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Abstract—A new explicit and non-dissipative FDTD method
in two and three dimensions is proposed for relaxation of the
Courant condition. The third-degree spatial difference terms with
second- and fourth-order accuracy are added with coefficients to
the time-development equations of FDTD(2,4). Optimal coeffi-
cients are obtained by a brute-force search of the dispersion
relations, which reduces phase velocity errors but satisfies the
numerical stability as well. The new method is stable with large
Courant numbers where the conventional FDTD methods are
unstable. The new method also has smaller numerical errors in
the phase velocity than conventional FDTD methods with small
Courant numbers.
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phase velocity.

I. INTRODUCTION

THE Finite-Difference Time-Domain (FDTD) method is a
numerical method for solving the time development of

electromagnetic fields [1], [2]. The time-development equa-
tions used in the FDTD method is obtained by approximating
Maxwell’s equations with the finite difference of second-order
accuracy in both time and space. A staggered grid (Yee grid)
system is used in the spatial difference so that Gauss’s law for
both electric and magnetic fields is always satisfied. Owing to
this advantage and the simpleness of the numerical algorithm,
the FDTD method has been used as the standard numerical
method for electromagnetic fields for more than a half century.

Maxwell’s equations are written as follows:
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where E is electric field, B is magnetic field, J is current
density, ϵ is permeability, µ is permittivity, and ρ is charge
density.

Assuming a case in vacuum (J = 0, ρ = 0), (1) are written
in the three vector components in the rectangular coordinate
system as follows:
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The time-development equations are derived by approximat-
ing temporal and spatial differential terms in (2) with the finite
difference of second-order accuracy:
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where Dn
x is a nth-degree spatial difference operator. Note

that Dn
z = 0 in two dimensions. Here, the speed of light c is

defined as c =
√

1/ϵµ.
The first-degree spatial difference operator in the x direction

with the second-order accuracy D1
x is defined as follows:
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The FDTD method has a disadvantage that numerical
oscillations occur in discontinuous waveforms and even in
continuous waveforms with a large slope. The numerical
oscillations are caused by an error in the phase velocity, which
depends on frequency or wavenumber. To reduce the numerical
error in the phase velocity, higher-order finite differences are
used. The FDTD(2,4) method uses the fourth-order spatial
difference [3], [4].

The first-degree spatial difference operator in the x direction
with the fourth-order accuracy D1

x is defined as follows:
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The FDTD method using tth-order accuracy in time and

xth-order accuracy in space is generally referred to as
FDTD(t,x).

The numerical error in the phase velocity of FDTD(2,4)
is smaller than that of FDTD(2,2). However, the Courant
condition of FDTD(2,4) method is more restricted than that
of FDTD(2,2). In general, higher-order finite differences in
space with the second-order finite difference in time make the
Courant condition more restrictive, which requires smaller ∆t
and larger number of time steps.

The Courant condition is derived from dispersion relation.
Considering only x direction in one dimension, the dispersion
relation of FDTD(2,2) is derived by Fourier transform of (3)
and (4) as follows:[
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where C = c∆t/∆x is the Courant number. In the same way,
the dispersion relation for FDTD(2,4) is derived from (3) with
(5) as follows:[
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The right-hand sides of (6) and (7) are both maximized at
k∆x = π:
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Therefore, the right-hand side of (7) is more than 1 for C >
6/7 ∼ 0.857, which causes a numerical instability.

Zhou et al. [5] used different operators to update electric
and magnetic field. The Zhou schemes have almost the same
numerical dispersion as the standard FDTD method but reduce
the computational costs. However, the Courant conditions of
the Zhou schemes are as restricted as the standard FDTD
method.

The FDTD modified(2,4) (M(2,4)) method [6] corrects the
phase velocity of FDTD(2,4) by adding a difference term
which uses diagonal grid points. The second-order nonstan-
dard (NS)-FDTD method [7], [8] reduces anisotropic errors
in the phase velocity by considering diagonal differences.
The numerical phase velocity is matched with the physical
speed of light at a specific frequency only in this method.
Furthermore, the Wideband (W)NS-FDTD method aiming for
analysis in a wide frequency band corrects the phase velocity
error of NS-FDTD by a post process [9]. In these methods, the
phase velocity error is reduced by adding various difference
terms with coefficients which corrects numerical dispersion.
However, it is not easy to determine appropriate coefficients
for the correction terms.

The Crank-Nicolson (CN)-FDTD method [10]–[12] and the
Alternating Direction Implicit (ADI)-FDTD method [13]–[16]
use implicit time-development equations which relaxes the
Courant condition. However, the implicit equations have larger
computational costs which are solved with the matrix inversion
or iterative convergence.

This paper aims to relax the Courant condition of the
FDTD(2,4) method in two and three dimensions. A new
explicit and non-dissipative method is developed by adding
third-degree spatial difference terms with coefficients to the
time-development equations of FDTD(2,4). The coefficients
are determined so that the phase velocity error is minimized
but numerical instabilities are suppressed as well.
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This paper is organized as follows. In section 2, the time-
development equations and the dispersion relation of the new
methods are shown. In section 3 and 4, the optimal coeffi-
cients, the phase velocity errors, and the results of numerical
tests using the new methods in two and three dimensions are
shown, respectively. In section 5, the conclusion is given.

II. FORMULATION AND NUMERICAL DISPERSION
RELATION

A. General Form

The time-development equations with third-degree spatial
difference terms are written as follows:
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where a coefficient α is added to the third-degree difference
terms. The optimal coefficient α depends on the Courant
number C. The time-development (8) is based on the Taylor
series of the central difference equation in time. In the present
study, odd-degree difference terms are added only, because
even-degree difference terms lead to a numerical dissipation.

The first-degree spatial difference with the fourth-order
accuracy (5) is used for the operator D1

x. The third-degree
spatial difference with the second- and fourth-order accuracy
are also used for the operator D3

x as shown below.
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B. Second-order

The third-degree difference operator with the second-order
accuracy D3

x is defined as follows:
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The following dispersion relation is derived by Fourier
transform of the time-development (8) with (5) and (9):
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. Note that

Kz = 0 in two dimensions. The Courant number is defined
as Cx = c∆t/∆x, Cy = c∆t/∆y, and Cz = c∆t/∆z. A
possible range of the left-hand side is 0 ≤ W2 ≤ 1. For α = 0
and ∆x = ∆y = ∆z (i.e., C = Cx = Cy = Cz), the Courant
condition is not satisfied in the range of C ≥ 6/7

√
2 ∼ 0.61 in

two dimensions and C ≥ 6/7
√
3 ∼ 0.49 in three dimensions.

Since the second term on the right-hand side of (10) has
a negative sign, the Courant condition can be relaxed by
adjusting the coefficient α.

We call this method ”scheme 1” in this paper.

C. Fourth-order

The third-degree difference operator with the fourth-order
accuracy D3

x is defined as follows:
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The following dispersion relation is derived by Fourier
transform of the time-development (8) with (5) and (11):
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Note that Kz = 0 in two dimensions.
We call this method ”scheme 2” in this paper.

III. TWO DIMENSIONS

A. Optimal Coefficients

A brute-force search is performed to find an optimal coeffi-
cient for the third-degree spatial difference term that minimizes
the numerical error in the phase velocity and suppresses
the numerical instability. The phase velocity is obtained by
solving the dispersion relation for the angular frequency ω and
dividing the real part of ω by the wavenumber k. In the present
study, we assume ∆x = ∆y = ∆z (i.e., C = Cx = Cy = Cz).
The error is calculated by the following equation:
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(13)
The results of the coefficients search for scheme 1 in the

range of 0.5 ≤ C ≤ 1 using (10) are shown in Table I. The
results of the coefficients search for scheme 2 in the range of
0.5 ≤ C ≤ 1 using (12) are shown in Table II.

The present method is useful to the Courant number C > 1
as well. In the present study, however, the coefficients are
searched in the range of C ≤ 1 because the numerical error
increases as the Courant number C increases as shown in the
next subsection.

B. Numerical Error

The phase velocity errors of the scheme 1 and 2 are
compared against those of FDTD(2,2) and FDTD(2,4). Figure
1 shows that the phase velocity error averaged over the entire
wavenumber space. The horizontal axis is the Courant number
C and the vertical axis is the relative error ε of the phase
velocity to C.

Figure 1 shows that the phase velocity errors of the new
methods are smaller than those of the conventional methods.
The numerical instability is also suppressed for C ≤ 1. The
numerical errors of the scheme 2 are smaller than those of
scheme 1 for most Courant numbers.



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 5

TABLE I: Optimal Coefficients in the Two-Dimensional
Scheme 1.

C α C α

0.50 -0.0505 0.76 0.1023
0.51 -0.0428 0.77 0.1048
0.52 -0.0354 0.78 0.1069
0.53 -0.0284 0.79 0.1088
0.54 -0.0216 0.80 0.1105
0.55 -0.0152 0.81 0.112
0.56 -0.0089 0.82 0.1132
0.57 -0.0029 0.83 0.1143
0.58 0.003 0.84 0.1152
0.59 0.0087 0.85 0.1159
0.60 0.0144 0.86 0.1165
0.61 0.0201 0.87 0.1169
0.62 0.0258 0.88 0.1173
0.63 0.0318 0.89 0.1175
0.64 0.0383 0.90 0.1176
0.65 0.0467 0.91 0.1177
0.66 0.0547 0.92 0.1176
0.67 0.062 0.93 0.1175
0.68 0.0686 0.94 0.1173
0.69 0.0745 0.95 0.117
0.70 0.0799 0.96 0.1167
0.71 0.0847 0.97 0.1163
0.72 0.0891 0.98 0.1159
0.73 0.093 0.99 0.1155
0.74 0.0964 1.00 0.1149
0.75 0.0995

Fig. 1: Comparison of phase velocity errors averaged over the
entire wavenumber space in two dimensions.

Figure 2 shows that the phase velocity errors for specific
propagation angles θ. Here, θ is the angle from the x axis.
Panels (a) and (b) show the numerical errors at θ = 0◦ and
θ = 45◦, respectively. The numerical errors in Panels (a) and
(b) are obtained by averaging over ky = 0 and kx = ky axes,
respectively. The horizontal axis is the Courant number C and
the vertical axis is the relative error ε of the phase velocity to

TABLE II: Optimal Coefficients in the Two-Dimensional
Scheme 2.

C α C α

0.50 -0.0372 0.76 0.0682
0.51 -0.0316 0.77 0.07
0.52 -0.0262 0.78 0.0713
0.53 -0.0211 0.79 0.0727
0.54 -0.0162 0.80 0.0737
0.55 -0.0117 0.81 0.0747
0.56 -0.0071 0.82 0.0755
0.57 -0.0029 0.83 0.0762
0.58 0.0014 0.84 0.0769
0.59 0.0056 0.85 0.0774
0.60 0.0095 0.86 0.0778
0.61 0.0135 0.87 0.078
0.62 0.0176 0.88 0.0783
0.63 0.0216 0.89 0.0784
0.64 0.026 0.90 0.0784
0.65 0.0312 0.91 0.0785
0.66 0.0366 0.92 0.0784
0.67 0.0414 0.93 0.0784
0.68 0.0459 0.94 0.0783
0.69 0.0498 0.95 0.0781
0.70 0.0533 0.96 0.078
0.71 0.0565 0.97 0.0779
0.72 0.0594 0.98 0.0778
0.73 0.0621 0.99 0.0778
0.74 0.0644 1.00 0.0776
0.75 0.0664

C. Note that the dispersion relation is symmetric with respect
to the |kx| = |ky| axis.

Figure 2 shows that the numerical errors at θ = 45◦ are
smaller than those at θ = 0◦. For C > 0.7, the numerical
errors at θ = 45◦ are smaller than the half of those at θ = 0◦.

C. Numerical Results

Numerical simulations are performed with c = 10.0, ∆x =
∆y = 1.0, and ∆t = C∆x/c. The number of grid points is
Nx = Ny = 440. The following current density is imposed to
emit an electromagnetic pulse with τ = 0.25 at the center of
the simulation domain:

Jx

(
x =

∆x

2
, y = 0, z = 0, t

)
= cosh−2

(
t− 4

2τ

)
Jx

(
x =

∆x

2
, y = ∆y, z = 0, t

)
= − cosh−2

(
t− 4

2τ

)
Jy

(
x = ∆x, y =

∆y

2
, z = 0, t

)
= cosh−2

(
t− 4

2τ

)
Jy

(
x = 0, y =

∆y

2
, z = 0, t

)
= − cosh−2

(
t− 4

2τ

)
.

(14)
Periodic boundaries are used as the boundary conditions in
both x and y directions.

The results of numerical simulations are shown in Figure
3. Panels (a), (b), (c), (d), (e) and (f) show the spatial profile
of the magnetic field Bz contentment with FDTD(2,2) and
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Fig. 2: Comparisons of phase velocity errors averaged over
the specific directional wavenumber space in two dimensions:
(a) θ = 0◦; (b) θ = 45◦.

C = 0.5, FDTD(2,4) and C = 0.5, scheme 1 and C = 0.5,
scheme 2 and C = 0.5, scheme 1 and C = 1, and scheme 2
and C = 1, respectively.

With the Courant number C = 0.5, numerical oscillations
are observed at the rear of the pulse with FDTD(2,2). The input
pulse consists of multiple wavenumber components. There-
fore, the differences between the theoretical speed of light and
numerical phase velocities, which depends on wavenumber,
are appeared as numerical oscillations. With FDTD(2,2), the
numerical oscillations with small wavenumbers appear at the
rear of the pulse because phase velocities of modes with large
wave numbers are small. The numerical oscillations are not
observed with FDTD(2,4), schemes 1 and 2. Figures 1 and
2 show that the numerical error with FDTD(2,2) is more
than twice as large as that with other schemes. Therefore,
these numerical simulations are consistent with the dispersion
relations which shows the dependence of phase velocity errors
on wavenumbers.

With C = 1, the numerical simulations are unstable with
conventional FDTD(2,2) and FDTD(2,4) due to the Courant
condition. However, the numerical simulations are stable with
both schemes 1 and 2. The numerical oscillations with scheme
2 is smaller than those with scheme 1. The numerical oscil-
lations are the smallest at θ = 45◦ and the largest at θ = 0◦.
This is consistent with Figure 2 which shows that the phase
velocity errors at θ = 45◦ are smaller than those at θ = 0◦.

The computational time of the simulations is shown in Table
III. The computational time is measured on a single core
of the Intel Xeon Gold 6230R processor. The Intel Fortran
compiler Version 2021.5.0 is used with options of ”-ipo -ip
-O3 -xCASCADELAKE”.

TABLE III: Computational Time in the Two Dimensions.

C = 0.5 C = 1

FDTD(2,2) 1.39656301468611 -
FDTD(2,4) 1.45807087451220 -
scheme 1 1.51422649439424 0.756914421655238
scheme 2 1.76735660718754 0.888097147289664

The computational time at the same Courant number in-
creases as the number of operations increases. With C = 0.5,
the computational time with schemes 1 and 2 are 1.04 and 1.21
times longer than that with FDTD(2,4), respectively, although
the schemes 1 and 2 have 2 and 2.5 times larger number of
operations than FDTD(2,4), respectively. The computational
time is given by the sum of the processing time of floating-
point operations and the memory access time. Since the
computational cost of memory access is higher than floating-
point operations, the computational time is not proportional
to the number of operations. Furthermore, the computational
time with C = 1 is a half of that with C = 0.5. Hence, the
computational time of schemes 1 and 2 with C = 1 is shorter
than that of FDTD(2,2) and FDTD(2,4) with C = 0.5.

IV. THREE DIMENSIONS

A. Optimal Coefficients

In three dimensions, the FDTD(2,4) is unstable for C ≥
2
√
3/7 ∼ 0.49. Therefore, optimal coefficients are searched

in the range of 0.4 ≤ C ≤ 1. The results of the coefficients
search for scheme 1 using (10) are shown in Table IV. The
results of the coefficients search for scheme 2 using (12) are
shown in Table V.

B. Numerical Error

The phase velocity errors of the schemes 1 and 2 are
compared against those of FDTD(2,2) and FDTD(2,4). Figure
4 shows that the phase velocity error averaged over the entire
wavenumber space. The horizontal axis is the Courant number
C and the vertical axis is the relative error ε of the phase
velocity to C.

Figure 4 shows that the phase velocity errors of the new
methods are smaller than those of the conventional methods.
The numerical instability is also suppressed for 0.5 ≤ C ≤ 1.
The numerical errors of the scheme 2 are smaller than those
of scheme 1 for C ≲ 0.9 but are larger for C ≳ 0.9.

Figure 5 shows that the numerical errors for the specific
propagation angles θ and ϕ. Here, θ is zenith angle, and ϕ
is azimuth angle. Panels (a), (b) and (c) show the numerical
errors at (θ, ϕ) = (0◦, 0◦), (θ, ϕ) = (45◦, 0◦) and (θ, ϕ) =
(45◦, 45◦), respectively. The numerical errors in Panels (a),
(b) and (c) are obtained by averaging over ky = kz = 0 axis,
kx = ky, kz = 0 axis and kx = ky = kz axis, respectively.
The horizontal axis is the Courant number C and the vertical
axis is the relative error ε of the phase velocity to C. Note
that the dispersion relation is symmetric with respect to the
|kx| = |ky| = |kz| axis.

Figure 5 shows that the numerical errors at (θ, ϕ) =
(45◦, 45◦) are smaller than those at (θ, ϕ) = (0◦, 0◦) and
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Fig. 3: Spatial profiles of Bz at t = 200∆t/C in two dimensions: (a) FDTD(2,2) with C = 0.5; (b) FDTD(2,4) with C = 0.5;
(c) scheme 1 with C = 0.5; (d) scheme 2 with C = 0.5; (e) scheme 1 with C = 1; (f) scheme 2 with C = 1.
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TABLE IV: Optimal Coefficients in the Three-Dimensional
Scheme 1.

C α C α

0.40 -0.1147 0.71 0.1754
0.41 -0.0992 0.72 0.176
0.42 -0.0848 0.73 0.1763
0.43 -0.0712 0.74 0.1765
0.44 -0.0584 0.75 0.1764
0.45 -0.0462 0.76 0.1762
0.46 -0.0345 0.77 0.1758
0.47 -0.0233 0.78 0.1753
0.48 -0.0123 0.79 0.1746
0.49 -0.0014 0.80 0.1739
0.50 0.012 0.81 0.173
0.51 0.0333 0.82 0.172
0.52 0.0522 0.83 0.171
0.53 0.0689 0.84 0.1699
0.54 0.0836 0.85 0.1687
0.55 0.0967 0.86 0.1675
0.56 0.1082 0.87 0.1662
0.57 0.1184 0.88 0.165
0.58 0.1273 0.89 0.1638
0.59 0.1351 0.90 0.1626
0.60 0.142 0.91 0.1615
0.61 0.148 0.92 0.1604
0.62 0.1532 0.93 0.1593
0.63 0.1577 0.94 0.1583
0.64 0.1615 0.95 0.1573
0.65 0.1648 0.96 0.1564
0.66 0.1676 0.97 0.1554
0.67 0.1699 0.98 0.1545
0.68 0.1718 0.99 0.1537
0.69 0.1733 1.00 0.1528
0.70 0.1745

Fig. 4: Comparison of phase velocity errors averaged over the
entire wavenumber space in three dimensions.

(θ, ϕ) = (45◦, 0◦). At around C = 0.6, the numerical errors
with schemes 1 and 2 at (θ, ϕ) = (45◦, 45◦) are smaller than

TABLE V: Optimal Coefficients in the Three-Dimensional
Scheme 2.

C α C α

0.40 -0.0863 0.71 0.1169
0.41 -0.075 0.72 0.1173
0.42 -0.0644 0.73 0.1176
0.43 -0.0544 0.74 0.1177
0.44 -0.045 0.75 0.1176
0.45 -0.0361 0.76 0.1175
0.46 -0.0275 0.77 0.1173
0.47 -0.0192 0.78 0.1171
0.48 -0.0111 0.79 0.1168
0.49 -0.003 0.80 0.1166
0.50 0.0082 0.81 0.1165
0.51 0.0224 0.82 0.1163
0.52 0.0349 0.83 0.1161
0.53 0.046 0.84 0.1159
0.54 0.0559 0.85 0.1158
0.55 0.0646 0.86 0.1156
0.56 0.0722 0.87 0.1155
0.57 0.079 0.88 0.1153
0.58 0.0849 0.89 0.1152
0.59 0.0902 0.90 0.1151
0.60 0.0947 0.91 0.1149
0.61 0.0987 0.92 0.1148
0.62 0.1022 0.93 0.1147
0.63 0.1052 0.94 0.1146
0.64 0.1077 0.95 0.1145
0.65 0.1099 0.96 0.1144
0.66 0.1117 0.97 0.1143
0.67 0.1133 0.98 0.1142
0.68 0.1145 0.99 0.1141
0.69 0.1156 1.00 0.114
0.70 0.1163

the half of those at (θ, ϕ) = (0◦, 0◦) and (θ, ϕ) = (45◦, 0◦).

C. Numerical Results

Numerical simulations are performed with c = 10.0, ∆x =
∆y = ∆z = 1.0, and ∆t = C∆x/c. The number of grid
points is Nx = Ny = Nz = 440. The current density in (14)
is imposed to emit an electromagnetic pulse with τ = 0.25 at
the center of the simulation domain. Periodic boundaries are
used as the boundary conditions in all the x, y and z directions.

The results of numerical simulations are shown in Figure
6. Panels (a), (b), (c), (d), (e) and (f) show the spatial profile
of the magnetic field Bz contentment with FDTD(2,2) and
C = 0.4, FDTD(2,4) and C = 0.4, scheme 1 and C = 0.4,
scheme 2 and C = 0.4, scheme 1 and C = 1, and scheme 2
and C = 1, respectively.

With Courant number C = 0.4, numerical oscillations are
observed at the rear of the pulse with FDTD(2,2). The numer-
ical oscillations are not observed with FDTD(2,4), schemes
1 and 2. Figures 4 and 5 show that the numerical error with
FDTD(2,2) is more than twice as large as the numerical errors
with other schemes.
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Fig. 5: Comparisons of phase velocity errors averaged over the
specific directional wavenumber space in three dimensions:
(a) (θ, ϕ) = (0◦, 0◦); (b) (θ, ϕ) = (45◦, 0◦); (c) (θ, ϕ) =
(45◦, 45◦).

With C = 1, the numerical simulations are unstable with
conventional FDTD(2,2) and FDTD(2,4) due to the Courant
condition. However, the numerical simulations are stable with
both schemes 1 and 2. The numerical oscillations are the
smallest at (θ, ϕ) = (45◦, 45◦) but larger at (θ, ϕ) = (0◦, 0◦)
and (45◦, 0◦). This is consistent with Figure 5 which shows
that the phase velocity errors at (θ, ϕ) = (45◦, 45◦) are smaller
than those at (θ, ϕ) = (0◦, 0◦) and (45◦, 0◦).

The computational time of the simulations is shown in Table
VI. The computational time is measured on the same processor
and compiler as those in two dimensions.

The computational time at the same Courant number in-
creases as the number of operations increases. With C = 0.4,
the computational time with schemes 1 and 2 are 1.002 and
1.273 times longer than that with FDTD(2,4), respectively,
although the schemes 1 and 2 have 2 and 2.5 times larger
number of operations than FDTD(2,4), respectively. The com-
putational time with C = 1 is 0.4 times shorter than that with
C = 0.4. The computational time with schemes 1 and 2 at
C = 1 is shorter than that with FDTD(2,2) and FDTD(2,4) at
C = 0.4.

TABLE VI: Computational Time in the Three Dimensions.

C = 0.4 C = 1

FDTD(2,2) 35.9662997193634 -
FDTD(2,4) 49.2364173122495 -
scheme 1 49.3584364675544 19.7688133916073
scheme 2 62.6550961998291 24.9873576161452

V. CONCLUSION

A new explicit and non-dissipative FDTD method is de-
veloped to relax the Courant condition. In the conventional
FDTD method, the Courant conditions are more restricted with
higher order of accuracy and larger number of dimensions. In
the present study, third-degree spatial difference terms with
second- and fourth-order accuracy are added with coefficients
to the time-development equations of FDTD(2,4) [3], [4].

Optimal coefficients are searched by using the dispersion
relations, which minimize the phase velocity errors averaged
over the entire wavenumber space. The present method is
stable with large Courant numbers up to C = 1, although
numerical oscillations remain. With small Courant numbers,
phase velocity errors are reduced with respect to the con-
ventional FDTD(2,4) method. The computational time with
the present method at C = 1 is shorter than that with the
conventional methods C = 0.5 in the two dimensions and
C = 0.4 in the three dimensions. Hence, the present method
is also useful to reduce the computational time by using a
large Courant number.

In the conventional NS-FDTD method [7], [8], the diag-
onal spatial difference terms are added with coefficients to
reduce anisotropic errors. However, an optimal coefficient
is determined for a single frequency only. In the present
method, optimal coefficients are determined to minimize the
numerical error in the phase velocity averaged over the entire
wavenumber space. Hence, the present method is useful for a
wideband frequency range without post processes as well as
for a nonlinear medium unlike the WNS-FDTD [9].

In the Zhou schemes [5], different operators are used
to update electric and magnetic field. These schemes have
smaller computational costs than the standard FDTD(2,4) and
(2,6) schemes. The numerical errors of the Zhou(2,8) scheme
are smaller than the FDTD(2,4)/(2,6) and Zhou(2,4)/(2,6)
schemes. However, the Courant conditions of the Zhou
schemes are as restricted as the standard FDTD schemes. On
the other hand, the phase velocity errors with the present
schemes averaged over the entire wavenumber space are
smaller than those of Zhou(2,8) for C < 0.4 (not shown). Fur-
thermore, the present schemes relax the Courant conditions.

Zhou et al. [5] showed that the phase velocity errors are
reduced by using higher-order difference operators. Extension
of the present schemes to FDTD(2,6) and (2,8) is left as future
studies.
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Fig. 6: Spatial profiles of Bz at t = 200∆t/C in three dimensions: (a) FDTD(2,2) with C = 0.4; (b) FDTD(2,4) with C = 0.4;
(c) scheme 1 with C = 0.4; (d) scheme 2 with C = 0.4; (e) scheme 1 with C = 1; (f) scheme 2 with C = 1.
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