1	Methylocystis iwaonis sp. nov., a type II methane-oxidizing bacterium from surface soil
2	of a rice paddy field in Japan, and emended description of the genus Methylocystis (ex
3	Whittenbury et al. 1970) Bowman et al. 1993.
4	
5	Hirotaka Kaise ¹ , Joseph Benewindé Sawadogo ^{1,2} , Mohammad Saiful Alam ^{1,3} , Chihoko
6	Ueno ¹ , Dayéri Dianou ^{1,4} , Rina Shinjo ¹ and Susumu Asakawa ^{1*}
7	
8	¹ Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa,
9	Nagoya 464-8601, Japan
10	² Université Nazi BONI, Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
11	³ Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur 1706,
12	Bangladesh
13	⁴ Centre National de la Recherche Scientifique et Technologique, Ouagadougou, 03 BP
14	7047 Ouagadougou 03, Burkina Faso
15	
16	*Author for correspondence: Susumu Asakawa. Tel: +81 52 789 4135. Fax: +81 52 789
17	4136. E-mail: asakawa@agr.ngaoya-u.ac.jp. ORCiD ID: 0000-0002-5878-0674.
18	
19	Keywords: Flagella; Methylocystis iwaonis; motility; rice paddy field; surface soil; type
20	II methane-oxidizing bacteria
21	

22	Abbreviations: MDH, methanol dehydrogenase; MOB, methane-oxidizing bacteria;
23	pMMO, particulate methane monooxygenase; sMMO, soluble methane
24	monooxygenase.
25	
26	The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene, pmoA, mmoX
27	and <i>mxaF</i> sequences of strain SS37A-Re ^T are AB669149, AB669161, LC583144 and
28	LC583145, respectively. The whole genome sequences are available in the DDBJ under
29	accession numbers AP027142, AP027143, AP027144, AP027145, AP027146,
30	AP027147 and AP027148 for strain SS37A-Re ^T , AP027149 and AP027150 for
31	<i>Methylocystis bryophila</i> DSM21852 ^T and <u>BSEC01000001</u> , <u>BSEC01000002</u> ,
32	BSEC01000003, BSEC01000004, BSEC01000005, BSEC01000006, BSEC01000007,
33	BSEC01000008, BSEC01000009, BSEC01000010 and BSEC01000011 for
34	<i>Methylocystis echinoides</i> LMG27198 ^T .

35

36 Abstract

37	A novel methane-oxidizing bacterial strain SS37A-Re ^T was isolated from
38	surface soil of a rice paddy field in Japan. Cells were Gram-negative, motile rods with
39	single polar flagellum and type II intracytoplasmic membrane arrangement. The strain
40	grew on methane or methanol as the sole carbon and energy source. It grew at 15–37 $^{\rm o}{\rm C}$
41	(optimum 25–30 °C), pH 6.0–9.0 (optimum 7.0–8.0) and with 0–0.1% (w/w) NaCl (no
42	growth at 0.5% or above). Cells formed cysts, but not exospores. Sequence analysis of
43	16S rRNA gene showed that the strain SS37A-Re ^T belonged to the family
44	Methylocystaceae, with the highest similarity (98.9%) to Methylocystis parva corrig.
45	OBBP ^T . Phylogenetic analysis of $pmoA$ and $mxaF$ genes and core genes in genome
46	indicated that the strain was closely related to the genus Methylocystis, while the
47	analysis of <i>mmoX</i> gene showed the close relationships with the genus <i>Methylosinus</i> . The
48	values of genome relatedness between strain SS37A-Re ^T and <i>Methylocystis</i> and
49	Methylosinus species were 78.6-82.5% and 21.7-24.9% estimated by the average
50	nucleotide identity and digital DNA-DNA hybridization, respectively, showing the
51	highest values with <i>Methylocystis echinoides</i> LMG 27198 ^T . The DNA G+C content was
52	63.2 mol% (genome). The major quinone and fatty acids were Q-8 and, $C_{18:1}$ ($C_{18:1}\omega 8t$
53	and $C_{18:1}\omega 8c$) and $C_{18:2}$, respectively. Based on the phenotypic and phylogenetic
54	features, the strain represents a new species of the genus Methylocystis, for which the
55	name <i>Methylocystis iwaonis</i> sp. nov. is proposed. The type strain is SS37A-Re ^T (=JCM
56	$34278^{\mathrm{T}} = \mathrm{NBRC} \ 114996^{\mathrm{T}} = \mathrm{KCTC} \ 82710^{\mathrm{T}}$).

58 DATA SUMMARY

59 Supplementary materials for this manuscript are available at:

60

61 INTRODUCTION

Paddy fields are an important source of methane emission [1] and a habitat for
methane-oxidizing bacteria (MOB). MOB play important roles in regulating methane
efflux from paddy fields because net emission of methane is the difference between
production and oxidation by methanogens and MOB, respectively, and the oxidation is
the only biological suppression of methane emission.

67 Aerobic MOB are a unique bacterial group that utilizes methane as a sole

68 energy and carbon source and include Gammaproteobacteria (type I) and

69 Alphaproteobacteria (type II) as major groups [2–4]. Various MOB have been isolated

from the paddy field ecosystem and five species of type I MOB, *Methylogaea oryzae*

71 [5], Methylomonas koyamae [6], Methylomagnum ishizawai [7], Methyloterricola

72 oryzae [8] and Methylocucumis oryzae [9], have been described with the type strains

73 isolated from the ecosystem. As for the type II MOB, however, no strains have been

taxonomically characterized so far [10] though many studies reported several isolates of

75 type II MOB belonging to the genus *Methylocystis* or *Methylosinus* from the paddy field

recosystem [e.g., 11–19]. Type II MOB include the family *Methylocystaceae* comprising

77 the genera Methylocystis and Methylosinus. Major phenotypic characteristics

78 differentiating the two genera are morphology and motility of cells, flagellation, and

formation of cysts or exospores [20, 21]. The genera consist of seven and two species,

80	Methylocystis parva corrig. (Methylocystis parvus [sic]) [20], Methylocystis echinoides
81	[20], Methylocystis rosea [22], Methylocystis heyeri [23], Methylocystis hirsuta [24],
82	Methylocystis bryophila [25] and Methylocystis silviterrae [26], and Methylosinus
83	trichosporium and Methylosinus sporium [20], respectively. During the cultivation of
84	MOB from several compartments in paddy field ecosystem, strain SS37A-Re ^T was
85	isolated from surface soil of a rice paddy field in Japan [27]. In this communication, we
86	characterized the strain and propose that strain SS37A-Re ^T is a novel species of the
87	genus Methylocystis.

88

89 **ISOLATION AND ECOLOGY**

90 Surface soil sample was collected from a rice paddy field in Crop Institute, 91 Aichi Agricultural Research Center (formerly Anjo Agricultural and Extension Centre, 92 Aichi-ken Agricultural Experiment Station), Anjo, Aichi, Japan (34°97' N, 137°07' E) 93 on August 11, 2003. Details of the sampling and cultivation procedures were described 94 elsewhere [27]. In brief, surface soil sample was taken from 0–0.5 cm depth from three 95 sites in the paddy field plot. The soil samples were mixed to form a composite sample 96 and ground with a sterile mortar and pestle. Ten grams of the sample were put into the 97 mixture (50 ml) of 25 ml nitrate mineral salt (NMS) medium [28] and 25 ml ammonium 98 mineral (AM) medium [29] at pH 6.8. The preparation was incubated with shaking (100 rpm) at 4 °C for 2 h. The obtained suspension was serially 10-fold diluted (10⁻¹ to 10⁻³) 99 100 and the dilution series were spread onto AM agar (7 ml) slants in 34 ml test tubes. The 101 tube was sealed with a butyl rubber stopper and methane (6 ml) was injected into the

102	tube, giving about 18% (v/v) methane in the headspace. Then the tubes were incubated
103	for 5 weeks at 30 °C. Single colonies formed on the agar slants were transferred into
104	liquid NMS medium (7 ml) and cultivated with shaking (150 rpm) at 30 °C under 18%
105	(v/v) methane for 2 weeks. Colony isolation from the agar slants and cultivation in the
106	liquid medium were repeated by checking methane consumption in the headspace by
107	gas chromatography. Finally, a pure culture was obtained by isolation of a single colony
108	on 1a agar plates [30] with a slight modification (NaNO ₃ , 1 g; MgSO ₄ ·7H ₂ O, 0.1 g;
109	Na ₂ HPO ₄ ·12H ₂ O, 0.56 g; KH ₂ PO ₄ , 0.22 g; CaCl ₂ ·2H ₂ O, 0.02 g; FeSO ₄ ·7H ₂ O, 2 mg;
110	ZnSO ₄ ·7H ₂ O, 0.44 mg; CuSO ₄ ·5H ₂ O, 0.2 mg; MnSO ₄ ·2H ₂ O, 0.17 mg;
111	Na ₂ MoO ₄ ·2H ₂ O, 0.06 mg; H ₃ BO ₃ , 0.1 mg; CoCl ₂ ·6H ₂ O, 0.08 mg; agar, 14 g; per litre
112	distilled water; pH 7.0) after several subcultures in liquid 1a medium. Culture purity
113	was confirmed by phase-contrast microscopy (BX50; Olympus) and failure to grow in
114	liquid media (nutrient broth medium, Luria-Bertani medium, 1a medium supplemented
115	with 0.1% $[w/v]$ sucrose, polypeptone medium and polypeptone medium supplemented
116	with methanol 0.05% $[v/v]$) without addition of methane.

118 PHYLOGENY OF 16S rRNA, pmoA, mmoX and mxaF

119 Cell pellets (1.44 g wet weight) of strain SS37A-Re^T were suspended in 10 ml
120 of TESS buffer (25 mM Tris HCl; 5 mM EDTA; 50 mM NaCl; 25% [w/v] sucrose) and
121 treated with lysozyme (1 mg ml⁻¹) and SDS (1%) at 60 °C for 1 h. Then genomic DNA
122 was isolated and purified as described by Sowers [31]. Gene fragments of 16S rRNA,
123 *pmoA* (particulate methane monooxygenase [pMMO] gene), *mmoX* (soluble methane

- 124 monooxygenase [sMMO] gene) and *mxaF* (methanol dehydrogenase [MDH] gene)
- 125 were amplified by PCR using the following primers: 27f/1492r [32], A189f
- 126 [33]/mb661r [34], mmoX206f/mmoX 886r [35] and 1003F [36]/1555r [37],
- 127 respectively. The sequences were determined at the Eurofins Genomics K.K. (Tokyo,
- 128 Japan). The sequences of 16S rRNA (1411 bp), *pmoA* (495 bp), *mmoX* (664 bp) and
- 129 *mxaF* (514 bp) genes were subjected to the EzBioCloud
- 130 (https://www.ezbiocloud.net/resources/16s_download) [38] or BLAST search for
- 131 related sequences. Pairwise nucleotide sequence similarity values were calculated for
- 132 the close relatives of the 16S rRNA gene at the EzBioCloud. The sequences were
- 133 aligned using MUSCLE (ver. 3.8.1551) and the alignment curation was conducted using
- 134 Noisy (ver. 1.5.12.1) through the online service of NGPhylogeny.fr
- 135 (https://ngphylogeny.fr) [39]. Phylogenetic trees were constructed using the maximum
- 136 likelihood (PhyML; ver. 3.0), parsimony (dnapars in the PHYLIP ver. 3.696) and distance
- 137 (BioNJ algorithm; distance options according to the Kimura two-parameter model)
- 138 methods with the SeaView (ver. 5.0.4) [40] program based on 1000 or 100 replications
- 139 bootstrap analysis.
- 140 Sequence analysis of 16S rRNA gene showed that strain SS37A-Re^T was
- 141 most closely related to the genus *Methylocystis* (Fig. 1; trees by the parsimony and
- 142 distance methods are shown in Figs. S1a and S1b, respectively) with the highest
- 143 pairwise similarity value (98.9%) to *Methylocystis parva* OBBP^T. Phylogenetic analysis
- 144 of pMMO gene (*pmoA*) (Fig. 2; trees by the parsimony and distance methods are shown
- 145 in Figs. S2a and S2b) and MDH gene (mxaF) (Fig. S3) of strain SS37A-Re^T also
 - 7

146 i	indicated that th	e strain belonged	l to the genus	<i>Methylocystis</i>	with the highest	similarity
-------	-------------------	-------------------	----------------	----------------------	------------------	------------

- 147 to *Methylocystis echinoides* IMET10491^T. sMMO gene (*mmoX*) of strain SS37A-Re^T
- 148 was most closely related to the species Methylosinus sporium (Fig. S4), indicating that
- 149 the strain represents some distinctiveness from the genus Methylocystis
- 150 phylogenetically. In addition to the analyses above, phylogenetic analysis was
- 151 conducted by including the sequences of 16S rRNA, *pmoA*, *mxaF* and *mmoX* genes of
- 152 *Methylocystis* and *Methylosinus* strains isolated from various environments [41].
- 153 Constructed trees (Figs. S5–S8) show the similar arrays of closely related bacteria,
- 154 Methylocystis strains for 16S rRNA, pmoA and mxaF genes and Methylosinus strains for
- 155 *mmoX* gene, to those revealed by the trees using gene sequences of type strains (Figs. 1,
- 156 2 and S1–S4), confirming the results of phylogenetic analyses based on the sequences
- 157 from type strains.
- 158

159 GENOME FEATURES

161 Bioengineering Lab Ltd. (Sagamihara, Japan) and carried out by the hybrid analysis on

Genome sequencing and De novo assembly were outsourced to the

162 DNBSEQ-G400RS (MGI Tech Co., Ltd., Shenzhen, China) with pair-end libraries (2 x

163 200 bp) and GridION with R4.9.1 flow cell (Oxford Nanopore Technologies, Oxford,

- 164 UK). Low quality reads (Q score, < 20; length < 127 bp) from DNBSEQ were removed
- 165 with Sickle ver.1.33 after trimming the adaptor sequence with Cutadapt ver. 2.7 and
- sampling 3458457 pair reads with Seqkit ver. 0.11.0. Short reads (< 1000 bp) from
- 167 GridION were filtered out with Filtlong ver. 0.2.0 after trimming the adaptor sequence

168	with Porechop ver. 0.2.3. The quality-controlled reads were assembled on Unicycler
169	ver. 0.4.7 [42]. The quality of assemblies was assessed with Bandage ver. 0.8.1 and
170	CheckM ver. 1.1.2 [43]. Prokka ver. 1.13 [44] was used for the genome annotation.
171	Phylogenetic tree was inferred by the core genome identification using PIRATE ver.
172	1.0.5 [45] and subsequent phylogenetic inference using SeaView (ver. 5.0.4) [40]
173	program by the distance (BioNJ algorithm; distance options according to the Kimura
174	two-parameter model) methods with the based on 1000 replications bootstrap analysis.
175	A complete genome of 4483149 bp was obtained for strain SS37A- Re^{T} and
176	the genome sequence was submitted to DDBJ (accession numbers AP027142-
177	AP027148). Since genome sequences were not available for the type strains of
178	Methylocystis bryophila and Methylocystis echinoides in the genus Methylocystis,
179	genome sequencing analysis was also performed for Methylocystis bryophila
180	DSM21852 ^T (=H2s ^T) and <i>Methylocystis echinoides</i> LMG27198 ^T (=IMET10491 ^T).
181	Genomic DNA of <i>Methylocystis bryophila</i> DSM21852 ^T was obtained from the DSMZ
182	(Braunschweig, Germany) and subjected to the sequencing. A complete genome of
183	4715351 bp was obtained and the genome sequence was submitted to DDBJ (accession
184	numbers AP027149 and AP027150). <i>Methylocystis echinoides</i> LMG27198 ^T was
185	obtained from the BCCM/LMG (Ghent, Belgium). The strain was cultivated in the
186	liquid DNMS (dilute NMS) medium [46] and genomic DNA was isolated from the
187	collected cells by the same method as that for strain SS37A-Re ^T . A draft genome of
188	5326437 bp comprised 11 contigs and the sequence was submitted to DDBJ (accession
189	numbers BSEC01000001-BSEC01000011).

190	General genomic information of the strains is shown in Table S1. The genome
191	of strain SS37A-Re ^T possesses three sets of rRNA operon (5S–23S–16S rRNA), two
192	copies of <i>pmoCAB1</i> operons and one <i>pmoCAB2</i> operon. Three and two singleton <i>pmoC</i>
193	paralogs are present in the chromosome and plasmids, respectively. The genome
194	contains a nitrogenase structural gene operon (nifHDK) and a complete set of genes for
195	the formaldehyde assimilation by the serine pathway.
196	Average nucleotide identity (ANI) and digital DNA–DNA hybridization
197	(dDDH) values were calculated using ANI calculator (http://enve-
198	omics.ce.gatech.edu/ani/) [47] and Genome-to-Genome Distance Calculator
199	(http://ggdc.dsmz.de/ggdc.php#) [48], respectively, for the genome sequences of type
200	strains of Methylocystis and Methylosinus species. Table 1 shows a matrix of the
201	pairwise ANI and dDDH values. The pairwise ANI and dDDH values between strain
202	SS37A-Re ^T and type strains of <i>Methylocystis</i> and <i>Methylosinus</i> species were lower than
203	the cut-off values of 95% and 70%, respectively, for species delineation [47, 48],
204	showing that strain SS37A-Re ^T is phylogenetically distant from <i>Methylocystis</i> and
205	<i>Methylosinus</i> species and represents a novel species. The strain SS37A-Re ^T showed the
206	highest values 82.5% and 24.9% for ANI and dDDH, respectively, with Methylocystis
207	echinoides LMG27198 ^T , indicating that strain SS37A-Re ^T belongs to the genus
208	<i>Methylocystis</i> . The genome-based phylogenetic tree also shows that strain $SS37A-Re^{T}$ is
209	most closely related to the genus Methylocystis (Fig. 3). DNA G+C content of strain
210	SS37A-Re ^T was 63.2 mol%.

212 PHYSIOLOGY AND CHEMOTAXONOMY

213 The strain was routinely cultured in 1a liquid medium at 30 °C for 2–3 days 214 under 18–50% (v/v) methane and maintained by subculturing every 5–6 months. For 215 long-term preservation, cells were frozen with sterile glass beads (2–3 mm in diameter) 216 [49] or with 5% (v/v) dimethylsulfoxide, slightly modified from the procedure by 217 Bowman [3], at -80 °C. Colony morphology was observed for cultures on 1a agar 218 medium. Cell morphology and motility were observed by phase-contrast with an 219 Olympus BX50 microscope. Gram-staining was performed by Hucker's modification 220 method. Formation of 'lipid' cysts was tested as described by Whittenbury et al. [50]. 221 Flagellation and size of cells were observed for negatively stained cells with 2% (w/v) 222 uranyl acetate with a H-7500AMT Advantage HR transmission electron microscope 223 (Hitachi). Intracytoplasmic structures were observed for ultra-thin sections of cells fixed 224 with 2% (v/v) glutaraldehyde and 2% (w/v) osmium tetroxide and stained with 2%225 (w/v) uranyl acetate and lead stain solution with a H-7600 transmission electron 226 microscope (Hitachi) at Hanaichi UltraStructure Research Institute (Okazaki, Japan). Colonies formed by strain SS37A-Re^T on agar medium were round, entire, 227 228 convex, smooth, white and opaque. The colonies reached 0.5-1 mm after 5 days of 229 incubation at 30 °C. Cells were Gram-stain-negative, motile rods $(2.7 \pm 0.4 \,\mu m \log and$ 230 $1.1 \pm 0.1 \,\mu\text{m}$ wide; mean \pm S.D., n = 24) with a polar flagellum (Fig. 4a). The cells 231 occurred singly or in pairs (Fig. 4b) and occasionally formed rosettes (Fig. 4c). Cells 232 were sensitive to heat (80 °C, 20 min) and drying. 'Lipid' cysts were observed, but 233 exospores were not observed. Electron microscopy of ultrathin sections of cells showed

a typical internal cytoplasmic membrane structure of type II MOB with membranes

235 parallel to the cell wall (Fig. 4d).

236	Effects of temperature (4, 10, 15, 20, 25, 30, 37, 40 and 45 °C), pH (4.5, 6.0,
237	7.0, 8.0, 9.0, 10.0 and 11.0), concentrations of NaCl (0, 0.1, 0.5, 1.0, 2.0, 3.0, 5.0%
238	[w/w]) and methane (0, 10, 18, 30, 50, 70, 90, 100% $[v/v]$) on cell growth were tested in
239	the liquid 1a medium by measuring OD_{600} of cultures. The pH was adjusted with 0.2 M
240	KH ₂ PO ₄ /Na ₂ HPO ₄ from pH 4.5 to 9.0 or 0.1 M Glycine/NaCl/NaOH from pH 9.0 to
241	11.0. Utilization of carbon sources for growth was investigated in test tubes containing
242	the liquid 1a medium supplemented with 0.1% (w/v) of the following filter-sterilized
243	compounds: methanol, formaldehyde, formate, formamide, methylamine,
244	dimethylamine, trimethylamine, tetramethylammonium chloride, trimethylamine N-
245	oxide, trimethyl sulfonium iodide, dimethyl carbonate, ethanol, acetate, pyruvate,
246	citrate, malate, succinate, D-arabinose, D-xylose, D-glucose, maltose, sucrose, mannitol
247	and glycerol. Utilization of nitrogen sources for growth was examined in test tubes
248	containing the nitrogen-free liquid 1a medium supplemented with 0.1% (w/v) of the
249	following filter-sterilized compounds: nitrite, urea, ammonium, glycine, alanine, serine,
250	glutamate, glutamine, aspartate, asparagine, tryptophane, cysteine, lysine and yeast
251	extract. Catalase and cytochrome c oxidase were tested as described by Cleenwerck et
252	al. [51]. The activity of sMMO was demonstrated for cells grown in the liquid 1a
253	medium without added copper by a naphthalene oxidation assay according to the
254	methods by Brusseau et al. [52] and Koh et al. [53].

255	The strain SS37A-Re ^T grew on methane and methanol as sole carbon and
256	energy sources. Although growth was also observed on dimethyl carbonate, the strain
257	probably grew on methanol formed by hydrolyzation of dimethyl carbonate. Doubling
258	time in the 1a liquid medium with 20% (v/v) methane was 5.9 hours at 30 °C. The strain
259	grew in the ranges of 15 to 37 °C and pH 6.0–9.0 with the optimum at 25–30 °C and pH
260	7.0–8.0. It showed good growth with 0–0.1% (w/w) NaCl, but no growth at 0.5% or
261	above. The strain grew under 10–90% (v/v) methane and the specific growth rate
262	showed almost similar values between 10–70%. The strain SS37A-Re ^T grew with urea,
263	ammonium, alanine, glutamine, aspartate and asparagine besides nitrate as nitrogen
264	sources and was also capable of growth in nitrogen-free 1a media supplemented with
265	0.45% (w/v) gellan gum. Cells were positive for catalase and cytochrome c oxidase.
266	Production of naphthol from naphthalene was verified with the cells grown in the
267	medium without added copper, indicating expression of sMMO activity.
268	Cells for chemotaxonomic analyses were harvested from liquid cultures at late
269	exponential phase (3 days) grown at 30 °C. Composition of total cellular fatty acids was
270	determined using the Sherlock Microbial Identification (MIDI) System version 6.0 at
271	the TechnoSuruga Laboratory Co., Ltd. (Shizuoka, Japan) and the methyl-esterified
272	fatty acids were also analysed by GC-MS with a JMS-K9 (JEOL). To determine the
273	position of double bond in mono-unsaturated fatty acids, fatty acids were extracted and
274	methyl-esterified according to Wartiainen et al. [22], and then dimethyl disulphide
275	derivatives were prepared according to the method described by Nichols et al. [54] and
276	analysed by GC-MS with a JMS-T2000GC (JEOL). Quinones were isolated and

277 purified using a Sep-Pak plus silica column (Waters) from total lipids extracted from

278 lyophilized cells according to Bligh and Dyer [55] and analyzed by HPLC with a

279 ACQUITY UPLC H-Class system (Waters) at the TechnoSuruga Laboratory Co., Ltd.

280 (Shizuoka, Japan).

281 Table 2 shows the composition of cellular fatty acids of strain SS37A-Re^T. 282 Major two fatty acids, FA1 and FA2 showing 79% and 9%, respectively, were not 283 identified by the MIDI system. GC-MS fragment analysis of the methyl-esterified fatty 284 acids indicated that FA1 and FA2 were C_{18:1} and C_{18:2}, respectively. Database search by 285 the NIST Mass Search Ver.2.0 showed that $C_{18:2}\omega_{6c}/C_{18:2}\omega_{9c}$ were the candidate $C_{18:2}$ 286 fatty acids. Analysis of the DMDS derivatives by GC-MS revealed that $C_{18:1}\omega 8t$ and 287 $C_{18:1}\omega 8c$ (65% and 35%, respectively, of the $C_{18:1}$ isomers) were the $C_{18:1}$ 288 monounsaturated fatty acids (Fig. S9). Fatty acids $C_{18:1}\omega$ 7 were not detected. The major 289 lipoquinone was ubiquinone 8 (Q-8; 95.4%) with slight proportions of Q-7 (3.5%) and 290 Q-9 (1.1%).

291 The morphological, physiological and chemotaxonomic features of strain 292 SS37A-Re^T mentioned above are summarized in Table 3. These features indicated that the strain belonged to the family Methylocystaceae [20, 56, 57]. The sequence analysis 293 294 of 16S rRNA gene showed that the strain SS37A-Re^T was most closely related to 295 Methylocystis parva OBBP^T (Figs. 1, S1 and S5) with 98.9% pairwise similarity value. However, the pairwise ANI and dDDH values between strain SS37A-Re^T and type 296 strains of Methylocystis and Methylosinus species were lower than the cut-off values of 297 95% and 70%, respectively (Table 1), indicating that the strain SS37A-Re^T represents a 298

299	novel species. The highest values 82.5% and 24.9% for ANI and dDDH, respectively,
300	with <i>Methylocystis echinoides</i> LMG27198 ^T and the phylogenetic analysis of core genes
301	in the genome (Fig. 3) indicated that the strain SS37A-Re ^T belongs to the genus
302	Methylocystis. Highest similarity values with Methylocystis echinoides LMG27198 ^T by
303	the phylogenetic analysis of <i>pmoA</i> and <i>mxaF</i> genes of strain SS37A-Re ^T (Figs. S2, S3,
304	S6 and S7) and the slightly lower G+C content (63.2%) of DNA of the strain than that
305	of the genus Methylosinus (about 65%) also support the strain belongs to the genus
306	<i>Methylocystis</i> (Table 3). The strain SS37A-Re ^T resembled members of the genus
307	Methylocystis in cysts formation and no exospores formation (Table 3).
308	However, the <i>mmoX</i> gene of strain SS37A-Re ^T was most closely related to the
309	species Methylosinus sporium (Figs. 2, S4 and S8). In addition, the strain exhibited the
310	following distinctive phenotypic features in the genus Methylocystis: cells were motile
311	with single polar flagellum; cells formed rosettes; the major fatty acid was $C_{18:1}\omega 8t$
312	(Tables 2 and 3). The phenotypes of motility and flagellation have never been reported
313	so far for the genus Methylocystis [20, 21, 58] though the flagella-encoding genes were
314	found in some strains of <i>Methylocystis</i> [59]. Predominance of the fatty acid $C_{18:1}\omega 8t$ has
315	not been found in neither Methylocystis nor Methylosinus [20, 60, 61]. Based on these
316	features, we propose the name <i>Methylocystis iwaonis</i> sp. nov. for the strain SS37A-Re ^T .
317	
318	Emended description of the genus <i>Methylocystis</i> (ex. Whittenbury <i>et al.</i> 1970)
319	Bowman, Sly, Nichols and Hayward 1993 emend. Belova et al. 2013

320	Cells are Gram-negative rods or coccobacilli to reniform, 0.3–1.4 μ m wide
321	and 0.5–4.0 μ m long with type II intracytoplasmic membrane arrangement. Motility of
322	cells varies among species; if present, cells possess single polar flagellum. May produce
323	lipoidal cysts, but not exospores. The optimum temperature and pH are 25-30 °C and
324	5.5–9.0. May form rosettes. Cells possess particulate methane monooxygenase (pMMO)
325	and some species may possess soluble methane monooxygenase (sMMO). Assimilate
326	C1 compounds via the serine pathway; some strains utilize acetate or ethanol. Oxidase
327	and catalase are positive. Fix atmospheric nitrogen. Primary fatty acids are $C_{18:1}\omega 8c$,
328	$C_{18:1}\omega 8t$ and $C_{18:1}\omega 7c$. Some species possess $C_{18:2}\omega 7$, 12 <i>c</i> , $C_{18:2}\omega 6$, 12 <i>c</i> and $C_{18:2}\omega 6$, 9 <i>c</i> .
329	Primary quinone is ubiquinone-8 (Q-8). The mol % G+C of the DNA is 62–64.
330	Methylocystis parva is the type species.
331	
331 332	Description of <i>Methylocystis iwaonis</i> sp. nov.
331 332 333	Description of Methylocystis iwaonis sp. nov. Methylocystis iwaonis (i.wa.o'nis. N.L. masc. gen. n. iwaonis of Iwao, after
331 332 333 334	Description of <i>Methylocystis iwaonis</i> sp. nov. <i>Methylocystis iwaonis</i> (i.wa.o'nis. N.L. masc. gen. n. <i>iwaonis</i> of Iwao, after the Japanese soil microbiologist Iwao Watanabe, in honor of his valuable contribution
331 332 333 334 335	Description of <i>Methylocystis iwaonis</i> sp. nov. <i>Methylocystis iwaonis</i> (i.wa.o'nis. N.L. masc. gen. n. <i>iwaonis</i> of Iwao, after the Japanese soil microbiologist Iwao Watanabe, in honor of his valuable contribution to soil microbiology in paddy fields).
331 332 333 334 335 336	Description of <i>Methylocystis iwaonis</i> sp. nov. <i>Methylocystis iwaonis</i> (i.wa.o'nis. N.L. masc. gen. n. <i>iwaonis</i> of Iwao, after the Japanese soil microbiologist Iwao Watanabe, in honor of his valuable contribution to soil microbiology in paddy fields).
 331 332 333 334 335 336 337 	Description of <i>Methylocystis iwaonis</i> sp. nov. <i>Methylocystis iwaonis</i> (i.wa.o'nis. N.L. masc. gen. n. <i>iwaonis</i> of Iwao, after the Japanese soil microbiologist Iwao Watanabe, in honor of his valuable contribution to soil microbiology in paddy fields). Cells are Gram-negative, motile rods (1.1 µm wide and 2.7 µm long) with
 331 332 333 334 335 336 337 338 	Description of <i>Methylocystis iwaonis</i> sp. nov. <i>Methylocystis iwaonis</i> (i.wa.o'nis. N.L. masc. gen. n. <i>iwaonis</i> of Iwao, after the Japanese soil microbiologist Iwao Watanabe, in honor of his valuable contribution to soil microbiology in paddy fields). Cells are Gram-negative, motile rods (1.1 μm wide and 2.7 μm long) with single polar flagellum. Grow only on methane or methanol as the sole carbon and
 331 332 333 334 335 336 337 338 339 	Description of <i>Methylocystis iwaonis</i> sp. nov. <i>Methylocystis iwaonis</i> (i.wa.o'nis. N.L. masc. gen. n. <i>iwaonis</i> of Iwao, after the Japanese soil microbiologist Iwao Watanabe, in honor of his valuable contribution to soil microbiology in paddy fields). Cells are Gram-negative, motile rods (1.1 μm wide and 2.7 μm long) with single polar flagellum. Grow only on methane or methanol as the sole carbon and energy source. Form rosettes occasionally. The optimum temperature, pH and NaCl
 331 332 333 334 335 336 337 338 339 340 	Description of <i>Methylocystis iwaonis</i> sp. nov. <i>Methylocystis iwaonis</i> (i.wa.o'nis. N.L. masc. gen. n. <i>iwaonis</i> of Iwao, after the Japanese soil microbiologist Iwao Watanabe, in honor of his valuable contribution to soil microbiology in paddy fields). Cells are Gram-negative, motile rods (1.1 μm wide and 2.7 μm long) with single polar flagellum. Grow only on methane or methanol as the sole carbon and energy source. Form rosettes occasionally. The optimum temperature, pH and NaCl concentration are 25–30 °C, 7.0–8.0 and 0–0.1% (w/w); cells are sensitive to NaCl

342 nitrogen. Major quinone is Q-8 and $C_{18:1}$ ($C_{18:1}\omega 8t$ and $C_{18:1}\omega 8c$) and $C_{18:2}$ are

343 predominant fatty acids.

344	The type strain is SS37A-Re ^T (=JCM 34278 ^T =NBRC 114996 ^T =KCTC
345	82710 ^T), which was isolated from surface soil of a rice paddy field in Japan. The DNA
346	G+C content of the type strain is 63.2 mol%. The GenBank/EMBL/DDBJ accession
347	numbers for the 16S rRNA gene, pmoA, mmoX and mxaF sequences of strain SS37A-
348	Re ^T are AB669149, AB669161, LC583144 and LC583145, respectively. The whole
349	genome sequences are available in the DDBJ under accession numbers AP027142-

350 AP027148.

351

352 Funding information

353 This work was supported in part by the JSPS Invitation Fellowship for Foreign

354 Researchers from Japan Society for the Promotion of Sciences, ESPEC Foundation for

355 Global Environment Research and Technology (Charitable Trust), the Greater Nagoya

356 Invitation Fellowship for Foreign Researchers in the Field of Environment from Chubu

357 Science and Technology Center, Nagoya, Japan, University Nazi BONI, Bobo-

358 Dioulasso, Burkina Faso, the Matsumae International Foundation and a project,

359 JPNP18016, commissioned by the New Energy and Industrial Technology

360 Development Organization (NEDO).

361

362 Acknowledgements

363	We thank Yukari Kawai and Naoya Ogawa of Graduate School of
364	Bioagricultural Sciences, Nagoya University for the analysis of fatty acids and
365	Professor Takao Oi of the same school for the transmission electron microscopy
366	observation.
367	
368	Conflicts of interest
369	The authors declare that there is no conflict of interest.
370	

371 REFERENCES

372	1.	Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, et al. Carbon and Other
373		Biogeochemical Cycles. In: Stocker TF, Qin D, Plattner GK, Tignor M, et al.
374		(eds). Climate Change 2013: the Physical Science Basis. Contribution of Working
375		Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
376		Change: Cambridge University Press; 2013. pp. 465-570.
377	2.	Hanson RS, Hanson TE. Methanotrophic bacteria. Microbiol Rev 1996;60:439-
378		471.
379	3.	Bowman JP. The methanotrophs—The families Methylococcaceae and
380		Methylocystaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, et al.
381		(eds). The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed. Vol. 5:
382		Proteobacteria: Alpha and Beta Sublcalssses: Springer; 2006. pp. 266–289.
383	4.	Dedysh SN, Knief C. Diversity and Phylogeny of Described Aerobic
384		Methanotrophs. In: Kalyuzhnaya MG, Xing X-H. (eds). Methane Biocatalysis:
385		Paving the Way to Sustainability: Springer; 2018. pp. 17-42.
386	5.	Geymonat E, Ferrando L, Tarlera SE. Methylogaea oryzae gen. nov., sp. nov., a
387		novel mesophilic methanotroph from a rice paddy field in Uruguay. Int J Syst Evol
388		Microbiol 2011;61:2568–2572.
389	6.	Ogiso T, Ueno C, Dianou D, Van Huy T, Katayama A, et al. Methylomonas
390		koyamae sp. nov., a type I methane-oxidizing bacterium from floodwater of a rice
391		paddy field. Int J Syst Evol Microbiol 2012;62:1832–1837.

392	7.	Khalifa A.	Lee CG.	Ogiso T	, Ueno C	, Dianou D	, et al.	Methylomagnum	ishizawai
-----	----	------------	---------	---------	----------	------------	----------	---------------	-----------

- 393 gen. nov., sp. nov., a mesophilic type I methanotroph isolated form rice rhizosphere.
- 394 *Int J Syst Evol Microbiol* 2015;65:3527–3534.
- 395 8. Frindte K, Maarastawi SA, Lipski A, Hamacher J, Knief C. Characterization of
- 396 the first rice paddy cluster I isolate, *Methyloterricola oryzae* gen. nov., sp. nov. and
- 397 amended description of *Methylomagnum ishizawai*. Int J Syst Evol Microbiol
- **398** 2017;67:4507–4514.
- 399 9. Pandit PS, Rahalkar MC. Renaming of 'Candidatus Methylocucumis oryzae' as
- 400 *Methylocucumis oryzae* gen. nov., sp. nov., a novel Type I methanotroph isolated

from India. *Antonie van Leeuwenhoek* 2019;112:955–959.

- 402 10. Asakawa S. Ecology of methanogenic and methane-oxidizing microorganisms in
 403 paddy soil ecosystem. *Soil Sci Plant Nutr* 2021;67:520–526.
- 404 11. Le Mer J, Escoffier S, Chessel C, Roger PA. Microbiological aspects of methane
- 405 emission in a ricefield soil from the Camargue (France): 2. Methanotrophy and
- 406 related microflora. *Eur J Soil Biol* 1996;32:71–80.
- 407 12. Gilbert B, Aßmus B, Hartmann A, Frenzel P. In situ localization of two
- 408 methanorophic strains in the rhizosphere of rice plants. *FEMS Microbiol Ecol*
- **409** 1998;25:117–128.
- 410 13. Takeda K, Suzuki S, Neko K, Tomiyama Y, Fujita T, et al. Enumeration and
- 411 characterization of methanotrophs in paddy soils and rice roots. Jpn J Soil Sci Plant
- 412 *Nutr* 1998;69:570–575. (in Japanese with English summary)

413 14. Dianou D, Adachi K. Characterization of methanotrophic bacteria isolated from a

414 subtropical paddy field. *FEMS Microbiolo Lett* 1999;173:163–173.

415 15. van Bodegom P, Stams F, Mollema L, Boeke S, Leffelaar P. Methane oxidation

- 416 and the composition for oxygen in the rice rhizosphere. *Appl Environ Microbiol*
- 417 2001;67:3586–3597.
- 418 16. Takeda K, Tonouchi A, Takada M, Suko T, Suzuki S, et al. Characterization of
- 419 cultivable methanotrophs from paddy soils and rice roots. *Soil Sci Plant Nutr*
- **420** 2008;54:876–885.
- 421 17. Bao Z, Shinoda R, Minamisawa K. Draft genome sequence of *Methylosinus* sp.
- strain 3S-1, an isolate from rice root in a low-nitrogen paddy field. *Genome*
- **423** *Announc* 2016;45:e00932-16.
- 424 18. Pandit PS, Rahalkar MC, Dhakephalkar PK, Ranade DR, Pore S, et al.
- 425 Deciphering community structure of methanotrophs dwelling in rice rhizospheres of
- 426 an Indian rice field using cultivation and cultivation-independent approaches.
- *Microb Ecol* 2016;71:634–644.
- 428 19. Rahalkar MC, Patil S, Dhakephalkar PK, Bahulikar R. Cultivated
- 429 methanotrophs associated with rhizospheres of traditional rice landraces from
- 430 Western India belong to *Methylocaldum* and *Methylocystis*. *3 Biotech* 2018;8:281.
- 431 20. Bowman JP, Sly LI, Nichols PD, Hayward AC. Revised taxonomy of the
- 432 methanotrophs: description of *Methylobacter* gen. nov., emendation of
- 433 *Methylococcus*, validation of *Methylosinus* and *Methylocystis* species, and a

- 434 proposal that the family *Methylococcaceae* includes only the group I methanotrophs.
- 435 *Int J Syst Bacteriol* 1993;43:735–753.
- 436 21. Bowman JP. Methylocystis. In Trujillo ME, Dedysh S, DeVos P, Hedlund B,
- 437 Kämpfer P, et al. (eds), Bergey's Manual of Systematics of Archaea and Bacteria:
- 438 John Wiley & Sons; 2015. https://doi.org/10.1002/9781118960608.gbm00832.
- 439 22. Wartiainen I, Hestnes AG, McDonald IR, Svenning MM. Methylocystis rosea sp.
- 440 nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway
- 441 (78° N). Int J Syst Evol Microbiol 2006;56:541–547.
- 442 23. Dedysh SN, Belova SE, Bodelier PLE, Smirnova KV, Khmelenina VN, et al.
- 443 *Methylocystis heyeri* sp. nov., a novel type II methanotrophic bacterium possessing
- 444 'signature' fatty acids of type I methanotrophs. Int J Syst Evol Microbiol
- **445** 2007;57:472–479.
- 446 24. Linder AS, Pacheco A, Aldrich HC, Staniec AC, Uz I, Hodson DJ. Methylocystis
- 447 *hirsute* sp. nov., a novel methanotroph isolated from a groundwater aquifer. Int J
- 448 *Syst Evol Microbiol* 2007;57:1891–1900.
- 449 25. Belova SE, Kulichevskaya IS, Bodelier PLE, Dedysh SN. Methylocystis
- 450 *bryophila* sp. nov., a facultatively methanotrophic bacterium from acidic *Sphagnum*
- 451 peat, and emended description of the genus *Methylocystis* (*ex* Whittenbury *et al.*
- 452 1970) Bowman *et al.* 1993. *Int J Syst Evol Microbiol* 2013;63:1096–1104.
- 453 26. Tikhonova EN, Grouzdev DS, Avtukh AN, Kravchenko IK. Methylocystis
- 454 *silviterrae* sp. nov., a high-affinity methanotrophic bacterium isolated from the
- 455 boreal forest soil. *Int J Syst Evol Microbiol* 2021;71:005166.

456	27. Dianou D, Ueno C, Ogiso T, Kimura M, Asakawa S. Diversity of cultivable
457	methane-oxidizing bacteria in microsites of a rice paddy field: investigation by
458	cultivation method and fluorescence in situ hybridization (FISH). Microbes Environ
459	2012;27:278–287.
460	28. Whittenbury R, Phillips KC, Wilkinson JF. Enrichment, isolation and some
461	properties of methane-utilizing bacteria. J Gen Microbiol 1970;61:205–218.
462	29. Bosse U, Frenzel P. Activity and distribution of methane-oxidizing bacteria in
463	flooded rice soil microcosms and in rice plants (Oryza sativa). Appl Environ
464	Microbiol 1997;63:1199–1207.
465	30. Leadbetter ER, Foster JW. Studies on some methane-utilizing bacteria. Arch
466	Mikrobiol 1958;30:91–118.
467	31. Sowers KR. Isolation of chromosomal and plasmid DNAs from methanogenic
468	archaea. In: Sowers KR, Schreier HI. (eds). Archaea: A Laboratory Manual:
469	Methanogens: Cold Spring Harbor Laboratory Press; 1995. pp. 369–378.
470	32. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA
471	amplification for phylogenetic study. J Bacteriol 1991;173:697–703.
472	33. Holmes AJ, Costello A, Lidstrom ME, Murrell JC. Evidence that particulate
473	methane monooxygenase and ammonia monooxygenase may be evolutionarily
474	related. FEMS Microbiol Lett 1995;132:203-208.
475	34. Costello AM. & Lidstrom ME. Molecular characterization of functional and
476	phylogenetic genes from natural populations of methanotrophs in lake sediments.
477	Appl Environ Microbiol 1999;65:5066–5074.

478 35. Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC. Analysis

- 479 of methanotrophic bacteria in Movile Cave by stable isotope probing. *Environ*
- 480 *Microbiol* 2004; 6:111–120.
- 481 36. McDonald IR, Kenna EM, Murrell JC. Detection of methanotrophic bacteria in
- 482 environmental samples with PCR. *Appl Environ Microbiol* 1995;61:116–121.
- 483 37. Neufeld JD, Schäfer H, Cox MJ, Boden R, McDonald IR, et al. Stable-isotope
- 484 probing implicates *Methylophaga* spp and novel *Gammaproteobacteria* in marine
- 485 methanol and methylamine metabolism. *ISME J* 2007;1:480–491.
- 486 38. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, et al. Introducing EzBioCloud: a
- taxonomically united database of 16S rRNA gene sequences and whole-genome

488 assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617.

- 489 39. Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F, et al.
- 490 NGPhylogeny.fr: new generation phylogenetic services for non-specialists. *Nucleic*
- **491** *Acids Res* 2019;47:W260–W265.
- 492 40. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical
- 493 user interface for sequence alignment and phylogenetic tree building. *Mol Biol Evol*
- **494** 2010;27:221–224.
- 495 41. Heyer J, Galchenko VF, Dunfield PF. Molecular phylogeny of type II methane-
- 496 oxidizing bacteria isolated from various environments. *Microbiology*
- **497** 2002;148:2831–2846.

- 498 42. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome
- 499 assemblies from short and long sequencing reads. *PLoS Comput Biol*
- **500** 2017;13:e1005595.
- 501 43. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM:
- assessing the quality of microbial genomes recovered from isolates, single cells, and
- 503 metagenomes. *Genome Res* 2015;25:1043–1055.
- 504 44. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinfomatics*
- **505** 2014;30:2068–2069.
- 506 45. Bayliss SC, Thorpe HA, Coyle NM, Sheppard SK, Feil EJ. PIRATE: A fast and
- scalable pangenomics toolbox for clustering diverged orthologues in
- bacteria. *Gigascience* 2019;8:giz119.
- 509 46. Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN.
- 510 *Methylocella silvestris* sp. nov., a novel methanotroph isolated from an acidic forest
- 511 cambisol. *Int J Syst Evol Microbiol* 2003;53:1231–1239.
- 512 47. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, et al.
- 513 DNA–DNA hybridization values and their relationship to whole-genome sequence
- similarities. *Int J Syst Evol Microbiol* 2007;57:81–91.
- 515 48. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based
- 516 species delimitation with confidence intervals and improved distance functions.
- 517 *BMC Bioinformatics* 2013;14:60.
- 518 49. Whittenbury R, Dalton H. The methylotrophic bacteria. In: Starr MP, Stolp H,
- 519 Trüper HG, Balows A, et al. (eds). The Prokaryotes: A Handbook on Habitats,

- *Isolation, and Identification of Bacteria. Vol 1*: Springer-Verlag; 1981. pp. 894–
 902.
- 522 50. Whittenbury R, Davies SL, Davey JF. Exospores and cysts formed by methane-
- 523 utilizing bacteria. J Gen Microbiol 1970;61:219–226.
- 524 51. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of
- 525 the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and
- *Acetobacter malorum* sp. nov. *Int J Syst Evol Microbiol* 2002;52:1551–1558.
- 527 52. Brusseau GA, Tsien H-C, Hanson RS, Wackett LP. Optimization of
- trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to
- detect soluble methane monooxygenase activity. *Biodegradation* 1990;1:19–29.
- 530 53. Koh S-C, Bowman JP, Sayler GS. Soluble methane monooxygenase production
- and trichloroethylene degradation by a type I methanotroph, *Methylomonas*
- 532 *methanica* 68-1. *Appl Environ Microbiol* 1993;59:960–967.
- 533 54. Nichols P, Guckert JB, White DC. Determination of monounsaturated fatty acid
- double-bond position and geometry for microbial monocultures and complex
- 535 consortia by capillary GC-MS of their dimethyl disulphide adducts. *J Microbiol*
- *Meth* 1986;5:49–55.
- 55. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can
- *J Biochem Physiol* 1959;37:911–917.
- 539 56. Bowman JP. Family V. *Methylocystaceae* fam. nov. In: Brenner DJ, Krieg NR,
- 540 Staley JT, Garrity GM. (eds). Bergey's Manual of Systematic Bacteriology: The

- 541 Proteobacteria, Part C, the Alpha-, Beta-, Delta-, and Epsilonbacteria, 2nd ed., vol.
- 542 2: New York, Springer; 2005. pp. 411–422.

543 57. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M, et al.

- 544 Analysis of 1,000+ type-strain genomes substantially improves taxonomic
- 545 classification of *Alphaproteobacteria*. *Front Microbiol* 2020;11:468.
- 546 58. Romanovskaya VA, Malashenko YR, Bogachenko VN. Corrected diagnosis of
- 547 the genera and species of methane-utilizing bacteria. *Microbiology (translated from*
- 548 *Mikrobiologiya*) 1978;47:96–103.
- 549 59. Oshkin IY, Miroshnikov KK, Grouzdev DS, Dedysh SN. Pan-genome-based
- analysis as a framework for demarcating two closely related methanotroph genera

551 *Methylocystis* and *Methylosinus*. *Microorganisms* 2020;8:768.

- 552 60. Bodelier PLE, Gillisen M-JB, Hordijk K, Damsté JSS, et al. A reanalysis of
- 553 phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. *ISME*
- **554** *J* 2009;3:606–617.
- 555 61. Bowman JP, Skerrat JH, Nichols PD, Sly LI. Phospholipid fatty acid and
- 556 lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. *FEMS*
- 557 *Microbiol Ecol* 1991;85:15–22.
- 558 62. Gal'chenko VF, Shishkina VN, Suzina NE, Trotsenko A. Isolation and properties
- of new strains of obligate methanotrophs. *Microbiology (translated from*
- 560 *Mikrobiologiya*) 1978;46:723–728.

- **562 Table 1.** Genome relatedness indexes between strain SS37A-Re^T and *Methylocystis* and *Methylosinus* species
- 563 ANI and dDDH values are shown in the upper and lower triangles, respectively. Accession number are presented in parentheses.

Strain	1	2	3	4	5	6	7	8	9	10
1. $SS37A-Re^{T}$ (GCA_027925385.1)	100	82.3	82.5	80.0	79.2	80.0	78.6	80.0	79.2	79.4
2. <i>Methylocystis parva</i> OBBP ^T (GCA_000283235.1)	24.8	100	82.2	79.7	78.9	79.8	78.7	79.8	78.7	78.9
3. <i>Methylocystis echinoides</i> LMG27198 ^T	24.0	24.2	100	80.0	70.0	<u>80 1</u>	78.0	70.0	70.1	707
(BSEC01000001–BSEC01000011)	24.9	24.3	100	80.0	79.0	80.1	/0.9	19.9	/9.1	/0./
4. <i>Methylocystis rosea</i> SV97 ^T (GCA_000372845.1)	22.3	21.6	21.9	100	78.4	91.9	78.4	92.4	78.7	78.1
5. <i>Methylocystis heyeri</i> H2 ^T (GCA_004802635.2)	22.5	21.2	21.6	20.8	100	78.7	78.7	78.3	78.5	78.2
6. <i>Methylocystis hirsuta</i> CSC1 ^T (GCA_003722355.1)	22.0	21.7	22.2	47.2	21.9	100	78.3	94.1	78.6	78.3
7. <i>Methylocystis bryophila</i> H2s ^T (GCA_027925445.1)	21.7	21.3	21.9	21.5	21.4	21.5	100	78.6	78.7	78.4
8. <i>Methylocystis silviterrae</i> FS ^T (GCA_013350005.1)	21.8	21.7	21.8	49.1	21.1	56.0	21.0	100	78.7	78.5
9. <i>Methylosinus trichosporium</i> OB3b ^T (GCA_002752655.1)	21.7	21.4	21.6	21.4	21.3	21.5	21.0	21.6	100	83.1
10. Methylosinus sporium 5^{T} (GCA_009811675.1)	22.0	21.3	21.2	20.6	21.2	20.6	20.9	20.5	25.4	100

Table 2. Cellular fatty acids composition of SS37A-Re^T and type strains of 565 566 567 568 569 570

Methylocystis and Methylosinus

Strains: 1, strain SS3TA-Re^T; 2, *Methylocystis parva* OBBP^T [25]; 3, *Methylocystis echinoides* IMET10491^T [60]; 4, *Methylocystis rosea* SV97^T [26]; 5, *Methylocystis heyeri* H2^T [23]; 6, *Methylocystis hirsuta* CSC1^T [26]; 7, *Methylocystis bryophila* H2s^T [25]; 8, *Methylocystis silviterrae* FS^T [26]; 9, *Methylosinus trichosporium* OB3b^T [61]; 10, *Methylosinus sporium* 5^T [61]. Values are percentages of the total fatty acids. –, Not detected; tr, Trace component.

forcentages of the tot	ai fatty actu	5. , 1101 u		race compo	ment.					
Fatty acid	1	2	3	4	5	6	7	8	9	10
<i>iso</i> -C _{14:0}	_	_	_	_	_	_	_	_	_	0.1
<i>iso</i> -C _{15:0}	_	_	_	_	_	_	0.2	_	_	0.5
anteiso-C _{15:0}	_	_	_	_	_	_	_	_	_	3.5
C _{15:0}	_	_	_	_	tr	_	_	_	_	0.7
<i>iso</i> -C _{16:0}	_	_	_	_	_	_	_	_	_	1.4
10-Methyl C _{16:0}	_	_	_	_	3.5	_	_	_	_	_
$C_{16:1}\omega 9c$	_	_	_	0.6	_	_	_	_	_	_
$C_{16:1}\omega 9t$	_	_	_	_	_	2.3	_	_	_	_
$C_{16:1}\omega 8c$	_	_	_	_	29.0	_	_	_	_	_
$C_{16:1}\omega7c$	1.2*	0.5	0.8	_	3.4	_	15.4	_	14.2	9.3
$C_{16:1}\omega 6c$	_	_	_	-	0.5	_	_	_	_	-
$C_{16:1}\omega 5t$					2.8	_	_	_	_	-
C _{16:0}	4.7	0.2	0.3	0.9	1.2	0.3	2.4	—	0.7	2.2
<i>iso</i> -C _{17:0}	0.2	_	_	-	_	_	0.2	_	_	0.1
anteiso-C _{17:0}	_	_	_	-	_	_	_	_	_	0.6
C _{17:1} <i>w</i> 8 <i>c</i>	0.2	_	—	-	_	_	0.2	—	—	-
C _{17:0} cyclo	_	_	—	-	0.3	_	_	—	—	0.2
C _{17:0}	0.4	_	—	-	tr	_	_	—	—	0.3
<i>iso</i> -C _{18:0}	3.6	_	—	-	_	_	_	_	_	_
C _{18:2} ω7, 12 <i>c</i>	_	8.0	22.7	-	_	_	7.8	_	_	_
C _{18:2} <i>w</i> 6, 12 <i>c</i>	_	22.1	4.4	-	_	_	_	_	_	(tr)†
C _{18:2} <i>w</i> 6, 9 <i>c</i>	9.0	_	—	-	_	_	_	—	—	(tr)†
C _{18:1} <i>w</i> 9 <i>c</i>	_	_	—	-	_	_	_	_	_	0.2
$C_{18:1}\omega 9t$	_	_	1.5	-	14.7	_	_	-	-	-
$C_{18:1}\omega 8c$	27.3‡	45.5	51.9	74.8	32.0	71.1	53.1	74.5	67.5	-
$C_{18:1}\omega 8t$	51.8‡	_	—	-	_	_	0.8	_	_	_
C _{18:1} <i>w</i> 7 <i>c</i>	_	23.7	18.1	23.7	10.9	26.1	19.3	24.7	13.1	78.7
$C_{18:1}\omega7t$	_	_	_	_	_	_	_	_	4.6	_
C _{18:1} <i>w</i> 5 <i>c</i>	_	_	0.3	_	_	_	_	_	_	_
C _{18:0} 2-OH	0.3	_		_		_	_	_	_	_
C _{18:0}	1.4	_	0.2	_	0.7	0.3	_	0.8	_	1.2
C19:0 branched	_	_	_	_	_	_	_	_	_	0.8
C _{19:0} cyclo	_	-	-	_	0.2	-	-	_	_	-
C _{20:0}	_	_	_	_	0.1	_	_	_	_	_

⁵⁷¹ 572 573

* The fatty acid was assigned to $C_{16:1}\omega 7c/C_{16:1}\omega 9t$ as "summed feature" in the report of the MIDI System. † Bowman *et al.* [61] showed the fatty acid as " $C_{18:2}\omega 6$ ".

The fatty acids were identified by the analysis of the DMDS derivatives (Fig. S9)

574 Table 3. Phenotypic characters of type strains of *Methylocystis* and *Methylosinus* species

575 Strains: 1, strain SS37A-Re^T; 2, Methylocystis parva OBBP^T [20, 57, 60]; 3, Methylocystis echinoides IMET10491^T [20, 60, 62, this study]; 4, Methylocystis rosea SV97^T [22, 26]; 5,

576 Methylocystis heyeri H2^T [23]; 6, Methylocystis hirsuta CSC1^T [24, 26]; 7, Methylocystis bryophila H2s^T [25, this study]; 8, Methylocystis silviterrae FS^T [26]; 9, Methylosinus

577 *trichosporium* OB3b^T [20, 57]; 10, *Methylosinus sporium* 5^T [20, 57, 61]. +, Positive; -, negative; NR, Not reported.

Characteristic	1	2	3	4	5	6	7	8	9	10
Cell shape	Rods	Reniform, coccobacilli	Reniform, coccobacilli, rods	Rods	Straight, polymorphic or regularly curved rods, ovoids	Dumbbell	Small curved coccoids, short rods	Small curved coccoids/rods	Pear (pyriform)	Vibrioids, rods
Cell width (µm)	1.1	0.3–0.5	0.6	0.8–1.1	0.8–1.2	0.3–0.6	0.9–1.4	0.5–0.7	0.5–1.5	0.5-1.0
Cell length (µm)	2.7	0.5–1.5	0.8–1.2	1.1–2.5	1.4-4.0	0.7 - 1.0	1.8–3.4	1.7–3.4	2.0-3.0	1.5-3.0
Motility	+	-	-	-	-	-	-	-	+	+
Flagellum	Single polar	-	-	NR	NR	-	NR	NR	Polar tuft	Polar tuft
Lipid cyst formation	+	+	-	-	-	+	NR	NR	-	-
Exospore formation	-	-	-	-	-	-	NR	NR	+	+
Rosette formation	+	-	-	-	-	-	-	NR	+	+
Optimum growth										
condition:										
Temperature (°C)	25-30	30	30	27	25	30	25–30	25–30	30	30
pН	7.0-8.0	7.0	7.0	5.5–9.0	5.8-6.2	7.0	6.0–6.5	6.0–6.5	6.5–7.0	6.5–7.0
Growth at 37 °C	+	+	-	+	-	-	+	+	+	+
sMMO	+	-	-	-	+	+	+	-	+	+
Predominant fatty acids	$C_{18:1}\omega 8t$	$C_{18:1}\omega 8c$	C _{18:1} <i>w</i> 8 <i>c</i>	$C_{18:1}\omega 8c$	$C_{18:1}\omega 8c$ $C_{16:1}\omega 8c$	$C_{18:1}\omega 8c$	$C_{18:1}\omega 8c$	$C_{18:1}\omega 8c$	C _{18:1} <i>w</i> 8 <i>c</i>	C _{18:1} <i>w</i> 7 <i>c</i>
G+C content (mol%)*	63.2	63.9	63.9	62.5	63.0	62.4	63.2	62.6	65.9	65.2

578 * Determined by genome analysis.

579 Figure legends

Fig. 1. Maximum-likelihood phylogenetic tree of 16S rRNA gene sequences showing
the relationships between strain SS37A-Re^T and related bacteria. Bar represents 0.02
substitutions per nucleotide sequence position. Closed circles indicate internal nodes
with at least 50% bootstrap support from 1000 data resampling. The tree was rooted
using *Rhodoplanes elegans* AS130^T as the outgroup. GenBank accession numbers are
given in parentheses.

586

Fig. 2. Maximum-likelihood phylogenetic tree of *pmoA* gene sequences showing the
relationships between strain SS37A-Re^T and related bacteria. Bar represents 0.1
substitutions per nucleotide sequence position. Closed circles indicate internal nodes
with at least 50% bootstrap support from 1000 data resampling. The tree was rooted
using *Methylomonas koyamae* Fw12E-Y^T as the outgroup. GenBank accession numbers

592 are given in parentheses.

593

Fig. 3. Phylogenomic tree based on the concatenated nucleotide sequence of core genes
of *Methylocystis* and *Methylosinus* species by the distance method. The bar shows
nucleotide substitutions per site. Closed circles indicate internal nodes with at least 70%
bootstrap support from 1000 data resamplings. The tree was rooted using *Methylomonas koyamae* Fw12E-Y^T as the outgroup. GenBank accession numbers are given in
parentheses.

600

Fig. 4. (a) Transmission electron micrograph of negatively stained cells of strain

602 SS37A-Re^T. Bar, 1 μm. (b) Phase-contrast micrograph of strain SS37A-Re^T cells. Bar, 5

603 μ m. (c) Phase-contrast micrograph of rosettes of strain SS37A-Re^T cells. Bar, 5 μ m. (d)

604 Transmission electron micrograph of ultrathin sections of strain SS37A-Re^T cells. Bar,

605 200 nm. Arrow shows the intracytoplasmic membrane structure.

607 Supplementary figures

608

000	
609	Fig. S1. Phylogenetic trees of 16S rRNA gene sequences showing the relationships
610	between strain SS37A-Re ^T and related bacteria by the parsimony (a) and distance (b)
611	methods. Bars represent 0.01 (a) and 0.005 (b) substitutions per nucleotide sequence
612	position. Closed circles indicate internal nodes with at least 50% bootstrap support from
613	1000 data resamplings. The tree was rooted using <i>Rhodoplanes elegans</i> AS130 ^T as the
614	outgroup. GenBank accession numbers are given in parentheses.
615	
616	Fig. S2. Phylogenetic trees of <i>pmoA</i> gene sequences showing the relationships between
617	strain SS37A-Re ^T and related bacteria by the parsimony (a) and distance (b) methods.
618	Bars represent 0.02 (a) and 0.01 (b) substitutions per nucleotide sequence position.
619	Closed circles indicate internal nodes with at least 50% bootstrap support from 1000
620	data resamplings. The tree was rooted using <i>Methylomonas koyamae</i> Fw12E-Y ^T as the
621	outgroup. GenBank accession numbers are given in parentheses.
622	
623	Fig. S3. Phylogenetic trees of $mxaF$ gene sequences showing the relationships between
624	strain SS37A-Re ^T and related bacteria by the maximum-likelihood (a), parsimony (b),
625	and distance (c) methods. Bars represent 0.05 (a) and 0.02 (b and c) substitutions per
626	nucleotide sequence position. Closed circles indicate internal nodes with at least 50%
627	bootstrap support from 1000 data resamplings. The tree was rooted using Methylomonas
628	<i>koyamae</i> $Fw12E-Y^T$ as the outgroup. GenBank accession numbers are given in
629	parentheses.
630	
631	Fig. S4. Phylogenetic trees of <i>mmoX</i> gene sequences showing the relationships between

632 strain SS37A-Re^T and related bacteria by the maximum-likelihood (a), parsimony (b)

and distance (c) methods. Bars represent 0.1 (a) and 0.02 (b and c) substitutions per
nucleotide sequence position. Closed circles indicate internal nodes with at least 50%
bootstrap support from 1000 data resamplings. The tree was rooted using *Methylomagnum ishizawai* RS11D-Pr^T as the outgroup. GenBank accession numbers
are given in parentheses.

638

639 Fig. S5. Phylogenetic trees of 16S rRNA gene sequences showing the relationships between strain SS37A-Re^T and related *Methylocystis* and *Methylosinus* strains isolated 640 641 from various environments [41] by the maximum-likelihood (a), parsimony (b), and 642 distance (c) methods. Bars represent 0.02 (a), 0.01 (b) and 0.002 (c) substitutions per 643 nucleotide sequence position. Closed circles indicate internal nodes with at least 50% bootstrap support from 1000 (a and c) or 100 (b) data resamplings. The tree was rooted 644 using *Methylocapsa palsarum* NE2^T as the outgroup. GenBank accession numbers are 645 given in parentheses. 646

647

648 Fig. S6. Phylogenetic trees of *pmoA* gene sequences showing the relationships between 649 strain SS37A-Re^T and related *Methylocystis* and *Methylosinus* strains isolated from 650 various environments [41] by the maximum-likelihood (a), parsimony (b), and distance 651 (c) methods. Bars represent 0.01 (a) and 0.02 (b and c) substitutions per nucleotide 652 sequence position. Closed circles indicate internal nodes with at least 50% bootstrap 653 support from 1000 (a and c) or 100 (b) data resamplings. The tree was rooted using 654 *Methylomonas kovamae* Fw12E-Y^T as the outgroup. GenBank accession numbers are 655 given in parentheses.

656

657 Fig. S7. Phylogenetic trees of *mxaF* gene sequences showing the relationships between

658 strain SS37A-Re^T and related *Methylocystis* and *Methylosinus* strains isolated from

various environments [41] by the maximum-likelihood (a), parsimony (b), and distance

(c) methods. Bars represent 0.05 (a and b) and 0.02 (c) substitutions per nucleotide
sequence position. Closed circles indicate internal nodes with at least 50% bootstrap
support from 1000 (a and c) or 100 (b) data resamplings. The tree was rooted using *Methylomonas koyamae* Fw12E-Y^T as the outgroup. GenBank accession numbers are
given in parentheses.

665

666 Fig. S8. Phylogenetic trees of *mmoX* gene sequences showing the relationships between

667 strain SS37A-Re^T and related *Methylocystis* and *Methylosinus* strains isolated from

various environments [41] by the maximum-likelihood (a), parsimony (b), and distance

669 (c) methods. Bars represent 0.1 (a), 0.02 (b) and 0.01 (c) substitutions per nucleotide

670 sequence position. Closed circles indicate internal nodes with at least 50% bootstrap

671 support from 1000 (a and c) or 100 (b) data resamplings. The tree was rooted using

672 *Methylomagnum ishizawai* RS11D-Pr^T as the outgroup. GenBank accession numbers

are given in parentheses.

674

675 Fig. S9. (a) Total ion current chromatogram of dimethyl disulphide adducts from strain

676 SS37A-Re^T monounsaturated fatty acids. Mass spectra of dimethyl disulphide adducts

677 of $C_{18:1}$ fatty acids eluted at the retention times 10.23 min (b) and 10.44 min (c),

678 respectively, on the chromatogram (a). Ions at m/z 159, 231, and 390 correspond to ω -

fragment, Δ -fragment, and M+ of the dimethyl disulphide adduct of C_{18:1} ω 8 [54].

680

Figure 4