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Abstract

The successful detection of gravitational waves has opened a new window for mankind to
explore the universe. From the perturbations at the early universe to the orbiting of dense
celestial bodies, a multitude of cosmic phenomena are all transmitting information about
the universe via gravitational waves. The current earth-based interferometric gravitational
wave detectors have a limited sensitivities at frequencies below ∼10 Hz due to seismic noise
and suspension thermal noise, which are caused by the ground vibrations and the isolation
system. To mitigate these two sources of noise is the key to improving the sensitivity of
gravitational wave detection on earth.

Juggled Interferometer (JIFO) is a novel type of gravitational wave detector, which
implements repeatedly free-falling test masses (mirrors). During the free-falling cycles, the
mirrors are totally decoupled from the ground and there is no seismic noise or suspension
thermal noise anymore.

This thesis presents the first detailed analysis of the data features of JIFO and develops
a data readout and analysis method based on the data features. This method can obtain
the mirror displacement signal of the interferometer without fringe locking and provides
a stable Signal-to-Noise Ratio (SNR) regardless of the interference fringes. By evaluating
the sensitivity curve of JIFO, promising science cases of a JIFO is studied, which include
detecting quasi-normal modes of massive black holes, testing Brans-Dicke theory with
black hole-neutron star binaries, and detecting gravitational waves originating from density
fluctuations in the early stage of the universe, which provide a hint for the primordial black
hole – dark matter scenario. These detections would not be possible on earth without the
implementation of free-falling masses, which is the primary difference of JIFO from the
other earth-based interferometric gravitational wave detectors.

Based on the concept of a "free-falling mirror", a prototype of JIFO was designed and
built from scratch in a pioneering manner. Due to the uniqueness of this experiment, many
devices were specifically designed, including but not limited to the linear stage used to realize
the mirror release, the mirror holder capable of automatic realignment, and the vacuum tank
which is made of acrylic for its transparency and low density. This experiment has achieved
the mirror release successfully and maintained the stability to some extent. The disturbances
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of the prototype are characterized, and possible solutions are discussed, laying the foundation
for future experiments.
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Chapter 1

Introduction

More than 100 years ago, the existence of gravitational waves was predicted by Albert
Einstein [1]. After generations of efforts, people finally succeeded in detecting them in
2015 [2], a century after Einstein’s prediction. The direct detection of gravitational waves is
an epoch-making achievement in astronomical observation, opening a new window for us
human-beings to "see", or, to be more precise, "listen to", the universe, since the frequencies
of the detected gravitational waves fell right in the range of human hearing. By analyzing the
information carried by various gravitational waves passing through the Earth, we may have
the chance to reveal the nature of gravity, the nature of dark matter, and the equation of state
of dense celestial bodies and many other unknowns about the universe [3].

In this chapter, the importance of gravitational wave detection and the motivation of this
thesis will be reflected. Firstly, the theory of gravitational waves will be briefly introduced in
Sec. 1.1, then the detection of gravitational waves will be introduced in Sec. 1.2. This will be
followed by some details about the sensitivity of the current gravitational wave detectors in
Sec. 1.3 and the methods to improve detection sensitivity in Sec. 1.4.

1.1 The theory of gravitational waves

1.1.1 Einstein’s prediction

Gravitational wave is one of the most important predictions of General Relativity [1]. The
equation governing gravitational waves can be derived from Einstein field equations, where
gravity is considered as a geometric effect and the curvature of spacetime depends on the
local energy-stress tensor Tµν [4, 5]:
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Gµν =
8πG
c4 Tµν , (1.1)

where G is the Newton’s gravitational constant and c is the speed of light in vacuum. Gµν is
the Einstein tensor showing the geometric features of the spacetime:

Gµν = Rµν −
1
2

gµνR, (1.2)

where Rµν is the Ricci tensor, gµν is the metric tensor of spacetime and R is the curvature
scalar. Considering the weak-field and linear approximation, the metric tensor of spacetime
can be considered as the Minkowski metric (ηµν ) with a small perturbation (hµν ):

gµν = ηµν +hµν , hµν ≪ 1, hµν ≪ ηµν , (1.3)

Then we can obtain a wave equation from the Einstein field equations under the Transverse-
traceless gauge (TT gauge):

(▽2 1
c2

∂ 2

∂ t2 )hµν = 0. (1.4)

Thus, we find that the perturbation (hµν ) introduced in Eq. 1.3 is proved to be a kind of wave,
which would propagate through the universe at the speed of light, and this is the gravitational
wave predicted by Einstein a century ago. Gravitational waves have two independent modes:
the plus mode (h+) and the cross mode (h×), indicating two polarization directions that differ
by 45 degrees [6].

1.1.2 The scale of gravitational waves

As mentioned in 1.1, the perturbation of the spacetime will propagate through the universe in
the form of gravitational waves, then any event that occurs in the universe, as long as it is
accompanied by a perturbation in spacetime, will generate gravitational waves. The intensity
of gravitational waves is typically represented by a dimensionless parameter h [7]:

h =
2δLgw

L
. (1.5)
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Fig. 1.1 Plus (h+) and cross (h×) modes of gravitational waves [6]. The distances between
test masses, uniformly distributed on a circle, will be periodically be squeezed or stretched
with the arrival of gravitational waves.

where δLgw represents the distance change caused by gravitational waves between two points
originally separated by L. Assuming the simplest scenario of gravitational wave generation:
two spherical masses with mass M separated by 2r0 rotating around their center of mass at a
frequency forb, the dimensionless intensity of gravitational waves emitted by such a system
can be expressed as [5] :

|h|= rs1rs2

r0R
. (1.6)

where rs1 and rs2 are the radii of the two spheres, and R is the distance from the source to the
observer. In principle, it seems possible to generate and measure gravitational waves in the
laboratory. However, in reality, the generated gravitational waves are extremely weak and
cannot be detected. For example, two high-density spheres weighing one ton each, rotating
at a frequency of 1kHz and separated by 2 meters, would produce gravitational waves with a
strain of only 9×10−39, at a position comparable to its radiation wavelength.

Therefore, to study gravitational waves, we must turn our attention to the universe.
Assuming that two neutron stars with masses approximately equal to the Chandrasekhar mass,
M = 1.4M⊙ ≈ 3×1030 kg, and these two stars are very close to each other, e.g., r0 = 20km,
with a rotation frequency of forb ≈ 400Hz, and a detector is R = 15Mpc ≈ 4.5× 1023m



4 Introduction

away, the dimensionless intensity of the gravitational waves is estimated to be h ≈ 1×10−21.
This is much bigger than what we can obtain in the lab but is still tiny, equivalent to a change
of only one-thousandth of an atomic nucleus scale between points separated by several
kilometers!

1.2 Gravitational wave sources and detection

1.2.1 Gravitational wave sources

Gravitational sources can be classified into four main categories: continuous, inspirals, burst,
and stochastic sources [8].

Continuous sources mainly include the asymmetric rotation of dense celestial bodies,
such as pulsars. The typical frequency of continuous sources is normally between 1 Hz and 1
kHz. Due to the influence of a high level of seismic noise, which will be introduced later
in this chapter, the detection of gravitational wave signals in a frequency band below 10 Hz
mainly relies on the space-based gravitational wave detectors or other cosmology methods.

Inspiral sources are related to the final stages of a binary system when the two objects
orbit with each other and coalescence into one. In the process of inspiral, angular momentum
is continuously lost and dissipated in the form of gravitational waves and even greater energy
is released upon merger. Binary neutron star (BNS) mergers are considered to be one of the
most valuable inspiral sources, as this process not only releases gravitational wave signals
but also corresponding electromagnetic wave signals.

Burst sources release a significant amount of energy within a short period of time.
Supernova explosions are one kind of the most important burst sources, and the gravitational
wave signals released during the collapse of dense supernovae can help to study supernova
explosion mechanisms and the formation process of compact celestial bodies. The frequency
range of burst sources is between several hundred hertz and several kilohertz, which is the
primary detection frequency band of current earth-based gravitational wave detectors.

Various gravitational wave sources in the universe overlap with each other, forming
stochastic gravitational wave backgrounds. The backgrounds often have a certain amplitude
over a broad frequency band. Since binary systems are the most common in the universe,
they constitute a part of the stochastic backgrounds for sure. Another important stochastic
gravitational wave source comes from the inflation and evolution of the universe, and the
primordial gravitational waves are considered to be the most important one among them,
which may trace back to 10−36 to 10−32 seconds after the birth of the universe.
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1.2.2 The methods of gravitational wave detection

The first gravitational wave detector was the resonant bar invented by Joseph Weber [9].
When a gravitational wave arrives, the suspended resonant bar will be squeezed in one
direction and stretched in the other direction, and the changes in stretching and shrinking
vary with the frequency and amplitude of the gravitational waves. When the frequency of the
gravitational wave is equal to the natural frequency (or eigenfrequency) of the bar, resonance
would be excited. At this point, the sensor installed on the resonant bar may be able to sense
and record this mechanical vibration, and this vibration can be converted into gravitational
wave signals through subsequent data processing methods.

However, Weber bar did not ultimately succeed in detecting gravitational waves. But the
scientists who worked on it accumulated a wealth of theoretical and experimental experience,
laying an indelible foundation for the successful detection of gravitational waves afterwards.

As the resonant bar detectors faded out, the development of laser interferometric gravita-
tional wave detectors flourished and became the mainstream for gravitational wave detec-
tion [10–12]. A laser interferometric gravitational wave detector is basically a Michelson
interferometer, which uses laser interference to measure a small length change. In general,
the amplitude of gravitational waves is extremely small and can only cause typical length
changes in the interferometer arms on the order of 10−19 m for a kilometer-scale interfer-
ometer. In order to measure such small length changes, gravitational wave detectors have
undergone many modifications and updates based on the standard Michelson interferometer
design.

Taking the Laser Interferometer Gravitational wave Observatory (LIGO) as an exam-
ple [13], the interferometer arms are 4 kilometers long, and each arm is a Fabry-Perot cavity,
called an arm cavity. The test masses (cavity mirrors) are suspended, and the laser beam
is reflected back and forth between the mirrors of the arm cavities, greatly increasing the
effective arm length of the interferometer and resulting in the accumulation and amplification
of the small length change caused by gravitational waves. A scheme of a laser interferometric
gravitational wave detector is shown in Figure 1.2. Other improvements include, but are not
limited to, power recycling and signal extraction technologies, which respectively increase
the circulating power inside the cavity and widen the frequency bandwidth of the detection.

In addition to the aforementioned methods, there are several alternative approaches
for detecting gravitational waves. Pulsar timing array (PTA) [15] is one such method
that analyzes the impact of gravitational waves on the timing of millisecond pulsars. The
detectable frequency range of PTAs typically lies within the range of (10−7 ∼ 10−9) Hz,
depending on the duration of pulsar period recordings and the sampling rate employed. In
order to extend observation durations and enhance sampling rates, the International Pulsar
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Fig. 1.2 The scheme of a laser interferometric gravitational wave detector [14].

Timing Array (IPTA) [16] initiative has consolidated pulsar timing projects worldwide,
with promising prospects for forthcoming discoveries. Moreover, the indirect detection
of primordial gravitational waves is believed to be possible by the analysis of the cosmic
microwave background (CMB) [17–19], and the pursuit of very high-frequency gravitational
waves has prompted the construction of diverse electromagnetic resonance systems by
numerous research institutions [20–23].

1.2.3 Observations of gravitational waves

The first indirect evidence of the existence of gravitational waves was discovered through
an analysis of the orbital decay of a close binary system named Hulse-Taylor binary pulsar
(PSR1913+16) [24]. According to General Relativity, a binary system will lose orbital energy
due to gravitational radiation, resulting in a shorter orbital radius and a shorter orbital period.
The observation data of PSR1913+16 obtained by J.Taylor and R.Hulse perfectly matched
the calculation results from General Relativity. R.Hulse and J.Taylor were awarded the Nobel
Prize in Physics in 1993 for their discovery.

The first gravitational wave event was detected directly by LIGO on September 14th,
2015 [2]. This was a binary black hole (BBH) merger event that traveled from 13 billion
light years away from the Earth. Two black holes weighing 36+5

−4M⊙ and 29+5
−4M⊙ merged

into a Kerr black hole weighing 62+4
−4M⊙, and the remaining 3M⊙ was radiated in the form

of gravitational waves, where M⊙ is the solar mass.
After the first detection of BBH gravitational waves, several more BBH gravitational

waves were detected, resulting in many objective progresses in black hole research field.
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Afterwards in 2017, the gravitational waves from a binary neutron stars (BNS) system,
together with its electromagnetic counterparts, were observed [25]. This is a significant
milestone for the multi-messenger astronomy since it was the first time that gravitational
wave became one of the messengers in an astronomical observation, together with gamma-ray
bursts and other electromagnetic waves. The observation of gravitational waves, together
with their electromagnetic counterparts, provides a new method to constrain the Hubble
constant [26, 27], independent of type Ia supernovae and CMB.

By the end of observation run 3 in 2020, up to 90 gravitational wave events had been
detected [8, 28]. It is believed that more and more events will be detected in the near future
with the detectors sensitivity keeping improving.

It is also worth mentioning that significant progress has recently been made in the study
of gravitational waves using PTA. Research teams from four countries have independently
discovered the evidence for a gravitational wave background by analyzing the pulsar timing
data [29–32].

Fig. 1.3 Gravitational wave events [14]. The blue dots represent black holes, and the orange
dots represent neutron stars. The mixed half-blue/half-orange dots are compact objects of
unclear classification. The vertical scale indicates the mass as a multiple of the solar mass.
The arrows show the merger from two objects into one.
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1.3 Sensitivity limit of interferometric earth-based gravita-
tional wave detectors

Gravitational wave detection poses a significant challenge due to the inherently small ampli-
tudes. Thanks to the invention of the interferometer, the measurement of minute changes
in length became relatively more accessible. Meanwhile, by incorporating sophisticated
technologies such as Fabry-Perot cavities, power recycling, and signal recycling, gravitational
wave detection entered the realm of scientific reality.

However, despite these remarkable achievements, the sensitivity of current gravitational
wave detectors is still limited by an array of noise sources. Consequently, a thorough analysis
and rigorous suppression of these noise sources represent paramount endeavors within the
field of gravitational wave experiments.

1.3.1 Current gravitational wave detectors

In addition to the 4-kilometer detectors located in the United States (LIGO Livingston and
LIGO Hanford), the current earth-based gravitational wave detectors include Virgo [33] in
Italy with 3-kilometer-long arms and KAGRA [34] (Large-scale Cryogenic Gravitational
wave Telescope) in Japan, also with 3-kilometer-long arms. Meanwhile, there is GEO600
[35] in Germany with an arm length of 600 meter and LIGO-India [36] with almost the
same design as LIGO. Figure 1.4 shows a map of the worldwide network of earth-based
gravitational wave detectors.

Fig. 1.4 Worldwide network of earth-based gravitational wave detectors [37].
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With longer arm length and other improved technologies, the third generation of earth-
based gravitational wave detectors such as Einstein Telescope (ET) [38], will increase the
sensitivity by an order of magnitude. Furthermore, upcoming space-based laser interferomet-
ric gravitational wave detectors, such as LISA [39] (Laser Interferometer Space Antenna)
in Europe, DECIGO (Deci-Hertz Interferometer Gravitational wave Observatory) in Japan
[40], and Tai ji [41] and Tianqin [42] in China, are expected to detect lower-frequency gravi-
tational wave signals (Deci-Hertz∼ mHz) in the near future. IPTA is in charge of detecting
even lower-frequency gravitational waves. Figure 1.5 shows a summary of the gravitational
wave detectors and their main target sources.

Fig. 1.5 Sensitivity of gravitational wave detectors and sources. This figure is plotted using
the method described in ref. [43].

1.3.2 Various noises of gravitational wave detection on earth

There are a variety of noises that we need to be careful about for gravitational wave detection.
In order to detect gravitational waves successfully, all these noises have to be comprehensively
understand and mitigate to be smaller than the typical strain of gravitational waves.

Take the laser interferometric gravitational wave detector as an example. Anything that
can couple to the optical path length change is considered as noise. Figure 1.6 shows the
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design noise level for Advanced LIGO [13], from which we can gain insights into some of
the primary sources of noise in earth-based gravitational wave detectors. Here, the colored
lines represent various types of noises, while the black line represents the cumulative sum of
these noises. It can be observed that in the frequency range above 12 Hz, the sensitivity limit
is primarily determined by quantum noise and coating Brownian noise.

Fig. 1.6 Design noise level for Advanced LIGO.

Quantum noise consists of two components [44, 45]. The low-frequency regime is
dominated by radiation pressure noise, originating from fluctuations in the radiation pressure
exerted on the test masses. The high-frequency regime is dominated by shot noise, resulting
from the uncertainty in the arrival time and quantity of photons at the photodetectors. The
laser power inside the detector arms has contrasting effects on these two types of quantum
noise: increasing the laser power enhances radiation pressure noise but diminishes shot noise.

Coating Brownian noise, as its name suggests, comes from the Brownian motion of the
coating on the mirror surface. It is the most dominant among the noises that are attributed
directly to the mirror itself. In the recent experiment in LIGO, the coating Brownian noise
exceeds the level of quantum noise around 60 Hz, which means that the mirror coating
technology has yet to be improved.

In the frequency range below 10 Hz, seismic noise and suspension thermal noise are
notably significant, followed by Newtonian noise.
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1.3.3 Noises dominant at lower frequencies

The optimal sensitivity range for the current earth-based interferometric gravitational wave
detectors is 10 ∼ 1000 Hz. In the frequency range below around 10 Hz, there is a steep slope
mainly caused by seismic noise, suspension thermal noise, and Newtonian noise.

Seismic noise originates from natural phenomena and human activities, such as wind,
lunar tides, and transportation, among others. Typical ground motion noise is inversely
proportional to the square of the frequency, meaning that lower frequencies exhibit more
prominent seismic noise.

In order to mitigate the influence of seismic noise, a vibration isolation system is employed
to isolate the test masses from the ground vibrations. This isolator uses a quadruple-pendulum
to suspend the test masses, see in Figure 1.7. However, this introduces suspension thermal
noise unavoidably, which originates from the fibers used to hang the test masses. The
Brownian motion in these fibers directly results in the position fluctuations of the test masses,
thereby influencing the sensitivity of the detector.

Fig. 1.7 Quadruple-pendulum system to shield test masses from vibrations [14].
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Newtonian noise, also known as gravity gradient noise, refers to the fluctuations in the
local gravitational field caused by variations in mass distribution around the test masses.
These changes in the gravitational field directly impact the motions of test masses, resulting
in noise.

1.4 Methods to improve the sensitivity of a gravitational
wave detector

1.4.1 Upgrade the interferometric gravitational wave detector

To enhance the sensitivity of laser interferometric gravitational wave detectors, various
upgrades have been implemented. In the case of LIGO, sensitivity improvements can be
achieved through the following approaches:

1. Increasing laser power to reduce quantum shot noise;
2. Increasing the size and mass of the test masses to reduce the influence of radiation

pressure on their motion;
3. Changing the material of the test masses and suspension fibers to reduce thermal noise;
4. Upgrading and improving the isolation systems, such as utilizing active servo control

techniques;
5. Employing frequency-dependent squeezing techniques and other methods to reduce

quantum noise or even surpass the standard quantum limit (SQL);
6. The other fine-tuning and upgrading different components of the detector are crucial

for enhancing sensitivity.
Additionally, the gravitational wave detector KAGRA, located in Kamioka, Japan, is

constructed underground and operates in a cryogenic environment. This design helps in
reducing seismic noise and thermal noise. Meanwhile, space-based gravitational wave
projects and other astronomical observation methods are also important means for improving
detection sensitivity and expanding the detection frequency range.

1.4.2 Novel type of interferometer

In addition to the construction and improvement of mainstream laser interferometric gravita-
tional wave detectors, for which high power laser, optical cavities and suspended test masses
are essential, researchers are also keeping exploring novel approaches to detect gravitational
waves. These novel designs are normally less time-consuming and much cheaper, especially
compared with the space projects.
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First comes the atom interferometry [46]. In an atom interferometry, atoms are split to
travel through two separate free-fall paths and then recombined. The resulting interference
pattern contains information about gravitational waves since the travel time of the atoms is
changed by the spacetime strain effected by the gravitational waves. Research carried out by
the Stanford University has shown that atom interferometry can achieve a sensitivity on the
order of 10−19/

√
Hz in the frequency range of 1∼10 Hz [47].

Another novel type of gravitational wave detector is the torsion bar, which can also
achieve sensitivities superior to LIGO around 1 Hz [48]. A torsion bar detector consists
of two freely suspended bars that are perpendicular to each other. Gravitational waves
passing through the torsion bar induce different torques on the two bars, resulting in relative
displacements that are recorded by sensors attached to them. The main noise sources in
torsion bar detectors are thermal noise and angular motion of the bars.

In recent years, there has been significant progress in the research of Displacement-Noise-
Free Gravitational Wave Detection (DFI) [49, 50]. As the name suggests, DFI is not affected
by any displacement noise, which is a key limiting factor for earth-based laser interferometric
gravitational wave detectors. By cleverly combining the measured data, DFI eliminates the
displacement noise of test masses while preserving the gravitational wave signal. If neutrons
are used instead of lasers, DFI’s optimal sensitivity range is also below 1 Hz [51].

The focus of this thesis, Juggled Interferometer (JIFO), is also a novel gravitational
wave detector, which aims to improve the sensitivity of gravitational wave detection in the
low-frequency range. The main characteristic of JIFO is that its test masses are continuously
juggled, or in other words, repeatedly released to free fall. This ensures that the test mass is
completely free from the seismic noise and suspension thermal noise during the free-falling
cycles. This thesis will discuss the design principles and data readout methods of the JIFO in
Chapter 2, followed by the target gravitational wave sources in Chapter 3, and the design and
progress of prototype experiments in Chapter 4. The main results of the experiment will be
summarized in Chapter 5, and the overall conclusion and future works in Chapter 6.





Chapter 2

Concept and characteristics of a Juggled
Interferometer (JIFO)

Juggled interferometer (JIFO) is a novel type of gravitational wave detector with repeatedly
free-falling mirrors, which can significantly improve the sensitivity of earthbound gravita-
tional wave detectors at lower frequencies. In this chapter, we will start from the introduction
of JIFO in Section 2.1, which was firstly proposed by D Friedrich et al [52] in 2014. Then the
data features of JIFO will be discussed in Section 2.2. The detrend method suggested by D
Friedrich et al [52] will also be introduced here. In Section 2.3, a new data readout method for
the interferometer is proposed, making no need of fringe locking for the free-falling mirrors.
This is followed by the first analysis of the cyclic movement effects on the output data of a
JIFO in Section 2.4, including the additional Newtonian noise and signal upconversion.

2.1 Basic configuration

2.1.1 Motivation

In Chapter 1, it was mentioned that the sensitivity of current earth-based laser interferometric
gravitational wave detectors needs to be improved at low frequencies. Here, we take the
Einstein Telescope (ET) [38, 53] as an example to illustrate this in more details.

ET is a gravitational wave detection project led by the European Gravitational Observa-
tory (EGO), representing the third generation of detectors following the second-generation
detectors such as Advanced LIGO. ET adopts an equilateral triangle configuration, as shown
in Figure 2.1. Three detectors are planned to be built within this triangle, represented by
different colors in the figure. Each detector is further divided into a high-frequency (HF) and
a low-frequency (LF) part based on the difference in sensitivity range. This configuration is
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referred to as the xylophone setup. Operating multiple interferometers simultaneously not
only enhances sensitivity but also helps with the polarization determination of gravitational
waves. Moreover, ET’s design features, such as a 10-kilometer arm length, underground
construction, high-power lasers, cryogenics, and squeezed light technology, have significantly
improved its target sensitivity compared to the second-generation detectors, as shown in
Figure 1.5 in Chapter 1.

Fig. 2.1 Conceptual design of Einstein Telescope [54].

From Figure 1.5, it can be observed that although the target sensitivity curve of ET has
improved significantly compared to the second-generation detectors overall, there is still a
steep slope at lower frequencies. Figure 2.2 illustrates the sources causing this steep slope. It
is clear that below 2 Hz, seismic noise is significantly greater than the other noises, followed
by suspension thermal noise, Newtonian noise, and quantum noise.

Juggled Interferometer (JIFO) aims to eliminate seismic noise at low frequencies, and
because suspension thermal noise is introduced by the isolation system designed to handle
seismic noise, the removal of seismic noise would also result in the elimination of suspen-
sion thermal noise. This would significantly enhance the sensitivity of earth-based laser
interferometric gravitational wave detectors in the low-frequency range.
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Fig. 2.2 Noise sources of ETLF (Einstein Telescope Low Frequency). The data sources are
credited to the ET collaboration.

2.1.2 JIFO compared with a standard gravitational wave detector

As the name suggests, JIFO employs a "juggled" technique on its mirrors. To be more
specific, the mirrors are continuously released and go through a free-falling cycle. Since the
mirror is released, it is completely free from the influence of the ground and thus decoupled
from the seismic noise caused by the ground vibration. Figure 2.3 illustrates a conceptual
diagram of JIFO. It is a Michelson-type interferometer, differing from the standard laser
interferometric gravitational wave detectors in the following aspects.

The main difference lies in the status of the mirrors during the measurement. In standard
earth-based laser interferometric gravitational wave detectors, the mirrors are suspended
by fibers and housed within an isolation system. The effects of ground vibrations on the
mirrors are mitigated through feedback control of the isolation system and the damping and
filtering by multi-stage pendulums. In contrast, JIFO takes a completely different approach
by allowing the mirrors to undergo free-falling motion; thus, no isolation system is needed.
Due to height limitations, the mirrors cannot remain in a free-falling state all the time. Instead,
they undergo a cyclic motion of acceleration - f ree f alling - deceleration, as depicted in
Figure 2.4. Initially, the mirrors are accelerated to a certain velocity and then released. They
subsequently follow a vertical projectile motion (free falling) due to gravity until they return
to the released position. Finally, they are decelerated back to zero velocity and return to
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Fig. 2.3 Conceptual design of a Juggled Interferometer (JIFO) [52].

their initial position. The data obtained during the free-falling period is completely free from
seismic noise. However, ensuring the safety of the mirrors and maintaining the operation of
the interferometer during this motion presents new challenges. Since mirrors in space-based
gravitational wave detectors also experience free falling, JIFO can also serve as a test bed for
space-based gravitational wave detection projects.

Fig. 2.4 Mirror movement process of JIFO. The mirror is moving vertically and goes through a
cyclic acceleration - f ree f alling - deceleration moving process. The arrows here represent
the clamps to catch the mirrors to accelerate and decelerate, during the free-falling cycle, the
clamps are loosened.

The second difference lies in the absence of the arm cavities in JIFO. The arm cavity is
used in the interferometer to accumulate and amplify the changes in the arm length caused
by gravitational waves through the back-and-forth reflection of laser light. However, since
JIFO focuses on low frequencies where displacement noise dominates, the use of an arm
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cavity would amplify both the gravitational wave signal and the displacement noise equally.
Therefore, the design of arm cavity does not make sense for JIFO.

The third difference lies in the periodic Newtonian noise. For standard earth-based laser
interferometric gravitational wave detectors, Newtonian noise originates from fluctuations
of masses distributed around the mirrors of the interferometer, leading to variations in the
gravitational field. The mirror displacement caused by changing gravitational field is referred
to as Newtonian noise. In the case of JIFO, due to the continuous up-and-down motion of
the mirrors, Newtonian noise is generated whenever there is an uneven distribution of masses
near the mirrors. More details about the Newtonian noise of a JIFO will be discussed in
Section 2.4.

2.2 Data features

2.2.1 Discontinuous data

Due to the fact that only during the free-falling motion is the ground vibration noise elim-
inated, the data obtained during the acceleration and deceleration cycles is invalid. This
implies that the effective data recorded by JIFO will be discontinuous. If a burst gravitational
wave signal occurs during the acceleration or deceleration cycle of JIFO, it will be missed.
For continuous wave sources, the missing data segments directly affect the signal-to-noise
ratio (SNR).

When the duration of the effective signal constitutes 1/N of the total duration, the match
factor decreases to 1/N in the matched filtering method [55]. At the same time, since the
noise in each data segment is independent, the total noise becomes 1/

√
N times the original

and the overall SNR becomes 1/
√

N times the original. If we prepare two JIFOs with
staggered ascending and descending motions, the data gaps can be filled, and the lost SNR
should be compensated for.

2.2.2 Initial effect and its detrending

The discontinuity of the data brings another issue, which is the variation in the initial
effect of each data segment. Here, the initial effect refers to the initial velocity and initial
displacement along the arm direction each time the mirror is released. The rotation of the
mirror is not considered here, and relevant discussions can be found in Chapter 4. The
initial effect reflected in the intensity of the interfered light, which is then converted into a
mirror displacement signal x(t). As shown by the blue line in Figure 2.5, the discontinuous
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displacement noise can be expressed by the equation:

x(t) = h(t)+ i(t)+n(t), (2.1)

where h(t) is the gravitational wave signal, i(t) = x0 + v0t represents the initial effect includ-
ing the initial displacement x0 and initial velocity v0, and n(t) is the noise. Since the initial
effect is linear, we can perform linear fitting on the displacement signal and subtract this
linear data from the original data to remove the initial effect. This operation is referred to
as "detrend". The red line in Figure 2.5 represents the data after detrending. It should be
noted that detrending not only removes the influence of the initial effect but also eliminates
the linear component of the gravitational wave signal in the data. When the period of the
gravitational wave is much smaller than the free-falling cycle time tc, this influence can be
neglected. However, when the period of the gravitational wave is greater than tc, the signal
will be significantly attenuated.

Fig. 2.5 Discontinuous data from JIFO before and after detrending [52].

To address the impact of the detrending process on the signal, we propose two solutions.
The first straightforward approach is to detrend the template used in the matched filtering [55]
in advance. In other words, we use a detrended template to match the detrended data. This
way, the matching result should not be affected. Also, since the noises are also detrended
equally at the same time, the SNR would not be affected. Another method is to re-trend the
detrended data, i.e., restoring the linear component that was erroneously removed from the
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signal. The specific approach is to use the detrended result of a white Gaussian noise before
(N) and after (Nd) detrending to obtain a transfer function of detrending (T Fd). Then, divide
the detrended data by this transfer function in an attempt to obtain the displacement signal
(X) before detrending, which does not contain the initial effect:

T Fd =
Nd

N
, (2.2)

X =
Xd

T Fd
, (2.3)

where the subscript d denoted detrended. However, this method still needs a further investi-
gation since the detrend method is proved to have difference effect on the Gaussian noise
compared with a pure monochromatic signal, as shown in Figure 2.6. Here the free-falling
cycle time is set to be 1 s, and we can clearly see that there is an f 2 slope for the detrended
Gaussian noise when the frequency is lower than 1 Hz. This means, for example, that the
amplitude of the 0.1 Hz component of Gaussian noise will be reduced by a factor of 100,
since its frequency is 1/10 of 1 Hz. However, if we conduct the detrend method for a 0.1 Hz
monochromatic sine signal, it would be decreased by more than 100 times, which means the
transfer function in Equation 2.2 needs to be modified.

Fig. 2.6 Gaussian noise after detrending. The free-falling cycle time is set to be 1 s. The
detrend process results in an f 2 slope when the frequency is lower than 1 Hz.
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2.3 Data readout method

2.3.1 Mirror displacement signal from an interferometer

Interferometers are powerful tools that are widely used to measure small changes in distance
which is even smaller than the wavelength of the laser. However, since the directly measured
data is the laser intensity, it is necessary to convert this intensity variation into the change
in distance, or the mirror displacement along the arm length. Since in the context of
gravitational wave detection, the information of gravitational waves is concealed within the
mirror displacement signal.

For a standard interferometer, the measured laser intensity at the output is the interference
of Ex and Ey, which are the electromagnetic fields passing through the x-arm (right) and the
y-arm (upper) of the interferometer, see in Figure 2.7a. The input filed can be written as:

Ein = A0 × eiω0t , (2.4)

with A0 denoting the amplitude, and ω0 the angular frequency of the laser. Then after the
beam splitter and the travel along the x-arm and y-arm, Ex and Ey can be calculated by:

Ex =
A0

2
ei(ω0t+2k(L+∆Lx)), (2.5)

Ey =
A0

2
ei(ω0t+2k(L+∆Ly)), (2.6)

where k is the wave number, L is the arm length, and ∆Lx =−∆Ly represent the displacement
of M1 and M2, respectively. The interfered intensity of Ex and Ey is:

P = |Ex +Ey|2 =
P0

2
(1+ cos(∆φ)), (2.7)

where P0 is the input power, ∆φ = 2k|∆Lx −∆Ly| is the phase difference between the two
beams. The interference intensity exhibits a cosine function with respect to ∆φ , as shown in
Figure 2.8a.

If the intensity is near the middle fringe, such as point A in Figure 2.8a, we can directly
infer the phase change, and therefore the mirror displacement, from the intensity variation.
However, if the intensity is near a dark fringe or a bright fringe, such as point B, we cannot
directly determine the phase change from the intensity variation because their relationship is
no longer linear. In such cases, the laser should be modulated, as shown in Figure 2.7b, by
introducing an electro-optic modulator (EOM) in the arm. In this case, the field Ex from the



2.3 Data readout method 23

(a) without modulation (b) with modulation

Fig. 2.7 Michelson interferometer with and without laser modulation.

(a) Interfered intensity (b) Modulation-demodulation signal

Fig. 2.8 Interfered intensity and modulation-demodulation signal changing with phase differ-
ence of two beams.
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x-arm becomes:

Ex =
A0

2
ei(ω0t+2k(L+∆Lx)+m×sin(ωmt)). (2.8)

Here, ωm is the modulation frequency, and m ≪ 0 represents the modulation depth. The
interfered intensity becomes:

P = |Ex +Ey|2

=
P0

2
(1+ cos(∆φ)+

m2

4
+

m2

4
cos(2ωm)+msin(ωmt)sin∆φ). (2.9)

By demodulating the interference signal, i.e., mixing it with the modulation signal (sinωmt)
and passing it through a low-pass filter, we obtain the demodulated signal:

V =< P× sin(ωmt)>

=
P0m

4
sin(∆φ). (2.10)

Here the pointed brackets indicate averaging. Since the average value of the high-frequency
signal is 0, the calculation of averaging is equivalent to low-pass filtering. It can be observed
that the demodulated signal exhibits a sinusoidal function with respect to the phase difference
between the two beams. Thus, even near dark or bright fringes (point B in Figure 2.8b), we
can tell the phase change from the demodulated signal.

2.3.2 Pre-modulation

To prevent the free falling of the EOM, pre-modulation is more suitable for JIFO, which
means to modulate the laser before it passes through the beam splitter. Additionally, the two
arms of the interferometer must have different lengths, as shown in Figure 2.9. The length of
the x-arm is shortened to Lx and the length of the y-arm is elongated to Ly. In this case, the
phase difference of the two beams now has two components:

Φo = k|Ly −Lx|, (2.11)

∆φ(t) = 2k|∆Lx −∆Ly|. (2.12)
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Also, assuming the input electromagnetic field has an amplitude of A0, as defined in Equation
2.4, then Ex and Ey in this case are calculated by:

Ex =
A0

2
eiω0(t−t ′)+imsinωm(t−t ′)ei2k∆Lx , (2.13)

Ey =
A0

2
eiω0(t+t ′)+imsinωm(t+t ′)ei2k∆Ly, (2.14)

where ωmt ′ = Φ0 and ω0t ′ = 2nπ . The interfered intensity detected by the photodetector
after a low pass filter is now:

Ppd =< |Ex +Ey|2 >

=< |A0

2
eiω0t+imsinωm(t−t ′)ei ∆φ(t)

2 × (1+ eimsinωm(t+t ′)−imsinωm(t−t ′)e−i∆φ(t))|2 >

=<
P0

2
{1+ cos∆φ(t)+2mcosωmt sinΦ0 sin∆φ(t)}>

=
P0

2
(1+ cos∆φ(t)). (2.15)

The demodulation signal is then:

V1 =<
2P0msinΦ0

2
cosωmt sin∆φ(t)× cosωmt >

=
P0msinΦ0 sin∆φ(t)

2

=
P0meff sin∆φ(t)

2
. (2.16)

Here, the effective modulation depth is defined by meff = msinΦ0. We can see that
if Φ0 = 0, V1 would also be 0, making no mirror displacement signal in the modulation-
demodulation output. A differential arm length is the key to obtaining a mirror displacement
signal in the pre-modulation configuration.

2.3.3 Phase reconstruction

In order to determine the displacement signal using Equation 2.15 and Equation 2.16, it
is necessary to lock the interferometer at bright/dark fringe or middle fringes by feedback
controlling the displacement of the mirrors [56]. For mirrors in a free-falling state in
JIFO, non-contact electromagnetic actuators could be utilized [57]. However, this is quite a
challenging task.
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Fig. 2.9 Pre-modulated interferometer.

Here, we propose a method to reconstruct mirror displacement. For simplicity, we focus
on the sine and cosine components of Equation 2.15 and Equation 2.16:

p1 = cos(φ(t)), (2.17)

v1 = sin(φ(t)). (2.18)

Usually, φ(t) can be obtained by taking the arc tangent of the ratio α = v1
p1

:

φ(t) = tan−1
α +nπ +φ0, n = 1,2, ... (2.19)

The integer n in the equation can be determined by phase unwrapping. However, the
measured mirror displacement by JIFO undergoes oscillatory motion due to the influence of
gravitational waves and the initial effects of each release, which makes phase unwrapping
complicated [58]. As shown in Figure 2.10, assuming α0 is measured at the time of t0 and
α1 is measured at the time of t1, we cannot determine directly whether the phase changed
from φ0 to φ1a or φ1b since both of them give the same tangent value.
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Fig. 2.10 Phase unwrapping from tangent φ(t). One cannot determine the exact phase for the
value α1.

This unwrapping difficulty can be solved by making two complex functions [59]:

p1 + iv1 = eiφ(t), (2.20)

p1 − iv1 = e−iφ(t). (2.21)

Then the differential of φ(t) can be calculated by:

dφ(t)
dt

=−i× deφ(t)

dt
× e−iφ(t). (2.22)

Thus, the reconstruction of φ(t) can be achieved by integrating dφ(t)
dt over time, except that

the initial value of the phase cannot be obtained:∫ t

0

dφ(t)
dt

dt = φ(t)+ const. (2.23)

When consider the SNR of the reconstructed data, the modulation-demodulation signal
(V2) from the laser port would be helpful. The optical setup should then be updated to the
version shown in Figure 2.11. Since V2 =−V1, the complex function in Equation 2.20 can
be rewritten as:

eiφ(t) = p1 + iv1 = p1 − iv2. (2.24)
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Fig. 2.11 Updated interferometer with two PD signals.

Here, we calculated the shot noise and signal in terms of power change. Shot noise is
proportional to the fluctuation of photon number, which is the square root of the number
of photons detected. We have the laser power P = Nhν , in which N, with the unit of [1/s],
represents the number of detected photons per second, h is the Plank Constant, and ν is the

laser frequency. The photon number fluctuation can then be calculated by Ñ =
√

Pλ

hc , also
with the unit of [1/s]. The shot noise, with the unit of [J/s] or [W], is then calculated by:

nshot = hν × Ñ =

√
Phc
λ

. (2.25)

Since the two PD signals are uncorrelated with each other, the total shot noise is calculated
by:

ntot =

√√
P1hc

λ

2

+

√
P2hc

λ

2

=

√
P0hc

λ
. (2.26)

It is of interest to notice that the total shot noise does not change with φ(t), which means
it is fringe-independent. Assuming V2 has the same shot noise level with P1, the SNR of
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eiφ(t) = p1 − iv2 is then:

SNR(eiφ(t) = p1 − iv2) =
P0/2×

∣∣∣deiφ(t)
∣∣∣√

P0hc
λ

(2.27)

=
P0|dφ(t)|× |cos(φ(t))+ isin(φ(t))|

2
√

P0hc
λ

(2.28)

=
|dφ(t)|

2

√
P0λ

hc
. (2.29)

Which is also fringe-independent with a value of half the SNR around the dark fringe.
By now, we have developed a new method to reconstruct the mirror displacement signal

from the modulation-demodulation signal and the interfered laser power, without locking the
interferometer while maintaining a constant SNR. This method is of great significance in
that we can skip the difficulty of locking the free-falling mirrors and directly obtain a good
SNR that is half of what it is at the dark fringe.

2.3.4 Analog-to-digital conversion of JIFO readout

In this section, we move to discuss the issue of analog-to-digital conversion for the readout
of a JIFO. Since the measured light intensity change will be from dark to bright fringe,
an analog-to-digital converter (ADC) with relatively high number of bits will be required
to ensure sufficient resolution. The resolution of an ADC is calculated by the following
equation:

dVADC =
V FSR

2b , (2.30)

where V FSR is the span of the ADC with FSR denoting full-scale voltage range and b is the
number of bits. If we assume an interferometer targeting a sensitivity of dx = 10−19 m, the
phase change would be dφ = 2π

λ
dx ≈ 6×10−13, given the laser wavelength λ = 1µm. The

power change corresponding to the phase change according to Equation 2.15 can be deduced
as follows:

dPpd = d(
P0

2
(1+ cos∆φ(t)))− P0

2
sin∆φ(t)dφ ≈ 3P0 ×10−13,∆φ(t)≪ 1, (2.31)

which means that to ensure a sensitivity of dx = 10−19 m, dVADC = 3P0 ×10−13 is required.
This put demand on the ADC to be of log2(

P0
dVADC

) = 42 bits, while the common high
resolution ADCs on the market today are 32 bits.
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To solve the problem of analog-to-digital conversion, there is a method to try in addition
to using a high-resolution ADC. That is, dividing the voltage range into different intervals
for reading, each of which is small enough to ensure that the use of a standard ADC can also
meet the required resolution.

At the same time the intensity of the laser light incident on the photodetector could be
too high and would be a problem. We will either need to upgrade the existing photodetector
or reduce the lase power layer by layer with multiple beam splitters.

2.4 Effects of cyclic movement

2.4.1 Additional Newtonian noise

As mentioned in Section 2.1.2, additional Newtonian noise would be generated due to the up-
and-down cyclic movement of the mirrors in JIFO. In this section, we discuss the Newtonian
noise of a JIFO from two kinds of sources: the walls (including ceiling, floor and 4 walls
around) of the place where the JIFO is located and the masses around the mirrors.

The main gravitational force acting on the JIFO should be originated from the walls
around it. The basic idea to consider Newtonian noise from the walls is the following: the
cyclic movement of the JIFO results in the change in the distance from the mirrors to the
wall; then the gravitational force of the wall on the mirror changes; finally, the gravity force
along the interferometer arm results in mirror displacement noise for the detector.

If we assume that the ceiling and the floor are of infinite size, according to the Gauss’
law, the gravity field in between should be uniform. So, in this case, there is no gravity
force change when the mirror is moving, and therefore, no additional Newtonian noise. If
they have a finite size of a×b, the gravity along the x and y axis would be canceled when
JIFO is moving along the central axis. Figure 2.12 gives an image for this situation. At the
same time, the gravity along the z axis does not have influence on the mirror’s movement
along arm direction. The forces from the 4 walls around are also canceled with each other.
Therefore, there is also no additional Newtonian noise sourced by the walls in this situation.

If JIFO is not located along the central axis but at (x0, y0, z0), then the gravity force from
an area element ds = dx×dy in a coordinate of (x,y,z) would be:

dF =
Gρmds√

(x− x0)2 +(y− y0)2 +(z− z0)22 , (2.32)
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Fig. 2.12 Gravity force from the ceiling (blue parallelogram) to the mirror (red dot). When
the JIFO is moving along the z axis, the gravity forces along the x and y axis are canceled
with each other.

where m is the mass of the mirror, ρ is the area density of the wall and G is the gravitational
constant. Project dF to the x direction gives:

dFx =
Gρmds√

(x− x0)2 +(y− y0)2 +(z− z0)22 ×
x− x0√

(x− x0)2 +(y− y0)2 +(z− z0)2
. (2.33)

The acceleration caused from the gravity force from the wall is:

a =
∫ dF

m
, (2.34)

and the integration of acceleration a gives velocity v, the integration of v gives displacement
x, which is the Newtonian noise:

v =
∫

a dt,
x =

∫
v dt.

(2.35)

Here, we assume that the JIFO is inside a rectangle of size 10m×10m×5m and thickness
0.3m making with concrete (ρ = 1.44× 103kg/m3). The calculation result of the mirror
displacement resulting from the walls around is about 3× 10−8 m, which is significant
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compared with the expected gravitational wave signals. To avoid this, we should put the JIFO
along the central axis of the room thus the gravity forces from the walls can be canceled, as
discussed earlier.

Apart from the walls, there may be some other masses around the JIFO. If these masses
are not moving, we can obtain the mirror displacement data for a time series before and
after detrend process as shown in Figure 2.13. Here we assume that we have two JIFOs
with staggered free-falling time, so there is no data gap between different cycles. Because
the mirror would return to its initial position after each free-falling cycle, the displacement
exhibits periodicity with a period equal to the free-falling time (cycle time, tc) of the mirror.
Then the mirror displacement spectrum will peak at f = 1/tc Hz and its harmonics, as shown
in Figure 2.14.

Fig. 2.13 Mirror displacement data resulting from a resting mass. The red doted line and blue
solid line show the mirror displacement before and after the detrend process. The mirror’s
free-falling time is set to be 1 second and two JIFOs with staggered free-falling time are
assumed.

Using the same method of calculating the Newtonian noise generated by the wall, Figure
2.15 gives the spectrum of the Newtonian noise strain resulting from a range of masses at
different distances. The interferometer arm length is set to be L = 10km, which is the same
as ET. A 100 kg mass, which is 1 m away from the mirror, would result in 7×10−15/(

√
Hz)

Newtonian noise at 1 Hz for an interferometer with 10 km arm length.
Based on the requirement of detection accuracy, we can further derive the requirement of

mass distribution around JIFO. For example, to make sure that Newtonian noise is below
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Fig. 2.14 Mirror displacement spectrum peaks at 1 Hz and its harmonics. The mirror free-
falling time is set to be 1 second and two JIFOs with staggered free-falling are assumed.

10−21/
√

Hz around 1 Hz, there should be no mass heavier than 100kg
7×106 ≈ 10−5kg = 10mg

within a circle of 1 m diameter centered on the JIFO mirror. This evaluation is based on the
fact that the gravitational force, and thus the Newtonian noise, is proportional to the mass.
Or we can artificially place masses in symmetrical places to cancel the Newtonian noise
produced by the original masses.

If the source is oscillating at a frequency of f , then the spectrum would show 2 side bands
at ( fc ± f ) Hz. Figure 2.16 shows the image of a mass around the mirror moving along the
arm direction of the interferometer. The mirror displacement spectrum is shown in Figure
2.17, for which the oscillating source is moving at a frequency of f = 0.1 Hz and cyclic
frequency of the JIFO is fc = 1 Hz.

We should note that, the Newtonian noise discussed above is calculated for one of the
mirrors in the interferometer while the total Newtonian noise should consider all of the
mirrors, and there will be some cancellation and superposition between different mirrors.
Figure 2.18 shows an image of 2 mirrors with an oscillating mass around them. In this case,
we have the Newtonian noise proportional to the difference in the gravity force (∆F) from
the mass to the two mirrors expressed as:

∆F ∼ 1
(D±A)2 −

1
(L+D±A)2 , (2.36)
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Fig. 2.15 Spectrum of the Newtonian noise resulting from a range of masses at different
distances. The mass weight is ranging from 10−8 ∼ 106 kg, and the distance from the mass to
the mirror ranges from 10−2 ∼ 106 m. The interferometer arm length is set to be L = 10km.
The yellower the data, the louder the noise. The numbers on the colored squares indicate the
logarithm value of the Newtonian noise corresponding to certain weights and distances.

Fig. 2.16 Mirror and a moving mass around. The mass is oscillating along the arm direction
(x direction) of the interferometer at a frequency of f .
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Fig. 2.17 Mirror displacement spectrum resulting from a moving source around. The oscillat-
ing mass is moving at a frequency of f = 0.1 Hz and cyclic frequency of the JIFO fc = 1 Hz.
The zoomed-in figure shows two side bands at 1.1 Hz and 0.9 Hz.

where D is the distance from the mass to one of the mirrors, L is the distance between the
two mirrors and A is the oscillation amplitude of the mass. It is easy to see that when A ≪ D,
which would be the usual case, the amplitude of the vibration does not influence the gravity
too much. Then consider the scale difference between D and L. When A ≪ D,D ≫ L, we
have

∆F ∼ 1
(D±A)2 −

1
(L+D±A)2 ∼ 2DL+L2

D2(D+L)2 ∼ 2DL
D4 ∼ 2L

D3 ∼ 0, A ≪ D,D ≫ L, (2.37)

which means there are little difference in the gravity forces on the two mirrors, making the
displacement noises of the two mirrors canceled with each other. When A ≪ D,D ≪ L, we
have

∆F ∼ 1
(D±A)2 −

1
(L+D±A)2 ∼ 2DL+L2

D2(D+L)2 ∼ L2

D2L2 ∼ 1
D2 , A ≪ D,D ≪ L (2.38)

which means that when D is small, a relatively large mirror displacement difference can be
produced. This can be equated to the case when there is only one mirror.
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Fig. 2.18 Two mirrors and a moving mass around. The mass is oscillating along the arm
direction (x direction) of the interferometer at an angular frequency of ω .

2.4.2 Signal upconversion

In Figure 2.17, we have seen that the low-frequency mass vibration ( f ) can be upconverted
to ( fc ± f ) by the movement of the JIFO itself, with fc the cyclic frequency of JIFO. This
phenomenon triggers the following two inspirations: 1. JIFO may be able to serve as a
Newtonian noise meter by monitoring the side bands; 2. Low-frequency gravitational wave
signals may be able to be upconverted to the sensitive frequency band of the detector by the
JIFO. These two ideals are simply explained below.

Taking ET as an example, the Newtonian noise of it around 1 Hz is buried under the
other noises (see in Figure 2.2). However, it is worth measuring the Newtonian noise at this
low-frequency band since it could become dominant in the future. The measurement can
be achieved by a JIFO. If the cyclic frequency of JIFO is set to be 100 Hz, then the 1-Hz
Newtonian noise will be upconverted to 99 Hz and 101 Hz, which are falling within the
optimized sensitivity frequency band of ET.

Similarly, we can also consider a gravitational wave of 1 Hz passing by a JIFO. While
the gravitational wave itself may not be intense enough to be detected directly at 1 Hz, there
is a chance to see its upconversions at (100±1) Hz, where the sensitivity of the detector is
significantly greater compared to 1 Hz.

More detailed calculations are still required to be underwent in the context of more
specific examples.



Chapter 3

Promising science cases of a Juggled
Interferometer (JIFO)

In this chapter, the sensitivity curve of JIFO is evaluated. Based on this sensitivity, several
science cases are analyzed, showing the ability of a JIFO to detect gravitational waves at
around 0.1 - 10 Hz. This is the first time that the sensitivity curve of a JIFO is presented
and analyzed. The noise budget of the Einstein Telescope is referenced for comparison in
this chapter. Since the advantages of using free-falling mirrors in improving low-frequency
sensitivity apply to all other interferometers on earth, the results presented in this chapter can
also provide insights for other earthbound gravitational wave detectors.

3.1 Sensitivity improvement of a JIFO compared with ET

In this section, we will quantitatively discuss the improvement in gravitational wave detection
sensitivity on earth by utilizing JIFO.

In Chapter 1 when the motivation of building a JIFO is stated, we presented the sensitivity
curve of ET and identified seismic noise and suspension thermal noise as prominent noise
sources in the low-frequency range. Here, we assume the construction of a JIFO with the
same scale and exhibiting identical displacement noise as ET. In other words, we remove
the isolator and suspension system from the ET setup and introduce a mirror free-falling
system. The improved sensitivity curves are shown in Figure 3.1. The thick red line in the
figure represents the sensitivity of ET, labeled as suspended, indicating that the mirrors in
ET are designed to be suspended with fiber. The thick blue line represents the sensitivity
of JIFO, labeled as juggled, indicating that the mirrors in JIFO are repeatedly released
and undergoes free-falling motion. It can be observed that JIFO exhibits a significant
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Fig. 3.1 Sensitivity curves and main noise sources of ET and JIFO [59]. The thick red line
with a legend of suspension shows the sensitivity of ET and the blue line with a legend of
Juggled shows the sensitivity of JIFO. Below 2.5 Hz, the dominant noise of ET is seismic
noise and that of JIFO are Newtonian noise. At higher frequencies, the dominant noise for
both detectors is shot noise.

improvement in sensitivity compared to ET below ∼2.5 Hz. After eliminating seismic noise
and suspension thermal noise, the primary noise sources for JIFO at low frequencies are
Newtonian noise, while at high frequencies, it is shot noise. In this analysis, we assume that
the mass distribution around the interferometer is sufficiently uniform, thereby avoiding the
generation of additional Newtonian noise due to the up-and-down motion of the JIFO mirror,
as discussed in Chapter 2.

Based on the shot noise level, which is hshot ∼ 10−23/
√

Hz according to Figure 3.1, we
can evaluate the laser frequency and amplitude noise requirements for JIFO. For an arm
length of L=10 km, the shot noise and be converted to displacement noise: ∆X = hshot ×L =

10−23 ×104m/
√

Hz = 10−19m/
√

Hz. Assuming there is a length difference of ∆Larm =1 m
for the two arms of the interferometer, then the frequency noise should be within:

∆ f = c/λ
∆x

∆Larm
= 3×10−5Hz/

√
Hz, (3.1)

where c = 3×108 m/s is the speed of light and λ = 1064 nm is the wavelength of the laser.
Assuming the offset from the middle fringe is ∆Lmid = 10−13 m, then the power fluctuation
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should be within:

∆P
P

=
∆x

∆Lmid
= 10−6/

√
Hz (3.2)

3.2 Promising science cases

3.2.1 Detecting Quasi-normal modes of massive black holes

When we consider the oscillation of a string, of which both ends are fixed, we can obtain
its normal modes, which are a series of standing waves that satisfy the condition where an
integer multiple of the wavelength is equal to twice the string length. The corresponding
frequencies are real numbers and are multiples of the fundamental frequency:

f0 = 2L
T
m
, (3.3)

where T is the tension in the string and m is the linear density. However, energy dissipation is
not considered in this case, meaning that after the string is plucked, it will continue to vibrate
with a constant amplitude. In the case of Quasi-normal modes (QNMs), the ends of the string
are no longer fixed, and the energy of the oscillation escapes, causing the amplitude to decay
over time. This decay can be represented as:

A(t)≈ A0e−ω2tcosω1t (3.4)

where A0 is the initial oscillation amplitude, ω1 represents the oscillation frequency and ω2

represents the decay rate. Normally, QNMs are also written as:

A(t) =A0 ×Re(eiωt), (3.5)

ω =ω1 + iω2. (3.6)

Here the QNM frequency ω is an imaginary number consisting of two parts, one being the
oscillation frequency and the other being the decay rate. The curve of Equation 3.5 shows a
shape of ringdown, as shown in Figure 3.2.

Studying the QNMs of black holes (BH QNM) is an important step in computing
gravitational waveforms. The comparison of the theoretical calculation results and the actual
detection results can help us understand the nature of black holes and test general relativity
[60–62]. The process of binary black holes mergers is typically divided into three stages:
inspiral, merger, and ringdown. This is illustrated in Figure 3.3. After the two black holes
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Fig. 3.2 Example of ringdown oscillation. The initial oscillation amplitude is set to be one,
the oscillation amplitude is 5 Hz and the decay rate is 1.

merger into one, the resulting new black hole is still ringing, the generated gravitational
waves at this stage can be approximated using QNMs. The gradual decrease in the amplitude
of gravitational waves during the ringdown stage reflects the energy carried away by the
waves from the system. Similar ringdown phenomena can also occur when particles fall into
a black hole, causing perturbations in it.

The central frequency ( fc) of the BH QNM is proportional to the mass of black hole (M)
[63]:

fc(Hz) =
32×103 M⊙

M
× [1−0.63(1−a)0.3], (3.7)

where a ∈ [0,1] is the spin angular momentum of the black hole, M⊙ is the solar mass. Figure
3.4 shows that the central frequency decreases as the mass of black hole increases, with a
slope of M−1. The dimensionless effective strain of the QNM can be estimated by [60]:

heff ∼ 3×10−20[
E

250M⊙c2 ]
1/2[

fc

1Hz
]−1/2[

r
6Gpc

]−1, (3.8)

where E is the emitted energy which is assumed to be 1% of the mass of the black hole in this
thesis, r is the luminosity distance, and fc is calculated by Equation 3.7. The dimensionless
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Fig. 3.3 Process of binary black holes merger [14]. The schematic on the top shows the
three stages: inspiral, merger, and ringdown. The curves on the bottom are the strain of
gravitational wave emitted during these processes. There is an obvious decay of the strain in
the ringdown stage, which is the Quasi-normal mode of the resulting black hole.
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effective strain can then be transferred to spectrum density using [64]:

Sh( f ) =

√
h2

eff
f
. (3.9)

Fig. 3.4 Central frequency of the Quasi-normal modes of black holes as a function of mass.
Spin a = 0.98.

When the central frequency falls within the range of 0.1 Hz to 2.5 Hz, it correspond
to black holes roughly weighting 104 ∼ 105M⊙, falling into the category of massive black
holes. The calculated QNM spectrum is shown in Figure 3.5. The Algorithm Library Suite
of LIGO Scientific Collaboration (lalsuite) [65] is used for the calculation here. We can see
that the strain of QNMs from 0.5 Hz to ∼1.7 Hz is above the sensitivity of JIFO but below
that of ET, which means that these sources can only be detected by JIFO. Around 1.7 Hz, the
detection has its maximum SNR, which approximately equals 200.

3.2.2 Testing Brans-Dicke theory

The Brans-Dicke (BD) theory is proposed by Carl H. Brans and Robert H. Dicke in the 1960s
[66], which introduces a scalar field in addition to the tensor field in general relativity. As a
result, in BD theory, the gravitational interaction is mediated not only by the curvature of



3.2 Promising science cases 43

0.5 1 1.5 2 2.5 3

Frequency[Hz]

10-24

10-23

10-22

10-21

10-20

10-19

10-18

10-17

10-16

10-15

S
tr

a
in

[H
z

-1
/2

]
Juggled

Suspended

QNMs

Fig. 3.5 Quasi-normal modes (yellow line) for massive black holes and the sensitivity curves
for ET (red line) and JIFO (blue line) [59]. The sources are assumed at z = 1 with a spin
a = 0.98.

spacetime but also by the scalar field. The strength of the coupling between the scalar field
and mass in BD theory is determined by a parameter called BD parameter, ωBD [67]. When
ω̄ = 1/ωBD approaches zero, which means there is no coupling between the scalar field and
mass, the BD theory is equivalent to general relativity.

Gravitational wave signal generated by a binary system can be used to constrain the upper
limit of the ω̄ parameter, with at least one of the orbiting objects being a neutron star. The
strain of gravitational waves generated from balck hole-neutron star (BH-NS) binaries is
calculated in Figure 3.6. It can be seen that below 2.5 Hz, JIFO can obtain a better detection
SNR than ET, and therefore, provide stronger constrain of the upper limit of ω̄ .

To obtain the constraint on ω̄ , we adopted the method described in [67, 68], and the
key tool is the Fisher matrix. Assuming that the waveform h is determined by a series of
parameters θi, the Fisher matrix can be calculated as follows:

Γi j ≡
(

∂h
∂θi

| ∂h
∂θ j

)
. (3.10)
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Fig. 3.6 Gravitational wave strain from NS-BH binaries and the sensitivity curves for ET (red
line) and JIFO (blue line) [59]. The sources are located at 78 Mpc from the detector.

The definition of the inner product is the following:

(A | B) = 4Re
∫

∞

0
d f

Ã∗( f )B̃( f )
Sn( f )

, (3.11)

in which Sn( f ) is the noise spectrum of the gravitational wave detector.
The root-mean-squre (rms) error of the estimation of θi can be inferred from the square

root of the diagonal elements of the inverse of the Fisher matrix as follows:

∆θ
a =

√
Σaa, (3.12)

Σ =Γ
−1. (3.13)

The waveform of the gravitational wave here is written as:

h̃( f ) =

√
3

2
A f−7/6eiΨ( f ), (3.14)

in which A is the amplitude:

A= 1√
30π2/3

M5/6

DL
, (3.15)
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and Ψ( f ) is the phase under the stationary phase approximation:

Ψ( f ) =2π f tc −φc +
3

128
(πM f )−5/3

[
1− 5

84
S2

ω̄x−1

+

(
3715
756

+
55
9

η

)
x−4(4π −β )x3/2

+

(
15293365
508032

+
27145

504
η +

3085
72

η
2 −10σ

)
x2
]
.

(3.16)

where S can be calculated from the difference of the binding energy of the two bodies in the
binary system, η = m1m2

(m1+m2)
with m1 and m2 the mass of the two bodies in the binary system

and x = [π(m1 +m2) f ]2/3. The parameter set also includes f , the frequency of gravitational
waves; DL, the luminosity distance of the source; M, the chirp mass; tc and φc, the time and
phase when the coalescence happens; β , the spin-orbit effect; and σ , the spin-spin effect.
Since the ω̄ is expected to be zero if we agree with general relativity, then the rms error of it
indicates the upper limit.

From the strain of gravitational wave from (1.4,10) M⊙ and sensitivity of JIFO shown in
Figure 3.6, we can calculate the Fisher matrix using Equation 3.10 and Equation 3.11. The
distance is chosen to be 78 Mpc to have a detection SNR of 10 in the context of matched
filtering [55]. The event rate of this detection is evaluated to be 0.01-1 in 5 years [69].
Assuming tc = 0, φc = 0, S= 0.3, ω̄ = 0, β = 0, σ = 0, the diagonal elements of the inverse
of the Fisher matrix is calculated to be 1.14×10−5 for ω̄ . This also gives the lower limit
of ωBD > 8.8× 104. It is notable that S = 0.3 is chosen for the NS-BH binary system,
while binary BHs or binary NSs would give S∼ 0, resulting in little effect from ωBD to the
waveform. The value of S also supports the reason why NS-BH binaries are chosen for ωBD

constraint. For comparison, we list some more constraint results obtained by other methods
and detectors in Table 3.1:

Table 3.1 ωBD constraint results from different detectors.

Cassini DECIGO ET (f>1Hz) JIFO (f<2.5 Hz)
ωBD > 4×104 [70] > 2×106 [67] > 106 [71] >8.8×104 [59]

3.2.3 Primordial black holes research

Under the Big Bang theory, primordial black holes (PBHs) are believed to be formed during
the radiation-dominated era in the early universe [72]. Due to the inhomogeneity of the
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universe, there were certain regions with high density. These regions underwent gravitational
collapse inward and formed black holes when there were density fluctuations around, and
these black holes are referred to as PBHs [73]. Unlike black holes formed from stellar
collapse or binary mergers, PBHs can have a wide range of masses, ranging from very
light to very heavy. Therefore, heavy PBHs are often discussed to explain the formation of
supermassive black holes [74], and those with asteroid masses are considered as one of the
candidates for dark matter [75, 76].

There are many ways to study PBHs, such as analyzing their effects on the cosmic
microwave background radiation [77], studying their gravitational lensing effects [78], and
studying the gravitational waves that accompany the formation of PBHs (PBH GW) [79].
The central frequency of PBH GW can be calculated from the mass of PBH (MPBH) and the
relativistic degree of freedom (g∗) when PBHs are formed:

fGW = 1 Hz
(

MPBH

1017 g

)−1/2( g∗
106.75

)−1/12
, (3.17)

We can see that when the mass of the primordial black hole M = 1017 g, the corresponding
PBH-GW is around 1 HZ.

We assume that the primordial perturbation generating the PBH GW is a delta function
of a monochromatic frequency [80]:

Pζ (k) = Aζ δ (logk/k∗), (3.18)

where Aζ is a normalization parameter indicating the amplitude of the perturbation and k is the
wavenumber of the spectrum. The delta function peaks when k = k∗, where k∗ = 2π fGW/c
with fGW the frequency of PBH GW and c the speed of light. Then the energy density of
PBH-GW is [80]

ΩGW(η ,k) =Ωr,0h2
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where Ωr,0h2 is the density parameter of the radiation component at the present, with h the
Hubble constant, k̃ = k/k∗ is the dimensionless wavenumber and Θ is the Heaviside theta
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function defined by:

Θ(x) =

{
= 1, x ≥ 0

= 0. x < 0
(3.20)

The energy density can then be converted to spectrum density according to [80]:

Sh( f ) = ΩGW
3H2

0

2π2 f 3
GW

, (3.21)

Figure 3.7 shows the strain of PBH GW, which peaks at 1 Hz, together with the sensitivity
curves of ET and JIFO with a one-year correlation. We can again see that this PBH GW can
be detected by JIFO, while it is beyond the detection ability of ET. The detection SNR is
calculated to be 19 according to the method in [81].
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Fig. 3.7 Strain of PBH GW peaking at 1 Hz, together with the sensitivity curves of ET (red)
and JIFO (blue) with a one-year correlation [59]. The perturbation amplitude parameter Aζ

takes the value 5×10−3 and the current radiation density parameter Ωr,0h2 is 10−4.





Chapter 4

Principle verification experiment

In this chapter, the proof-of-principle experiment of JIFO will be introduced. No similar
experiments have ever been carried out in any prior researches.

So far, in this thesis, we have discussed that the test masses (mirrors) of the JIFO are
repeatedly released and clamped with controlled manipulation. Additionally, in order to
obtain gravitational wave signals, the laser is also modulated and demodulated. However,
in the principle verification experiment, we initially do not employ feedback control for the
mirrors, nor do we perform modulation and demodulation of the laser. Also, the prototype
scale is much smaller compared to the current size of gravitational wave detectors. As a first
step in the experimental attempt, our objectives are:

1. Achieving the releasing and catching of the mirrors.
2. Minimizing the tilt of the released mirror in the air.
3. Characterizing the performance of the experimental system and providing solutions

accordingly.

4.1 Overview of the experiment

The layout of the entire experiment is depicted in Figure 4.1. Region 1 shows the optical
path on the optical table, where the laser beam is coupled into the optical fiber; details can be
found in Section 4.2.1. The laser beam is incident into the adjacent vacuum tank through
the optical fiber. The interferometer will be set up inside the tank. The specific optical path
can be found in Section 4.2.2, and details about the vacuum tank and photodetector will be
described in Section 4.4.

Region 2 corresponds to the free-falling system, where a linear stage is fixed inside the
frame. By controlling the motion of the linear stage, the release and catch of the mirror can
be achieved. This part will be discussed in Section 4.3.
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Fig. 4.1 Overview of the experiment setup. The laser beam is first coupled into an optical
fiber in region 1 (see 4.2 for details), and then injected into a vacuum tank see (4.4b for
details). The linear stage in region 2 is used to realize the mirror free falling.
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(a) optial path

(b) fiber launch

(c) output collimator

Fig. 4.2 Laser beam coupling into a fiber. The 500 mm lens and 4 mm lens are used to focus
the light beam onto the fiber head to ensure maximum coupling efficiency. The laser beam
first enters the fiber fixed on the fiber launch, and before entering the vacuum tank, it passes
through a collimator.

4.2 Optical setup

4.2.1 Fiber coupling

As the JIFO undergoes continuous vertical movement, it is demanded that the light beam also
needs to move accordingly. However, directly moving the light source poses significant risks.
Therefore, we employed optical fibers. On the optical table, we first couple the laser beam
into the optical fiber, and then secure the output end of the fiber onto the platform where the
interferometer is placed. Figure 4.2 shows the fiber coupling setup. By adjusting the two
reflection mirror and the fiber launch carefully, a coupling efficiency of 64% is achieved. The
input power before the fiber (right after the 4 mm lens) is 11 mW, and the output power after
the fiver is 7 mW .
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There is an important consideration regarding the laser-to-fiber coupling. In order to
minimize the return loss, the fiber end is typically cleaved at an angle of 8 degrees. To ensure
that the laser beam enters the fiber parallel to its axis, a fiber connector with a 4-degree angled
surface should be selected for connection. This can be calculated from simple geometric
principles and the laws of refraction. As shown in Figure 4.3, the laser beam vertically
incident forms a 4-degree angle (angle A) with the perpendicular to the surface of the fiber
connector. Additionally, due to the 8-degree cleave angle on the fiber surface, the incident
angle of the laser beam onto the fiber, denoted as angle B, can be calculated to be 8 + 4 = 12
degrees. By applying the law of refraction, considering the refractive index of air (n1 = 1)
and the refractive index of the fiber (n2 = 1.5), the resulting exit angle, denoted as angle C,
can be calculated as 8 degrees, ensuring that the exiting light ray is parallel to the fiber:

sinB
sinC

=
n2

n1
. (4.1)

In our experiment, T HORLABS HBF005 with a 4.05 degrees angle is used to fit with the
cleaved fiber.

Fig. 4.3 Fiber connector (4◦ surface, gray) and fiber (4◦ cleaved, blue). With an incident
angle satisfying the law of refraction, the laser beam, shown as a red line, travels parallel to
the fiber.

4.2.2 Tilted end mirror

In Section 2.3, we present a data readout method that requires both the interference signals
at the output end of the interferometer and one returning to the laser end. Therefore, an
additional beam splitter is needed. In the proof-of-principle experiment, to reduce the number
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(a) design

(b) setup in the vacuum tank

Fig. 4.4 Interferometer with tilted end mirrors. This setup helps in obtaining two interference
signals with only one beam splitter.

of free-falling mirrors, we chose to slightly tilt the two end mirrors of the interferometer, such
that the reflected laser beams are slightly staggered from the incident light path, enabling the
acquisition of two interference signals using a single beam splitter, as illustrated in Figure
4.4.

4.3 Free-falling system

The free-falling system serves as a crucial part of this experiment. We aim to achieve mirror
free-falling in the simplest manner possible, while ensuring two key aspects: 1. Automatic
realignment of the mirror after each release, and 2. Safety of the mirror during the moving
process. To accomplish this, we have devised a triangular mirror holder (see Section 4.3.2),
and implemented the release of the mirror and its safety assurance through control of a linear
stage (see Section 4.3.3).

4.3.1 Mirror tilt upper limit

To achieve automatic realignment, it implies that the mirror should maintain an interference
state every time it returns to the initial position. Thus, we can calculate a maximum allowable
tilt (upper limit) for the mirror. As shown in Figure 4.5, to ensure interference between two
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laser beams, the wavefront displacement between them should be smaller than the wavelength
(λ ) of the laser. Considering that a rotation of the mirror by an angle θ results in a rotation of
the light beam by 2θ , we have the following relationship, for a wavelength λ = 1 µm, beam
waist b = 0.5mm and, θ ≪ 1:

∆x =2θb ≪ λ , (4.2)

θ ≪ λ

2b
≈1 µm

1mm
= 10−3. (4.3)

Fig. 4.5 Requirement on the mirror tilt to maintain interference. The wavefront displacement
between two laser beams should be smaller than their wavelength.

For a more precise calculation, we need to use the formula for a Gaussian beam. Consid-
ering a laser beam propagating along the z-axis and focusing on the fundamental mode, the
electric field distribution in the x direction can be expressed as follows:

A(x,z) = A0
ω0

ω(z)
× e

− x2

ω(z)2 e
ikx2

2R(z)+iφ0−ikz
, (4.4)

where A0 is the amplitude of the electric field when x and z are equal to 0, ω0 is the
beam radius, beam size ω(z) = ω0[1+(z/z0)

2]1/2, wavefront radius of curvature R(z) =
z[1 + (z0/z)2], Guoy phase φ0 = atan(z/z0) and Rayleigh length z0 = 1

2kω2
0 with k the

wavenumber. Then the optical axes of the two beams in Figure 4.5 can be considered to
be tilted from the z-axis by an angle θ . Thus, we have the following transformations by
denoting the two tilted beams as A′(x′,z′) and A′′(x′′,z′′):
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A′(x′,z′) = A(cosθx− sinθz,sinθx+ cosθz), (4.5)

A′′(x′′,z′′) = A(cosθx+ sinθz,−sinθx+ cosθz). (4.6)

Then the interference intensity of this two beams can be easily calculated by: (A′+A′′)(A′+

A′′)∗. Figure 4.6 shows the electric field intensity distribution of the tilted beams (blue and
red) and their interference intensity (yellow) around the bright fringe when the tilt angle θ =
10−3 rad.

Fig. 4.6 Interference of two tilted beams around the bright fringe. The yellow line shows the
interference at z = 10 cm with a tilt angle of θ = 10−3 rad. The intensity of the two tilted
beams (blue and red) is 1 W each, the beam waist is 0.5mm, and the wavelength is 1064nm.

We can find that due to the tilt of the two beams, the interfered light will exhibit fringes
instead of a simple bright spot. From the photodetector, we would see that output intensity
is decreased since it is the integrated value of the interfered light in Figure 4.6 that a
photodetector measures. When a gravitational wave passes through, the two arms of the
interferometer will have differential length changes, and the travelling paths of the two beams
will also undergo changes: one arm elongates (z′ + dz) while the other contracts (z′′−dz). As
a result, the total intensity will show variations in brightness with respect to dz, manifesting
as flashing of the beam spot at the output port. The numerical calculation results for the
in interference intensity are illustrated in Figure 4.7. Here, we define the contrast of these
brightness variations as follows:

contrast = (max power−min power)/(max power+min power).
A zero contrast indicates the absence of interference. Figure 4.8 demonstrates the

relationship between contrast and the tilt angle of a mirror. It can be observed that when
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theta exceeds 10−3 rad, the contrast tends towards zero, which means no interference. To
achieve a contrast greater than 90%, theta needs to be less than 10−4 rad.

Fig. 4.7 Interference intensity change as the arm length of the interferometer changes. The
mirror tilt angle is 10−4 rad, the input power of two beams is 1 W each, and the laser
wavelength is 1064 nm.

Fig. 4.8 Interference contrast changing with the mirror tilt.
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(a) design (b) actual picture

Fig. 4.9 Mirror holder.

4.3.2 Mirror holder design and test

We designed and tested the mirror holder from three aspects: shape, size, and material. Our
target, as demonstrated earlier in Section 4.3.1, is to ensure that the tilt angle of the mirror
upon its return is less than 10−3 rad, preferably smaller than 10−4 rad for a better contrast.

Firstly, for the shape, the design inspiration is derived from creating a slot for the mirror,
allowing it to fall back into its initial position and automatically realign after each release
and return. The design is shown in Figure 4.9a: the gray area represents the slot (base), while
the mirror is secured on the red part, referred to as the mirror holder. The mirror holder is
a part of a cube and has a face-to-face contact with the base below. For an actual picture,
please refer to Figure 4.9. From a minimum equilibrium perspective, a point-to-face contact
between the base and the mirror holder would also be a stable solution. However, due to
constraints such as manufacturing precision and model size, we could not make it to achieve
a smooth enough contact point, resulting in excessive friction. Therefore, we ultimately
opted for this face-to-face contact approach.

Secondly, we tested models of different sizes to find out an optimal one. On one hand,
due to limitations imposed by other equipment, we needed to minimize the size of the mirror
holder. On the other hand, considering that the mirror itself has a diameter of 1 inch and
a mass of 20 g, excessively small mirror holders would not be conducive to maintaining
balance. Therefore, we made three models of different sizes for comparison: large (8.5 cm),
medium (5.5 cm), and small (2.5 cm) triangle side lengths, as shown in Figure 4.10.

Figure 4.11 shows the optical path of our test. The laser is incident on a beam splitter, with
the reflected light serving as a reference, and the transmitted light incident on the mirror fixed
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Fig. 4.10 Three sizes of mirror holders.

on the triangle-shaped mirror holder. The position of the reflected beam spot is monitored
using a beam profiler. The distance between the beam profiler and the mirror holder is 50
cm in this setup. During testing, we repeatedly picked up and released the mirror, recording
the position of the reflected beam on the beam profiler. The probability distribution plot of
the beam spot positions was generated as shown in Figure 4.12. We performed fitting using
a Gaussian distribution curve on the data and obtained their standard deviations as shown
in Table 4.1. The beam position deviations are converted to mirror tilt angle by dividing
them by the distance from the mirror to the beam profilier, which is 50 cm in this case. From
the test result, we can find that all of these three sizes meet the requirement specified in the
previous section, with the mirror tilt below 10−4 rad in 1 σ range after each release and
return. Additionally, larger models show greater stability. Therefore, we ultimately selected
the largest allowable size of the mirror holder for our experiment (limited by the size of the
vacuum tank), which is the middle size with a side length of 5.5 cm.

Table 4.1 Standard deviations of beam spot position for different mirror holder sizes. The
test is conducted with three different model sizes.

side length [cm] x distribution σ [rad] y distribution σ [rad]
small 2.5 2.9×10−4 3.4×10−4

middle 5.5 6.0×10−5 2.6×10−5

big 8.5 1.6×10−5 1.0×10−5
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Fig. 4.11 Testing the stability of the mirror holder. The position of the reflected beam spot is
monitored using a beam profiler.

Thirdly, we need to select suitable materials. When two extremely smooth metal surfaces
come into contact, there is a risk of occurrence of a contact welding effect, which makes
it difficult to separate them. Therefore, in our experiment, the mirror holder and the base
need to be made of different materials: the mirror holder is made of aluminum, while the
base is designed and tested using three different materials: PTFE (Teflon), TX-PET, and
PE. The pictures of the samples are shown in Figure 4.13, and the test results are shown in
Table 4.2. We can see that PE exhibits the least stability, while PTFE (Teflon) and TX-PET
perform similarly. However, due to the higher compressive modulus of TX-PET, indicating
its resistance to deformation, TX-PET was ultimately chosen in this experiment.

Table 4.2 Standard deviations of beam spot position for different materials. The test is
conducted with three different materials. The side length of these three models are all 5.5 cm.

x distribution σ [rad] y distribution σ [rad]
PTFE 2.7×10−5 3.2×10−5

TX-PET 5.5×10−5 4.5×10−5

PE >10−4 >10−4

4.3.3 Linear stage for mirror free falling

We employed a linear stage to achieve the release of the mirror. By specifying time and
displacement information in the control program, we were able to control the linear stage
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(a) x distribution (small) (b) y distribution (small)

(c) x distribution (middle) (d) y distribution (middle)

(e) x distribution (big) (f) y distribution (big)

Fig. 4.12 Probability distribution plot of the beam spot positions. Three models of different
sizes are tested for comparison: large (8.5 cm), medium (5.5 cm), and small (2.5 cm) triangle
side lengths.
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Fig. 4.13 Three candidate materials for the mirror base. From left to right are TX-PET, PTFE,
and PE.

platform to move at the desired speed. The linear stage used in the experiment was custom-
made by Nikkidenso [82], and some important parameters are provided in Table 4.3. Here,
we emphasize two of the parameters. The max load of the linear stage is 4 kg, which requires
the vacuum tank as well as the interferometer inside to be made compact and light. The
position resolution of the linear stage is designed to be 0.1 µm. With this precision level, it is
believed that the mirror release method described in the following text would be functional.

Table 4.3 Some designed parameters of the linear stage.

Parameter Value
Size 457 mm×1440 mm×91 mm

Rated thrust 200 N
Maximum motor velocity 3 m/s

Maximum load 4 kg
Resolution 0.1 µm

Here, we demonstrate our method to realize the free-falling process. To start with, the
mirror on top of the base is set on the linear stage platform, and then the up and down motion
begins with the activation of the linear stage. Each moving cycle consisted of five steps:

1. The mirror is accelerated upwards together with the linear stage.
2. Upon reaching the midpoint, the linear stage is decelerated with a deceleration a > g,

causing the mirror to separate from the base due to inertia.
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3. The mirror undergos a free-falling motion, and the linear stage speed is controlled to
follow the mirror’s motion, while maintaining a constant distance between the mirror and the
mirror base.

4. When returning to the midpoint again, the linear stage is decelerated, allowing the
mirror to fall back into the base.

5. The mirror and linear stage are decelerated together and returned to the initial position.
In Figure 4.14, the solid and dashed lines represent the motion of the linear stage and that

of the mirror, respectively. The interval from 0.25 s to 0.75 s corresponds to the free-falling
phase of the mirror. For clarity, the gap between the stage and the mirror in the Figure is
magnified, while in the actual experiment, this gap was less than 5 mm.

Fig. 4.14 One cycle movement of the linear stage and the mirror. The dashed line shows the
mirror movement and solid line shows the linear stage movement. Here one cycle is set to be
1 s. The mirror is released at 0.25 s and returned at 0.75 s. The gap between the mirror and
the linear stage is magnified in the figure for clarity.

4.4 Details of other devices

4.4.1 Vacuum tank

From Figure 4.4b, it is shown that the free-falling mirror is placed inside a vacuum tank.
In fact, the mirrors (commonly referred to as test masses) of other earth-based laser inter-
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ferometric gravitational wave detectors are also placed in a vacuum. The use of a vacuum
environment is primarily aimed at reducing the Residual Gas noise.

Fig. 4.15 Illustration of the forces exerted on a mirror by air molecules. The two forces are
related to the thermal movement of the molecules and friction.

Residual Gas noise is generated by the gas remaining in the vacuum tank. Gas molecules
randomly hit the mirror due to the thermal movement, causing the mirror to deviate from
its equilibrium position. Meanwhile, the friction between air molecules and the mirror
dissipates the mirror’s kinetic energy, as shown in Figure 4.15. This process follows the
Fluctuation-Dissipation Theorem [5]. The frictional force that hinders the mirror’s motion is
proportional to its velocity v and acts in the opposite direction:

Ff ric =−bV =−1
4

nAµ v̄v, (4.7)

where A is the area of the mirror, µ = 28.9634g/mol is the molar mass of air, and v̄ =

4
√

kbT
2πµ

m/s is the average velocity of the air, with Kb = 1.38×10−23 J/K the Boltzmann’s

constant. n = P
KbT is the number of molecules of gas per unit volume, where P is the pressure

of gas and T is the temperature. The force on the mirror caused by the thermal movement of
the molecules is denoted by Fther and its power spectrum can be calculated according the
Fluctuation-Dissipation Theorem [5]:

Fther( f ) =
√

4kBTR(Z( f )), (4.8)

where the function Z( f ) = b+ iωm is called the impedance, where b is the coefficient in
Equation 4.7, ω is the angular frequency of the mirror’s oscillation, and m is the mass of the
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(a) Pressure fixed and frequency changing (b) frequency fixed and pressure changing

Fig. 4.16 Residual gas noise under the Fluctuation-Dissipation Theorem. The Temperature is
15 oC, the mirror mass is 0.03 kg, and mirror radius is 0.5 inch in the calculation.

mirror. The sign R means taking the real part. Then the equation of motion of the mirror in
this system is:

mẍ = Fther −Ff ric, (4.9)

where x is the mirror displacement and ẍ is the acceleration of the mirror under the two
external forces. Substituting Equation 4.7 and Equation 4.8 into Equation 4.9 and conducting
the Laplace transform, we obtain the power spectrum of the mirror displacement, which is
also known as the residual gas noise:

x( f ) =
4kBT b

ω4m2 +ω2b2 . (4.10)

Figure 4.16 shows the calculation results using Equation 4.10. We can see that x is
inversely proportional to the square of the frequency and proportional to the square of air
pressure, which means a lower pressure at higher frequency gives lower residual gas noise.
Our experiment is conducted at a pressure level of approximately several hundreds pascals,
which correspond to a residual gas noise of around 1 ∼ 5×10−12 m/

√
Hz. This noise level

is apparently not enough for gravitational wave detection but is enough for our principle
verification experiment to illustrate the importance of vacuum implementation.

The vacuum tank design is shown in Figure 4.17. Acrylic was chosen as the material in
order to see the interior as well as for its lighter mass. The size of the vacuum is also relatively
compact, with a height of 100 mm and an inner diameter of 168 mm. The two valves on



4.4 Details of other devices 65

(a) design

(b) manufactured

Fig. 4.17 Vacuum tank and the platform. Acrylic is chosen for the vacuum tank in order to
see the interior as well as for its low density. CFRP is chosen for the platform for its high
strength and also low density.

top of the lid of the vacuum tank are connected to the vacuum pump and vacuum meter,
respectively. The platform, on which the vacuum tank is placed, is made by CFRP (Carbon-
fiber-reinforced polymers) and this material is also chosen for its comparable strength to
Aluminum but with only one-third of the density.

When a mirror together with the mirror holder and base is placed inside the vacuum tank,
it takes approximately 15 minutes to evacuate the tank from atmospheric pressure to 100 Pa.
After closing the valve, the vacuum can be maintained at several hundred pascals for up to 24
hours. Since our equipment is not specifically designed for vacuum use, the outgassing from
the components may affect the maintenance of vacuum level. However, as mentioned earlier,
maintaining a vacuum level of several hundred pascals during the experimental process is
already sufficient for the current step of this experiment.

4.4.2 Quadrant photon detectors

Quadrant photodiode (QPD) is used in this experiment for laser readout, as shown in Figure
4.4b. The sensitive area of the QPD is divided into four segments. By detecting the changes
in light intensity in each segment, we can infer the movement of the light spot and determine
the rotation of the mirror.
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Due to the limited load capacity of the linear stage and the limited space inside the
vacuum tank, we chose to place only the sensor head of the QPD inside the vacuum tank and
connect it to the circuit through wires. The working principle of the photodetector is based on
the excitation of electrons by photons, thereby converting the light energy into an electrical
signal. The designed QPD operating circuit for this experiment is illustrated in Figure
4.18a. D1 ∼ D4 represent the four light-sensitive semiconductor diodes of the 4 segments
of the QPD. The generated electrical signals pass through a low-pass filter composed of an
operational amplifier (OP27), a 100 nF capacitor, and a 1.5 kΩ resistor to filter out signals
above 1 kHz. Based on this circuit diagram, the board we soldered and used in the following
experiment is shown in Figure 4.18b.

The spectrum of the laser intensity was measured using this QPD, as shown Figure 4.19.
It can be observed that the four segments exhibited consistent performance, and when there
was no laser incidence, the output of the QPD matched the background noise of the data
logger. The spikes observed at 60 Hz and its harmonics are attributed to the current noise
(This experiment is conducted in Nagoya where the 60-Hz AC power is used).

When measuring the laser output intensity using a photodetector, sometimes we observed
spikes with a time duration of approximately 5 to 20 ms, as shown in Figure 4.20. Initially,
we suspected that these spikes were due to temporally shorts of the circuits. However, similar
spikes were detected using a commercial photodetector (T horlabs PDQ30C), see Figure
4.20b. Furthermore, there were also occasions when one PD detected a spike while the other
did not (see in Figure 4.20c and 4.20d), although they were conducting the measurement
simultaneously. Additionally, when we replaced the laser or used an oscilloscope instead
of a data logger to monitor the data, similar spikes were still observed. We were unable to
identify the exact source of these spikes in the end. Fortunately, the occurrence frequency of
these spikes is approximately once every few tens of seconds, which minimally impacts the
data acquisition during our test.
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(a) Designed operating circuit for QPD.

(b) Soldered board.

Fig. 4.18 Operating circuit for QPD. Each segment is connected to a 1 kHz low-pass filter
before output.
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Fig. 4.19 Laser intensity spectrum measured with the four segments of the QPD. The lower
lines are measured when the laser is off, indicating the background noise. The upper lines
are measured when the laser is on. The sampling rate is 1.5k pnt/s.
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(a) full data (b) zoom in around t=165 s

(c) zoom in around t=198 s (d) zoom in around t=161 s

Fig. 4.20 Unidentified spikes from the QPD outputs. Two photodetectors are used to measure
the laser output simultaneously. (a), The spikes occur in the outputs of the photodetectors.
(b), A spike occurs in the outputs of both at the same time. (c) and (d), Spikes measured at
different time by different photodetectors.





Chapter 5

Main results and possible solutions for the
disturbances

5.1 Linear stage movement

In Section 4.3.3, we mentioned that we need to control the moving speed of the linear stage
to achieve the release and return of the mirror. Therefore, it is important to first ensure
that the linear stage can successfully execute the desired motion as specified. Figure 5.1
presents the test results of the linear stage trial run, with the set values on the top and a
comparison between the actual measured values and the set values on the bottom. The
programmed moving pattern consists of three parts: 1. Accelerating upwards to the middle
position, acceleration a =−g, with g the gravitational wave acceleration; 2. Ascending to
the top and then descending, acceleration a = g; 3. Decelerating to zero reaching the bottom,
acceleration a =−g. The duration of one cycle is set to 1s.

From the zoomed-in view on the right side of Figure 5.1, we find that the position control
accuracy of the linear stage is worse than what was stated in the performance specifications
(Table 4.3), with an error reaching the level of 10 micrometers. This may have an impact on
the stability of the mirror during release. Meanwhile, it can be observed that the position
signal of the linear stage exhibits a saw-tooth pattern. This is caused by the setting where
the internal signal reading frequency of the linear stage is nearly twice the signal update
frequency of the oscilloscope. The signal update interval is 8×10−4 s, while the signal
reading time is approximately 4.4×10−4 s. As a result, the displacement signals at two
adjacent time points are the same.
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(a) setting data

(b) measured data

Fig. 5.1 Linear stage trial run result. (a) Time-displacement coordinates set in the control
program, forming an acceleration - f ree f all - deceleration motion process. (b) The results
of the linear stage movement according to the programmed settings in (a). The two smaller
plots on the right depict the zoomed-in views around the starting position and the peak. The
error between the set values and the measured values is on the order of 10 micrometers.
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5.2 Mirror release

5.2.1 Mid-release method

We first tried the method described in Section 4.3.3 to release the mirror, following the
sequence of acceleration - f ree f all - deceleration. The expected result was that the mirror
be released at the intermediate height during the motion, then go through free fall, finally
return to the base and decelerate together with the linear stage until stop. This moving pattern
is called the mid-release method. During the free fall of the mirror, the velocity of the linear
stage was controlled to maintain a constant distance of 3 mm away from the mirror. For
clarity, displacement-time graph of the desired motion is presented in Figure 5.2.

Fig. 5.2 Target movement of the mid-release method for the mirror and linear stage to realize
the mirror free falling. The mirror is released at 0.25 s and returned at 0.75 s. The gap
between the mirror and the linear stage is magnified in this figure for clarity.

Fig. 5.3 Obvious tilting of the mirror using the mid-release method introduced in Section
4.3.3 and Figure 5.2.

The photographs capturing the motion of the mirror during the experiment using the mid-
release method are presented in Figure 5.3. Obvious tilting of the mirror can be observed.
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By reviewing the mirror motion videos, it was determined that the instability of the mirror
was primarily caused by uneven forces acting on its three surfaces during the release process.

5.2.2 Top-release method

To achieve more stable release, adjustments were made as illustrated in Figure 5.4. The
mirror is first moved together with the linear stage to the top position, then the linear stage is
controlled to descent with an acceleration slightly greater than the gravitational acceleration
g, causing the base separate from the mirror. This modified moving pattern is called the
top-release method. In this scheme, the free-falling time of the mirror is reduced to half of
the mid-release method, with only a quarter-second interval from 0.5 s to 0.75 s.

Fig. 5.4 Target movement of the top-release method for the mirror and linear stage to realize
mirror free falling. The mirror is released at 0.5 s and returned at 0.75 s. The gap between
the mirror and the linear stage is magnified in this figure for clarity.

Fig. 5.5 Successfully released the mirrors with no obvious tilt using the top-release method.
Two mirrors are placed in the vacuum tank to confirm whether the difference in position
affects the release of the mirrors.
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The photographs capturing the motion of the mirror during the experiment using the
top-release method are presented in Figure 5.5. We can see that this time the mirror was
successfully released and no obvious tilt is observed. The top-release method is consistently
conducted in our subsequent tests.

There is one additional detail to mention regarding the testing of the top-release method.
The principle of achieving mirror release involves controlling the linear stage to have a
slightly greater acceleration than the gravitational acceleration g. This is achieved in the
control program by setting the gap between the mirror and the stage, as well as the time taken
to reach this gap (release time). However, an excessively large acceleration can overload
the linear stage, while too small an acceleration can hinder the release of the mirror. After a
series of testing, a gap size of 1 mm and a release time of 30 ms are selected as the optimal
releasing parameters.

5.3 Device performance characterizing

Next, we used the laser and QPDs to observe the movement of the mirror more precisely and
then analyze the sources of noise that affect the stability of the output signal.

5.3.1 Testing without free-falling mirrors

Firstly, without using a reflection mirror, we directly measured the intensity of the laser
using the QPDs at distances of ∼5 cm and ∼15 cm from the light source. The measurement
results are shown in Figure 5.6 (left: overall motion, right: zoomed-in view). The red curve
represents the motion of the linear stage, which initially remains stationary, then ascends
and descends at a constant velocity, followed by repeated cycles. Based on Figure 5.4, the
following conclusions can be drawn:

- During the linear motion phase with constant velocity (12 - 24) s, oscillations with a
frequency of approximately 1 Hz and an amplitude of about 2 mV were observed in the
dark-blue line. This can be attributed to the vibration mode of the entire vacuum tank.
Additionally, significant variations in light intensity and ringdown effects were observed
when the linear stage changes moving directions. This ringdown is mainly originated from
the vibration of the fiber output and can be explained by Figure 5.7. We tapped the post,
on which the fiber is fixed, and compared the laser output fluctuation, which also shows a
ringdown curve, with the ringdown observed during the movement. Similar frequency is
found in the two curves, which suggests that they are originated from a common source.
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(a) overall (b) zoom in

Fig. 5.6 Directly incident laser beam on the QPD. The red line shows the linear stage’s
movement. The light-blue plot represents the measured output from one segment of the QPD
when the QPD is ∼5 cm away from the fiber output port, and the dark-blue plot represents
the measured output from the same segment when the QPD is ∼15 cm away from the fiber
output port. Both of them are the output from one segment. Figure (b) is the zoomed-in view
of Figure (a) from 29 s to 32 s.

However, there are other frequencies and other oscillations mixed in the output when the
linear stage is moving, indicating that there are other sources needed to be clarified.

- During the top-release cycles (after 24 s), the dark-blue line is found to have greater
noise than the light-blue line, which can be attributed to the vibrations of the fiber and the
vacuum tank, since the light-blue line is measured near the fiber output port, and therefore has
less differential oscillation with the fiber output port. During the 0.5-second stationary period
at the top, the laser intensity experienced a ringdown before stabilizing. It can be observed
that the laser intensity after each release cycle does not have obvious change, indicating that
the mirror returned to its initial position, consistent with the testing conducted in Chapter 4.

5.3.2 Detecting transmitted and reflected light from a beam splitter

Next, we fix a beam splitter on the mirror holder and let it move together with the linear stage.
We then measured the reflected and transmitted light passing through the beam splitter using
the QPD. The experimental setup is illustrated in Figure 5.8. The pressure inside the vacuum
tank was set to be 100 Pa. Before the movement, the laser beam was centered on the QPD.
The output difference between the four segments was within 20 mV. Specifically the outputs
of segment A, B and D are ∼ 180 mV and the output of segment C is ∼20 mV lower than
the others. Figure 5.9 shows the variation in the reflected light intensity for each segment
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(a) (b)

Fig. 5.7 Ringdown of the QPD output. The red line represents the measured output from
one segment of the QPD when the linear stage is moving, and the blue line represents the
measured output from the same segment when the fiber post is tapped. Similar ringdown
frequency is found in the two curves.

as the linear stage moves and two zoomed-in plots on the right are shown as examples. By
examining this figure, we observed the following:

- When the mirror is released and free falling, it undergoes tilt, resulting in the movement
of the beam spot on the QPD. In the bottom right plot in Figure 5.9, the mirror is release
around 28.75 s and after the release, the output of segments A and B increased, while the
outputs of segments C and D decreased. This suggests that the beam is moving towards the
left side of the QPD. To be more precise, Segment D’s output changes from -180 mV to -55
mV, indicating a movement distance of approximately two-thirds of the beam radius. Giving
the beam radius (R = 0.65 mm) and the distance between the QPD and the beam splitter
(L = 50 mm), we can calculate that the maximum rotation angle of the mirror, around the
yaw-axis, reaches θ = R× 2

3/50 ∼8×10−3 rad. In some other cases, such as the one on the
upper right in Figure 5.9, the beam spot movement is relatively small, which is approximately
one-tenth of the beam radius. The maximum tilt angle is estimated to be around 1.3×10−3

rad, which is close to the upper limit calculated in Section 4.3.1. But further stabilization is
still needed. Also, although the rotation around the pitch-axis is relatively smaller compared
with the yaw-axis, giving the evidence that the output difference of segment A and B is
changing within 10∼30 mV, it is still needed to be stabilized.

- When the mirror is in the air, the output light exhibits both high-frequency and low-
frequency oscillations. From the two zoomed-in plots in Figure 5.9, we can see that high-
frequency oscillation is approximately 200 Hz, which is believed to originate from the overall
vibration of the linear stage. The low-frequency oscillation is approximately 10 Hz, which is
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suspected to be caused by the vibration of the platform, on which the vacuum tank is placed.
However, these two oscillation sources still need further verification.

5.3.3 Vacuum level and mirror release

So far, the influence of residual gas noise calculated in Section 4.4.1 on our experiment has
been significantly smaller than the instability observed when the mirror is released. However,
this experiment still requires a certain level of vacuum, as explained in the following.

If the mirror is well released, the output of the QPD would be like the two plots on
the right in Figure 5.9. During the free-falling region, the power of each segment should
change continuously with some small oscillations caused by the vibration of the experimental
system and there will not be sharp decrease or increase. In order to see how the vacuum level
influences the mirror release, We conducted mirror release tests at pressure levels of 100 Pa,
300 Pa, 500 Pa, and 1000 Pa. The measured result is shown in Figure 5.10 and the data shown
here is obtained from one of the mirror release cycle. The thick red solid line represents
the position of the linear stage, with the time interval from 33.80 s to 34.05 s indicating the
setting time for the mirror to be released and undergo free fall. The thinner solid lines show
variations in reflected light intensity from the mirror under different pressure conditions, with
significant fluctuations indicating substantial oscillation when the mirror returns to the base.
It can be observed that at 100 Pa and 300 Pa, the output is changing continuously during
the free-falling period. The mirror’s return time aligns closely with the set time, precisely
0.25 seconds of free fall starting from the separation at 33.80 s. However, for the case of
500 Pa and 1000 Pa, there are sharp increase and decease in the QPD output, which means
that the mirror is not well released. And to be more precisely, it can be seen that at 500 Pa,
the mirror’s return time is noticeably advanced by approximately 0.05 s, and at 1000 Pa, the
mirror returns to the base in less than 0.1 s with significant shaking afterwards. Therefore,
our current experimental requirements dictate a pressure of at least 300 Pa or lower. To
determine the required vacuum level more precisely, a need for further investigations on the
quantitative criteria remains.

5.4 Main disturbances and possible solutions

Using the top-release method, we have successfully achieved the release of the mirror and
maintained its stability to some extent during free fall. However, there are still several issues
that need to be addressed to achieve better stability and maintain alignment. The factors
currently affecting the stability of the mirror during free fall primarily originate from two
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(a) design setup

(b) actual setup

Fig. 5.8 Detecting transmitted and reflected light from a beam splitter.
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Fig. 5.9 Reflected light intensity for each segment of the QPD as the linear stage moves.
The two zoomed-in plots on the right shows the intensity change details when the mirror is
released.

Fig. 5.10 Variation of reflected light with the movement of the linear stage under different
pressure conditions. Significant fluctuations in light intensity indicate substantial oscillation
when the mirror returns to the base. Pressure levels below 300 Pa are necessary to ensure that
the mirror experiences 0.25 seconds of free fall, which is the setting in the control program.
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aspects: the vibration of the linear stage during its motion, which leads to oscillation of the
fiber and vacuum tank, and the uneven forces exerted on the mirror during release, resulting
in tilt of the mirror. To address these disturbances, solutions are proposed in the following.

5.4.1 Linear stage vibration

The vibration of the linear stage couples to the fiber and the vacuum tank. Firstly, we have
utilized a clamp at the fiber output to mitigate the fiber dithering. The implementation of
the clamp has reduced the output fluctuation by approximately half, see in Figure 5.11. The
clamp is also employed in the testing described in section 5.3.

Fig. 5.11 Laser power fluctuation when linear stage is moving. The vertical axis shows the
power fluctuation, which is the proportion of the intensity variation to the total intensity.
With a clamp on the fiber output port, the fluctuation decrease is substantial.

To further mitigate fiber dithering, the laser beam can be injected to a mode cleaner before
entering the interferometer. The fiber’s dithering can cause beam displacement, resulting in
the introduction of higher-order modes (such as Hermite Gaussian 01 or Hermite Gaussian 10
modes) in the optical cavity. The mode cleaner helps removing these higher-order modes and
thus eliminating the effects from laser’s dithering. However, as this dithering originates from
the linear stage, in order to prevent it from coupling into the mode cleaner, the mode cleaner
itself should also be released for free fall during data acquisition. Also, the build-up time for
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the mode cleaner should be much smaller than the mirror free-falling time. Here, we take
the mode cleaner of Advanced LIGO as an example [13]. The designed input mode cleaner
round trip length of Advance LIGO L = 32.9 m and the finesse F = 500. Then the build-up
time is t = LF/c = 5.48×10−6 s, which is small enough to be ignored. Here, c represents
the speed of light. It is important to note that the fiber’s deformation due to vertical motion
can induce changes in laser intensity and polarization, which is temporarily disregarded in
this experiment since they are not dominant at the current stage.

Secondly, the overall vibration of the vacuum tank can also be addressed through the
use of a mode cleaner and free falling not only the mirrors but also the photodetectors. This
approach effectively isolates the light source and interferometer from the vacuum tank during
the free-falling cycle. However, we have not considered the excitation of eigenmodes of the
mirror. If such vibration becomes prominent in the noise, it could potentially be mitigated by
installing dampers.

5.4.2 Mirror movement caused by release

Mirror movement include displacement and tilt. Mirror displacement caused by the release
is discussed in 2.2, and can be dealt with using the detrend method. To decrease mirror
tilt during the free-falling cycle, the release method should be updated. The utilization of
piezoelectric ceramics (PZT) could help to achieve more precise control. By installing PZTs
on the base of the mirror, the release can be achieved by the contraction of the PZT, which
can be accurately controlled based on the voltage applied at its two ends.

After the implementation of PZT, if there is still small amount of mirror tilt, there are
two ways to deal with it. On one hand, the mirror tilt can be measured individually by extra
QPDs and subsequently subtracted from the final data, as illustrated in Figure 5.12. The
transmitted light power from M1, measured by P5, indicated the tilt of the beam splitter. Then
the reflected power from the beam splitter’s surface is measured by P3 and P4. Subtracting
P5 from P3 and P4, the tilt signal of the two end mirrors can be obtained. Finally, the mirror
tilt effects can be extracted from the interference results (P1 and P2). The gravitational wave
signal is reserved together with the mirror initial displacement, which can be solved by the
detrend method.

Additionally, by combining modulation-demodulation techniques, it may be possible
to obtain the mirror’s tilt information from the interferometer. Then the mirror tilt can
be subtracted from the measured interfered signal or used as a feedback control signal to
calibrate the tilt of the mirror.

Here, we consider the tilt of two end mirrors as two modes: differential mode θd and
common mode θc, with differential modes representing the opposite tilt directions of the two
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Fig. 5.12 Five QPDs used to obtain mirror tilt information. P5 gives the tilt of the beam
splitter. (P3−P5) and (P4−P5) then give the tilt information of the two end mirrors.

mirrors (one tilting clockwise while the other tilting counterclockwise) and common mode
representing the same tilt direction of both mirrors. The common mode and differential mode
of the end mirrors result in displacement and misalignment of the spot on the photodetector,
as shown in Figure 5.13. To facilitate distinction, red and yellow colors are used here to
represent the two beams reflected back from the end mirrors.

Fig. 5.13 Tilt beams resulting from mirror tilt. θc on the left is produced by the common
mode tilt of the mirrors and θd on the right is produced by the differential mode tilt of the
mirrors. To facilitate distinction, red and yellow colors are used here to represent the two
beams and a slightly misalignment is introduced in θc to show two beams.

When the tilt of both mirrors is in the common mode, the spot on the QPD undergoes
displacement, producing the x-diff signal (Px−diff), which represents the difference in light
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intensity between the left and right sides of the QPD. When the tilt of both mirrors is in
the differential mode, the phase difference of the reflected light’s wavefront changes, which
would result in the interference status change. Near the middle fringe, this leads to half of
the spot becoming brighter while the other half becomes darker, thereby generating Px−diff

signal. However, near the bright fringe, both sides of the spot simultaneously become darker,
resulting in no Px−diff signal. Combining both cases, we observe that the Px−diff signal near
the bright fringe reflects the displacement of the spot, i.e., the common mode of the two
mirrors.

To observe the differential mode, we can analyze the modulation-demodulation signal.
Here, we utilize the phase-intensity diagram of the interference light for better understand-
ing. As analyzed in Chapter 2, the variation in interference light follows a cosine curve,
while the modulation-demodulation signal follows a sine curve, as shown in Figure 5.14.
Near the bright fringe, the slope of the interference light signal is zero, while the slope of
the modulation-demodulation signal is at its maximum, indicating that the difference in
modulation-demodulation signal between the left and right sides of the QPD (Vx−diff) can
reflect the differential mode.

Similarly, near the middle fringe, the slope of the modulation-demodulation signal is
zero, indicating insensitivity to the differential mode. Therefore, Vx−diff near the middle
fringe reveals the common mode of the mirror. The differential mode at this point needs to
be considered in combination with Px−diff. The summarized conclusions are presented in
Table 5.1.

Fig. 5.14 Fringe intensity and modulation-demodulation signal changing with phase. The
fringe intensity follows a sine curve and the modulation-demodulation signal follows a cosine
curve.
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Table 5.1 Extraction of mirror tilt signal from QPD signals. "+" means signal can be measured
and "0" indicates absence of signal. Around the bright fringe, Px−di f f shows the common
mode θc and around the middle fringe, Vx−di f f shows the common mode.

@ Bright fringe @ Middle fringe
common mode θc

Px−diff + +
Vx−diff + +

differential mode θd
Px−diff 0 +
Vx−diff + 0





Chapter 6

Conclusions and future works

Based on the insight of improving the sensitivity of the earth-based gravitational wave
detectors at lower frequencies (0.1< f <10 Hz), JIFO proposes the repeated release of the
test masses to achieve free-falling movement. This design can totally decouple the test masses
of the detector from the seismic noise and suspension thermal noise, which are dominant
noises for the earth-based gravitational wave detectors at lower frequencies.

This thesis investigates the concept and data features of a JIFO, develops the data readout
method, and discusses data analysis method with regard to the data features. Based on the
improvement in the sensitivity by utilizing the "juggled" technique, several promising science
cases for JIFO are discussed, which are of valuable insight into cosmology and the gravity
theory. The first JIFO prototype was built from scratch without prior experience in this
research. The mirror release method was developed and tested using a linear stage and other
specially designed devices. Finally, the disturbances of the prototype are evaluated, and a
series of feasible improvements are proposed.

6.1 Conclusions

In Chapter 1 of this thesis, the basic theory of gravitational waves and their detection are
introduced, followed by some details of the noise in the detectors. It is pointed out that
mitigating seismic noise and suspension thermal noise is the key to improving the sensitivity
of the detectors, and JIFO is one of the novel types of gravitational wave detectors that deal
with these two sources of noises.

In Chapter 2, the basic configuration and data features of JIFO are discussed. Compared
with a standard interferometric gravitational wave detector, JIFO utilizes repeatedly free-
falling test masses, and thus obtains discontinuous data with different initial effects for
each free-falling cycle. The detrend method, which subtracts a linear fitting from the
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measured data, as well as the templates used for matched filtering, could solve the problem
of different initial effects. On the other hand, since it is hard to do fringe locking of the
interferometer, while the test masses are free falling, we present a data readout method for
JIFO, which uses both the interference laser power and modulation-demodulation signal to
form a complex function. This method allows for obtaining the mirror displacement signal of
the interferometer independent of the fringe, resulting in a fringe-independent SNR equivalent
to half of that around the dark fringe. As for the additional Newtonian noise introduced by
the up-and-down motion of the interferometer, it is calculated that an inhomogeneity in the
mass distribution of less than 10 mg within 1 m is required to mitigate its impact. Meanwhile,
the Newtonian noise as well as gravitational wave signals at much lower frequencies can be
upconverted to the sidebands of the interferometer motion frequency. This feature offers a
possibility for the JIFO to serve as a Newtonian noise meter and to detector low-frequency
gravitational wave signals in the sidebands at higher frequencies. Further investigations in
this area are necessary in the future.

The promising science cases are presented in Chapter 3. Assuming a JIFO with identical
displacement noise as ET, it is found that the sensitivity of JIFO surpasses ET significantly
at frequencies lower than ∼2.5 Hz, owing to the free-falling test masses. This sensitivity
improvement enables the detection of the following gravitational waves signals.

1. Quasi-normal modes from massive black holes, which are an important step for the
merger of binary black holes. It is calculated that black holes weighing around 104 ∼ 105M⊙

at a distance z=1 can produce quasi-normal modes with a central frequency below 2 Hz.
These gravitational wave signals can be detected by JIFO, while they cannot be detected by
ET.

2. Gravitational waves from BH-NS binaries below 2 Hz, which can be used to test BD
theory. Our calculation using the expected sensitivity of JIFO gives a lower bound for the
BD parameter ωBD > 8.8×104.

3. Gravitational waves, originating from density fluctuations in the early stage of the
universe, which give a hint for primordial black hole – dark matter scenarios. This thesis
adopts an assumption that the primordial perturbation is a delta function and calculates the
related primordial gravitational waves peaking at 1 Hz. This signal can be detected by JIFO
with a 1-year correlation but is still beyond the ET’s detection ability.

In Chapter 4, the work on principle verification experiment is introduced. A linear stage
is used to achieve the up-and-down motion of the interferometer. To avoid moving the laser,
the laser beam is coupled into the fiber in advance with a coupling efficiency of ∼64%.
A triangle-shaped mirror holder is designed and tested to ensure that the mirror can be
released by controlling the acceleration of the linear stage and return to its initial position
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automatically. After a series of tests, a model with a side length of 5.5 cm, made of TX-PET
material, was determined as the final design. Due to the load limitations of the linear stage,
the mirrors are set inside a vacuum tank with a diameter of 16.8 cm. Also, to save space
inside the vacuum tank, the self-made operating circuit board for the QPDs is placed outside
the tank.

Chapter 5 presents the main results of the experiment and discusses some possible
solutions to overcome the current problems. The top-release method, in which the linear
stage stops at the top position and then is controlled to move downwards, is verified in
releasing the mirrors successfully while maintaining a certain tilt angle of the mirror in the
air. However, from the measurement results, even the smaller rotation angles reach 1×10−3

rad, which is ten times larger than the requirement for a clear interference fringe contrast.
Since it is not easy to improve the control accuracy of the linear stage, we may need to update
the mirror holder design to realize a more stable release. Meanwhile, the oscillation of the
linear stage coupled to the vacuum tank and the fiber is recognized to be the main reasons of
the fluctuations of the laser output. This also needs to be addressed in the future works.

6.2 Future works

The future works include the following:
- Data analysis method. In the discontinuous data of JIFO, there is unwanted linear

component caused by the initial position and velocity of each free-falling cycle. The detrend
method is developed to subtract this linear component from the data, but at the same time,
a linear part of the gravitational wave signals buried in the data are also subtracted. In the
future work, we can explore two possible approaches. First, the matched filtering method
can be applied using detrended gravitational waveform templates to show its effectiveness
with the detrended data. Alternatively, a re-trend method can be developed to restore the
detrended gravitational wave signals back to the original state before the detrending process.

- Signal upconversion of JIFO. Due to the cyclic movement of the JIFO ( f = fc), the
mirror’s displacement signal ( f = fm) can be converted to sidebands around fc, which is
fc ± fm. This gives a chance to detect low-frequency noises, such as Newtonian noise, or
low-frequency gravitational wave signals at higher frequencies, where the detectors have
better sensitivity. This approach requires further quantitative studies. For example, based on
the sensitivity curve of the ET, it is of interest to calculate the intensity of a 1-Hz Newtonian
noise upconverted to 100±1 Hz. This calculation helps determine whether the upconverted
noise can be detected and provide the resulting SNR. Similar calculations are needed for
gravitational wave signals at low frequencies.
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- Experiment update. In the principle verification experiment, the mirror release was not
stable enough. To mitigate the mirror tilt after release, we are considering connecting the
mirror holder with PZTs and realizing the mirror release by controlling the length of the
PZTs. By free falling not only the mirrors but also the photodetectors and utilizing a mode
cleaner can decouple the linear stage vibration from the output. Furthermore, the residual
noises can be monitored by extra QPDs and be compensated with a feedback control method
or subtracted from the raw data. In addition to the update aimed to stabilize the output
during mirror’s free-falling motion, there is another perspective, which is to shorten the
free-falling time so that all the displacement signals are small enough. This can be achieved
by utilizing high-speed PZTs to kick the mirrors, and the free-falling time can be limited to
be millisecond scale.

As a final conclusion, it is demonstrated that significant advancements in scientific
achievements can be achieved by the juggled interferometer, and the technical challenges of
the juggled interferometer are identified and a path towards realization is presented.
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