Title: Do heel-unloading orthoses improve clinical outcomes in patients after surgical treatment of calcaneal fracture? A propensity-matched, multicenter analysis of the TRON database

Author names: Yujiro Kagami¹ MD, Katsuhiro Tokutake² MD, PhD, Yasuhiko Takegami¹ MD, PhD, Nobuyuki Okui³ MD, PhD, Tadahiro Sakai⁴ MD, PhD, Hidenori Inoue⁵ MD, PhD, Tokumi Kanemura⁶ MD, PhD, Masahiro Hanabayashi⁷ MD, PhD, Osamu Ito⁸ MD, PhD, Yasuhide Kanayama⁹ MD, PhD, Koji Maruyama¹⁰ MD, PhD, Hiroaki Yoshida¹¹ MD, Toshihiro Ando¹² MD, PhD, Ryosuke Sugimoto¹ MD, Takuya Sugimoto¹ MD, Shiro Imagama¹ MD, PhD

¹Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan

²Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan

³Department of Orthopedic Surgery, Yokkaichi Municipal Hospital, Yokkaichi, Japan ⁴Department of Orthopedic Surgery, TOYOTA Memorial Hospital, Toyota, Japan ⁵Department of Orthopedic Surgery, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan

⁶Department of Orthopedic Surgery, Konan Kosei Hospital, Konan, Japan

⁷Department of Orthopedic Surgery, Ichinomiya Municipal Hospital, Ichinomiya, Japan

⁸Department of Orthopedic Surgery, Nishichita General Hospital, Tokai, Japan

⁹Department of Orthopedic Surgery, Toyota Kosei Hospital, Toyota, Japan

¹⁰Department of Orthopedic Surgery, Nakatsugawa Municipal General Hospital,

Nakatsugawa, Japan

¹¹Department of Orthopedic Surgery, Kamiiida Daiichi General Hospital, Nagoya, Japan

¹²Department of Orthopedic Surgery, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Japan

Corresponding author: Katsuhiro Tokutake, MD, PhD

Department of Hand Surgery, Nagoya University Graduate School of Medicine,

65 Tsurumai, Shouwa-ku, Nagoya, Aichi 466-8550, Japan

Telephone: +81-52-744-2957; Fax: +81-52-744-2964

E-mail: <u>k.tokutake@med.nagoya-u.ac.jp</u>

Consent to participate (include appropriate statements): Informed consent was obtained in the form of opt-out on the web-site.

Conflicts of Interest and Source of Funding: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Review Committee Statement: This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Nagoya University Graduate School of Medicine (Date November 15th, 20 /No. 2020-0550).

The number of figures and tables: 4 Tables and 3 figures

1	Do heel-unloading orthoses improve clinical outcomes in patients after surgical
2	treatment of calcaneal fracture? A propensity-matched, multicenter analysis of the
3	TRON database.
4	
5	Abstract
6	
7	Background: Postoperative protocols after surgical treatment of calcaneal fracture have
8	not been standardized to date. There are only a few reports on the efficacy of heel-
9	unloading orthoses (HUOs) (Mars shoe, Graffin orthosis), and its efficacy is uncertain.
10	
11	Objectives: The purpose of this study was to compare postoperative radiologic and
12	clinical outcomes in patients with calcaneal fractures who used Graffin orthosis.
13	
14	
15	Study design: Multicenter retrospective study
16	
17	Methods: We finally extracted 182 patients from a database of the Trauma Research
18	Group of (TRON) and divided them into two groups: Group C (underwent

19	casting or splinting only), and Group O (Graffin orthosis was used). A propensity score
20	algorithm was used to match group C to group O in a 1:1 ratio. We evaluated American
21	Orthopaedic Foot and Ankle Society (AOFAS) score at three and six months after
22	surgery and at final follow-up. Differences in reduction of the Böhler angle between the
23	two groups were evaluated radiographically. All data were analyzed with a <i>t</i> -test or
24	Fisher's exact test. P < 0.05 was considered statistically significant.
25	
26	Results: In Group C vs. Group O, The AOFAS score three months after surgery in
27	Group O was significantly higher than that in Group C (69.57 vs. 77.22; P=0.004).
28	However, there were no statistically significant differences between Group C versus
29	Group O in AOFAS scores at six months after surgery and at final follow-up (81.92 vs.
30	85.67 and 89.18 vs. 88.13; P=0.087 and 0.597, respectively). There was no significant
31	statistical difference in the reduction of the Böhler angle (5.07 vs. 5.89; P=0.529).
32	
33	Conclusion: At three months postoperatively, the orthosis group showed predominantly
34	better functional results. We believe that HUO are useful for patients who require an
35	early return to work and to daily life.
36	

38 Background

Calcaneal fractures comprise 2% of all fractures and account for approximately 60% of 39 all tarsal injuries.¹ Recent meta-analyses suggested that surgery is associated with a 40 higher likelihood of resuming pre-injury work and reaching a higher level of physical 41 function and fewer problems in daily life compared to conservative treatment.² 42 43 Various methods of treatment for calcaneus fractures have been described including 44 non-surgical treatment and open reduction internal fixation by using a dedicated plate or canulated cancellous screw.³ 45 46 To date, postoperative protocols after calcaneus fracture surgery have not been standardized. A previous study suggested immobilization with a splint or cast for up to 47 six weeks postoperatively, after which partial weight bearing should be started.⁴ In 48 contrast, other studies indicated that early weight bearing after surgery has no 49 50 deleterious effect on clinical and radiologic outcomes of comminuted calcaneal fractures. Moreover, functional evaluations showed good values of American 51 Orthopaedic Foot and Ankle Society (AOFAS) scores.^{5,6} Thus, early physical activity 52 53 following a calcaneal fracture may be one of the key factors affecting the quality of life and ability to return to work.⁷ 54

55	Graffin in France published a method of resecting the lower surface of the
56	calcaneus, which is the posterior $2/3$ of the calcaneus, in a short leg walking cast ⁸ Heel-
57	unloading orthoses (HUOs) including the Settner shoe, Mars shoe, München shoe, and
58	Graffin orthosis in Japan (Figure 1) make patients with calcaneus fractures walk after
59	surgery by shifting the load to the forefoot and midfoot and achieve early
60	mobilization. ^{9–12} A prior study also reported that the heel-unloading brace for calcaneal
61	fracture improved the range of motion (ROM) of the ankle joint. ¹³ However, few studies
62	have validated the efficacy and biomechanics of the Graffin orthosis after surgery.
63	This study aimed to evaluate only the use of the Graffin orthosis after calcaneal
64	fracture surgery and not the biomechanics of this orthosis by propensity-matched
65	analysis in a multicenter study.
66	
66 67	Methods
	Methods Study Design and Setting
67	
67 68	Study Design and Setting
67 68 69	Study Design and Setting This multicenter, retrospective study was approved by the ethics commission at each

73	participating in the database are all associated with the Department of Orthopedic
74	Surgery of , and surgeries are performed by multiple orthopedic
75	surgeons at each hospital. We collected cases of calcaneal fractures from this database
76	that were treated surgically.
77	Participants
78	We extracted 271 patients with calcaneal fracture undergoing surgery between
79	January 2014 and March 2019. We excluded patients who could not be followed up for
80	more than 3 months, had calcaneal avulsion fractures of the insertion of the Achilles
81	tendon and fracture of the sustentaculum tali, used a different orthosis, and had missing
82	data. Finally, 169 patients were included in this study (Figure 2). Backgrounds and
83	operative procedures of the patients are described in Table 1.
84	We divided the subjects into two groups: Group C, which underwent conventional
85	postoperative casting or splinting and did not use Graffin orthoses after the operation,
86	and Group O, which used Graffin orthoses after postoperative swelling improved. To
87	adjust for baseline differences between the two groups, a propensity score algorithm
88	was used to match Group C to Group O in a 1:1 ratio of 55 cases in each group.
89	Propensity score matching is a well-validated statistical technique that creates
90	comparable groups and allows for accurate assessment of treatment effect. Patients were

91	matched for age, sex, body mass index (BMI), smoking history, diabetes mellitus, non-
92	union, infection, fracture type (Sanders classification), operation (plate, canulated
93	cancellous screw, pinning), and injury mechanism ¹⁴ (Figure 2). The demographic data
94	of the patients are summarized in Table 2. There were patients with multiple fractures in
95	both groups: Group C: lumbar vertebrae 4, distal radius 4, pelvis 2, distal femur 1, distal
96	phalanx 1, tarsus 3, and distal tibia 1; Group O: lumbar vertebrae 2, distal radius 2,
97	pelvis 2, distal femur 1, and tarsus 1.
98	Surgical treatment
99	All patients were placed in the supine, lateral, or prone position. We used spinal
100	anesthesia or regional nerve block. Orthopedic surgeons conducted all operative
101	procedures and decided how to perform postoperative management. ^{14,15} A full-thickness
102	L-shaped lateral incision or sinus tarsi approach was used. Stabilization was obtained
103	with a plate (The Locking Calcaneal Plate, DePuy Synthes, USA or VariAx Foot
104	locking plate system, Stryker, USA) and titanium screws or with titanium cannulated
105	cancellous screws (4.0-6.5-mm diameter, DePuy Synthes or MEIRA, Japan). To
106	achieve reduction in the percutaneous surgeries, stabilization was obtained with 2-3-
107	mm K-wires.

108 Follow-Up Routine

109	All patients received antibiotics for 1–3 days after the surgery according to hospital
110	protocol. A splint or cast was applied to all patients to reduce postoperative swelling. In
111	both groups, patients were basically immobilized in a cast or splint for 2 weeks after
112	surgery. However, some patients required immobilization for 2-4 weeks depending on
113	the condition of the wound and type of surgery. The cast or splint applied
114	immobilization below the knee. We custom-measured and made these orthoses for each
115	patient. The Graffin orthosis was used to relieve the load on the calcaneus. The patients
116	in Group O did not wear the Graffin orthosis except during gait training.
117	Patients in both groups started with ROM exercises (plantarflexion and dorsiflexion
118	of the ankle joint) as soon as possible depending on the condition of the wound and the
119	stability of the fracture. At the start of ROM, we confirmed that there was no
120	abnormality in the patient's pain or radiographic findings. Partial weight bearing was
121	begun after approval of the physician. The amount of weight bearing was gradually
122	increased to full weight bearing in response to the patient's pain. Pins in patients with
123	pinning were removed around 4-8 weeks after confirming good callus and fracture
124	union on radiographs.

Clinical assessment and evaluation of postoperative management and complications

126	We evaluated AOFAS scores at three and six months after surgery and at final follow-
127	up to assess functional outcome during the follow-up period (supplemental table 1). To
128	evaluate the condition of postoperative management in both groups, we compared the
129	time from the date of surgery to the start of the ROM training, that to the start of partial
130	weight bearing, and that to the start of full weight bearing. We also compared wound
131	dehiscence, nonunion, neurapraxia, pulmonary embolism, and peroneal tendon
132	dislocation as complications.
133	Radiographical evaluation
134	Radiographic data were obtained by reading the radiographic computerized images,
135	available in the computer system of each institution. The radiographic evaluation
136	comprised the analysis of conventional radiographs, including lateral and Harris axial
137	views in the preoperative, postoperative, and follow-up periods, and preoperative
138	computed tomography scans (2- to 3-mm slice thickness, multiplanar reconstruction) to
139	evaluate fracture type. The fractures were classified according to the Essex-Lopresti
140	classification (tongue type or joint depression type) ¹⁵ and Sanders classification. ¹⁴ Each
141	measurement was made twice at a two-week interval by one orthopedic surgeon at each
142	hospital, and the final measurement was the average of the two values. Intraobserver
143	reliability for a single orthopedic surgeon (KY) at his hospital was measured using

144	intraclass correlation coefficient (ICC). Intraobserver reliability was found to be good
145	for the Böhler angle (ICC=0.931).
146	Statistical Analysis
147	Categorical data were compared between the two groups using Fisher's exact test, and a
148	<i>t</i> -test was used for continuous variables. To assume sample size using power analysis,
149	we used the results based on previous study, which suggested a 4.5-point difference in
150	AOFAS score. The standard deviation was 7.9 ¹⁶ This resulted in 49 patients in each
151	group. All statistical tests were performed using EZR software version 1.40 (Jichi
152	Medical School, Tochigi, Japan) with the significance level set at $P < 0.05$. ¹⁷
153	
153 154	Results
	Results AOFAS score
154	
154 155	AOFAS score
154 155 156	AOFAS score There was a statistically significant difference between Group C versus Group O in the
154 155 156 157	AOFAS score There was a statistically significant difference between Group C versus Group O in the AOFAS scores at 3 months after surgery (69.57 vs. 77.22; P=0.004). However, there
154 155 156 157 158	AOFAS score There was a statistically significant difference between Group C versus Group O in the AOFAS scores at 3 months after surgery (69.57 vs. 77.22; P=0.004). However, there were no significant differences between the two groups in the AOFAS scores at 6
154 155 156 157 158 159	AOFAS score There was a statistically significant difference between Group C versus Group O in the AOFAS scores at 3 months after surgery (69.57 vs. 77.22; P=0.004). However, there were no significant differences between the two groups in the AOFAS scores at 6 months after surgery and at the final follow-up (9 months to 1 year) (81.92 vs. 85.67

162	scores for Pain and	l Maximum	walking	distance in	bloc	ks were	signific	antly	higl	ner	in
-----	---------------------	-----------	---------	-------------	------	---------	----------	-------	------	-----	----

- 163 Group O than those in Group C (5.07 vs. 5.89; P=0.529), but the degree of improvement
- in AOFAS from 3 months was less in Group O than in Group C.
- 165 *Radiographical evaluation, postoperative care, and complications*
- 166 The day on which ROM exercise started was significantly earlier in Group O than
- 167 Group C (Table 4). There was no statistical difference between the two groups for the
- 168 day on which partial weight-bearing and full weight-bearing started and in the decrease
- 169 of the Böhler angle. One fibular tendon dislocation occurred in each group; otherwise,
- 170 no other complications were observed in either group.
- 171

172 Discussion

173 There have been few studies on the postoperative treatment of calcaneal fractures, and 174 in actual clinical practice, the duration of the use of casting or splinting and timing of 175 the start of weight bearing may depend largely on the judgment of the surgeon and the 176 institution. In recent years, the effectiveness of early weight bearing has been 177 reported .^{18,19} In this study, we investigated the clinical function and radiologic 178 evaluation of Graffin orthoses assuming that they would enable early postoperative

180

rehabilitation. To the best of our knowledge, only one other study has compared matched patient backgrounds.¹²

181 The most important finding of our study is that the AOFAS score was significantly better in group O than in group C at 3 months after surgery. In terms of the AOFAS 182 183 components, Pain and Walking distance scores at 3 months after surgery were 184 predominantly higher in Group O, which means that pain was significantly lower and 185 maximum walking distance longer at 3 months after surgery in Group O. With regard to 186 pain, Kienast and colleagues showed that the number of patients complaining of pain 187 was 12% lower in the early weight-bearing group at 3 months postoperatively after plate fixation .¹⁹ Other literature has noted a decrease in postoperative VAS scores with 188 HUOs.¹³ We assume that this is because the HUO allows weight bearing at an early 189 stage to prevent muscle atrophy and facilitate ROM restoration.²⁰ In addition, we 190 191 surmise that the recovery of ROM and prevention of muscle atrophy will protect the 192 ankle joint and subtalar joint from excessive load when walking, which will also reduce 193 pain. 194 The present study showed a better result in maximum walking distance at 3 months after surgery in Group O (Group C: 3.31±1.17 blocks, Group O: 3.78±1.05 blocks; 195

196 P=0.043). Although there have been no previous reports on this point, the patients in

197	Group C required an assistive device (e.g., crutches), whereas those in Group O were
198	able to walk from an early stage without an assistive device and without putting weight
199	on the heel. Also, Group O experienced less pain, which may have influenced the
200	difference in walking distance at 3 months after surgery. The degree of improvement in
201	AOFAS score from 3 months after surgery to the final observation was less in Group O
202	than in Group C. However, the AOFAS scores at the final observation were similar,
203	which means that functional recovery was delayed in group C compared to group O
204	(supplemental table 2,3). This leads us to believe that the Graffin orthosis may have the
205	potential to improve function at an early stage. The Graffin orthoses is not suitable for
206	older adults with an unstable gait or patients with polytrauma. However, the present
207	study shows that the Graffin orthosis may be useful for unilateral fractures or for
208	patients who require an early return to work and to daily life after calcaneus fracture
209	surgery.
210	We also showed no significant difference between the two groups in the amount of
211	decrease in the Böhler angle and in wound complications at the final follow-up.
212	Regarding the relationship between the Böhler angle and postoperative function, it was
213	reported that the decrease in Böhler angle was associated with poor results at the time of
214	consultation two years after surgery and with AOFAS components (Pain, Walking

215	distance, and Walking surface), and it is important in the evaluation of outcome . ^{21,22}
216	The literature suggests that loss of correction under weight bearing from 4–5 weeks
217	after surgery is unlikely to occur, ¹⁸ which is consistent with the present study results.
218	The present study shows that Graffin orthoses enable early weight bearing, which
219	improves the patient's activities of daily living and preserves the position of the
220	reduction on radiographic images.
221	This study has several limitations. First, it is a retrospective multicenter study.
222	Although we were able to exclude confounders because of propensity score matching
223	followed by testing, not all unmeasured confounders can be excluded. For example, the
224	severity of fracture may bias the use or non-use of the Graffin orthosis. In addition, the
225	indications for surgery and the protocol for postoperative weight bearing varied among
226	institutions and were determined by multiple surgeons. There is a report of fewer
227	postoperative complications occurring in surgeries performed by experienced
228	surgeons ²² ; however, the quality of the surgery could not be considered in this study.
229	Also, generally, comparing differences between baseline and intervention data is
230	effective when evaluating the effectiveness of treatment using orthoses. However,
231	calcaneal fractures are acute injuries and most patients are unable to walk before or
232	immediately after surgery, and in fact, most hospitals did not include the AOFAS score

233	in their baseline data. Due to the presence of surgical intervention, the results obtained
234	may not be purely orthotic in nature. However, one strength of this study was the
235	matching of preoperative information such as fracture type to minimize the impact of
236	surgery. Another limitation concerns Graffin orthoses. We did not evaluate any HUO
237	other than the Graffin orthosis. The Graffin orthosis was developed in Japan and is
238	considered to be similar in concept to other HUOs. However, only a few papers in
239	Japanese have examined load distribution with the Graffin orthosis, and no comparison
240	with other HUOs has been performed. ¹¹ Therefore, this result may not be applicable to
241	all HUOs. Also, in our statistical analysis, we were not able to calculate the maximum
242	allowable walking distance. The results of the present study showed statistical
243	significance for the AOFAS score in the early postoperative period, but it is unclear
244	whether Graffin orthoses are actually clinically superior. A minimal clinically important
245	difference in the AOFAS score has been reported for the hallux valgus, but there is no
246	literature on the calcaneus, and further study is needed. ²³ In addition, the results of this
247	study may be different for different races. There are differences in body weight among
248	races that may affect pain and fracture crushing. Finally, in terms of race and health care
249	disparities, these factors have been reported to influence treatment choices. ²⁴
250	

251 Conclusions

252	In conclusion, we used propensity score matching in a multicenter study to compare the
253	usefulness of Graffin orthoses in postoperative patients with calcaneal fractures.
254	Although there was no difference in the final results of the functional assessment, the
255	patients in Group O showed superior clinical function at 3 months after surgery. We
256	believe that Graffin orthoses may be useful for unilateral fractures or for those patients
257	who require an early return to work and to daily life after calcaneal fracture surgery.
258	
259	Conflict of Interest:
260	The authors declare that they have no known competing financial interests or personal
261	relationships that could have appeared to influence the work reported in this paper.
262	

263 References

278

264	1.	Palmersheim K, Hines B, Olsen BL. Calcaneal fractures: update on current
265		treatments. Clin Podiatr Med Surg. 2012;29(2):205-220, vii. https://doi.org/
266		10.1016/j.cpm.2012.01.007.
267	2.	Meena S, Gangary SK, Sharma P. Review Article: Operative versus nonoperative
268		treatment for displaced intraarticular calcaneal fracture: a meta-analysis of
269		randomised controlled trials. J Orthop Surg (Hong Kong). 2016;24(3):411-416.
270		https://doi.org/10.1177/1602400328.
271	3.	Rammelt S, Zwipp H. Calcaneus fractures: facts, controversies and recent
272		developments. Injury. 2004;35(5):443-461. https://doi.org/
273		10.1016/j.injury.2003.10.006.
274	4.	Ishikawa SN. Fractures and dislocations of the foot. In: Azar FM, Canale ST,
275		Beaty JH, eds. Campbell's Operative Orthopaedics, 13th edn. Elsevier; 2017:
276		4276–4350.
277	5.	Kayalı C, Altay T, Kement Z, Çıtak C, Yağdı S. The effect of early weight-

279 *Hastalik Cerrahisi*. 2014;25(2):85–90. https://doi.org/10.5606/ehc.2014.19.

bearing on comminuted calcaneal fractures treated with locking plates. Eklem

280	6.	Tomesen T, Biert J, Frölke JP. Treatment of displaced intra-articular calcaneal
281		fractures with closed reduction and percutaneous screw fixation. J Bone Joint
282		Surg Am. 2011;93(10):920-928. https://doi.org/ 10.2106/JBJS.H.01834.
283	7.	Zhang W, Lin F, Chen E, Xue D, Pan Z. Operative versus nonoperative treatment
284		of displaced intra-articular calcaneal fractures: a meta-analysis of randomized
285		controlled trials. J Orthop Trauma. 2016;30(3):e75-e81. https://doi.org/
286		10.1097/BOT.000000000000446.
287	8.	Ghazali DA. Outils thérapeutiques Immobilisations et autres traitements
288		adjuvants. In: Traumatisme de la Cheville. Références en médecine d'urgence.
289		Collection de la SFMU. Springer; 2013. https://doi.org/10.1007/978-2-8178-0352-
290		4_23.
291	9.	Münch T. Proof of functionality of the heel-unloading orthosis according to Dr.
292		Settner/Münch. Orthop-Tech. 2002;2:646D145.
293	10.	Hahn T, Carl HD, Jendrissek A, et al. Assessment of plantar pressure in hindfoot
294		relief shoes of different designs. J Am Podiatr Med Assoc. 2014;104(1):19-23.
295		https://doi.org/10.7547/0003-0538-104.1.19.

296	11.	Maruoka T, Sakurai S, Arai N, et al. Shoukotsu kossetsu no menka hokou
297		ryouhou ni tsuite [Unloading gait therapy for calcaneal fractures]. Kossetsu.
298		1984;6:181–183. (In Japanese).
299	12.	Schmal H, Larsen AH, Froberg L, Erichsen JL, Madsen CF, Pedersen L. The
300		effect of a heel-unloading orthosis in short-term treatment of calcaneus fractures
301		on physical function, quality of life and return to work - study protocol for a
302		randomized controlled trial. Trials. 2019;20(1):324. https://doi.org/
303		10.1186/s13063-019-3447-8.
304	13.	Yoo CH, Kang C, Hwang DS, Hwang JM, Lee GS, Park YC. Radiological and
305		clinical effectiveness of a novel calcaneal fracture brace after intra-articular
306		calcaneal fracture surgery. Clin Orthop Surg. 2018;10(3):374–379. https://doi.org/
307		10.4055/cios.2018.10.3.374.
308	14.	Sanders R. Intra-articular fractures of the calcaneus: present state of the art. J
309		Orthop Trauma. 1992;6(2):252-265. https://doi.org/10.1097/00005131-
310		199206000-00022.
311	15.	Essex-Lopresti P. The mechanism, reduction technique, and results in fractures of
312		the os calcis. Br J Surg. 1952;39(157):395–419.
313		https://doi.org/10.1002/bjs.18003915704.

314	16.	Park CH, Yan H, Park J. Randomized comparative study between extensile lateral
315		and sinus tarsi approaches for the treatment of Sanders type 2 calcaneal fracture.
316		Bone Joint J. 2021;103-B(2):286-293. https://doi.org/ 0.1302/0301-
317		620X.103B.BJJ-2020-1313.R1.
318	17.	Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for
319		medical statistics. Bone Marrow Transplant. 2013;48(3):452-458. PMID:
320		23208313; https://doi.org/ 10.1038/bmt.2012.244.
321	18.	Hyer CF, Atway S, Berlet GC, Lee TH. Early weight bearing of calcaneal
322		fractures fixated with locked plates: a radiographic review. Foot Ankle Spec.
323		2010;3(6):320-323. https://doi.org/ 10.1177/1938640010374121.
324	19.	Kienast B, Gille J, Queitsch C, et al. Early weight bearing of calcaneal fractures
325		treated by intraoperative 3D-fluoroscopy and locked-screw plate fixation. Open
326		Orthop J. 2009;3:69–74. https://doi.org/ 10.2174/1874325000903010069.
327	20.	Park ES, Choi Y, Lee J, Park SH, Lee HS. Calcaneal fracture: results of earlier
328		rehabilitation after open reduction and internal fixation. Arch Orthop Trauma
329		Surg. 2021;141(6):929–936. https://doi.org/10.1007/s00402-020-03575-4.

330	21.	Loucks C, Buckley R. Bohler's angle: correlation with outcome in displaced intra-
331		articular calcaneal fractures. J Orthop Trauma. 1999;13(8):554-558.
332		https://doi.org/ 10.1097/00005131-199911000-00007.
333	22.	Su Y, Chen W, Zhang T, Wu X, Wu Z, Zhang Y. Bohler's angle's role in
334		assessing the injury severity and functional outcome of internal fixation for
335		displaced intra-articular calcaneal fractures: a retrospective study. BMC Surg.
336		2013;13:40. https://doi.org/ 10.1186/1471-2482-13-40.
337	23.	Chan HY, Chen JY, Zainul-Abidin S, Ying H, Koo K, Rikhraj IS. Minimal
338		clinically important differences for American Orthopaedic Foot & Ankle Society
339		Score in hallux valgus surgery. Foot Ankle Int. 2017;38(5):551-557.
340		https://doi.org/10.1177/1071100716688724.
341	24.	Zelle BA, Morton-Gonzaba NA, Adcock CF, Lacci JV, Dang KH, Seifi A.
342		Healthcare disparities among orthopedic trauma patients in the USA: socio-
343		demographic factors influence the management of calcaneus fractures. J Orthop
344		Surg Res. 2019;14(1):359. https://doi.org/ 10.1186/s13018-019-1402-8.
345		

346	Figure	legend
010	Inguit	icgenu

347 Figure 1. Image of a heel-unloading orthosis (Graffin orthosis).

Figure 2. Flow diagram of the participants included in the study. Group C underwent

350 conventional postoperative casting or splinting only without the heel-unloading orthosis

351 (Graffin orthosis), and Group O used Graffin orthosis after splinting.

352

Figure 3. Box plots of AOFAS score at 3 months and 6 months after surgery and at the

final follow-up visit in both groups are shown. Each box represents the 25th and 75th

355 percentiles, the line within the box represent the median, and the whisker bars represent

- the 10th and 90th percentiles. White box: Group C (underwent casting or splinting only
- 357 without Graffin orthosis), Gray box: Group O (Graffin orthosis was used after

358 splinting).

Characteristic	Group C	Group O	D Value	050/01
Characteristic	N=108	N=74	P Value	95%CI
Age, yrs, mean (SD)	57.55 (17.65)	58.53 (13.05)	0.684	-5.72, 3.76
Sex, male/female n	70/38	50/24	0.752	
BMI, kg/m ² mean (SD)	22.68 (3.82)	22.91 (3.57)	0.690	-1.35, 0.90
Current smoking, yes/no n	58/29	41/24	0.231	
Diabetes mellitus, n (%)	20 (18.5)	8 (11.1)	0.212	
Open fracture, n (%)	22 (20.4)	2 (2.7)	< 0.001	
Injury mechanism, n (%)			0.849	
Tumble	22 (20.4)	13 (17.6)		
Fall from a high place	82 (75.9)	60 (81.1)		
Traffic accident	3 (2.8)	1 (1.4)		
Others	1 (0.9)			
Infection, n (%)	9 (8.5)	3 (4.1)	0.364	
Non-union, n (%)	1 (0.9)	0 (0.0)	1	
Essex-Lopresti classification, n (%)			0.529	
Tongue type	58 (53.7)	35 (47.3)		
Depression type	49 (45.4)	39 (52.7)		
Sanders classification, n (%)			NA	
Ι	16 (15.4)	9 (12.6)		
II	48 (46.2)	28 (39.4)		
III	34 (32.7)	29 (40.8)		
IV	6 (5.8)	5 (7.0)		
Operation, n (%)			0.103	
Pinning	37 (34.3)	27 (36.5)		
Plate	30 (27.8)	13 (17.6)		
CCS	27 (25.0)	30 (40.5)		
Plate + CCS	3 (2.8)	2 (2.7)		
Pinning + CCS	9 (8.3)	2 (2.7)		
Pinning + Plate	2 (1.9)	0 (0.0)		

Table 1. Characteristics and operative procedures of the 182 patients

SD = standard deviation; BMI = body mass index; CCS = canulated cancellous screw.

	1	1 1	5	U
Characteristic	Group C	Group O	P Value	95%CI
	N=55	N=55	1,0000	
Age, yrs, mean (SD)	56.80 (16.63)	58.87 (13.12)	0.470	-7.73, 3.58
Sex, male/female n	40/15	37/18	0.678	
BMI, kg/m ² mean (SD)	23.16 (3.57)	22.55 (3.41)	0.364	-0.71, 1.93
Current smoking, yes/no n	31/24	37/18		
Diabetes mellitus, n (%)	6 (10.9)	6 (10.9)	1.00	
Open fracture, n (%)	5 (9.3)	2 (3.6)	0.271	
Injury mechanism, n (%)			0.383	
Tumble	9 (16.4)	7 (12.7)		
Fall from a high place	44 (80.0)	48 (87.3)		
Traffic accident	2 (3.6)	0 (0.0)		
Infection, n (%)	5 (9.4)	2 (3.7)	0.270	
Non-union, n (%)	0 (0.0)	0 (0.0)	1	
Essex-Lopresti classification, n (%)			0.250	
Tongue type	34 (61.8)	27 (49.1)		
Depression type	21 (38.2)	28 (50.9)		
Sanders classification, n (%)			0.161	
Ι	7 (12.7)	9 (16.4)		
П	31 (56.4)	23 (41.8)		
III	14 (25.5)	19 (34.5)		
IV	3 (5.5)	4 (7.3)		
Operation, n (%)			0.145	
Pinning	16 (29.1)	20 (36.4)		
Plate	20 (36.4)	9 (16.4)		
CCS	14 (25.5)	22 (40.0)		
Plate + CCS	2 (3.6)	2 (3.6)		
Pinning + CCS	2 (3.6)	2 (3.6)		
Pinning + Plate	1 (1.8)	0 (0.0)		
Bone graft or bone graft substitutes, n (%)	23 (41.8)	35 (53.6)	0.044*	

Table 2. Preoperative and surgical related characteristics of the patients after propensity score matching

Operative time, min, mean (SD)	77.31 (51.63)	80.33 (54.31)	0.767	-23.13, 17.11
Follow-up period from surgery, days, mean	313.83 (154.39)	298.72 (143.36)	0.661	-0.44, 0.57
(SD)				
AOFAS, mean (SD)				
3 months after surgery	69.57 (14.12)	77.22 (12.51)	0.004*	-12.73, -2.56
6 months after surgery	81.92 (12.11)	85.67 (8.92)	0.087	-8.06, 0.56
Date of last visit	89.18 (9.51)	88.13 (9.84)	0.597	-2.89, 5.00
Difference in AOFAS at 6 months and 3	13.11 (8.28)	9.94 (9.52)	0.088	-0.49, 6.82
months after surgery				
Difference in AOFAS at last visit and at 3	20.31 (12.64)	13.31 (12.45)	0.009*	1.82, 12.17
months after surgery				
Decrease of Böhler angle, mean (SD)	5.07 (6.49)	5.89 (6.87)	0.529	-0.74, 3.70

SD = standard deviation; BMI = body mass index; CCS = canulated cancellous screw; AOFAS = American

Orthopaedic Foot and Ankle Society.

*p<0.05

	Group C	Group O	P Value	95%CI
AOFAS, mean (SD)	69.57 (14.12)	77.22 (12.51)	0.004*	-12.73, -2.56
Pain, mean (SD)	26.48 (7.31)	30.56 (5.29)	0.001*	-6.50, -1.64
Activity limitation, mean (SD)	5.63 (2.32)	6.26 (2.37)	0.166	-1.52,0.27
Walking surfaces, mean (SD)	3.57 (1.30)	3.57 (1.31)	1.000	-0.91, 0.68
Maximum walking distance, blocks, mean (SD)	3.39 (1.07)	3.81 (1.07)	0.041*	-0.83, -0.02
Gait abnormality, mean (SD)	5.93 (2.43)	6.22 (2.15)	0.503	-1.17, 0.58
Sagittal motion, mean (SD)	5.96 (2.15)	6.07 (2.02)	0.782	-0.49, 0.50
Hindfoot motion, mean (SD)	4.56 (1.72)	4.56 (1.62)	1.000	-0.64, 0.63
Ankle-hindfoot stability, mean (SD)	5.81 (3.52)	6.81 (2.87)	0.108	-2.22, 0.22
Alignment, mean (SD)	8.24 (2.77)	9.35 (1.70)	0.014*	-1.98, -0.23

Table 3 AOFAS component scores at 3 months

AOFAS = American Orthopedic Foot and Ankle Society; SD = standard deviation. *p<0.05.

renation after surgery in our groups					
Characteristic	Group C	Group O	P Value	95%CI	
ROM exercise day, mean (SD)	15.92 (14.20)	9.32 (9.78)	0.007*	0.99, 9.97	
Partial weight bearing day, mean (SD)	39.48 (11.27)	34.08 (49.63)	0.454	-7.31, 21.02	
Full weight bearing day, mean (SD)	62.27(18.51)	60.40 (21.50)	0.644	-6.25, 8.63	

Table 4. Results of radiographic evaluation and timing to the start of each

 rehabilitation after surgery in both groups

SD = standard deviation; ROM = range of motion; day = number of days from date of surgery.

*p<0.05.

Supplemental Table 1 AOFAS Score (Ankle-Hindfoot Scale :100points Total)

I Pain (40 points)

None	40
Mild, occasional	30
Moderate, daily	20
Severe, almost always present	0

II Function (50 points)

Activity limitations, support requirement	
No limitations, no support	10
No limitation of daily activities, limitation of recreational activities,	7
no support	
Limited daily and recreational activities, cane	4
Severe limitation of daily and recreational activities, walker, crutches,	0
wheelchair, brace	

Maximum walking distance, blocks	
Greater than 6	5
4-6	4
1-3	2
Less than 1	0

Walking surfaces	
No difficulty on any surface	5
Some difficulty on uneven terrain, stairs, inclines, ladders	3
Severe difficulty on uneven terrain, stairs, inclines, ladders	0

Gait abnormality	
None, slight	8
Obvious	4
Marked	0

Sagittal motion (flexion plus extension)	
Normal or mild restriction (30° or more)	8

Moderate restriction (15°-29°)	4
Severe restriction (less than 150)	0

Hindfoot motion (inversion plus eversion)	
Normal or mild restriction (75%-100% normal)	6
Moderate restriction (25%-74% normal)	3
Marked restriction (less than 25% normal)	0

Ankle-hindfoot stability (anteroposterior, varus-valgus)	
Stable	8
Definitely unstable	0

III Alignment (10 points)

Good, plantigrade foot, midfoot well aligned	15
Fair, plantigrade foot, some degree of midfoot malalignment	8
observed, no symptoms	
Poor, nonplantigrade foot, severe malalignment, symptoms	0

Total=100

	Group C (N=55)	Group O (N=55)	P Value	95%CI
AOFAS, mean (SD)	81.92 (12.11)	85.67 (8.92)	0.087	-8.06, 0.56
Pain, mean (SD)	30.21 (6.01)	32.92 (5.44)	0.023*	-5.03, -0.38
Activity limitation, mean (SD)	7.58 (2.08)	7.62 (2.23)	0.925	-0.91-0.83
Walking surfaces, mean (SD)	4.12 (1.28)	4.48 (0.87)	0.117	-0.79, 0.09
Maximum walking distance, blocks, mean (SD)	4.08 (1.05)	4.31 (0.85)	0.243	-0.61, 0.16
Gait abnormality, mean (SD)	7.25 (1.78)	6.67 (1.91)	0.125	-0.16, 1.33
Sagittal motion, mean (SD)	6.83 (1.84)	7.00 (1.75)	0.650	-0.89, 0.56
Hindfoot motion, mean (SD)	5.38 (1.23)	5.31 (1.27)	0.807	-0.44, 0.57
Ankle-hindfoot stability, mean (SD)	7.71 (1.29)	7.67 (1.62)	0.889	-0.55, 0.63
Alignment, mean (SD)	8.75 (2.63)	9.69 (1.22)	0.027*	-1.77, -0.10

Supplemental Table 2 AOFAS component scores at 6 months

AOFAS = American Orthopedic Foot and Ankle Society; SD = standard deviation. *p<0.05.

	Group C (N=55)	Group O (N=55)	P Value	95%CI
AOFAS, mean (SD)	89.18 (9.51)	88.13 (9.84)	0.597	-2.89, 5.00
Pain, mean (SD)	33.47 (5.22)	33.48 (5.66)	0.994	-2.22, 2.20
Activity limitation, mean (SD)	8.96 (1.68)	8.04 (2.30)	0.029*	0.09-1.73
Walking surfaces, mean (SD)	4.35 (1.23)	4.61 (0.80)	0.227	-0.69, 0.16
Maximum walking distance, blocks, mean (SD)	4.55 (0.71)	4.59 (0.72)	0.807	-0.32, 0.25
Gait abnormality, mean (SD)	7.59 (1.47)	6.96 (1.78)	0.060	-0.03, 1.30
Sagittal motion, mean (SD)	7.43 (1.41)	7.22 (1.60)	0.497	-0.40, 0.82
Hindfoot motion, mean (SD)	5.63 (0.99)	5.35 (1.25)	0.221	-0.17, 0.74
Ankle-hindfoot stability, mean (SD)	7.71 (1.27)	8.00 (0.00)	0.132	-0.66, 0.09
Alignment, mean (SD)	9.49 (1.84)	9.89 (0.74)	0.171	-0.98, 0.18

Supplemental Table 3 AOFAS component scores at final follow up

AOFAS = American Orthopedic Foot and Ankle Society; SD = standard deviation. *p<0.05.