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ABSTRACT
A theoretical method for calculating the thermodynamic properties and phase equilibria of liquid–liquid mixtures using the integral equa-
tion theory is proposed. The solvation chemical potentials of the two components are evaluated by the integral equation theory and the
isothermal–isobaric variation of the total density with composition is determined to satisfy the Gibbs–Duhem relation. Given the density of
a pure component, the method can calculate the densities of the mixture at any composition. Furthermore, it can treat the phase equilibrium
without thermodynamic inconsistency with respect to the Gibbs–Duhem relation. This method was combined with the reference interaction-
site model integral equation theory and applied to mixtures of water + 1-alcohol by changing the alcohol from methanol to 1-butanol. The
destabilization of the mixing Gibbs energy by increasing the hydrophobicity of the alcohol and demixing of the water–butanol mixture were
reproduced. However, quantitative agreement with experiments is not satisfactory, and further improvements of the integral equation theory
and the molecular models are required.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0131475

I. INTRODUCTION

Phase equilibria and thermodynamic properties of liquid
mixtures, including liquid–liquid phase separation, liquid–vapor
equilibrium, and excess mixing volume, are critically important in
chemical processes such as distillation and extraction.1 These prop-
erties have been studied in many systems, and a huge amount of
data has been accumulated. The use of phase-separation solvents was
recently proposed for capturing carbon dioxide from flue gas or air
with high energy efficiency.2,3 Furthermore, it has been suggested
that liquid–liquid phase separation plays an important role in the
biological functions in a cell.4

Phase equilibria are macroscopic phenomena, and their exper-
imental observation is relatively easy. Following the accumulation
of efforts to improve experimental methods and instruments, vari-
ous thermodynamic properties of liquid mixtures can be determined

with high accuracy. However, it is still difficult to understand
these macroscopic behaviors of liquid mixtures from the per-
spectives of intermolecular interaction and microscopic liquid
structure.

Molecular simulation, including the molecular dynamics (MD)
and Monte Carlo types, is a representative computational method
to reproduce various properties of liquid systems based on their
molecular structure and intermolecular interactions.5 When the
miscibility of two liquids is quite low, a brute-force simulation could
reproduce the coexistence of two liquid phases. A grand canon-
ical simulation involving particle insertion, deletion, or exchange
is also available for the simulation of phase coexistence. How-
ever, such a direct simulation is difficult when the miscibility of
the two components is not that low. In addition, analysis of the
microscopic driving force of the phase behavior is difficult in these
simulations.

J. Chem. Phys. 157, 234502 (2022); doi: 10.1063/5.0131475 157, 234502-1

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0131475
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0131475
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0131475&domain=pdf&date_stamp=2022-December-15
https://doi.org/10.1063/5.0131475
https://orcid.org/0000-0003-4590-8592
https://orcid.org/0000-0002-9524-8978
https://orcid.org/0000-0002-2023-7254
mailto:yamaguchi.tsuyoshi@material.nagoya-u.ac.jp
https://doi.org/10.1063/5.0131475


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The macroscopic phase behavior under isothermal–isobaric
conditions is governed by Gibbs energy, and free-energy calcula-
tion is also available for the determination of phase equilibrium by
molecular simulations.6,7 By calculating the Gibbs energy at a given
temperature and pressure as a function of composition, it can be
determined whether the liquid–liquid phase separation occurs or
not. Various analytical methods for free-energy calculation are avail-
able to relate the phase equilibrium and microscopic interaction.
However, the free-energy calculation is computationally demanding
for molecular simulation, which is a disadvantage.

The integral equation theory is another computational method
for calculating the microscopic structure and macroscopic ther-
modynamic properties of liquids and liquid mixtures based on
their intermolecular interactions.8,9 Based on statistical mechan-
ics, with the introduction of some kinds of approximation, the
integral equation theory gives a closed analytical relation between
the intermolecular interaction and microscopic correlation func-
tions. It also provides closed expressions for various thermodynamic
properties, including the solvation free energy.10 The statistical aver-
age is taken a priori in the integral equation theory; therefore, it
does not suffer from the poor sampling associated with the slow
relaxation of long-range concentration fluctuations. The integral
equation theory was originally formulated for simple liquids com-
posed of monoatomic molecules and was extended to polyatomic
molecular liquids.9 In this work, we propose a theoretical method
to calculate the phase equilibrium and thermodynamic properties
of liquid mixtures, based on the integral equation theory. In our
method, the solvation free energies of the two components are cal-
culated as functions of their compositions and the phase equilibria
are analyzed, based on the chemical potentials of the components.

In numerical calculations based on the integral equation theory,
the temperature and the number densities of the components are
usually given as parameters that specify the thermodynamic state of
the system.8,9 By contrast, the mixing of the two components is per-
formed under isothermal–isobaric conditions. Therefore, we need
the isobaric concentration dependence of the total density for the
calculation. The densities of many liquid mixtures were measured
experimentally and are available in the literature, but the experimen-
tal values for a particular system of interest are not always available,
and, hence, we must determine the density of the mixture in some
way. The method we propose in this work deals with the determi-
nation of the isobaric variation of the total density based on the
Gibbs–Duhem relation.

The Gibbs–Duhem relation describes the relationship between
the thermodynamic properties of a homogeneous system, derived
from the response of thermodynamic quantities to the system size
scaling. The calculation of various useful properties of the phase
equilibria of liquid mixtures is based on the Gibbs–Duhem rela-
tion. Whether this relation holds or not is called “thermodynamic
consistency,” which is a criterion used to validate experimental
results. Thus, various thermodynamic consistency tests were pro-
posed and applied to experiments.11 Since the total density is
determined to satisfy the Gibbs–Duhem relation in our method,
the numerical results automatically follow the Gibbs–Duhem rela-
tion, and phase equilibria can be treated without thermodynamic
inconsistency.

The integral equation theory used in this work is the reference
interaction-site model (RISM) theory.9 RISM theory is an integral

equation theory for molecular liquids, in which a polyatomic
molecule is described as a collection of interaction sites. RISM the-
ory and its extension to the three-dimensional description of the
solute, 3D-RISM theory,12 have been applied to many systems of
chemical and biological interest. Perry and Sing employed the poly-
mer version of RISM theory (PRISM theory) to model the phase
equilibrium of polymer coacervate.13 An advantage of RISM the-
ory is that the calculation of the solvation free energy of a solute
can be performed quickly, because it is given in a closed analytical
form when RISM theory is combined with the hypernetted-chain
(HNC) or the Kovalenko–Hirata (KH) closures. The original expres-
sion of the solvation free energy proposed by Singer and Chandler10

overestimates the solvation free energy associated with cavity for-
mation. However, various correction methods have been proposed,
and it is now possible to evaluate the solvation free energy of a solute
quantitatively.14–18

We applied our method to a model system for the mix-
tures of water and 1-alcohol. Due to their chemical and biological
importance, they have been studied intensively using experiments,
theories, and computer simulations.7,19–22 In particular, the mix-
ing Gibbs energy of the water–methanol mixture was calculated
in the pioneering work of Kvamme using RISM theory.22 The
mixing Gibbs energies of water with various alcohols were evalu-
ated recently by means of MD simulation.7 The hydrophobicity of
1-alcohols increases when increasing the size of the alkyl group. The
mixtures are miscible at any composition up to 1-propanol, and
the liquid–liquid phase separation occurs in cases of 1-butanol and
larger alcohols.

Section II presents our theoretical method, together with the
description of the theories on which our method is based. The details
of the model systems are also shown. The numerical results on
the mixing thermodynamics and phase behavior are presented in
Sec. III. The effects of various approximations are also examined and
discussed. Finally, the work is summarized in Sec. IV.

II. THEORETICAL METHODS
A. Thermodynamics

The system we consider is the liquid mixture composed of two
components: water (W) and alcohol (A). Their number densities
are denoted as ρW and ρA, respectively. The total number density
is defined as ρT ≡ ρW + ρA, and the molar fraction of A is denoted
as xA ≡ ρA/ρT . Although we use the subscripts “W” and “A” here,
the theoretical formulation below applies to arbitrary binary liquid
mixtures.

The solvation free energy is the minimum work required to
transfer a molecule from ideal gas to liquid. Once the solvation
free energies of the two components, denoted as μSFE

W and μSFE
A , are

calculated, their chemical potentials are given by

μi = μ0
i + kBT ln(

ρi

ρ0
) + μSFE

i , (1)

where i ∈ {W, A} is an index of the components, and kB and T stand
for the Boltzmann constant and the absolute temperature, respec-
tively. The standard chemical potential in the gas phase is denoted
as μ0

i , and ρ0 refers to the number density of the standard state. The
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constant values of μ0
i and ρ0 can be taken arbitrarily, as long as they

do not depend on any thermodynamic conditions.
Under the isothermal condition, the Gibbs–Duhem relation is

given by

dP = ρW dμW + ρAdμA, (2)

where P stands for pressure. Therefore, the right-hand side of
Eq. (2) must be zero when xA is varied under isothermal–isobaric
conditions as

ρW dμW + ρAdμA = 0. (3)

In this work, we used Eq. (3) as the relation that gives ρT as a function
of xA. Substitution of Eq. (1) into Eq. (3) yields

1
ρT

dρT +
1

kBT
{xW dμSFE

W + xAdμSFE
A } = 0, (4)

which describes the variation of ρT in response to a change in xA.
The molar fraction of W, xW ≡ 1 − xA, is defined here. To determine
the absolute value of ρT , the density of neat W, ρT(xA = 0) = ρ0

W , is
fixed as the experimental value. The use of Eq. (4) for the determi-
nation of ρT is the essential point of this work, which guarantees the
thermodynamic consistency of chemical potentials, Eq. (3). As will
be shown in Sec. III, the density of the mixture must be determined
according to the set of molecular models and the approximations for
free-energy calculation, to obtain the thermodynamically consistent
mixing Gibbs energy.

Based on the Gibbs–Duhem relation, the Gibbs energy of the
system is given by

1
V

G = ρWμW + ρAμA, (5)

where V denotes the volume of the system, and the mixing Gibbs
energy is defined as

ΔGmix(xA) ≡ G(xA) − [xW G(xA = 0) + xAG(xA = 1)]. (6)

The combination of Eqs. (1), (5), and (6) gives

1
ρTV

ΔGmix(xA) = kBT[xW ln xW + xA ln xA]

+ kBT[ln ρT − xW ln ρ0
W − xA ln ρ0

A]

+ [xW(μSFE
W − μSFE,0

W ) + xA(μSFE
A − μSFE,0

A )], (7)

where ρ0
A stands for the number density of neat A, and μSFE,0

i denotes
the solvation free energy of the component i in its neat liquid. The
first term of the right-hand side is usually referred to as the “ideal”
term. The ideal term originates from the increase in the translational
entropy of both components upon mixing, which is included in the
second term of Eq. (1). The number densities of both components,
ρA and ρW , decrease upon mixing, which leads to the stabilization
of their chemical potentials. The third term of Eq. (7) describes the
contribution of the solvation free energies of both components. The
second term, the contribution of the number density, can further be
transformed as

kBT[ln ρT − xW ln ρ0
W − xA ln ρ0

A]

= kBT ln
ρT

ρid
T
+ kBT ln

ρid
T

(ρ0
W)

xW
(ρ0

A)
xA

, (8)

1
ρid

T
≡

xW

ρ0
W
+

xA

ρ0
A

. (9)

The ideal value of the total number density, ρid
T , defined by

Eq. (9), is the total number density in the absence of the excess mix-
ing volume. Thus, the first term of the right-hand side of Eq. (8)
refers to the contribution of the excess mixing volume. The decrease
in total volume upon mixing decreases the translational entropy of
all the molecules, resulting in the increase in the Gibbs energy. The
second term is nonpositive, and it is equal to 0 when ρ0

W = ρ0
A. There-

fore, the second term can be interpreted as the contribution of the
difference in the molecular sizes of W and A.

B. RISM integral equation theory
In the interaction-site description of molecular liquids, a

molecule is described as a collection of interaction sites that cor-
respond to an atom or a united atom in the molecule. In RISM
theory, the intramolecular geometry of the molecule is given by the
intramolecular correlation function, ωαγ(r), where α and γ indicate
the interaction sites within a molecule. For a rigid molecule, ωαγ(r)
is explicitly given by

ωαγ(r) =
1

4πl2
αγ

δ(r − lαγ), (10)

where lαγ stands for the distance between sites α and γ, and the
ensemble average of the right-hand side should be taken for a flex-
ible molecule. The intermolecular interaction is described as the
sum of the site–site interactions, uαγ(r), which are assumed to be
isotropic.

RISM theory comprises two equations: the site–site Ornstein–
Zernike (SSOZ) and the closure equations.9 The former defines the
site–site direct correlation function cαγ(r) as

c̃(q) = [ ρ ⋅ ω̃(q)]−1
− χ̃ −1

(q), (11)

where bold symbols denote the matrices that possess the indices
of the interaction sites, and the dot represents the matrix product.
The tilde stands for the Fourier-transformed function in the recip-
rocal space, and ρ is a diagonal matrix, whose diagonal component is
the number density of the site. The site–site partial structure factor
χ̃(q) is defined as

χ̃(q) ≡ ρ ⋅ ω̃(q) + ρ ⋅ h̃(q) ⋅ ρ, (12)

and the total correlation function, hαγ(r), is related to the site–site
radial distribution function gαγ(r) as

hαγ(r) ≡ gαγ(r) − 1. (13)

The closure equation is another relation between cαγ(r) and
hαγ(r), which is coupled to the SSOZ equation, Eq. (11), to obtain
these correlation functions. In this work, we used the KH closure as9

ξαγ(r) ≡ −
uαγ(r)

kBT
+ hαγ(r) − cαγ(r), (14)
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gαγ(r) =
⎧⎪⎪
⎨
⎪⎪⎩

exp ξαγ(r) (ξαγ(r) ≤ 0),

1 + ξαγ(r) (ξαγ(r) ≥ 0).
(15)

The KH closure was originally derived as a partial linearization
of the HNC closure, and the analytical expression of the solvation
free energy for the HNC closure derived by Singer and Chandler10

was also extended to the KH closure. When a solute molecule, X, is
dissolved in a mixture solvent, S, the solvation free energy of X is
described as9

μSFE
X

kBT
=∑α∈X∑γ∈S ργ∫

∞

0
4πr2
[h2

αγ(r)Θ(−hαγ(r)) − cαγ(r)

−
1
2

hαγ(r)cαγ(r)]dr, (16)

where Θ(x) stands for the Heaviside step function. In the case of a
liquid mixture of A and W, either one of the components is regarded
as the solute X dissolved in the mixture solvent composed of A and
W. The solvation free energy obtained from Eq. (16) is referred to as
the Singer–Chandler (SC) solvation free energy in this work.

In addition to μSFE,SC
i , the Gaussian-fluctuation (GF) expression

of the solvation free energy23

μSFE,GF
X
kBT

=∑α∈X∑γ∈S ργ∫
∞

0
4πr2
[−cαγ(r) −

1
2

hαγ(r)cαγ(r)]dr

(17)

was also tested because Tanimoto et al. demonstrated that GF
describes the hydration free energies of various solutes better than
SC, despite its simpler mathematical expression.18

C. Model systems and numerical method
The systems we considered in this work were the liquid mix-

tures of water and 1-alcohols, where we varied the alcohols between
methanol, ethanol, 1-propanol, and 1-butanol. The temperature and
the pressure were 298.15 K and 1 bar, if not stated otherwise.
Water and alcohols were modeled by the extended simple
point charge (SPC/E)24 and transferable potentials for phase
equilibria-united atom (TraPPE-UA)25 models, respectively. In the
TraPPE-UA model, the methyl and the methylene groups are treated
as united atoms. These molecular models are slightly modified
by placing a Lennard-Jones (LJ) core of 0.1 nm diameter on the
hydroxyl hydrogen atoms of both molecules.26 All the intramolec-
ular degrees are fixed to the stable geometry. In particular, the
dihedral angles of alcohols are 180○ (all-trans conformation).

In changing xA from 0 to 1 under the isothermal–isobaric con-
dition, the calculation was performed with the interval Δx = 0.01.
Suppose that the total number density and the solvation free energies
of both components are determined at xA = x − Δx. Then, Eq. (4) is
discretized as

2(ρT(x) − ρT(x − Δx))
ρT(x) + ρT(x − Δx)

+
1 − x + Δx

2
kBT

× [μSFE
W (ρT(x), x) − μSFE

W (ρT(x − Δx), x − Δx)]

+
x − Δx

2
kBT

⋅ [μSFE
A (ρT(x), x) − μSFE

A (ρT(x − Δx), x − Δx)] = 0,

(18)

and the total density at xA = x was determined by solving Eq. (18) in
an iterative way. The total number density at xA = 0 (neat water) was
set to be the experimental value, and the solvation free energy of the
alcohol was calculated therein in the infinite dilution limit.

III. RESULTS AND DISCUSSION
A. Mixing Gibbs energy and liquid–liquid
phase separation

The mixing Gibbs energies of four mixtures are shown in Fig. 1
as functions of the molar fraction of alcohol, xA. The results of
SC and GF are presented in Figs. 1(a) and 1(b), respectively. In
both cases, the mixing Gibbs energies of all the mixtures are larger
than the ideal one defined by the first term of the right-hand-
side of Eq. (7), and their value increases with increasing the alkyl
chain length of the alcohol, reflecting that the mixing of water with
more hydrophobic alcohol is thermodynamically less favorable. The
mixing Gibbs energies of the aqueous mixtures of methanol are a
convex function of xA using both expressions of the solvation free
energy, corresponding to the fact that these mixtures are miscible
at any composition. The mixing Gibbs energy of the butanol mix-
ture exhibits a concave region at intermediate xA, which is consistent
with the liquid–liquid phase separation of the mixture in the real sys-
tem. In the case of propanol, however, concave behavior is found in
the theoretical mixing Gibbs energies of both SC and GF, although

FIG. 1. Mixing Gibbs energies of the mixtures of water with methanol (red), ethanol
(blue), 1-propanol (green), and 1-butanol (purple). The results of SC and GF are
shown in panels (a) and (b), respectively, and the black dashed curves indicate the
ideal mixing Gibbs energy defined by the first term of the right-hand-side of Eq. (7).
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a real water + 1-propanol mixture is miscible at any composition. In
addition, a weak concave region is found in the mixing Gibbs energy
of water + ethanol mixture using the SC expression.

There are two possible reasons for the disagreement in the
phase behavior of water + 1-propanol mixture. One is the system-
atic error associated with the approximations introduced in RISM
theory, and the other is the insufficiency of the molecular model.
Idrissi and Jedlovszky calculated the mixing Helmholtz energies of
the mixtures of water with various alcohols.7 The results were depen-
dent on the molecular models of both water and alcohols, and the
mixing Helmholtz energy was sometimes positive in the case of
1-propanol. Therefore, we cannot judge, at present, which of the two
reasons are mainly responsible for the liquid–liquid phase separa-
tion of the water + 1-propanol mixture in Fig. 1, and we consider
that our theoretical method works qualitatively well, because it can
describe the demixing trend with increasing the alkyl chain length of
the alcohols.

The obtained mass densities of the four mixtures are shown as
a function of xA in Fig. 2. The results using the SC and GF expres-
sions of the solvation free energy are presented in Figs. 2(a) and 2(b),
respectively, and the experimental values are also plotted together
in the two panels for comparison.27–30 The theoretical densities are
larger than the experimental ones for all the mixtures. Because the

FIG. 2. Mass densities of the mixtures of water with methanol (red), ethanol (blue),
1-propanol (green), and 1-butanol (purple). The results using SC and GF expres-
sions of the solvation free energy are shown in panels a and b, respectively. The
theoretical and the experimental values are plotted with solid and dotted curves,
respectively. The experimental value of the water + 1-butanol mixture is missing
at 0.1 < xA < 0.5 due to the phase separation.

density is calculated by the integral from neat water, the error accu-
mulates with increasing xA, and the deviation from the experiment
amounts to 15%–20% for neat alcohols. These mass density values
are within the acceptable range of liquid density, but the deviation
is quantitatively unsatisfactory. Although we could not find any MD
simulation works on the densities of the alcohol + water mixtures
using TraPPE-UA and SPC/E models, to the best of our knowledge,
it has been reported that these models reproduce the experimental
densities of the neat liquids at the ambient temperature and pres-
sure well. The deviation is as small as 0.2% for the SPC/E model
of water,31 while the simulation densities of methanol and ethanol
are about 2%–3% lower than the experimental ones.32,33 Therefore,
the deviation is caused fully by the error in the solvation free energy
of the integral equation theory, and an improvement in the RISM
integral equation theory would be required for future work.

Comparing the results of SC and GF, the densities of GF are
closer to the experimental values than those of SC. In addition, GF
properly shows that water + ethanol mixture is miscible at any com-
position, whereas SC wrongly predicts phase separation. Therefore,
GF showed better performance than SC with respect to agreement
with the experiments, which also agrees with the work of Tanimoto
et al. that GF describes the hydration free energies of various solutes
better than SC.18 Further analyses are thus performed hereafter
based on the GF results.

Figure 3 shows the division of the mixing Gibbs energy due to
various contributions. According to Eq. (7), the mixing Gibbs energy
is described by the sum of three terms, named ideal, density, and
solvation terms, and the numerical result of the division is plotted
in Fig. 3(a). The ideal term is common to all the mixtures and is
always negative. The solvation terms of all the mixtures are posi-
tive, and their absolute value increases with increasing the alcohol
hydrophobicity. The variation of the mixing Gibbs energy with alco-
hol (Fig. 1) is ascribed to the solvation term. The absolute value of
the density term was smaller than those of other two terms, but its
contribution was not negligible. The density term works to stabilize
the mixture, and the stabilization becomes stronger as the size of the
alcohol increases.

The density term is further divided into the contributions of the
excess mixing volume and the size difference [Eq. (8)]. These terms
are plotted in Fig. 3(b) as a function of xA. The excess volume contri-
bution was almost zero, much smaller than that of the size difference.
The increase in stabilization due to the density term from methanol
to 1-butanol is thus ascribed to the increase in the molar volume of
neat liquid.

Because the density term depends solely on the densities of the
mixture and the neat liquids, it can be calculated from the exper-
imental density, and the numerical results are shown in Fig. 3(c).
The absolute value of the excess volume term from the experimental
density was larger than the theoretical one, because the decrease in
volume upon mixing was underestimated in the theoretical calcula-
tion. However, the size contribution dominated the density term in
all the mixtures, and the neglect of the excess volume term worked
well as a first approximation. The magnitude of the size contribution
from the theoretical density [Fig. 3(b)] was a little smaller than that
from the experimental density [Fig. 3(c)], which was attributed to
the overestimation of the densities of neat alcohols (Fig. 2).

Given the mixing Gibbs energy (Fig. 1), the compositions of
the phase boundary are determined by the two contact points of the

J. Chem. Phys. 157, 234502 (2022); doi: 10.1063/5.0131475 157, 234502-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 3. Divisions of the mixing Gibbs energies of the mixtures of water with
methanol (red), ethanol (blue), 1-propanol (green), and 1-butanol (purple).
In (a), the ideal term, which is common to all the mixtures, is plotted with a black
dashed line, whereas the solvation and the density terms are drawn assolid and
dotted lines, respectively. In (b), the density term is further divided into the excess
volume (solid) and size (dotted) terms. In (c), the density (solid), excess volume
(dotted), and size (dashed) terms are calculated using the experimental densities.

common tangential line, as is described in thermodynamics text-
books. However, one may find difficulty in drawing the common
tangential line for the water+ 1-butanol mixture, because the convex
behavior is not observed around xA = 0 at the scale of Fig. 1. Math-
ematically speaking, kBTxA ln xA in the first term of Eq. (7) should
dominate the mixing Gibbs energy in the limit of xA → 0, because
all the other terms are analytically around xA = 0, and the convex
region of the mixing Gibbs energy must be present in the very close
vicinity of xA = 0. In addition, it would also be difficult to deter-
mine the common tangential line for the water + ethanol mixture in
Fig. 1(a), because the concave behavior is very weak. Therefore, we
shall show an alternative graphical method to determine the phase
boundary.34

FIG. 4. The relation between chemical potentials of water and alcohols, μW and
μA, respectively, for the mixtures of water with methanol (red), ethanol (blue),
1-propanol (green), and 1-butanol (purple). The alcohol concentration increases
from the upper left corner to the lower right.

Figure 4 shows the relationship between μW and μA for all four
mixtures. For the plot of the absolute values of these chemical poten-
tials, we set μ0

W = μ0
A = 0 and ρ0 = 1 nm−3. The upper left and lower

right regions correspond to the water- and alcohol-rich regions,
respectively. The thermodynamic stability condition requires that
μW decreases and μA increases monotonically with increasing xA.
Therefore, a smooth variation of the chemical potentials is observed
for the methanol and ethanol cases, where the liquid–liquid phase
separation does not occur. By contrast, a knot is observed in cases of
1-propanol and 1-butanol. The phase boundary is then determined
by the crossing point of the knots, because the chemical potentials of
each component in both phases are equal there.

The thermodynamic consistency based on the requirement
of the Gibbs–Duhem relation does not include the consistency
between the thermodynamic quantities calculated from the solva-
tion free energy and those from the low-wavenumber limit of the
structure factor. The partial molar volume of each component can
be obtained based on Kirkwood–Buff theory, which describes the
long-wavelength limit of fluctuation in terms of thermodynamic
quantities,35,36 but its consistency with the derivative of the total
density (determined in the way described in Sec. II A) with respect
to composition is not guaranteed. Similarly, the concentration fluc-
tuation in the long-wavelength limit does not correspond to the
second derivative of the Gibbs energy calculated from the solva-
tion free energy. A converged solution of the RISM equation was
obtained by our numerical calculation in the composition region of
phase instability in which the long-range concentration fluctuations
should diverge. In a theoretical work of Wilson and Lee, the inte-
gral equation theory was applied to the binary mixture of a LJ fluid,
and the gas–liquid phase equilibrium was examined.37 By optimiz-
ing the adjustable parameters in a bridge function, they succeeded in
satisfying the relation between the long-wavelength density fluctua-
tions and the derivatives of both pressure and chemical potentials.
We consider that the extension of their theory to molecular liquids,
if possible, could be an improvement of our RISM treatment of the
liquid–liquid phase equilibrium.
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B. Thermodynamic inconsistency without
the Gibbs–Duhem relation

One of the novelties of our present work is the method for
determining the mixture density according to the Gibbs–Duhem
relation. If available, a simpler alternative would be to use the experi-
mental density of the mixture. Although the Gibbs–Duhem relation
must be satisfied by the theoretical calculation, free from approx-
imations using experimental density, the Gibbs–Duhem relation
does not hold, in general, due to the errors in the integral equa-
tion theory and the molecular model. Here, we demonstrate how
the breakdown of the Gibbs–Duhem relation affects the theoreti-
cal treatment of the phase equilibrium by performing a calculation
using the experimental density using the water + ethanol mixture as
an example.

The chemical potentials of both components, μA and μW , are
plotted in Fig. 5(a). Both values are smaller than the corresponding
ones calculated using the density from the Gibbs–Duhem relation,
particularly in the alcohol-rich region. The density determined using
the Gibbs–Duhem relation is larger than the experimental one (see
Fig. 2). Therefore, the smaller chemical potentials of both com-
ponents using experimental density can be ascribed to the smaller
packing fraction.

The Gibbs energy of the mixture was calculated using Eq. (5)
in both calculations. The Gibbs energy using the experimental den-
sity shows a clear convex behavior around xA ≃ 0.2, suggesting
a liquid–liquid phase separation. From the common tangent, the
compositions of the phase separation are roughly estimated to be
xA ≃ 0.01 and 0.8. According to Fig. 5(a), however, the chemical
potentials μA and μW are not equal at these two compositions, and
the chemical equilibrium does not hold between these two compo-
sitions. The apparent contradiction is because the Gibbs–Duhem
relation is not satisfied in the calculation using the experimen-
tal density. In other words, based on Eq. (2), the pressure in the
RISM calculation varies along the experimental density of isobaric
mixing.

Another demonstration of the breakdown of the Gibbs–Duhem
relation is the derivative of the Gibbs energy of the mixture with
respect to composition. According to the Gibbs–Duhem relation, the
derivative is related to the difference in the chemical potentials of the
two components as

1
ρTV

⋅
∂G
∂xA
= μA − μW. (19)

Both sides of Eq. (19) are compared in Fig. 5(c). The relation
is numerically confirmed when the density is determined based
on the Gibbs–Duhem relation, and it is not confirmed when the
experimental density is used in the calculation.

The numerical results shown in Fig. 5 emphasize the impor-
tance of the Gibbs–Duhem relation in discussing phase equilibria
based on the Gibbs energy obtained from the solvation free energy
of each component. The condition applies to methods based on the
solvation free energy, including those using molecular simulations—
not only to those based on integral equation theories. In order to sat-
isfy the Gibbs-Duhem relation, the density of the mixture must be
determined in a consistent way, with the combination of the molec-
ular model and the approximations for the free-energy calculation,
rather than using the experimental density.

FIG. 5. The results of calculations using experimental density (solid) and the den-
sity determined by the Gibbs–Duhem relation (dotted). (a) Chemical potentials of
water (blue) and ethanol (red). (b) Mixing Gibbs energy. (c) 1

ρT V
⋅
∂G
∂xA

(red) and

μA − μB (blue). In panel (c), the two dotted curves overlap.

IV. SUMMARY
A theoretical method is proposed for determining the thermo-

dynamic quantities and phase equilibria of liquid mixtures from the
solvation free energy of each component obtained using the integral
equation theory. The composition of the mixture was varied at con-
stant pressure, and the density could also be determined based on the
Gibbs–Duhem relation. The theoretical method was then applied to
mixtures of water + 1-alcohols, and we succeeded in reproducing
the destabilization of the mixture by increasing the hydrophobicity
of the alcohols from methanol to 1-butanol. By contrast, the theoret-
ical calculation overestimates the density in the alcohol-rich region,
and the spurious liquid–liquid phase separation is also observed
in the water + 1-propanol mixture. Therefore, we consider that
improvement of the RISM theory would be necessary, together with
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examination of the molecular models, to improve the agreement
between the calculated and measured values.
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