

Web Mining – The Ontology Approach

Ee-Peng Lim
Nanyang Technological University
Singapore

Work with: Aixin SUN, Dion GOH, Ming YIN, Myo-Myo NAING, Zhen SUN, Maria MARISSA and other members of G-Portal group.

The International Advanced Digital Library Conference (IADLC), Nagoya, 2005

Why This Talk?

- Hector Garcia-Molina at JCDL2005 "Digital Libraries Initiatives: What I learned (and didn't) in 10 years"
- ► World Wide Web Tsunami:
 - Enormous volume and coverage of content (Everything is free? Heterogeneity?)
 - Large number of users
 (No difference between producers and consumers)
 - Vast number of computers and devices (Many different applications are possible)

Some interesting statistics

- Google indexes
 - > 8 billion web pages
 - > 2 billion images
 - > 1 billion Usenet messages
- ► Nielsen's May 2004 survey
 - An average surfer went online 30 times for
 - > 24 hours in total during a month
 - ▶1 time per day
 - ▶45 mins per day

What are the implications to Digital Libraries?

- ► Search: OPACS vs Google
- ► Browse: Books vs Web Pages/E-Articles
- ► Classification System: Dewey Decimal Classification vs Yahoo! & DMOZ
- ▶ Definition of Terms: Encyclopedia vs Wikipedia (<u>www.wikipedia.org/</u>)
- ► Users: Library cards vs User blogs

Wikipedia

User Blog

What are the implications to CS researchers?

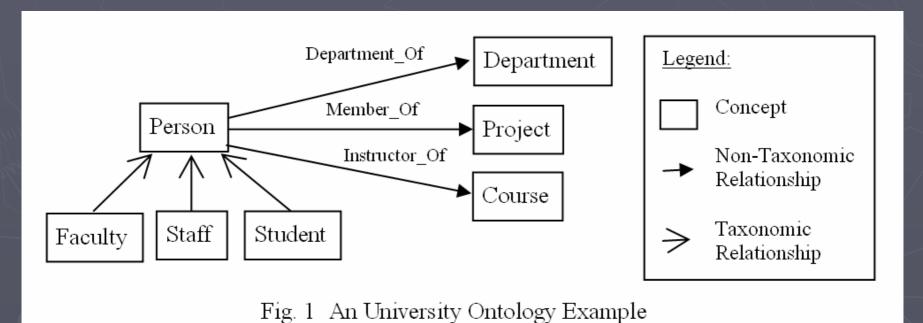
- Large amount of Web information waiting to be processed
- ▶ Semantic Web
- But there are technical challenges!
 - Unstructured and semi-structured content
 - Links, links, links....
 - Large of discipline
 - Dynamic Web

Use of Web Mining

- ► Types of Web mining:
 - Web content mining
 - Web usage mining
 - Web link mining
 - Web information extraction
- Web mining for addressing the challenges
- Ontology-based web (content) mining

Outline

- ▶ What is an Ontology?
- Ontology-based Web Mining
- ► Homepage Mining
- Homepage Relationship Mining
- Conclusion



Ontology

- Genersereth and Nilsson:
 - Ontology is an explicit specification of a set of objects, concepts, and other entities that are presumed to exist in some area of interest and the relationships that hold them.
- Ontology is to be shared and reusable
- Usually refer to abstract concepts and relationships (or properties)
- Rarely used for concept and relationship instances

Our Definition

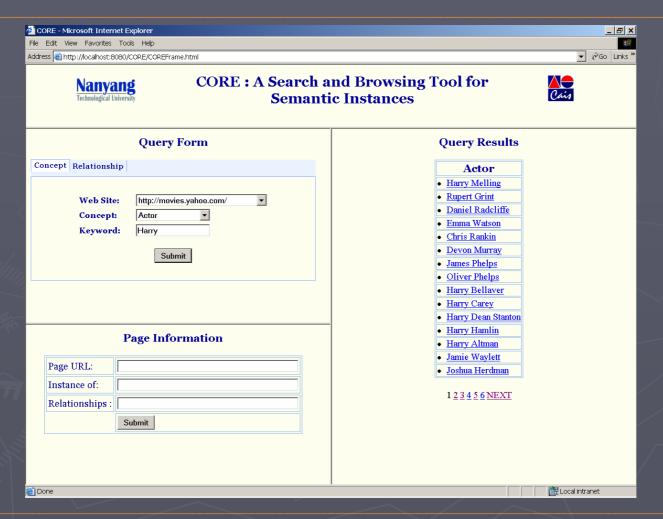
► A set of concepts (C) and relationships (R) between the concepts

Ontology Research

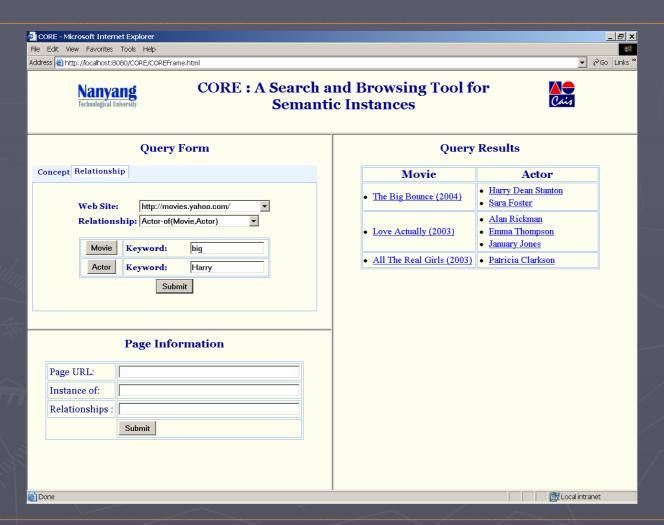
- Ontology construction
 - Manual approach: OntoEdit
 - Automatic approach: OntoLearn
- Ontology representation languages
 - Traditional: CycL, Ontolingua, etc..
 - Web standards: XML, RDF
 - Web-based ontology specification languages: OIL, DAML+OIL, XOL, SHOE

Ontology-based Web (Content) Mining

- Types of web content mining
 - Web page classification
 - Web clustering
 - Web extraction

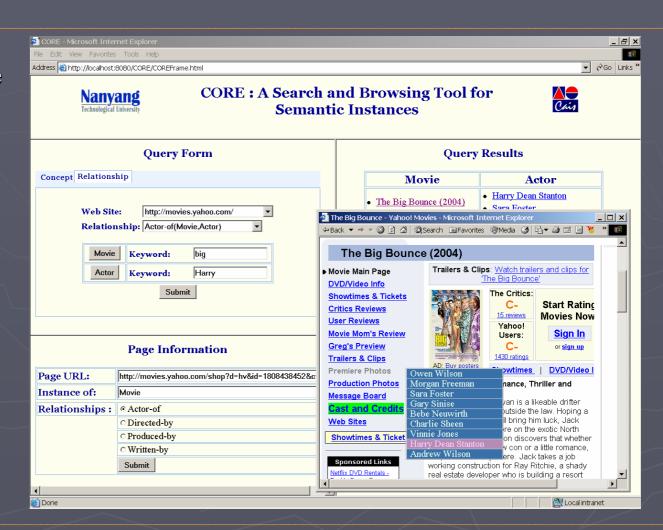

Web content mining + Ontology

- Known instances of ontology entities as additional features
 - Example: Ontology-based Web site structure mining
- Ontology provides background semantic structures for mining
 - Example: Ontology-based Web classification classifying Web pages as concept instances and Web page pairs as relationship instances


DL Applications of Ontology-based Web Mining

- Improved search to Web data
- ► Better browsing capabilities
- Personalization of Web data access

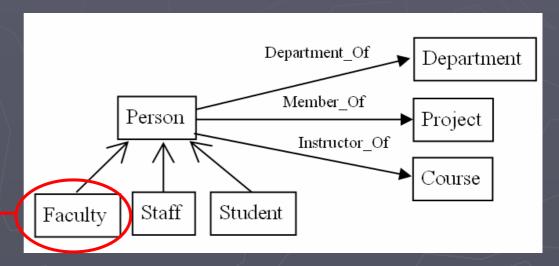
Ontology-based Concept Search



Ontology-based Relationship Search

Ontology-based Browsing

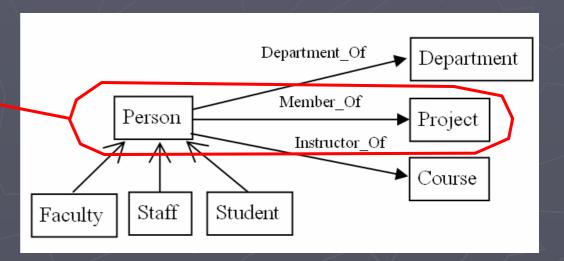
Browsing Movie homepage


Our Ontology-based Web Content Mining Research

- Web page classification
- ► Homepage mining
- Homepage relationship mining
- ► Focus on web content from a given website

Homepage Mining

Given an ontology consisting of concepts and a web site, find the homepages of concept instances



Homepage Relationship Mining

▶ Discovery of homepage pairs as related concept instances, or relationship instances

What are the technical challenges?

► Tasks

- Find the homepages
- Assign it with the appropriate concept label
- Identify the relationships among the homepages

▶ Challenges

- Definition of concept instance is subjective
- Web sites organize Web pages in different ways
- Features for identifying relationship instances are limited

Homepage Mining using Web Units

- ► Idea:
 - A more complete concept instance = homepage + support pages
- ▶ Web unit:
 - Exactly one homepage
 - Zero or more support pages
- Web unit-based homepage mining:
 - Finding Web units representing concept instances

Web Unit

Web Unit of a CS100 course

http://..path/course/CS100/CS100.html

http://..path/course/CS100/lecture-programs.html

http://..path/course/CS100/officehours.html

http://..path/course/CS100/instructor.html

http://..path/course/CS100/exams/final.html

http://..path/course/CS100/exams/prelim.html

Web Unit of a Professor

http://..path/user/johnson/index.html

http://..path/user/johnson/research.html

http://..path/user/johnson/publications.html

http://..path/user/johnson/activities.html

http://..path/user/johnson/students.html

http://..path/user/johnson/teaching.html

http://..path/user/johnson/contact.html

Web Unit-based Homepage Mining

- ► Two main tasks:
 - Find Web pages that form a Web unit and determine the role of each page
 - Assign concept labels to Web units
- Differences between web unit-based homepage mining and web page classification
 - Concept-relationship graph vs flat categories
 - Web units are not known beforehand

Iterative Web Unit Mining Method (iWUM)

- 1. Find homepages
- Find some support pages for each homepage and construct initial set of web units (may be incomplete) – web fragments
- 3. Assign concept labels to web units
- 4. Construct larger web units
- 5. Reclassify web units
- 6. Repeat 4-5 until no or little changes to labels assigned

iWUM

Web pages of a Website Web Directory Web Unit Construction Construction Web fragment Web Fragment Web Unit Generation Classifier Learning Web Fragment Web Unit Classification Classification Web units

Phase 2: Web fragment merging

Phase 1:

generation

Observations on Web Units

- Observation 1
 - Web pages from the same Web folder are more semantically related
- Observation 2
 - Support pages are normally reachable from key page
- Observation 3
 - Key page is usually at the highest level of the Web folder containing the Web unit

Observations on Web Units

- Observation 4
 - Web units of same concept seldom have links between them
- Observation 5
 - Multi-page Web units of the same concept often reside in a set of folders (one for each) under a common parent folder
 - One-page Web units of the same concept often appear in the same folder
- Observation 6
 - Key page of the Web units of the same concept are often the link targets of a hub page

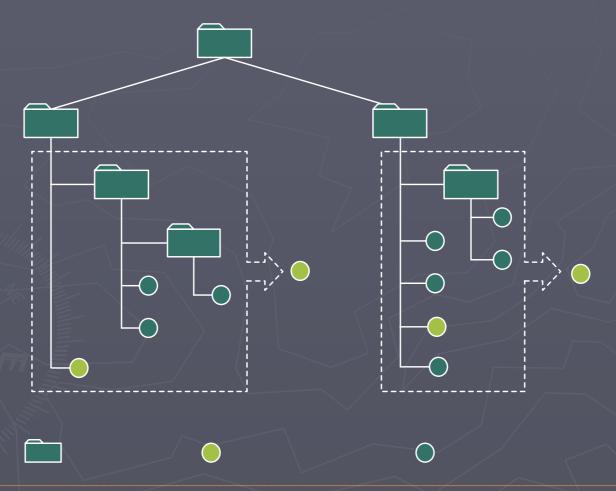
Web Fragment Generation

- Associate closely-related Web pages together
- Reduce the objects to be classified
- Reduce noise in training
- > Steps:
 - Build a directory tree of folders and Web pages
 - Compute the connectivity index of each Web folder to measure the extent to which the Web pages and folders under the former are connected
 - Determine the candidate homepages in Web folder with small connectivity index values
 - ► Web page naming convention: common names for key pages are "index.html", "index.htm", etc..

Web Fragment Generation

- Find Candidate Key Pages
 - URL of the page ends with a "/"
 - The folder containing the page and the page share the same name, e.g., ...path/cs100/cs100.html
 - Page file name matches: home, index, welcome, default, and homepage

Web Fragment Generation and Classification

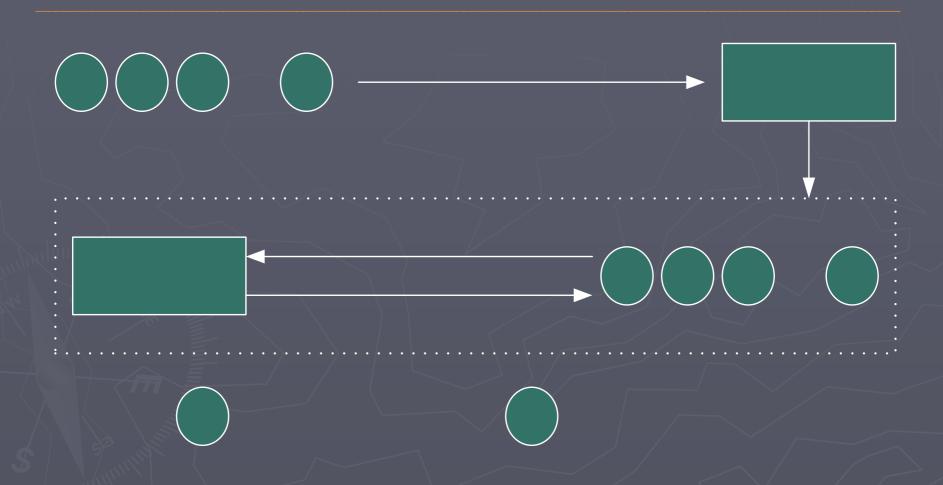

Example: Course CS100

- http://..path/course/CS100/CS100.html [COURSE]
 http://..path/course/CS100/lecture-programs.html
 http://..path/course/CS100/officehours.html
 http://..path/course/CS100/instructor.html
- 2. http://..path/course/CS100/exams/final.htm [NONE]
- 3. http://..path/course/CS100/exams/prelim.html [NONE]

Example: Prof Johnson

1. http://..path/user/johnson/index.html [PROF] http://..path/user/johnson/research.html http://..path/user/johnson/publications.html http://..path/user/johnson/activities.html http://..path/user/johnson/students.html http://..path/user/johnson/teaching.html http://..path/user/johnson/contact.html

Web Unit Construction


Web Unit Construction

- http://..path/course/CS100/CS100.html [COURSE]
 http://..path/course/CS100/lecture-programs.html
 http://..path/course/CS100/officehours.html
 http://..path/course/CS100/instructor.html
- 2. http://..path/course/CS100/exams/final.htm [NONE]
- 3. http://..path/course/CS100/exams/prelim.html [NONE]
 - http://..path/course/CS100/CS100.html [COURSE]
 http://..path/course/CS100/lecture-programs.html
 http://..path/course/CS100/officehours.html
 http://..path/course/CS100/instructor.html
 http://..path/course/CS100/exams/final.htm
 http://..path/course/CS100/exams/prelim.html

Web Unit Classification

- ▶ Observations 5 and 6:
 - Multi-page Web units of the same concept often reside in a set of folders (one for each) under a common parent folder
 - Key pages of the Web units of the same concept are often the link targets of a hub page
- Improve Web unit mining accuracy
 - Web site structure features
 - Content features

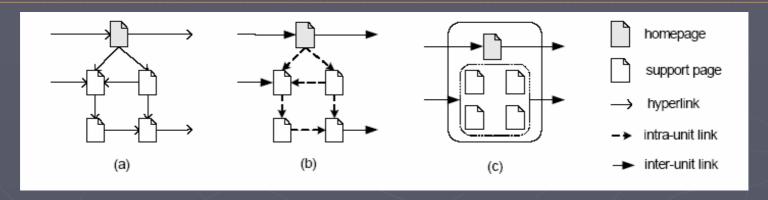
Web Unit Classification

Web Site Structure Features

- Normalized classification score (each web unit) for each concept
- Organization of the web units within the web site
 - Closeness to the average depth for each concept
 - Highest in-link hub value for each concept
 - Precision support of the parent web folder for each concept
 - Recall support of the parent web folder for each concept
- Word features in the web page names and URLs
 - Each word (term) in page names and URL

Performance of iWUM

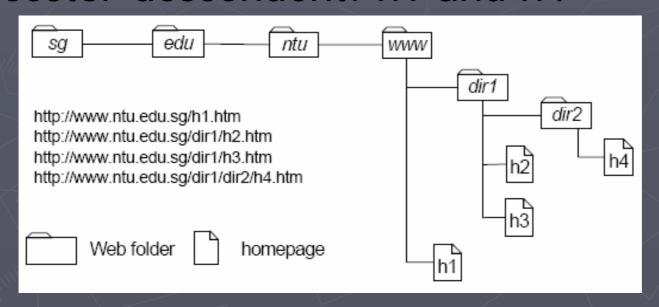
- Performance is measured by
 - Are the web units correctly constructed?
 - Are the web units correctly classified?
- Implication of homepage and support pages
- iWUM performs well on the WebKB dataset
 - 4 university websites: Cornell, Texas, Washington and Wisconsin
 - 4 concepts: Student, Course, Faculty, Project
- ▶ iWUM works better for more structured websites


Web Unit-based Homepage Relationship Mining

- Assumptions
 - Web units are known by web unit-based homepage mining
 - Relationships can be determined based on background relation knowledge
 - Background relation are represented by interhomepage features
- Our proposed method
 - 1. Candidate homepage pair generation
 - 2. Feature acquisition
 - 3. Classifier training
 - 4. Classification

Inter-Homepage Features

- ► Navigation Features (N)— links between web pages
 - Intra-unit links
 - Inter-unit links
- Relative Location Features (R) location in web directory
 - Parent-child
 - Sibling
 - Ancestor-descendent
- Common-item Features (E) shared by homepages
 - Email addresses
- Supplementary features (A) additional features derived for some inter-homepage features


Navigation Features (N)

id	connectivity type	id	connectivity type	id	connectivity type
n_1	$u_s.h \to u_t.h$	n_9	$u_s.h \to p \to u_t.h$	n_{17}	$u_s.h \to p \leftarrow u_t.h$
n_2	$u_s.h \to u_t.s$	n_{10}	$u_s.h \to p \to u_t.s$	n_{18}	$u_s.h \to p \leftarrow u_t.s$
n_3	$u_s.s \rightarrow u_t.h$	n_{11}	$u_s.s \to p \to u_t.h$	n_{19}	$u_s.s \rightarrow p \leftarrow u_t.h$
n_4	$u_s.s \rightarrow u_t.s$	n_{12}	$u_s.s \to p \to u_t.s$	n_{20}	$u_s.s \rightarrow p \leftarrow u_t.s$
n_5	$u_s.h \leftarrow u_t.h$	n_{13}	$u_s.h \leftarrow p \leftarrow u_t.h$	n_{21}	$u_s.h \leftarrow p \rightarrow u_t.h$
n_6	$u_s.h \leftarrow u_t.s$	n_{14}	$u_s.h \leftarrow p \leftarrow u_t.s$	n_{22}	$u_s.h \leftarrow p \rightarrow u_t.s$
n_7	$u_s.s \leftarrow u_t.h$	n_{15}	$u_s.s \leftarrow p \leftarrow u_t.h$	n_{23}	$u_s.s \leftarrow p \rightarrow u_t.h$
n_8	$u_s.s \leftarrow u_t.s$	n_{16}	$u_s.s \leftarrow p \leftarrow u_t.s$	n_{24}	$u_s.s \leftarrow p \rightarrow u_t.s$

Relative Location Features (R)

- Parent-child: h2 and h4
- ► Sibling: h2 and h3
- Ancestor-descendent: h1 and h4

Experimental Dataset

WebKB

- Department-of (people, department)
- Instructor-of (people, course)
- Member-of (people, project)

University	Depart	ment-of	Instru of	ctor-	Member-of		
	Pos	Neg	Pos	Neg	Pos	Neg	
Cornell	183	0	32	7654	66	3594	
Texas	197	0	42	7444	89	3851	
Washington	161	6	65	12294	135	3372	
Wisconsin	207	3	112	17108	102	5148	

Experimental Results

On the manually labelled web units

	Dep	artment	Inst	tructor	-of	Member-of			
Features	Features Pr Re		F1	Pr	Re	F1	Pr	Re	F1
Annhunkiya.					\				
N	0.988	0.796	0.875	0.879	0.651	0.724	0.879	0.884	0.881
		\] / (<u> </u>	J _
NR	0.987	1.000	0.994	0.877	0.673	0.737	0.879	0.884	0.881
		/ /			/				
NE	0.988	0.797	0.876	0.884	0.695	0.759	0.879	0.890	0.883
NRE	0.987	1.000	0.994	0.864	0.698	0.750	0.879	0.890	0.883

Experimental Results

► On the iWUM mined web units

	department-of			instructor-of				member-of			
University	Pr	Re	F_1		Pr	Re	$\overline{F_1}$		Pr	Re	F_1
Cornell	0.986	0.770	0.865		0.800	0.250	0.381		0.323	0.303	0.312
Texas	0.989	0.893	0.939		0.731	0.452	0.559		0.000	0.000	0.000
Washington	0.863	0.863	0.863		0.737	0.438	0.549		0.000	0.000	0.000
Wisconsin	0.968	0.884	0.924		0.812	0.500	0.619		0.477	0.618	0.538
MacroAve	0.952	0.853	0.898		0.770	0.410	0.527		0.200	0.230	0.213

Conclusion

- Ontology can be used to add semantics to web content
- We introduce two ontology-based web content mining problems
 - Homepage mining
 - Homepage relationship mining
 - Web Unit to model a concept instance

Future Research Opportunities

- Ontology can be incorporated in other web mining techniques
- Digital libraries can benefits from the additional semantics about web content
- > Future research
 - Web unit-based searching
 - Link analysis among web units
 - Evolution of web units

Relevant Publications

- ➤ Yin Ming, Dion Hoe-Lian Goh, Ee-Peng Lim, "On Discovering Concept Entities from Web Sites," International Journal of Web Information Systems (IJWIS), accepted, 2005.
- Myo-Myo Naing, Ee-Peng Lim, Roger H.L. Chiang, "Extracting Link Chains of Relationship Instances from a Web Site," American Society for Information Science and Technology (JASIST), accepted, 2005.
- ▶ Aixin Sun and Ee-Peng Lim, "Web Unit Based Mining of Homepage Relationships," JASIST, accepted, 2005.
- A. Sun, E.-P. Lim, W.-K. Ng, J. Srivastava "Blocking Reduction Strategies in Hierarchical Text Classification," IEEE TKDE 16(10):1305-1308, 2004.
- Myo Myo Naing, Ee-Peng Lim, Roger Chiang. "CORE: A Search and Browsing Tool for Semantic Instances of Web Sites," 7th Asia Pacific Web Conference (APWeb2005), Shanghai China, March 2005.
- A. Sun, E.-P. Lim, "Web Unit Mining: Finding and Classifying Subgraphs of Web Pages," ACM CIKM, 2003.
- A. Sun, E.-P. Lim, and W.-K. Ng, Performance Measurement Framework for Hierarchical Text Classification, JASIST 54(11):1014 1028, 2003.
- A. Sun, E.-P. Lim, "Web Classification Using Support Vector Machine," ACM WIDM 2002.

Thank You

