GLOBAL VARIATION IN ATMOSPHERIC ELECTRIC FIELD ON THE SEA SURFACE

Masumi TAKAGI and Masahiro KANADA

Abstract

An analysis of the global nature of atmospheric electric field on the ocean is presented on the basis of measurement on the research vessel, Hakuho-Maru. The daily averages of electric field ranging 50 to 140 v/m give a latitude dependence, that they are higher as much as 25 % in high latitude than in low latitude, in spite of widely dispersed values. On the other hand, the diurnal course of electric field displays more or less a typical variation in phase with the thunderstorm activity integrated over the entire globe. Some changes in the hours that give the maximum field in daily courses, when they are averaged for every 10 degrees latitude section, seem to suggest the regional effect due to the distance from thunderstorm areas acting as the generator of global atmospheric electrical circuit.

1. Introduction

It is a well known observational result that the atmospheric electric field on the sea surface displays a diurnal variation almost in phase with the thunderstorm activity accumulated all over the world. From this fact the existence of a global electric current circuit has been assumed, which starts from thunderclouds mainly distributed in the tropical zone, passes through the upper conductive atmosphere and terminates at the fair weather ground and sea surface. Out of the hypothetical global circuit, we could easily bring two factors, which would have an effect on the intensities of fair weather atmospheric electric field in different locations on the earth ; first the geographical distribution of thunderstorms as the generators of global circuit, and second the latitude dependence of electric conductivity in the upper atmosphere related to the ionization by cosmic ray. In recent years we have confirmed the typical diurnal variation of the atmospheric electric field on the neighboring sea of Japan (Takagi and Kanada, 1969), and have had a further opportunity to measure it on the Mid- and South-Pacific Ocean. The present paper is to report an analysis of

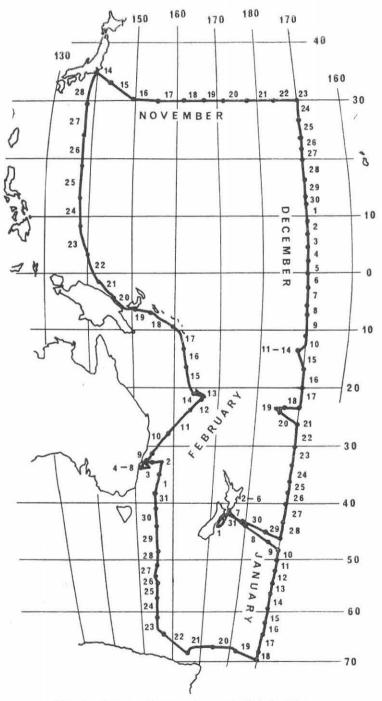
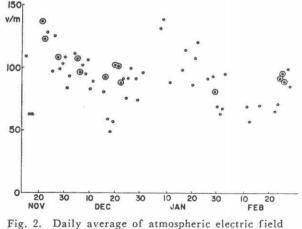
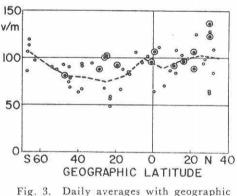



Fig. 1. Course of research vessel, Hakuho-Maru. Numbers along the course indicate the dates,

the universal variation in atmospheric electric field on the basis of the measurement with a mill type field meter on the research vessel, Hakuho-Maru, of the Ocean Research Institute, University of Tokyo. The cruise reached to 70°S in the Antarctic Ocean as shown in the course map, Fig. 1. It was very suitable for investigating the latitude dependence of atmospheric electricity. The measurement on a vessel would be essential to know the natural properties of atmospheric electricity by minimizing the effect of land pollution, although it would involve difficult problems of space charge originating from the sea surface and of electrode effect (Blanchard, 1966; Mühleisen, 1961; Takagi and Kanada, 1969). To approach to the general elucidation of atmospheric electricity on the sea, several kinds of measurements have been done at the same time on Hakuho-Maru on air-earth current density, atmospheric electric conductivity and mobility spectrum of small ions in addition to atmospheric electric field. These measurements are still being processed and will be reported in a near future.


2. Latitude dependence of atmospheric electric field

The measurement of electric field was carried out over whole period of the cruise, which amounted to 110 days from November 14, 1968 through March 3, 1969. The cruise was generally favored by fair weather in its earlier half, when the vessel took almost all parts of the longitudinal route along 170°W. In the later half that coincided in part with the First Intensification Interval of the Atmospheric Electricity Ten-Year Program, the weather was not always desirable and the route that the vessel took was often too close to islands where atmosphere had a possibility to be affected by pollution from the land.

with the progress of cruise.

Fig. 2 illustrates how the daily averages of atmospheric electric field go with the progress of cruise. The values at such days were excluded from the figure, as the atmosphere seemed to be disturbed over more than 12 hours by meteorological reason such as precipitation as well as by land pollution. Double circles in the figure indicate the values in especially good weather, when the blue sky or partly cloudy sky had continued all day. Although Fig. 2, even only on double circles, shows much fluctuation day by day in the daily averages, the arrangement of daily averages in the whole are recognized as to take W-like pattern during the course. This might correspond to the location of the vessel moving from the northern hemisphere down to the southern high latitude and then coming back. Fig. 3 is the correspondence of the daily averages to the geographic latitude. There seems, in spite of considerable dispersion, to be a tendency that the daily averages in higher latitude are larger than those in lower latitude in both hemispheres. The mean values in every 10 degrees section are shown by connecting them with a dashed line. The difference

latitude.

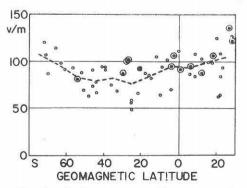


Fig. 4. Daily averages with geomagnetic latitude,

with a dashed line. The difference of intensities amounts to 25 %. It gives the similar result to the rather old analyses by Rough (1941) and Gish (1942), excepting that the latitude giving the lowest field is not the equator but around 20° S.

The latitude effect of electric field has been explained by the difference in the conductivity of vertical column guiding electric current from the upper conducting layer to the earth surface. The ionization that makes atmosphere conductive is mainly attributed to cosmic ray not only in the upper atmosphere but also on the ocean surface, where no ionization would be expected from radioactive substance in the earth Thus it would be more reacrust. sonable to plot the daily values with geomagnetic latitude as shown in Fig. 4. But the step does not seem to bring a significant improvement in the distribution. The latitude that gives the lowest field values is further shifted to around 25°S in geomagnetic. The disaccord of the latitude of lowest field with the equator may correlate to the annual variation of electric field

in the global scale. According to the statistical treatment of atmospheric electric field at number of stations in northern hemisphere as well as in southern hemisphere, the annual course of the field involves 16 % variation related to the alteration of warm and cold seasons, that is high in winter and low in summer (Paramonov, 1950). The annual effect undoubtedly moves the latitude giving the lowest level toward the south in the season of our observation.

3. Diurnal variation of atmospheric electric field

In Fig. 5 the diurnal variations averaged in every 10 degrees geographic latitude section and for whole period of cruise are illustrated. In the figure, dots are mean levels for every hour and the curve in solid line is calculated out from these dots by using the method of harmonic analysis as far as two components of diurnal and semi-diurnal variations are concerned. Table 1 also shows the results of calculation. The periods taken up as fair weather for the analysis are about 3 to 7 days in accumulation for each latitude section, which are found in the last column in Table 1.

The pattern of diurnal variations has the maximum around 14 to 19 UT and the minimum around 02 to 08 UT, which could be considered as representing a global characteristic. As well known, the pattern almost coincides with that of thunder-In the season of our measurement, we storm area integrated over the whole globe. could assume that the active regions of thunderstorm were roughly concentrated into three active centers around 10°S, 120°E in South-East Asia, 10°S, 30°E in South Africa and 10°S, 60°W in South America. Since the storms usually take the maximum in activity at 14 to 18 hours local time, the effects of the three active centers appear around 06 to 10, 12 to 16 and 18 to 22 UT, respectively. The three centers are arranged successively 90 degrees apart in longitude, and the effects of them appear with intervals of 6 hours. The daily course of atmospheric electric field would mainly be affected by the changes of the three centers. If the three centers would have the same magnitude of contribution to the electric field, the maximum in the diurnal variation would come out at 14 UT, the middle point of the three hourly periods of storm activity, and the two maximums for the semi-diurnal variation at 08 and 20 UT, coinciding with each center of the two activities on both sides. Usually the contribution from South-East Asia is smaller than the other two, so that the maximum in diurnal course would be shifted to later hours than 14 UT. For the semi-diurnal variation, South-East Asia and South America are in the same phase, while South Africa is in the inverse phase with the former two. So the maximums will come out at 08 and 20 UT or at 02 and 14 UT according to the magnitude of contribution from the three centers.

Following Table 1 the time of maximum in diurnal variation is later in northern

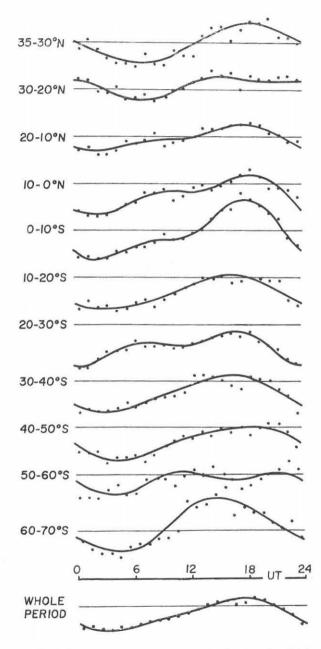


Fig. 5. Diurnal variation of atmospheric electric field in every 10 degrees latitude section and for whole period of measurement. Straight horizontal line in every section is the level of 100 v/m, and intervals of successive levels are equivalent to 50 v/m.

Geographic	Daily	Diurnal	variation	Semi-diur	No. of		
latitude	average v/m	Amplitude v/m	Time of max. h UT	Amplitude v/m		of max. UT	fair-weathe days
35-30 N	99.1	20.2	18.7	1.4	4.9,	16.9	5.3
30-20 N	104.1	10.7	18.8	4.9	1.4,	13.4	5.6
20-10 N	98.3	12.0	16.2	5.0	6.8,	18.8	5.7
10-0 N	89.0	16.6	16.3	8.4	7.7,	19.7	4.3
0-10 S	97.5	27.0	16.9	11.0	6.7,	18.7	4.1
10-20 S	84.0	17.6	16.1	1.6	6.0,	18.0	4.3
20-30 S	76.2	12.6	14.1	8.5	6.0,	18.0	6,6
30-40 S	86.6	19.5	15.5	2.2	6.1,	18.1	7.2
40-50 S	84.5	17.2	17.4	3.7	8.9,	20.9	6.0
50-60 S	92.9	8.5	15.9	6.7	9.9,	21.9	2.7
60-70 S	104.4	28.0	15.7	4.2	10.4,	22.4	4.5
Whole period	90.3	15.6	16.4	3.0	7.0,	19.0	56.4

Table 1. Daily course of atmospheric electric field in every 10 degrees latitude section and for whole period of measurement.

hemisphere than in southern hemisphere, and is the earliest around 20 to 30°S. On the other hand, the time of maximums in semi-diurnal variation is earlier in northern hemisphere, whereas excluding high latitude in northern hemisphere it is the earliest around 20 to 30°S then goes later toward both higher latitudes. The tendency is similar to that in the diurnal variation. As a possibility to explain the tendency, we could consider the distance from the three centers. In a recent paper, Anderson (1969) reported that the effect of thunderstorms as a generator of global atmospheric electricity might not perfectly be propagated to the opposite hemisphere. The tendency found in the time of maximums in Table 1 just seems to suggest the effect of distance to South-East Asia, because the bigger contribution from South-East Asia would give the earlier time of maximum. In the present cruise, the distance to South-East Asia from the vessel was ranged 20 to 80 degrees (2200 to 9000 km), and the measurements were done always in the same hemisphere as South-East Asia. Fig. 6 shows the correlation between the distance and the ratio of the mean level during 06 to 10 UT, when the effects of storms in South-East Asia would appear, to the daily average. Dots in the figure are so widely scattered that we cannot say any definite conclusion in this respect. The other two storm centers in South Africa and South America were ranged 100 to 160 degrees, and 90 to 160 degrees, respectively, being always in opposite hemisphere. We again find no reliable effect of

distance in these two storm centers. To make the point clear, it would be desirable to compare the measurements done in other districts on the globe on the same day. We would expect to take a step to compare our results to the data obtained in the Antarctica and the Atlantic Ocean during the First Intensification Interval of Atmospheric Electricity Ten-Year Program.

Acknowledgement — We wish to express our thanks to Prof. S. Horibe and the staffs of the Ocean Research Institute, University of Tokyo for giving us an opportunity to make our measurements possible on the research vessel, Hakuho-Maru.

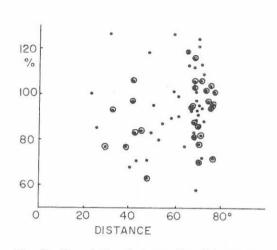


Fig. 6. Correlation between the distance to South-East Asia and the mean level during 06 to 10 UT. The mean level is represented by the ratio to the daily average to minimize the latitude effect.

References

- Anderson, R. V.: Universal Diurnal Variations in Air-Earth Current Density. J. Geophys. Res. 74, 1697 (1969)
- Blanchard, D.: Positive Space Charge from the Sea. J. Atmosp. Sci. 23, 507 (1966)
- Gish, O. H.: Further Evidence of a Latitude Effect in Potential Gradient. Terr. Mag. Atm. Elect. 47, 323 (1942)
- Mühleisen, R.: Electrode Effect Measurements above the Sea. J. Atm. Terr. Phys. 20, 79 (1961)
- Paramonov, N. A.: On the Annual Variation of the Atmospheric Electric Potential Gradient. Dokladi, Akademya Nauk USSR, 71, 39 (1950)
- Rough, J.: Observations du champ electrique de l'atmosphere dans l'ocean Atlantique et dans l'ocean Pacifique. Ann. Inst. Phys. Globe, Univ. Paris, 19, 96 (1941)
- Takagi, M. and M. Kanada : Preliminary observation of Atmospheric Electric Field on the Sea Surface. Proc. Res. Inst. Atmosp., Nagoya Univ. 16, 169 (1969)

Appendix

Atmospheric Electricity Surface Observations

Hourly Means of Electric Field

Expressed in Volts/meter

Station: Research Vessel, Hakuho-Maru on the Mid- and South-Pacific Ocean

Period : November 14, 1968 to March 3, 1969

HOUR UT 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 DAILY LOCATION DATE AVERAGE AT NOON NOV 1968

14														190	200	205										35N	140E
15	70	75	80	85	105	105	75	105			165	145			150	145									109	32	146
16				60	55	55				60	65	65	65	60	65	65	65	65	70	65	65	70	65	60	63	30	152
17	60	55	50	55	45	50	55	55	55	55	55	60	65	65	75	65	75	75	85	85	75	70	65	65	63	30	158
18	55	85	75	75	75	80	65																			30	165
19												35	35	40	35	40	45									30	168
20																								110		30	175
21	110	105	105	105	100	90	95	100	95	95	95	105	115	140	140	165	185	200	225	220	230	155	175	145	137	30N	179W
22	175	195	155	115	95	85	85	90	85	95			130												123	30	173
23	110	125	125	125	120	120	120	120	130																128	30	170
24											110	100														28	170
24 25			90	85	85	85	90	105	85	95	90	90	100	90	100	100	100	90	110	95	90	90	100	90	93	26	170
26	95	105	105	105	110	110	110	120	120	125	130	130	135	145	140	140	145	140	135	140	140	135	120	115	125	23	170
27	110	95	90	105	95	90	105	100	100	95	105	110	125	130	140	130	130	110	110	110	105	100	100	90	107	21	170
28	80	80	75	85	95	100	95	110	110				100												99	18	170
29	95	90	90	90	105	95	95		120				110											100	103	15	170
30	85	90	90	85	85	105	105	110	110	110	110	110	115	125	130	115	120	125	125	130	115	110	90	90	108	12	170

HOUR UT DATE	0 - 1	- 2	- 3	- 4		5 - 6	5 - 1	7 - 8	3 - 9) -10) -1	1 -12	2 -1	3 -14	1 -15	5 -1	5 -1'	7 -18	3 -19) -20) -21	-22	-23	5 -24	DAILY AVERAGE	1000	ATION NOON	
DEC 19	68																											
l	85	95	75	65	65	85	85	85	90	80	85	75	75	85	85	90	95	90	95	90	85	85	85		84	12N	170W	
2 3 4 5		60	60			80			100	90	90	90	85	90	90	85				105	85	95	95	90	87	9	170	
5					70	85	105	115	130	120	105	115	120	130	120	1/25	110	110	120	120	120	110	105	90	111	63	170 170	
5	80	95	85	85	90		85	80	85	100	85	90	95	110	110	115	130	150	155	150	120	135	120		107	í	170	
6	95	90	90			100	85	80	75	90	85		90	95	100	105	110	135	130	115	110	105	75	65	96	15	170	
7	75	70	65	70	85	80 80	80		80 90	80 90	85	95	105	115	125	140	135	145						100	102	3	170	
8 9	85	80 105	85 100	90 90	85 105		80	135		125	105	100	100	95	100			100		125		130	95	90 90	95 106	69	170 170	
10	75	70	65	70			85		80	80	85		100		100		90	90			++)	1)0	85		83		171	
11 12 13	65	70	65	70	70	65	70			90	105	105	105	100	110	110									86	13S AP	172W IA	
14															201200	100 100 000						5275253	and the second					
15 16	65	65	70	80	80	75	75	75	65	70 85	70 90	80 95						110 120			85 90	70 90	70 80	70 65	88 93	16 19	171	
17	0)	0)	10	85	75	75	80	70	65	50	50	50	60	70	70			65	55	50	45	40	30	25	95 59	23	170 170	
18	30	30	35	45	50	50	55	45	40	45	45	40	45	45	45	45		60	65		70	60	65	65	49	23	173	
19	50	45	55	60	60		70		65	70	50		55	65	65		2.45				50	50	45	40	57	23	176	
20	50	55	70	80	90	90	90	95	100	110	110	110	110	110	125	135	145	135	130	130	135	105	80	70	103	25	173	
21	65	85	85	85	85	75				105											105		95	85	101		170W	
22	80	70	75	70	80		95		90	95				100	90		90		105	85	85	90 80	80	70	88	29	170	
23 24	80 65	90 60	90 65	95 65	100	105 70	110 75	120 70	105 80	90 85	70 80	90 75	80 85	90 85	100 85	90 75	80 75	90 70	95 80	90 85	105 85	80	70 80	70 65	91 75	32 35	170 170	
25	70	75	70	70	70	80	70	10000	85		115			135	1000					110	105	95	90	70	91	38	170	
26	55	65	65	75	70	70	60	80	85	85	105	100	105	120	120	125	115	125	135	120	95	105	115	70	94	38	170	
27	65	80	85	70	-		-	75	-	105	00				110	105	1.05	110	1.00	05	105	0.0	00	-	07	42	170	
28 29	70	70	70	55	70 65		70 65			105 70	90 75	80	75	85		105		110	100	95	105	90	90	75	91 74	45 46	170 172	
30	10	10	10	65	70		70		0)	10	12	00	85	75		105		95				65		65	78	44	178	
31	55	50	45	30	55	0	10-C		80	85	85	90	85		4350		107	-1997						1.4.8		42S	176E	

DALL																									AVENAGE	AL	NOON
1 2 3	1969																									WE	174E LL- GTON
4 5 6 7 8 9 10	145	130	135	130	135	135	155				110	100	105	105	110	110	105 85		70			155		145 65			177E 177W 170 170
11 12 13 14	60 90		80 65	65 110 85 70	70 140 85 70	75 75 85	80 75 85		85 140	90 130				105	105	90	85	90 80	100 75	95		105	95	100	88	54 56 58	170W 170 170 170
15 16 17 18	95	75 110		85 95	70 95	100	100		85 70 110 105	70 100	90	105 115	105 125		130	120				125			105 120	105	98 114	60 63 66 69	170 170 170 170
19 20		60	55	50	45	55	65	65	45	65			125	135	140	130	125	105	100	105	95			70	86	69 67	172 180
21 22 23 24 25 26	80 95	70 90	100	70 85		110		110	125	130	125		150		150				130	125	125	120	105	105	107 120	665 66 63 60 56	170E 162 155 155 155
26 27					75	80	80	65	70	75	85	85	85	95	110	110	105						130	110	91	54 51	155 155
28 29 30 31	30 85 70	75	40 70	50 70 30	50 65 35		45 50 40	105 45 50 45	110 50 70 50	65 65		110 70	C. C	120 85	70 110 85 80	110	75 110 85	110 80	105 80					60	93 81 69 63	48 47 44 40	155 155 155 155

HOUR UT 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 DAILY LOCATION DATE

HOUR U DATE	FT 0 -	- 1	- 2	- 3	- 4	- 5	5 - 6	- 7	- 8	- 9	-10) -11	12	-13	5 -14	+ -1;	5 -10	5 -17	7 -18	3 -19	9 -20) -2	1 -22	2 -23	-24	DAILY AVERAGE	LOCATION AT NOON
FEB 123456789	1969 (65	60	60 55	60 50	65 55	75 60	70 60	70 60	75 60	70 80	75 65	65 115	130	140	145	130	125	120	130	130	135	115	60 120	55 65	67 95	38S 155E 33 156 33 152 SYDNEY
6 7 9																											
9 10															70	85	80				70	70			55		33S 152E 29 156
11 12 13 14		50	50 50										75 55	85	85	85	85	75	70			70	65	50	50	68	26S 161E 23 166 NOUMEA
14 15 16 17 18			110 65	85 65	65 65	65 55	65	65	65	65	65	65	70	70	70	55	65	65	65	70				40	60 30	67	218 165E 17 162 11 161 8 157
19 20	1	40	35	30	35	45	50	65	55	55)0		6 151 6 148
21 22 23 24 25 26 27 28	16	50 50 70 30 55 30	50 50 60 90 80 145 80	50 50 65 85 70 110 70	50 50 65 90 70 65	50 65 85 80 140 65	55 60 65 90 70 110 50	65 60 70 85 70 90 60	65 75 90 70 85 65	65 70 90 65 70 55	65 70 90 65 60	65 65 100 65 80 65	65 85		80 85 105 110 90 85 125	110 85 110	125 105 90 85	120 105 95 95	105 105 55	110		65 85 115 95 105	65 80 105 95 130	90	60 65 70 105 85 180 80	65 71 92 96 89 99 84	3S 144E 1N 141E 6 139 11 138 16 138 22 138 27 138 32 138
MAR 1 2 3	1969																										TOKYO

-10 -12 -12 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 DAILY LOCATION HOUR -