1	The Age-specific Normative Values of Standing Whole Body Sagittal Alignment Parameters in
2	Healthy Adults: Based on International Multicenter Data
3	
4	
5	ABSTRACT
6	Purpose: To investigate the age -specific normative values of whole body sagittal alignment
7	(WBSA) including global balance parameters in healthy adults and to clarify the correlations
8	among parameters based on the data from three international multicenter.
9	Methods: Three hundred and seventeen healthy subjects (range:20-84 y.o., mean:43.8 \pm 14.7
10	y.o.) were included and underwent whole body biplanar X-ray imaging system. Spinopelvic
11	parameters and knee flexion (KF), the center of acoustic meatus (CAM) -hip axis (HA), and C2
12	dentiform apophyse (OD)- HA, the cranial center (Cr)-HA were evaluated radiologically. Sub-
13	analysis for correlation analysis between age and parameters and among parameters were
14	performed to investigate age-specific change and compensatory mechanisms.
15	Results: For age-related change, C2-7 angle ($r = .326$ for male/.355 for female), KF (r
16	= .427/.429), and SVA ($r = .234/.507$) increased with age in both male and female group. For

1	global parameters related to the center of the gravity, correlations with age were not significant
2	(<i>r</i> = .120/.161 for OD-HA, <i>r</i> = .163/.275 for Cr-HA, <i>r</i> = .149/.262 for CAM-HA). Knee flexion
3	(KF) has correlation with global parameters (i.e. SVA, OD-HA, Cr-HA, CAM-HA) and doesn't
4	have correlations with local spinopelvic alignment.
5	Conclusion: While several local alignment changes with age were found, changes in global
6	parameters related to the center of gravity were kept relatively mild by the chain of
7	compensation mechanisms including the lower limbs. We showed the normative values for a
8	comprehensive WBSA in standing posture from large international healthy subjects' database.
9	
10	
11	Keywords:
12	Global balance, Sagittal balance, Normative values, Healthy subjects, Whole body alignment
13	
14	
15	

1 INTRODUCTION

2	Sagittal alignment of the spine is widely recognized as a primary subject for preoperative
3	planning for spine surgery and many studies have reported strong correlations between these
4	spinopelvic parameters and clinical symptoms [1-5]. Many studies have shown that spino-pelvic
5	parameters, such as the sagittal vertical axis (SVA), T1 pelvic angle (TPA), and spinosacral angle
6	(SSA) are associated with the clinical manifestations and clinical outcomes in patients with spinal
7	disorders [1-3, 5-8].
8	In addition, the center of acoustic meatus (CAM) and C2 dentiform apophyse (OD), which
9	are indices of the center of gravity of the head have been used in several studies for the purpose of
10	evaluating whole body balance in standing posture [9, 10]. The index of the center of gravity in the
11	standing posture is reported to be constant in healthy cohorts, and is kept constant by several
12	compensation mechanisms. For compensation in standing posture for imbalance due to spinal
13	malalignment, parameters out of the range of the cervical spine to the pelvis (e.g., hip, knee, and
14	ankle) are sometimes mobilized [11, 12]. This whole body sagittal alignment (WBSA) consists of
15	many chains of balance from the foot to the cranium, and changes with degeneration and other spinal
16	morbidities [1, 4, 13]. Several studies have reported relationships between parameters—including

1	parameters out of the spino-pelvic range—and clinical outcomes and quality of life [5]. Kim et al.[3]
2	described the CrSVA index, which is the distance between a vertical plumb line from the cranial
3	center and the hip, knee, and ankle, and these are predictors that reflect the postoperative clinical
4	outcome more strongly than the SVA in patients with cervical myelopathy. The lower limb
5	parameters are also important compensation mechanisms in patients to maintain the standing posture
6	in patients with spinal degeneration [5, 14, 15]. Several previous studies have reported that the
7	alignment of the whole body, including the lower extremities, varies with age [1, 16, 17]. Hence, we
8	believe that the clarification of the age-specific normal alignment values of global whole body
9	sagittal alignment and their mutual relationship are important for evaluating and understanding
10	pathological alignment and balance abnormalities.
11	Several studies have reported age-specific normative values and correlations of whole-
12	body sagittal parameters, including lower extremity alignment [1, 11, 18]. Le Huec and Hasegawa
13	[16] reported normative values for WBSA, including knee flexion, in an international study of 268
14	asymptomatic subjects. In addition, Lyer et al. [19] and reported age-specific normative values for
15	WBSA in a study analyzing 115 asymptomatic volunteers. However, these studies had a limitation in
16	that the cohorts were biased toward younger age groups or were enrolled at a single institution.

1	Therefore, an international multicenter study has been anticipated to determine the age-specific
2	normative WBSA values in healthy subjects, including older subjects, and it was necessary to
3	investigate the correlation between changes in each parameter in a cohort that included elderly
4	individuals, especially the relationship between age-related changes in compensation mechanisms of
5	the lower extremities and spinal parameters.
6	The current study aimed to comprehensively investigate age-specific WBSA parameters in
7	a healthy population, to determine the normative values of these parameters, and to clarify the
8	correlations among parameters based on international multicenter data.
9	
9 10	MATERIALS AND METHODS
9 10 11	MATERIALS AND METHODS We enrolled healthy subjects who were confirmed not to have any past and/or current
9 10 11 12	MATERIALS AND METHODS We enrolled healthy subjects who were confirmed not to have any past and/or current medical history of spinal disease with a questionnaire and the Oswestry Disability Index was
9 10 11 12 13	MATERIALS AND METHODS We enrolled healthy subjects who were confirmed not to have any past and/or current medical history of spinal disease with a questionnaire and the Oswestry Disability Index was obtained for evaluation of clinical complaints [20]. The ODI score values were compared to previous
9 10 11 12 13 14	MATERIALS AND METHODS We enrolled healthy subjects who were confirmed not to have any past and/or current medical history of spinal disease with a questionnaire and the Oswestry Disability Index was obtained for evaluation of clinical complaints [20]. The ODI score values were compared to previous reports and validated for treatment as a cohort of healthy subjects. Subjects with neurological disease
9 10 11 12 13 14	MATERIALS AND METHODS We enrolled healthy subjects who were confirmed not to have any past and/or current medical history of spinal disease with a questionnaire and the Oswestry Disability Index was obtained for evaluation of clinical complaints [20]. The ODI score values were compared to previous reports and validated for treatment as a cohort of healthy subjects. Subjects with neurological disease or with joint disease affecting assessment in the standing posture were not included in this survey.

1	Imaging, Paris, France). The examination posture was a "hands-on-cheek" posture in standing
2	horizontal viewing, and participants lightly touched their fingers and were instructed to relax as
3	much as possible during shooting.
4	This study was approved by the Institutional Review Board of each institution.
5	
6	Parameters of Whole Body Sagittal Alignment
7	Whole body sagittal alignment from cranio-cervical junction to knee joint was analyzed in
8	this study. The occipito-C2 angle (O-C2 angle: McGregor line-C2 endplate) and C2-7 lordotic angle
9	(C2 endplate-C7 caudal endplate) for the cranio-cervical region; the T1 slope for the cervico-
10	thoracic region; upper thoracic kyphosis (Upper TK: T1-4), Lower TK (T4-12), and Global TK (T1-
11	12) for thoracic kyphosis; upper lumbar lordosis (Upper LL: L1-L3), Lower LL (L4-S1), and Global
12	LL (L1-S1) for lumbar lordosis; sacral slope (SS), pelvic tilt (PT), pelvic incidence (PI), and pelvic
13	thickness for the pelvic region; average knee flexion (KF: average of left and right knee flexion
14	angles) for the lower extremities; the sagittal vertical axis (SVA), OD-HA angle (angle between a
15	vertical line and the line to the most superior point of dentiform apophyse of C2 to the center of the
16	femoral head), Cr-HA offset (the distance from the plumb line from the cranial center of mass to the

1	center of the femoral head), CAM-HA offset (the distance from the plumb line from the acoustic
2	meatus to the center of the femoral head), T1 pelvic angle (TPA), spino-sacral angle (SSA: the angle
3	between the sacral plate and the center of C7 to the midpoint of the sacral plate), sagittal vertical axis
4	(SVA), cranial sagittal vertical axis (CrSVA: the distance from the plumb line from the cranial center
5	of mass to the posterior edge of the sacral plate) for global alignment. The cranial center of mass was
6	defined as the midpoint of the nasion-inion line (root of the nose to the external occipital
7	protuberance) as past reported [3]. The pelvic thickness means the sacroacetabular distance (the
8	distance from the posterior edge of the sacral plate to the center of the femoral head) [21, 22].
9	Kyphosis and lordosis are defined as the angle between the upper endplate of a selected vertebra and
10	the lower endplate of another selected vertebra. The parameters measured in this study are shown in
11	Figure 1.
12	
13	Data Analysis
14	The SterEOS software program (SterEOS 1.6, Postural assessment workflow, EOS
15	Imaging) was used to measure the WBSA parameters.
16	We divided the subjects into three groups according to age (20s-30s, 40s-60s, \geq 60s) and

1	analyzed these results among age groups. As a sub-analysis of the study, to clarify differences in
2	parameters with age, we analyzed correlations between age and WBSA parameters by sex. Among
3	these parameters, SVA, OD-HA, Cr-HA, CAM-HA, TPA, and SSA were distinguished as global
4	parameters, and the mutual influence among each of the spinopelvic parameters and between
5	spinopelvic parameters and global parameters were investigated in a correlation analysis.
6	
7	Statistical Analysis
8	IBM SPSS Statistics version 23.0 (IBM Corp., Armonk, NY, USA) was used for the
9	statistical analyses. All values are expressed as the mean \pm standard deviation. Pearson's correlation
10	coefficient (r) was used to measure the strength of correlations between each parameter, and between
11	age and each parameter. The strength of the correlation between each parameter was described using
12	the absolute value of r (r =0.00-0.19: very weak, r =0.20-0.39: weak, r =0.40-0.59: moderate, r =0.60-
13	0.79: strong, and $r=0.80-1.0$: very strong). P values of <0.05 were considered statistically
14	significant.
15	

RESULTS

1 Study subjects

2	A total of 317 subjects from three cohorts were included in this study (Table 1), including
3	206 Japanese adults and 111 Caucasian adults. The average age of the subjects included in the
4	statistical analysis was 43.8 ± 14.7 years, 60.6% of the subjects were female (n=192), and the
5	average ODI score was 4.3 ± 6.2 . The ODI score values were compared to previous reports (5.1-
6	10.2) and were determined to be acceptable for treatment as a cohort of healthy subjects [10] [20].
7	
8	Parameters of WBSA
9	The results, including the mean and standard deviation of all measured parameters
10	according to age are reported in Table 2. The mean spinopelvic parameters were as follows: O-C2
11	angle, $15.9 \pm 8.1^{\circ}$; C2-7 lordotic angle, $1.3 \pm 12.6^{\circ}$; T1-slope, $22.7 \pm 8.4^{\circ}$; Upper TK, $11.1 \pm 6.3^{\circ}$;
12	Lower TK, $33.6 \pm 10.5^{\circ}$; Global TK, $40.5 \pm 10.8^{\circ}$; Upper LL, $11.3 \pm 10.5^{\circ}$; Lower LL, $35.2 \pm 7.1^{\circ}$;
13	Global LL, $54.1 \pm 11.5^{\circ}$; SS, $38.2 \pm 8.4^{\circ}$; PT, $12.6 \pm 7.6^{\circ}$; PI, $50.8 \pm 10.9^{\circ}$; and Pelvic thickness,
14	10.8 ± 0.9 cm. We also described the average values of the lower extremity and global parameters,
15	which were as follows: KF, -0.8 \pm 5.5°; SVA, -0.2 \pm 2.6 cm; OD-HA, -9.9 \pm 20.6°; Cr-HA, -1.7 \pm 2.9
16	cm; CAM-HA, -2.1 \pm 3.0 cm; TPA, 8.0 \pm 7.6°; SSA, 129.1 \pm 17.2°; and CrSVA, 2.1 \pm 2.6 cm.

1	
2	Correlation between Age and Parameters
3	In both males and females, weak or moderate correlations were found in spinopelvic
4	parameters (i.e. C2-7 lordotic angle [male: r=0.326, P=0.000; female: r=0.355, P=0.000], T1 slope
5	[male: <i>r</i> =0.242, <i>P</i> =0.007; female: <i>r</i> =0.279, <i>P</i> =0.000], and KF [male: <i>r</i> =0.427, <i>P</i> =0.000; female:
6	<i>r</i> =0.429, <i>P</i> =0.000]). SVA (male: <i>r</i> =0.234, <i>P</i> =0.009; female: <i>r</i> =0.507, <i>P</i> =0.000) also showed a weak
7	correlation in males and a moderate correlation in females. Meanwhile, other global parameters (i.e.,
8	Cr-HA [<i>r</i> =0.275, <i>P</i> =0.000], CAM-HA [<i>r</i> =0.262, <i>P</i> =0.000], and TPA [<i>r</i> =0.442, <i>P</i> =0.000]) only
9	showed a correlation with age in females. Age-related changes in pelvic parameters (i.e., PT
10	[<i>r</i> =0.357, <i>P</i> =0.000], PI [<i>r</i> =0.236, <i>P</i> =0.001] and Pelvic thickness [<i>r</i> = -0.316, <i>P</i> =0.000]) were only
11	observed in females. We found that the ODI score was weakly correlated with age in both males and
12	females. The correlation between age and each parameter is shown in Table 3.
13	
14	Correlation among parameters
15	The results of the analysis of correlation between spinopelvic parameters, and between
16	spinopelvic parameters and global parameters are summarized in Table 4. A very strong positive

1	correlation (r=0.80-1.0) was seen between T1 slope and Global TK (r=0.800, P=0.000), Lower TK
2	and Global TK (<i>r</i> =0.833, <i>P</i> =0.000), Global LL and SS (<i>r</i> =0.817, <i>P</i> =0.000), and PT and TPA
3	(r=0.914, P=0.000). A strong positive correlation (r=0.60-0.79) was seen between the C2-7 lordotic
4	angle and T1 slope (r=0.658, P=0.000), T1 slope and Lower TK (r=0.627, P=0.000), Upper LL, and
5	Global LL (<i>r</i> =0.649, <i>P</i> =0.000), SS and PI (<i>r</i> =0.714, <i>P</i> =0.000), PT and PI (<i>r</i> =0.638, <i>P</i> =0.000), and
6	PI and TPA (<i>r</i> =0.636, <i>P</i> =0.000).
7	
8	DISCUSSION
9	This is the first multicenter international study to evaluate age-specific WBSA in a cohort
10	that included older subjects. This study presents the normative values for whole body alignment,
11	including lower limb and balance parameters, by age and sex in a healthy population and the
12	correlations among them.
13	Standing posture is made up of a chain of balance starting from the foot to the cranium.
14	Humans change their respective variable alignment and chain, keeping the center of gravity balance
15	within the range of the cone of economy with the minimum effort of the muscles and taking the
16	standing horizontal view posture[10, 23]. Amabile et al. [9] reported the constancy of CAM-HA and

1	OD-HA while cervical lordosis, PT, PI and SVA showed compensatory change in elderly people in a
2	study that compared asymptomatic young and elderly people. Even in the asymptomatic population,
3	the parameters that make up balance vary with age, but compensation for local alignment is provided
4	to equalize global balance parameters to maintain standing whole-body balance [9, 13, 16, 18]. If
5	spinal degeneration advances and eventually reaches a level that is outside the range of
6	compensation, and a collapse of global balance occurs, then the health-related quality of life
7	(HRQOL) declines [1, 2, 5-7, 24]. Hasegawa et al. [5] conducted a cluster analysis of three groups
8	with different compensatory status in WBSA (normal, compensated, and decompensated) and
9	reported differences in compensatory parameters among them and the association between the
10	compensatory status and the HRQOL score. The motivation of the current research is to investigate
11	the change of each parameter involved in the compensatory function for standing posture with age
12	and the correlations among the parameters. With the introduction of a new scanning X-ray imaging
13	system, the evaluation of comprehensive parameters, including head to feet, became possible with
14	low radiation exposure and high accuracy and several studies using this technique have reported the
15	parameters asymptomatic subjects [1, 10, 15, 18, 25]; however, such studies seem to have relatively
16	small study populations or include an age bias. The strengths of this study are that it included data

1	with unified standards from a large population with less age group bias and that a comprehensive
2	evaluation from the head to the lower extremities was conducted.
3	Regarding the spinopelvic parameters, the results of the present study were comparable to
4	values previously reported in the relevant literature [1, 9, 13, 18, 26]. The analysis of parameters
5	correlated with age, revealed that OD-HA, Cr-HA and CAM-HA were constant. Age was showed a
6	weak positive correlation with OD-HA and CAM-HA in female subjects but not male subjects. The
7	sex differences in this study may be due to a lack of statistical power due insufficiency of the elderly
8	age group in the male population. Age-related changes were observed in several parameters, even in
9	the asymptomatic healthy cohort. In both male and female group, age-related change was shown in
10	C2-7 lordotic angle, T1 slope, KF and SVA. Compensatory changes of local alignment in cervical
11	and lower extremities occur to maintain horizontal gaze in standing posture. Age-related changes in
12	cervical lordosis, TPA, SVA and increasing LL, pelvic anteversion and KF have been described in
13	previous reports [1, 9, 13, 18], which are almost compatible with the results of this study. The
14	cervical spine is one of the most variable compensation mechanisms [27, 28].
15	Interestingly, age-related changes in pelvic parameters, including PT and PI pelvic
16	thickness, were observed in females, and this tendency was not statistically significant in the males

1	in this study population, while these pelvic parameters have been often treated as an inherent value
2	of individuals. Vialle et al. [29] reported differences between male and female in PT, and Yukawa et
3	al. [13] reported that there was a significant difference of PT between male and female in the elderly
4	group. We hypothesized that the mechanism of degeneration of the sacroiliac joint differs between
5	males and females. Although the event considered to have had the most influence is pregnancy or
6	delivery [30], unfortunately the data of the present study did not include information on factors
7	affecting pelvic parameters, such as pregnancy history; thus, further investigation is necessary in the
8	future.
9	The analysis of correlation between parameters showed "strong" or greater correlations
10	between adjacent parameters, such as C2-7 lordotic angle and T1 slope, T1 slope and Global TK,
11	and Global LL and SS. Cervical spine alignment is the most substantial compensation mechanism
12	for maintaining the horizontal view because the viewpoint exists in the head [27, 28]. For this
13	reason, it is conceivable that T1 slope is strongly correlated with C2-7. Roussouly et al. [31] stated
14	that the inflection point located on the L1 level on average and the characteristics of lumbar lordosis
15	
15	are highly dependent on the orientation of the sacral slope and the pelvis as a result of studies of

1	lordosis, thoracic kyphosis, and lumbar lordosis, and a standing posture with minimum muscle effort
2	is maintained by the chain of each variable of spinal alignment. Despite numerous reports that state
3	that increased PT (i.e., retroversion of the pelvis) is an important compensatory parameter in
4	populations with spinal degeneration [7, 8, 12, 23], this study did not show any strong correlation
5	between PT and the parameters from the cervical spine to the lumbar spine. Similar findings were
6	found for KF. Parameters of the lower extremities, including the hip joint and knee joint are also
7	involved in compensation mechanisms in patients with sagittal imbalance [11, 12, 32]; it is
8	considered that mobilizing the compensation mechanism of pelvic retroversion or the lower limb,
9	including KF is a balancing mechanism for the entire spine rather than responding to certain local
10	alignment changes. As evidence to support this, KF was found to be correlated with almost all global
11	parameters (i.e., SVA, OD-HA, Cr-HA, CAM-HA, TPA, CrSVA).
12	The present study was associated with some limitations. First, this was a cross-sectional
13	study. In order to consider changes due to age, a longitudinal study should be conducted that
14	observes the same group. It is not strictly clear whether changes in parameters or group-specific
15	differences were due to age or occurred in the different age groups. However, it is impractical to
16	observe a large number of people over the long term using the same measurement methods. In

1	addition, the small number of cases in the elderly group could have resulted in statistical under-
2	power in the analysis of this study. Further studies with different designs are needed to infer the
3	process of spinal balance failure and to suggest factors in sagittal alignment that may cause the
4	exacerbation of imbalance.
5	Another limitation of the present study is that enrolled population included several races.
6	Le Huec et al. reported that pelvic parameters (PT, PT, SS) were comparable in comparative studies
7	of Caucasian and Japanese subjects; however, the data showed that LL, TK, KF differed between the
8	race groups [16]. The standard values shown in this study may be slightly erroneous when the same
9	values are applied to different races without adjustment. To address this problem, studies that include
10	larger subjects or a more homogeneous group of subjects are needed. However, we believe that the
11	correlation of these parameters that was shown in the present study will be useful for understanding
12	the compensation mechanism.
13	CONCLUSIONS
14	We showed the normative values for comprehensive whole body sagittal alignment in a
15	standing posture based on a large asymptomatic population database. In both men and women, C2-7,
16	T1 slope, KF, and SVA increased with age. In females but not males, age-related changes were found

1	in pelvic parameters, including PT, PI and pelvic thickness. There is strong correlation between
2	adjacent sagittal spinal parameters and KF, which was more associated with global parameters than
3	local spinopelvic alignment. From the findings in the healthy population, several local alignment
4	changes were found to occur with age, while changes in global parameters related to the center of
5	gravity were kept relatively mild by the chain of compensation mechanisms, including the lower
6	limbs.
7	
8	

1 References

2

3 1. Hasegawa K, Okamoto M, Hatsushikano S, Shimoda H, Ono M, Watanabe K (2016) 4 Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality 5 of life in a cohort of healthy adult subjects. Eur Spine J 25:3675-3686. doi: 10.1007/s00586-6 016-4702-2 7 2. Protopsaltis T, Schwab F, Bronsard N, Smith JS, Klineberg E, Mundis G, Ryan DJ, Hostin 8 R, Hart R, Burton D (2014) The T1 pelvic angle, a novel radiographic measure of global 9 sagittal deformity, accounts for both spinal inclination and pelvic tilt and correlates with 10 health-related quality of life. JBJS 96:1631-1640 11 3. Kim YC, Lenke LG, Lee SJ, Gum JL, Wilartratsami S, Blanke KM (2017) The cranial

12 sagittal vertical axis (CrSVA) is a better radiographic measure to predict clinical outcomes in

13 adult spinal deformity surgery than the C7 SVA: a monocentric study. Eur Spine J 26:2167-

14 2175. doi: 10.1007/s00586-016-4757-0

15 4. Le Huec JC, Faundez A, Dominguez D, Hoffmeyer P, Aunoble S (2015) Evidence showing

16 the relationship between sagittal balance and clinical outcomes in surgical treatment of

degenerative spinal diseases: a literature review. Int Orthop 39:87-95. doi: 10.1007/s00264014-2516-6

- 19 5. Hasegawa K, Okamoto M, Hatsushikano S, Watanabe K, Ohashi M, Vital J-M, Dubousset
- 20 J (2020) Compensation for standing posture by whole-body sagittal alignment in relation to
- 21 health-related quality of life. The Bone & Joint Journal 102:1359-1367

22 6. Harroud A, Labelle H, Joncas J, Mac-Thiong JM (2013) Global sagittal alignment and

- 23 health-related quality of life in lumbosacral spondylolisthesis. Eur Spine J 22:849-856. doi:
- 24 10.1007/s00586-012-2591-6
- 25 7. Schwab F, Lafage V, Patel A, Farcy J-P (2009) Sagittal plane considerations and the pelvis
- 26 in the adult patient. Spine 34:1828-1833
- 27 8. Takemoto M, Boissiere L, Novoa F, Vital JM, Pellise F, Perez-Grueso FJ, Kleinstuck F,

28 Acaroglu ER, Alanay A, Obeid I, Obeid I (2016) Sagittal malalignment has a significant

- 29 association with postoperative leg pain in adult spinal deformity patients. Eur Spine J
- 30 25:2442-2451. doi: 10.1007/s00586-016-4616-z
- 31 9. Amabile C, Le Huec JC, Skalli W (2018) Invariance of head-pelvis alignment and

- 1 compensatory mechanisms for asymptomatic adults older than 49 years. Eur Spine J 27:458-
- 2 466. doi: 10.1007/s00586-016-4830-8
- 3 10. Hasegawa K, Okamoto M, Hatsushikano S, Shimoda H, Ono M, Homma T, Watanabe K
- 4 (2017) Standing sagittal alignment of the whole axial skeleton with reference to the gravity
- 5 line in humans. J Anat 230:619-630. doi: 10.1111/joa.12586
- 6 11. Obeid I, Hauger O, Aunoble S, Bourghli A, Pellet N, Vital J-M (2011) Global analysis of
- 7 sagittal spinal alignment in major deformities: correlation between lack of lumbar lordosis
- 8 and flexion of the knee. European spine journal 20:681
- 9 12. Jalai CM, Cruz DL, Diebo BG, Poorman G, Lafage R, Bess S, Ramchandran S, Day LM,
- 10 Vira S, Liabaud B, Henry JK, Schwab FJ, Lafage V, Passias PG (2017) Full-Body Analysis of
- 11 Age-Adjusted Alignment in Adult Spinal Deformity Patients and Lower-Limb Compensation.
- 12 Spine (Phila Pa 1976) 42:653-661. doi: 10.1097/BRS.000000000001863
- 13 13. Yukawa Y, Kato F, Suda K, Yamagata M, Ueta T, Yoshida M (2018) Normative data for
- 14 parameters of sagittal spinal alignment in healthy subjects: an analysis of gender specific
- 15 differences and changes with aging in 626 asymptomatic individuals. Eur Spine J 27:426-
- 16 432. doi: 10.1007/s00586-016-4807-7
- 17 14. Barrey C, Roussouly P, Perrin G, Le Huec JC (2011) Sagittal balance disorders in severe
- degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20 Suppl
 5:626-633. doi: 10.1007/s00586-011-1930-3
- 20 15. Lazennec JY, Folinais D, Bendaya S, Rousseau MA, Pour AE (2016) The global alignment
- 21 in patients with lumbar spinal stenosis: our experience using the EOS full-body images.
- 22 European journal of orthopaedic surgery & traumatology : orthopedie traumatologie 26:713-
- 23 724. doi: 10.1007/s00590-016-1833-4
- 24 16. Le Huec JC, Hasegawa K (2016) Normative values for the spine shape parameters using
- 25 3D standing analysis from a database of 268 asymptomatic Caucasian and Japanese subjects.
- 26 Eur Spine J 25:3630-3637. doi: 10.1007/s00586-016-4485-5
- 27 17. Yukawa Y, Kato F, Suda K, Yamagata M, Ueta T, Yoshida M (2018) Normative data for
- 28 parameters of sagittal spinal alignment in healthy subjects: an analysis of gender specific
- 29 differences and changes with aging in 626 asymptomatic individuals. European Spine
- 30 Journal 27:426-432
- 31 18. Iyer S, Lenke LG, Nemani VM, Albert TJ, Sides BA, Metz LN, Cunningham ME, Kim HJ
- 32 (2016) Variations in sagittal alignment parameters based on age: a prospective study of
- 33 asymptomatic volunteers using full-body radiographs. Spine 41:1826-1836

- 1 19. Iyer S, Lenke LG, Nemani VM, Albert TJ, Sides BA, Metz LN, Cunningham ME, Kim HJ
- 2 (2016) Variations in Sagittal Alignment Parameters Based on Age: A Prospective Study of
- 3 Asymptomatic Volunteers Using Full-Body Radiographs. Spine (Phila Pa 1976) 41:1826-1836.
- 4 doi: 10.1097/BRS.00000000001642
- 5 20. Fairbank JC, Pynsent PB (2000) The Oswestry disability index. Spine 25:2940-2953
- 6 21. Duval-Beaupere G, Schmidt C, Cosson P (1992) A Barycentremetric study of the sagittal
- 7 shape of spine and pelvis: the conditions required for an economic standing position. Annals
- 8 of biomedical engineering 20:451-462
- 9 22. Tardieu C, Hasegawa K, Haeusler M (2017) How Did the Pelvis and Vertebral Column
- 10 Become a Functional Unit during the Transition from Occasional to Permanent Bipedalism?
- 11 Anatomical record (Hoboken, NJ : 2007) 300:912-931. doi: 10.1002/ar.23577
- 12 23. Le Huec JC, Saddiki R, Franke J, Rigal J, Aunoble S (2011) Equilibrium of the human
- body and the gravity line: the basics. Eur Spine J 20 Suppl 5:558-563. doi: 10.1007/s00586-
- 14 011-1939-7
- 15 24. Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR (2005) Correlation of
 radiographic parameters and clinical symptoms in adult scoliosis. Spine 30:682-688
- 17 25. Glaser DA, Doan J, Newton PO (2012) Comparison of 3-dimensional spinal reconstruction
- 18 accuracy: biplanar radiographs with EOS versus computed tomography. Spine (Phila Pa
- 19 1976) 37:1391-1397. doi: 10.1097/BRS.0b013e3182518a15
- 20 26. Amabile C, Pillet H, Lafage V, Barrey C, Vital JM, Skalli W (2016) A new quasi-invariant
- 21 parameter characterizing the postural alignment of young asymptomatic adults. Eur Spine
- 22 J 25:3666-3674. doi: 10.1007/s00586-016-4552-y
- 23 27. Le Huec J, Demezon H, Aunoble S (2015) Sagittal parameters of global cervical balance
- 24 using EOS imaging: normative values from a prospective cohort of asymptomatic volunteers.
- 25 European Spine Journal 24:63-71
- 26 28. Yoshida G, Alzakri A, Pointillart V, Boissiere L, Obeid I, Matsuyama Y, Vital JM, Gille O
- 27 (2017) Global Spinal Alignment in Patients with Cervical Spondylotic Myelopathy. Spine
- 28 29. Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P (2005) Radiographic
- 29 Analysis of the Sagittal Alignment and Balance of the Spine in Asymptomatic Subjects. JBJS
- 30 87:260-267. doi: 10.2106/jbjs.D.02043
- 30. Garagiola DM, Tarver RD, Gibson L, Rogers RE, Wass JL (1989) Anatomic changes in the
- 32 pelvis after uncomplicated vaginal delivery: a CT study on 14 women. American Journal of
- 33 Roentgenology 153:1239-1241

1 31. Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the Normal 2 Variation in the Sagittal Alignment of the Human Lumbar Spine and Pelvis in the Standing 3 Position. Spine 30:346-353. doi: 10.1097/01.brs.0000152379.54463.65 4 32. Ferrero E, Liabaud B, Challier V, Lafage R, Diebo BG, Vira S, Liu S, Vital JM, 5 Ilharreborde B, Protopsaltis TS, Errico TJ, Schwab FJ, Lafage V (2016) Role of pelvic 6 translation and lower-extremity compensation to maintain gravity line position in spinal 7 deformity. J Neurosurg Spine 24:436-446. doi: 10.3171/2015.5.SPINE14989 8

9

10

1 Figure legends

- 3 Figure 1. Spinopelvic parameters and whole body sagittal alignment parameters
- 4

2

	Total Sample		Coh	ort 1	Coh	ort 2	Cohort 3		
Characteristics	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
No. of subjects	3	17	1	06	1	00	111		
Race			Mong	goloid	Mong	goloid	Caucasian		
Age (years)	43.8	14.7	52.6	12.3	39.4	12.1	39.2	15.2	
Female, n (%)	le, n (%) 192 (60.6)		76 (*	71.7)	63 (63.0)	53 (47.7)		
ODI score	4.3	6.2	8.0	7.4	4.3	5.4	0.7	2.2	

1 Table 1. Baseline characteristics of healthy subjects from the three cohorts

4 Table 2. The mean and standard deviation of all measured parameters according to age group

	To	otal	Male Female															
			Total (n=125)	20s-30s	s (n=62)	40s-50s	s (n=45)	≥60s (n=18)		Total (n=192)		20s-30s (n=74)		40s-50s (n=84)		≥60s (n=34)
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
O-C2 angle (°)	15.9	8.1	15.6	7.6	15.3	6.6	16.3	8.1	14.8	9.8	16.1	8.4	17.1	9.9	15.6	7.3	15.2	7.8
C2-7 lordotic angle (°)	1.3	12.6	3.8	12.0	1.2	10.1	4.0	12.6	12.1	13.5	-0.4	12.8	-3.7	12.7	-1.2	10.8	8.8	13.7
T1-slope (°)	22.7	8.4	24.9	8.4	23.8	7.1	24.7	9.5	29.4	8.8	21.3	8.1	19.5	6.8	20.9	7.9	25.9	9.8
Upper (T1-4) TK (°)	11.1	6.3	13.0	6.6	12.6	6.1	12.5	7.1	15.4	6.9	9.8	5.8	10.7	4.8	9.7	5.9	8.1	7.1
Lower (T4-12) TK (°)	33.6	10.5	35.2	10.4	35.2	9.1	34.5	11.7	37.1	11.4	32.5	10.5	31.3	9.1	30.3	9.6	40.5	12.0
Global (T1-12) TK (°)	40.5	10.8	43.5	11.4	43.1	9.1	42.2	13.4	48.0	12.4	38.6	10.0	38.5	8.7	36.5	10.3	43.9	10.2
Upper (L1-3) LL (°)	11.3	10.5	11.8	10.5	13.3	10.4	11.1	10.1	8.1	11.0	11.0	10.6	11.9	9.6	10.6	10.8	9.9	12.1
Lower (L4-S1) LL (°)	35.2	7.1	36.4	6.1	37.4	5.4	35.1	6.9	36.4	6.4	34.4	7.6	36.0	7.1	32.7	7.3	35.1	8.9
Global(L1-S1) LL (°)	54.1	11.5	55.1	11.8	56.6	10.3	54.5	12.3	51.4	14.7	53.4	11.3	55.5	10.1	52.1	12.2	52.1	11.2
SS (°)	38.2	8.4	38.1	8.9	38.9	8.4	37.9	9.6	36.4	9.1	38.2	8.1	38.2	8.0	38.3	8.4	37.6	7.6
PT (°)	12.6	7.6	11.4	6.8	10.2	6.2	13.0	7.6	11.9	6.6	13.4	8.0	10.4	6.8	14.8	7.8	16.4	9.2
PI (°)	50.8	10.9	49.6	10.4	49.1	10.4	50.8	10.7	48.1	9.5	51.6	11.2	48.7	10.1	53.1	12.0	54.0	10.3
Pelvic thickness (cm)	10.8	0.9	10.6	1.0	10.6	0.8	10.6	0.8	10.9	1.9	10.8	0.7	11.1	0.7	10.8	0.7	10.5	0.7
Knee flexion (°)	-0.8	5.5	0.5	4.8	-1.7	4.5	2.1	4.1	3.8	4.2	-1.6	5.7	-4.5	5.5	-0.5	4.3	1.8	6.3
SVA (cm)	-0.2	2.6	-0.5	2.4	-1.0	2.1	-0.3	2.2	0.7	3.1	-0.1	2.8	-1.5	1.9	0.3	2.3	2.2	3.6
OD-HA (°)	-9.9	20.6	-10.1	20.4	-12.7	23.3	-8.5	17.1	-5.0	16.2	-9.9	20.8	-15.2	23.6	-6.2	16.5	-7.2	22.0
Cr-HA (cm)	-1.7	2.9	-1.7	2.8	-2.2	2.4	-1.5	2.7	-0.7	4.1	-1.7	2.9	-2.5	2.7	-1.5	2.4	-0.1	3.7
CAM-HA (cm)	-2.1	3.0	-2.2	3.0	-2.6	2.7	-2.2	2.6	-0.8	4.6	-2.1	3.0	-2.9	2.8	-1.9	2.6	-0.6	3.6
TPA (°)	8.0	7.6	6.7	6.2	5.7	6.0	7.8	6.7	7.7	5.0	8.8	8.2	5.1	6.3	10.2	7.9	13.2	9.6
SSA (°)	129.1	17.2	130.5	8.0	131.6	7.7	130.4	8.4	127.2	7.7	128.1	21.1	131.5	8.5	129.4	8.1	117.5	45.9
CrSVA (cm)	2.1	2.6	1.8	2.4	1.6	1.8	1.8	2.5	2.5	3.9	2.2	2.7	1.4	1.8	2.3	2.4	4.0	3.8
ODI score	4.3	6.2	2.8	4.5	1.7	3.8	3.6	4.7	4.4	5.3	5.3	6.9	2.2	4.3	6.9	7.2	8.1	8.3

7 Table 3. Correlation between age and whole body sagittal alignment parameters

		O-C2 angle	C2-7 lordotic angle	T1-slope	Upper TK (T1-4)	Lower TK (T4-12)	Global TK (T1-12)	Upper LL (L1-3)	Lower LL (L4-S1)	Global LL (L1-S1)	SS	PT
Mala	r	.020	.326	.242	.152	.055	.147	166	146	181	155	.176
iviaic	Р	.822	.000	.007	.091	.543	.103	.065	.105	.043	.084	.050
Female	r	108	.355	.279	163	.244	.137	062	061	139	031	.357
remaie	Р	.137	.000	.000	.024	.001	.058	.396	.401	.054	.672	.000
		PI	Pelvic thickness	KneeFlex	SVA	OD-HA	Cr-HA	CAM-HA	TPA	SSA	CrSVA	ODI score
Mala	r	020	.062	.427	.234	.120	.163	.149	.169	233	.117	.241
iviaic	Р	.824	.491	.000	.009	.182	.072	.098	.060	.009	.198	.007
Famala	r	.236	316	.429	.507	.161	.275	.262	.442	173	.349	.302
remaie	Р	.001	.000	.000	.000	.026	.000	.000	.000	.016	.000	.000

		O-C2 angle	C2-7 lordotic angle	T1-slope	Upper TK (T1-4)	Lower TK (T4-12)	Global TK (T1- 12)	Upper LL (L1-3)	Lower LL (L4-S1)	Global LL (L1-S1)	SS	РТ	PI	Pelvic thickness	Average Knee flexion
C2-7 lordotic angle	r	470													
C2-7 Ioluotie algie	Р	.000													
T1-slope	r	061	.658												
11 stope	Р	.280	.000												Error Knce flexion r r ry weak 0.00-0.19 weak 0.20-0.39 strong 0.8059 strong 0.80-
Upper TK (T1-4)	r	.008	.241	.513										very weak	0.00-0.19
opper m (m)	Р	.881	.000	.000										weak	0.20-0.39
Lower TK (T4-12)	r	107	.493	.627	042									moderate	0.40-0.59
Eowa IR (I+12)	Р	.057	.000	.000	.457									strong	0.60-0.79
Global TK (T1 12)	r	100	.582	.800	.392	.833								Pelvic thickness Average Knee flexion Image: Constraint of the second strong Image: Constraint of the second out on the second strong Image: Constraint of the second out on the second strong Image: Constraint of the second strong Image: Constraint of the second out on the second strong Image: Constraint of the second out on the second sec	
Global IK (11-12)	Р	.075	.000	.000	.000	.000									
Upper I.I. (I.I.3)	r	137	.136	092	103	.284	.242							Pelvic thickness Average Knee flexion r 0.00-0.19 weak 0.20-0.39 moderate 0.40-0.59 strong 0.60-0.79 very strong 0.80- very strong 0.80- - -	
opper EE (E1-5)	Р	.015	.016	.103	.068	.000	.000								
Lower II (I 4 S1)	r	072	.126	.073	051	.305	.277	.038							
E0wci EE (E4-31)	Р	.198	.024	.193	.363	.000	.000	.505						Pelvic thickness Average Knee flexion r r very weak 0.00-0.19 weak 0.20-0.39 moderate 0.40-0.59 strong 0.60-0.79 very strong 0.80- very strong 0.900 030 .000 .040 .000 .136 .106 .0402 .000	
Clobal II. (I 1 S1)	r	099	.045	.000	016	.431	.407	.649	.538						
Global LE (E1-31)	Р	.080	.429	.996	.770	.000	.000	.000	.000						
66	r	024	064	071	.012	.126	.116	.444	.426	.817				399 300 224 .156	
	Р	.664	.257	.210	.832	.025	.040	.000	.000	.000					
DT	r	052	.162	.059	093	051	070	.049	244	153	082]		080	
P I	Р	.355	.004	.292	.097	.366	.211	.381	.000	.006	.144				
DI	r	056	.066	012	057	.063	.041	.378	.158	.525	.714	.638			
PI	Р	.319	.242	.831	.309	.261	.463	.000	.005	.000	.000	.000			
D 1 1 411	r	.102	162	024	.110	120	068	227	205	306	319	213	399		
Peivic thickness	Р	.069	.004	.670	.051	.032	.225	.000	.000	.000	.000	.000	.000	9 0 7080	
K G .	r	048	.177	.228	.057	.064	.075	140	116	155	068	.198	.087	080	
Knee flexion	Р	.398	.002	.000	.313	.254	.180	.012	.039	.006	.225	.000	.124	.156	ĺ
01/4	r	037	.347	.433	091	.189	.078	074	286	230	.018	.342	.255	136	.327
SVA	Р	.517	.000	.000	.107	.001	.163	.187	.000	.000	.749	.000	.000	.015	.000
OD UA	r	.131	092	.270	.149	.016	.040	414	209	183	005	077	058	.056	.247
OD-HA	Р	.019	.103	.000	.008	.773	.476	.000	.000	.001	.924	.172	.301	.320	.000
C 114	r	.136	.091	.411	.016	.191	.141	188	101	136	.048	156	073	058	.306
Cr-HA	Р	.016	.109	.000	.778	.001	.012	.001	.074	.016	.396	.006	.199	.307	.000
CANCINA	r	.170	.074	.438	.037	.217	.168	187	108	114	.096	158	037	046	.285
САМ-НА	Р	.002	.192	.000	.515	.000	.003	.001	.054	.042	.088	.005	.516	.415	.000
TDA	r	052	.221	.166	128	.014	053	.068	293	162	008	.914	.636	254	.251
IPA	Р	.352	.000	.003	.022	.800	.351	.227	.000	.004	.888	.000	.000	.000	.000
004	r	.028	119	070	.024	.058	.067	.153	.286	.401	.399	177	.184	136	106
SSA	Р	.622	.034	.212	.673	.301	.232	.007	.000	.000	.000	.002	.001	.016	.060
	r	.019	.107	.368	044	.186	.125	121	147	230	093	.190	.062	047	.328
CrSVA	Р	.742	.057	.000	.433	.001	.026	.032	.009	.000	.098	.001	.274	.402	.000

1 Table 4. Correlation among whole body sagittal alignment parameters