can be represented by the rule presented
in Figure 5.7.

The fact that an angle of 90o is represented by no edge is not surprising: it turns out that for simple Lie
algebras, two roots can not have a right angle between them, but this can happen for semi-simple Lie algebras.
Thus, a simple Lie algebra is going to correspond to a connected diagram, the so-called Dynkin diagram.
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Figure 5.7: Representations of the angles between roots.

By taking these rules into account, it is possible to provide a list of all complex simple Lie algebras, leading
to the list of all simple Lie algebras. A presentation of this classification theorem is provided for example
in [7, Chap. 20], but many reference books contain a discussion about this result. In fact, there exist four
infinite families of such algebras, and 5 exceptional cases. They are schematically represented in Figure 5.8,
with their name, the corresponding Dynkin diagram, the dimension of the Lie algebra, and the number of
roots. Note that these algebras and their representations have been extensively studied, and have applications

Figure 5.8: Schematic representation of all complex semi-simple Lie algebras with their name, the corre-
sponding Dynkin diagram, the dimension of the Lie algebra, and the number of roots.

in several fields. Some of the most recent investigations were dealing with E8, and the following link is quite
interesting, and understandable with the notions studied in this course

https://en.wikipedia.org/wiki/E8 (mathematics)
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5.4 Induced representations

Given the representation (V,U) of a group G, the restriction of this representation to any subgroup G0 of G
provides a representation of G0 in the vector spaceV. Clearly, even if the initial representation is irreducible,
this is not always the case for the representation of G0. The induced representation is a kind of converse to
this construction. Given a representation of the subgroup G0, the induced representation is the “most general”
representation of G that extends the initial representation of G0. Since it is often easier to find representations
of the smaller group G0 than of G, the operation of forming induced representations is an important tool to
construct new representations.

The general theory for induced representations is quite involved, and necessitates arguments of measure the-
ory. We shall only present the main ideas and provide the construction for finite groups, since it does not
involve any measure theoretical arguments.

Let G be a finite group, and let G0 be a subgroup of G. We also assume that (V.U) is a finite dimensional
representation of G0, with dim(V) = n. We introduce a finite dimensional new vector spaceW by

W :=
{
f : G →V | f (aa0) = U

(
a−1

0
)
f (a) ∀a ∈ G, a0 ∈ G0

}
. (5.4.1)

Thus,W is made of functions from G to V having a certain property when the variable is multiplied on the
right by an element of G0. It is easy to check that W is indeed a vector space (stable by addition and by
multiplication by a scalar), and that it is finite dimensional, since both G and V are finite dimensional. For
any f ∈ W and any a, b ∈ G we then set

[U(b) f ](a) := f
(
b−1a

)
. (5.4.2)

Exercise 5.4.1. Check that the pair (W,U) define a representation of G inW, namely check thatU(b) maps
W onW, that U(b) is a linear map, and that the map G ∋ b 7→ U(b) ∈ L(W) is a homomorphism with
U(e) = 1.

Once this exercise is proved, we can define:

Definition 5.4.2 (Induced representation). Given a finite group G with a subgroup G0, and a finite dimensional
representation (V,U) of G0, the induced representation of G corresponds to the representation (W,U) given
by (5.4.1) and (5.4.2).

For any subgroup G0 of G, recall that the left coset have been introduced in (1.2.1) and correspond to G0[a] :=
aG0. These equivalence classes form a partition of G into J := |G|

|G0 |
classes. We denote these classes by

{C1, . . . ,CJ}, and set C1 := G0, with no loss of generality. For each j ∈ {1, . . . , J} we also fix a representative
b j such that C j = G0[b j] = b jG0.

With the notation just introduced, let us define for each j ∈ {1, . . . , J} a subspace ofW, namely

W j :=
{
f ∈ W | f (bk) = δ jk f (bi) ∀k ∈ {1, . . . , J}

}
.

Then, observe that for f ∈ W j and any a0 ∈ G0 one has f (b ja0) = U
(
a−1

0
)
f (b j), meaning that f is completely

determined on b jG0 by its value at b j. Also, the value of f on any other coset is 0 since f (bka0) = 0 if j , k.
Since f (b j) can be any element ofV one infers that dim(W j) = dim(V) = n. In addition, one has

W = ⊕J
j=1W j (5.4.3)

leading to dim(W) = Jn = |G|
|G0 |

dim(V).

In the following exercise, we gather a few results which can be easily proved in this framework:
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Exercise 5.4.3. 1) Show the equality (5.4.3),

2) Show that the regular representation introduced in Definition 2.4.7 corresponds to the induced represen-
tation with the subgroup G0 consisting of the identity only, namely G0 = {e},

3) Show that the characters for the representation (W,U) can be computed with the following formula:

χU(c) =
1
|G0|

∑
b∈G, b−1cb∈G0

χU
(
b−1cb

)
.

Let us now look at a special family of groups for which all complex and irreducible representations are
equivalent to induced representations. Namely, we shall consider groups G which are semi-direct products
with normal subgroups which are Abelian. Recall that the notion of semi-direct groups was introduced in
Definition 1.3.4. More precisely, we assume that G is a finite group, A, B are two subgroups of G with A
normal and Abelian, A ∩ B = {e}, and any element c of G admits a unique decomposition c = ab with a ∈ A
and b ∈ B.

Since A is Abelian, it follows from Corollary 2.3.8 that all its unitary irreducible representations are of dimen-
sion 1. In such a situation, if (C,U) denotes such a unitary representation, one has

U(a) = χU(a) ∈ T.

We can then infer from Theorem 2.4.9 that there exist |A| such irreducible representations. We shall denote
them by χj : A → C with j ∈ {1, . . . , |A|}. Note that the set of all irreducible representations of the Abelian
group A is denoted by A∗ and is called the dual group of A, which is indeed a group ,. Observe that an action
of G on A∗ can be defined: For χj ∈ A∗, any c ∈ G and a ∈ A we set

[cχj](a) := χj
(
c−1ac

)
(5.4.4)

which is well-defined since A is a normal subgroup.

In this framework the following lemma can be easily proved. We recall that the notion of transformation group
has been introduced in Definition 1.4.1.

Lemma 5.4.4. Let G = A ⋊ B be a finite semi-direct group with A Abelian. The group G and the subgroup B
act on A∗ by (5.4.4) as transformation groups. The action of A on A∗ is trivial, namely aχj = χj for any a ∈ A.

According to Definition 1.4.3 we can now define

1) Oj the orbit of χj in A∗ under the action of G,

2) Gj the stabilizer of χj under the action of G,

3) Bj the stabilizer of χj under the action of B.

Clearly, Gj is a subgroup of G, while Bj is a subgroup of B. The groups Bj are often referred to as the little
groups, and these groups are isomorphic along orbits in A∗, see Lemma 1.4.4. In addition, one can check that
Gj = A ⋊ Bj, since (ab)χj = a(bχj) = bχj, for any a ∈ A and b ∈ B.

The following statement is the main result in this framework. We refer for example to [1, Thm. 6.9] for its
proof.
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Theorem 5.4.5. Let G = A ⋊ B be a finite semi-direct group with A Abelian. Any complex and irreducible
representation (W,U) of G is equivalent to a representation induced by a subgroup Gj = A ⋊ Bj of G.
More precisely, there exists χj ∈ A∗ and a irreducible representation (V,U) of the little group Bj such that
U is equivalent to the induced representation constructed from the representation (V,U) of Gj defined by
U(ab) = χj(a)U(b) for any a ∈ A and b ∈ Bj.

This statement means that there is no restriction in constructing representations with induced representations,
we get all representations of G. In fact, the statement can be even strengthened: If the representation of Bj

is irreducible, then the representation of G itself is irreducible, see [1, Thm. 6.10]. As a consequence, each
irreducible representation of G can be indexed by two parameters: one related to the orbits of the elements
χj of A∗ under the action of G, and one related to the equivalent class of irreducible representation of the
little group Bj. By working carefully, one gets a bijective relation between the set of equivalence classes of
representations of G and this double indexation.

5.5 Representations of the Poincaré group

In this section we sketch the representations of the Poincaré group P, based on the construction and of the
results of the previous section. The Poincaré group was introduced in Definition 1.5.5. It is clearly not a finite
group, but it has the structure of a semi-direct product with an Abelian normal subgroup, namelyP � T (4)⋊L,
with T (4) the usual translations in R4 and L the Lorentz group, as introduced in Section 1.5. Since P is not
finite, none of the results of the previous section can be directly applied, but the abstract theory presented in
Section 5.4 has been extended to semi-direct Lie groups, as the Euclidean group E(n) or the Poincaré group
P. In particular, since these Lie groups are non-compact, the representations will not be finite dimensional,
but infinite dimensional.

Recall that the Poincaré group is made of pairs (b,Λ), with b ∈ T (4) and Λ ∈ L, with the product defined in
(1.5.5). This Lorentz groups is made of different components. More precisely, any element Λ of the Lorentz
group verifies Det(Λ) = ±1, and also |Λ0

0| ≥ 1, with Λ0
0 the first entry of the matrix Λ. Thus, L can be divided

into 4 connected components

1) L↑+ := {Λ ∈ L | Det(Λ) = 1 and Λ0
0 ≥ 1},

2) L↑− := {Λ ∈ L | Det(Λ) = −1 and Λ0
0 ≥ 1},

3) L↓+ := {Λ ∈ L | Det(Λ) = 1 and Λ0
0 ≤ −1},

4) L↓− := {Λ ∈ L | Det(Λ) = −1 and Λ0
0 ≤ −1}.

Note that L↑+ is the component connected to the identity. This normal subgroup is often referred to as the
proper, orthochronous Lorentz group or restricted Lorentz group.

As mentioned for SO(3) at the end of Section 2.6, it is sometimes useful to consider the universal cover of a
group. Then, it turns out that the universal cover of L↑+ is given by SL(2,C), and the map from SL(2,C) to L↑+
is defined for any A ∈ SL(2,C) by

(ΛA)µν :=
1
2

Tr
(
σµAσνA∗

)
.

Again, the map from SL(2,C) to L↑+ is surjective, with kernel {1,−1}. Then, instead of considering the
subgroup P↑+ made of (b,Λ)with matrices Λ in L↑+, it is convenient to consider the group P̃↑+ consisting of
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pairs (a, A) with a ∈ T (4) and A ∈ SL(2,C) together with the composition law

(a, A)(a′, A′) = (a + ΛAa′, AA′).

Then one has P̃↑+ = T (4) ⋊ SL(2,C), and it is the representations of this group that we shall now consider.

Following the idea of the previous section, we firstly look for all complex and irreducible representations of
T (4). These representations are one dimensional and easy to index. Indeed, for any p := (p0, p1, p2, p3) ∈ R4

and for any a = (a0, a1, a2, a3) ∈ T (4), one can set

χp(a) := eip·a = ei(p0a0−p1a1−p2a2−p3a3) ∈ T

and the map χp : T (4) → T is indeed a group morphism, namely an element of T (4)∗. It turns out that all
unitary irreducible representations of T (4) are described by these morphisms, which means that T (4)∗ can be
identified with the Minkowski space M, i.e. R4 with the bilinear form introduced in (1.5.1).

Let us now look at the action of B = SL(2,C) on χp, as introduced in (5.4.4). For that purpose, observe that
for A ∈ SL(2,C), p ∈ M and a ∈ T (4) one has

[Aχp](a) = χp
(
(0, A−1)(a, 1)(0, A)

)
= χp

(
(ΛA−1a,1)

)
= χp

(
ΛA−1a

)
.

By using the property (1.5.3) of the elements of L one infers that

χp
(
ΛA−1a

)
= eip·ΛA−1 a = eiΛA p·a = χΛA p(a).

Thus, one has obtained that
Aχp = χΛA p,

which provides the orbit of χp in T(4)∗ under the action of SL(2,C).

In order to study the little groups, let us still introduce six different types of orbits of M. The subsets are
generated by orbits under the action of L↑+. For any fixed M > 0, set

1) O+M := {p ∈ M | p · p = M2 and p0 > 0},

2) O−M := {p ∈ M | p · p = M2 and p0 < 0},

3) OiM := {p ∈ M | p · p = −M2},

4) O+o := {p ∈ M | p · p = 0 and p0 > 0},

5) O−o := {p ∈ M | p · p = 0 and p0 < 0},

6) Oo
o := {0}.

Some of these orbits are represented in Figure 5.9, with the first two components shown.

It is then possible to determine the little group corresponding to any point on these orbits. As mentioned in
Lemma 1.4.4, the stabilizers are isomorphic along the orbits, which means that there are only six little groups
which have to be studied. We summarize the results in an exercise.

Exercise 5.5.1. Show that the following subgroups of SL(2,C) are isomorphic to the stabilizers for any point
in the mentioned orbit. Note that it is enough to study one specific point of each orbit.

1) O+M and O−M : SU(2),
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Figure 5.9: Various orbits of M under the action of P↑+, with (p0, p1) represented only.

2) OiM : SL(2,R),

3) O+o and O−o :
{ (

eiθ/2 e−iθ/2(ξ + iη)
0 e−iθ/2

)
| θ ∈ [0, 4π), ξ ∈ R, η ∈ R

}
, which is isomorphic to a double cover of

E(2) and is denoted by Ê(2),

4) Oo
o : SL(2,C).

Based on the representations of these little groups, it will be possible to obtain representations of P̃↑+. Indeed,
a refined version of Theorem 5.4.5 also applies in this framework, which means that representations of P̃↑+
can be obtained by irreducible representations of T (4) and representations of the corresponding little group.
In fact, the only orbits in Figure 5.9 which are physically interesting are O+M and O+o , since free particles with
imaginary masses or with negative energy are not known. We do not construct explicitly the representations,
but discuss their indexation.

For any M > 0 and any p ∈ O+M, the corresponding little group is isomorphic to SU(2). As sketched in Exercise
3.4.6 and in Proposition 4.4.3, irreducible representations of SU(2) can be indexed by j ∈ {0, 1

2 , 1,
3
2 , ...}, and

they take place in spaces of dimension 2 j+1. Thus unitary irreducible representations of P̃↑+ can be constructed
for any M > 0 and for each index j ∈ 1

2N. We say that these representations are associated with a quantum
particle of mass M > 0 and of spin j.

Similarly for any p ∈ O+o , the irreducible representation of Ê(2) can be studied. These representations are
of two types, but so far only one type has been used in physics. These specific representations are indexed
by s ∈ 1

2Z. Thus, the corresponding unitary irreducible representations of P̃↑+ are index by s ∈ 1
2Z, and this

number is called the helicity of the particle of mass M = 0. The absolute value of s is again called the spin of
the particle.

As already mentioned, other representations of P̃↑+ can be introduced either with other orbits in M, or with other
representations of Ê(2). They are nice mathematical constructions, but have no physical interpretation yet.
However, observe that we have only indexed the representations, but not given explicit expressions, similar to
the construction of the spaceW introduced in (5.4.1) and of the representation U introduced in (5.4.2). In
the present situation, the spaceW would be an infinite dimensional Hilbert space, and their construction can
be found in several textbooks.
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Since P↑+ is the identity component of P, let us add some information on its Lie algebra. First of all, it is
simpler to recast P in a matrix format. For this, we use an idea coming from the affine group and write any
element (b,Λ) of P in the form of a 5 × 5 matrix

(
Λ b
0 1

)
=


Λ0

0 Λ0
1 Λ0

2 Λ0
3 b0

Λ1
0 Λ1

1 Λ1
2 Λ1

3 b1

Λ2
0 Λ2

1 Λ2
2 Λ2

3 b2

Λ3
0 Λ3

1 Λ3
2 Λ3

3 b3

0 0 0 0 1


.

Then, the product introduced in (1.5.5) corresponds simply to the product of matrices. Let us emphasize that
this representation of P with 5 × 5 matrices is a faithful representation.

Based on this representation ofP, it can be shown that its Lie algebra L has dimension d = 10 and rank d0 = 2.
Several bases for L can be defined, and they also consist in families of 5 × 5 matrices. The commutation rela-
tions for these matrices can be computed as well as the structure coefficients cℓjk, see Section 3.3. According
to Remark 5.1.1, there exist also two Casimir operators which can be expressed in terms of the elements of
L. These operators can be computed explicitly (in terms of the so called Pauli-Lubanski vector) and their
values in any irreducible representation can be evaluated. It turns out that for the representation indexed by
(M, j) ∈ (0,∞) × 1

2N, these operators take the values M2 and −M2 j( j + 1). For a representation indexed by
(0, s) ∈ {0} × 1

2Z, these operators take the values 0 and s. A posteriori, these values confirm the correctness of
the indexation for the irreducible representations of P↑+ constructed so far.

Let us conclude this section with a few information about the representations of the full group P, and not
only P↑+ or P̃↑+. Since L is made of four connected components, the group P also possesses four connected
components, denoted respectively by P↑+, P↑−, P↓+, and P↓−. The elements of P↑− can be obtained by the
factorization (b,Λ)(0,Π) with Π the parity operator acting as Π(x0, x1, x2, x3) = (x0,−x1,−x2,−x3) and (b,Λ)
an arbitrary element of P↑+. Similarly, the elements of P↓− can be obtained by the factorization (b,Λ)(0,Θ)
with Θ the time reversal operator acting as Θ(x0, x1, x2, x3) = (−x0, x1, x2, x3). Finally, the elements of P↓+ can
be obtained by the factorization (b,Λ)(0,I) with I the total inversion operator acting as I(x0, x1, x2, x3) =
(−x0,−x1,−x2,−x3).

Figure 5.10: The Dihedral group D2.

Thus, in order to describe a representation of P, it is necessary and sufficient to describe the representation of
P
↑
+ together with the representation of the operatorsΠ,Θ, and I. In fact, it can be checked thatP is isomorphic

to the semi-direct product of P↑+ with the group containing the four elements (0,1), (0,Π), (0,Θ), and (0,I).
This group corresponds to the dihedral group D2, with composition table shown in Figure 5.10, once the
identification e := (0, 1), a := (0,Π), b := (0,Θ), and c := (0,I), is taken into account. The relations between
these four elements impose some restrictions on their possible representations. It turns out the representation
theory of P is rich and interesting, and deserves to be further studied. The theory has applications in quantum
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mechanics, in quantum field theory, in chemistry, and in several other research fields. What about applications
in your domain of interest ?
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Equivalent representations, 14
Euclidean group, 9
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Ideal, 38
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Invariant Lie subalgebra, 38
Invariant subgroup, 4
Invariant subspace, 15
Inverse, 2
Invertible operator, 13
Irreducible representation, 15
Isomorphism, 5
Isospin, 53

Killing form, 40

Left coset, 5
Lexicographic order, 44
Lie algebra, 31
Lie bracket, 31
Lie group, 28
Lie subalgebra, 38
Linear group, 3
Linear Lie group, 32
Linear map, 11
Linear representation, 13
Little group, 57
Local chart, 27
Local coordinate system, 27
Local homeomorphism, 27
Lorentz group, 10
Lowering operator, 45

Matrix Lie group, 32
Meson, 53
Minimal subspace, 15
Minkowski space, 10
Modular function, 29
Multiplicity of weight, 45

Neighborhood, 26
Norm, 12
Normal subgroup, 4

O(n), 3
Open set, 26
Orbit, 8
Orthogonal complement, 14
Outer semi-direct product, 7

Partition, 9
Path-connected, 30
Poincaré group, 10, 58

Positive operator, 13
Positive root, 43
Projective Hilbert space, 22
Projective rays, 22
Projective representation, 24
Proper subgroup, 3
Proper subspace, 15
Pure states, 22

Quark, 52
Quotient group, 5

R(n), 8
Raising operator, 45
Rank, 41
Rays, 22
Real form, 37
Reducible representation, 15
Reflexivity, 3
Regular representation, 19
Representation, 13
Representation of Lie algebra, 35
Representation of Poincaré group, 58
Representation of SU(3), 49
Restricted Lorentz group, 58
Right coset, 5
Root, 42
Rotation group, 8

Scalar product, 8
Schwarz inequality, 12
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Self-adjoint operator, 13
Semi-simple group, 4
Semi-simple Lie algebra, 39
Separable, 11
Similarity transformation, 14
Simple group, 4
Simple Lie algebra, 39
Simple Lie group, 39
Simple root, 44
Simply connected, 30
SL(n,C), 3
SL(n,R), 3
Smooth manifold, 28
SO(n), 3
Spin, 60
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Stabilizer, 8
Standard basis, 43
Strongly continuous representation, 29
Structure coefficients, 31
SU(3), 49
SU(n), 3
Subgroup, 3
Subspace, 14
Subspace topology, 27
Symmetry, 3, 23

T(n), 8
Tangent space, 33
Tensor product of Hilbert spaces, 20
Tensor product representation, 21
Topological manifold, 27
Topological space, 26
Transformation group, 8
Transition function, 28
Transition probability, 22
Transitivity, 4
Translation group, 8
Triangle inequality, 12
Trivial representation, 13
Trivial subgroup, 3

U(n), 3
Uncoupled basis, 21
Uniformly continuous representation, 29
Unitary equivalence, 14
Unitary operator, 13
Unitary representation, 13
Universal cover, 25
Universal covering group, 25

Weakly continuous representation, 29
Weight, 45
Weight vector, 45

65



Bibliography

[1] W. Amrein, Theorie des groupes pour la physique, lecture notes in French, 1998–1999.

[2] W. Boothby, An introduction to differentiable manifolds and Riemannian geometry, Academic Press,
1986.

[3] J. F. Cornwell, Group Theory in Physics : an Introduction, Academic Press, San Diego, CA, 1997.

[4] J. F. Cornwell, Group theory in physics. Vol. I, Techniques of Physics, Academic Press, London, 1984.

[5] J. F. Cornwell, Group theory in physics. Vol. II, Techniques of Physics, Academic Press, London, 1984.

[6] G. B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press,
Boca Raton, FL, 1995.

[7] H. Georgi,Lie algebras in particle physics, from isospin to unified theories, Westview Press, 1999.

[8] B. Hall, Lie Groups, Lie Algebras, and Representations, Springer-Verlag, New York, NY, 2004.

[9] E. Lerman, Notes on Lie Groups, 2012.

[10] M. Reed and B. Simon, Methods of Modern Mathematical Physics : Functional Analysis I, Academic
Press, San Diego, CA, 1980.

[11] D. J. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, NY, 1982.

[12] J.-P. Serre, L. Scott, Linear representations of finite groups, Springer, 1977.

[13] B. Simon, Representations of Finite and Compact Groups, American Mathematical Society, 1996.

[14] S. Sternberg, Group Theory in Physics, Cambridge University Press, New York, NY, 1995.

66


	Groups
	Groups and subgroups
	Conjugation and equivalence classes
	Direct and semi-direct products
	Transformation groups
	Euclidean group and Poincaré group

	Linear representations
	Vector spaces and Hilbert spaces
	Linear representations
	Reducible / irreducible representations
	Representation of finite groups
	Tensor product of representations
	Symmetries and projective representations

	Lie groups and Lie algebras
	Topological notions and manifolds
	Lie groups
	Lie algebras
	More relations between Lie groups and Lie algebras
	Complexification

	Semi-simple theory
	Simple, semi-simple Lie groups and Lie algebras
	Adjoint representation and Killing form
	Roots of complex semi-simple Lie algebras
	Weights of complex semi-simple Lie algebras

	Examples
	Representations of SU(3)
	Application of SU(3) in physics
	Classification theorem
	Induced representations
	Representations of the Poincaré group

	Index
	Bibliography

