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1. Introduction 

 The importance of assessing the quality of agricultural products, although it may vary depending 

on perspective, is universally accepted as a fundamental requirement. For producers, quality 

evaluation serves as a crucial tool to affirm the worth and safety of their products, thereby guiding 

pricing strategies. Superior perceived quality can justify higher pricing, subsequently leading to 

enhanced profit margins. For sellers, quality assessment forms an integral part of the product 

selection process. Items distinguished by their high quality ratings tend to attract consumer 

confidence, potentially boosting sales. Further, demonstrating superior value through quality 

assessment is a requisite for gauging market expansion in international territories. For consumers, 

quality ratings provide vital guidelines for making purchasing decisions. With the evolution of 

food culture, the focus of consumers has shifted from "quantity" to "quality". These ratings thus 

become key indicators for individuals seeking food options that are safe, tasty, full-flavored, and 

nutritious. Lastly, quality assessments play a vital role in research by informing researchers and 

developers about areas of potential enhancement in breeding, cultivation, and distribution 

techniques. 

 Quality assessment methodologies are principally bifurcated into two distinct categories: 

sensory evaluation, utilizing human faculties such as sight, hearing, taste, smell, and touch, and 

instrument-based analytical evaluation, which aspires to supersede human sensory perception. 

Notably, these methods are primarily destructive, inducing damage to the samples under 

examination. Quality is not a uniform attribute in agricultural commodities but varies across 

different products and even within individual items. A non-destructive evaluation approach is 

paramount, comprehensively accounting for the distribution of quality within and across personal 

items to ensure a more precise and accurate quality assessment. 

 Near-infrared spectroscopy (NIR) serves as a non-destructive evaluation tool for agricultural 

commodities, operating through the irradiation of near-infrared light (750-2500nm) on a sample 

and analyzing the transmitted and reflected light spectroscopically. The primary NIR absorption 

characteristics of molecular vibrations such as O-H, CH, and NH bonds. However, these 

absorption bands frequently overlap, necessitating the creation of a calibration model via analytical 

methodologies like chemometrics. The NIR spectra can be influenced by the sample's physical 

properties and extraneous disturbances, further compounded by the overlapping absorption peaks. 

Consequently, spectral preprocessing is integral to accurately extracting pertinent information, 



 6 

employing techniques such as smoothing, baseline correction, and differential processing. The 

selection of the appropriate method hinges on the specific objectives and the spectral 

characteristics. The creation of calibration models is paramount to estimating objective variables 

like sugar content and acidity. This is achieved by employing the pretreated spectral data as 

explanatory variables, with the models typically falling under the categories of multiple regression 

models, principal component regression models, or PLS regression models. (Andersson, 2009). In 

this study, PLS regression is the primary analytical tool, utilizing the principal component (PC) 

score to maximize covariance between the spectra and the objective variables. This scoring method 

enhances predictive accuracy. Further, applying PLS in combination with extensive variable 

selection is employed (H.-D. Li et al., 2018). During the calibration model's formation, data is 

segmented into training and testing sets. The optimal number of principal components for the PLS 

is ascertained via cross-validation, which involves additional segmentation of the training data and 

iterative model construction. Subsequently, the model's efficacy is gauged by fitting it to the test 

set. The coefficient of determination (R2), and standard error of prediction (RMSE) serve as 

evaluative metrics for the model. A model with the marginal deviation between training and testing 

set results, a coefficient of determination nearing 1, and minimal standard error of prediction is 

deemed robust. This procedure culminates in the formation of a NIR calibration model. 'Point' Vis-

NIR technology, including NIR spectroscopy of fruit, is an established method for estimating 

harvest time and assessing internal quality attributes (Magwaza et al., 2012; Walsh et al., 2020). 

Nonetheless, in agricultural commodities, intra-sample spatial variability (for instance, within an 

individual fruit) necessitates consideration. Point spectroscopy measurements, while taken at 

various locations on the fruit, represent it entirely, underlining the need for careful intra-sample 

variability consideration.   

  Contrary to NIR's point-specific measurement approach, Near-Infrared Hyperspectral Imaging 

(NIR-HSI) employs a surface-based method that considers spatial distribution. NIR-HSI, a rapidly 

advancing technique, is extensively utilized for nondestructive assessments of fruit and vegetable 

quality (Xiaona et al., 2018). A standard hyperspectral imaging system comprises a broadband 

light source, a hyperspectral camera (encompassing a camera, lens, spectrometer, and area 

detector), a transport stage, a computer, and software. This system is often referred to as a line-

scan type, push-bloom type, among other terminologies. Recently, snapshot-type hyperspectral 

cameras that internally shift filters for spectroscopy have been introduced. Line scanning 
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necessitates measurement concurrent with object movement, thus being compatible with a 

conveyor for real-time inspection. Conversely, the snapshot type does not require object mobility 

but is unsuitable for imaging in motion due to its method of superimposing two-dimensional 

images at variant wavelengths using a filter. Primarily, measurements are conducted in reflection 

mode, favored for its straightforward setup. Data garnered by the NIR-HSI system encompasses 

spectral information for each pixel within a 2D data matrix, subsequently creating a 3D data 

amalgamation of spatial and spectral data, designated as a hypercube. These hypercubes 

incorporate one spectral and two spatial dimensions (Pathmanaban et al., 2019). Preceding 

research in the domain of NIR-HSI application to agricultural products evidences successful 

evaluation of parameters such as solid soluble content (SSC) in apples (Ma et al., 2018; Mo et al., 

2017) and bananas (Pu et al., 2018), SSC and pH in cherries(X. Li et al., 2018), SSC and hardness 

in melons (Sun et al., 2017; Tsuta et al., 2002), and SSC, hardness, and pH in kiwifruit(Zhu et al., 

2017). Notwithstanding the diverse agricultural products and quality parameters assessed using 

NIR-HSI, most evaluations predominantly target fruit cross-sections, attributable to the sensitivity 

of measured hyperspectral data to shape. 

  Strawberries (Fragaria × ananassa), produced globally, come in diverse varieties due to advanced 

breeding techniques in Japan. Some of these varieties even boast white flesh. Evaluations of 

strawberries' value and quality typically hinge on characteristics like color, size, shape, condition, 

and flavor. However, these assessments are often manually conducted, leading to inconsistencies 

due to personal bias (Shrestha et al., 2001). Given the rising concerns regarding food quality and 

safety based on national and international standards, the exploration of automatic technologies to 

assess fresh strawberries' quality has gained momentum (ElMasry et al., 2007). The organoleptic 

quality of strawberries is predominantly influenced by sensory attributes such as sweetness and 

aroma (Darbellay et al., 2002). As strawberries ripen, their sugar content increases, acidity 

decreases, and their aromatic quality enhances (Sturm et al., 2003). While the color red serves as 

an essential evaluation criterion for determining ripeness in red strawberries, it poses a challenge 

for visually assessing the ripeness of white strawberries due to the absence of color variation with 

ripeness (Tsurumi et al., 2020). The advent of various strawberry varieties necessitates an 

automated sorting technology for both red-skinned and white-skinned strawberries. The sugar 

content and sweetness of strawberries can be assessed using sensory evaluation, hydrometers, 

refractometers, high-pressure liquid chromatography (HPLC), electronic tongues, colorimetric 
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methods, among others (Magwaza and Opara, 2015). Non-destructive NIR spectroscopy, a field-

friendly alternative to these destructive methods, has found applications in evaluating strawberries' 

internal quality (Sánchez et al., 2012; Włodarska et al., 2019).  NIR spectroscopy enables rapid 

and simple collection of fruits' spectral information, albeit providing only averaged spectra without 

information about the spatial distribution. Spatial NIR, NIR-HSI, has been utilized to determine 

the external and internal quality of red strawberries, including ripeness, physical damage, fungal 

infections, anthocyanins, vitamin C, SSC, and pH content (ElMasry et al., 2007; Liu et al., 2019, 

2018; Siedliska et al., 2018; Weng et al., 2020b, 2020a; zhang et al., 2016). However, to the best 

of our knowledge, no existing works have employed HSI to predict the quality of white 

strawberries. Earlier studies that employed NIR-HSI gathered spatial-spectral information, 

utilizing the whole fruit as the region of interest (ROI) to extract an average spectrum. This 

spectrum was then used to construct a model for estimating the desired quality parameters. Notably, 

strawberries exhibit an uneven surface with flesh and achenes, and the average spectrum extracted 

from ROIs does not distinguish between these components with differing characteristics. 

Moreover, the reflected light from strawberries measured with the NIR-HSI system presented a 

variable spectrum depending on the shape, an aspect not considered in previous studies. Despite 

NIR-HSI's ability to capture spatial information, previous studies on strawberries have not fully 

utilized the information of each pixel. 

  This paper aims to tackle these issues in strawberry quality evaluation and introduce a novel 

assessment methodology. We have conducted three studies for this purpose:The purpose of this 

paper is to overcome the problems in strawberries and to establish a new quality evaluation method, 

The following three studies were undertaken. 

・Visualization of sugar content distribution in white strawberry flesh by NIR-HIS 

・3D imaging of strawberry sugar content by NIR-HSI and shape measurement 

・3D model of strawberry sugar content by Rotation-NIR-HSI 
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2. Visualization of sugar content distribution of white Strawberry by Near-Infrared hyperspectral 

imaging 

2.1. Introduction 

  Strawberries with white skin (white strawberries) have recently been introduced in the Japanese 

market. The accumulation of Anthocyanins (pelargonidin 3-glucoside, pelar-gonidin 3-rutinoside, 

and cyanidin 3-glucoside), which are the typical red pigments in strawberries (da Silva et al., 2007), 

is suppressed in white strawberries (Tsurumi et al., 2020; Lin et al., 2018; Salvatierra et al., 2013; 

Muñoz et al., 2010).  Since it is difficult to evaluate the ripeness of white strawberries visually, the 

development of non-destructive judgment technology is required. However, to our knowledge, no 

prior works have reported using HSI to predict the quality of white strawberries. In this study, HSI 

in the range of shortwave infrared (SWIR) wavelengths (900–2500 nm) was used because 

molecular vibration information is needed to evaluate white strawberries (Golic et al., 2003). The 

region-of-interest (ROI) used in these studies include pixels corresponding to the flesh (in terms 

of plant morphology, the accessory fruit, which has an enlarged receptacle) and achene (similar to 

seeds on the surface, in plant morphology, this is called a true fruit). Major soluble sugars in 

strawberries, including sucrose, glucose, and fructose, contain in the receptacle. However, these 

sugars do not contain much in the development of achenes(Fait et al., 2008). However, in earlier 

works on the visualization of strawberry quality using HSI(Weng et al., 2020b; Fait et al., 2008), 

the average spectrum calculated from the spectra of all pixels on the fruit surface, including the 

flesh and achene, was employed to construct regression or discriminant models. The spectrum of 

each pixel was used to predict the chemical, physical, or category information of a pixel using the 

developed model. In this present study, first, a method to automatically classify flesh and achene 

based on the first principal component (PC1) score from the principal component analysis of the 

surface data of each fruit was developed. Image masks showing pixels of the flesh and the achene 

were created, the spectra of the whole fruit, flesh, and achene were extracted, and the average 

spectrum of each was calculated. In this study, using the NIR hyperspectral imaging system, a 

combination of image processing and chemometric methods for spectra was designed for non-

contact Brix evaluation in white strawberries. To achieve these goals, (1) a practical and effective 

method that automatically extracts information on pixels showing the flesh of fruit samples by 
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principal component analysis (PCA) imaging and binarization after appropriate pre-processing 

was developed; this method does not require any training data and, therefore, does not must be 

developed to evaluate the quality of white strawberries without destroying the sample forecast the 

degrees Brix of the flesh of fruit using partial least squares regression (PLSR); (3) the developed 

model for estimating the sugar content of strawberry flesh was applied to pixels showing flesh on 

the surface of strawberry fruit, and the estimated sugar content for each pixel was obtained. The 

proposed evaluation method for white strawberries includes a heatmap of the sugar content 

estimated for each pixel and a violin plot indicating the sugar content distribution for the whole 

flesh and displaying the flesh's top and bottom. 

 

2.2. Materials and Methods  

2.2.1. White strawberry samples 

  Strawberry samples of the cultivars “Tochigi iW1 go” with white skin were obtained from the 

Strawberry Research Institute–Tochigi Prefectural Agricultural Experiment Station (Tochigi-Shi, 

Tochigi Pref. 328-0007, Japan) between February and March 2021. The ripeness and shape varied 

among the 180 strawberries. Samples were transported by refrigerated shipping after harvest and 

stored in a standard refrigerator. Before the experiment, the strawberries were kept under 

controlled conditions at 23 °C for approximately 1 h to reduce variations in measurement caused 

by temperature changes. Per estimates, 1–2 d had elapsed between harvest and measurement. No 

serious deterioration in quality was observed visually during the experiment. 

 

2.2.2. NIR Hyperspectral Images and Brix Measurements 

  Figure. 2-1 shows an overview of the NIR hyperspectral imaging measurement (push-broom line 

scanning system: Compovision, Sumitomo Electric Industries, Ltd., Tokyo, Japan) and the Brix 

measurement methods employed in this study. At a spectral interval of 6.2 nm, the camera was 

equipped with a spectroscope and a 2D photosensitive element (256 pixels (wavelength) × 320 

pixels (position)) capable of receiving NIR light from 913 to 2519 nm. A wavelength ranging from 

913 to 2166 nm (i.e., 200 wavelength bands) was selected here in because reflectance over 2166 

nm has a low signal-to-noise (S/N) ratio. To attain a horizontal field of view of 50 mm for the 

strawberry samples, the distance between the target and the camera was adjusted with a spatial 

resolution of 156 μm/pixel. The light source was tube-shaped and illuminated from both sides 
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using four halogen lamps. The irradiation angle was adjusted to 45°. Each sample was placed on 

a slider and scanned linewise. The frame rate was set to 30 frames s–1. Both sides were measured 

by flipping each sample 180°. A soft resin tray was placed between the slider and the sample to 

hold the sample in place. As a reference, a white plate was measured at 200 frames s−1, and dark 

images were measured by turning off the light source and covering the lens with a cap. The 

collected spectral images were converted to relative reflectance values for further analysis using 

Equation (1), as given below. 

𝑅𝑅𝜆𝜆,𝑛𝑛 = �𝑆𝑆𝜆𝜆,𝑛𝑛 − 𝐷𝐷𝜆𝜆,𝑛𝑛� �𝑊𝑊𝜆𝜆,𝑛𝑛 − 𝐷𝐷𝜆𝜆,𝑛𝑛��  (1) 

  where λ   and n represent the wavelength and pixel index variables, respectively; R_(λ,n) 

represents the standardized reflectance intensity at wavelength λ and pixel n; S and W represent 

sample and white reference images, respectively; and D represents dark images. After measuring 

the hyperspectral data, each measurement surface was divided into two areas indicating the apex 

and base of the fruit. The fruit sections were then wrapped in a nonwoven cloth, squeezed by hand, 

and pressed. The juice was stirred well, and the Brix value was measured using a Brix meter (PAL-

1, ATAGO Co., Ltd., Tokyo, Japan). 

 

Figure 2-1. This work used the near-infrared hyperspectral imaging (NIR-HSI) system and Brix. 

 

2.2.3. Preprocessing of Hyperspectral Images 

  The ROI should be predetermined to extract spectral information of strawberries from 

hyperspectral images. This study determined the ROI of the whole fruit, flesh, and achene in 

strawberries. The ROI for each part was determined based on PCA and image processing. 
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2.2.3.1. Creating a fruit mask using thresholding 

  Figure. 2-2 shows the method used to determine the ROI of the fruit. First, the pixels 

corresponding to the background, resin tray, and sepals were determined based on the reflectance 

value at a specific wavelength using thresholding, as shown in Figure 2-2. To determine the 

wavelength and threshold value for the recognition of the background, resin tray, and sepals, 20 

pixels corresponding to the background, resin tray, sepals, and flesh achene, were manually 

selected. The average and standard deviation spectra of these 20 pixels were calculated, as shown 

in Figure 2 (right top). 

 

Figure 2-2. Preprocessing procedure for hyperspectral data with ROI extraction by thresholding 

(Fruit mask). 

 

  As the reflectance values at 1077 nm for sepals, flesh, and achene differed significantly from 

those of the resin tray and background, the reflectance value at 1077 nm was used for the separation 

of the resin tray and background with a threshold value of 1.205, which is the midpoint of the resin 

tray and flesh at 1077 nm. After removing the pixels corresponding to the resin tray and 

background, smoothing with the Savitzky–Golay filter (window size, 7) and standard normal 

variation (SNV) were conducted for the spectra at each pixel. SNV spectral preprocessing was 

performed on each pixel to eliminate the physical light-scattering effects and increase the spectral 

information(Kobori et al., 2013). 
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𝑥𝑥𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥) ��∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)/(𝑛𝑛 − 1)𝑛𝑛
𝑖𝑖=1 �⁄    (1-2) 

 

 

 
  where 𝑥𝑥𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠 denotes the NIR spectrum matrix after SNV pretreatment for the original spectrum 
𝑥𝑥𝑖𝑖 , and 𝑥̅𝑥  represents the mean intensity of all wavelengths of the same spectrum. After SNV 
pretreatment, a significant difference was observed between the sepal part and the flesh or achene 
part at 1940 nm. Thus, the reflectance value after SNV at 1940 nm was used to determine the pixel 
corresponding to the sepal with a threshold value of −1.325, which was chosen as the midpoint 
value of the spectra of the sepal and flesh. Pixels with reflectance greater than 1.205 at 1077 nm 
and greater than −1.325 after pretreatment at 1940 nm were designated as fruit ROI (including 
flesh and achene). 
 

2.2.3.2. Determination of ROI corresponding to the flesh part and achene part using combination 

of PCA and Image processing 

Figure. 2-3 depicts the proposed imaging procedure, which combines PCA and image processing 

to classify pixels corresponding to the flesh parts of strawberries and achenes. This process yielded 

the ROI corresponding to flesh and achene for the top and bottom of the fruit, which allowed us to 

calculate the average spectrum from the flesh and achene parts.  The raw spectra of the fruit surface 

were extracted using an ROI mask of only the fruit surface created by a thresholding process. PCA 

obtained PC1 loading for the spectra after smoothing using a Savitzky–Golay filter and SNV 

treatment. Autoscaling was performed prior to the PCA. PC1 loading was applied to the 

hyperspectral data to produce a PC1 image. ROI masks were determined to classify flesh and 

achene pixels for each sample from the PC1 image binarized using Otsu’s method(Otsu, 1979). 

Moreover, image processing was employed to determine the midpoint coordinates for dividing the 

fruit into the top and bottom of the fruit mask. Finally, six ROI masks (Fruit-bottom, Fruit-top, 

Flesh-bottom, Flesh-top, Achene-bottom, and Achene-top) were constructed from each sample, 

and the average spectrum of each region was computed. 
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Figure 2-3. Preprocessing procedures for hyperspectral data, extraction of ROIs by PCA imaging 
and image processing, average spectra extracted from 6 ROIs (Fruit-bottom, Fruit-top, Flesh-
bottom, Flesh-top, Achene-bottom, and Achene-top). 
 

2.2.4. PLSR modeling 
  The spectra and sugar content dataset for each ROI (Fruit, Flesh, achene) included 720 data 
samples. The training and testing sets had a 1:1 ratio because one side of each sample was chosen. 
360 data points were used for training and 360 for prediction. PLSR was performed to develop a 
calibration model between the averaged NIR spectral data, and the Brix reference values in the 
training dataset. Moreover, the competitive adaptive reweighted sampling (CARS) method was 
employed to select the critical wavelengths (Ma et al., 2018) and improve the robustness of the 
model by reducing the number of variables. In the CARS program (H.-D. Li et al., 2018), the 
regression coefficients of the PLSR model were employed as an index to evaluate the contribution 
of each wavelength in the Brix prediction model. CARS were used to select N subsets of 
wavelengths from N sampling sequentially runs. In each sampling run, the number of wavelengths 
to be selected by CARS was regulated by the proposed exponentially decreasing function and by 
adaptive reweighted sampling. Finally, CARS was used to discover a combination of wavelengths 
with the lowest RMSECV. The model constructed for the training dataset was applied to the testing 
dataset to confirm the model's effectiveness. The number of PLS factors (LVs) was determined 
using the 10-holdout cross-validation (CV) method. The optimal LVs were selected for the 
maximum root-mean-square error (RMSE) for cross-validation (RMSECV) within the global 
minimum + 1 standard deviation range. The upper limit of LVs was set at 20. The quality of the 
PLSR model was assessed using the determination coefficient (𝑅𝑅2) and RMSE for calibration 
(𝑅𝑅2𝑐𝑐 and RMSEC) and prediction (𝑅𝑅2𝑝𝑝 and RMSEP). A good model possesses a low RMSEC, 
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RMSEP, and high determination coefficient (𝑅𝑅2𝑐𝑐 ,𝑅𝑅2𝑝𝑝) such that calibration and confirmation 
results do not diverge. The criteria are defined as follows. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �(1 𝑛𝑛⁄ )� (𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2
𝑛𝑛

𝑖𝑖=1
 (3) 

𝑅𝑅2𝑐𝑐,𝑅𝑅2𝑝𝑝 = 1 − ��� (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
𝑛𝑛

𝑖𝑖=1
� �� (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2

𝑛𝑛

𝑖𝑖=1
�� � (4) 

 

 

2.2.5. Visualization of the sugar content distribution 

  The pixels corresponding to the flesh ROI in the hyperspectral images of the test data were used 

for sugar content visualization by applying the PLSR model constructed to estimate the Brix values. 

The spectra in the ROI were preprocessed by autoscaling before fitting the model, following the 

same procedure as that used for constructing the model. The sugar content distribution was 

displayed on a heat map after smoothing the image using a Gaussian filter to eliminate noise. 

Moreover, in the violin plot, the distribution of sugar content in the entire strawberry flesh section, 

bottom of the flesh, and top of the flesh could be determined from the data distribution based on 

kernel density estimation. In addition, the mean, median, and interquartile range played a role in 

assisting in the interpretation of this sugar distribution. Figure. 2-4 depicts the procedure to 

visualize the sugar content distribution. 

 
 

  Figure 2-4. Procedure for visualization of sugar content distribution. Violin plot (colored areas: 

data distribution from kernel density estimation; red dots: median; black thick vertical line: 

interquartile range; horizontal colored lines: mean). 
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2.3. Results and Discussion 

2.3.1. Preprocessing of hyperspectral data 

  Figure. 2-5 depicts PC1 loading for each sample. The PC1 loading of each sample exhibited a 

similar shape. In Otsu’s binarization method, the threshold value that maximizes the variance 

between the two classes is determined and classified into two groups. This pretreatment with PC1 

loading generally distinguished the flesh and achene from the fruit into two groups. This 

preprocessing method is considered practical because it is an automatic discrimination method that 

does not require a training data set and can be performed on each strawberry surface. Some samples 

included pixels where the reflectance was saturated owing to the Fresnel reflection of irradiated 

light on the unevenness of the strawberry surface. These pixels were eliminated and not used for 

further calculations. The mean values of the pixels assigned to the fruit, flesh, and achene parts 

were 29,038, 25,454, and 2367, respectively, as shown in Figure 2-6. The average ratio of the 

pixels corresponding to achenes in fruits was 8.7%. In addition, the distribution of the number of 

pixels was wide owing to variations in size and shape. 

  Figure 2-7 shows the average spectra of (a) fruit, (b) flesh, and (c) and achene; and their 

corresponding second derivative spectra ((d), (e), (f), respectively). The average spectrum had 

absorption peaks at 970, 1165, 1420, 1780, and 1900 nm. The peaks at 970, 1420, and 1900 nm 

corresponded to O–H-related water content, those at 1165 and 1780 nm corresponded to C–H and 

those at 1165 and 1780 nm corresponded to C–H-related sugar(Golic et al., 2003). These 

absorption bands have also been observed in red strawberries (Liu et al., 2019). The average 

spectra from the flesh part exhibited different characteristics from the achene part, i.e., the 

reflection at 1420 nm due to water because the water content value significantly differed between 

flesh and achene. The fruit and flesh spectra exhibited almost identical peak intensities because 

pixels of achene had a low ratio to those of the fruit, at 8.7%. Flesh and achene exhibited 

differences in absorption peak intensity in the second derivative spectra, particularly at 1165 nm 

owing to CH and 970 and 1900 nm owing to OH. Furthermore, a specific absorption peak was 

observed only from achene at approximately 1710 nm, which corresponds to C–H2 (Golic et al., 

2003). 
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Figure 2-5. PC1 loadings of all samples obtained by principal component analysis from the pixels 

of the hyperspectral data measurement plane. 

 
 

 

Figure 2-6. Number of pixels for ROI of fruit, flesh, and achene in strawberry, with ROIs defined 

by image masks created by preprocessing hyperspectral data. 
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Figure 2-7. Average reflectance spectra (the spectral range is the mean ± standard deviation) of 

(a) fruit, (b) flesh, and (c) achene. Second derivative average reflectance spectra (Spectral range is 

mean ± standard deviation) of (d) fruit, (e) flesh, and (f) achene in strawberries. 

 

 

2.3.2. PLSR Model 

  Figure. 2-8 shows the distribution of Brix reference values for strawberries in the training and 

testing datasets from the bottom and top parts of the strawberries. The training dataset contained a 

more comprehensive range of values than the testing dataset. The Brix value at the top of the fruit 

was higher than that at the bottom. This result indicates that white strawberries accumulate more 

sugar at the top of the fruit than red strawberries (Ikegaya et al., 2019). 
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Figure 8. Sugar content (Brix%) references measured from blocks cut from the top and bottom of 

the fruit using a Brix meter (training dataset vs. testing dataset). 

 
  Table 2-1 summarizes the CARS-PLSR model evaluated using numerous conditions (such as 
spectral pretreatment and ROI used). Evidently, the model constructed from the spectra extracted 
from the achene ROI yielded a low value of 𝑅𝑅2𝑝𝑝. We considered that the relationship between the 
information on achene and the information on fruit sugar accumulation was not good. Based on 
𝑅𝑅2𝑝𝑝, the model constructed from spectra extracted from the fruit or flesh ROI exhibited a higher 
prediction accuracy. 
 
 
 
Table 2-1. Results of CARS-PLSR model search. The table is sorted in ascending 𝑅𝑅2𝑝𝑝 

Pretreat Method ROI Variable LVs RMSECV RMSEC  RMSEP R2
C R2

P 
SNV + 2nd derivative Achene 49 4 1.095 1.029 1.043 0.494 0.477 
2nd derivative Achene 75 5 1.068 0.997 1.038 0.525 0.482 
Raw Achene 100 11 0.906 0.825 0.904 0.674 0.607 
SNV Achene 31 9 0.776 0.727 0.799 0.747 0.693 
2nd derivative Flesh 145 4 0.739 0.703 0.742 0.764 0.735 
2nd derivative Fruit 157 4 0.731 0.694 0.728 0.770 0.745 
SNV Flesh 37 8 0.572 0.537 0.714 0.862 0.755 
SNV + 2nd derivative Fruit 88 4 0.680 0.649 0.692 0.799 0.769 
SNV + 2nd derivative Flesh 34 5 0.691 0.645 0.683 0.801 0.775 
SNV Fruit 60 9 0.630 0.579 0.632 0.839 0.808 
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Raw Fruit 26 9 0.600 0.566 0.633 0.847 0.808 
Raw Flesh 35 8 0.558 0.530 0.576 0.866 0.841 

  The model constructed from the raw spectra extracted from the flesh ROI had the highest 
prediction accuracy, with RMSEP and 𝑅𝑅2𝑝𝑝 values of 0.576 and 0.841, respectively. The accuracy 
of the models was not much different compared with the fruit and flesh ROIs. Because the ratio of 
achene pixels was low (8.7%), it had less effect on the model constructed based on the averaged 
spectrum. Figure. 2-9 shows the wavelength selected by CARS and the relation between the 
measured and predicted Brix values. Raw spectra extracted from the flesh ROI were employed for 
the model. Figure. 2-9a depicts the 35 wavelengths (black points) selected using the CARS method. 
These selected wavelengths are associated with C-H (approximately 1420 and 1780 nm) and O-H 
(approximately 1900 nm). Figure. 2-9b depicts the relationship between the measured and 
predicted Brix values obtained by PLSR calibration for the training (blue) and testing dataset (red). 
Eight PLS factors (LVs) were selected as the optimum number for the PLSR calibration model 
using 35 critical wavelengths. The PLSR calibration model had substantial prediction accuracy; 
its 𝑅𝑅2𝑐𝑐 and RMSEC were 0.866 and 0.530, 𝑅𝑅2𝑝𝑝, and RMSEP were 0.841 and 0.576, respectively. 
Because the difference in accuracy between the calibration and prediction datasets was small, the 
PLSR model did not overfit the data. The prediction accuracy 𝑅𝑅2𝑝𝑝 , and RMSEP of a model 
proposed in a prior study (Liu et al., 2019), which visualized the total water-soluble sugar (TWSS) 
in strawberries with red skin using NIR-HSI (1000–2500 nm), were 0.774 and 6.459 mg∙g−1, 
respectively. Note that TWSS is the total amount of sugar measured using HPLC and strongly 
correlates with the Brix value. The PLSR model used in this study exhibited a higher prediction 
accuracy than prior NIR-HSI investigations. Moreover, the prediction results were equally high 
compared with the sugar content prediction results of FT-NIR spectrometry (𝑅𝑅2𝑝𝑝 and RMSEP 
were 0.85 and 0.58, respectively) (Amodio et al., 2017). 

 
Figure 2-9. (a) A total of 35 key wavelengths (black points) are selected by the CARS method. 
(b) PLSR calibration results with training data set and prediction with testing dataset using the 
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selected 35 key wavelengths and 8 LVs; the R2c, and RMSEC are 0.866 and 0.530, whereas R2p 
and RMSEP are 0.841 and 0.576, respectively. 

2.3.3. Visualization of the Sugar Content Distribution 
   Figure. 2-10 depicts heatmap images of Brix prediction for each flesh ROI using the developed 
PLSR model and violin plots denoting the distribution of pixel Brix values for the whole fruit, 
bottom, and top. In order to display representative samples, samples were selected from the lowest 
to the highest sugar content and arranged in alphabetical order. The color scale indicates the 
predicted Brix values of the strawberries. Using the flesh ROI mask, our heatmap and violin plot 
remove approximately 8.7% (ratio of achene pixels) of unnecessary pixel information for the flesh 
of fruit surface evaluation. The differences between the Brix values for each strawberry were 
successfully visualized. In an earlier study (Weng et al., 2020b; Liu et al., 2019), the characteristics 
of the flesh parts could not be observed owing to the color of the achene. By contrast, local flesh 
parts' sugar content variations were observed in our heatmap images. 
  Furthermore, violin plots showed the sugar content distribution of the flesh in the whole fruit, 
bottom, and top. The heatmap images have the benefit of assessing Brix size and distribution. 
Simultaneously, violin plots helped to statistically determine the differences in Brix between 
samples and sample parts. Visualizing spatial distribution and violin plots is an excellent way to 
evaluate strawberries that can be offered to consumers or used as a selection criterion. Because the 
wavelength (913–2166 nm) of NIR-HSI used in the proposed method does not depend on pigment 
information, such as anthocyanin, this evaluation method can also be applied to red strawberries. 
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Figure 2-10. Prediction images and violin plots of Brix values using the PLSR model for white 
strawberries. Violin plots represent the distribution of pixel Brix values for each ROI (whole flesh, 
bottom flesh, and top flesh). In order to display representative samples, samples were selected 
from the lowest to the highest sugar content and arranged in (a-h) order. 
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2.4. Conclusion 
  This study proposed a new method to evaluate white strawberries' sugar content using NIR-HSI. 
The PCA imaging as preprocessing method combining PCA and image processing was developed 
to separate flesh and achene on the fruit surface automatically. The PLSR model constructed from 
the raw spectra extracted from the flesh ROI exhibited good prediction accuracy with RMSEP and 
𝑅𝑅2𝑝𝑝 of 0.576 and 0.841, respectively, and included a relatively low number of PLS factors. This 
model demonstrated good prediction performance. The characteristics of the sugar content 
distribution in the flesh of white strawberries were depicted using the produced Brix heatmap 
images and violin plots. 
  These findings suggest that NIR-HSI can be used for noncontact evaluation of the quality of white 
strawberries. The key advantage of NIR-HSI is its ability to assess fruit without damaging it. 
Suppose the HSI data of strawberries growing in the field can be measured over time. In that case, 
novel criteria for judging ripeness from visualization of variations in the distribution of Brix values 
can be developed. Although we focused on Brix as a measure of sugar content in this research, the 
same approach can be extended to other quality indicators, such as acidity, hardness, and damage, 
by increasing the number of objective variables. 
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3. 3D sugar content imaging of strawberries by Near-infrared hyperspectral imaging and laser 

displacement measurement 

 

3.1. Introduction 

  The sugar content distribution within a fruit is known to be uneven. Presently, market 

measurements of sugar content in fruits like apples and mandarin oranges utilize near-infrared 

spectroscopy, which offers non-destructive molecular vibration information. However, this 

technique only provides an average sugar content per fruit, without evaluating spatial distribution. 

  Recently, extensive research has been conducted on NIR-HSI (near-infrared hyperspectral 

imaging) for evaluating the quality of agricultural products and mapping chemical components. 

NIR-HSI captures near-infrared spectra as images, with each pixel representing a spectrum. Thus, 

it facilitates the visualization of sugar content distribution by estimating the sugar content from 

each pixel's near-infrared spectrum. Earlier studies using NIR-HSI often used flat samples. For 

instance, they measured the cross-section of an apple sliced at the equatorial plane. The difficulty 

arises from the Fresnel reflection of irradiated light in the sample's uneven areas, which alters 

reflectance, complicating the evaluation of the reflectance spectrum. Furthermore, variations in 

detector distance based on the sample area hinder uniform reflectance evaluation. This poses a 

challenge for the application of NIR-HSI in assessing the sugar content of fruits, given their 

circular shape and uneven surfaces. The limitation of NIR-HSI, with its propensity for flat sample 

measurements, was mitigated by integrating it with 3D shape measurement. First, a high-precision 

laser displacement meter simultaneously measures the 3D shape data of the fruits to derive NIR-

HSI data. The spectral data stored in each pixel is then corrected using this 3D shape data as 

variables, considering fruit curvature and camera distance. This ensures a stable visualization of 

the fruit's quality across its surface. The present research centers on strawberry fruit. It non-

destructively and precisely models the sugar content distribution on the fruit's surface in 3D, using 

shape information to correct the spectrum of each pixel in the near-infrared hyperspectral data. 

The findings will permit non-destructive quality evaluation of individual strawberries and their 

constituent parts. 
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3.2. Materials and Methods 

3.2.1. Hyperspectral data and shape data measurement and Brix measurements 

  In this study, 193 strawberries of the “Tochigi i37” variety from Tochigi Prefecture, Japan, were 

procured. These samples were transported under refrigeration and stored at a temperature of 5°C 

until one hour prior to the experiment. Subsequently, they were maintained at a constant 

temperature of 23°C in a laboratory setting. Notably, some strawberries incurred minor damage 

during transport. Each sample was bifurcated, selecting the unblemished side for subsequent 

measurements. The measurement apparatus incorporated a Near-Infrared Hyperspectral Imaging 

(NIR-HSI) system (push-broom line scanning system: Compovision, Sumitomo Electric Industries, 

Ltd., Tokyo, Japan), a light source, a laser displacement meter (LJ-X8200, KEYENCE, Ltd., 

Osaka, Japen), and a sliding table (Figure. 3-1). he NIR-HSI system featured a spectroscope and a 

2D photosensitive element capable of intercepting Near-Infrared (NIR) light between 913 and 

2519 nm at intervals of 6.2 nm. The tubular light source, equipped with four halogen lamps, 

afforded illumination from both directions. The irradiation angle was calibrated at 45°. The laser 

displacement meter uses a 405nm laser with a profile data count of 3200 points and a Z-axis 

repeatability of 1μm. The NIR-HSI frame rates were set to 150 frames s−1, 320 frames s−1, and 

320 frames s−1 for sample, dark, and white, respectively. Samples were placed on precisely cut 

aluminum blocks (Width:60mm, Length:70mm) or line-scan measurements, the samples were 

positioned on accurately machined aluminum blocks. This procedure facilitated alignment of the 

hyperspectral data procured from the NIR-HSI with the shape data acquired via the laser 

displacement meter. A black sheet adhered to the surface of the aluminum block to optimize image 

processing. The laser and hypers field of view was calibrated to reflect the reference rectangular 

block. The laser displacement meter operated at a measurement velocity of 2.5 mm/sec. To 

preclude light interference, dark data measurements were conducted with the lens cap sealed. The 

reference board was stationed at a height of 10 mm from the block for measurement. 
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Figure 3-1. Strawberry line scan measurement system using NIR-HSI system and laser 

displacement meter 

 

 

3.2.2. Pre-processing of hyperspectral data and shape data 
  Figure.3-2 shows the method of shape correction (height correction and angle correction) of 
Hyperspectral data using shape data. The data was first cut out based on the measurement block 
to match the coordinates of the measured hyperspectral data and shape data. In addition, the 
shape data was resized based on the data size of the hyperspectral data. 
 The correction of Hyperspectral data was that the shape correction was considered separately for 
distance and angle. For height, the correction was based on the law of light decay, and for angle, 
a correction formula based on the Lambert Cosine law was used. The patterns are height, angle, 
and height and angle. Shape uncorrected reflectance (𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) was calculated from sample, 
white, and dark data according to Equation (3-1). The height-corrected reflectance 
(𝑅𝑅ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) was calculated by Equation (3-3) using the height-corrected sample intensity 
(𝐼𝐼ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) calculated by Equation (3-2). Equation (3-2) was formulated regarding the 
inverse-square law of light decay. The distance from the light source to the reference board 
(𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡) was 100 mm, and from the reference board to the hyperspectral camera (𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) was 
200 mm, applying actual measurements. Angle-corrected sample intensity (𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) was 
calculated using equation (3-4) for angle correction by Lambert's cosine law. The intensity of the 
sample with the combination of height and angle correction (𝐼𝐼ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡&𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) was 
calculated by Equation (3-6), and the reflectance (𝑅𝑅ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡&𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) after height and angle 
correction was calculated by Equation (3-7).  
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𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

   (3-1) 

 

𝐼𝐼ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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   (3-2) 

 

 

𝑅𝑅ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

   (3-3) 

 

 

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

   (3-4) 

 

 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

   (3-5) 

 

𝐼𝐼ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡&𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃

   (3-6) 

 

𝑅𝑅ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡&𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡&𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
   (3-7) 
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Figure 3-2. Overview of height and angle correction using NIR-HSI geometry data 

 

3.2.3. PLSR modeling 

  PLSR constructed a sugar content model for the spectral and sugar content data. The data set was 

split 7:3 into training and test sets for model building and evaluation. The model construction 

optimized the number of PLS factors by 5-hold-out cross-validation for the training set. The 

optimal LVs were selected for the maximum root-mean-square error (RMSE) for cross-validation 

(RMSECV) within the global minimum + 1 standard deviation range. The quality of the PLSR 

modl was assessed using the determination coefficient ( 𝑅𝑅2 ) and RMSE for calibration 

(𝑅𝑅2𝑐𝑐 and RMSEC) and prediction (𝑅𝑅2𝑝𝑝 and RMSEP). A good model possesses a low RMSEC, 

RMSEP, and high determination coefficient (𝑅𝑅2𝑐𝑐 ,𝑅𝑅2𝑝𝑝) such that calibration and confirmation 

results do not diverge. 

 

3.2.4. 3D sugar content imaging 

  A 3D image was created by combining the sugar content image and shape data. To evaluate the 

results, we decided to use the newly created Map Score as an index (3-8); the Map Score is a 

multiplication of three evaluation parameters. The coefficient of determination of the sugar level 

estimation model, the average value of the sugar level calculated from the actual squeezed sugar 

level and the corresponding captured image, and the percentage of pixels that fall within the sugar 

level range in the training data when constructing the PLS model. Since the closer the values of all 

three parameters are to 1, the better the parameter, we conclude that the higher the Mapscore, the 

better. 
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Mapscore = R2
p ×  ρ(y, y�) ×  μρ_px_model ×  100    (3-8) 

𝑹𝑹𝟐𝟐𝒑𝒑:Coefficient of determination for model creation (test set), 𝝆𝝆(𝒚𝒚,𝒚𝒚�):correlation 

coefficient（Actual values at the top and bottom of strawberry fruit as measured by a sugar 

meter Actual values at the top and bottom of strawberry fruit as measured by a sugar meter 
VS Average sugar content of ROIs (at the top and bottom of the flesh ) calculated from the 

mapping results of the fruit flesh.）,𝝁𝝁𝝆𝝆_𝒑𝒑𝒑𝒑_𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎:Pixel Ratio（Number of pixels that fell 

within the range of guaranteed prediction accuracy when creating the model for the 
training set (minimum to maximum sugar values for the training set) vs. number of pixels 
in the fruit flesh ROI). 
  As an output evaluation in NIR-HSI, we propose the strawberry deviation value as Tscore (3-
9), since it can only be judged visually in imaging images. Deviation is an index 
used in school testing and quality control in the manufacturing industry, where the 
average is 50 and one can intuitively judge how far away from it one is. The mean 
and standard deviation here are calculated from the training set of model creation, 
and if the training set has sufficient sampling, it can be used as a basis for value 
judgment. 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛_𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

×10+50     (3-9) 

3.3. Results and Discussion 

3.3.1. Effect of shape correction on the average spectrum 

  Figure 3-3. show the spectral images of one sample strawberry in the row direction with no 

correction, height correction, angle correction, height & angle correction, and in the column 

direction at the major absorption wavelengths. The correction has changed the characteristics of 

the spectral images. The figure shows the average spectra of all samples before and after correction. 

The average spectrum shows that the height correction is weaker, the angle correction is stronger 

than without correction, and the height and angle corrections are slightly stronger. This also shows 

the possibility of spectral correction for shape data, whereas up to now we have only corrected for 

shape in the spectral preprocessing. 
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Figure 3-3. Spectral images in the main bands of strawberry showing the effect of shape 

correction 

  The average spectra before and after shape correction for all samples are shown in Figure. 3-4. 

The average spectra were calculated using flesh ROIs created by PCA imaging. The height 

correction tended to decrease the overall reflectance of the spectrum, while the angle correction 

tended to increase the overall reflectance. The combination of height and angle correction tended 

to slightly increase reflectance compared to no shape correction. 
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Figure 3-4. The average spectrum of measured strawberry samples. Calculated from the flesh 

ROI before and after shape correction. 

 

3.3.2. PLSR model 

  The table summarizes the results of the PLS model search. Comparing the coefficients of 

determination for the test set, the model with smoothing after height correction showed the best 

prediction accuracy with a coefficient of determination of 0.813 and PMSEP of 0.687 for the test 

set. 

Table 3-1. Results of PLSR model search 
Shape correction Spectral processing LV RMSECV RMSEC RMSEP R2CV R2C R2P 
Non-correct - 6 0.710 0.691 0.738 0.795 0.807 0.785 
Non-correct Smoothing 6 0.680 0.661 0.736 0.812 0.823 0.786 
Non-correct 1st derivative 4 0.682 0.658 0.793 0.812 0.824 0.751 
Non-correct 2nd derivative 4 0.644 0.614 0.699 0.832 0.847 0.806 
Non-correct SNV 6 0.674 0.645 0.778 0.816 0.831 0.761 
Non-correct SNV-Smoothing 5 0.705 0.676 0.820 0.799 0.814 0.734 
Non-correct SNV-1st derivative 3 0.705 0.684 0.827 0.799 0.810 0.729 
Non-correct SNV-2nd derivative 3 0.654 0.626 0.734 0.826 0.841 0.787 
Height - 7 0.694 0.652 0.741 0.805 0.828 0.783 
Height Smoothing 7 0.667 0.631 0.727 0.820 0.839 0.791 
Height 1st derivative 3 0.723 0.700 0.792 0.788 0.801 0.751 
Height 2nd derivative 3 0.754 0.742 0.755 0.770 0.777 0.775 
Height SNV 6 0.649 0.623 0.739 0.829 0.843 0.784 
Height SNV-Smoothing 6 0.689 0.658 0.791 0.808 0.824 0.752 
Height SNV-1st derivative 4 0.706 0.627 0.726 0.798 0.841 0.791 
Height SNV-2nd derivative 3 0.666 0.636 0.732 0.820 0.836 0.788 
Angle - 6 0.705 0.683 0.715 0.798 0.811 0.798 
Angle Smoothing 6 0.679 0.657 0.707 0.813 0.825 0.802 
Angle 1st derivative 4 0.674 0.649 0.764 0.816 0.829 0.769 
Angle 2nd derivative 3 0.784 0.763 0.770 0.751 0.764 0.765 
Angle SNV 6 0.653 0.626 0.751 0.827 0.841 0.776 
Angle SNV-Smoothing 5 0.714 0.685 0.823 0.793 0.810 0.732 
Angle SNV-1st derivative 3 0.719 0.694 0.836 0.791 0.804 0.723 
Angle SNV-2nd derivative 2 0.758 0.744 0.773 0.767 0.775 0.764 
Height+Angle - 7 0.670 0.635 0.720 0.818 0.837 0.795 
Height+Angle Smoothing 7 0.630 0.600 0.687 0.839 0.854 0.813 
Height+Angle 1st derivative 3 0.719 0.696 0.768 0.790 0.803 0.767 
Height+Angle 2nd derivative 3 0.738 0.679 0.710 0.779 0.813 0.801 
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Height+Angle SNV 6 0.632 0.598 0.711 0.838 0.855 0.800 
Height+Angle SNV-Smoothing 6 0.682 0.655 0.787 0.811 0.826 0.755 
Height+Angle SNV-1st derivative 3 0.728 0.703 0.847 0.785 0.800 0.716 
Height+Angle SNV-2nd derivative 3 0.670 0.639 0.738 0.818 0.834 0.784 

 

 

 

3.3.3. 3D sugar content imaging 

  The figure shows the mapping under the conditions used in the model search. Sample A is the 

mapping result of the sample with high sugar content and sample B is the mapping result of the 

sample with low sugar content. The spectral processing changes the appearance of the mapping. 
In particular, the second derivative process clearly makes the image noisier. Since the PLSR model 

is constructed from the average spectrum, the PLS model indicators cannot evaluate the image 

sharpness and noise level. unnecessary spectral preprocessing should be avoided because it 

amplifies the noise.  
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Figure 3-5. Sugar content mapping results by PLSR model per shape correction and spectral 

pretreatment. Sample A has high sugar content and sample B has low sugar content. 

 

3.3.4. Evaluation of PLS mapping image 

  The table. 3-2 shows the map scores for each spectral condition (shape correction, spectral 

preprocessing) at the time of model creation. The figure. 3-6 also shows the imaging results for 

Sample A and Sample B for the condition with the largest map score (Height corrected and 

smoothing spectral preprocess), the condition with the largest coefficient of determination R2p 

(Height and angle corrected and smoothing spectral preprocessed), and the condition with the 

lowest map score (No shape correction and 2nd derivative spectral preprocessing). 
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Table 3-2. Results of Mapscore .  

 
Shape 
correct Spectral processing R2P 𝜌𝜌 𝜇𝜇𝜌𝜌_𝑝𝑝𝑝𝑝_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Mapscore 

Height Smoothing 0.791 0.92 0.73 52.52 
Height - 0.783 0.91 0.74 52.38 
Height + Angle SNV 0.800 0.92 0.71 52.33 
Height SNV 0.784 0.91 0.73 51.97 
Height + Angle SNV-Smoothing 0.755 0.90 0.75 50.82 
Height SNV-Smoothing 0.752 0.89 0.75 50.56 
Angle SNV 0.776 0.91 0.72 50.40 
Non-correct SNV 0.761 0.89 0.74 50.15 
Non-correct - 0.785 0.89 0.72 49.69 
Non-correct SNV-Smoothing 0.734 0.88 0.76 49.14 
Height + Angle - 0.795 0.89 0.69 49.10 
Angle SNV-Smoothing 0.732 0.88 0.76 48.78 
Non-correct Smoothing 0.786 0.89 0.69 48.51 
Height Angle 1st derivative 0.767 0.90 0.70 48.32 
Angle - 0.798 0.88 0.68 48.15 
Height + Angle Smoothing 0.813 0.89 0.66 48.05 
Height SNV-1st derivative 0.791 0.90 0.67 47.59 
Height 1st derivative 0.751 0.89 0.71 47.44 
Height + Angle SNV-1st derivative 0.716 0.88 0.72 45.25 
Non-correct SNV-1st derivative 0.729 0.88 0.70 44.69 
Angle SNV-1st derivative 0.723 0.88 0.70 44.43 
Angle Smoothing 0.802 0.86 0.63 43.68 
Angle 1st derivative 0.769 0.90 0.60 41.21 
Non-correct 1st derivative 0.751 0.89 0.61 40.91 
Height+Angle SNV-2nd derivative 0.784 0.90 0.56 39.57 
Height SNV-2nd derivative 0.788 0.89 0.55 38.93 
Non-correct SNV-2nd derivative 0.787 0.88 0.54 37.33 
Height+Angle 2nd derivative 0.801 0.91 0.50 36.31 
Angle SNV-2nd derivative 0.764 0.88 0.54 36.04 
Angle 2nd derivative 0.765 0.87 0.47 31.19 
Height 2nd derivative 0.775 0.89 0.45 31.17 
Non-correct 2nd derivative 0.806 0.88 0.41 29.07 
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Figure 3-6. Comparison of mapping results by Mapscore 

 

3.3.5. Proposal of strawberry evaluation method by hyperspectral imaging. 

  Deviation values at the top and bottom of the fruit were calculated from sample A, which had 

high and low sugar content, and sample B, which had low sugar content (Figure). The difference 

between samples and the possible values of the sugar content of strawberries at the time of training 

was determined. In this study, we used the average value of the apex and the base of the fruit, but 

we are still working on expanding the evaluation method to make use of more spatial information. 

 

 

Figure 3-7. Strawberry line scan measurement system using NIR-HSI system and laser 

displacement meter 
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3.4. Conclusion 

 In Chapter 3, The system combining the HIR-HSI system and shape measurement by laser 

displacement meter was constructed for imaging sugar content in 3D by correcting the weak point 

of NIR-HSI, i.e., shape. In the shape correction, the combination of height and angle and height 

and angle correction methods showed the possibility of spectral processing methods other than 

spectral preprocessing. Only the predictive performance of PLSR models has been evaluated for 

PLS mapping, but in this study, the mapping method was optimized using the developed evaluation 

index Mapscore. A strawberry deviation value (Tscore) was also proposed to interpret the sugar 

content values estimated by nondestructive evaluation. 
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4. 3D sugar content imaging model of the whole strawberry surface by Near-infrared 

hyperspectral imaging and shape rotation measurements 

4.1. Introduction 

  In Chapter 2, Principle Component Analysis (PCA) imaging was utilized with Hyperspectral data 

to discriminate the strawberry flesh from the remainder of the fruit, consequently generating an 

image exclusive to the sugar content of the flesh. In the subsequent chapter, Near-Infrared 

Hyperspectral Imaging (NIR-HSI) was amalgamated with laser displacement measurement, 

facilitating the correction of the spectral shape and yielding a three-dimensional visualization of 

the sugar content within the strawberry flesh. Nevertheless, the employed line-scan method 

permits measurement of merely one facet of the strawberry at a time, thus precluding the portrayal 

of the flesh's sugar content distribution across the entire fruit surface. It is imperative to note that 

variations in sugar content manifest in axial and equatorial directions within strawberries, with the 

sun-exposed side exhibiting elevated sugar content(Ikegaya et al., 2019). Consequently, 

comprehensive fruit surface information acquisition is desirable. While previous studies have 

employed point cloud information for full-surface three-dimensional strawberry measurements 

(He et al., 2017), none have rendered the sugar content of the entire strawberry surface in three 

dimensions. In this study, NIR-HSI and shape measurements were integrated with rotational 

scanning to secure data concerning the whole strawberry surface. Point cloud information for 

three-dimensional measurements necessitates acquiring numerous images from varied viewpoints. 

In the other hand, Rotational scanning considerably expedites the process. 

 

4.2. Materials and Methods 

4.2.1. Rotation hyperspectral data and shape data measurement and Brix measurements 

  Strawberry samples were 193 fruits of the variety “Tochigi i37” from Tochigi Prefecture, Japan, 

purchased from farmers. The strawberries were transported by refrigerated delivery and kept after 

refrigeration (5°C) until approximately 1 hour before the experiment. Before the experiment, they 

were kept in the laboratory (23°C) to keep the product temperature constant. Some samples were 

slightly damaged during transport. The measurement system comprises The NIR hyperspectral 

imaging system (push-broom line scanning system: Compovision, Sumitomo Electric Industries, 

Ltd., Tokyo, Japan), The light source, The laser displacement meter (LJ-X8200, KEYENCE, Ltd., 

Osaka, Japen), and the turn table (OSMS-40YAW, Sigumakoki, Co., Ltd., Tokyo, Japan). The 
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NIR-HSI system was equipped with a spectroscope and a 2D photosensitive element (256 pixels 

(wavelength) × 320 pixels (position)) capable of receiving NIR light from 913 to 2519 nm at a 

spectral interval of 6.2 nm. The light source was tube-shaped and illuminated from both sides using 

four halogen lamps. The irradiation angle was adjusted to 45°. The laser displacement meter uses 

a 405nm laser with a profile data count of 3200 points and a Z-axis repeatability of 1μm. The 

NIR-HSI frame rates were set to 100 frames s−1, 100 and 320 frames s−1, and 320 frames s−1 for 

sample, dark, and white, respectively. The NIR-HSI system and laser displacement meter were 

used to measure hyperspectral images and shape data for one turntable rotation. Reference data 

was obtained by measuring the reference board every 2 mm from 0 mm to 30 mm in height with 

the center of rotation of the turntable as the origin. Dark data were measured with the lens cap 

closed to prevent light from entering the detector. 

 

 
Figure 4-1. Strawberry Rotation line scan measurement system using NIR-HSI system and laser 

displacement meter 

 

4.2.2. Pre-processing of hyperspectral data and shape data 
 Figure.4-2 shows the method of shape correction (height correction and shape correction) of 
Hyperspectral data using shape data. The data was first cut out based on the measurement block 
to match the coordinates of the measured Hyperspectral data and shape data. In addition, the 
shape data was resized based on the data size of the hyperspectral data. 
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 The correction of Hyperspectral data was that the shape correction was considered separately for 
distance and angle. For the height correction, the measured values of the reference board at 
different heights were used. for the angle, a correction formula based on the Lambert Cosine law 
was used. The patterns are height, angle, and height and angle. Shape uncorrected reflectance 
(𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) was calculated from sample, white, and dark data according to Equation (4-1).  
The reflectance (𝑹𝑹𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) after height correction was calculated using Equation (4-2). 

Angle-corrected reflectance (𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) was calculated with Lambert Cosine correction using 

Equation (4-3). The reflectance (𝑹𝑹𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉&𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ) after the combined height and angle 

correction was calculated by Equation (4-4). 

𝑹𝑹𝒏𝒏𝒏𝒏𝒏𝒏−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒕𝒕 = 𝑰𝑰−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

  (4-1) 

 

 

𝑹𝑹𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝑰𝑰−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

  (4-2) 

 

 

𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 =
𝑰𝑰−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝒄𝒄𝒄𝒄𝒄𝒄𝜽𝜽

𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
  (4-3) 

 

𝑹𝑹𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉&𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 =
𝑰𝑰−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝒄𝒄𝒄𝒄𝒄𝒄 𝜽𝜽

𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉−𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
  (4-4) 
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Figure 4-2. Overview of height and angle correction using NIR-HSI geometry data 

 

 

 

4.2.3. PLSR modeling 

  PLSR constructed a sugar content model for the spectral and sugar content data. The data set was 

split 7:3 into training and test sets for model building and evaluation. The model construction 

optimized the number of PLS factors by 5-hold-out cross-validation for the training set. The 

optimal LVs were selected for the maximum root-mean-square error (RMSE) for cross-validation 

(RMSECV) within the global minimum + 1 standard deviation range. The quality of the PLSR 

modl was assessed using the determination coefficient ( 𝑅𝑅2 ) and RMSE for calibration 

(𝑅𝑅2𝑐𝑐 and RMSEC) and prediction (𝑅𝑅2𝑝𝑝 and RMSEP). A good model possesses a low RMSEC, 

RMSEP, and high determination coefficient (𝑅𝑅2𝑐𝑐 ,𝑅𝑅2𝑝𝑝) such that calibration and confirmation 

results do not diverge. 

4.2.4. 3D sugar content imaging  

 The developed PLSR model was fitted to each pixel of the Hyperspectral data of the test set sample 

to create a sugar content mapping image. Figure. 4-3 shows an overview of 3D modeling with 

shape data and sugar imaging images. Since the mapping image is one rotation, it was given an 

angle and combined with the shape data to create a 3D model. 
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Figure 4-3. Strawberry line scan measurement system using NIR-HSI system and laser 

displacement meter 

 

 

4.3. Results and Discussion 

4.3.1. Effect of shape correction on the average spectrum 

  The average spectral results pre and post-shape corrections for all samples are depicted in Figure 

4-4. The computation of these average spectra employed flesh-based Regions of Interest (ROIs), 

established through PCA imaging. The application of height correction demonstrated a general 

decline in the overall reflectance of the spectrum, conversely, the angle correction manifested an 

elevation in reflectance. The co-application of height and angle corrections induced a marginal 

escalation in reflectance in contrast to the absence of shape corrections. These observations remain 

in alignment with the results presented in Chapter 3. 

   

 
Figure 4-4. The average spectrum of measured strawberry samples. Calculated from the flesh 

ROI before and after shape correction. 

 

 

4.3.2. PLSR model 
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  Table. 4-1 summarizes the results of the PLS model search. The models for all conditions (shape 

correction and spectral pretreatment) had good prediction accuracy with R2p greater than 0.85. 
Comparing the coefficients of determination for the test set, the model with SNV-2nd derivative after 

height correction showed the best prediction accuracy with a coefficient of determination of 0.919 

and PMSEP of 0.436 for the test set. 

 

 

Table 4-1. Results of PLSR model search.  

Corecct Spec treat LV 
RMSE
CV 

RMSE
C 

RMSE
P R2CV R2C R2P 

Non-correct - 7 0.508 0.460 0.509 0.907 0.924 0.889 
Non-correct Smoothing 7 0.487 0.445 0.487 0.915 0.929 0.899 
Non-correct 1st derivative 6 0.499 0.462 0.520 0.910 0.923 0.885 
Non-correct 2nd derivative 5 0.531 0.475 0.464 0.899 0.919 0.908 
Non-correct SNV 8 0.471 0.430 0.485 0.920 0.933 0.900 
Non-correct SNV-Smoothing 8 0.482 0.440 0.498 0.917 0.930 0.894 
Non-correct SNV-1st derivative 7 0.447 0.411 0.475 0.928 0.939 0.904 
Non-correct SNV-2nd derivative 4 0.531 0.547 0.458 0.899 0.892 0.911 
Height - 8 0.498 0.456 0.522 0.911 0.925 0.884 
Height Smoothing 8 0.486 0.449 0.503 0.915 0.927 0.892 
Height 1st derivative 7 0.490 0.451 0.474 0.914 0.927 0.904 
Height 2nd derivative 4 0.602 0.545 0.474 0.870 0.893 0.904 
Height SNV 7 0.544 0.540 0.589 0.893 0.895 0.852 
Height SNV-Smoothing 8 0.487 0.446 0.544 0.915 0.929 0.874 
Height SNV-1st derivative 7 0.458 0.426 0.490 0.925 0.935 0.898 
Height SNV-2nd derivative 4 0.506 0.403 0.436 0.908 0.942 0.919 
Angle - 7 0.542 0.495 0.488 0.894 0.912 0.898 
Angle Smoothing 7 0.515 0.472 0.479 0.905 0.920 0.902 
Angle 1st derivative 7 0.511 0.462 0.500 0.906 0.923 0.893 
Angle 2nd derivative 5 0.571 0.529 0.488 0.883 0.899 0.898 
Angle SNV 8 0.480 0.438 0.497 0.917 0.931 0.895 
Angle SNV-Smoothing 8 0.490 0.447 0.506 0.914 0.928 0.891 
Angle SNV-1st derivative 7 0.452 0.416 0.482 0.927 0.938 0.901 
Angle SNV-2nd derivative 4 0.557 0.550 0.455 0.888 0.891 0.912 
Height+Angle - 8 0.512 0.449 0.516 0.906 0.928 0.886 
Height+Angle Smoothing 7 0.546 0.448 0.497 0.893 0.928 0.895 
Height+Angle 1st derivative 7 0.520 0.492 0.497 0.903 0.913 0.895 
Height+Angle 2nd derivative 4 0.632 0.595 0.528 0.856 0.872 0.881 
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Height+Angle SNV 7 0.585 0.567 0.577 0.877 0.884 0.858 
Height+Angle SNV-Smoothing 8 0.495 0.451 0.556 0.912 0.927 0.868 
Height+Angle SNV-1st derivative 7 0.466 0.433 0.494 0.922 0.932 0.896 
Height+Angle SNV-2nd derivative 3 0.611 0.575 0.497 0.866 0.881 0.895 

 

4.3.3. 3D Sugar content model of the whole surface of strawberry flesh   

  The PLSR results showed that all models had good prediction accuracy with R2p greater than 

0.85, so mapping was performed using the model with smoothing after height correction, which 

had the clearest map score in Chapter 4. Figure. 4-5 shows a 3D model visualizing the distribution 

of sugar content in the strawberry flesh part. The mapping results provide the distribution of sugar 

content in the flesh part of the entire fruit surface. 

 

 
Figure 4-5. 3D Sugar content model of the whole surface of strawberry flesh. Samples are 

arranged from the upper left to the lower right so that the sugar content of the sample is higher 

from the upper left to the lower right. 
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4.4. Conclusion 

 Chapter 4 detailed the construction of a system capable of acquiring comprehensive spectral and 

shape information of a fruit, facilitated by the combined use of rotational line scan measurements 

and a turntable. This setup was employed to elucidate the distribution of sugar content within the 

flesh of an entire strawberry. The sugar content imaging using Hyperspectral data and shape data, 

acquired from a single complete rotation of the strawberry, were synthesized in a three-

dimensional model to determine the fruit's shape and display the distribution of sugar content on 

the flesh of the fruit surface. The resultant 3D model represents a pioneering outcome in the field, 

providing the first depiction of sugar content distribution in the flesh of an entire strawberry.   
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5. Overview 

   The purpose of this paper was to overcome the problems in the NIR-HSI quality evaluation of 

strawberries and to establish a new quality evaluation method. The following results were achieved. 

  Ⅰ. a Near-Infrared NIR-HSI technique was employed to delineate the sugar content distribution 

within the flesh of white strawberries. Principally, PCA imaging distinguished the flesh from the 

remainder of the fruit, subsequently facilitating an evaluation of the sugar content distribution 

within the flesh alone via imaging and violin plots.  

  Ⅱ. The study further developed a three-dimensional imaging technique of the strawberry's sugar 

content, merging NIR-HSI with shape measurements. This process necessitated the examination 

of correction effects brought about by adjusting Hyperspectral data by factors of height and angle. 

A novel method was proposed for evaluating NIR-HSI mapping results, achieved by displaying 

the spatial distribution of sugar content in a three-dimensional context. 

  Ⅲ. The method was devised to measure HS data across the entire circumference of a strawberry 

using rotational scanning, subsequently allowing for the visualization of sugar content distribution 

in the flesh area within a 3D model.  

  The remaining challenges encompass the need to revisit the shape correction technique; the 

current situation fails to account for factors such as wavelength characteristics, and an optimal 

correction technique remains elusive. A reevaluation of the correction method via reference 

materials and shape samples is imperative. Likewise, the evaluation approach of mapping results 

calls for enhancement, specifically, an improvement in Mapscore to facilitate the judgment of 

noisy images. Other areas of investigation include practical application strategies for sorting, 

breeding, and variety improvement. This venture will necessitate consideration of measurement 

velocity and data resolution. Ultimately, an overarching quality evaluation, including shape and 

internal quality parameters (sugar content, acidity, sugar-acid ratio, and damage), is earmarked as 

a future undertaking. 
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	1. Introduction
	The importance of assessing the quality of agricultural products, although it may vary depending on perspective, is universally accepted as a fundamental requirement. For producers, quality evaluation serves as a crucial tool to affirm the worth and ...
	Quality assessment methodologies are principally bifurcated into two distinct categories: sensory evaluation, utilizing human faculties such as sight, hearing, taste, smell, and touch, and instrument-based analytical evaluation, which aspires to supe...
	Near-infrared spectroscopy (NIR) serves as a non-destructive evaluation tool for agricultural commodities, operating through the irradiation of near-infrared light (750-2500nm) on a sample and analyzing the transmitted and reflected light spectroscop...
	Contrary to NIR's point-specific measurement approach, Near-Infrared Hyperspectral Imaging (NIR-HSI) employs a surface-based method that considers spatial distribution. NIR-HSI, a rapidly advancing technique, is extensively utilized for nondestructi...
	Strawberries (Fragaria × ananassa), produced globally, come in diverse varieties due to advanced breeding techniques in Japan. Some of these varieties even boast white flesh. Evaluations of strawberries' value and quality typically hinge on characte...
	This paper aims to tackle these issues in strawberry quality evaluation and introduce a novel assessment methodology. We have conducted three studies for this purpose:The purpose of this paper is to overcome the problems in strawberries and to estab...
	・Visualization of sugar content distribution in white strawberry flesh by NIR-HIS
	・3D imaging of strawberry sugar content by NIR-HSI and shape measurement
	・3D model of strawberry sugar content by Rotation-NIR-HSI
	2. Visualization of sugar content distribution of white Strawberry by Near-Infrared hyperspectral imaging
	2.1. Introduction
	Strawberries with white skin (white strawberries) have recently been introduced in the Japanese market. The accumulation of Anthocyanins (pelargonidin 3-glucoside, pelar-gonidin 3-rutinoside, and cyanidin 3-glucoside), which are the typical red pigm...
	2.2. Materials and Methods
	2.2.1. White strawberry samples
	Strawberry samples of the cultivars “Tochigi iW1 go” with white skin were obtained from the Strawberry Research Institute–Tochigi Prefectural Agricultural Experiment Station (Tochigi-Shi, Tochigi Pref. 328-0007, Japan) between February and March 202...
	2.2.2. NIR Hyperspectral Images and Brix Measurements
	Figure. 2-1 shows an overview of the NIR hyperspectral imaging measurement (push-broom line scanning system: Compovision, Sumitomo Electric Industries, Ltd., Tokyo, Japan) and the Brix measurement methods employed in this study. At a spectral interv...
	,𝑅-𝜆,𝑛.=,,,𝑆-𝜆,𝑛.−,𝐷-𝜆,𝑛..-,,𝑊-𝜆,𝑛.−,𝐷-𝜆,𝑛... (1)
	where λ   and n represent the wavelength and pixel index variables, respectively; R_(λ,n) represents the standardized reflectance intensity at wavelength λ and pixel n; S and W represent sample and white reference images, respectively; and D represe...
	Figure 2-1. This work used the near-infrared hyperspectral imaging (NIR-HSI) system and Brix.
	2.2.3. Preprocessing of Hyperspectral Images
	The ROI should be predetermined to extract spectral information of strawberries from hyperspectral images. This study determined the ROI of the whole fruit, flesh, and achene in strawberries. The ROI for each part was determined based on PCA and ima...
	2.2.3.1. Creating a fruit mask using thresholding
	Figure. 2-2 shows the method used to determine the ROI of the fruit. First, the pixels corresponding to the background, resin tray, and sepals were determined based on the reflectance value at a specific wavelength using thresholding, as shown in Fi...
	Figure 2-2. Preprocessing procedure for hyperspectral data with ROI extraction by thresholding (Fruit mask).
	As the reflectance values at 1077 nm for sepals, flesh, and achene differed significantly from those of the resin tray and background, the reflectance value at 1077 nm was used for the separation of the resin tray and background with a threshold val...
	,𝑥-𝑖,𝑠𝑛𝑣.=,,,𝑥-𝑖.−,𝑥..-,,,𝑖=1-𝑛-,,𝑥-𝑖.−,𝑥../,𝑛−1.....   (1-2)
	2.2.3.2. Determination of ROI corresponding to the flesh part and achene part using combination of PCA and Image processing
	Figure. 2-3 depicts the proposed imaging procedure, which combines PCA and image processing to classify pixels corresponding to the flesh parts of strawberries and achenes. This process yielded the ROI corresponding to flesh and achene for the top and...
	2.2.4. PLSR modeling
	2.2.5. Visualization of the sugar content distribution
	2.3. Results and Discussion
	2.3.1. Preprocessing of hyperspectral data
	Figure. 2-5 depicts PC1 loading for each sample. The PC1 loading of each sample exhibited a similar shape. In Otsu’s binarization method, the threshold value that maximizes the variance between the two classes is determined and classified into two g...
	Figure 2-7 shows the average spectra of (a) fruit, (b) flesh, and (c) and achene; and their corresponding second derivative spectra ((d), (e), (f), respectively). The average spectrum had absorption peaks at 970, 1165, 1420, 1780, and 1900 nm. The p...
	Figure 2-5. PC1 loadings of all samples obtained by principal component analysis from the pixels of the hyperspectral data measurement plane.
	Figure 2-6. Number of pixels for ROI of fruit, flesh, and achene in strawberry, with ROIs defined by image masks created by preprocessing hyperspectral data.
	Figure 2-7. Average reflectance spectra (the spectral range is the mean ± standard deviation) of (a) fruit, (b) flesh, and (c) achene. Second derivative average reflectance spectra (Spectral range is mean ± standard deviation) of (d) fruit, (e) flesh,...
	2.3.2. PLSR Model
	2.3.3. Visualization of the Sugar Content Distribution
	2.4. Conclusion
	3. 3D sugar content imaging of strawberries by Near-infrared hyperspectral imaging and laser displacement measurement
	3.1. Introduction
	The sugar content distribution within a fruit is known to be uneven. Presently, market measurements of sugar content in fruits like apples and mandarin oranges utilize near-infrared spectroscopy, which offers non-destructive molecular vibration info...
	Recently, extensive research has been conducted on NIR-HSI (near-infrared hyperspectral imaging) for evaluating the quality of agricultural products and mapping chemical components. NIR-HSI captures near-infrared spectra as images, with each pixel r...
	3.2. Materials and Methods
	3.2.1. Hyperspectral data and shape data measurement and Brix measurements
	In this study, 193 strawberries of the “Tochigi i37” variety from Tochigi Prefecture, Japan, were procured. These samples were transported under refrigeration and stored at a temperature of 5 C until one hour prior to the experiment. Subsequently, t...
	Figure 3-1. Strawberry line scan measurement system using NIR-HSI system and laser displacement meter
	3.2.2. Pre-processing of hyperspectral data and shape data
	Figure 3-2. Overview of height and angle correction using NIR-HSI geometry data
	3.2.3. PLSR modeling
	PLSR constructed a sugar content model for the spectral and sugar content data. The data set was split 7:3 into training and test sets for model building and evaluation. The model construction optimized the number of PLS factors by 5-hold-out cross-...
	3.2.4. 3D sugar content imaging
	A 3D image was created by combining the sugar content image and shape data. To evaluate the results, we decided to use the newly created Map Score as an index (3-8); the Map Score is a multiplication of three evaluation parameters. The coefficient o...
	3.3. Results and Discussion
	3.3.1. Effect of shape correction on the average spectrum
	Figure 3-3. show the spectral images of one sample strawberry in the row direction with no correction, height correction, angle correction, height & angle correction, and in the column direction at the major absorption wavelengths. The correction ha...
	Figure 3-3. Spectral images in the main bands of strawberry showing the effect of shape correction
	The average spectra before and after shape correction for all samples are shown in Figure. 3-4. The average spectra were calculated using flesh ROIs created by PCA imaging. The height correction tended to decrease the overall reflectance of the spec...
	Figure 3-4. The average spectrum of measured strawberry samples. Calculated from the flesh ROI before and after shape correction.
	3.3.2. PLSR model
	The table summarizes the results of the PLS model search. Comparing the coefficients of determination for the test set, the model with smoothing after height correction showed the best prediction accuracy with a coefficient of determination of 0.813...
	3.3.3. 3D sugar content imaging
	The figure shows the mapping under the conditions used in the model search. Sample A is the mapping result of the sample with high sugar content and sample B is the mapping result of the sample with low sugar content. The spectral processing changes...
	Figure 3-5. Sugar content mapping results by PLSR model per shape correction and spectral pretreatment. Sample A has high sugar content and sample B has low sugar content.
	3.3.4. Evaluation of PLS mapping image
	The table. 3-2 shows the map scores for each spectral condition (shape correction, spectral preprocessing) at the time of model creation. The figure. 3-6 also shows the imaging results for Sample A and Sample B for the condition with the largest map...
	Figure 3-6. Comparison of mapping results by Mapscore
	3.3.5. Proposal of strawberry evaluation method by hyperspectral imaging.
	Deviation values at the top and bottom of the fruit were calculated from sample A, which had high and low sugar content, and sample B, which had low sugar content (Figure). The difference between samples and the possible values of the sugar content ...
	Figure 3-7. Strawberry line scan measurement system using NIR-HSI system and laser displacement meter
	3.4. Conclusion
	In Chapter 3, The system combining the HIR-HSI system and shape measurement by laser displacement meter was constructed for imaging sugar content in 3D by correcting the weak point of NIR-HSI, i.e., shape. In the shape correction, the combination of ...
	4. 3D sugar content imaging model of the whole strawberry surface by Near-infrared hyperspectral imaging and shape rotation measurements
	4.1. Introduction
	In Chapter 2, Principle Component Analysis (PCA) imaging was utilized with Hyperspectral data to discriminate the strawberry flesh from the remainder of the fruit, consequently generating an image exclusive to the sugar content of the flesh. In the ...
	4.2. Materials and Methods
	4.2.1. Rotation hyperspectral data and shape data measurement and Brix measurements
	Strawberry samples were 193 fruits of the variety “Tochigi i37” from Tochigi Prefecture, Japan, purchased from farmers. The strawberries were transported by refrigerated delivery and kept after refrigeration (5 C) until approximately 1 hour before t...
	Figure 4-1. Strawberry Rotation line scan measurement system using NIR-HSI system and laser displacement meter
	4.2.2. Pre-processing of hyperspectral data and shape data
	The reflectance (,𝑹-𝒉𝒆𝒊𝒈𝒉𝒕−𝒄𝒐𝒓𝒓𝒆𝒄𝒕.) after height correction was calculated using Equation (4-2). Angle-corrected reflectance (,𝑹-𝒂𝒏𝒈𝒍𝒆−𝒄𝒐𝒓𝒓𝒆𝒄𝒕.) was calculated with Lambert Cosine correction using Equation (4-3). The reflec...
	Figure 4-2. Overview of height and angle correction using NIR-HSI geometry data
	4.2.3. PLSR modeling
	PLSR constructed a sugar content model for the spectral and sugar content data. The data set was split 7:3 into training and test sets for model building and evaluation. The model construction optimized the number of PLS factors by 5-hold-out cross-...
	4.2.4. 3D sugar content imaging
	The developed PLSR model was fitted to each pixel of the Hyperspectral data of the test set sample to create a sugar content mapping image. Figure. 4-3 shows an overview of 3D modeling with shape data and sugar imaging images. Since the mapping image...
	Figure 4-3. Strawberry line scan measurement system using NIR-HSI system and laser displacement meter
	4.3. Results and Discussion
	4.3.1. Effect of shape correction on the average spectrum
	The average spectral results pre and post-shape corrections for all samples are depicted in Figure 4-4. The computation of these average spectra employed flesh-based Regions of Interest (ROIs), established through PCA imaging. The application of hei...
	Figure 4-4. The average spectrum of measured strawberry samples. Calculated from the flesh ROI before and after shape correction.
	4.3.2. PLSR model
	Table. 4-1 summarizes the results of the PLS model search. The models for all conditions (shape correction and spectral pretreatment) had good prediction accuracy with R2p greater than 0.85.　Comparing the coefficients of determination for the test s...
	4.3.3. 3D Sugar content model of the whole surface of strawberry flesh
	The PLSR results showed that all models had good prediction accuracy with R2p greater than 0.85, so mapping was performed using the model with smoothing after height correction, which had the clearest map score in Chapter 4. Figure. 4-5 shows a 3D m...
	Figure 4-5. 3D Sugar content model of the whole surface of strawberry flesh. Samples are arranged from the upper left to the lower right so that the sugar content of the sample is higher from the upper left to the lower right.
	4.4. Conclusion
	Chapter 4 detailed the construction of a system capable of acquiring comprehensive spectral and shape information of a fruit, facilitated by the combined use of rotational line scan measurements and a turntable. This setup was employed to elucidate t...
	5. Overview
	The purpose of this paper was to overcome the problems in the NIR-HSI quality evaluation of strawberries and to establish a new quality evaluation method. The following results were achieved.
	Ⅰ. a Near-Infrared NIR-HSI technique was employed to delineate the sugar content distribution within the flesh of white strawberries. Principally, PCA imaging distinguished the flesh from the remainder of the fruit, subsequently facilitating an eval...
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