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Chapter 1

Introduction

1.1 Proteins

Figure 1.1: The overall growth of protein structural data. Data were obtained from the RCSB Protein Data Bank
(https://www.rcsb.org), which serves as a valuable repository for storing and sharing these protein structures.

Although proteins and protein-based materials, such as meat, egg, silk and leather, have been common materials

we use for millennia, they were recognized as a distinct category of materials only after Antoine Fourcroy and others in

the 18th century found that these materials coagulate or flocculate under high temperature or acid conditions. In 1958,

the first X-ray crystallographic structure of myoglobin, a globular protein molecule, was published by John Kendrew,

hereafter, a new era in protein structural biology began.1 Since then, protein structure determination has evolved beyond

X-ray crystallography. With advancements in techniques such as nuclear magnetic resonance (NMR), high-resolution

electron microscopy, and computational methods, an increasing number of protein structures (Figure 1.1) are being

characterized. These efforts are driven by the goal of achieving atomic-level resolution and a deeper understanding of

1
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protein structure, property and function.

Figure 1.2: 20 amino acids in proteins.

Most natural proteins are linear polymers with a sequence constructed by 20 different amino acids (Figure 1.2).

The distinguishing feature among them is the unique side chain attached to the central carbon atom (C) that connects the

hydrogen atom, amino group (NH2), and carboxyl group (COOH). They are usually classified into three different groups

based on the chemical properties of their side chains. Apart from intrinsically disordered proteins, globular proteins

fold into specific structures, normally known as “native conformations”, characterized by four levels of hierarchies: (1)

primary structure, which refers to the amino acid sequence; (2) secondary structure, including a-helices, b-sheets, and

turns/loops, which are stabilized by hydrogen bonds; (3) tertiary structure, representing the overall three-dimensional

structure of a protein; and (4) quaternary structure, formed by multiple protein subunits.

1.2 Vibrational energy transport in proteins

Protein and protein-based materials are considered as nonmetallic solids. The thermophysical properties of some

common protein materials have been measured and recorded in a series of data called Thermophysical properties of

matter collected by the TPRC Data Series in the 1970s. In this data series, numerous data on the thermal conductivity,

specific heat, and thermal diffusivity of protein materials are recorded and reported in volume 2, volume 5, and volume

10, respectively.

Vibrational energy transfer in proteins plays a significant role in conformational changes, energy dissipation,

protein folding and unfolding, bimolecular interactions, enzymatic reactions, and protein dynamics. The current methods

2



1.2. VIBRATIONAL ENERGY TRANSPORT IN PROTEINS

Figure 1.3: Milestone studies on vibrational energy transport properties in proteins.

of investigating vibrational thermal energy transport in proteins include experimental and computational approaches.

Milestone studies on vibrational energy transport properties in proteins are shown in Figure 1.3. From a macroscopic

point of view, experimental methods involve measuring the thermal conductivity or diffusivity of protein samples

using techniques such as laser flash analysis, 3w method, or Raman spectroscopy.2 From a microscopic point of

view, time-resolved experimentation approaches, such as time-resolved ultraviolet resonance Raman spectroscopy and

UV-pump-IR-probe transients spectroscopy, have been used to investigate the vibrational energy transport mechanism in

peptides and proteins.3–6 These methods enabled direct observation of the redistribution of excess energy deposited into

either natural group of protein, like heme, or unnatural amino acid sites connected to short peptides and proteins.

In 1997, Mizutani Yasuhisa and his colleagues utilized time-resolved ultraviolet resonance Raman spectroscopy to

directly observe the energy flow in heme proteins, taking advantage of the efficient photothermal conversion properties

of the heme group.7 The redistribution of excess energy can be probed by employing anti-Stokes ultraviolet resonance

Raman spectroscopy on a tryptophan residue as a probe, enabling the mapping of energy flow with high spatial resolution.

In 2007, they observed a double exponential decay in the cooling process of the heme group in myoglobin, with time

constants of 1.9 ± 0.6 ps and 16 ± 9 ps for vibrational population decay, and 3.0 ± 1.0 ps and 25 ± 14 ps for temperature

relaxation. Further investigations revealed that the primary pathway for energy transfer from the heme group to the

protein is not mediated by the covalent bond between the heme and the proximal or the protein backbone, but instead

occurs through atomic contacts between the heme and specific residues.3,8–10 In 2007, Gerhard Stock and his coworkers

investigated the energy transfer through a 310-helix in chloroform solvent, whose N-terminal is attached with a heater of

–-aminoisobutyric acid, with a combined experimental-theoretical approach: UV-pump-IR-probe transients spectra

and non-equilibrium molecular dynamics (MD) simulations. Non-equilibrium MD simulations were also employed

to simulate the dissipation of excitation energy from an unnatural amino acid (acting as a built-in heater), allowing

the mapping of vibrational energy transport pathways originating from the heater. It demonstrated that 70% of the

energy absorbed by the helix quickly equilibrates within a timeframe of less than a picosecond to the solvent and

subsequently spreads along the helix through a diffusive-like process. The non-equilibrium MD simulations mimic the

3
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laser excitation of the molecules by the non-equilibrium phase-space initial condition for the solute and the solvent atoms.

The fitted experimental and simulated thermal diffusivity values along the peptide chain with 1D diffusion process

were 10 Å2 ps–1 and 2 Å2 ps–1, respectively.5 Subsequently, the non-equilibrium MD simulations techniques were

employed on various proteins, such as villin headpiece subdomain (HP36)11,12, photoswitchable PDZ domain (PDZ2S)13,

heptahelical transmembrane proteins14 and so on.6 Numerous results are yielded by these studies including scaling

rules for vibrational energy transport in proteins through the backbone and nonbonded native contacts, competition of

vibrational energy transport between bonds and contacts, and the role of energy transport on the allosteric mechanism in

functional proteins. Besides, John E. Straub and his coworkers have employed non-equilibrium classical MD simulations

to study the spatially anisotropic “funneling” mechanism for the kinetic energy relaxation of the excited heme group in

solvated myoglobin by directly depositing excess kinetic energy on heme. They demonstrated that the kinetic energy

decay of heme in native myoglobin and His93Gly mutant myoglobin were a single exponential with a time constant of

5.9 ps and 8.8 ps, respectively, while the kinetic energy relaxation of heme in cytochrome c was a biphasic exponential

decay process with relaxation time constants of 1.5 ps and 10.1 ps for fast and slow processes, respectively.15–17

In addition to the non-equilibrium MD simulations mentioned above,12,18–22 computational and theoretical

approaches23–27, including equilibrium MD simulations, normal mode analysis, i.e. the master equation model, and

anharmonic network models, have also been employed to simulate the flow of vibrational energy in proteins.

One approach involves the utilization of a transport-coefficient-like quantity derived from the autocorrelation

function of energy flow, which providing a measure of the amount of energy transferred per unit of time.28 This

methodology has been employed to construct a network of amino acid residues that mediates the propagation of

intramolecular vibrational energy. This model (energy exchange network model) was employed to investigate the

allosteric signal transduction mechanisms and energy transport pathways using equilibrium MD simulations.29–31

Another approach, the master equation model, has been used to predict energy transport pathways in proteins.12,32,33

These predictions were compared to those obtained from all-atom non-equilibrium MD simulations. Theoretical studies

were also conducted on scaling rules between vibrational energy transport coefficient and either contact distance or

the variance of contacts distance for amino acid residue pairs in nonbonded native contacts in proteins.12,34 It is worth

noting that vibrational transport occurs not only within the protein molecule but also across the protein-solvent interface

and within the solvent. Theoretical analyses have been conducted to investigate these aspects15,35.

1.3 Linear response theory

The process of transferring heat and energy with a temperature gradient is typically thought of as a non-equilibrium

system. However, by considering carriers as particles, the fluctuation-dissipation transport theory, pioneered by Green

and Kubo,36–40 provides general expressions for transport coefficients. These expressions are applicable at all times

and densities and are derived from correlation or autocorrelation functions computed from an equilibrium system. The

key idea is based on the linear response theory, which offers a framework for illustrating the relationships between

perturbations that are applied to a system and their responses. As long as the state of the system stays close enough
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to the equilibrium, the equilibrium fluctuations can dictate the non-equilibrium response. The system’s response to a

small perturbation is linearly related to the magnitude of the perturbation. The analysis of the dynamic characteristics

and transport phenomena of molecules and materials can be performed by using linear response theory in the context

of molecular dynamics simulations and statistical mechanics. A general expression of transport coefficient “ can be

represented in terms of the integral of time correlation functions as shown in Equation 1.1.41,42

“ =
⁄⁄⁄ Œ

0

e
Ȧ(t) · Ȧ(0)

f
dt (1.1)

1.4 Molecular dynamics simulations

Molecular dynamics (MD) simulations43 are computational techniques that are widely used to study the behavior

and dynamics of molecules at the atomic level. Furthermore, it can be used to explore the heat, energy and signal

flow in proteins based on the linear response theory. The MD simulations are especially suitable for studies of such

transport phenomena in proteins as it allows for the direct measurement of energy/heat flows with high spatiotemporal

resolution. Not only the biophysical properties of proteins, MD simulations are also useful for structural characterization

and refinement of highly flexible proteins. We explored such possibility by integrating advanced MD simulation

techniques with the experimental small-angle X-ray scattering (SAXS) and electron paramagnetic resonance/double

electron–electron resonance (EPR/DEER) data.44–47

In MD simulations, the laws of classical mechanics are used to numerically solve the equations of motion for

molecular systems. By specifying the initial positions and velocities of the particles, the system’s time evolution can be

simulated. This allows us to observe and analyze various physical and chemical phenomena that occur on the atomic

scale. We need force field functions to accurately capture the behavior of protein systems using MD simulations. In

general, the force field functions consist of potential energy terms representing bonded interactions for bonds, angles,

dihedral angles, and nonbonded interactions of van der Waals forces and electrostatic interactions (Equation 1.2).

Etotal = Ebonded + Enonbonded

Ebonded =
ÿÿÿ

bonds

Kb(b ≠ b0)2 +
ÿÿÿ

angles

K◊(◊ ≠ ◊0)2 +
ÿÿÿ

dihedrals

K‰[1 + cos(n‰ ≠ ‡)]

Enonbonded =
ÿÿÿ

i<j

C
Aij

R12

ij

≠ Bij

R6

ij

+ qiqj

4fiÁRij

D
(1.2)

In Equation 1.2, Kb, K◊ and K‰ are force constants for bonds, angles and dihedrals, respectively; b and b0 are

force constant the bond length and the equilibrium bond length; ◊ and ◊0 are the angle and the equilibrium angle,

respectively; ‰ is the dihedral value, n is the periodicity, and s is the phase. Enonbonded contains two parts. The first

term is also known as Lennard-Jones (LJ) potential, describing the attractive dispersion and repulsive interactions. The

second term corresponds to Coulomb’s law and is used to describe the electrostatic interactions. qi and qj are the charges
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of atoms i and j. Rij is the interatomic distance and Á is the dielectric constant.

Force field parameters are typically derived from experimental data and quantum mechanical calculations.

They aim to strike a balance between accuracy and computational efficiency, allowing simulations of biologically

relevant timescales and system sizes. Different force fields for different systems have been developed, each with

its own set of assumptions, approximations, and parameterization strategies. Commonly used force fields in MD

simulations of biomolecular systems include CHARMM48, AMBER49, GROMOS50, and OPLS-AA51. These force

fields have been extensively tested and parameterized for a wide range of biomolecules, including proteins, nucleic

acids, lipids, and carbohydrates. The associated molecular dynamics software packages and servers have also undergone

substantial development based on these force-fields, including CHARMM (http://www.charmm.org),52 Amber (http:

//amber.scripps.edu),53 GROMACS (http://www.gromacs.org),54 NAMD (http://www.ks.uiuc.edu/Research/namd),55

and GENESIS (https://www.r-ccs.riken.jp/labs/cbrt)56.

1.5 Current calculation for proteins

CURP (CURrent calculation for Proteins, https://curp.jp) package is a computational tool designed by YAMATO

group to calculate the energy/heat currents and atomic stress tensors in proteins.57–59 It operates by utilizing atomic

coordinates and velocity trajectories obtained from molecular dynamics (MD) simulations. In this thesis, the CURP

program is used to perform the energy flow, energy transport coefficient, heat current, thermal conductivity calculations.

A workflow diagram of CURP calculations is shown in Figure 1.4.

Figure 1.4: Workflow diagram of CURP program for energy/heat currents calculations, taken from https://curp.jp.

1.6 Machine learning methods

Machine learning methods play a crucial role in protein science by enabling the analysis, prediction, and

understanding of various aspects related to proteins, including structure, function, interactions, and dynamics.60–63 These

methods leverage computational algorithms and statistical models to extract meaningful information from protein data

and address complex challenges in the field.
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1.7. KNOWLEDGE GAP

One of the key applications of machine learning in protein science is protein structure prediction. Predicting the

three-dimensional structure of a protein from its amino acid sequence is a fundamental problem in biology. Machine

learning algorithms, such as deep learning-based approaches, have shown remarkable success in predicting protein

structures with high accuracy.64–66 These methods utilize large training datasets, incorporating known protein structures,

to learn patterns and relationships between sequences and structures, enabling the generation of accurate structure

predictions for previously unknown proteins.

On the other hand, machine learning methods play a significant role in regression tasks in protein science, where

the goal is to predict continuous or quantitative properties of proteins based on various input features. Random forest

regression method among them can make accurate predictions by building multiple decision trees on randomly sampled

subsets of the training data and then averaging the predictions of all the trees to obtain the final prediction. It can handle

both numerical and categorical features, automatically handles missing values and outliers, and is resistant to overfitting.

The estimate of feature importance can be useful for feature selection. As described in Chapter 1.7.3, the thermal

transfer through nonbonded contacts is influenced by multiple factors related to various static and dynamical properties

of proteins, interior of which we observe complex and heterogeneous environments. To get a better understanding of the

thermal transfer through nonbonded contacts, a non-linear regression model is developed between inter-residue thermal

conductivity values and static and dynamical properties of proteins by using the machine learning based approach of

random forest methods.

1.7 Knowledge gap

1.7.1 The anisotropic and non-uniform flow of thermal energy

Thermodynamic and other environmental factors, such as temperature67–72 as well as protein-solvent

interactions,73–78 govern the structure, dynamics, and function of proteins. Although thermal transport is one of the

fundamental biophysical characteristics of proteins, it is still unclear how heat flow interacts with the molecular

mechanism of protein activity. The structure of a folded protein exhibits significant heterogeneity, resulting in

anisotropic and non-uniform thermal energy flow during conformational fluctuations. To gain insights into the

site-specific thermal transport properties of proteins, the development of a theoretical method would be valuable. A

possibility is to introduce a concept of “residue-wise thermal conductivity”, which allows us to analyze protein thermal

transport at the level of individual amino acid residues. However, several challenges arise when implementing such an

approach. Firstly, the small spatial scale occupied by each amino acid residue within the protein matrix introduces

boundary effects that may significantly influence the residue-wise thermal conductivity. These effects cannot be

neglected and must be considered in the analysis. Additionally, the local conformational fluctuations within a residue

may not be independent of those occurring in the surrounding amino acid residues. This interdependence poses further

complexities in accurately characterizing the site-specific thermal transport properties. To overcome these problems,

we have developed a theoretical model, linear-homopolymer-like model, which incorporates the influence of cross
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correlations effectively into the site-selective heat current analysis based on the autocorrelation function formalism.

With this model, we aim to enhance our understanding of how thermal energy is transmitted and distributed at the

residue level within protein interior.

1.7.2 Determinates of protein energy transport

Proteins are complex biomolecules composed of amino acids that are connected by peptide bonds. These molecules

exhibit a hierarchical organization, including primary (linear sequence of amino acids), secondary (local patterns such as

– helices or — strands), tertiary (overall folding of the protein), and quaternary (association of multiple protein subunits)

structures. Within this heterogeneous and intricate system, residues participate in various interactions, including bonded

interactions and nonbonded interactions. Bonded interactions such as peptide and disulfide bonds in proteins keep the

molecular topology, i.e., the pattern of connectivity of atoms, while nonbonded interactions such as ionic bonds (e.g. salt

bridges between oppositely charged residues), and hydrogen bonds (e.g. interactions between backbone atoms or polar

side chains) are responsible for maintaining and stabilizing the secondary, tertiary and quaternary structures of proteins.

Van der Waals interactions in proteins are a type of weak nonbonded interaction that occur between atoms that are close

to each other but not covalently bonded. They mainly contribute to the stabilization of tertiary and quaternary structures

of proteins by optimizing the surface contact between residues and subunits. Other types of nonbonded interactions in

proteins include electrostatic interactions (such as those between charged residues or between dipoles), fi-fi stacking

(such as those between aromatic residues), etc, also play important roles in protein folding, stability, function, and

interactions.

During thermal fluctuation and vibrational energy relaxation of proteins, transfer of kinetic or potential energy

occurs from one part of the protein to another or between protein and the surrounding environment. Different types of

interactions can affect the rate and efficiency of energy transfer in proteins. For example, the peptide bond not only

keeps the primary structure intact, but also provides major pathways for energy transfer. Nonbonded native contacts,

found in the folded protein, stabilize the tertiary structure and play important roles in protein functions. For instance, we

expect that a protein molecule, as a biomolecular machine, should experience recognition of native contacts especially

at the regulation site and the active site, in response to external stimulus, such as ligand binding at light illumination.

Accordingly, we also expect possible alteration of energy transfer pathways induced by the stimulus.

Using non-equilibrium MD simulations, the significance of different types of nonbonded contacts and the

competition with the backbone have been studied in several proteins. A computational study showed the dominating

energy transfer efficiency of the backbone with a much higher energy diffusion constant of 1.25 nm2 ps–1 in HP36 than

through nonbonded contacts with much smaller diffusion constants (1.1 × 10–4 for polar contacts and 3.6 × 10–7 for

nonpolar contacts).12 In a joint experimental and computational study, the hydrogen bonds are found to be the dominant

energy transfer pathway in —-hairpin fold.6 On the contrary, a series of experimental findings on the heme proteins

clearly demonstrated that the primary pathway for energy transfer from the heme group to the protein does not involve

the covalent bond between the heme and the protein (Trp residue). Instead, the predominant route involves atomic

8
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interactions between the heme group and the Trp residue.3,4,9 To quantitatively access the competition of different

pathways (backbone and nonbonded contacts) and different types of interactions, it would be helpful to develop a

method capable of measuring the heat transfer ability between residue and residue.

1.7.3 Factors affecting heat transfer through nonbonded contacts

For structural property, David M. Leitner’s group found that the correlations of energy transfer rate are linearly

correlated with the mean-square distance for charged contacts between charged residue pairs in myoglobin.34 For

dynamics, they also discovered that the energy transfer rate has a good correlation with the variance in the length of the

contact for polar and hydrophobic contacts.12,30,31,34,79–82 The hydrogen bonds have been found to facilitate the thermal

transport in proteins and protein-based materials. For instance, the thermal conductivity of fi-helices, which have a

stronger hydrogen bond strength, is two folds and three folds higher than that of –- and 310- helices, respectively.83

Hydrogen bonding has been identified as the main contributor to the increase in the thermal conductivity of spider

silk protein.84 It has been reported that the thermal conductivity of spider silk protein is 1 - 2 orders of magnitude

higher than that of globular proteins. Furthermore, hydrogen bonding has been shown to facilitate dominant vibrational

energy transfer pathways in —-hairpin structures, competing with energy transport along the backbone.6 The scaling

rules for rates of vibrational energy transfer in proteins have been extensively studied in various proteins, including

HP3612,80, myoglobin34, deoxy-HbI/oxy-HbI30,79,81, A2A adenosine receptor81, and GPCR proteins31,82, by David M.

Leitner and his colleagues. These scaling rules have been validated and found to work particularly well for hydrogen

bonding contacts, especially those within a distance of less than 2.8 Å. However, given the importance of van der Waals

interactions, especially in the hydrophobic core of water-soluble proteins, it would be helpful to consider a different

approach as well. Due to the complexity of protein systems, the thermal energy transport through contacts should be

affected by a number of both static and dynamic properties, including their structure, compositions, dynamics, and

interaction types. Thus, the relationship between heat and energy transport efficiency through contacts and these protein

properties is expected to be non-linear, rather than linear.

1.8 Organization of the thesis

In this dissertation, we developed a theoretical framework for analyzing the local thermal transport properties

based on the autocorrelation function formalism and applied it to two protein systems to study the heat, energy, and

signaling flow. In addition, due to the complexity of protein systems, advanced machine learning-based methods

were utilized to identify the contributing factors of thermal transport in protein and the structural characterization of

intrinsically disordered regions.

Chapter 1 provides an introduction, including an overview of current studies and methods related to vibrational

energy transport in proteins and protein solutions. It, then, introduces the concepts of linear response theory and

molecular dynamics simulation techniques. It highlights the knowledge gap in understanding vibrational energy

transport in proteins and protein solutions and emphasizes the significance of applying machine learning algorithms to
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address the protein-related problems.

Chapter 2 details the methodology used to investigate thermal transport properties of proteins: the calculations

process of the overall thermal conductivity of proteins and the formalism for the site-selective heat current analysis. It

also introduces a novel integrated approach that combines machine learning algorithms, MD simulation techniques, and

SAXS and EPR/DEER experiments for the structural characterization of intrinsically disordered protein complexes.

Chapter 3 presents a further theoretical development for the analysis of local thermal transport properties using

the autocorrelation function formalism with a model, linear-homopolymer-like model, applied to a small a-helical

protein known as the villin headpiece subdomain (HP36) with a special emphasis on the role of heat current along the

polypeptide chain. Equilibrium molecular dynamics simulations were employed to study the thermal behavior of HP36

within this framework. This chapter provides detailed insights into the local thermal transport phenomena occurring in

HP36 and establishes a foundation for further research in this area.

Chapter 4 focuses on the roles of nonbonded contacts in HP36 proteins. The concept of inter-residue thermal

conductivity was introduced as a measure of heat transfer between pairs of residues. The competition of different types

of interactions heat transfer is discussed. In addition, the machine learning approach of random forest regression was

used to explore the non-linear relationship between thermal conductivity and static/dynamic properties of proteins.

Chapter 5 investigates the role of energy transport in signaling mechanism of protein. Two forms of oxygen

sensor proteins exhibit totally different activities, inactive and active forms, despite minimal structural differences. The

signaling pathways upon ligand binding and allosteric effects were identified by using the energy transport network

model.

In Chapter 6, machine learning methods were integrated with molecular dynamics simulations and experimental

results to characterize the conformational ensemble of a new type of chloroplast protein (CP12) with intrinsically

disordered regions.

Finally, Chapter 7 provides a comprehensive summary of the conclusions drawn from this thesis. It highlights

the key findings and insights gained from the study of protein thermal transport properties and the application of

machine learning algorithms. Additionally, this chapter explores future research directions and suggests areas for further

investigation.
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Chapter 2

Theory, Materials and Methods

2.1 Thermal conductivity

According to the Green–Kubo relations, the steady-state transport coefficient can be obtained by dividing the

space–time integral of the flux–flux equilibrium correlation function by kBT. A very detailed derivation process can be

found in APPENDIX B: Derivation of Green–Kubo Relation of book Heat transfer physics by Massoud Kaviany.42

Like other transport processes, e.g. viscosity, the thermal conductivity of the material can be derived from Green–Kubo

relation and expressed in terms of the time autocorrelation function (ACF) of the heat current vector, h, based on

equilibrium fluctuation,

⁄ = 1
3V kBT 2

⁄⁄⁄ Œ

0
Èh(t) · h(0)Í dt, (2.1)

where ⁄ is the thermal conductivity, V is the volume, kB is the Boltzmann constant, T is the absolute temperature,

the angle brackets of Èh(t) · h(0)Í denote ensemble average.36

Autocorrelation is a measure of how well a dynamic system’s signature aligns with a time-shifted version of itself,

representing the cross-correlation of a signal with its own shifted counterpart. In the case of thermal conductivity, the

duration of autocorrelation is related to the material’s ability to transfer heat and energy. Materials with high thermal

conductivity exhibit long-lasting correlation, indicating slow dissipation of fluctuations from equilibrium. In contrast,

materials with low thermal conductivity display short-lived correlation. One important point is that the Green-Kubo

approach allows for the calculation of transport properties from an equilibrium system, providing valuable insights even

in non-equilibrium scenarios.
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2.2 Derivation of inter-atomic heat current

In this section, we have obtained an atomistic formulation for the heat current term of thermal conductivity

expression (Equation 2.1) in a molecular system. The atomistic representation of the instantaneous heat current, denoted

as h, is derived by taking the time derivative of the energy distribution,59

h © d

dt

Nÿÿÿ

i=1

(Eiri) =
Nÿÿÿ

i=1

3
Ei

dri

dt
+ ri

dEi

dt

4
(2.2)

, where Ei, ri are per atom energy and the position vector of atom i, and N is the total number of atoms.

The on the right-hand side of Equation 2.2 can be divided into two terms: the convective term and the virial

term. In the context of this equation, it is commonly recognized that the convective term plays a significant role in

gaseous systems, but its contribution is minimal in solids. On the other hand, the virial term is predominant in solids and

biomolecular materials, such as proteins85.

The total energy (E) of a protein system, shown in Equation 2.3, in classical molecular mechanics is calculated by

summing the kinetic energy contributions from each atom, which is determined by its mass (mi) and momentum (pi),

and the potential energy term (V (r1, r2, ..., , rN )) that depends on the positions of all atoms (r1, r2, ..., , rN ).

E =
Nÿÿÿ

i=1

p2

i

2mi

+ V (r1, r2, ..., rN ), (2.3)

Alternatively, the potential energy term (V (r1, r2, ..., , rN )) of a protein system in classical molecular mechanics

can also be expressed as a function of the inter-atomic distances (rij = |rij | = |ri ≠ rj |) between all pairs of atoms

(i, j). In this representation, the force acting on atom i is obtained by taking the partial derivative of V with respect to

the position of atom i.

Fi = ≠
ÿ

(k,j)

ˆV

ˆrkj

Òi(rkj) =
ÿ

j( ”=i)

≠ ˆV

ˆrij

rij

rij

=
ÿ

j( ”=i)

Fij (2.4)

, where Òi = (ˆ/ˆ{ri}x, ˆ/ˆ{ri}y, ˆ/ˆ{ri}z).57

The time derivatives of the potential energy (V ) and the total energy (E) can be expressed as:

dV

dt
=

ÿ

(i,j)

ˆV

ˆrij

drij

dt
= ≠1

2

Nÿ

i

Nÿ

j

Fij · (vi ≠ vj) (2.5)

and
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dE

dt
=

Nÿ

i

vi · Fi + dV

dt
=

Nÿ

i

Nÿ

j

1
2Fij · (vi + vj) =

ÿ

i

dEi

dt
(2.6)

respectively, where Ei denotes the per atom energy of atom i. While it is possible to calculate the time derivative of Ei

using the formula provided, obtaining the explicit form of Ei itself is not feasible in practice.

As a result, the total heat current can be obtained through the following derivation process:

h =
Nÿ

i

ri

dEi

dt
=

Nÿ

i

Nÿ

j

ri

;1
2Fij · (vi + vj)

<

= 1
2

C
Nÿ

i

Nÿ

j

ri

;1
2Fij · (vi + vj)

<
+

Nÿ

j

Nÿ

i

rj

;1
2Fji · (vj + vj)

<D

= 1
2

Nÿ

i

Nÿ

j

(ri ≠ rj)
;1

2Fij · (vi + vj)
<

=
ÿ

(i,j)

(ri ≠ rj)
;1

2Fij · (vi + vj)
<

©
ÿ

(i,j)

hij

(2.7)

, where Fij = ≠Fji.

The time derivative of Ei thus can be expressed as

dEi

dt
=

Nÿÿÿ

j( ”=i)

1
2Fij · (vi + vj), (2.8)

, where Fij is the force acting on atom i due to atom j.

Thus, we obtained atomistic expression for the heat current as

h =
Nÿÿÿ

i=1

ri

dEi

dt
=

Nÿÿÿ

i

ri

Nÿÿÿ

j

;1
2Fij · (vi + vj)

<
, (2.9)

with the inter-atomic heat current between atoms i and j, hij , denoted as

hij = (ri ≠ rj)
;1

2Fij · (vi + vj)
<

. (2.10)

2.3 Linear-homopolymer-like model

The inter-atomic heat current, as described in Equation 2.10, provides insight into the essential biophysical nature

of a protein molecule, i.e. its structure (ri ≠ rj), dynamics (vi + vj) and interactions (Fij). We expect that the local

thermal transport of a highly non-uniform molecule such as proteins can be effectively illustrated by analyzing the ACF

13
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Figure 2.1: Thermal transport through backbone model. Local heat currents, h–,– and h–,–+1, occur within each
residue – and between each pair of residues – and – + 1.

of the local heat current within individual residues and between pairs of residues. It is well-known that amino acids

serve as the fundamental building blocks of proteins. Therefore, it would be advantageous if we could investigate the

local thermal transport characteristics on a residue-by-residue basis. The spatial scale of each residue is considerably

smaller than the macroscopic level, and the local fluctuations within each residue can be influenced by the surrounding

protein environment. As a result, we need a special care when discussing the local thermal transport property using the

ACF formalism.

To address this issue, we have devised a two-stage strategy. In the first stage, we have introduced a simple model

(Figure 2.1) that focuses on the thermal transport along the polypeptide chain. This simple model allows us to analyze

and understand the local thermal transport phenomena more effectively. In the second stage (Chapter 2.4), we have

carefully examined the theoretical consistency between the ACF formalism based on the local heat current and the ACF

formalism based on the overall heat current. As a result, we have derived correction terms that ensure the accuracy of

the local heat current analysis.

In our previous study,59 we found that the thermal transport between the entire mainchain and each sidechain

exhibited negligible magnitude and showed no significant positional dependence. Additionally, our observations revealed

that the thermal transport in a protein molecule predominantly takes place either along the polypeptide chain or within

individual sidechains. To better understand the thermal transport properties at the residue level, we introduced a model

comprising N nodes representing the residues, as depicted in Figure 2.1. Here, N denotes the total number of residues

in the protein. Within this model, we assumed the occurrence of heat currents within each residue as well as between

adjacent residue pairs along the sequence, while long-range heat currents between residue pairs in nonbonded contacts

were neglected. Then, the total heat current can be represented as a summation of the partial heat currents:

h =
Nÿÿÿ

–=1

h–,– +
N≠1ÿÿÿ

–=1

h–,–+1 (2.11)

Here, h–,– represents the intra-residue heat current within residue –, which is the sum of heat currents between

all pairs of atoms i and j within a single residue (
qqqn–

i

qqqn–

j
hij). Similarly, h–,–+1 represents the inter-residue heat

current between a pair of adjacent residues – and – + 1, calculated as the sum of heat currents between all atoms i in

residue – and all atoms j in residue – + 1 (
qqqn–

i

qqqn–+1
j

hij).

In order to characterize the residuewise thermal transport property, we introduced several quantities: �–,–, �–,–+1,

and �. These quantities are defined as the ACFs of the partial heat currents within a residue (�–,–), between adjacent

14
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residues (�–,–+1), and for the total heat current (�), respectively,

�–,– =
⁄⁄⁄

Èh–,–(t) · h–,–(0)Ídt

�–,–+1 =
⁄⁄⁄

Èh–,–+1(t) · h–,–+1(0)Ídt

(2.12)

� =
⁄⁄⁄

Èh(t) · h(0)Ídt (2.13)

The contribution of the partial heat current, h–,— , to the overall thermal transport property of the molecule can be

expressed using a contribution factor, denoted as c,

c–,— © �–,—

� (2.14)

2.4 Cross-correlation correction on linear-homopolymer-like model

To illustrate why we need to take into account the cross-correlation in the linear-homopolymer-like model, we

use a hypothetical dipeptide composed of residues A and B as an example. The thermal conductivity, denoted as ⁄,

of the molecule can be determined by calculating the heat current (h) autocorrelation function, Èh(0) · h(t)Í. Based

on Equation 2.10, h can be expressed as the sum of three components: hA, hB, and hAB. The first two components

represent the heat currents occurring within residues A and B, respectively, while the third component, hAB, corresponds

to the heat current between residues A and B.

Considering the non-uniform heat flow in the dipeptide, we need to calculate the local thermal conductivities,

denoted as ⁄A, ⁄B, and ⁄AB, independently for each of the three parts. This can be achieved by calculating the heat

current autocorrelation functions ÈhA(0) · hA(t)Í, ÈhB(0) · hB(t)Í, and ÈhAB(0) · hAB(t)Í. In an ideal case where

hA, hB, and hAB fluctuate independently, we can neglect the cross-correlation terms between them. Thus, we have

Èh(0) · h(t)Í = ÈhA(0) · hA(t)Í + ÈhB(0) · hB(t)Í + ÈhAB(0) · hAB(t)Í. Finally, we can obtain the value of ⁄ by

combining the calculated values of ⁄A, ⁄B, and ⁄AB.

In reality, however, strong interactions exist between residues A and B through the peptide bonding, leading

to non-negligible cross-correlations. These cross-correlations are represented by ÈhA(0) · hB(t)Í, ÈhA(0) · hAB(t)Í,

and ÈhB(0) · hAB(t)Í. As a result, the value of ⁄ cannot be accurately reconstructed using only ⁄A, ⁄B, and ⁄AB.

In this analysis, it is essential to consider the influence of these cross-correlations in order to obtain effective local

thermal conductivities that accurately characterize the non-uniform thermal transport property of proteins. Thus, by

incorporating the cross-correlations, we aim to derive the mathematical expression of the local thermal conductivities

that are consistent with the overall thermal conductivity of the entire molecule.

The analysis of the local thermal transport property using Equation 2.12 leads to a problem: when dividing
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the overall heat current into the summation of partial heat currents (Equation 2.11), Equation 2.13 includes both

autocorrelation and cross-correlation terms, while the cross-correlation terms, Èh–,—(0) · h–Õ,—Õ(t)Í with (–, —) ”=
(–Õ, —Õ), are missing in Equation 2.12. As a result, we anticipate that the summation of all contribution factors,
q

N

–=1
c–,– +

q
N≠1

–=1
c–,–+1, does not equal unity. If this summation is greater (or less) than 1, it implies that the

average intensity of the local thermal transport is overestimated (or underestimated) compared to its actual value.

Figure 2.2: Short-range cross-correlation approximation. Cross-correlations are considered only for nearby pairs (dashed
line).

To address this issue, we explored the role of cross-correlations in this section. We made the assumption that

the local fluctuation of thermal transfer at a particular site in a protein is not influenced by that at another distant

site. Based on this assumption, we introduced a short-range cross-correlation approximation, shown in Figure 2.2.

In order to evaluate these cross-correlations, it is useful to define a “dimer” as a pair of adjacent residues, – and

– + 1 (– = 1, · · · , N ≠ 1), and introduce the concept of intra-dimer heat current, denoted as h{–,–+1},{–,–+1}. The

cross-correlation between residues – and – + 1, denoted as ›, can then be expressed as shown by the red dashed line in

Figure 2.2,

›–,–+1 = �{–,–+1},{–,–+1} ≠ (�–,– + �–,–+1 + �–+1,–+1) (2.15)

�{–,–+1},{–,–+1} =
⁄⁄⁄

Èh{–,–+1},{–,–+1}(t) · h{–,–+1},{–,–+1}(0)Ídt (2.16)

Next, we derived correction terms for �–,– and �–,–+1 in order to obtain their corrected counterparts, �̃–,–

and �̃–,–+1. The goal was to ensure that the summation of these corrected terms, �̃–,– (– = 1, · · · , N) and �̃–,–+1

(– = 1, · · · , N ≠ 1), approaches the value of �. In other words, we aimed to achieve the condition:

� ƒ
Nÿ

–=1

�̃–,– +
N≠1ÿ

–=1

�̃–,–+1, (2.17)

Based on the short-range cross-correlation assumption, we assumed that the influence of ›–,–+1 is limited to

�–≠1,–, �–,–, �–,–+1, �–+1,–+1, and �–+1,–+2 (see Figure 2.3), we derived a model where the contribution of ›–,–+1

to (�̃–≠1,– and �̃–+1,–+2), (�̃–,– and �̃–+1,–+1), and (�̃–,–+1) is represented by u›–,–+1, v›–,–+1, and w›–,–+1,
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respectively, where u, v, w are scalar constants as shown in Figure 2.3. Then, we obtained a pair of equations for �̃–,–

and �̃–,–+1 as follows:

�̃–,– = �–,– + v(›–≠1,– + ›–,–+1) (2.18)

�̃–,–+1 = �–,–+1 + w›–,–+1 + u(›–≠1,– + ›–+1,–+2) (2.19)

Figure 2.3: Allocation of cross-correlation term.

Let us introduce three N ◊ N matrices: {�–,—} = �–,— , {�̃}–,— = �̃–,— , and {›–,—} = ›–,— , where › is

symmetrized, i.e., ›–+1,– = ›–,–+1 for (– = 1, 2, · · · , N ≠ 1). Using these matrices, we can express �̃ by the

following equation:

�̃ = � + T › + ›T , (2.20)

T1 =

Q

cccccccccccca

0
1 0 0

1 0
. . . . . .

0 1 0
1 0

R

ddddddddddddb

, T2 =

Q

cccccccccccca

0 0 1
0 0 1 0

. . . . . . . . .

0 0 1
0 0 0

0

R

ddddddddddddb

, (2.21)
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T = w

2 I + vT1 + uT2, (2.22)

, where I is the N ◊ N identity matrix.

The values of u, v, w were derived as follows. First, the total weight of ›–,–+1 in Equation 2.17 should be one, as

shown in Figure 2.3. Therefore, we have the following equation:

2u + 2v + w = 1 (2.23)

Next, we expect that the influence of ›–,–+1 on �–,–+1 can be greater than that of either ›–≠1,– or ›–+1,–+2, and

we introduce an arbitrary assumption:

2u = w (2.24)

Also, we assume that the total weight of ›–≠1,–, ›–,–+1, ›–+1,–+2 in �̃–,–+1 is equal to the total weight of

›–,–+1, ›–+1,–+2 in �̃–+1,–+1 for – = 2, · · · , N ≠ 2, then we can express the relation as follows:

2u + w = 2v (2.25)

From Equation 2.23, Equation 2.24, and Equation 2.25, we obtain u = 1

8
, v = w = 1

4
. Accordingly, Equation 2.18

and Equation 2.19 become �̃–,– = �–,– + 1

4
(›–≠1,– + ›–,–+1), and �̃–,–+1 = �–,–+1 + 1

4
›–,–+1 + 1

8
(›–≠1,– +

›–+1,–+2), respectively.

For the terminal residues, we assume that

�̃1,1 = �1,1 + vÕ›1,2 (2.26)

�̃1,2 = �1,2 + wÕ›1,2 + u›2,3 (2.27)

�̃N≠1,N = �N≠1,N + u›N≠2,N≠1 + wÕ›N≠1,N (2.28)

�̃N,N = �N,N + vÕ›N≠1,N (2.29)
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Then, it is necessary for the total weight of ›1,2(›N≠1,N ) in �̃1,1, �̃1,2, �̃2,2, �̃2,3 (�̃N,N , �̃N≠1,N , �̃N≠1,N≠1,

�̃N≠2,N≠1) to be equal to one. In other words, we have the following equation:

vÕ + wÕ + v + u = 1. (2.30)

Additionally, we assume that the weight vÕ is greater than the weight uÕ, and we introduce the following relation:

wÕ = 2vÕ. (2.31)

As a result, we obtain the values of vÕ and wÕ as 5

24
and 5

12
respectively, based on equations Equation 2.30 and

Equation 2.31.

In summary, the values of u, v, w in Equation 2.22 are 1

8
, 1

4
, 1

4
, respectively. To account for the terminal effects,

we separately evaluated �̃1,1, �̃1,2, �̃N≠1,1, and �̃N,N using Equation 2.18 and Equation 2.19 with values of vÕ and wÕ

as 5

24
and 5

12
respectively, instead of using v = w = 1

4
.

We defined the contribution factor after cross-correlation correction as follows,

c̃–,— © �̃–,—

� (2.32)

All of the heat currents and their autocorrelation function calculations were performed using by our CURP

program, version 1.359 based on 50 trajectories of NVE molecular dynamics simulations, each of which started from the

last step of different sampling trajectory in isothermal-isobaric NPT ensemble at T = 300 K and P = 0.987 atm.

2.5 Inter-residue heat current analysis

Considering the molecular functional importance of nonbonded native contacts in a folded protein, it would be

helpful to analyze the thermal energy transfer through such native contacts.

Based on the inter-atomic heat current between atoms i and j in a molecule, hij , the heat current between residue

– and — can be expressed as:

h–,— =
ÿÿÿ

iœ–

ÿÿÿ

jœ—

hij (2.33)

By using the following quantity:

�–,— =
⁄⁄⁄

Èh–,—(t) · h–,—(0)Ídt (2.34)
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the inter-residue thermal conductivity, ⁄–,— , can be expressed as,

⁄–,— = 1
3(V– + V—)kBT 2

⁄⁄⁄
Èh–,—(t) · h–,—(0)Ídt = �–,—

3(V– + V—)kBT 2
(2.35)

where V–(V—) is the volume of residue –(—), kB is the Boltzmann constant, T is the absolute temperature.

2.6 Inter-residue energy flow analysis

The atomistic representation of the instantaneous energy flow (J) between two atoms in a molecule, i and j, can

be expressed by:

Jij = 1
2(vi · Fij ≠ vj · Fji) = 1

2Fij · (vi + vj) (2.36)

, where Jij is the inter-atom energy flow between atom i and atom j.

Then, the energy flow between residue – and — can be expressed as:

J–,— =
ÿÿÿ

iœ–

ÿÿÿ

jœ—

Jij (2.37)

Here, we introduced a transport coefficient-like quantity, energy conductivity, donated as G–,— , to measure the

amount of energy transferred per unit of time between two residues through native contacts.

G–,— =
⁄⁄⁄

ÈJ–,—(t)J–,—(0)Ídt (2.38)

From Equation ?? and Equation 2.35, we can see that the relationship between atomistic heat current and energy

flux is:

hij = (ri ≠ rj)Jij (2.39)

In this study, the integration time of the autocorrelation function for both heat current and energy flux was set as

60 ps. All calculations of ⁄–,— and G–,— between each pair of residues in native contact using the CURrent calculations

in Proteins (CURP) program of version 1.3 developed by our lab.59

2.7 Parameterization of the Fe3+ metal cofactor

To investigate the interplay between allosteric signal transduction and the thermal energy transfer in the oxygen

sensor domain of BjFixL proteins. We conducted the MD simulation. The force-field parameters of the non-standard part
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2.7. PARAMETERIZATION OF THE FE3+ METAL COFACTOR

Figure 2.4: Molecules used to obtain the tuned force field parameters for met-FixLH dimer system. (a) Molecule used in
Gaussian optimization calculations to obtain the Fe3+ metal associated bond and angle parameters. (b) Molecule used
used in Gaussian RESP partial charge calculations to obtain the partial charges for the metal site.

Figure 2.5: Molecules used to obtain the tuned force field parameters for met-FixLH-imd dimer system. (a) The
molecule used in Gaussian optimization calculations to obtain the Fe3+ metal associated bond and angle parameters. (b)
The molecule used in Gaussian RESP partial charge calculations to obtain the partial charges for the metal site.
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of dimeric FixLHs were generated using MCPB.py module86,87 of AmberTools 15. A small model and a large model of

two dimeric FixLH proteins generated from MCPB.py (Figure 2.4: met-FixLH, Figure 2.5: met-FixLH-imd) were used

to obtain the Fe3+ metal associated bond and angle parameters and generate the atomic partial charges for the metal

site, respectively. The small model consists of heme, the coordinated sidechains of the proximal H200 with/without

ligand. In the large model, the coordinated sidechain has its free N- and C- termini capped with N-methyl (NME) and

acetyl groups (ACE) to mimic the protein backbone. Optimization and force constant calculations for the small model

and the Merz-Kollman RESP charge calculations for the large model were performed using Gaussian 16 package with

the B3LYP/6-31G(d) level of theory88,89 and the ultrafine grid. Fe3+ with spin state S= 5/2 and S= 1/290 were used in

Gaussian calculations for met-FixLH and met-FixLH-imd protein, respectively (Table 2.1).

Table 2.1: Quantum calculation results of met-FixLH and met-FixLH-imd. Hartree Energy (unit: eV) comparison
among different spin states of met-FixLH and met-FixLH-imd.

Spin = 2 Spin = 4 Spin = 6

Met-Heme -3402.1853060 -3402.1959457 -3402.1976629

Imdazole-Heme -3627.8693349 -3627.8189808

2.8 Equilibrium molecular dynamics simulations

Figure 2.6: Computational procedure for HP36 protein system.

The procedures of MD simulations for heat current and energy flow calculations on HP36 (Figure 2.6) in Chapter 3

and Chapter 4, and on two BjFixLH proteins (Figure 2.7) in Chapter 5 were described in this chapter. All molecular

simulations in Chapter 3, Chapter 4, and Chapter 5 were performed by using Amber 19 package.91
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2.8.1 Systems setup

(1) HP36 system

The structure of villin headpiece protein (HP36) was obtained from the protein data bank and its PDB code

is 1VII, which was determined by the nuclear magnetic resonance (NMR) technique.92 To reproduce the vibrational

energy transfer accurately along the polypeptide chain, we used a small time step, �t = 0.5 fs, for MD simulations for

generating time series of the heat current and energy flow. Thus, we keep the system size as small as possible in this

study. The HP36 protein molecule was placed in an octahedral solvent box containing 2329 water molecules of the

TIP3P model,93,94 using the LEaP program of AmberTools 19. All charged residues were considered in their standard

protonation state at pH = 7.0. Amber ff19SB force field functions95 were used for the protein atoms. Four chloride

and two sodium ions were added to neutralize the simulation box. For efficient long-range electrostatic interaction

calculations, the particle mesh Ewald (PME) method was used under periodic boundary conditions.

Figure 2.7: Computational procedure for BjFixLH protein systems.

(2) BjFixL systems

We constructed two models of ferric FixLH dimer, (a) the ligand-free state (met-FixLH) and (b) the imidazole-

bound state (met-FixLH-imd), based on the X-ray crystallographic structure of FixL dimer. It is known that the deletion

of the transmembrane region from RmFixL, which corresponds to the PAS-A domain of BjFixL, gives rise to no

significant defect in the signaling functions.96 Besides, the A’a and Ja helices are involved in the formation of the dimer

interface, and considering the potential influence of the BjFixLHs dimer interface on the signaling process. Thereby, we

considered 142 residues from E128 to L269 in the subsequent MD simulations.

For both protein structures, the N- and C- termini were capped with uncharged ACE (acetyl) and NME (N-

methylamine) groups, respectively. For both systems, we modeled the histidines H235 and H259 (H144, H150, H162,

H200, H214) as neutral forms with each epsilon (delta) nitrogen protonated. All other residues were considered in their

standard protonation state at pH = 7.0. The systems were solvated with the TIP3P94 water molecules in a periodic cubic
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box and sodium ions were used to neutralize the systems, then, additional Na and Cl ions were added to achieve a salt

concentration of ~ 0.15 M. Each solvated system contains about ~ 60, 000 atoms.

The Amber ff14SB force field97 was used to model the standard residues of the proteins except for H200. Quantum

calculations were performed to tune the force field to model the heme, ligands, and H200 and calculation details

were described in Chapter 2.7. The long-range electrostatic interactions were treated with the particle mesh Ewald

method98 and nonbonded particle-particle interactions99 were considered using a 9.0 Å cutoff. The time step for all

MD simulations was set as 2.0 fs and SHAKE was used to constrain hydrogens for production run MD simulations. To

prevent the dissociation of A’a helices, a harmonic restraint with a spring constant of 10 kcal/(mol·Å2) was applied to

the bond between two CA atoms of residue I128 of chain A and chain B.

2.8.2 Minimization

The periodic boundary condition was applied to all simulation systems. Nonbonded particle-particle interactions49

were taken into account using a distance cutoff of 9 Å, and long-range electrostatic interactions were handled using the

particle mesh Ewald (PME) method100.

The energy minimization of simulation systems contains three steps, (1) fixing all the heavy atoms and only

relaxing hydrogen atoms, (2) optimizing the side-chain atoms with positional restraints of 99.9 kcal/(mol Å2) on the

backbone atoms (N, Ca, C, O), (3) the positions of the main chain atoms were optimized with positional restraints of 2.0

kcal/(mol Å2). After that, a Maxwell-Boltzmann distribution of initial atomic velocities was generated at 0.1 K and

each system was heated from 0.1 to 300 K for 50 ps by performing constant temperature, constant volume (NVT) MD

simulations with the relaxation time of 0.1 ps and a positional restraint of 2.0 kcal/(mol Å2) on the backbone atoms.

With the same positional restraints, a 50-ps NVT MD simulation was performed at T = 300 K, followed by a 200 ps

Langevin MD simulation at T = 300 K with a collision frequency of 2.0 ps–1 with positional restraints switched-off.

2.8.3 Equilibration

We started five (twenty) independent MD simulations from the minimum-energy conformation of HP36 (each of

the BjFixL) system, with different Maxwell-Boltzmann velocity distributions at T = 0.1 K, while keeping positional

restraints imposed on the mainchain atoms. Subsequently, the system temperature was gradually increased from 0.1

to 300 K. We, then, continued constant temperature, constant volume (NVT) MD simulation at T = 300 K for 200 ps

without positional restraints. The thermal equilibrium of the system was achieved by using the constant temperature,

constant pressure (NPT) MD simulation at T = 300 K, P = 1 atm for another 700 ps.

2.8.4 NPT sampling and NVE MD simulations

Next, for the HP36 system, we continued 5 independent NPT MD simulations for 56 ns, including a 50-ns run

with a time step, �t, of 2 fs with SHAKE constraints imposed on the bonds involving hydrogen atoms, 1-ns run with a

time step of 0.5 fs with SHAKE constraints switched off only for the protein part. We, then, continued another 5-ns run
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with the same condition for conformational sampling. During the last 5-ns trajectories of the five independent NPT MD

simulations, we saved snapshots with atomic coordinates and velocities every 500 ps. We thus obtained 50 different

initial conditions, each of which was used for the subsequent constant volume, constant energy (NVE) MD simulation

for 1 ns with a time step of 0.5 fs. During these NVE MD simulations, we saved atomic velocities every 0.5 fs, while

atomic coordinates were saved every 1 fs.

For BjFixL systems, 20 independent NPT MD simulations were performed for 55 ns at conditions of T = 300 K

and P = 0.978 atm, to conduct the conformational samplings. From the last 5-ns trajectory of each NPT simulation, 10

snapshots with their atomic coordinates and velocity information were saved every 0.5 ns. The atomic coordinates and

velocities of NVE MD simulations were saved every 10 fs for further calculations of energy flow and its autocorrelation

function of residue pairs in native contacts.

2.9 Definition and classification of nonbonded contacts

2.9.1 Definition

To describe the intramolecular interaction networks in proteins, the protein contact networks (PCNs)101–103 have

been introduced, aiming to unravel the relationship between protein structure and function. In PCNs, two residues

whose alpha-carbon atoms (CA) are within 4 - 8 Å of each other are considered to have contacts and interactions. In

this study, we defined nonbonded contacts based on a geometric criterion where residue pairs with the nearest atom

distance of 6 Å or less at least in each NVE MD simulation trajectory were considered to have a significant role in heat

and energy transport, as the thermal transport becomes negligible for pairs separated farther than this threshold. A total

of 319 residue pairs in HP36 were selected using the pickup-respairs module of CURP 1.3.

2.9.2 Classification

The nonbonded contacts among residues are categorized into five types based on the geometric structure of HP36

and MD simulation trajectories: hydrogen bond contacts, fi stacking contacts between aromatic side chains, electrostatic

contacts for both residues that are charged or polar, and hydrophobic contacts for either of them being hydrophobic

residue. Hydrogen bond contacts are identified from MD simulation trajectories by the cpptraj module of AmberTools

19, with a geometric criterion, i.e., the distance between atom X and atom Y from a pair of shorter than 3.0 Å and the

angle X-H. . . Y or Y-H. . . X within 145-180¶. Here, X(Y) œ residue A (B), and X(Y) is either O or N atom in protein.

On the other hand, fi stacking contacts are identified using the RING3.0 server (https://ring.biocomputingup.it) based on

the NMR structure of HP36.
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2.10 Hydrogen bond occurrence probability

The hydrogen bonds are found to facilitate the thermal transport in materials made of a-helices.21,83 To quantita-

tively evaluate the average strength of hydrogen bonds during thermal fluctuations, we assessed their integrity during the

simulation process by calculating the lifetime of detected hydrogen bond with the quantity, hydrogen bond occurrence

probability (PHB), as defined below. The cpptraj module in AMBER was utilized to probe hydrogen bonds between

residues and their lifetime in the simulation. The definition of hydrogen bonds and screening criterion are the same as

those in Chapter 2.9. The hydrogen-bonding-occurrence probability between a pair of residues during a certain period

of time can be calculated by the following formula:

PHB =
q

N

i=1
ni

N
(2.40)

where ni is the number of hydrogen bonds formed between the pair, and N is the number of snapshots in the MD

trajectory.

2.11 Random forest regression method

The random forest regression model was applied to predict the values of inter-residue thermal conductivity, ⁄–,— ,

for residue pairs (a, b), by using sklearn’s RandomForestRegressor function in Python. The ⁄–,— values were considered

as the target variable and seven properties, each of which represents either static or dynamical feature of a protein, were

considered as explanatory variables: inverse of contact (shortest) distance (ÈdcÍ), PHB , the inverse of variance in the

contact distance (È”d2

c
Í), the summation of the volumes of contact residue pair (V–—), residue type (RT– and RT—),

and interaction type (IT). The whole dataset was split into two groups for model fitting and evaluation: training set

(80%) and testing set (20%). The mean absolute error (MAE) loss was calculated for the split quality measurement. The

bootstrapping method was used to randomly sample the subsets of the training dataset to build the model. The random

forest regression model (estimator) performance is affected by the choice of its hyperparameters, such as the number of

decision trees and the maximum number of splits for each decision tree. To improve the accuracy of predictions and

avoid underfit or overfit problems, the RandomizedSearchCV function in the scikit-learn library was used to tune the

hyperparameters and to obtain the best estimator. R2 and root-mean-squared error (RMSE) for the training data set and

for the testing data set were calculated to evaluate the model performance. Because the explanatory variables were

considered contain categorical data, such as, interaction type and residue type, we applied the LabelEncoder function of

Python to give a unique integer to each categorical explanatory variable for regression analysis. The feature importance

for all explanatory variables was evaluated using permutation feature importance rather than impurity-based feature

importance to avoid misleading for high cardinality features.

For constructing random forest models, we used two types of datasets with ÈdcÍ < 6 Å (dataset L) and that within

ÈdcÍ < 4 Å (dataset S). The distance criterion of 6 Å is used as a default value by the CURP program so taht the selected
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residue pairs contain not only stongly interacting ones, buy also the loosely interact to each other. Alternatively, the

distance criterion of 4 Å is often used to extract weakly interacting residue pairs in constructing the network graph of

nonbonded native contacts.101

2.12 Computational modeling for Thalassosira pseudonana CP12 homodimer

Although structure modeling of globular protein with its well-defined native conformation has become practical by

using deep-learning algorithms based techniques, there still remains various obstacles to characterize the conformational

ensemble of the intrinsically disordered protein (IDP) or the protein with highly flexible disordered regions (IDRs).

To address this issue, we developed a three-stage modeling technique and applied it to Thalassosira pseudonana

chloroplast protein (CP12) with IDRs. First, AlphaFold-Multimer was used to obtain the CP12 dimer’s initial guess

structures.66,104 Then, the harmonic restrained all-atom molecular dynamics (MD) simulations were used to roughly

refine those structures so that they became consistent with the experimental results (SAXS105 and EPR/DEER). Finally,

restrained-ensemble molecular dynamics (reMD) simulations106–109 were employed to further refine those structures,

ensuring that the distance distributions of all the spin pairs introduced in the reMD simulation became consistent with

those of the experimental EPR/DEER data are consistent.

2.12.1 FASTA sequence of CP12

From the complete amino acid sequence of wild type of CP12, we used the segment of 163 residues (shown in

blue) served as the input (WT) for AlphaFold2 modeling as follows:

MKIFLASLIGSCAAFAPAPFGKSPTALFGRVDTSAAIEAALDASKKFGSTSSEARVLWDIVEEMDASDNSVAS

KAPIVDSEYEAKVKSLSQMLTKTKAELDQVKALADDLKGVKLASPSVGSSAPDDSVMKEALAAARAATEEFGQ

SSPQARLAWETVEEIAASPVDIRAPLDEECLIELIEGCEALEKFQAALGSR (WT)

In addition, to consider the influence of mutants in the EPR/DEER experiment, two mutant sequences are

considered to predict the CP12’s dimer. Their sequences are as follows:

AAIEAALDASKKFGSTSSEARVLWDIVEEMDASDNSVASKAPIVDCEYEAKVKSLSQMLTKTKAELDQVK

ALADDLKGVKLASPSVGSSAPDDSVMKEALAAARAATEEFGQSSPQARLAWETVEEIAASPVDIRAPLDEE

SLIELIEGSEALEKFQAALGSR (S46C)

AAIEAALDASKKFGSTSSEARVLWDIVEEMDASDNSVASKAPIVDSEYEAKVKSLCQMLTKTKAELDQVK

ALADDLKGVKLASPSVGSSAPDDSVMKEALAAARAATEEFGQSSPQARLAWETVEEIAASPVDIRAPLDEE

SLIELIEGSEALEKFQAALGSR (S56C)
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Figure 2.8: (A) Refinement scheme for the model obtained from AlphaFold2. (B) Starting model for the harmonic
restrained MD simulations. C) Distances (blue) and distance distributions (black) between spin label pairs of the starting
model for reMD simulation and DEER experiment data, respectively.
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2.12.2 AlphaFold2 prediction

Using AlphaFold v2.1.1-Multimer (AF2) and the default databases,64,66,104, the structure of the CP12 homodimer

was predicted. From NCBI105, the wild-type (WT) amino acid sequence was retrieved . For multiple sequence alignments

(MSAs) lookup and structural template matching, an incomplete FASTA sequence of 163 residues (the blue portion of

the sequence in Chapter 2.12.1) was used in the AF2 input file. Each of the homodimeric structure of WT, S46C, and

S56C mutants was predicted and the top five ranked models was generated for each. To evaluate the reliability of the

predictions residuewise, the predicted local distance difference test score (pLDDT, on a scale from 0 to 100, where 100

denotes the most confident) was used to assess the per-residue confidence for the model.

2.12.3 Harmonic restrained MD simulations

In the AF2 model (Figure 2.8 B), we observed two well-structured C-terminal helices were overfolded with the

coiled-coil region in the AF2 model (Figure 6.2), despite their high flexibility by the EPR/DEER experiment (C150 in

Figure 2.8 C). Therefore, these two C-terminal helices were manually shifted away from the dimer’s coiled-coil portion

(Figure 2.8 B).

All-atom harmonic restrained MD simulations without spin labels were followed by restrained-ensemble MD

(reMD) simulations with spin labels introduced in order to refine the model and generate a conformational ensemble that

is realistic and fits both the experimental SAXS curve105 and the spin-spin distance distributions obtained by EPR/DEER

experiments. A logic diagram for the simulation procedure is displayed in Figure 2.8 A. The reMD simulation106

technique for the model with all-atom spin labels is suitable to exploit protein’s structure in their native environment

based on multiple distance histograms information obtained from EPR/DEER spectroscopy due to the high flexibility of

R1 spin labels with 5 dihedral angles. A care must be taken for constructing an initial model for reMD simulations: a

spin pair distance that is unlikely in the distance distribution obtained by the EPR/DEER experiment could result in an

unexpectedly large disturbance on the simulation system, leading to unsuccessful conformational sampling. Therefore,

before each run of the reMD simulation, a screening on the initial model based on the distance information between all

the spin pairs was required to avoid such a violation.

The calculation process is detailed below:

(1) Based on the modified AF2 model, we conducted harmonic restricted MD simulations using the Amber 20

package.110 The Amber ff19SB force field95 was used for the protein, which was immersed into a cubic periodic

box filled with water solvent molecules modeled by the OPC model111 with the LEaP program of AmberTools20.

At pH = 7.0, all charged residues were taken into consideration in their standard protonation condition. To

neutralize the simulation box, we added 28 sodium ions, and the total number of atoms become 178352. With a

distance cutoff of 9 Å, nonbonded particle-particle interactions112 were taken into account, and the particle mesh

Ewald (PME) method113 was used to treat long-range electrostatic interactions. After the simulation system was

minimized, heated, 10 rounds of MD simulations were conducted, with harmonic restraint of a spring force of 30

kcal/(mol·Å2) applied to the CA-CA lengths across the dimer for the corresponding spin-labeled residues S39,

29



CHAPTER 2. THEORY, MATERIALS AND METHODS

S46, S56, S83, and C150. Each round, MD simulations was performed for 100ps with a time step of 2 fs at T =

300 K and P = 0.978 atm. Every 1 ps, the atomic coordinates were stored. The initial/target distances for each

pair of CA atoms were, respectively, 73/68 Å for S39, 57/43 Å for S46, 26/32 Å for S56, 51/64 Å for S83, and

12/25 Å for C150. In the first 2 ps of each cycle, the traget distances were readily achieved (Figure 2.9).

Figure 2.9: Time evolution of the CA-CA distances. We consider five residue pairs, S39-S39, S46-S46, S56-S56,
S83-S83, and C150-C150 in the dimer. For each pair, the CA-CA distance are plotted as a function of time during
harmonic restrained MD simulation using Amber.

(2) Using the reMD Prepper module of CHARMM-GUI109, we attached the all-atom spin label CYR1114 to the

residues S39, S46, S56, S83, and C150, respectively. After removing the waters from the simulation model, we

used CRYSOL115 of ATSAS-3.0.4-2116 to simulate SAXS curve and compared it with the experiment105. If the

simulated SAXS curve and the experimentally obtained curve were in good agreement, we then measured the

initial distance of each spin pair.

2.12.4 Restrained-ensemble MD simulations

(3) We then performed the reMD simulations using a modified version of NAMD 2107,109 with an all-atom

CHARMM36m protein force field117, if all the spin pair distances were within the experimentally reported range.

In order to save computational resources, we attached 25 copies of all-atom CYR1 spin labels with the same inital
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Figure 2.10: The fixation between CYR1 spin label and its attached residues. The all-atom CYR1 spin label has a main
chain like amino acid. The reMD simulation adds and fixes the spin label model by overlapping the main chain of spin
label attached residue and the main chain of spin labels with a harmonic force constant of 10 kcal/(mol·Å2).

coordinates to the corresponding residues S39, S46, S56, S83, and C150 using reMD Prepper in a vacuum. The N,

Ca, C, and O atoms of each spin label were fixed to the corresponding atom positions in the labeled residues

(Figure 2.10) throughout the entire reMD simulations using a force constant of 10 kcal/(mol·Å2). The force field

of all-atom CYR1 spin label118 was obtained using CHARMM-GUI. We allowed the spatial overlap between

these 25 copies by igonring their mutual interactions. Five independent all-atom reMD simulations, each with five

different random number seeds were conducted at 303.15 K using Langevin dynamics and a damping coefficient

of 5 ps–1. Prior to each reMD production run, we carried out minimization and equilibration, kepping the positions

of the backbone atoms with harmonic restraints of 2 kcal/(mol·Å2) imposed on them, while no restraints were

imposed on the sidechain atoms. For further improvement of the models, we turned off the harmonic restrictions

imposed on the backbone atoms and continued the reMD simulations for 2 ns with a 0.5-fs time step. The particle

mesh Ewald (PME) method119 was used to evaluate the long-range electrostatic interactions, and the nonbonded

interactions were truncated at a distance cutoff of 10 Å. During the reMD simulations a force constant of 100

kcal/(mol·Å2) and a bin width of 0.025 nm, the conformational ensemble of the system was generated in such a

way that the distance distributions of each spin label pair were restrained to those of the experimental distance

distribution histograms. In each reMD production run, the atomic coordinates were saved every 1 ps. Since we

have 25 copies of each spin label, a total of 625 distances were calculated for each pair of spin labels from a

single snapshot of their trajectories, and a total of 1, 250 000 data points were generated for each pair of spin

labels from a single reMD production run. Trajectory analysis and protein visualization were carried out using

PyMOL120 and VMD121, respectively.
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Chapter 3

Site-selective heat current analysis with

linear-homopolymer-like model

3.1 The overall thermal conductivity

Figure 3.1: The thermal conductivity of HP36. The autocorrelation function of the heat current of the entire molecule of
HP36 was calculated and ensemble-averaged, and plotted as a function of time (blue). The inset shows the short-time
region (0 - 0.2 ps). The heat current autocorrelation function was integrated over time using the trapezoidal rule, yielding
a quantity denoted as ⁄ as a function of integration time (shown in orange), and a running mean of ⁄ was computed with
a window size of 100 fs and is illustrated in red. The volume of HP36 was set to 4845.447 Å3.59

The overall thermal conductivity, denoted as ⁄, of the HP36 protein was determined using Equation 2.1 in this

study. To calculate the total volume of HP36 and individual atom volumes, we utilized the VLDP (Voronoi Laguerre

Delaunay Protein) method through a web server122. After obtaining the ensemble-averaged heat current autocorrelation

function, we performed time integration using the trapezoidal rule, as depicted in Figure 3.1. The value of ⁄ converged
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at approximately t = 60 ps, resulting in a thermal conductivity of 0.26 ± 0.01 W/(m·K). It is worth noting that the

calculated value of ⁄ slightly differs from the previous calculation,59 primarily due to the utilization of a “flexible”

TIP3P water model in the previous study. The dependence of the water model on thermal conductivity will be discussed

further in Chapter 3.7. For subsequent analyses, we set the upper limit of the time integration of the local heat current

autocorrelation function to 60 ps.

3.2 Local thermal transport

The contribution factors for intra-residue and inter-residue heat currents were presented in Figure 3.2. In general,

the intra-residue contribution factors were found to be higher than the inter-residue factors (c), except for certain pairs

of terminal residues (Met1-Leu2, Leu35-Phe36 and Gly12-Met13). The average intra-residue contribution factor (see

Equation 2.14) was 0.029, which was nearly twice as large as the average inter-residue contribution factor (0.016).

This suggests that intra-residue thermal transport makes a dominant contribution to the overall heat current, which

is consistent with the results of the master equation analysis.12 In addition to these two dominating thermal energy

transport pathways, the contributions from sidechain-sidechain heat currents across nonbonded native contacts were

relatively small.59

Figure 3.2: The contribution factors without cross-correlation corrections were calculated and plotted for both intra-
residue (c–,–, shown in red) and inter-residue (c–,–+1, shown in green) interactions, as described in equations (Equa-
tion 2.15) and (Equation 2.16), respectively. The data points, such as c1,2, represent the contribution factor between
residue numbers – = 1 and – = 2. The horizontal axis displays the residue number, –, along with the corresponding
residue names represented in the one-letter code. The grey-shaded regions correspond to the –-helical regions.

The sum of the intra-residue contribution factors,
q

36

–=1
c–,–, was 1.06, and the sum of the inter-residue contribu-

tion factors,
q

35

–=1
c–,–+1, was 0.57. The deviation of 1.06 + 0.57 = 1.63 from 1 suggests the presence of non-negligible

cross-correlation effects among different partial heat currents. In Chapter 3.3, we will delve into a more detailed analysis

of these cross-correlation effects.
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3.3 Cross-correlation correction

Figure 3.3: The cross-correlation contribution factor between nearest neighbor residues, ccross

–,–+1
, defined as ›–,–+1/�,

was plotted as a function of the residue number. Each data point represents the value of ccross

–,–+1
between residue – and

– + 1. For example, the data point ccross

1,2
corresponds to the cross-correlation between residues 1 and 2.

Figure 3.4: Contribution factors with cross-correlation correction. See the caption to Figure 3.2.

In this study, we assumed that the cross-correlation effect is short range along the polypeptide sequence (Chap-

ter 2.4). Interestingly, the cross-correlation effect exhibits secondary structure dependence (Figure 3.3): the a-helical

regions are less affected by the cross-correlation. The reason for this observation is currently unclear and will be

investigated further in future studies.

All of the contribution factors decreased after the cross-correlation correction (Figure 3.4), yielding a similar

pattern to Figure 3.2. The total intra-residue contribution was 0.75, approximately three times larger than that of the

inter-residue contribution of 0.26. To validate the assumption of short-range cross-correlation, we also calculated the

contributing factors for the second nearest cross-correlation between residue pairs of a and a+2 (›–,–+2), (– = 1, 2, . . . ,
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34), using the same method described in Chapter 2.4. The total contribution due to the second nearest cross-correlation

was 0.03 (Table 3.1), while that for the nearest cross-correlation was –0.62 (Table 3.2), indicating that the second nearest

cross-correlation has a minimal impact on the overall heat current.

To validate the linear-homopolymer-like model, we compared � and �̃. The former was derived from the exact

heat current of the entire molecule, while the latter was based on the linear-homopolymer-like model. The calculation

results showed that �̃ overestimated � only by 0.9%, indicating that the linear-homopolymer-like model successfully

represents the thermal transport property of the entire molecule.

Table 3.1: The second nearest cross-correlation. ›–,–+2 was calculated in a similar manner as ›–,–+1 using Equation 2.15,
and contribution factor, ccross

–,–+2
, was calculated as ›–,–+2/�. The values of › are shown in the unit of (Å·kcal/mol)2/fs.

Residue (–) Residue (– + 2) ›–,–+2 ccross

–,–+2

ARG15 ALA17 0.012 0.001

ALA17 ALA19 -0.010 -0.001

PHE7 ALA9 0.027 0.003

MET13 ARG15 -0.033 -0.003

PHE18 ASN20 -0.007 -0.001

GLN26 ASN28 0.032 0.003

LEU2 ASP4 0.036 0.004

ASP4 ASP6 -0.007 -0.001

TRP24 GLN26 0.027 0.003

LYS25 GLN27 0.045 0.005

LYS30 GLU32 0.010 0.001

SER3 GLU5 0.036 0.004

VAL10 GLY12 0.029 0.003

GLU32 GLY34 0.038 0.004

ALA19 LEU21 0.024 0.002

LEU21 LEU23 -0.027 -0.003

GLN27 LEU29 0.019 0.002

LYS33 LEU35 0.086 0.009

LEU23 LYS25 0.063 0.006

ASN28 LYS30 -0.396 -0.040

LEU29 LYS31 0.028 0.003

LYS31 LYS33 0.047 0.005

ASP6 LYS8 0.000 0.000

PHE11 MET13 0.051 0.005

ALA9 PHE11 0.042 0.004
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Residue (–) Residue (– + 2) ›–,–+2 ccross

–,–+2

SER16 PHE18 0.015 0.001

GLY34 PHE36 0.034 0.003

GLU5 PHE7 -0.028 -0.003

ASN20 PRO22 0.026 0.003

THR14 SER16 -0.024 -0.002

MET1 SER3 0.042 0.004

GLY12 THR14 0.006 0.001

PRO22 TRP24 0.014 0.001

LYS8 VAL10 0.022 0.002

Table 3.2: Local thermal trasnport property after the cross-correlation correction. �̃–,– (–=1, 2, . . . , 36) and �̃–,–+1

(–=1, 2, . . . , 35) are shown in unit of (Å · kcal)2/fs (Equation 2.12), while the value of � was 9.79 in the same unit
(Equation 2.13).

Residue (–) �̃–,– �̃–,–+1

1 2.96◊10≠1 1.27◊10≠1

2 9.00◊10≠2 5.81◊10≠2

3 1.03◊10≠1 6.34◊10≠2

4 2.03◊10≠1 9.76◊10≠2

5 2.15◊10≠1 9.27◊10≠2

6 2.00◊10≠1 7.05◊10≠2

7 2.03◊10≠1 5.94◊10≠2

8 3.66◊10≠1 4.24◊10≠2

9 1.16◊10≠1 1.01◊10≠1

10 1.28◊10≠1 5.16◊10≠2

11 2.22◊10≠1 4.46◊10≠2

12 5.24◊10≠2 1.16◊10≠1

13 1.04◊10≠1 5.71◊10≠2

14 1.41◊10≠1 7.19◊10≠2

15 4.17◊10≠1 7.80◊10≠2

16 1.65◊10≠1 1.31◊10≠1

17 9.99◊10≠2 6.63◊10≠2

18 1.67◊10≠1 5.29◊10≠2

19 8.66◊10≠2 7.07◊10≠2

20 2.00◊10≠1 9.87◊10≠2
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Residue (–) �̃–,– �̃–,–+1

21 1.33◊10≠1 2.73◊10≠2

22 1.01◊10≠1 6.27◊10≠2

23 1.57◊10≠1 3.26◊10≠2

24 3.70◊10≠1 5.49◊10≠2

25 3.70◊10≠1 7.62◊10≠2

26 2.80◊10≠1 7.27◊10≠2

27 2.47◊10≠1 7.45◊10≠2

28 2.06◊10≠1 6.62◊10≠2

29 1.76◊10≠1 7.15◊10≠2

30 3.72◊10≠1 7.73◊10≠2

31 4.22◊10≠1 7.41◊10≠2

32 2.36◊10≠1 6.30◊10≠2

33 3.23◊10≠1 7.02◊10≠2

34 5.11◊10≠2 4.60◊10≠2

35 1.99◊10≠1 1.09◊10≠1

36 1.29◊10≠1

———————— —————————— ——————————

total 7.35 2.53

3.4 Residue-type dependence

By applying the site-selective heat current analysis based on the linear-homopolymer-like model, we were able

to evaluate the residue-by-residue local thermal conductivity. Figure 3.5 shows the dependence of the intra-residue

contribution factors on the residue type. The residue volume, V–, was calculated as the sum of the atomic volumes of

the constituent atoms. We obtained the average residue volume using five representative structures of HP36 in thermal

equilibrium at T = 300 K using the VLDP web server.122

We observed that the values of the corrected contribution factors, c̃, are proportional to the residue volume.

Additionally, the slope of the regression line depends on the residue type, indicating that the residue-wise thermal

conductivity is sensitive to the residue type. We define the residue-wise thermal conductivity, ⁄–, of residue a as

�̃–,–/(3V–kBT ), and we see that ⁄– decreases in the order of charged, polar, and hydrophobic residues,in consistent

with the previous report that the thermal diffusion along an a-helix composed entirely of polar residues is faster than that

of its non-polar residue counterpart.21
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Figure 3.5: Volume dependence of c̃, a residue-wise contribution factor after cross-correlation correction, for charged
(green), polar (orange) and hydrophobic (blue) residues, respectively.

3.5 Local density dependence

Figure 3.6: A scatter plot and linear correlation analysis were performed to examine the relationship between the
intra-residue thermal conductivity and the local density, represented by the mass density (fl), calculated as the ratio of
residue mass to residue volume (unit: g/cm3).

The density of a material is widely recognized as an important determinant of its thermophysical properties.3 The

product of material density (fl) and its specific heat capacity (cp), denoted as flcp, is commonly used as a measure of the

thermal energy storage capacity of a material.123 A higher value of flcp indicates a greater capacity of the material to

store thermal energy. In macroscopic homogeneous materials, it is generally observed that higher densities are associated

with higher thermal conductivities. This relationship is evident in various materials, such as high-density polyethylene

having a higher thermal conductivity (0.44 W/(m·K)) compared to low-density polyethylene (0.3 W/(m·K)).
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However, in the case of heterogeneous materials such as proteins, the local density can vary significantly from one

site to another. This is due to the different packing of amino acid residues, resulting in a wider distribution of residue

densities. The relationship between local density and thermal conductivity in proteins is shown in Figure 3.6, a scatter

plot of the residue-wise thermal conductivity versus local density of each residue. The local mass density values range

from 1.20 to 1.70 g/cm3, shown in Figure 3.6, which is somewhat broader compared to those determined experimentally

and theoretically (1.33 to 1.44 g/cm3).124 This wider range of residue densities could be mainly attributed to the

residue-wise volume variation between different environments, i.e., buried or exposed. The buried residues, which are

surrounded by other residues, tend to have a higher density than the exposed residues, with greater solvent accessibility,

leading to a broader distribution of residue densities within the protein molecule.125,126

Figure 3.7: Comparison of the residue volumes in this study with those in water (blue) and the protein interior (green)125.
The second row of the x-axis represents the amino acid names using the one-letter format, with the residues buried into
the protein interior highlighted in red. The third row indicates the residue types, with hydrophobic residues shown in
blue, charged residues in green, and polar residues in orange.

Table 3.3: Pearson correlation coefficient (r), p-value and slope of linear relationship between c̃ and volume in Figure 3.5.
Generally, a value of |r| > 0.3, or a p-value < 0.05 is often considered to be statistically significant, indicating that the
pair of variables under consideration are correlated.

Residue type r p-value slope

overall 0.56 0.0004 1.55 ◊10≠4

charged 0.88 0.0008 4.3 ◊10≠4

polar 0.95 0.0004 2.1 ◊10≠4

hydrophobic 0.68 0.0019 9.4 ◊10≠5

The linear regression analysis of the residue-wise thermal conductivity with cross-correlation correction shows

a weak density dependence (Figure 3.6 a). The data points exhibit a broad distribution, and the correlation between

thermal conductivity and density is not statistically significant, as indicated by a Pearson correlation coefficient of 0.3
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and a p-value of 0.078. Pearson correlation analysis for all data in Figure 3.6 a and sub data points classified by residue

types in Figure 3.6 b are shown in Table 3.3.

In Figure 3.6 b, the linear regression lines for hydrophobic and polar residues have almost constant thermal

conductivity values, while charged residues show a negative proportionality, although the reason for this observation

is unclear. One possible explanation is that charged residues tend to have larger volumes compared to other residue

types.125 Additionally, as shown in Figure 3.6 b, the thermal conductivity of polar residues is approximately twice that

of hydrophobic residues, in line with the previous observations of faster heat diffusion in –-helices consisting of polar

residues than their non-polar-residue counterparts.

For the HP36 protein, the subtotal contribution factors (c̃) for charged, polar, and hydrophobic residues were

0.32, 0.17, and 0.23, respectively. Although HP36 contains smaller proportions of charged residues (10/36) than that

of hydrophobic residues (18/36), the charged residues play more important roles in the thermal transport due to the

relatively larger contribution to the overall heat current.

3.6 Thermal diffusivity and temperature relaxation time

In the field of molecular biophysics,vibrational energy relaxation in proteins has attracted more attention than

the thermal transport properties of proteins. A pioneering study by Mizutani and Kitagawa7 investigated the excess

energy dissipation in myoglobin and observed double exponential decay in the population of the ‹4 mode of the heme

after flash photolysis. They estimated the temperature relaxation times of the vibrational mode to be 3.0 and 25 ps,

respectively, assuming a Boltzmann distribution for the vibrational mode. This highlights the importance of picosecond

dynamics in the temperature relaxation of proteins, which involves energy redistribution processes.

It is possible to estimate two parameters, namely the thermal diffusivity and temperature relaxation time, using the

following equation22,123,127:

⁄ = flcpR2

·
= flcp– (3.1)

In this equation, ⁄ represents the thermal conductivity, · is the relaxation time, – is the thermal diffusivity, fl is

the protein density, cp is the heat capacity, and R is the effective radius of the protein, which can be estimated from the

protein volume, V = 4fiR
3

3
.

The estimated values of · fall within the range of 8.4 to 13.9 ps, corresponding to a temperature relaxation rate

ranging from 0.072 to 0.119 ps≠1. It should be noted that the reported values of vibrational energy relaxation times range

from a few picoseconds to several tens of picoseconds.7,15,16,26,127,128 The estimated thermal diffusivity is in the range of

7.9 to 13.2 Å2 ps≠1, in good agreement with values obtained from nonequilibrium molecular dynamics simulations.5,129

The density of HP36 was calculated as fl = 1.57 g/cm3, slightly larger than the widely used value of 1.35 g/cm3.124 The

heat capacity was assumed to be in the range of 0.30 to 0.50 cal/g deg.130
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3.7 Water model

In our previous study on the thermal conductivity of the HP36 protein59, we utilized the Amber ff14SB force

field for the protein atoms and the TIP3P water model with the SHAKE constraints turned off, although this usage

of the TIP3P model is unconventional. It is known that simulations using the standard rigid TIP3P water model can

exhibit anomalous diffusion.131,132 To investigate the influence of the water models on protein thermal conductivity, we

employed the Amber ff19SB force field in combination with the TIP3P water model, again with the SHAKE constraints

turned off, but only for the protein in this particular study. As mentioned earlier, the calculated thermal conductivity

(⁄) of the entire protein was found to be 0.26 ± 0.01 W/(m·K), which is close to the value of 0.3 ± 0.01 W/(m·K)
obtained in our previous study.59 This suggests that solvent properties may influence protein thermal conductivity

through protein-solvent interfaces.

As discussed earlier in this chapter, protein-solvent interactions play a crucial role in determining the structure,

dynamics, and function of proteins. Notably, Straub, Leitner, and their colleagues have conducted significant studies on

the energy transport across protein-water interfaces. Sagnella et al. observed spatially directed “funneling” of kinetic

energy from the heme group to the surrounding solvent for the dissipation of excess energy in myoglobin following

flash photolysis.15 Agbo, Xu, Zhang, et al. investigated the thermal conductance between cytochrome c and water

and demonstrated that the protein-water interface does not pose a greater Kapitza resistance to heat flow compared

to the protein itself. Interestingly, thermal conductance at protein-solvent interfaces varies for different types and

shapes of proteins, ranging from 100 to 330 MWK≠1m≠2.22,35,127,133,134 Hamzi et al. studied the dependence of thermal

conductance at protein-water interfaces on the types of amino acid residues, and they observed that hydrophobic and

aromatic amino acids tend to exhibit lower interfacial thermal conductance.135 Other types of interfaces have also been

investigated. For instance, ultrafast energy dissipation from peptide helices to chloroform solvents on the timescale of

0.5 ps was observed through a collaboration between experimental and theoretical approaches.5 To gain insights into

how different water models could affect thermal boundary conductance, it is useful to consider the vibrational density of

states of both the protein and water134,136. In contrast to our previous study,59 the present study using the rigid TIP3P

water model shows that some high-frequency vibrational modes of the solvent are absent, resulting in a decrease in

thermal conductance at the protein-water interface. Consequently, it is plausible that the vibrational energy distribution,

especially for surface amino acid residues near the protein-water interface, may be affected. Moreover, the local heat

capacities of such amino acid residues might also be influenced, leading to changes in the overall protein thermal

conductivity. Systematic studies of the influence of solvent models on the thermal transport properties of proteins and

protein-solvent interface should be further investigated to validate these hypotheses.
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Chapter 4

Heat and energy transfer through

nonbonded contacts

4.1 Energy transfer and heat transfer

Figure 4.1: Correlation of �–,— and G–,— .

In the previous studies, we explored the energy transport network in proteins based on the time-integrated ACF of

the inter-residue energy flow (G–,—).23,28,29,58,80 Considering the similarity between the interatomic current of energy

(Equation 2.36) and heat (Equation 2.39), we are allowed to take a similar approach. To compare the time-integrated ACF

of inter-residue current of heat with that of energy, we showed a scatter plot between �–,— and G–,— in Figure 4.1 and
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carried out a linear regression analysis. As expected, the Pearson correlation analysis showed a statistically significant

correlation between �–,— and G–,— , with r = 0.97, **p π 0.01 (8.0 ◊ 10–173). The estimated linear regression model is

as follows: log �–,— = 0.74 ◊ log G–,— + 0.06 with R2 = 0.95. The high similarity between �–,— and G–,— implies

that the network patterns of energy transport and heat transport should also be similar to each other.

4.2 Interaction type dependence

Figure 4.2: Frequency histogram of local thermal conductivity in HP36. It shows the occurrence of ⁄–,— for different
types of residue pairs (–, —) in nonbonded native contacts, together with the residue-wise thermal conductivity and
those between adjacent residue pairs along the chain. For comparison, the value of the thermal conductivity of the entire
HP36 molecule is indicated by the red dashed line, as well as that of bulk water by the black dashed line.137

Figure 4.2 shows the frequency histogram of the calculated local thermal conductivities in HP36. The histogram

reveals that the hydrogen-bond contacts have the greatest values of ⁄–,— among all the nonbonded native contacts, with

a peak at around 2.5 ◊ 10–2 W/(m·K), followed by the electrostatic contacts with ⁄–,— values ranging from 10≠5 to

10≠3 W/(m·K) with having broader and less sharply peaked distributions than that of the hydrogen-bond contacts. In

the hydrophobic core of HP36, there are three fi stacking contacts: Phe7-Phe11 (⁄7,11 = 4.9 ◊ 10≠3), Phe7-Phe18

(⁄7,11 = 1.5 ◊ 10≠3), and Phe11-Phe18 (⁄11,18 = 1.5 ◊ 10≠3), with ⁄–,— values comparable with hydrogen-bond

contacts. Hydrophobic contacts, constitute the majority of the nonbonded native contacts with a broad distribution

ranging from 10≠7 to 10≠2 W/(m·K). Their ⁄–,— values are relatively smaller, with peaks at around 5.9 ◊ 10≠4
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W/(m·K). In summary, the frequency histogram of the calculated local thermal conductivities for nonbonded native

contacts exhibits a strikingly broad distribution, where different types of nonbonded contacts have significantly different

contributions to thermal transport in the protein, with hydrogen bonds playing the dominant role.

4.3 Peptide bonds? or nonbonded contacts?

Figure 4.3: Nonbonded contacts that can compete with polypeptide chain.

There is an ongoing debate on the dominant pathway of thermal energy transport in proteins.3,6,12 To address

the issue, we carried out site-selective heat current analysis (Figure 4.2). As a result, the distribution of local thermal

transport coefficients demonstrated substantial heterogeneity in protein thermal transport at microscopic scale: The

residue-wise ⁄ values are ranging from about 0.08 to 0.3 W/(m·K), while the inter-residue thermal conductivity

between adjacent residue pairs along the chain ranges from about 0.01 to 0.08 W/(m·K), indicating that the importance

of the polypeptide chain as a major pathway of thermal transport in protein. It should be noted that, however, that there

are three exceptions ⁄3,6 = 2.4 ◊ 10≠2, ⁄4,15 = 1.3 ◊ 10≠2, and ⁄5,8 = 2.1 ◊ 10≠2, shown in Figure 4.3, where their

⁄ values exceed 10≠2 W/(m·K) being comparable to the local thermal transport coefficient for the pathways along the

polypeptide chain. It is worthy mentioning that the residue pairs, Ser3-Asp6 and Asp4-Arg15, have also been identified

as having a relatively larger local energy diffusivities in the theoretical study by non-equilibrium MD simulations and

master equation model,12 indicating their possible roles to as “shortcuts” on the thermal transport network of the protein.
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Figure 4.4: Correlation between the inter-residue thermal conductivity through hydrogen bonding and their hydrogen
bond occurrence probability (PHB) during MD simulations. (a): all residue pairs in contact with hydrogen bonds; (b)
residue pairs (–, – + 4) with –-helical hydrogen bonding.

4.4 Thermal energy transport through hydrogen bonds

The values of inter-residue thermal conductivity for residue pairs in contacts with hydrogen bonds are generally

greater than those of the other types of nonbonded contacts (Figure 4.2), in line with the previous studies in the

literature.6,21 The linear regression analysis with a scatter plot between the values of inter-residue thermal conductivity

(⁄–,—) between hydrogen bonded residue pairs and their hydrogen bond occurrence probability (PHB) during the MD

simulations (Figure 4.4a) yielded a Pearson correlation coefficient of r = 0.51 (> 0.3) and a **p-value of 0.007 (π 0.05),

indicating a positive correlation between them.

In an –-helical protein, two types of hydrogen bonds are recognized: The first type, known as central hydrogen

bonds stabilize the helical structure with hydrogen bonds between the carbonyl oxygen (O) of residue – and the amino

group (N-H) of residue –+4. The second type occurs either as a sidechain-sidechain or sidechain-mainchain hydrogen

bond. Miño et al. reported that the heat diffusion along the –-helical polypeptide chain containing both types of hydrogen

bonds is two times faster than those containing only the first type of hydrogen bonds, highlighting the important role of

the second type of hydrogen bonds in proteins.21 To investigate the role of the first type of hydrogen bond in the heat

transport in HP36, we selected the values of inter-residue thermal conductivity for 32 residue pairs between residue

– and –+4 (n=1, 2, . . . , 32). Figure 4.4b. The NMR structure of HP36 (PDB: 1VII) contains three alpha-helices, H1

(residues 4-8), H2 (residues 15-18), and H3 (residues 23-32). We also observed transient formation of hydrogen bonds

between (–, – + 4) residue pairs during MD simulations, in addition to those found in the NMR structure. Thereby,

19 members of these hydrogen bonds are shown in Table 4.1, among which 13 of the –-helical hydrogen bonds were

selected for the linear regression analysis (Figure 4.4b). In the previous study,21 the heat diffusion along the –-helical

chain with both types of hydrogen bonds is twice faster than those with only the first type of hydrogen bonds, indicating

the important role of the second type of hydrogen bonds in proteins. To investigate the role of the first type of hydrogen

bond in heat transport in HP36, we found that almost all hydrogen bonds between pairs of residue (–, –+4) were of the
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first type with only one exception between the mainchain of 16SER and the sidechain of 20ASN.

Table 4.1: Hydrogen bond occurrence probability (PHB) and averaged shortest distance (ÈdcÍ) between residue – and
–+4. MC : mainchain, SC: sidechain.

acceptor residue

number

acceptor

atom

donorH residue

number

donorH

atom

donor

atom PHB

acceptor

type

donor

type

averaged

distance

3SER O 7PHE H N 0.60 MC MC 2.05

4ASP O 8LYS H N 0.37 MC MC 2.19

5GLU O 9ALA H N 0.21 MC MC 2.32

7PHE O 11PHE H N 0.67 MC MC 1.92

15ARG O 19ALA H N 0.53 MC MC 2.04

22PRO O 26GLN H N 0.33 MC MC 2.11

23LEU O 27GLN H N 0.55 MC MC 1.99

24TRP O 28ASN H N 0.48 MC MC 2.03

25LYS O 29LEU H N 0.54 MC MC 2.00

26GLN O 30LYS H N 0.48 MC MC 2.06

27GLN O 31LYS H N 0.59 MC MC 2.00

28ASN O 32GLU H N 0.61 MC MC 1.96

29LEU O 33LYS H N 0.37 MC MC 2.12

We conducted further analysis of the properties of the interaction between residue pairs (–, – + 4) (Table 4.2).

The values of inter-residue thermal conductivity for the pairs with no hydrogen bond are significantly smaller than those

with hydrogen bonds. Two special residues pairs (2LEU-6ASP and 21LEU-25LYS) did not form hydrogen bonds but

had relatively larger values. This may be because their interactions are stronger than those contacts with no hydrogen

bonds, which are all hydrophobic residues with weak Van der Waals interactions.

Table 4.2: Inter-residue thermal conductivity and hydrogen bond formation capacity PHB between residue pair – and
–+4. Also the contact distance (shortest interatomic distance between the residue pair) is shown for each pair.

Residue

Number

Residue

Name

Residue

Number

Residue

Name PHB

Interaction

Type ⁄–,–+4

Contacts

Distance (Å)

1 MET 5 GLU 0 hydrophobic 1.99◊10≠4 8.33

2 LEU 6 ASP 0 charged 3.29◊10≠3 3.08

3 SER 7 PHE 0.6 hydrogen

bonds

3.72◊10≠3 2.05

4 ASP 8 LYS 0.37 hydrogen

bonds

4.33◊10≠3 2.19
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Residue

Number

Residue

Name

Residue

Number

Residue

Name PHB

Interaction

Type ⁄–,–+4

Contacts

Distance (Å)

5 GLU 9 ALA 0.21 hydrogen

bonds

1.90◊10≠3 2.32

6 ASP 10 VAL 0.47 hydrogen

bonds

6.16◊10≠3 2.10

7 PHE 11 PHE 0.67 pi stacking 4.91◊10≠3 1.92

8 LYS 12 GLY 0.13 hydrogen

bonds

7.40◊10≠3 2.34

9 ALA 13 MET 0 hydrophobic 4.29◊10≠5 5.07

10 VAL 14 THR 0 hydrophobic 8.14◊10≠7 7.83

11 PHE 15 ARG 0 hydrophobic 4.31◊10≠5 6.08

13 MET 17 ALA 0 hydrophobic 2.42◊10≠3 2.83

14 THR 18 PHE 0.58 hydrogen

bonds

2.10◊10≠3 1.98

15 ARG 19 ALA 0.53 hydrogen

bonds

3.52◊10≠3 2.04

16 SER 20 ASN 0.18 hydrogen

bonds

4.06◊10≠3 2.64

17 ALA 21 LEU 0 hydrophobic 5.66◊10≠4 2.85

18 PHE 22 PRO 0 hydrophobic 1.65◊10≠5 5.70

19 ALA 23 LEU 0 hydrophobic 1.95◊10≠5 6.67

21 LEU 25 LYS 0 charged 2.23◊10≠3 2.56

22 PRO 26 GLN 0.33 hydrogen

bonds

3.27◊10≠3 2.11

23 LEU 27 GLN 0.55 hydrogen

bonds

4.95◊10≠3 1.99

24 TRP 28 ASN 0.48 hydrogen

bonds

3.67◊10≠3 2.03

25 LYS 29 LEU 0.54 hydrogen

bonds

3.89◊10≠3 2.00

26 GLN 30 LYS 0.48 hydrogen

bonds

4.32◊10≠3 2.06

27 GLN 31 LYS 0.59 hydrogen

bonds

4.74◊10≠3 2.00
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Residue

Number

Residue

Name

Residue

Number

Residue

Name PHB

Interaction

Type ⁄–,–+4

Contacts

Distance (Å)

28 ASN 32 GLU 0.61 hydrogen

bonds

4.83◊10≠3 1.96

29 LEU 33 LYS 0.37 hydrogen

bonds

2.70◊10≠3 2.12

30 LYS 34 GLY 0.05 hydrogen

bonds

2.23◊10≠3 2.62

31 LYS 35 LEU 0 hydrophobic 2.02◊10≠4 3.9

32 GLU 36 PHE 0 hydrophobic 3.46◊10≠4 5.72

Figure 4.5: Distribution of average contact distance, the shortest interatomic distance between residue pairs in nonbonded
native contacts. (a) all residue pairs in nonbonded native contacts; (b) residue pairs (–, –+4) in contact with –-helical
hydrogen bonds.

A smaller data set consisting of the inter-residue thermal conductivity and PHB for residue pairs with –-helical

hydrogen bonds was used to fit a linear regression relationship, as shown in Figure 4.4b. The Pearson correlation

coefficient and **p-value are 0.80 (> 0.3) and 0.001 (π 0.05), respectively, indicating a stronger correlation than that for

the all hydrogen bonded residue pairs. The contact distance is supported to be a factor that can affect thermal transport

properties.34 In addition, the histogram of all contact distance and contact distance for residue pairs of –, –+4 are shown

in Figure 4.5. We can see that the contact distance of all residue pairs has a broad range (~ 2 - 8 Å) in Figure 4.5a. It is

worth mentioning that the contact distance exhibits a broad distribution (2 - 4 Å) for the dataset used in Figure 4.4a,

whereas the range of those for the smaller dataset used in Figure 4.4b is limited within 2.1 ± 0.2 Å (Figure 4.5b).
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4.5 Important features of thermal transport through nonbonded contacts

Figure 4.6: (a) Cross plot of ⁄–,— and predicted ⁄–,— of nonbonded contacts (ÈdcÍ < 6) using random forest regression
model; (b) VIP score plot of variable importance of variables. Èd2

c
Í: contact (shortest) distance of residue – and —; PHB:

hydrogen bonds occurrence probability; È”d2

c
Í: the variance in contacts distance; V–— : summation of the volumes of

residue pair in contacts; RT– (RT—): residue type; IT: interaction type.

To get a better understanding of the role of these features in the thermal transport in protein, we applied the random

forest regression model to predict the log⁄–,— values using seven features as predictors. The comparison of calculated

and predicted log⁄–,— together with the feature importances are shown in Figure 4.7 (dataset S) and Figure 4.6 (dataset

L). The model of dataset L resulted in r2-values of 0.95 and 0.89 for training set and testing set, and the corresponding

RMSE were 0.24 and 0.4, respectively. Only the contact distance made the considerable contributions to the log⁄–,—

among all the feature variables. The model of dataset S resulted in r2-values of 0.89 and 0.75 for traning set and

testing set, and the corresponding RMSE were 0.10 and 0.18, respectively. The top three most important features

decreased in the order of 1/Èd2

c
Í >1/È”d2

c
Í > PHB. After decreasing the dataset size, we recognized a slight decrease in

the prediction performance (R2) for the training datasets, whereas a bigger decrease for testing set. The difference in

feature importances between the two datasets indicates that the contact distance plays a dominant role in determining

the value of log⁄–,— for a wide range of contacts. On the other hand, for short-distance contacts (ÈdcÍ < 4 Å), both

the average squared deviation (È”d2

c
Í) and the hydrogen bonding occurrence probability (PHB) become increasingly

important, in consistent with the scaling rule with the harmonic oscillator model for the hydrogen bonding contacts.12

As a test, we used a much smaller dataset (ÈdcÍ < 2.8 Å) for the analysis, leading to a very poor prediction performance

due to the limitation of the data points. For the smaller threshold for the contact distance, the proportion of hydrogen

bonding contacts increase. Consequently, the importance of both È”d2

c
Í and PHB becomes more pronounced. Moreover,

a pairwise correlation analysis of all features and ⁄–,— values was performed and their Pearson correlation coefficients

were shown in Figure 4.8. We found that the correlation coefficient (r) values between 1/Èd2

c
Í, PHB, and 1/È”d2

c
Í were
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Figure 4.7: (a) Cross plot of ⁄–,— between those obtained from the MD simulations and those predicted using random
forest model for nonbonded native contacts (ÈdcÍ < 4) using random forest regression model; (b) VIP score plot of
variable importance. Èd2

c
Í: contact (minimum interactomic) distance between residue – and —; PHB: hydrogen bonds

occurrence probability; È”d2

c
Í: the variance of contact distance; V–— : summation volume of contacts; RT– (RT—):

residue type; IT: interaction type.

all greater than 0.3 and the corresponding **p values are all below 0.01, indicating a statistically significant correlation

between them.

Although this study has examined the significance of feature variables that capture the static and dynamic

properties of proteins in thermal transport through nonbonded contacts, it is important to note that the analysis was

conducted on a limited number of pairs. Therefore, a more comprehensive model is required to ensure its validity and

applicability to a broader range of nonbonded contacts in other proteins.
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Figure 4.8: Correlation map. (a) Pairwise Pearson correlation coefficients, r; (b) p-values.
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Chapter 5

Energy transport and its function in sensory

domain of BjFixL

Bradyrhizobium japonicum lives symbiotically with leguminous plants in root nodules, where they fix nitrogen gas

from the atmosphere into nitrogenous fertilizer for the plants under hypoxic conditions. Its FixL/FixJ two-component

system (TCS) is responsible for sensing diatomic gas molecules (such as O2, CO, and NO) and regulates the expression

of the genes related to nitrogen fixation.138 The FixL protein of Bradyrhizobium japonicum (BjFixL) is comprised of two

distinct domains: a tandem Per-Arnt-Sim (PAS) domain consisting of PAS-A and PAS-B (BjFixLH); and a histidine

kinase (HK) domain controlling autophosphorylation and phosphotransferase. BjFixLH senses the gaseous diatomic

molecules through a heme b cofactor, whose one side of the axial ligand coordinated with the side chain of amino acid

HIS200 of BjFixLH protein and the other axial position coordinated with/without gas diatomic molecules.139–144 When

the heme iron is at its unliganded ferrous/ferric metal state, its conjugated HK domain will be activated and undergo

autophosphorylation and phosphotransferase, while binding of strong-field ligands (O2, CO, NO, cyanide, imidazole,

etc.) will inactivate HK domain and impede the expression of nitrogen fixation.143,145,146

Several hypotheses on the signaling mechanism of the PAS-B domain upon ligand binding have been proposed:

spin-state,147–149 ligand-induced conformational changes,96,141,150–152 redox potential of heme,149 and affinity (pKa).153

For the spin-state hypothesis, it has been reported that all the high-spin forms (BjFixL, met-BjFixL and F–-BjFixL)

are active while all the low-spin forms (O2-BjFixL, NO-BjFixL, CO-BjFixL, imidazole-BjFixL and CN–-BjFixL) are

inactive.147,154 However, the degree of inhibition strongly depends on the type of ligand, i.e. not fully inhibited (CO

and NO) and fully inhibited (oxygen, imidazole and cyano),154 indicating the limitation of the spin-state hypothesis

for the comprehensive explanation of the signaling mechanism. Currently, the ligand-induced conformational changes

mechanism is generally accepted to switch kinase activity on/off by long-range effect of ligand binding.155 Based on the

crystal structural analysis, the averaged positional differences with met-BjFixL in the FG loop are measured as 0.1, 0.9,

1.4, 1.7 Å in NO, CN–, imidazole, and oxygen binding forms of BjFixLs, respectively.156 A distal ARG220 has a special
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selectivity on oxygen with an orientation change breaking its hydrogen bond with heme propionate side chain 7 to form

a new one with oxygen to stabilize the oxygen molecule.157–159 ARG206 has a common positive influence on different

ligands binding during signal transduction through interactions with the heme edge.146,156,160 ARG208, ILE209 and

ILE210 of Rhizobium meliloti (RmFixL) corresponding to residue 214-216 of the FG loop in BjFixL, regulate the activity

of the HK domain through their interactions with O2.161,162 Crystallographic data analysis and mutagenesis experiments

have suggested that the rearrangement of the hydrogen bonding and salt bridges between the heme propionates and the

FG loop upon ligands binding might be responsible for FixL allosteric transition.

Unlike other membrane-embedded histidine kinases,96,141,163 BjFixL is a water-soluble sensor and forms a

homodimer in the cytoplasm.161,164,164,165 The sensory domain of BjFixLs forms inner and outer surfaces after folding,

where the inner surface binds to a heme b cofactor and the outer surface makes contacts with the opposing monomer

and the flanking Ja helix to form a homodimer.166 The dimer interface in FixLH homodimer is continuous and highly

connected, comprising of a’a, Aa, Bb helices, Gb, Hb, Ib sheets and the Ja helix.150 Mutation experiments157–162,167,168

pointed out that multiple residues surrounding the heme core and on the dimer interface may play a key role in the

signal transmission event according to the decrease of activity in the HK domain at different extents. The functional

roles of the dimer interface in other heme proteins have been investigated for signal transduction and modulation,150,169

facilitating the cooperative binding of oxygens in HbI170or controlling the enzymatic activity.171 The importance of

the potential dimer interface was highlighted by studies of the monomeric form of BjFixLHs.29 As pointed out by a

previous study, there are no direct interactions between the PAS-B domain and HK domain in BjFixL but a coiled-coil

linker (Ja helix) connecting them and the reduction of HK domain activity in met-BjFixL by residues mutagenesis of Ja

helix suggested the Ja helix could be a potential signal transmission gate from PAS-B domain to the HK domain.165

However, the precise roles of the dimer interface and the coiled-coil linker region between the PAS-B domain and HK

domain have not been detailed yet, due to the lack of structural information at the atomic level for the BjFixL dimer so

far (Figure 5.1). There remain questions about the role of the dimer interface and coiled-coil linker Ja helix in the signal

transduction mechanism from the heme-bound PAS domain to the HK domain.

The dynamics and changes in quaternary structures also play roles in the signaling mechanism of the PAS sensor

domain150,172 Considering the ubiquitous thermal vibrations and conformational fluctuations in biomolecules under

physiological conditions4,10 ceaseless energy exchange among amino acid residues occurs through interaction between

them. It has been demonstrated the analysis of energy flow across nonbonded native contacts in proteins provides a useful

tool for characterizing the network of residue-residue interactions.28–30,34,58,79,81,170,173–175 To illustrate such transport

property of local energy flow, we quantified a measure of the efficiency of local energy transport, denoted hereafter as

G, in terms of the autocorrelation function of energy flow. The concept of G was introduced as an analogy with the

diffusion constant, D, which is expressed in terms of the velocity autocorrelation function. Importantly, this method

can illustrate both static and dynamic effects on biomolecular functions. In fact, recent studies28–30,34,58,79–81,170,174 have

demonstrated that G serves as a good measure of vibrational energy transfer rate across native contacts. In addition,

we observed a scaling relationship between the rate and the inversed value of the variance in the distance between

hydrogen-bonded contacts, while the rate is found to scale as a power low in the distance between charged groups.34
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Figure 5.1: Crystal structure of met-BjFixLH dimer. The role of the dimer interface and the coiled-coil linker region in
the Ja helix is unclear.

In this study, we analyzed the energy flow in the active form (met-BjFixL) and the inactive form (met-BjFixL-IMD)

based on the equilibrium molecular dynamics (MD) simulations using the X-ray crystallographic structure of the BjFixL

dimer. The pattern of energy flow was illustrated with a network graph based on the local energy flow coefficient, G, for

both forms of BjFixL, and the effect of ligand binding was investigated with special attention to the dimer interface.

Before we analyze the interaction network of native contacts between amino acid residues, we performed the calculations

in three stages: (1) MD simulations to obtain the equilibrium conformational ensemble of each state of dimeric BjFixL

protein, (2) calculations of the time series of the energy flow between native contacts in the protein, and (3) the mobility

of energy flow was quantified for each contact. We used our original computer program, CURP (CURrent calculation

for Proteins, https://curp.jp),57,59,173 for the second and third stages. Finally, our results are discussed in the context of

experimental studies in the literatures.

5.1 Effects of ligand binding and dimerization

Using the CURP program we conducted energy flow analysis of met-FixLH (met-FixLH-imd) model, considering

3485 (4069) residue pairs in native contacts whose nearest interatomic distances are less than 6 Å (Figure 5.2). Overall,

the heatmaps of G, which appear in the lower left (chain A) and upper right (chain B), are similar to each other. To

more quantitatively evaluate the similarity of properties between the monomers, we conducted linear regression analysis

and examined the correlation of G-values between the corresponding residue pairs in chain A and B (Figure 5.3). As a
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Figure 5.2: Heatmap of G of (1) met-FixLH dimer protein and (2) met-FixLH-imd dimer protein. The unit of measure
on the color bar on the right is kcal2/(mol2 fs). Residue numbers and secondary structure names are labeled on the axes.
Secondary structures a-helixes (green) and b-sheets (orange) are distinguished by different colors.
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result, the correlation coefficients are 0.9998 (R2 = 0.997) and 0.9823 (R2 = 0.984) for met-FixLH and met-FixLH-imd,

respectively. This observation indicates that chain A and B of met-FixLH-imd behave slightly more independently

than met-FixLH, in line with the ligand-induced asymmetry found in the other histidine sensor kinase family.176 In

the previous study, we investigated the effect of ligand binding on the residue interactions within a monomeric unit

of PAS-B domain of FixL based on the MD simulation.29 Regarding ligand binding to FixL, it should be noted there

is no cooperativity observed between the monomers.30 The correlation coefficient of G-values between the chain A

of met-FixLH (this study) and the deoxy FixLH29 is 0.984 (R2 = 0.994), which is slightly smaller than that for the

met-FixLH dimer, indicating that the interactions across the dimer interface enhance the synchronization between the

monomers, although the essential feature of the sensory domain is determined by the monomeric structure itself.

Figure 5.3: (a) Linear regression of G between chain A and chain B in met-FixLH dimer. (b) Linear regression of G
between met-FixLH dimer and deoxy-FixLH monomer. G of deoxy-FixLH is from the previous study of our group29.
(c) Relationship of G between chain A and chain B in met-FixLH-imd dimer.

Figure 5.4: Energy exchange network of (a) met-FixLH dimer protein and (b) met-FixLH-imd dimer protein.

The network pattern of G, illustrated in Figure 5.4, shows three important regions where busy traffic of energy

flow occurs: two heme-cores and the dimer interface. This indicates that the heme core efficiently serves as the origin of
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the signal transduction to the downstream functional domain through the dense network of vibrational energy transfer.

Similarly, intensive energy exchange across the dimer interface indicates stable connections between monomers, which

is consistent with its low dimer-monomer dissociation equilibrium constant and the continuousness feature of FixLH150.

Also, the strong interactions on the dimer interface may imply its potential role in signal transduction as a bridge between

the heme core and the HK domain of FixL domain.

5.2 Vibrational energy transfer pathways and residue interaction network

Important regions with busy energy traffic in met-FixLH and met-FixLH-imd are detailed in Figure 5.5 A(1) and

B(1), respectively. The strong interactions are mainly observed on the dimer interface and around the heme core, where

the heme (and heme ligand) is wrapped by the shell of EF loop, Fa, FG loop, Gb, and Hb.

Around the heme core, we found busy traffic of vibrational energy transfer in two regions: residue groups in

direct contact with heme, and those having no direct contact with heme. Region (1), is consisted of MET192 (EF loop),

HIS200(Fa), TYR203(Fa), ARG206(Fa), HIS214(FG loop), ARG220(Gb), VAL-222(Gb), and ILE238(Hb) (Figure 5.5

A(R1)) and ASP196(Fa), ARG199(Fa), HIS200(Fa), TYR203(Fa), ARG206(Fa), ASP212(FG loop), ARG220(Gb),

LEU236(Hb) (Figure 5.5 B(R1)). Residues HIS200, TYR203, and ARG206 of Fa helix are found to have strong

interactions with the heme group in both met-FixLH and met-FixLH-imd forms. The strong interaction between HIS200

and heme is due to the Fe-N coordination bonding. The proximal ARG206 was regarded as an important residue strongly

influencing affinity and regulation through interaction with HIS214 of the FG loop in the BjFixL active state of the

heme propionate 6 in its inactive state.156,158,160,168,177 Few studies investigated the role of TYR203 in the signaling

process, but its potential role was mentioned in the structural analysis because it is as close to the heme as ARG206

is.178 HIS214 in met-FixLH and ASP212 in met-FixLH-imd of FG loop are found to have strong contacts with heme.

HIS214 forms a hydrogen bond with heme-propionate 7,159 together with ARG206 to form a stable triangular interaction

in met-FixLH. ASP212 forms a salt bridge with ARG206,158 together with heme to form another stable triangular

interaction in met-FixLH-imd. A distal ARG220 was found to have strong interaction with heme (and imidazole)

both in met-FixLH and met-FixLH-imd. It has been reported that the guanidinium group of ARG220 of the ferrous

BjFixLH changes its orientation upon oxygen binding due to its strong affinity to oxygen.46,155,159,168,177,179 As a result,

its hydrogen bond with heme propionate 7 is broken and a new hydrogen bond is formed with the oxygen molecule

stabilizing the bound state of the oxygen ligand.

Region (2) of residues having no direct contact with heme is also recognized. TYR207 and GLU240 form

hydrogen bonding in the crystal structure and its strength varies between oxy and deoxy forms of SmFixL.180 A stable

triangle is formed among ARG-208(Fa), HIS162(Bb), and GLU-246(Ib). It is noteworthy that a vibrational energy

transfer pathway in met-FixLH ( Figure 5.5 A) is spanned all the way from Gb (VAL222) to the junction between the

PAS core and the Ja helix via Hb (MET234, HIS235), Ib (VAL253, ARG254), and the highly conserved DxT motif,181

(ASP-LEU-THR). It has been suggested that the hydrophobic residues, ILE215, VAL222, MET234, LEU236, ILE238,

and VAL253 form a signal transduction pathway from heme to the Ja helix. In fact, these hydrophobic residues have
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Figure 5.5: The strong interactions, represented by dash lines, are defined by the residue pairs with G values > Gmet +
2smet = 6.58 × 10–3 [kcal2/(mol2 fs)], where Gmet (= 2.42 × 10–4 ) and smet (= 3.17 × 10–3) [kcal2/(mol2 fs)] are the mean
and the standard deviation of the G-values of all residue pairs, respectively. (A) met-FixL dimer, (B) met-FixLH-imd
dimer. The interactions involved with the heme and the dimer interface are, shown in red and distinguished from the
other interactions, shown in blue. Panels A/B, R1, R2, R3, show important amino acid residues in the regions around the
heme ligand and on the dimer interface; close to the N-terminus; and close to the C-terminus, respectively. It should be
noted that the connections between the imidazole ligand and residue HIS200, ARG206, ARG220 and LEU236 are not
shown in Panel B1.
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been found not only in BjFixL but also in the equivalent sites of the other PAS domains.178,182 In contrast, we cannot

recognize such a pathway for met-FixLH-imd (Figure 5.5 B). Although the structural change between met-FixLH and

met-FixLH-imd is not so large, the vibrational energy transfer pathways are markedly different between them. Only

heme-ARG220 interaction is common between met-FixLH and met-FixLH-imd. The heme-protein interactions are

almost completely localized in the Fa helix and the FG loop.

Figure 5.6: Molecular dynamic simulations of met-BjFixLH without force restraints on N-terminal of A’a helix. (A) The
crystal structure model of MD simulations. (B) The time evolution of distance between carbon atom (CA) of residue
ILE128s.

Strong interactions across the dimer interface are mainly found in two regions: (3) N terminus and (4) C terminus.

Region (3), includes charged residue pairs with ARG139, ARG141, and ARG146, for met-FixLH and met-FixLH-

imd, respectively (Figure 5.5 R2 and R3). It should be noted that this region is close to neither PAS core nor heme. To

save computational time, we imposed harmonic restraints on each Ca atom of ILE128 of chains A and B, and excluded

PAS-A domains in the calculations. Without such restraints, the pair of A’a helices undergo considerable fluctuations

(Figure 5.6). Although the role of the BjFixL PAS-A domain remains unclear,165 a possible role, speculated from the

study of SmFixL,172 may be stabilization of the dimer interface of BjFixL.

In Region (4), located in the coiled-coil linker, we recognize four residue-residue interactions among (2 × 2 =)

4 charged residues, ASP154 and ARG254 of chain A and B (Figure 5.5 A(R3) and B(R3)). On the downstream of

this region, we also recognized a densely connected intra-monomer network of vibrational energy transfer pathways

with ASP255, THR257, GLU258, GLN261, THR262, ARG265 GLN267 and GLU268, in line with the site-directed

mutagenesis on the coiled-coil linker that exhibited marked decrease of the kinase activity of BjFixL.165

5.3 Reorganization of vibrational energy transfer pathways upon ligand

binding

Superposition of the x-ray crystallographic structures of met-FixLH and met-FixLH-imd (Figure 5.7 B) shows a

movement of the FG loop, with an average positional displacement of 1.4 Å,156 together with a slight movement of the

Gb sheet and the reorientation of heme propionate 6 and 7 side chains. We speculate that this structural change induced
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Figure 5.7: Reorganization of the network of vibrational energy transfer pathways. Strengthened (Weakened) paths upon
ligand binding with rDG > (<) 0.5 are indicated by dotted lines in red (blue). The residue name and residue number
(colored in purple and black) represent the residues from chain A and chain B, respectively.

the reorganization of the vibrational energy transfer network between heme and the FG loop or Gb sheet, leading to

the modulation of signal transmission to the downstream of PAS-B domain. To evaluate the effect of ligand binding

quantitatively, we calculated the difference (DG) and the relative difference (rDG) of the G-values for residue pairs in

native contact between met-FixLH (Gmet) and met-FixLH-imd (Gimd), whereDG = Gimd – Gmet and rDG =DG / Gmet.

In Figure 5.7 A, we illustrated the reorganization of the network of vibrational energy transfer pathways, where those

with increased G are shown in red and distinguished from those with decreased G, which are shown in blue. Ligand

binding to the heme weakened (enhanced) the interaction between heme and HIS214 (HIS200, TYR203, ARG206,

and ARG220). The intra-helical interactions within Fa were decreased, while those between the Fa helix and the

nearby secondary structural units, such as ARG208-GLU246, ARG206-ASP212, TYR207-GLU240, ASN189-HIS200,

and ARG197-LYS225, were increased. Across the dimer interface, we recognized that the ligand binding induced

considerable weakening of the monomer-monomer interactions involving charged residues ASP154, GLU135/142,

ARG139/141/146/174 (ARG254) in the N(C)-terminus of the PAS-B domain. In addition, two residue pairs on the

dimer interface, ASP154-ARG254 and THR262-ARG265, exhibit increased G-values by ligand binding, where the

latter of which belongs to the coiled-coil linker. In summary, ligand binding enhanced the interactions between Fa and

heme or the terminal regions of G/H/I b sheets, while it weakened those within the Fa helix, b sheet, and those across the

dimer interface. These observations suggest that the signal transmission from the heme core to the coiled-coil linker may

be mainly blocked at the bridge of G/H/I b-sheets, together with the synergetic reorganization of the compact networks

constructed by multiple highly conserved amino acid residues.

61



CHAPTER 5. ENERGY TRANSPORT AND ITS FUNCTION IN SENSORY DOMAIN OF BJFIXL

62



Chapter 6

Structural and dynamical characterization of

CP12 protein

Unlike folded domains or regions with well-defined three dimensional structures, intrinsically disordered regions

(IDRs) in proteins, exhibit high flexibility under physiological conditions. Thereby, these regions lack stable secondary

structures such as alpha helices or beta sheets. Structural analysis of IDRs within proteins is a long-standing challenge

in structural biology due to their considerable flexibility and spatiotemporal heterogeneity.

In this chapter, we present a novel method for characterizing the conformational ensemble of IDRs and illustrate

how it was applied to the homodimer of the chloroplast protein (CP12) derived from Thalassosira pseudonana. The

computational process is divided into three steps: (1) AlphaFold-Multimer is used to obtain an initial structure guess

based on the amino acid sequence; (2) we use harmonic-restrained MD simulations to obtain model that fit to the

experimental SAXS and EPR/DEER data; and (3) refine the conformational ensemble using restrained-ensemble MD

simulations based on the DEER and SAXS data.

6.1 AlphaFold2 model

The figures in Figure 6.1 display the top five models of CP12 homodimer for the WT, S46C, and S56C mutants.

We recognize elongated forms (WT-1, 3-5) and an over-folded triangular form (WT-2). According to Shao et al.,105

the CP12 dimer assumes an elongated cylindrical shape with kinks, as evidenced by the small angle X-ray scattering

analysis. A representative WT model was chosen from the five candidates, as shown in Figure 6.2: one monomer is

shown in cartoon representation, with each residue colored according to its per-residue confidence score (pLDDT),

while the other is in surface representation. The helical regions were modeled with a high level of confidence, with the

exception of the C-terminal helices and some segments of the second helices. In contrast, the random coils, which are

likely to be disordered regions, were modeled with low level of confidence scores.
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Figure 6.1: Top 5 homodimer models for WT, S46C and S56C mutants are shown with each residue being colored
according to its per-residue confidence score (pLDDT): Blue (high), cyan (high medium), yellow (low medium) and red
(low).
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The presence of both globular folded and potentially disordered regions is consistent with the Kratky analysis

conducted during the SAXS experiment.105 The AF2 model predicted an antiparallel dimer with the characteristic

coiled-coil region made up of residues 46-82, including 45-75 with particularly high pLDDT. It has been indicated

that the area encompassing residues 46-82 has a strong tendency towards coiled-coil organization.105 The secondary

structure elements of the model were estimated using YASARA View.183 The estimated percentages were 79.1% for

helix, 2.5% for turn, 18.4% for random coil, and 0% for b sheet. It should be noted, however, that the measurement

of circular dichroism spectra reported a 10% occurrence of b-sheet.105 The two AWD_VEEL motifs and two cysteine

residues are considered to be highly conserved, and they are marked with sticks and spheres, respectively. The AF2

model does not contain any inter- or intra-molecular disulfide bridges between two cysteine residues, in line with the

experimental results.105

Figure 6.2: AlphaFold2 model of wild-type Thalassosira pseudonana CP12 dimer. One monomer is shown in cartoon
representation using a color scheme based on confidence measure (blue: high, cyan: high medium, yellow: low medium,
red: low), and the other monomer presents a translucent surface format. Two AWD_VEEL motifs and two cysteine
residues (C142 and C150) are shown with sticks and spheres, respectively.

The experimental data (Figure 6.3 A) was compared with the estimated SAXS curve based on the AF2 model.

The agreement of the intensity in the low-q region, ( q < 0.15 Å–1), was satisfactory, however that in the high-q region,

(q > 0.15 Å–1) was unsatisfactory. According to the SAXS measurement105, the AF2 model’s radius of gyration (Rg)

was found to be 35.7 Å, which is smaller than the experimental value of Rg (38.2 ± 0.4 Å). The MTSL-MTSL distance

distribution was analyzed using the AF2 model for various CP12 variants, as shown in Figure 2.8 C of the Amber MD

analysis. The prediction model and the DEER experiment did not show any overlap for the distance distribution of

S39R1 and C150R1 spin pairs, indicating a limited applicability of AF2 to such proteins with IDRs.

6.2 Molecular dynamic simulations

The AF2 model underwent further refinement through restrained molecular dynamics (MD) simulations. Before

we start the harmonic restrained molecular dynamics (MD) simulations, we modified the AF2 model: The two C-termini

of the dimer were pulled apart from its coiled-coil region using PyMOL software (Figure 2.8 B). After the harmonic

restrained molecular dynamics (MD) simulations, we conducted the restrained-ensemble MD (reMD) simulations

65



CHAPTER 6. STRUCTURAL AND DYNAMICAL CHARACTERIZATION OF CP12 PROTEIN

Figure 6.3: (A) Comparison of SAXS curves between AlphaFold2 model and experiment; (B) Comparison of SAXS
curves between initial structure of restrained-ensemble molecular dynamics (reMD) simulation and experimental data;
In both (A) and (B), an insert figure shows the SAXS curve at low q region (0 – 0.1 Å–1) and gives the Rg for both
experiment and predicted model. (C) Initial structure of CP12 with 25 copies of R1 spin labels for the production run of
reMD simulations; (D) Comparison of experimental and calculated distance distribution between the spin labels on 5 the
residue pairs. The SAXS discrepancy between simulated and experimental data, ‰2, for both (A) and (B), are marked in
blue text.
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(Figure 2.8 A). The estimated SAXS curve based on the initial model for the reMD simulations exhibits better alignment

with the experimental curve than the AF2 model (Figure 2.8 B). The model will be hereafter referred to as the reMDini

model. The YASARA View183 was used to determine the estimated percentages of the secondary structure elements

in the reMDini model: The model consisted of 50.6% a-helix, 2.1% b-sheet, 12.0% turn, and 35.3% random coil.

The circular dichroism spectrum measurements indicated that the contents of a-helix and random coil were in good

agreement, with values of 32-50% and 27-48%, respectively. The C-termini of the AF2 model exhibited significant

disorder, while the well-folded long a-helices in the AF2 model underwent partial unfolding to become short a-helices

in the reMDini model. Twenty-five copies of the all-atom R1 spin labels were affixed to residues S39, S46, S56, S83,

and C150 in both monomers of the reMDini model (Figure 6.3 C). Subsequently, five independent reMD simulations

were performed with different random number seeds. The distance distributions of 5 spin label pairs were analyzed

using these reMD trajectories and compared with experimental ESR/DEER data (Figure 6.3 D). It should be noted that

the distance distributions derived from the five distinct trajectories were remarkably similar to each other, indicating that

the sampling of the distance distributions in the reMD simulations was well-converged. Each of the simulated distance

distribution was, then, compared with the corresponding one obtained by the EPS/DEER experiment.

The simulated distributions for the spin pairs, S39R1, S83R1, and C150R1, exhibit significant overlap with the

corresponding experimental distributions, whereas, only partial overlaps are observed for the spin pair, S46R1 and

S56R1. The S56R1 spin pair exhibits a significantly broader distance distribution in the experiment than that obtained in

the simulation. The experimental distance distribution of the S46R1 spin pair shows two peaks that are absent in the

simulated distance distribution. Accordingly, the ESI-MS experiment105, partial dissociation is likely to occur in the

CP12 homodimer, indicating that the coiled-coil region may be much more flexible in an actual solution environment

than in the simulations environment.

Figure 6.4: Probability distribution of radius of gyration (Rg). We used of 20, 000 sampled structures from reMD
simulations.

To conduct a thorough assessment of the reMD sampling, a total of 20,000 structures were obtained as an ensemble

structure pool with 4,000 structures extracted from each reMD trajectory. A GAJOE analysis was conducted to obtain

the distribution of radius of gyration (Rg) for the 20,000 structures. The resulting distribution is shown in Figure 6.4.
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GAJOE is a genetic algorithm-based program in ATSAS package used for selecting a set of models that accurately

represent experimental small-angle X-ray scattering (SAXS) data.184 The Rg distribution exhibits two major peaks at

approximately 38.1 and 38.9 Å. These values are in closer agreement with the experimental data (38.2 ± 0.4 Å) than the

initial model obtained by using AF2 (35.7 Å). We may conclude that MD simulations are effective in the modeling of

proteins with IDRs.

In summary, the simulated SAXS curve and inter-label distance distributions of our CP12 model were in

good agreement with the experimental data, indicating that a combination of deep learning based algorithms like

AlphaFold-Multimer, MD simulations, SAXS, and EPR/DEER experiments would provide a new possibility for

structural characterization of IDRs and their complexes.
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Chapter 7

Conclusions and future Directions

7.1 Conclusions

This dissertation aims to develop a new formalism to study the energy transport, heat transport, and signaling in

protein systems, based on the linear response theory using equilibrium MD simulations.

Proteins are crucial macromolecules in living organisms, performing various essential functions. In Chapter 1, the

history of protein is reviewed, starting from the early discovery and initial understanding of proteins, to the development

of modern scientific techniques that have enabled us to gain deeper insights into the structure and function of proteins.

The structural composition rules of proteins and features were introduced. Then, the current methods, theories, and

techniques used to investigate the energy and heat transfer in proteins was summarized and introduced, along with

important conclusions regarding the energy transfer properties of short peptides and proteins.

In Chapter 2, staring from the Green-Kubo transport theory, the atomic expression of heat current and energy

flow that is applicable to all density and situation materials under equilibrium state was derived. Then, to get a better

understanding of the nature of transport properties in proteins, a linear-homopolymer-like model was introduced to

divide the proteins into small pieces by residues. The local thermal transport properties at residue level was considered

and calculated by the time-integrated ACFs of the partial heat currents. The interactions between two neighboring

residues results in the independent movement and behavior between each other. Cross-correlation correction was

introduced and employed to correct the overestimated contributions from partial heat currents to the total heat current

for the entire protein. Two new concepts, inter-residue thermal conductivity and inter-residue energy conductivity, that

can represent the amount of heat and energy transferred per unit time at steady-state.

In the Chapter 3 and Chapter 4, the thermal transport properties of –-helical proteins, using HP36 as an example,

were investigated based on linear response theory using equilibrium molecular dynamics (MD) simulations. In the

Chapter 3, the calculated thermal conductivity (⁄) of the entire protein was found to be 0.26 ± 0.01 W/(m·K) using the
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AMBER ff19SB protein force field and the rigid TIP3P water model. This value was in close agreement with the thermal

conductivity obtained using the flexible TIP3P water model, suggesting that the choice of water model parameters

does not significantly affect the inherent thermal transport properties of proteins. To explore the local heat transport

properties within the protein’s interior, the protein molecule was divided into 36 amino acid residues. A theoretical

model known as the linear-homopolymer-like model was introduced for analysis. In this model, it was assumed that heat

flow predominantly occurs along the polypeptide backbone and within each individual amino acid residue. Furthermore,

it was assumed that the cross-correlation of partial heat currents between different regions is limited to short-range

interactions. Remarkably, the model successfully reproduced the exact value of the protein’s thermal conductivity, as

derived from the total heat current, with an error of only 1%. Notably, the analysis revealed a distinct dependence of the

residue-wise thermal conductivity on the type of amino acid residue. The thermal conductivity values decreased in the

following order: charged residues, polar residues, and hydrophobic residues. This observation suggests that different

residue types contribute differently to the overall heat transport within the protein.

In the Chapter 4, the thermal conductivity of peptide bonded residue pairs are found to be greater than those of

nonbonded residue pairs. A strong correlation was observed between the thermal conductivity and energy conductivity

of nonbonded residue pairs, despite they are representing different transport properties. Additionally, an empirical linear

equation was derived to establish a relationship between them. In general, the ⁄–,— values of nonbonded contacts in

HP36 exhibited a decreasing trend in the following order: hydrogen bonds > p-stacking > electrostatic > hydrophobic.

The hydrogen bond formation capacity during MD simulations demonstrated a significant role for ⁄–,— values of

hydrogen bonding contacts. In order to elucidate the factors influencing thermal transport ability in nonbonded contacts

within the complex protein environment, a non-linear regression model was constructed for a wide range of contacts.

This model employed random forest regression analysis to investigate the relationship between the thermal conductivity

values (⁄–,—) and various static and dynamic variables.

In the Chapter 5, the effects of imidazole binding and dimerization on an oxygen sensor protein, BjFixLH, were

investigated by theoretical computations with the theory of energy flow and conductivity. Using the energy transport

network model, the residue-residue and protein-protein interactions of dimeric FixL protein are described. A vibrational

energy transfer pathway characterized in the active form of BjFixLH protein, could be a possible signaling pathway.

Upon imidazole bound with heme, the allosteric effect induced from heme core is propagated starting from the FG loop,

through G/H/I a strands bridge and coiled-coil linker region, to the kinase domain. The salt bridge, constructed by four

charged residues (ASP154 and ARG254) and the DxT motif, might be as a gate controlling the signaling from PAS-B

domain to a residue cluster of coiled-coil linker region with a compact local interaction network. A local residue cluster

with compact interaction network is identified to be the signal transmitter connecting the PAS-B domain and HK domain

to stimulus autophosphorylation. The interactions across the dimer interface plays a role in dimerization stabilization

and the ligand binding effect will destabilize the dimer interface giving rise to a more independent behavior than before.

Although the structural change between two states is very small, through the interaction changes in native contacts

between the active form (met-BjFixLH dimer) and (met-FixLH-imd dimer), the significant changes in inter-residue

interactions are characterized by the energy exchange network. The strengthened interactions between heme and Fa
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helix while the weakened interactions between heme-7-propionate-HIS214 and within G/H/I a antiparallel strands upon

imidazole binding, indicates the signal regulation process is responsible by a synergetic effect of rearrangement of

the compact interactions network constructed by multiple reserved residues, rather than by individual residue. The

successful application of the energy exchange network model in the identification of functional residue network and

protein-protein interactions shows the promising value in the area of solving the problem in biomolecules integrating

with static structural information. This also highlighted the importance of dynamic behavior on biomolecular functions

in uncovering the biomolecules functions.

In Chapter 6, we report a new strategy for characterizing the conformational ensemble of IDRs and its application

to the Thalassosira pseudonana chloroplast protein (CP12) homodimer. The method consists of three stages: (1)

Obtaining an initial guess structure based on the amino acid sequence using AlphaFold-Multimer; (2) Harmonic-

restrained MD simulations to meet the experimental SAXS and EPR/DEER data; (3) Refinement of the conformational

ensemble by using restrained-ensemble MD simulations based on the information from DEER and SAXS experiments.

The simulated SAXS curve and inter-label distance distributions of our CP12 model were in good agreement with

the experimental data, indicating that a combination of deep learning based algorithms like AlphaFold-Multimer, MD

simulations, SAXS, and EPR/DEER experiments would provide a new possibility for structural characterization of IDRs

and their complexes.

7.2 Future directions

Inspired by the results in this study, two possible directions are worthy to be investigated further in the future.

1. The secondary structure dependence of thermal transport in proteins.

In proteins, hydrogen bonds participate in stabilizing local structures to form different types of secondary structures.

The hydrogen bonds between the main-chain NH and C’=O groups of residue a and a+4 result in a-helix, while the

hydrogen bonds between the main-chain NH and C’=O groups of different regions of the polypeptide chain result in

b-sheet, either parallel or antiparallel types. It is unknown how the different types of secondary structures will affect the

thermal transport in proteins.

2. The effect of solvent model on the thermal transport properties in protein. In this study, the thermal conductivity

values of HP36 with a typical rigid TIP3P water model exhibited a smaller value (0.26 W/(m·K)) compared

to the value using the same flexible TIP3P water model (0.3 W/(m·K)). It raises the interest of “How will the

change of water solvent flexibility changes vibration frequency at the water-protein interface, accordingly to

influence the thermal transport properties of protein itself”?
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