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Summary 

This research addresses land resource potential assessment consisting of land suitability, land 

resources, and land potential. The main objective of this study was to assess and model land 

resource potential throughout Mongolia using state-of-the-art machine learning techniques and 

remote sensing data. The investigation is organized into seven chapters.  

Chapter 1 provides the definitions, concepts, principles, historical development, and 

technological achievements of land assessment. Furthermore, the main issues of land 

assessment and the necessity for assessing land resource potential in Mongolia are described.  

Chapter 2 investigates the land suitability assessment for the cropland in Mongolia. 

The main objective is to develop methods, tools, and criteria for detecting new crop areas with 

enough capacity for cultivation across the entirety of Mongolia. For the analysis, 9 constraints, 

and 17 multi-criteria factors, the Multi-Criteria Decision Making (MCDM) method and 

Geographic Information System (GIS)-based Analytical Hierarchy Processes (AHP) were used. 

The integrated assessment of constraint and multi-criteria factor analyses showed that 10.1% 

of the study area is highly suitable, 14.0% suitable, 15.5% moderately suitable, 16.3% 

unsuitable, and 12.9% highly unsuitable for cropland, with 31.2% as the constraint area. Within 

the framework of this research, evaluation methodology and criteria for assessing the suitability 

of agricultural cropland in Mongolia were developed.  

Chapter 3 investigates pasture biomass, which is a component of land resources. The 

rational use of pastures as a source of feed is a vital issue for livestock pastoralism in Mongolia. 

The main objective of this study is to develop a robust methodology to estimate pasture biomass. 

Two regression models were compared and adopted for this study: Partial Least Squares (PLS) 

and Random Forest (RF). Both methods were trained to predict pasture biomass using a total 

of 17 spectral indices derived from Landsat 8 imagery as predictor variables. For training, 

reference biomass data from a field survey of 553 sites were available. This study confirms the 

high potential of a machine-learning regression model to predict pasture biomass. The 

developed model can be implemented easily, provided that sufficient reference data and cloud-

free observations are available. 

Chapter 4 investigates the climatologies of average monthly near-surface air 

temperature (Ta), which is the main indicator of nature-ecology that determines a nation’s 

economic development, especially in drylands. Direct measurements of Ta at a height of 2 m 

above ground are only available from a limited number of meteorological stations. For 
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Mongolia, the spatial coverage of these measurements is inadequate. In addition, typical Ta 

time series comes with many missing values. On the contrary, satellite-derived land surface 

temperature (LST) data are continuous in both spatial-temporal coverages. The main objective 

of this study is to develop a robust statistical model to estimate climatologies of monthly 

average Ta over Mongolia using Moderate Resolution Imaging Spectroradiometer (MODIS) 

LST time series products and terrain parameters. The PLS and RF regression models were 

analyzed in this study linking data from 63 automatic weather stations (Ta) with Earth 

observation (EO) images. Both models were trained to predict Ta climatologies for each of the 

twelve months, using up to 17 variables as predictors. The four most predictive variables were 

day/nighttime LST, elevation, and latitude. Using the developed RF models, spatial maps of the 

monthly average Ta at a spatial resolution of 1 km were generated for Mongolia. This spatial 

dataset is used to estimate important bioclimatic and climatic variables in Mongolia. The 

method is transparent and relatively easy to implement. 

Chapter 5 investigates bioclimatic and climatic variables (indices) assessment in 

Mongolia. The main objective is to explore alternative ways and to improve the temporal and 

spatial resolution of bioclimatic and climatic variables. Two-time series datasets monthly mean 

Ta, and monthly total precipitation (P) from Climate Hazards Group InfraRed Precipitation 

with Station (CHIRPS) data were used. Spatial maps of 19 bioclimatic variables and 6 climatic 

indices at a spatial resolution of 1 km were generated, representing the period 2002-2017. The 

success of the study was to the fact that climatologies of both Ta, as well as precipitation, can 

be retrieved from EO data over monthly intervals. In areas with sparse station density, EO data 

avoids otherwise necessary interpolation techniques. The main limitation of many EO products 

relates to the fact that data sets are still relatively short and that data from multiple satellites 

would have to be combined and normalized if longer time series are required. The advantage 

of the MODIS data set is, that it covers the most recent 15 years. In the future, spatial and 

temporal resolution and spatial coverage will favor EO data even more than other techniques 

as new satellites are launched at an unprecedented pace. For future research, recommend 

focusing on the improved quality, spatial, and temporal resolution of precipitation estimates. 

Chapter 6 investigates the land potential assessment in Mongolia. The main objective 

is to assess land potential in Mongolia using a time series of environmental variables and four 

different regression models. The analysis used 25 environmental variables related to 

topography, climate, soil, and vegetation as explanatory variables. Reference biomass data from 
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a field survey of 12988 sites were used for training. The accuracy of the RF model (coefficient 

of determination (R2)=0.73) model was much higher than PLS (R2=0.46), Principle Component 

Regression (PCR) (R2=0.55), and Classification and Regression Tree (CART) (R2=0.60). Using 

the developed RF model, a spatial distribution map of land potential in Mongolia was generated 

at a resolution of 500 m. Compared with current pasture use, the land potential map showed 

that 52.3% of the territory has exceeded the land potential, of which 26.7% highly exceeded. 

This result showed that it is possible to assess land potential across the huge land surface of 

Mongolia using machine learning models, a time series of environmental datasets, and training 

data. In addition, the natural elements and processes are studied, and robust models are 

developed, while the potential of the newest generation of EO satellites was evaluated while 

leveraging modern machine learning techniques for information extraction. 

Chapter 7 provides a summary conclusion based on the finding from this study. 

Developed models and spatial distribution maps within this study can contribute to reasonable 

decisions on sustainable use and land management. Attention needs to be paid to conveying the 

results that have been acquired to decision-makers and the public. 
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CHAPTER 1. Introduction 

1.1 Definitions, concepts, and principles of land assessment  

Land assessment has multiple aspects (King 2019; FAO 2007; UN 1995; UNEP 1993). This 

thesis emphasizes land resource potential assessment consisting of land suitability, land 

resources, and land potential. The main objective of this study was to assess and model land 

resource potential throughout Mongolia using state-of-the-art machine learning techniques and 

remote sensing data. To achieve the objective, this study examines multiple perspectives of 

land resource potential such as land suitability, land resources, and land potential, focusing on 

developing robust models. The main reason for assessing land resource potential is to 

investigate what land resources are current, what land has high potential, how to link land use 

with land potential, and how to implement it. The first formal definition of land was defined 

by the Food and Agricultural Organization of the United Nations (FAO) in 1976 as “a 

delineable area of the earth's terrestrial surface, encompassing all attributes of the biosphere 

immediately above or below the surface”, which was updated in 1995 (UN 1995; FAO 1976). 

According to Sombroek (1993; 1997), the land is physical material, which is a habitat for living 

organisms, and a source of materials necessary for their activities. Moreover, land assists in the 

supplying of fundamental ecosystem services such as managing biophysical and biochemical 

cycles or fiber and meal provision (Tilman et al. 2002). Furthermore, land includes all attributes 

of the biosphere immediately near the surface, the settlement pattern of humans, and the results 

of current and past human-induced activities (Rossiter 1996).  

Land assessment has been critical for the FAO since it was established in 1945 

(Sombroek 1997). The first land assessment framework was developed by FAO in 1972 and 

was published as “A framework for land evaluation” in 1976 in an FAO soil bulletin, which 

was revised in 2007 (FAO 1976; FAO 2007). As part of this work, the definitions, concepts, 

principles, and methods basis of the land assessment was finalized, in which land assessment 

is defined as "the evaluation of land performance when used for specified purposes” (FAO 

1976; FAO 2007). Since the first framework, four guidelines on land assessment for extensive 

grazing, irrigated agriculture, rainfed agriculture, and forestry were processed by FAO (FAO 

1991; FAO 1989; FAO 1984; FAO 1983). Before the FAO framework, in the early 1930s 

United States Department of Agriculture (USDA) defines land assessment as “an approach for 

the estimating the relative characteristics of land resources established upon measurable 

attributes of the land” (Klingebiel and Montgomery 1961; USDA 1983). Moreover, Nha (2017) 
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defines land assessment as the examination of data related to land such as topography, climate, 

soil, vegetation, and so forth, for detecting practical options for enhancing land usage. 

According to Sys, VanRanst, and Debaveye (1991), land assessment accords two essential 

aspects of the land such as physical resources (e.g., topography, geology, climate, soil, 

hydrology, and vegetation), and socioeconomic resources (e.g., farm size, management level, 

availability of manpower, market position and other human activities). The physical resources 

are accounted as relatively stable, while socio-economic resources are more dynamic 

depending on social and political conditions (FAO 1993; FAO 1991). Land assessment 

primarily deals with physical resources including topography, soil, and climate (FAO 1976; 

IRP 2016; Fischer et al. 2021), and these contain the possibilities for the hydrology, geology, 

and vegetation (Sys, VanRanst, and Debaveye 1991).  

For the concepts and principles, there was little need to update these until the early 

2000s, because they had widely been used in many countries around the world without 

requiring significant changes in the land assessment system (FAO 2007). During these years, 

land assessment investigations were performed to introduce more efficient and better-suited 

land to the agricultural industry for land use planning and land management. At that time, 

agricultural productivity (e.g., fiber, feed, food) was primarily considered in the land 

assessment. However, related to rapid land resource uses, environmental concerns such as land 

use change, soil fertile loss, erosion, and degradation have started a wider range. Environmental 

concerns were included in the first framework of the land assessment, however, this was only 

an outline.  

The first UN Conference on the Human Environment was held in Stockholm in 1972. 

It was focused on environmental concerns, and it led to the establishment of the UNs 

Environment Program (UNEP) (Sohn 1973). Twenty years after, the Stockholm conference, 

the UN Conference on Environment and Development (UNCED) was held in Rio De Janeiro 

for the governments of the world. In this meeting, the sustainable development concept and 

issues of environmental resources protection were assumed to be at a wider range, which 

“marked a great step forward in bringing the role of land resources to wider attention” (UNCED 

1993; Young 2000). At that time, it was believed that the main factor leading to the shortage 

of land resources is the production of food products caused by population growth. In 1993, the 

world's scientific academies convened and called for urgent measures to limit population 

growth (UN 1993). However, it recognized that the problem of population cannot be considered 
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in isolation, it is closely related to environmental resources and economic development. The 

third UN Conference on Population and Development in Cairo in 1994 highlighted the social 

status of women in society and education as one of the incentives to limit population growth. 

However, the idea that natural resources themselves are a limiting factor to population growth 

could not be put forward. From the second UN World Food Summit in Rome in 1996, and the 

UN Earth Summit in 1997, the main points were "responsible state, poverty, development of 

the rural sector, public participation and sustainability, disaster relief, and the role of women" 

and "on halting global warming by reducing greenhouse gas emissions", respectively (UN 

1996; UN 1997). Related to these large number of environmental concerns, the scope and 

intention of the land assessment have required expanding and more systematically considering.  

In this regard, the concepts and principles of land assessment were revised in the 

2000s to more practically reflect requirements such as sustainable land use, sustainable 

livelihood, and environmental concerns (e.g., nature conservation, and avoiding degradation). 

Conceptually, land assessment is defined as “calls for matching of the land management and 

ecological necessaries of applicable kinds of land utilization with land quality, whilst 

considering local socio-economic conditions” (FAO 2007). For these principles, concerns 

related to environmental protection and land use sustainability led to the extending of the 

principles of land assessment with two new principles. Currently, eight principles are officially 

implemented in the land assessment system (details see FAO 2007, p29-30). These principles 

are there to ensure socio-economic equity by envisaging sustainable productivity of land, and 

environmental concerns. 

On the other hand, land assessment comprises many different purposes. The 

definition of land assessment is distinct depending on the land assessment purposes. According 

to the literature review, most research on land assessment has been in the framework of land 

use suitability and assessment of physical resources of the land through both FAO and in many 

other countries (FAO 1976; FAO 1978; FAO 1984; FAO 1993; Young 2000; Fischer et al. 

2021). Land suitability analysis was generally based on the detection of the advantages of 

various land use and, recently, nature conservation and sustainable management are being 

considered. Land resource assessment has been directed at determining land properties (e.g. 

topography, climate, soil, and vegetation) in an area, to understand its features, and resources 

(DES and Department of Resources 2021). Another new category that has entered the land 

assessment system in recent years is land potential. Land potential is the inherent potential of 



18 

 

the land, which contributes to finding out where production can be sustainably raised and 

determining where land can be restored (IRP 2016). Summarizing various concepts regarding 

land suitability, land resources, and land potential, concludes that it is characterized by physical 

resources and is purposed for sustainable land use, sustainable productivity, and reproduction. 

Therefore, this investigation considered multiple perspectives of land resource potential such 

as land suitability, land resources, and land potential (detailed definitions see in Table 1.1). 

This investigation will assist decision-makers in taking better-informed decisions about various 

land use alternatives, and it will contribute to achieving Land Degradation Neutrality (LDN) 

and the Sustainable Development Goals (SDGs).  

 

Table 1. 1 Definition of land suitability, land resources, and land potential 

Types Definition of terms Descriptions 

Land 

suitability 

assessment 

It is to detect the applicability of 

suitable places for specified 

purposes (Rossiter 1996; Verheye 

1997; FAO 1976).  

Land suitability identifies how well the Land 

Mapping Units (LMU) match the requirements of 

Land Utilization Types (LUT) (Rossiter 1996). 

LMU is a definitive area of land that is delineated on 

the map, and LUT is “a specific subdivision of a 

major kind of land use” (Beek 1975). 

Land 

resources 

assessment 

This is a process investigation of 

the land attributes (Vink 1975), 

which “encompasses the physical, 

biotic, environmental, 

infrastructural, and socioeconomic 

components of a natural land unit” 

(FAO 2023).  

In particular, physical (natural) resources such as 

topography, near-surface climate, soil, hydrology, 

near-surface sedimentary layer, flora, and fauna 

(FAO 1976). These resources contain featuring the 

properties of land in a given area, more to appreciate 

its features, resources, and suitability for various 

purposes (DES and Department of Resources 2021).  

Land 

potential 

assessment 

It is “the capacity of the land to 

resist and recover from 

degradation” (IRP 2016).  

It permits the generation of ecosystem services 

required to meet current needs without 

compromising our ability to meet future needs 

(Herrick et al. 2013; Herrick et al. 2019). Land 

potential defines potential resistance and resilience 

and represents the capacity to recover from 

degradation (Liebeg et al. 2017). Specifically, the 

land can maintain its capacity to provide ecosystem 

services through either resistance to change or 

changing rapidly to retain basic function, structure, 

identity, and response (Walker, Steffen, and 

Langridge 1999). Resistance is defined as the ability 

of a system to operate normally through 

maintenance in the event of a disturbance, while 

resilience is defined as the capacity to recover from 

disturbance (Haugum 2021). 
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1.2 Historical development and technological achievements for land assessment 

classification systems, tools, and criteria 

Many experts from both the FAO and many other countries have been continuously 

contributing to the land assessment classification system, tools, and criteria. Many countries 

have developed their own methods and criteria for land assessment systems. However, the 

results have had different levels of success. This section presents an overview of historical 

development and technological achievements for land assessment classification systems, tools, 

and criteria.  

 

1.2.1 Land assessment classification systems  

Over the past seven decades, two types of classification systems have been widely used in land 

assessment from local to national levels all over the world: USDA Land Capacity Classification 

System (LCCS) and FAO Agro-Ecological Zoning System (AEZS).  

The LCCS, initially developed by the Soil Conservation Service of the USDA in 1930, 

was the first widely used land assessment system, but it has now been updated in many 

countries. An Land Capacity Classification (LCC) “implies a characterization and a re-

grouping of soil units in capacity classes for their present (actual) and future (potential) general 

use” (Sys, Van Ranst, and Debaveye 1991). The main content of the LCCS is to inform suitable 

land use to avert degradation (Herrick et al. 2016). In other words, LCC contributes to the 

identification of whether the land is appropriate for defined uses, and whether there are any 

degradation risks. Specifically, it is for classifying land by groups of soil focused on their 

potential for agricultural and other uses (Klingebiel and Montgomery 1961). The LCCS 

classifies the land into 8 classes based on a wide range of interpretations of topographic and 

soil factors that influence agricultural production and erosion of soil (IRP 2016). The first four 

(I-IV) classes are deliberated as acceptable for agronomic yields and cultivation. The next three 

(V-VII) classes are limited to agronomic yields and cultivation. The last (VIII) class is very 

restrictive, and usually cannot use any type of land resources. LCCS has been applied all over 

the world for land assessment systems to protect soil and natural resources for over 70 years. 

However, in recent years it has needed technological improvement. For instance, a digital 

platform for the input variables storage and management.  

The AEZS for land assessment was initiated by FAO in 1978 for detecting the 

potential of agricultural production (FAO 1978-1981), and is based on the “Land evaluation 
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framework” from 1976 (FAO 1996). The AZES aimed to predict the potential yields for 

different crops. It is a resource of the land mapping unit, defined in terms of landform or 

topography, climate, soil, and other physical factors (e.g., land cover) (IRP 2016). The essential 

elements for classification are land resources inventory, inventory of LUT and crop, and land 

suitability assessment (e.g., potential maximum production, and corresponding constraints) 

(FAO 1978-1981). Related to the rapid development of geoinformatics technology, countries 

have been updating the classification system for land suitability. FAO collaborated with the 

International Institute for Applied Systems Analysis (IIASA) and has updated a classification 

of the Global Agro-Ecological Zones System (GAEZS). Since 2000, rapid advances in geo-

information technology have been released three times in 2002, 2012, and 2021 (Fischer et al. 

2021). The last version of GAEZS assessed sustainable potentials of the agricultural production 

(e.g., fodder, fiber, food, and pastureland grasses) for past, present, and future climatic 

conditions, obtained from big data at a spatial resolution of 5 arc minutes.  

To summarize this section, both LCC and AEZ or GAEZ systems for land assessment 

have been broadly used at local and national scales all over the world. LCCS considers 

sustainable production, while AEZS is more focused on productivity. The disadvantage of both 

classification systems is that they do not explicitly consider sustainability. Moreover, the main 

limitation of AEZS (latest version) datasets still have a coarse spatial resolution of 0.5°. More 

recently, to develop new systems are testing that combines scientific knowledge with real data 

from monitoring sites. This led to reappraise system of land assessment. 

 

1.2.2 Land assessment tools 

This section presents the historical developments of tools (methods) of land assessment and 

achievements of the technology. Here four phases are highlighted, which are differentiated by 

approach and technology. 

The earliest tool of land assessment is hand-overlay by hand-drawn paper maps. At 

that time, in order to overlay maps sun-light reflected on windows was generally used, along 

with transparent paper (McHarg 1996; Tyrwhitt 1950). In this phase, great progress was made 

with the introduction of printed photos and aerial imagery into land assessment systems. From 

these, aerial imagery was a powerful tool for improving land assessment at the local level (e.g., 

farm and watershed level) (Chrisman 1997). 
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The introduction of automatic tools in land assessment systems was the second phase 

of evolution. The first tool in computer-based Automated Land Assessment Systems (ALAS) 

was developed at Harvard (Hopkins 1977). This tool permitted land experts to develop their 

systems based on knowledge to adapt to the specifics of the locality (Collins, Steiner, and 

Rushman 2001). Moreover, ALAS and other land assessment systems and their user guidelines 

have, in the long-term served, land assessment, and are continuously developing Geographic 

Information Systems (GIS). 

The introduction of mathematic analysis tools in the land assessment system was the 

third phase of evolution. In this phase, GIS-based mapping tools including “Map Algebra” and 

“Map Analysis Package (MAP)” were introduced in the land assessment system. However, this 

generated a practical need to reflect on the options of decision-makers in land assessment 

analysis (Goodchild et al. 1996). The main evolution of the third phase was the introduction of 

Boolean set theory and Fuzzy set logic theory in land assessment systems (Banai 1993). In 

particular, Fuzzy set theory (Zadeh 1965; Zadeh 1990; Zadeh 2007) as an extension of Boolean 

set theory was the main subject of the discussion of GIS-based land assessment systems such 

as land suitability analysis during the 1980s (Burrough et al. 1992). Various types of Multi-

Criteria Evaluation (MCE) techniques based on Boolean and Fuzzy set theories have been 

developed for the decision-making of land assessment problems whose results depend on 

multiple criteria in this phase. From these, the most advanced tool was the integrated Multi-

Criteria Decision Making (MCDM) method with GIS (Malczewski 1996). The main advantage 

of GIS-MCDM was structured for multiple criteria layers, which provides a spatially explicit 

assessment framework (Malczewski 2006). For estimating weights values for the multiple 

criteria, the analytic hierarchy process (AHP) was introduced, which is the MCDM method. 

The AHP is a mathematical approach for assessing values of the given functions focused on 

pairwise comparisons (Saaty 1980). The integration of the AHP, a Multi-Objective Decision-

Making (MODM) method into GIS has further refined land assessment tools (Malczewski 

1996; Malczewski and Rinner 2015). 

The introduction of advanced artificial intelligence methods and data mining 

techniques in land assessment systems was the fourth phase of evolution. Since the early 1990s, 

AI techniques that can be used for some practical issues of geography have been introduced, 

and this was the first step of AI in land suitability analysis, known as a land assessment 

(Openshaw and Openshaw 1997). In the early stages of AI, the technologies were much more 
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experimental and costly. However, there has been growing interest in the introduction of AI 

devices in land assessment based-GIS. These technologies were introduced as ability 

advancement platforms for the process, which was a huge growth in the methodological 

processes. More recent improvements in land assessment systems are addressing the generation 

of robust models for real-time land potential using a time series of field survey reference data, 

cloud-based geospatial layers, and advanced machine learning methods. 

To summarize this section, since the 1980s, advanced techniques of land resource 

assessment have come out, and they have begun to meet the new needs of digital information. 

In recent decades, many new powerful machine learning techniques, and cloud-based time 

series datasets are being developed and that is improving further land assessment tools. These 

tools are leading the efforts to reappraise land assessment techniques. 

 

1.2.3 Land assessment criteria 

The FAO has been using primarily physical resources including topography, climate, and soil 

variables for land assessment analysis (FAO 1976; FAO 1978-1981; FAO 1991; IRP 2016), 

and these contain possibilities for the hydrology, geology, and vegetation (Sys, VanRanst, and 

Debaveye 1991). USDA criteria have primarily used topography (e.g., location in the landscape, 

and slope) and soil (texture, depth, and other static properties of soil) variables that impact 

vegetation growth and erosion (USDA-NRCS 2013). Christian et al. (1953) noted land systems 

are defined as "repeated patterns of geology, topography, soil, and vegetation" (DES and 

Department of Resources 2021). Moreover, depending on the purpose of land assessment and 

the natural features and climate of the area, the criteria of topography, climate, soil, and 

vegetation were relatively different in some countries (FAO 2007). According to the literature 

review, the major criterion of land assessment is determined by topography, soil, and climate, 

and these have been widely used in land assessment from local to national levels all over the 

world (FAO 1976; USDA 1983; Sys, VanRanst, and Debaveye 1991; IRP 2016; USDA-NRCS 

2023), whereas, the use of vegetation criteria for land assessment was generally different for 

all countries (IRP 2016; Dumanski 1997; FAO 1976). To better understand the contribution of 

physical resources to land assessment, this study focused on majority criteria such as 

topography, climate, soil, and vegetation variables and their interactions in the past. 

Topography is the physical form and appearance of the specific land (e.g., plain, 

plateau, valley, depression, mountain, and hill). According to previous studies, the major 
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criteria of topography for land assessment were surface slope, and elevation (IRP 2016; 

Kumhalova et al. 2008). They allow us to determine the main attributes of the relief, which is 

an important physical resource. Specifically, slope and elevation have a strong effect on surface 

runoff through the land, which primarily affects land resilience as part of land potential 

(Herrick et al. 2016). For instance, water runoff through the steeper slope decreases water 

infiltration and transports soil nutrients, thereby limiting the amount of water used in vegetation, 

and slowing down the process of formation of organic material in the soil. In contrast, water 

runoff in flat surfaces is generally slow, and with more infiltration, and this allows enough 

moisture in vegetation during the long term. 

Topography variables influence the microclimate in that they affect solar radiation, 

hydrothermal conditions (a combination of precipitation, and temperature), and wind. For 

instance, the steepness of the slope and the direction of the slope (aspect) affect the distribution 

of solar radiation. The northern side of the aspect is primarily shaded, and the southern side of 

the mountain receives more solar radiation, and this occurs in high-altitude regions. For this 

reason, mountain areas receive less radiant heat compared to flat areas, have a marked influence 

on vegetation growth, and affect potential land productivity. Mountains obstruct cold air from 

entering over the warm ground, which results in distinguished temperatures on both sides of 

the mountains. In other words, topography variables primarily affect water runoff and influence 

microclimate, which in turn influences vegetation, having an impact on soil formation. Less 

vegetation, on steeper slopes, affects erosion.  

The main criterion controlling the potential productivity of land globally is climate. 

The primary climate criteria for land assessment were temperature, precipitation, and solar 

radiation (Sys, VanRanst, and Debaveye 1991; IRP 2016). In particular, temperature and 

precipitation and their distribution are the major criteria for differentiation in agro-climatic 

zones. Solar radiation is a natural resource that cannot be changed at any time, and it contributes 

to the intensity of photosynthesis. The cold temperatures of the tundra and alpine areas, and 

less precipitation of semi-arid regions limit vegetation growth, which in turn affects potential 

production of biomass, and influences soil formation and structure. Therefore, the climate is a 

key factor in controlling land potential productivity (Herrick et al. 2016). 

The major soil criteria for land assessment were relatively static properties such as 

texture, and depth (IRP 2016; FAO 1976). For soil texture, clay-rich soil can store large 

amounts of nutrients, while loamy soils are better suited to retain available water for plants, 
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and sandy soils generally have higher water infiltration rates. The soil depth influences the 

land's direct and indirect potential productivity. Very deep soil is more resistant to soil erosion 

than shallow soil. The dynamic properties of soil including humus and soil moisture are 

significant criteria in land assessment. Soil humus is an organic matter layer that originated 

from the decomposition of living organisms by biological processes. It is rich in nutrients and 

its presence improves soil properties. The more humus in fertile soil, the better the nutrient-

rich topsoil and the better the conditions for vegetation growth (Montgomery and Bikle 2021). 

The high content of soil moisture increases soil weathering. However, it increases nutrients in 

the soil and allows for greater biomass production, providing a positive feedback loop that 

increases land productivity. 

Vegetation criteria are important for inland assessment because an area with natural 

vegetation stores rich nutrients. The amount of nutrients stored in vegetation directly depends 

on the vegetation types (Sys, VanRanst, and Debaveye 1991). However, vegetation is basically 

a dynamic feature, and vegetation and its productivity change as the climatic conditions change 

(Hengl et al. 2018). Thus, vegetation has, together with the climate, an important influence on 

the cycling of nutrients, affecting important soil properties that support the potential production 

of the land. Vegetation is useful in the reduction of land degradation (Weissmann and Shnerb 

2014), and for assessing land potential (Herrick et al. 2013).  

As shown, the interaction between physical resources of land has played a special 

role in converting world-sustaining light energy from the sun into life-sustaining nutrient 

energy through cycles of water, energy, and nutrients. Moreover, all topographic, climatic, and 

soil criteria influence water availability for the specific area. 

To summarize this section, soil and climatic variables have been primarily used in the 

land assessment system over the seven decades. According to Young (2000) “recent years, 

justified criticism that soil surveys did not give the information needed for development 

planning at the international level” (Young 2000; McKenzie et al. 2008). As remote sensing 

sensors have evolved over the years, data have become available for highly informative remote 

measurements at different spectral, spatial, and temporal resolutions, which can be used to 

improve of the land assessment criteria. Therefore, achievements of the remote sensing data 

are leading efforts to reappraise criteria of land assessment. 
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1.3. The necessity for assessing land resource potential in Mongolia 

From the overview of the historical development of land assessment the principles, tools, and 

criteria of land assessment are significantly changed at the international level in the last two 

decades. Recently, the integration of land productivity with environmental protection has been 

a major principle in the sustainable use of land resources. Therefore, globally a high priority is 

given to the optimum use of land resources (long-term sustainable use), and enhancing land 

management (conserving for the future generation). Because land resources are universal, they 

provide for the greater part of fiber, ~95% of human food, and all needs for fuel and building 

materials (Young 2000). Most of the developed countries in the world have already accountable 

and efficient policies, assessment systems, and management in place (McKenzie et al. 2008; 

Young 2000). For developing countries, there are many requirements to improve policy, 

assessment systems, and management (Young 2000; McKenzie et al. 2008). For instance, for 

Mongolia, there are several requirements to improve assessment of the potential of land 

resources: 1) paying attention to the long-term sustainable management, environmental 

conservation, and restoration of degraded land instead of increasing the use of land resources; 

2) introduction of innovative techniques to accurately assess land resource potential; 3) 

aligning land use with land potential; 4) improving understanding by the public of the important 

role of land resources; 5) raising awareness of nature conservation among local populations 

and involving them in nature conservation activities; and 6) increasing the capacity to manage 

land resources (awareness of the need to improve land management). 

1.3.1 The necessity for relating land resource potential concerns in Mongolia 

Mongolia (1.56 × 106 km2) is the 18th largest, land-locked country in the world, located in the 

continental temperate zone of the northeastern hemisphere of the globe, and mainly located in 

the desert, with an extremely arid climate and variable topography (Figure 1.1). The climate is 

characterized by a long cold winter and a short dry-hot summer with low precipitation. Annual 

average precipitation is 20-220 mm, and it gradually increases from south to north (IRIMHE 

2021). Approximately 85% of the total precipitation falls in the rainy season (June-August), 

and the remaining months are very dry. The annual average air temperature is around 0.00°C 

(coldest -36.58°C in winter, and warmest 30.62°C in summer) with strong temperature 

gradients (IRIMHE 2021). 65.1% of the territory of Mongolia covers drylands, of which 0.1% 

are hyper-arid, 31.3% arid, and 33.7% semi-arid, and it is ranked 4th overall in Asia (Remus 

2016). The drylands are very fragile and susceptible to global climate variability.  
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72.87% of the territory of Mongolia is used as agricultural land (arable land 0.45%, 

and pasture 72.42%) (NSOM 2022a). In other words, the majority of land resources are used 

for agriculture, including pasture. The main consumers of pasture are five types of livestock 

(sheep, goats, cattle, horses, and camels). One feature of Mongolian livestock husbandry is that 

they feed on rangeland plants all year round and use natural rangeland. Particularly, the major 

land use of drylands (related to water scarcity) is pasture with generally seasonal nomadic 

pastoralism. 

In addition, half of the Mongolian population engages in the livestock husbandry 

sector. Livestock husbandry comprises ~85% of total agricultural products (MoFALI 2021). 

Livestock-derived product exports account for approximately 14.7% of Mongolia’s foreign 

exchange earnings (MC 2022). The cornerstone of the Mongolian economy is land resource-

based livestock pastoralism, which strongly influences the country's social and economic 

development. For Mongolia, livestock is renewable natural capital and is subject to state 

protection under the country’s constitution (Densambuu et al. 2018). However, this renewable 

natural capital (livestock) is strongly dependent on all elements of land resources. 

On the other hand, Mongolia transitioned from a socialist economy to a democratic 

society in 1990. Since the transition to a market economy, Mongolia has experienced 

significant social, economic, and environmental changes. For instance, between 1991 and 2021, 

the total livestock population rose by a factor of 2.63 (Figure 1.2) (NSOM 2022b), while the 

total population increased by 56.6% (Figure 1.3) (NSOM 2022c). Livestock population density, 

per hectare increased from 204 head in 1991 to 614 head in 2021, while the pasture area 

decreased by 11.4% (Figure 1.4). During the same period, the annual mean air temperature 

increased by 1.8°C (Figure 1.5), and the annual mean precipitation decreased by 74 mm (Figure 

1.6). Mining as a component of the gross domestic product (GDP) rose from 9.0% in 2002 to 

22.8% in 2022, while foreign exports rose from 53% to 85.0%, respectively (Byambatsogt 

2017; NSOM 2022d).   

Moreover, land degradation and drought frequency have increased. Specifically, 

according to the fifth nationwide report of land degradation and desertification assessment in 

Mongolia, 76.9% of the territory is affected by degradation, of which 18.6% are severely, and 

4.6% are extremely degraded (IRIMHE 2020). Since 1991, in 11 years, being 1992, 1993, 1994, 

1996, 1997, 2000, 2003, 2007, 2009, 2010, and 2017, partial drought during the growing season 

in Mongolia occurred (Munkhdulam et al. 2022).  
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To summarize this section, Mongolia is suffering the effects of land degradation, and 

desertification caused by overexploitation of pasture, mining, and climate change. The main 

challenge is increasing livestock pressures, which contribute significantly to land degradation 

under the global climate variability and dryness. The main reason for this is the 

mismanagement of agricultural land resources. Moreover, the previous solution relating to 

issues of food shortage and other needs of agriculture was through an increase of land use. 

Every year, there is a decrease in land, therefore, products to provide necessities for humans 

and livestock require increasing the potential production of the land. In other words, when the 

environment is deteriorating and natural resources are becoming scarcer, it is important to 

create sustainable land management that takes into account the interests of the present and the 

future and preserves the ecological balance, while adapting to climate change.  

  

 
Figure 1. 1 Study area and its natural characteristics. (a) Digital Elevation Model (DEM) derived from the Shuttle 

Radar Topography Mission (SRTM) with automatic weather stations (n=63), (b) Köppen climate classification of 

the world (Kottek et al. 2006), (c) estimated annual average air temperature derived from MODIS MOD11A2 (v006) 

(Otgonbayar et al. 2019), (d) annual total precipitation (Fick and Hijmans 2017), (e) average annual NDVI derived 

from MODIS MOD13A2 (v006) for the period 2002-2017, (f) Terrestrial ecoregions of the world (Olson et al. 2001). 
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Therefore, robust information on land resources and their potential is needed for 

policy by state, regional, and local agencies, in the current situation, where the emergence of 

large-scale environmental concerns is possible. This robust information is a prerequisite for 

reasonable decisions on sustainable use and management, which will reduce the risk of mis-

decision-making when the government is accountable and has efficient policies. In addition, 

the inherent land resource is the basis for improving the future productivity of the land. 

Therefore, it is timely to assess land resource potential (land resource, land suitability, and land 

potential) in Mongolia. 

 

Figure 1. 2 Total livestock population for the period 1991–2021 (NSOM 2022b) 

 

 

Figure 1. 3 Total population with urban and rural, and number of households with livestock for the period 1991–

2021 (NSOM 2022c, 2022e). 
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Figure 1. 4 The ratio between the area of pastureland and the number of livestock (NSOM 2022a; NSOM 2022b). 

 

  

  
Figure 1. 5 Annual mean air temperature, °C (top left) for the period 1961-1990, (top right) for the period 1991-

2021. Yearly average temperature (bottom left); yearly average temperature anomalies (bottom right) for the period 

1991-2021. 
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Figure 1. 6 Annual total precipitation, mm: (top left) for the period 1961-1990, (top right) for the period 1991-2021. 

Yearly total precipitation (bottom left); the yearly total precipitation anomalies (bottom right) were derived from 

CRU-TS for the period 1991-2021. 

 

1.3.2 Previous investigations and the necessity of a new technique in Mongolia 

In the 1950s, Mongolia was transformed from traditional pastoralism to a mix of industry, 

intensive livestock, and crop farming (MAS 1990). This was because the Mongolian People's 

Revolutionary Party (MPRP) approved the first “Five-Year Plan” in 1948, to develop the 

national economy based on central planning, with an emphasis on industrialization and 

collectivization of the agricultural sector (MAS 1990). Since the first plan, four additional plans 

were implemented in 1953-1957, 1958-1960, and between 1961 and 1985. Between 1950 and 

1990, three main processes met, being industrialization, collectivization, and crop production. 

Specifically, the first three “Five-Year” plans were directed at developing large-scale industries 

to process agricultural products and natural resources for domestic demands. The 1960 

constitution officially limited private ownership of livestock, abolished private holding, and 

transferred all production to the state. By 1963, the collectivization process was completed, 

and the entire agricultural sector was transferred to the state (MAS 1990).  

Since the 1960s, science-based crop production was developed as an individual 

branch of agriculture (Gungaadash 2009). As a result of scientific and technological 

achievements, Mongolia overcame many technical difficulties related to geography, and 

climate as enormous mechanized farms were established, specializing in the production of 

some vegetables and grains (Neupert and Goldstein 1994). Moreover, four series of programs 
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entitled the “Atar campaign” were implemented for developing crop production in 1959, 1976, 

2008, and 2020. At the same time, the state also paid great attention to the problem of reforming 

livestock production. The widespread development of veterinary services has almost 

completely eradicated previously widespread diseases of livestock (MAS 1990). Beginning in 

the 1970s, formal planning emphasized developing the mining industry. From the second half 

of the 1970s, the mining industry became an essential branch of the export-oriented economy 

(Neupert and Goldstein 1994). 

In 1990, Mongolia completely transitioned to a market economy. The main reason 

was the rigidities imposed on the centrally planned system. After the transition, crop production 

decreased dramatically (the sown area decreased a factor of 3.96 from 846.1 thousand hectares 

in 1989 to 213.5 thousand hectares in 2000), investment in industrial almost stopped, and most 

of the large-scale industries collapsed (unable to obtain raw materials). At that time, the 

realization was that agriculture including nomadic livestock pastoralism, was the main 

cornerstone of Mongolia’s economy. 

To summarize this section, since the 1960s, the utilization of land resources has 

intensively increased in Mongolia. Between 1960 and 1990, attention was paid to 2 

components: the expansion of land for agriculture and the introduction of new technologies. A 

crucial activity of land assessment was the soil survey, which includes systematic investigation, 

description, and mapping. Studies covering large areas were primarily focused on landscape 

basis surveys, and then soil surveys for specific purposes. During this period, many advanced 

techniques, and technologies were introduced into the land assessment system, especially for 

agricultural land suitability assessment. Moreover, the knowledge of land assessment 

consistently rose, and there is a systematic understanding of the distribution of the topography, 

climate, soil, hydrology, and vegetation. Consequent to the land assessment, the thematic map 

of the landscape was processed in a way that emphasized the interactions of the topography, 

climate, soil, hydrology, and vegetation. However, information on the lack of land resource 

potential assessment for Mongolia, and the capacity of the institutions is weak. For instance, 

over the past 7 decades, five nationwide research works have been done related to the 

assessment of land suitability, land resources, and land potential (Table 1.2). In other words, 

there is a lack of research for assessing land resource potential in Mongolia. On the other hand, 

reappraising the suitability, resources, and potential of land originated from the “justified 
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criticism that soil surveys did not give the information needed for development planning at the 

international level” (IRP 2016; Young 2000; FAO 2007).  

 

Table 1. 2 Nationwide research related to land suitability, land resources, and landscape potential 

Period Sources 

1985 
Mijiddorj, S. Comprehensive mapping of the natural resources of the Mongolian People's 

Republic based on satellite data. Doctoral dissertation 

1990 

Enkh-Amgalan, A. Economic assessment of the land resource of the Mongolian People's 

Republic to improve the territorial organization of agricultural production. Doctoral 

dissertation 

1990 

Jigj, S. Regional characteristics of the impact of agricultural activities on nature, the scientific 

basis of appropriate utilization of natural resources of the Mongolian People's Republic. 

Doctoral dissertation 

2015 

Munkhdulam, O., Jargaltulga, Ts., Mygmarjav, M. and Jigjidsuren, S. Assessment of land use 

suitability in Mongolia (cropland, pastureland, forest, urban, preserve and conserve, tourism 

and recreation, road and line network). Scientific report sponsored by Agency of 

Administration of Land Affair, Geodesy and Cartography of Mongolia 

2020 

Avirmed, E., Oyungerel, B., Renchinmyadag, T., Munkhdulam, O., Bayanjargal, B., Batnyam, 

Ts., Davaagatan, T., Purevsuren, M., Erdenesukh, S., Davaadorj, D., Sersmaa, J. and 

Dorjnamjaa, D. Landscape ecological potential of Mongolia. Book financed by Mongolian 

Science and Technology Foundation 

 

Moreover, in the last two decades, robust information (data and knowledge) about 

land resource potential have been needed for policies, planning, and regulations related to 

sustainable land use, and management. Any decision made without reliable information is 

causing inefficient application of land resources, and land degradation (McKenzie et al. 2008). 

Therefore, to improve decision-making, management is needed to inform on the characteristics 

of land resources, and how they respond to disturbances. To obtain this necessary information, 

assessing, mapping, and modeling land resource potential is a necessity. Moreover, the 

assessment of land resource potential is not concerned with just physical resources (Young 

2000). It represents the problem of sustainable use of land and resource management forming 

from the interaction between humans and the environment (IRP 2016; McKenzie et al. 2008; 

FAO 2007; FAO 1976).  

Therefore, issues of land resource potential are sustainable use of resources and 

conservation for the next generation. Furthermore, the assessment of land resource potential 
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allows for characterizing the relatively stable properties of land (e.g., topography, climate, soil, 

and vegetation) in a given area, to figure out its resources, suitability, and potential. Therefore, 

this investigation is important to improve Mongolia's ability to conserve the environment, 

manage land resources, and support the implementation of priority environment programs. In 

the future, to avoid making costly mistakes (for instance, caused by mismanagement) and to 

increase the productivity of land, the assessment of land resource potential in Mongolia 

including land suitability, land resources, and land potential is necessary.  

On the other hand, in Mongolia, two nationwide monitoring networks were 

established for the assessment, monitoring, and management of pasture land health: The 

National Agency for Meteorology, and Environment Monitoring (NAMEM) in 2011, and the 

Agency for Land Management, Geodesy and Cartography (ALMGaC) in 2017. 4200 of these 

5716 monitoring sites are the responsibility of ALMGaC. It is possible to use these sites’ data 

as reference data for training machine learning models. Moreover, most of the previous studies 

related to land assessment used small and medium-scale thematic maps. Remote sensing data 

provides a timely and accurate map of the land, as it allows for gathering information over 

large areas with regularity. Therefore, a recent investigation of land resource potential can 

evolve into integrated systems of multi-variable and multi-process that mix monitoring, 

assessment, mapping, and modeling. These changes are leading to reappraising techniques of 

land assessment. The assessment of land resource potential in Mongolia using new advanced 

techniques and time series remote sensing datasets will contribute to sustainably increasing 

agricultural productivity while adapting to climate variability. The results will be additionally 

used as baseline information for environmentally sustainable development in Mongolia. 

 

1.4 The objective and organization of this thesis  

The main objective of the research is to assess and model land resource potential throughout 

Mongolia using state-of-the-art machine learning techniques and remote sensing data. To 

achieve the objective, this study examines multiple perspectives of land resource potential such 

as land suitability, land resources, and land potential, focusing on developing robust models. 

Specifically, the investigation is to assess land resource potential in Mongolia for different 

purposes. Previously, only small-scale studies were done so far, with non-optimum use of EO 

and machine learning. This investigation seeks to find out if the land resource potential of a 

large country like Mongolia can be consistently assessed using machine learning techniques 
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and remote sensing data, which the generation of wall-to-wall maps of important indicators, 

such as land suitability, land resources, and land potential by the machine learning techniques. 

The potential of the newest generation of Earth Observation (EO) satellites is evaluated while 

leveraging modern machine learning techniques for information extraction. These validations 

were achieved in each stage. It is organized as follows.  

Chapter 1 introduces the principles, historical development, and technological 

achievements of land assessment. Moreover, the main issues of land assessment and the 

necessity for assessing land resource potential in Mongolia are described. 

Chapter 2 investigates land suitability for agriculture cropland in Mongolia. The main 

goal is to detect new crop areas with enough capacity for cultivation across the entirety of 

Mongolia. For the analysis, various sources of data (thematic maps and remote sensing data) 

and conventional research techniques were used. 

Chapter 3 addressed the development of a robust methodology to assess pasture 

biomass across the huge land mass of Mongolia. Two models were compared: the non-linear 

machine learning regression, and the classical linear regression. For the analysis, single-source 

remote sensing data at a high resolution of 30 m, and reference data from a field survey of 553 

sites were used.  

Chapter 4 addressed the development of a robust statistical model to estimate 

climatologies of monthly average near-surface air temperature over Mongolia. The machine 

learning regression model was analyzed by linking a time series of remote sensing data, and 

reference data of 8544 points from 63 automatic weather station data. 

Chapter 5 addressed the estimation of important bioclimatic, and climatic variables 

in Mongolia using a time series of two Earth Observation (EO) datasets. It concerns the use of 

the estimated bioclimatic and climatic variables in decision-making sustainable land 

management and environmental conservation while adapting to climate variability. 

Chapter 6 addressed developing a robust methodology to assess land resource 

potential for agricultural land in Mongolia. Four different regression models were analyzed and 

linked with a time series of environmental variables, and reference data from a field survey of 

12988 sites. Using the model a spatial distribution map of the land resource potential was 

developed, and consequently compared with current pasture use. 

The final chapter provides a general conclusion based on findings from the 

investigation, and future research direction. 
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CHAPTER 2. Land suitability evaluation for cropland in Mongolia using the spatial 

MCDM method and GIS-based AHP  

2.1 Introduction 

Science-based agricultural production has been developing intensively in Mongolia since 1960 

(Gungaadorj 2009). Between 1960 and 1989, the total sown area increased from 267.1 to 846.1 

thousand hectares. From 1989 the total sown area fell, reaching 165.0 thousand hectares in 

2006 (NSOM 2016). The sown areas rose steadily by 440.6 thousand hectares between the 

years 2006 and 2016. However, cropland remains 405.5 thousand hectares less than in 1989. 

In this same period, the total population increased 3.19 times while the amount of sown area 

declined by half as compared with the population growth.  

Moreover, there is a significant difference in vegetable consumption between the 

urban and rural populations. Urban population vegetable consumption is double that of the 

rural population (NSC 2016). In 1960, 40.2% of the total population lived in settled areas. This 

increased to 66.4% by 2016. Population increase coupled with consumption increase resulted 

in an intensified demand for food. On the other hand, agricultural products, especially wheat 

and potato production, increased as a result of the national government crop development 

program (“ATAR III campaign”) in 2008. Nowadays, potato and wheat consumption needs 

can be fulfilled by domestic production. However, of the total vegetable consumption (not 

including potatoes), 40-45% were imported (MC 2016).  

The main vegetable imports (e.g., onion, garlic, cabbage, turnips, and other root seed 

vegetables) increased from 5438.4 tons in 1995 to 64107 tons in 2016, an increase of 11.7 times. 

Of these, 96-99% were imported from China. Mongolia remains strongly dependent on food 

security from neighboring countries. In addition, the soils of currently cultivated areas are 

degrading. The country is facing challenges (especially from local governments and 

community groups) to identify new crop areas with enough capacity for cultivation.  

We previously studied this topic as “Land suitability evaluation for cropland based 

on GIS between 2014 and 2016”, which was funded by the Mongolian Agency of 

Administration of Land Affairs, Geodesy and Cartography. In our preliminary study, used 

small and medium-scale digital thematic maps to analyze and assess land suitability for 

cropland. During the study, it was recognized that there was a need to improve the accuracy of 

input data using high-resolution satellite imagery for future research (Tsogtbayar and 

Otgonbayar 2016). Agricultural studies have broadly used Geographic Information System 
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(GIS) and Remote Sensing (RS) techniques. RS can provide a timely and accurate picture of 

the agricultural sector, as it is very suitable for gathering information over large areas with 

frequency and regularity (Atzberger 2013). The derived information is used for qualitative and 

quantitative analysis within near real-time production forecasts and for anticipating food 

security problems within the framework of monitoring agriculture.  

The purpose of this study is to identify new crop areas with enough capacity for 

cultivation across the entirety of Mongolia. The specific objectives are as follows: 

• Identify a methodology for land suitability evaluation for the cropland. 

• Develop criteria parameters for land suitability evaluation for the cropland.  

• Generate more accurate input data using high-resolution satellite imagery. 

• Generate a map of land suitability for cropland in Mongolia 

 

2.2 Methodology and data 

2.2.1 Methodology 

A combination of Boolean and Fuzzy logic theory, the spatial Multi-Criteria Decision Making 

(MCDM) method, Analytical Hierarchy Processes (AHP), and expert knowledge analysis were 

used. The general procedure for land suitability evaluation had several phases. The first phase 

was to define the objectives. The second phase was to select criteria, for which there are two 

kinds of factors and constraints (Eastman et al. 1995). The third phase was the standardization 

of the criteria; the fourth phase assessed the criteria ranking and weights; the fifth phase was 

to overlap the map layers; the sixth phase was accuracy assessment.  

Creation of constraint map using Boolean logic theory 

Constraints can be expressed in the form of Boolean logic (Eastman et al. 1995). Boolean logic 

can have only two outcomes, true (1) or false (0). A constraint factor is a discrete metric that 

can represent a true or false condition (Deng et al. 2014). Zero values are prohibited conditions, 

and 1 value is a permitted condition. Constraints in this particular study often include legal 

restrictions. These are current land-use policy restrictions. Condition assessments and 

prohibitions can be factors as well. The Boolean logic method must assume there is a definite 

cut-off point because there is no flexibility for assessing real uncertainty (Burrough 1992). 

Boolean logic cannot be used when environmental and socioeconomic factors are imprecise 

and incomplete. Under uncertain situations, Fuzzy (probabilistic) logic comes in handy 

(Prakash 2003). 
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Creation of factor map using spatial MCDM method 

A factor is a criterion that can determine the suitability of specific outcomes for activities under 

consideration (Eastman et al. 1995). In this study, the spatial MCDM method was used in the 

creation of factor maps. Suitability levels for each of the factors were defined; these levels were 

used as a base to generate the factor maps (Ceballos-Silva and López-Blanco 2003). Land 

suitability evaluation is expressed by qualitative and quantitative parameters. This section used 

a combination of the spatial MCDM and the Fuzzy method. The main objective of land 

suitability analysis is to select the most optimal areas for a specific purpose. Land suitability 

analysis is a multi-criteria decision-making process (Parkash 2003). Land suitability analysis 

is an interdisciplinary approach that includes information from different factors such as 

environmental and socio-economic. A main advantage of the MCDM procedure is the decision 

rule relationship between the input and output map. The MCDM method is divided into 4 

groups and 7 classes (Malczewski 1999): Multi-attribute and multi-objective decision-making 

methods based on an objective or attribute; individual and group decision-making methods 

based on the number of people involved in the decision-making process; decision-making 

under certainty and uncertainty methods based on the situation under which decision-making 

is being done and the nature of the criteria and spatial MCDM based on vector and raster data. 

From these, multi-attribute, multi-objective, and spatial multi-criteria decision-

making methods have been widely used in land-use suitability analysis. The multi-objective 

methods are based on mathematical programming models, and the multi-attribute methods are 

data-oriented (Malczewski 2004). Spatial MCDM is a process where geographical data can be 

combined and transformed into a decision (Parkash 2003). The main purpose of the spatial 

MCDM is to solve spatial decision-making problems originating from multiple criteria. The 

integration of spatial MCDM techniques with GIS has considerably advanced conventional 

map overlay approaches to land-use suitability analysis (Parkash 2003; Malczewski 2004; 

Carver 1991; Banai 1993; Eastman 1997; Thrill 2000). Land suitability analysis involves the 

incorporation of expert knowledge at various levels of decision-making. Experts, however, 

cannot be certain all the time, there is still uncertainty and imprecision. The MCDM method 

contains many different theories on how to improve the algorithm for processing imprecise or 

uncertain information, such as Fuzzy set theory, Elimination and Choice Expressing Reality III 

(ELECTRE III), Preference Ranking Organization Method for Enrichment Evaluation 

(PROMOTHEE), Multi-Attribute Utility Theory (MAUT), Technique for Order by Similarly 
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to Ideal Solution (TOPSIS) and Random Set Theory (RST). Many studies have recommended 

such as Eastman (1995), Sui (1994), Chen et al (2008), Dermirel, Demirel, and Kahraman 

(2009), Zhang and Achari (2010), Zarghami, Szidarovszky, and Ardakanian (2008), and 

Mosadeghi et al (2013). The fuzzy set theory technique is one of the most commonly used 

techniques for improving upon imprecise, incomplete, and vague information (McBratney and 

Odeh 1997). Fuzzy logic is like Boolean logic but fuzzier. Mathematician Lofti Zadeh 

presented a fuzzy set theory in 1965, illustrating a mathematically meaningful method to 

quantify the degree of uncertainty and imprecision of non-discrete data (Collins, Steiner, and 

Rushman 2001). The main point was that fuzzy data are obtained using an array of fuzzy 

membership functions with values that range from “0” to “1” (Zadeh 1965). 

Standardization of criteria 

All criteria used in the analysis were measured with different measurement values. Different 

values of criteria needed to be transformed into common values (Ligmann-Zielinska 2013). To 

implement this objective, used a criteria standardization procedure. Here used a simple linear 

scaling equation based on the fuzzy set method. 

𝐸𝑖 = 
𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                                 (1) 

Where: 𝐸𝑖 is the value of standardized in pixel i, 𝑋𝑚𝑖𝑛 is the minimum value of the criteria, 

𝑋𝑚𝑎𝑥 is the maximum value. 

Assessing ranking and weights of criteria 

In land suitability analysis, there must be an evaluation that ranks the relative importance of 

the criteria. In this evaluation, many different factors such as geophysical, biophysical, climate, 

and socioeconomic were ranked. Ranked each criterion based on conclusions from the 

literature from professional experts. Next, came the important step of determining the 

weighting values for each criterion. There are many different approaches for assessing the 

weight of criteria based on MCDM techniques such as ELECTRE III (Joerin, Thériault, and 

Musy 2001), Ordered Weighted Averaging (OWA) (Malczewski 2006), Compromise 

Programming (CP) (Baja, Chapman, and Dragovich 2006), AHP (Saaty 1980; Wu 1998; Saaty 

2008) and Fuzzy AHP (Prakash 2003; Mosadeghi et al. 2013), Sensitivity analysis (Chen, Yu, 

and Khan 2013) includes 3 different approaches: One-Dimensional Weights (ODW), Random 

Weights (RW), and Selected Weights (SW) (Pascual et al. 2010). From these, the most widely 

used method in spatial multi-criteria decision analysis for land suitability evaluation is the GIS-
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based AHP because it calculates weight values associated with criteria maps through a pairwise 

comparison matrix. Moreover, the weighting values of each of the criteria can be compared 

against each other with an index consistency. AHP has been calculated by weighting values of 

the criteria, and it is expressed with the following equation. 

𝑊𝑖𝑗 =
∑𝑋(𝑖𝑗 )

𝑛
                                                             (2) 

Where: Xij- the normalized value of a pairwise comparison matrix; n- the order of the matrix; 

Wij – the weight of the criteria. The Consistency Ratio (CR) indicates the probability, and that 

the matrix ratings were randomly generated. The consistency of the pairwise comparison 

matrix is expressed by the consistency ratio index. When the CR exceeds 0.1 the weighting 

value is disagreeable, and when the index value is estimated below 0.1, the weighting value is 

agreeable. 

                                                                       𝐶𝑅 =
𝐶𝐼

𝑅𝐼
                                                             (3) 

Where: CI- consistency index; RI-random index; CR- consistency ratio. Herein, calculating 

the consistency index was applied to the following common equation.   

𝐶𝐼 =
  𝜆𝑚𝑎𝑥 –𝑛

𝑛−1
                                                                      (4)   

Where: CI- consistency index; 𝜆max- maximum eigenvalue, and n is the order of the matrix 

 

Overlap of map layers 

After describing the weights values of the criteria concerning their importance for land 

suitability analysis, all criteria maps have been overlaid using the suitability index. The formula 

used for calculating the suitability index of each layer was as follows: 

𝑆𝑖 = ∑𝑋𝑖 ∗ 𝑊𝑖                                                                       (5)  

Where, Xi- values of each criterion; Wi - weight values of each criterion; Si- suitability index 

 

2.2.2 Data  

In this research, various datasets were used such as satellite data of the Landsat 8, MODIS, 

Shuttle Radar Topographic Mission (SRTM), archive, and field survey data. Archived soil 

survey data obtained from the Agency of Administration of Land Affair, Geodesy and 

Cartography (AALAGG), biomass and climate data obtained from the Information and 

Research Institute of Meteorology, Hydrology, and Environment (IRIMHE), and thematic 
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maps of land use and soil obtained from Institute of Geography and Geoecology (IGG) of the 

Mongolian Academy of Sciences (MAS), and  AALAGG (Table 2.1).  

 

Table 2. 1 Details of used data 

Type of data Path/Row Bands Resolution, m Date Source 

Raster data 

Landsat 8 123-143/24-31 2-7 30 

Between on 1st 

June and 31st 

August, 2016 

www.glovis.usgs.gov 

http//earthexplorer.gov 

SRTM DEM 123-143/24-31 1 30, 90 Version 5.0 http//earthexplorer.gov 

MODIS 

product 

23-25/03-04 

26/04 

MOD13 250 Average 16 days, 

from 1st June to 

31st August 2000-

2016  

 

www.ipdaac.usgs.gov 

 

MOD15 500 

MOD17 1000 

Vector data 

Land use data AALAGC 

River Network IGG, MAS 

Soil humus, soil stone, soil pH IGG, MAS 

Distribution permafrost IGG, MAS 

Field-measured data 

Biomass data 969 sites 1 hectare 100centner/ha 1st August 2016  IRIMHE 

Field survey 

soil data 
137 sites 501 plots 1:1 cm 2013-2016 AALAGC 

Meteorological data 

Mean the temperature, and total precipitation in the summer season IRIMHE 

 

2.2.3 Developed criteria parameters for land suitability evaluation for agricultural cropland 

For the analysis, 6 main factors and 17 criteria for land suitability evaluation for agricultural 

cropland were developed. A criteria evaluation schema was then developed based on our own, 

and other countries’ practices, literature, and expert knowledge (Table 2.2, and Table 2.3). The 

criteria evaluation was divided into two types such as multi-variables (factor) and constraint 

criteria parameters. A constraint is restraint criteria and it serves to limit the alternative. The 

constraint can also be often represented the legal restriction. That will be the decision based on 

the current land-use policy. It can apply for land use constraints condition assessment such as 

determined by the sum of factors prohibiting the use.  

In this study, 9 constraints have been chosen and there are obtained range values 0 

and 1. The land use constraints condition assessment is determined by the sum of factors 

prohibiting the use. The constraint factor assessment of land use is a true or false condition 

representation. Zero value is impossible, and 1 value is possible. In this study, a combination 

of constraint and factor analysis methods were used. There were nine constraint factors and 17 

criteria factors. All constraints can be represented with values of 0 or 1. Suitability levels 

http://www.glovis.usgs.gov/
http://www.ipdaac.usgs.gov/
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between 0 and 5 were obtained for each of the factors. The levels were 5-highly suitable, 4 

suitable, 3-moderately suitable, 2 unsuitable, and l-highly unsuitable (Table 2.2, and Table 2.3). 

 

Table 2. 2 Evaluation of the multi-criteria parameters 

 

 

Table 2. 3 Evaluation of the constraint criteria parameters 
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2.3. Result 

2.3.1 Result of constraint factor analysis based on the Boolean logic theory 

Assessment of the land use constraint conditions was determined by the sum of factors 

restricting land usage. The constraint factor assessment of land use is represented by a true or 

false condition. A “zero” value means impossible, and a “one” value means possible. We 

defined the forest, urban area, roads, high-voltage electricity transmission network areas, 

mining areas, historical and cultural monument areas, archaeological sites, rivers, lakes, springs, 

wells, and water points (near to water reserve, but not in the buffer zone) as completely 

unsuitable for cropland based on current land-use policy in Mongolia. Using the weighted 

linear combination method all constraint factors were combined. The analysis demonstrated a 

31.2% constraint factor for the entirety of Mongolia (Figure 2.1). 

 

Figure 2. 1 Land use constraint condition evaluation (Boolean map method). 

 

2.3.2 Result of factor analysis based on the spatial MCDM method 

A comprehensive analysis of the study area used six major factors (topography, soil, vegetation, 

agro-climate, hydrology, and socio-economic) for land suitability evaluation at the primary 

level. There were a different number of criteria under each category totaling 22 at the secondary 

level (Table 2.2, column 2). In this analysis, 5 factors and 17 criteria were applied. The 

topography factor was important for maintaining slope stability and was critical to the 

distribution of other variables at a local scale (e.g., a steep terrain should not be tilled to prevent 
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soil erosion). Soil governed the type of vegetation that could grow most productively in a given 

area, and vegetation (e.g., its presence and health conditions) showed whether the land could 

be used productively. The agro-climatic factor was important because it affected the growth of 

vegetation and crops. The hydrology determined the amount of water available for plant growth. 

The role of these factors in the environment varied with land cover. Therefore, due to changing 

dominance in different areas, the same environmental factors could have dissimilar influences. 

Figure 2.2 shows the suitability value maps for 17 criteria, which represent the distribution of 

the suitability values within the study area using a continuous scale with values ranging from 

low to high. 

 

 

Figure 2. 2 The main factors used in cropland suitability evaluation 
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2.3.3 Result of ranking and weights analysis of the criteria based on the AHP 

Table 2.4 shows the ranking of 17 factors based on a literature review and expert consultations, 

with the weights calculated using AHP based on GIS. The study has estimated a CR= 0.089, 

suggesting that there was a reasonable level of consistency in judgment. 

 

Table 2. 4 Defined ranking and weights of the criteria 

 

 

2.3.4 Result of map layer overlay analysis based on suitability index 

After weighing the importance of different criteria for land suitability analysis, seventeen 

criteria maps were overlaid using the suitability index.  

𝑆𝑖 =0.142*S+0.030*E+0.142*H+0.021*OC+0.097*T+0.014*P+0.014*SS+0.0142*A+0.066N+0.045

*L+0.030*G+0.097*HT+0.021*SR+0.045MT+0.069*R+0.008*DP+0.011*M 

The results of the analysis show that 18.8% of the area studied was highly suitable, 20.2% was 

suitable, 19.0% was moderately suitable, 22.6% was unsuitable, and 19.3% was highly 

unsuitable (Figure 2.3). The results of the integrated assessment of constraint and factor 

analysis are shown in Figure 2.4, and Table 2.5. The integrated assessment shows that 10.1% 

of the area covered was highly suitable, 14.0% suitable, 15.5% moderately suitable, 16.3% 

unsuitable, 12.9% highly unsuitable and 31.2% was the constraint area. The results were then 

compared with the current extent of sown area, and the results are shown in Figure 2.5.  
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Figure 2. 3 Suitable sites for cropland development (Multi-criteria factor analysis) 

 

 

Figure 2. 4 Suitability classification map for cropland in Mongolia. 

 

Table 2. 5 Suitability classification results for cropland in Mongolia 
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Figure 2. 5 Evaluation validation compared with the current extent of sown area 

 

2.4 Conclusion 

Since 1960, the method of wholesale selection was used for cropland areas. This was conducted 

based on a few parameters such as the general condition of the weather, the natural landscape, 

and the content of the soil. Our study, on the other hand, evaluated the extent of cropland in 

Mongolia, examining the results of a land suitability multi-criteria evaluation based on multiple 

factors such as topography, soil, vegetation, agro-climatic, hydrology, and constraints. 

Integrated assessment of constraint and factor analyses showed that 10.1% of the study area is 

highly suitable, 14.0% suitable, 15.5% moderately suitable, 16.3% unsuitable, and 12.9% 

highly unsuitable for cropland, with 31.2% as the constraint area. As shown in the results land 

suitability evaluation for cropland is possible using GIS and remote sensing technology based 

on a combination of multi-criteria decision output and matrix. The abovementioned method of 

land suitability evaluation for cropland can be used to save time for land management and it 

allows for the possibility of justifying policy decisions with science. 
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CHAPTER 3. Estimation of pasture biomass in Mongolia using Partial Least Squares 

(PLS) and Random Forest (RF) regression models and Landsat 8 imagery 

3.1 Introduction 

The rational use of pastures as a source of feed is a vital issue for the livestock industry in many 

countries around the world. For Mongolia, which is heavily reliant on natural pastures, it is 

important to use pastures sustainably, while minimizing adverse effects on predominantly 

fodder plants by the local carrying capacity. As a function of prevailing weather conditions, 

pasture biomass in Mongolia varies widely every year, complicating its management.  

Pasture biomass-here defined as the amount of green mass produced in a year 

(Khosbayar and Narantuya 2014) - is one of the most essential environmental factors in animal 

husbandry, and additionally influences environmental processes such as the hydrological cycle, 

as well as soil erosion and degradation, especially in semi-arid areas. Consequently, biomass 

estimation in agroecosystems is important to understand its role in carbon exchange (Abdullah 

et al. 2011). Moreover, grasslands are an indispensable terrestrial ecosystem for maintaining 

the ecological balance of arid and semi-arid regions under global climate change (Wang et al. 

2017). Considering the ecological importance of pastures, the generation of accurate pasture 

biomass maps is essential (Tserendash et al. 2000). 

To determine livestock carrying capacity, planners must know the period for pasture 

usage, the area of pasture, its actual biomass, and the amount of grass consumed (Tserendash 

and Altanzul 2013). Of these information needs, pasture biomass is the most important. Only 

by accurately estimating pasture biomass and its spatial distribution is it possible to accurately 

identify the livestock carrying capacity in different natural zones. At the same time, such 

information allows decision-makers to set pasture use fees. 

Given the importance of accurate biomass information, there is a great need for the 

development of accurate and transferable methods for biomass estimation (Eisfelder et al. 

2014). Ideally, such methods should be reliable and applicable to large areas. Since the early 

1980s, several biomass estimation methods have been developed based on Earth Observation 

(EO) data (Santos et al. 2002; Wylie et al. 2002; Ullah et al. 2012; Ramoelo et al. 2015; Liang 

et al. 2016; Wang et al. 2017). These various methods show benefits and drawbacks. Empirical 

regressions between biomass and spectral vegetation indices are the most popular and widely 

applied approaches (good examples are found in Cohen et al. 2003; Li et al. 2017). However, 

owing to their empirical nature, these regression models are site and sensor specific, and their 
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performance can be restricted by factors such as differences in surface properties and viewing 

geometry (Baret et al. 1987). Another major disadvantage of vegetation indices is that they 

generally use two or three spectral bands, ignoring potentially important information existing 

within other spectral bands (Atzberger 2013).  

As remote sensing (RS) sensors have evolved over the years, data have become 

available from other sources, such as Light detection and ranging (LIDAR), microwave, and 

hyperspectral sensors. However, due to easy access and low cost, multi-spectral optical data 

are still the most widely used RS source to estimate pasture biomass in different parts of the 

world (Prince 1991; Bella et al. 2004; Numata et al. 2007). Various types of pasture biomass 

estimation techniques have been applied to optical RS data sets with different spatial and 

temporal resolutions (Lu 2006; Kumar et al. 2015; Wang et al. 2017). Dusseux et al (2015) for 

example, estimated grassland biomass in agricultural areas by applying the Normalized 

Difference Vegetation Index (NDVI) and two biophysical variables, the Leaf Area Index (LAI) 

and the Fraction of Vegetation Cover (FVC) on fine resolution Satellite Pour Observation Terra 

(SPOT) 5 images. Zandler, Brenning, and Samimi (2015) demonstrated the application of 

RapidEye data and Landsat 8 imagery for the investigation of total dwarf shrub biomass in arid 

environments. The study applied several modeling approaches such as stepwise, Least 

Absolute Shrinkage and Selection Operator (LASSO), Partial Least Squares (PLS), Ridge 

Regression (RiR), and Random Forest (RF). The best-performing method was the lasso 

regression model. Xie et al (2009) estimated grassland aboveground dry biomass in the 

Xilingol area of Inner Mongolia, China using Artificial Neural Networks (ANN), Multiple 

Linear Regression (MLR), and Landsat Enhanced Thematic Mapper (ETM) imagery. Both 

models achieved reasonable results, but the ANN model provided a more accurate estimation 

than MLR. Mundava et al (2014) applied Landsat Enhanced Thematic Mapper Plus (ETM+) 

to test the relationship between rangeland aboveground biomass and remotely sensed indices 

by measuring dry and green biomass fractions, and they found that single vegetation indices 

were more accurate for green biomass than dry biomass. Ali et al (2017) used moderate-

resolution RS images for biomass estimation by applying MLR, ANN, and an Adaptive Neuro-

Fuzzy Inference System (ANFIS). The model evaluation showed that the ANFIS generated a 

better estimation of biomass compared to the ANN and MLR. 

Machine learning methods, such as ANN and decision trees, use spectral information 

to minimize estimation errors through an adaptive learning process (Li et al. 2017). These 



49 

 

algorithms model complex non-linear relationships, which are then combined with ancillary 

information to find the best solutions (Verrelst et al. 2008). This has led to the widespread use 

of these approaches, in particular when combined with physically based canopy reflectance 

models (Jacquemoud and Baret 1990; Jacquemoud et al. 2000; Fan et al. 2014). However, 

complex parameterization and optimization procedures often prevent the application of such 

models (Atzberger 2004). Concerning physically-based models, the ill-posed nature of model 

inversion is the main limiting factor, often leading to unstable predictions as different canopy 

parameter combinations may yield similar spectral signatures (Combal et al. 2003; Baret and 

Buis 2008; Atzberger and Richter 2012; Verrelst et al. 2015; Verrelst et al. 2018; Verrelst et al. 

2019). 

More recently, the EO community has been exploiting RF models for biomass 

prediction (Wu et al. 2016; Wang et al. 2017). RF is a popular regression tree algorithm for 

multiple regression problems based on uncorrelated decision trees (Breiman 2001). For each 

decision tree, a new bootstrap sample is generated from the original data, and at each decision 

node, the algorithm randomly selects a subset of the predictors as candidates for splitting. To 

get the final regression model, the results of the individual trees are averaged.  

As many spectral variables are often highly correlated with each other, methods from 

chemometrics such as Partial Least Square Regression (PLSR) have also been analyzed in EO 

(Rivera-Caicedo et al. 2017). Similar to classical Principal Component Analysis (PCA), these 

methods permit condensing information into a few uncorrelated latent variables. Compared to 

PCA, however, PLSR minimizes the co-variation to the variable(s) of interest (Maitra and Yan 

2008). PLSR also reduces the negative impact of noise present in the dataset and can be further 

improved by removing highly correlated, as well as low-scoring, predictor variables (Li et al. 

2017).  

As in many other countries of the world, the amount of pasture biomass is very 

important for early drought detection and impact assessment (Kogan et al. 2004). Accurate 

biomass maps are also important for issues such as the hydrological cycle, soil erosion and 

degradation, the desertification process, pasture carrying capacity, pasture monitoring, and 

identification of pasture use fees. Pasture biomass can also be used as preliminary data for 

pasture management decision-making.  As Mongolia has an extensive pastureland, carrying 

millions of livestock, the country needs an advanced technique to predict pasture biomass and 

must use its outcomes for its sustainable development. This research, (1) analysis PLSR and 
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RF models for predicting pasture biomass, to identify a suitable and robust mapping method, 

and (2) applies the best-performing model to generate a spatial distribution map of pasture 

biomass in Mongolia. 

 

3.2 Methodology and data 

3.2.1 Methodology 

Partial least square (PLS) and random forest (RF) models were run in parallel on both, spectral 

reflectances (ρ) and spectral vegetation indices (VIs). This allows the identification of possible 

advantages and disadvantages of each method. It also permits confirmation expected 

advantages of spectral indices over simple reflectance values. The overall workflow is depicted 

in Figure 3.1. PLS regression (PLSR) was chosen because it can be used to predict or analyze 

a set of dependent variables from a set of independent variables or predictors (Abdi 2003). 

PLSR is a good alternative to the more classical MLR and principal component regression 

(PCR) methods because it is more robust and less susceptible to data redundancy and 

overfitting (Geladi and Kowalski 1986). PLSR was originally developed in chemometrics 

dealing with a high number of highly inter-correlating predictor variables (Wold et al. 1984; 

Wold et al. 2001). The method is now widely used by the remote sensing community, both for 

vegetation analysis (Atzberger et al. 2010; Inoue et al. 2012; Laurin et al. 2014) and soil-related 

studies (Rossel et al. 2006; Farifteh et al. 2007; Gomez et al. 2008). RF regression was chosen 

as it is capable of synthesizing regression or classification functions based on discrete or 

continuous data sets (Pal 2005; Mutanga, Adam, and Cho 2012). The main advantages of RF 

are (Immitzer et al. 2016; Hudak et al. 2008; Belgium and Dragut 2016):  

• Variable distributions need not be unimodal or even normally distributed; 

• high-dimensional and highly correlated data sets can be processed efficiently; 

• over-fitting of the models is prevented; 

• performance measures can be computed using only out-of-bag (OOB) data;  

• information on the importance of each input variable for the model is provided. 

The fact that the model performance can be computed along the way using OOB samples is a 

very appealing feature of RF (Genuer et al. 2010; Rodriguez-Galiano et al. 2012). This is 

possible, as not all observations are included in the respective bootstraps of the individual trees. 

The main disadvantage of RF models is that the averaging of the single trees tends to lead to 

an overestimation of small values and an underestimation of high values (Horning 2010; 
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Vanselow and Samimi 2014). Due to the underlying decision trees, it is also not possible for 

RF to predict beyond the range of the input data. Once trained, RF and PLS models were 

assessed against field survey biomass data. In a final step, calibrated models were applied to 

the entire study area to generate high-resolution biomass maps of Mongolia.  

 

Figure 3. 1 General workflow for modeling pasture biomass using spectral predictors from Landsat 8 and for 

generating biomass maps 

 

Statistics 

The two widely used statistics, the coefficient of determination (R2) in equation (1) and the 

root-mean-square error (RMSE) in equation (2), have been calculated to assess the quality of 

the models (Richter et al. 2012). 

𝑅2 = 1 −
∑ (𝑉est

𝑖 − 𝑉̂est)
𝑛
𝑖=1

2

∑ (𝑉est
𝑖 − 𝑉̅est)

𝑛
𝑖=1

2                                                 (1) 

Where 𝑉est
𝑖  is the estimated variables, 𝑉̂est is the average of the estimated variables, and 𝑉̅est is 

the average of the predicted variables.  
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RMSE = √
1

𝑛
∑(𝑉est

𝑖 − 𝑉obs
𝑖 )2

𝑛

𝑖=1

                                             (2) 

Where 𝑉obs
𝑖  is the observed variables, and n is the number of observed variables.   

 

3.2.2 Data 

To develop a robust methodology to estimate pastureland biomass from Landsat 8 data, field-

measured biomass samples were analyzed together with spectral information derived from 

Landsat 8 (Figure 3.2 (a)). The various datasets were acquired during the summer of 2016 

(August) and are specified in Table 3.1. Sampling points are shown in Figure 3.2 (b). The 

mapping was done using Landsat 8 data. Moderate-resolution imaging spectroradiometer 

(MODIS) data was additionally used as a means to check and validate the resulting maps. 

 

Figure 3. 2 (a) Base map Landsat 8 imagery from June to September 2016 with false color composite (Red: Band 

5; Green: Band 4; Blue: Band 3), and Mongolia’s 21 administrative units. Figure 3.2 (b) Sample points (n = 553) for 

which reference biomass information was available. Projection system world geographic system (WGS) 1984, 

central meridian 105 (zone 48), datum WGS1984 in Figure 3.2 (a) – (b). 
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Field data was made available by the Information and Research Institute of Meteorology, 

Hydrology, and Environment (IRIMHE). In Mongolia, IRIMHE is responsible for nationwide 

rangeland monitoring covering 1450 monitoring plots representing all baghs in Mongolia. 

Meteorology technicians in 320 soums collect the primary data yearly at 1450 plots using a 

new (standardized) methodology since 2011. The newly standardized methodology includes 

foliar canopy cover, core species composition, basal gaps of perennial plants, plant height, and 

biomass. Measurement methods include line-point intercept, gap intercept, air-dry biomass at 

1 cm clipping height, and photo points (GGP-SDC 2015). 

 

Table 3. 1 Data characteristics and data sources. The upper section refers to the raster data, while the lower section 

lists the field data. Note that the mapping was done using Landsat 8 data.  

Raster data 

Type of data Band Resolution (m) Path/Row Acquisition date Path/Row Acquisition date Source 

Landsat 8 2 - 7 30 

123/027 23 July 2016 134/025-030 24 June 2016 

www.glovis.

usgs.gov; 

http//earthex
plorer.gov 

124/027-028 25 June 2016 134/025-026 19 Aug 2015 
124/027-028 12 July 2015 135/025 28 Aug 2016 

125/027-028 21 July 2016 135/026-029 12 Aug 2016 

126/025-028 13 Aug 2016 135/030 09 June 2016 
127/025-030 08 Aug 2016 136/024-030 02 July 2016 

128/025-030 27 Aug 2016 136/024-030 30 June 2015 

129/026-030 02 Aug 2016 136/029-030 01 Aug 2015 
129/030 02 Aug 2016 137/024-030 10 Aug 2016 

129/031 15 June 2016 137/024-025 08 Aug 2015 

130/026-030 25Aug 2016 137/026-027 23 Aug 2015 
130/031 09 Aug 2016 138/024-029 18 Sept 2016 

131/025-031 31 July 2016 138/024-029 14 June 2016 

131/025 15 July 2016 138/029 02 Sept 2016 
131/025-027 14 Aug 2015 139/025-029 02 Sept 2016 

132/025-031 07 Aug 2016 139/025-029 23 July 2016 

132/025-031 20 June 2016 139/027-029 24 Aug 2016 
132/025-028 11 Aug 2015 140/025-029 31 Aug 2016 

132/031 23 Aug 2016 140/025-029 28 July 2015 

133/025-031 08 Aug 2016 141/026-028 05 June 2016 
133/025-026 11 July 2015 141/026-028 04 Aug 2015 

133/025-031 07 Aug 2016 142/025-027 13 Aug 2015 

133/025-028 11 July 2015 143/026 01 Aug 2016 

Type of data Product Resolution (m) 
Horizontal and vertical 

title number 
Acquisition date Source 

MODIS MOD17 1000 

     h23v03, h23v04 
     h24v03, h24v04 

     h25v03, h25v04 

     h26v04 

16-day composites, from 1st June to 

31st August 2000-2016 

www.lpdaac

.usgs.gov 

Field data  

Type of data 
Number of 

sites 

Sampling  

size (ha) 
Unit Date Source 

Biomass data 553 1  kg ha-1                         August 2016 IRIMHE 

 

Field survey 

From the IRIMHE field survey, a total of 553 biomass samples were available. The frequency 

distribution of the field-measured biomass for the 553 sites is shown in Figure 3.3. Some 

descriptive statistics for the reference data set are reported in Table 3.2. Biomass from each 

plot at each field was collected, sealed in plastic bags, sent to a meteorological station, and 
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plotted for analysis. In the laboratory, each field-measured biomass was dried, and the dry 

weight was calculated. The dry weight was divided by the surface area of the plot, and then the 

weight was converted to kg ha-1. At the beginning of August 2016, when the data were collected, 

the value of field-measured biomass ranged from 20 to 1000 kg per hectare with a mean 

biomass value of 257 kg ha-1 and a standard deviation of 208 kg ha-1. The left skew of the 

distribution is noted.  

 
Figure 3. 3 Frequency distribution of field-measured biomass samples available for the study and distributed over 

Mongolia (n = 553) 

 

Table 3. 2 Statistical descriptors (number, minimum, maximum, mean, and standard deviation) of the field-

measured (reference) biomass samples as well as the seventeen analyzed spectral indicators and six spectral bands. 

For the abbreviations of spectral indices, the reader is referred to in Table 3.2. 
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Remote Sensing data 

In total, 104 scenes from Landsat 8 satellite were analyzed and processed. Data were 

downloaded from (USGS Earth Explorer 2018), focussing on the period from June to August 

2016 (see Table 3.1). Data were available at a spatial resolution of 30 m and covering six 

spectral bands in the visible, near, and shortwave infrared. Before analysis, the Landsat 8 

imagery was radiometrically and atmospherically corrected. A radiometric correction was 

implemented in ENVI (Environment for Visualizing Images) 5.0 software with the radiometric 

calibration module. Atmospheric correction was implemented with the quantum geographic 

information system (QGIS) 2.18.2 Semi-automatic Classification Plugin (SCP), parameterized 

with a mid-latitude summer, a rural aerosol model, no aerosol retrieval, and 40 km visibility.  

Due to different orbits, sensor overpass times, and locally changing atmospheric 

conditions, the primary difficulty was to harmonize the dataset into a homogeneous image 

mosaic. The mosaic preprocesses (MOSPREP) algorithm with bundle color balancing method 

was used for this purpose (PCI Geomatica 2015a). The bundle color balancing method applies 

a global adjustment of the mean and standard deviation (sigma) of each image using a "block-

bundle" method between it and each of its overlapping images, and then using “dodging points” 

to make smaller local adjustments between pairs of images once they have been mosaicked 

(PCI Geomatica 2015b; 2017). MODIS data (downloaded from Land processes distributed 

active archive center 2018) were used to check the plausibility of the final results. Details about 

this dataset are reported in Table 3.1.  

 

3.2.3 Predictor variables and model development 

A large number of well-known vegetation indices were used to estimate vegetation biomass 

using Landsat 8 imagery. The indices and their formula are listed in Table 3.3. Both model 

types were also run using spectral reflectances (ρ) as inputs. Table 3.4 and Table 3.5 highlight 

the high inter-correlation between the various VIs, respectively, the spectral reflectances. For 

both models (PLSR and RF regression), all 17 indices and all 6 spectral bands were used 

simultaneously to predict field-measured biomass from Landsat 8 data. 
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Table 3. 3 Spectral indices used in this study. G-green wavelength, B-blue wavelength, R-red wavelength, NIR- 

Near-Infrared wavelength, SWIR- Short Wavelength Infrared, α a value of 0.3, a, b, c and d are coefficient where a 

= 1.7149, b = - 0.0157, c = 0.01281, d = - 0.0113. 

Spectral index Abbr Formula Reference 

Green Normalized Difference 
Vegetation Index 

NDVIgreen 
(NIR − 𝐺)

(NIR + 𝐺)
 

(Gitelson et al. 
1996) 

Simple Ratio SR 
NIR

𝑅
 (Jordan 1969) 

Green Chlorophyll Index CLgreen 
NIR

𝑅
− 1 

(Gitelson et al. 
2005) 

Normalized Difference Vegetation 
Index 

NDVI 
(NIR − 𝑅)

(NIR + 𝑅)
 

(Rouse et al.  
1974) 

Enhanced Vegetation Index 1 EVI1 
2.5 ×

(NIR − 𝑅)

(1 + NIR + 6 ×  𝑅 − 7.5 × 𝐵)
 

 

(Liu and Huete 
1995) 

Enhanced Vegetation Index 2 EVI2 2.5 ×
(NIR − 𝑅)

(1 + NIR + 2.4 × 𝑅)
 

(Jiang et al. 
2008) 

Wide Dynamic Range Vegetation 

Index 
WDRVI 

(𝛼 × NIR − 𝑅)

(𝛼 × NIR + 𝑅)
 (Gitelson  2004) 

Green Wide Dynamic Range 

Vegetation Index 
WDRVIgreen 

(𝛼 × NIR − 𝐺)

(𝛼 × NIR + 𝐺) +
(1 − 𝛼)
(1 + 𝛼)

 (Gitelson et al. 

2012) 

Modified Soil Adjusted Vegetation 
Index 2 

MSAVI2 
NIR + 1 − ඥ(2 × NIR + 1)2 − 8 × (NIR − 𝑅)

2
 (Qi et al. 1994) 

Colorations Index CI 
𝑅 − 𝐺

𝑅 + 𝐺
 

(Gallagher et al. 

2004) 

Hue Index HI 
2 × 𝑅 − 𝐺 − 𝐵

𝐺 + 𝐵
 

(Tse-Wei et al. 
2008) 

Brightness Index BI 
ξ𝐺2 + 𝑅2 + NIR2

3
 

(Escadafal and 

Bacha 1996) 

Redness Index RI 
𝑅2

𝐵 + 𝐺
 

(Huete and 

Escadafal 1991) 

Top Grain Size Index GSI 
NIR − 𝐵

NIR + 𝐵 + 𝐺
 

(Xiao et al. 
2006) 

Normalized Difference Water Index NDWI 
NIR − SWIR

NIR + SWIR
 (Gao 1996) 

Moisture Stress Index MSI 
SWIR

NIR
 

(Datt and 
Ravallion. 

1990) 

Soil Organic Carbon SOC 𝐸𝑋𝑃 𝑎 + 𝑏 × 𝑅 + 𝑐 × 𝐺 + 𝑑 × 𝐵 
(Chen et al. 

2000) 

 

 

Table 3. 4 Inter-correlations between spectral indices (n = 553). In the lower triangle, spectral indices with significant 

inter-correlation (e.g., r ≥ 0.90) are highlighted (in gray). For the abbreviations, see Table 3.3. 
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Table 3. 5 Inter-correlation between Landsat 8 reflectances (n = 553). High inter-correlations (r ≥ 0.90) are indicated 

in gray in the lower triangle 

 

 

3.3 Result 

The coefficient of determination (R2) of the four models combining two model types (PLSR 

and RF) and two spectral inputs (VI and ρ) ranged between 0.689 and 0.767 (Table 3.6). The 

corresponding RMSE was in the range of 102.70 kg ha-1 - 103.40 kg ha-1. Overall, the RF model 

combined with spectral indices gave the highest accuracies. With the RF biomass model, R2 of 

0.764 and RMSE of 98.00 kg ha-1 could be obtained. Results for PLSR were similar but with 

slightly lower R2. In general, models involving spectral reflectances as predictor variables 

scored lower than models using spectral indices. While the difference between VIs and ρ was 

relatively small for RF, it was slightly higher for PLSR (Table 3.6). 

 

Table 3. 6 Summary statistics (R2 and RMSE) for multi-variate biomass prediction models (n = 553) involving 

spectral reflectances (ρ), respectively, spectral VI. 

 

 

Concerning the variable importance, the top eight spectral indices (VI) were identical for PLSR 

and RF regression models (Figure 3.4), with only slight variations in the respective rankings. 

The eight most important VIs for both model types were green chlorophyll index (CLgreen), 

simple ratio (SR), wide dynamic range vegetation index (WDRVI), normalized difference 

vegetation index (NDVI), soil organic carbon concentration (SOC), enhanced vegetation index 

(EVI1), modified soil adjusted vegetation index 2 (MSAVI2) and enhanced vegetation index 2 

(EVI2). As the differences between PLSR and RF were only marginal (Table 3.6), used the 

computationally simpler PLS model to produce a biomass map of Mongolia (Figure 3.5).  
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Figure 3. 4 Importance of spectral vegetation indices (VIs) for (a) PLS model, and (b) RF regression model. It is 

noted that the two model types use different methods to quantify the variable importance. 

 

The model is summarized in equation (3), and the scatterplot between the reference and 

modeled biomass is shown in Figure 3.6. 

BM = − 0.331 +  0.415 (CL)green  + 2.125 (NDVI)  +  0.415 (SR)  + 3.860 (EVI)1 

+ 1.987 (WDRVI) + 4.082 (MSAVI)2                                                   (3) 

Where BM is biomass. PLSR is easy to apply to large datasets as it involves only one multi-

variate (linear) model, whereas RF would require the application of 500 decision trees, for each 

30 m pixel of the region of interest. To further check the plausibility of the generated biomass 

map, the modeled biomass values were also compared against the 17-year average gross 

primary production (GPP) product from MODIS (MOD17) at a 1km spatial resolution (Figure 

3.7). 

 

Figure 3. 5 Estimated biomass using Landsat 8 spectral vegetation indices (CLgreen, SR, NDVI, EVI1, WDRVI, and 

MSAVI2) and PLSR model. The resulting map was scaled to bit (0 - 255) 
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The close relation confirms that the modeled spatial pattern in pasture biomass is closely related 

to the GPP product (averaged from June to August), albeit generated at a much higher spatial 

resolution (30 m) compared to the former 1 km. 

 

Figure 3. 6 Modeled versus measured biomass (n = 553) using the PLSR model. R2 was 0.750 and RMSE = 101.10 

kg ha-1. 

 

Figure 3. 7 Comparison estimated biomass values from the PLSR model and 17 years average MODIS vegetation 

product (MOD17) GPP (Kg C (m2)-1). R2 was 0.817 and RMSE = 91.30 kg ha-1. 

 

3.4 Discussion 

This study showed pasture biomass values modeled with RF (R2 = 0.764, RMSE = 98.00  kg 

ha-1) and by PLSR (R2 = 0.750, RMSE = 101.10 kg ha-1). Satellite sensors such as multi-spectral 

imagers, Radio Detection and Ranging (RADAR), and LIDAR provide highly informative 

remote measurements at different spectral, spatial, and temporal resolutions, which can be used 

to estimate biomass in pastures, as well as forests and cropland. Compared to traditional field 

measurement methods, only remote sensing techniques permit the estimation of aboveground 

biomass at coarse to fine scales and over extended spatial extents (Lu 2005). This explains the 

intensive use of remote sensing data for the estimation of pastureland biomass (Prince and 

Tucker 1986; Anderson et al. 1993; Todd et al. 1998; Kogan et al. 2004; Clevers et al. 2007; 

Xie et al. 2009; Ren et al. 2011; Edirisinghe et al. 2011; Xiaoping et al. 2011; Laliberte et al. 
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2011; Eisfelder et al. 2012; Li et al. 2013a; Dusseux et al. 2015; Ali et al. 2017). In these studies, 

various methods such as linear, power, and logistic regression, Multiple Linear Regression 

(MLR), Artificial Neural Network (ANN), Partial Least Square (PLS), Random Forest (RF) 

regression, Support Vector Machine (SVM), and Adaptive Neuro-Fuzzy Inference System 

(ANFIS) were used. These studies found correlations between field-measured biomass and 

different reflectance at various wavelengths, as well as the vegetation indices derived from 

remotely sensed data. For instance, Anderson et al (1993) calculated the relationship between 

the difference (DVI), ratio (RVI), NDVI vegetation indices, and dried green vegetation biomass 

for estimating biomass in semi-arid grassland areas. VIs were compared with ground sample 

estimates using sample point, spectral class, and the greenness strata approach. No strong 

relationship between VIs and dried green biomass was found with the sample point approach 

(NDVI R2 = 0.019, RVI R2 = 0.018, and DVI R2 = 0.018). A positive correlation between VIs 

and dried green biomass was found with the spectral class approach (NDVI R2 = 0.930, RVI 

R2 = 0.960, and DVI R2 = 0.960). A strong correlation between dried green biomass and NDVI 

was observed when the data were combined into greenness strata. Kogan et al (2004) estimated 

pasture biomass in Mongolia using vegetation health indices derived from AVHRR (biomass 

anomaly R2 = 0.658). Clevers et al (2007) calculated grassland biomass values with SVM (R2 

= 0.590, RMSE = 2.10), PLS (R2 = 0.550, RMSE = 2.23), and SLR (R2 = 0.480, RMSE = 2.37), 

respectively. The results indicate that one band in the near-infrared (NIR) region and a spectral 

band in the red-edge region is important for predicting fresh and dry biomass when using a 

vegetation index. Indices based on short-wave infrared bands performed worse. Xie et al (2009) 

Pasture biomass values were estimated using ANN (R2 = 0.817, RMSE = 0.39) and MLR (R2 

= 0.591, RMSE = 0.50). Li et al (2013a) five vegetation indices, plus red (R) and near-infrared 

(NIR) spectral bands derived from an 8-day MODIS product (MOD09Q1) were analyzed as an 

input for three models- MLR, ANN, and ANFIS (Ali et al. 2017). The model evaluation showed 

that the ANFIS (R2 = 0.850, RMSE = 11070.00 kg ha-1) improved the estimation of biomass as 

compared with the ANN and MLR. The results suggested that NDVI, RVI, and MSAVI have 

the best potential to estimate aboveground grassland biomass. Dusseux et al (2015) assessed 

the relationship between 3 variables derived from SPOT imagery and biomass measurement 

for estimating grassland biomass. The results showed an R2 value of 0.680 against 0.300 and 

0.500 for NDVI and FVC respectively. The squared Pearson correlation coefficient between 

observed and estimated biomass using LAI derived from SPOT imagery was 0.730. Li et al 
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(2017) estimated the grassland LAI using the RF approach and Landsat imagery in the meadow 

steppes of Hulunbuir, China. The results showed that the RF parameters have a small effect on 

the performance of RF and the RMSE was 196.00 kg ha-1. 

 

3.5 Conclusion 

In this study, a methodology for estimating pasture biomass using Landsat 8 satellite data and 

field measurements of biomass was developed and evaluated. The analysis focussed on RF and 

PLS regressions. A large number of spectral predictor variables were assessed, including 

fourteen vegetation indices, two moisture indices, and one soil index. We also checked the 

predictive power of the six original spectral reflectances. Reference biomass samples from 553 

sites of a field survey were available for modeling.  

PLS regression analysis showed that a high correlation between biomass and Landsat 

indices can be obtained. Statistics between measured and modeled biomass indicated a good 

accuracy (R2 = 0.750 and RMSE = 101.10 kg ha-1). RF regression gave similar results, with a 

slightly higher correlation between biomass and spectral vegetation indices, yielding R2 = 

0.764 and RMSE = 98.00 kg ha-1. The four most important spectral indices for both models 

were CLgreen, SR, WDRVI, and EVI1. 

Compared to the spectral indices, Landsat’s spectral reflectances were much less 

successful when used in the PLS modeling, and slightly less predictive in the RF model. This 

confirms that spectral indices provide a simple, yet powerful, way to reduce perturbing effects 

due to, for example, scene illumination and soil brightness. By combining several spectral 

indices in one model, their specific contribution and sensitivity can be leveraged, provided that 

the models used can cope efficiently with inevitable highly inter-correlated predictor variables. 

Both, PLSR and RF are robust against well-known correlations between various spectral 

indices. 

Based on the optimum PLSR model, a spatial distribution map of pasture biomass in 

Mongolia was developed. The final map was produced at a spatial resolution of 30 m and 

depicts the biomass distribution around August 2016. The PLSR model was preferred for this 

task, as it is computationally much simpler compared to the application of a large number of 

decision trees involved in RF modeling. A comparison of the obtained biomass map against a 

17-year average MODIS GPP products at 1km spatial resolution showed a good correlation, 

indicating that detailed biomass products can be generated even for very large areas.  
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CHAPTER 4. Estimation of climatologies of average monthly air temperature over 

Mongolia using MODIS Land Surface Temperature (LST) time series and machine 

learning techniques 

4.1 Introduction 

Near-surface air temperature (Ta) is a key descriptor of the climate (Nieto et al. 2011). Ta is a 

critical variable to the effective understanding of the many physical and biological processes 

between the atmosphere and land systems (Shamir and Georgakakos 2014; Benali et al. 2012; 

Stisen et al. 2007) because it regulates many land surface processes such as photosynthesis, 

respiration, and evaporation (Prihodko and Goward 1997). As air temperature influences nearly 

all biotic processes (Hooker, Duveiller, and Cescatti 2018), the climatologies of Ta also permit 

a good characterization of terrestrial environmental conditions (Prihodko and Goward 1997; 

Peón, Recondo, and Calleja 2014). As this variable can change quickly over space, cost-

efficient mapping procedures are needed that can depict Ta using high spatial resolution.  

Since the early 1980s, various interpolation methods have been used to estimate Ta 

has given adequate sample points (Lam 1983; Thiébaux 1991). The literature shows that the 

most common interpolation techniques are global interpolators, thin plate smoothing splines 

and different forms of kriging (Ishida and Kawashima 1993; Hutchinson 1983), inverse 

distance weighting (Willmott et al. 1985), and climatologically aided interpolation (Willmott 

et al. 1995). In the comparative study of Burrough, McDonnell, and Lloyd (2015), most 

interpolation methods gave similar results. However, interpolation errors typically range 

between 1 and 3°C (Mostovoy et al. 2006; Vogt, Viau, and Paquet 1997) depending on the 

spatial and temporal resolution of recorded Ta data and the density of the station network 

(Vancutsem et al. 2010). 

Direct measurements of Ta at a height of 2 m above ground are only available from 

a limited number of meteorological stations. In many cases such as Mongolia, the spatial 

coverage of these measurements is inadequate; in addition, the typical Ta time series comes 

with many missing values (Hooker, Duveiller, and Cescatti 2018). On the contrary, satellite-

derived Land Surface Temperature (LST) data are continuous in both spatial–temporal 

coverages and are relatively inexpensive. However, the satellite does not directly measure Ta 

but only the LST. Based on the physical linkage between LST and Ta, several authors have 

offered methods to estimate Ta using remote sensing satellite data (Prihodko and Goward 1997; 

Dash et al. 2002; Oke 1988).  
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During past decades, a large body of research has been collected regarding the 

retrieval of LST from satellite-based thermal infrared (TIR) data (Chatterjee et al. 2017), in 

particular, that related to a better understanding of emissivity and atmospheric effects (Dash et 

al. 2002; Li et al. 2013b; Prata et al. 1995). As a result, LST can be retrieved nowadays 

relatively accurately from remotely sensed TIR data (Cresswell et al. 1999). Several studies 

have demonstrated that Ta and LST data are highly correlated (Stoll and Brazel 1992). 

However, as expected, large differences have been noticed (Garand, Buehner, and Wagneur 

2004) which are related, for example, to physical properties and atmospheric conditions 

(Dickinson 1983; Jin and Dickinson 2010). Three major approaches have been used to estimate 

Ta from LST data (Zakšek and Schroedter-Homscheidt 2009): 

• Energy-balance parameterization based on thermodynamic approaches (Mostovoy et 

al. 2006; Oke 1988; Sun et al. 2005), 

•  contextual approaches based on temperature–vegetation index relations (TVX) 

(Prihodko and Goward 1997; Zhu, Lu, and Jia 2013; Czajkowski et al. 2000), and 

• Statistical approaches using various forms of regression techniques (Mostovoy et al. 

2006; Vogt, Viau, and Paquet 1997; Cresswell et al. 1999; Kilibarda et al. 2014; Chen 

et al. 2015; Xu, Qin, and Shen 2012; Yan et al. 2009). 

Good exemplary studies estimating air temperatures with MODIS LST products using the 

aforementioned methods can be found for example in Bartkowiak et al (2019),  Lu et al (2018), 

Zhou et al (2017), Janatian et al (2017), Ho et al (2014), Duan et al (2014), and Benali et al 

(2012). 

Within the last two decades, statistical approaches, including simple and advanced 

regression, (e.g., linear and multiple regression, and machine learning techniques) have been 

developed to estimate Ta from Moderate Resolution Imaging Spectroradiometer (MODIS) 

LST products with varying levels of success. More recently, several studies have investigated 

more complex and advanced approaches to estimate Ta from MODIS LST products, such as 

Geographically Weighted Regression (GWR) and Climate Space Weighted Regression 

(CSWR) (Hooker, Duveiller, and Cescatti 2018), Spatiotemporal Regression-Rriging (STRK) 

(Kilibarda et al. 2014), stepwise (Janatian et al. 2017; Noi, Kappas, and Degener 2016), 

Random Forest (RF) (Ho et al. 2014; Noi, Kappas, and Degener 2016; Li and Zha 2019; Yoo 

et al. 2018; Yang, Cai, and Yang 2017; Meyer et al. 2016), Generalized Boosted Model (GBM) 

(Meyer et al. 2016), cubist (Noi, Kappas, and Degener 2016; Meyer et al. 2016), Support 
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Vector Machine (SVM) (Ho et al. 2014), Ordinary Least Squares (OLS) (Ho et al. 2014) and 

M5 model tree (Emamifar, Rahimikhoob, and Noroozi 2013). To ensure high modeling 

accuracy, several papers have highlighted the usefulness of multivariate and non-parametric 

algorithms such as RF and STRK. For instance, Kilibarda et al. (2014) estimated mean, 

maximum, and minimum daily Ta with a spatial resolution of 1 km at a global scale using 

STRK with MODIS 8-day time-series LST products along with elevation, wetness index, and 

geographical location. The performance of STRK to predict Ta from MODIS LST products 

was compared with the performance of the linear regression model. The results indicated that 

the root-mean-square errors (RMSEs) for predicting mean, maximum, and minimum daily Ta 

are ±2°C for areas with a high density of stations and from ±2°C to ±4°C for areas with a coarse 

station density. The lowest accuracy was 6°C in Antarctica and at locations with high altitudes. 

Yoo et al. (2018) estimated maximum and minimum daily Ta in two megacities using LST data 

from MODIS Terra/Aqua and seven auxiliary variables based on the RF machine learning 

method, resulting in an RMSE of 1.1°C and 1.2°C for maximum and minimum Ta, respectively, 

in Seoul, and an RMSE of 1.7°C and 1.2°C for maximum and minimum Ta, respectively, in 

Los Angeles. Several authors have concluded that machine learning techniques perform better 

than more conventional methods which provide multi-variables and nonlinear and 

nonparametric regression and classification (Janatian et al. 2017; Ho et al. 2014; Yoo et al. 

2018; Meyer et al. 2016; Zhang et al. 2016; Keramitsoglou et al. 2016). Machine learning 

algorithms are particularly useful for cases where no deterministic model is available to solve 

the problem. Our research objective was to develop a robust empirical model to estimate 

climatologies of average monthly Ta across Mongolia at 1 km spatial resolution using time 

series of MODIS Terra LST products, terrain parameters (elevation, slope, and aspect), and 

other ancillary information. 

 

4.2 Methodology and data 

4.2.1 Methodology 

RF regression 

The well-known RF regression (RFR) method (Li and Zha 2019; Yang, Cai, and Yang 2017) 

was chosen as the main approach to model the relation between our response variable (Ta) and 

the predictor variables listed in Tables 4.1 and 4.2 (LST MODIS products plus elevation, slope, 

aspect, latitude, and longitude). RF is a non-linear statistical ensemble method that leverages 
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uncorrelated decision trees for regression. Developed by Breiman (2001), it is capable of 

modeling discrete and/or continuous data sets (Muntanga, Adam, and Cho 2012; Pal 2005). RF 

predictions are obtained by aggregating a large number of individual regression decision trees 

where each decision tree is built from bootstrapped training samples (as in bagging) and 

variables are randomly selected at each decision node. The algorithm then randomly selects a 

subset of the predictors as candidates for splitting (Breiman 2001; Liaw and Wiener 2002). To 

obtain the final regression model, the results of all the individual trees are averaged. Good 

examples of the benefits and drawbacks of RF are given by (Immitzer et al. 2016; Belgiu and 

Drăgut 2016; Hudak et al. 2008). 

The RF algorithm provides Out-of-bag error (OOB) estimates and variable 

importance rankings (Rodriguez-Galiano et al. 2012; Genuer, Poggi, and Tuleau-Malo 2010), 

as not all observations are included in the respective bootstraps of the individual trees. In each 

tree at each split, the enhancement in the split-criterion importance measure is characterized by 

the splitting variable and aggregates individually all the trees in the forest for each variable 

(Trevor, Tibshirani, and Friedman 2006). Variable importance is measured by computing the 

increase in mean square error (MSE) when the OOB data for each variable are again computed 

but without the left-out variable (Breiman 2001; Prasad et al. 2006). The variable importance 

measures can assist in defining which variables are most important in the reduction of 

prediction error (Belgiu and Drăgut 2016). Two kinds of variable importance measure widely 

use the “randomForest” package in R (Liaw and Wiener 2002; Ishwaran 2007): (1) a percent 

increase in the mean square error (%IncMSE) and (2) an increase in node purity 

(IncNodePurity). From these, our analysis computed and analyzed %IncMSE. However, we 

also checked the IncNodePurity indicator but found similar results (not shown). In our research, 

the basic algorithm shown in equation (1) was used to build the RF predictor for regression 

(Trevor, Tibshirani, and Friedman 2006): 

𝑓 (𝑥) =
1

𝐵
∑ 𝑇𝑏

𝐵

𝑏=1
(𝑥) (1) 

A new bootstrap sample for each decision tree Tb that includes X = x1…… xi with responses Y 

= y1…… yi bagging repeatedly (B times) selects a random sample from training data and each 

unpruned decision tree is increased in the sample. To increase each tree Tb, the following steps 

are repeated at each terminal node of the tree: 

• Randomly select m variables from p variables 
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• Pick the variable that best splits and the corresponding split point 

• Split the node into two nodes. 

As mentioned above, to implement the RFR model, two parameters must be set: the number of 

decision trees (ntree) and the number of variables to select for the best split (mtry). For both 

hyperparameters, standard settings have been chosen. Each decision tree is independently 

increased to its maximum size, focusing on a new bootstrap sample from the training data (2/3 

of samples). The remaining 1/3 of the samples, not used to fit the given decision tree, are 

referred to as the out-of-bag sample. The OOB sample is used to calculate the OOB error rate 

and variable importance. For quantifying the OOB error (prediction error) for each RF decision 

tree, using equation (2), i.e., 

𝐸𝑟𝑟𝑜𝑟𝑂𝑂𝐵 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2   
𝑛

𝑖=1
 (2) 

where 𝑦̂𝑖 is the estimated output of OOB samples, 𝑦𝑖 is the actual output, and n is the total 

number of OOB samples. RF regression is flexible and easy to use in comparison to other 

machine learning algorithms, even without hyperparameter tuning. 

PLS regression  

For comparison- and to assess the differences between linear and non-linear models-a 

prominent linear modeling technique was used: partial least square regression. PLS regression 

(PLSR) is widely used by the remote sensing community for vegetation analysis (Atzberger et 

al. 2010; Laurin et al. 2014; Inoue et al. 2012), soil-related studies (Gomez et al. 2008; Farifteh 

et al. 2007; Rossel et al. 2006), and climate and ecological studies (Fernandes et al. 2018; Liu, 

Peng, and Wang 2018; Ceglar et al. 2016; Carrascal, Galván, and Gordo 2009) amongst others. 

PLSR is a multivariate linear regression method used to predict a set of dependent 

variables from a set of independent variables or predictors (Abdi 2003). PLSR was originally 

developed for econometrics and chemometrics (Wold 1982), where commonly a large number 

of strongly correlated predictor variables exist (Wold 2001). PLSR reduces the variables to a 

smaller set of uncorrelated components and performs least squares regression on these 

components instead of on the original data. Compared to other techniques, PLSR is more robust 

and less susceptible to data redundancy and over-fitting (Geladi and Kowalski 1986). 

PLSR extracts a set of latent variables that explain the correlation between dependent 

and independent variables. The optimum number of latent variables for each generated model 

is implemented using the minimum value of residual mean squared error and the Leave-One-
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Out-Cross-Validation (LOO-CV) methods, e.g., jackknife and bootstrap (Mevik and 

Cederkvist 2004). To assess which variables are most contributing to the PLSR model, used 

the Variable Importance in the Projection (VIP) method (Wold 2001), as seen in equation (3), 

i.e., 

𝑉𝐼𝑃𝑗 = √
∑ 𝑤𝑗𝑓

2  𝑆𝑆𝑌𝑓 𝐽𝐹
𝑓=1

𝑆𝑆𝑌𝑡𝑜𝑡𝑎𝑙 𝐹
 (3) 

where 𝑉𝐼𝑃𝑗  is a measure of the contribution of the j variable in the PLSR model, 𝑊𝑗𝑓  is the 

weight value for the j variable and f latent variables (components), 𝑆𝑆𝑌𝑓 is the sum of squares 

of explained variance for the 𝑓 latent variable and 𝐽 number of the predictor (independent) 

variables, 𝑆𝑆𝑌𝑡𝑜𝑡𝑎𝑙   is the total sum of squares explained as the response (dependent) variables, 

and F is the total number of latent variables. The VIP values determine the contribution of the 

predictor variables to the PLSR latent variables. A VIP value greater than 0.80 ensures that 

only relevant variables are considered (Wold 2001). In Mkhabela, Bullock, and Sapirstein 

(2018), the VIP threshold of predictor variables that were identified as the most relevant 

variables ranged between 0.83 and 1.21. Predictor variables with ≤0.80 VIP values were 

classified as less important while variables with VIP values ≥1.20 were considered the most 

influential. 

Model evaluation and statistics 

Two widely used statistics were calculated to assess the accuracy of the models (Richter et al. 

2012), including the R2 and the RMSE. The R2 describes the percentage of explained variance 

whereas the RMSE summarizes the deviations of predictions from the one-to-one line. As both 

models provide quantitative information about the importance of different variables, also report 

these findings. For the RF regression model, assessed the importance of the individual 

predictors in Ta estimates focused on the %IncMSE (Ho et al. 2014). For the PLS regression 

model, used the VIP method (Farres et al. 2015; Wold 2001; Mkhabela, Bullock, and Sapirstein 

2004).  

 

4.2.2 Data  

Remote sensing data 

MODIS LST products are distributed by the Land Processes Distributed Active Archive Center 

(LP DAAC) in a hierarchical data format or HDF file. We used observations from MOD11 
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from the Terra satellite. MODIS generates two daily observations, one for daytime (LSTd) and 

one for nighttime (LSTn) at approximately 10:30 and 22:30 local time, respectively. The new 

collection 6 (c006) of MODIS LST products has been used to estimate Ta (Duan et al. 2018). 

This dataset was made available in 2016. It covers the entire period (2002-2017) and data are 

of higher quality compared to the earlier collection(s), which had been used for previous studies 

such as Benali et al (2012), Vancutsem et al (2010), Emamifar, Rahimikhoob, and Noroozi 

(2013), Zhang et al (2016), Oyler et al (2016), and Xu, Knudby, and Ho (2014). The LST 

accuracy of the c006 products is reported as being approximately twice as good as collection 5 

(c005) due to the incorporation of the emissivity adjustment model in the MODIS split-window 

algorithm (Duan et al. 2018). For instance, the c006 LST product reduced the RMSE of bare 

soil sites of the c005 LST product by 1.24°C during the day and 0.58°C at night (Duan et al. 

2018, p. 88). 

To cover the land surface of Mongolia, seven tiles of granules with horizontal (h) and 

vertical (v) title numbers h23v03, h23v04, h24v03, h24v04, h25v03, h25v04, and h26v04 had 

been used. The MODIS MOD11A2 c006 data were obtained through the online Data Pool at 

the National Aeronautics and Space Administration (NASA), the LP DAAC, and the United 

States Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, 

Sioux Falls, South Dakota. The retrieved MODIS LST used the generalized split-window 

algorithm (Wan and Dozier 1996) to derive surface temperature from the recorded at-satellite 

radiances. 

This study, used the MODIS Terra 8-day LST product (MOD11A2) at a spatial 

resolution of 1 km, gridded in the Sinusoidal projection intervals, and covering the period 

2002–2017. The HDF file for the MOD11A2 product includes 12 different scientific data sets 

(SDSs), as shown in Table 4.1. A detailed description of SDSs is given by (Wan 2008; Wan 

2014). This MOD11A2 product includes daytime and nighttime LST data (LSTd and LSTn), 

quality information (QCd and QCn), observation information (DvA, NvA, DvT, and NvT), 

emissivity data (Em31 and Em32), and clear sky coverage (CsD and CsN). The HDF file for 

this product also contains associated quality science dataset layers which provide users with 

information regarding the usability and usefulness of the data products. The MODIS LST 

quality science dataset layers are binary encoded and bit packed. The quality assurances (QAs) 

layer containing integer values had been converted to a bit binary value for interpretation (Wan 
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et al. 2002; Wan 2007). The quality controls (QC) are defined by bit flags such as mandatory 

quality assessment (QA) flags, data quality flags, emissivity quality flags, and cloud error flags. 

To retrieve and pre-process the products, the MODIS R-package (MODIS acquisition 

and processing package v1.1.4) was used (Mattiuzzi et al. 2018). The package is run in the R 

software system and environment for statistical computing and graphics (R Core Team 2019). 

The MODIS R-package allows automatic downloading of data and processing such as changing 

file format, mosaicking, subsetting, and time-series filtering (Mattiuzzi et al. 2019). Using the 

package, digital numbers (DN) of MODIS Terra LST products were converted into LST (Table 

4.1). Additionally, three terrain parameters (elevation, slope, and aspect) originating from 

SRTM DEM (Rabus et al. 2003) were retrieved. All raster data were re-projected to MODIS 

sinusoidal projection. 

Table 4. 1 Description of Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature 

(LST) products used in this study (source: Land Processes Distributed Active Archive Center (LP DAAC), 2019). 

 

In situ meteorological data 

Sixty-three synoptic weather stations are present in Mongolia. Their geographical locations are 

indicated. The weather stations provide Ta every three h, i.e., eight times a day. Ta data between 

2002 and 2004 were obtained from the Mongolian Information Research Institute of 

Meteorology, Hydrology, and the Environment (IRIMHE). Data from 2004 to 2017 was 

downloaded from the “Reliable Prognosis (RP5)”. From the three-hourly meteorological data, 

the average air temperature was calculated for every 8 days of MODIS LST, taking into account 

the eight daily observations. This led to a total of 8544 meteorological data points from 63 

automatic weather stations covering the same period as the MODIS LST products, allowing 

for the development of prediction models between the remotely sensed data and Ta. The 

frequency distribution of the measured Ta reference data from 63 weather stations for the 
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period 2002–2017 is shown in Figure 4.1 (n = 8544). The value of measured Ta ranged from –

36.6°C to 27.2°C with a mean value of 0.7°C and a standard deviation of 14.6°C. 

 

Figure 4. 1 Frequency distribution of measured average 8-day air temperature reference data (n = 8544) from the 63 

automatic weather stations for the years 2002–2017. Monthly statistics are depicted in Table 4.2. 

 

4.2.3 Data analysis using RF and PLS models 

RFR and PLSR models were trained to predict Ta using up to 17 predictor variables. The use 

of two competing approaches permits the evaluation of the benefits of using non-linear machine 

learning approaches (e.g., RF) compared to classical linear regression models (e.g., PLS). 

Twelve of the seventeen variables were derived from LST time-series products of the Terra 

MODIS for the period 2002-2017 (Table  4.1). The five remaining variables were elevation, 

slope, and aspect (extracted from SRTM DEM), and geographical location (latitude and 

longitude) of weather stations (extracted from vector data). Summary descriptive statistics of 

the response and the 17 predictor variables are reported in Table 4.2. 

 

Figure 4. 2 Correlation matrix between response and predictor variables (n = 8544). The saturation of the colors 

indicates the strength of the correlations. Positive correlations are shown in blue and negative correlations in red. In 

this graph, the air temperature data has been pooled across the twelve months. For the abbreviations, see Table 4.1. 
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Longitude was included as this indirectly depicts (for Mongolia) the distance to the sea 

(Tsogtbaatar and Khudulmur 2014). The correlation matrix (Figure 4.2) reveals a strong 

correlation between Ta and daytime/nighttime LST of MODIS, as well as several other 

correlations and redundancies. Based on these intercorrelations and taking into account that the 

number of variable sets should be relatively small, the predictor variables were grouped into 

seven different groupings (Table 4.3).  

 

Table 4. 2 List of response/predictor variables and corresponding descriptive statistics (period 2002 to 2017). The 

list includes the measured air temperature (Ta) reference data at the weather station level (n = 712 for each of the 

twelve months) as well as the corresponding seventeen predictor variables extracted from satellite and other geo-

data. For the acronyms of the variables, see Table 4.1. 

 

 

Table 4. 3 Seven model subsets were studied. The seven groups were generated to study the relations between 

responses and up to 17 predictor variables. Nvar indicates the number of predictor variables in each group. 
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4.3 Result 

4.3.1 Comparison of RF and PLS models: variable importance and prediction accuracy 

The estimated importance of the 17 predictor variables in the RF regression model is shown in 

Figure 4.3 for each of the twelve months. Under the top three in each month, LSTn appeared 

12 times, LSTd 11 times, elevation 7 times, latitude 5 times, and aspect once. The remaining 

variables were never found under the top three in those rankings. Strong seasonality in the 

ranking can also be observed. For example, the warm season Ta (April to October) was strongly 

dependent on elevation. Conversely, the cold season Ta was more heavily affected by latitude. 

Using all 17 predictor variables led to R2 values in the range from 0.83 (April) to 0.96 (August), 

while RMSE were between 0.91°C (September) to 1.92°C (February) (see Table 4.4, column 

G7). 

Similar results were obtained for the PLS models (Appendix A Figure A.1). Using 

PLS regression, the variables most often listed under the top three were LSTn (12 times), LSTd 

(12 times), elevation (4 times), latitude (4 times), and emissivity (4 times). Again, the ranking 

was season-dependent. The variables LSTn, LSTd, and latitude were the most important 

variables for estimating Ta in autumn and winter (September to February). The Ta for spring 

(March–May) was strongly dependent on LSTn, LSTd, and emissivity. For the summer months 

(June–August), LSTn, LSTd, and elevation were strongly influenced by the estimation of Ta 

for summer. 

Using the entire set of 17 predictor variables for estimating the monthly average air 

temperatures, the accuracies of PLS models were constantly lower compared to the RF models 

(Appendix A Table A.1). The PLS models gave R2 a measured and estimated monthly Ta 

between 0.74 and 0.86 and RMSE from 1.20°C to 2.19°C (Table A.2, column G7). Concerning 

variable importance, the three variables LSTn, LSTd, and elevation were identical for PLS and 

RF regression models. This shows that LSTn, LSTd, and elevation play a key role in modeling 

Ta, with all other variables having a significantly smaller impact. 
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Figure 4. 3 Random forest (RF) variable importance for each month. The importance is here given as the percentage 

increase in mean square error (%IncMSE). 

 

To further study the impact of the different predictor variables, the seven variable 

groupings highlighted in Table 4.3 were analyzed in more detail. Results for each month and 

the annual average air temperature are shown in Table 4.4 for the RF models. Compared to the 

full set of 17 variables (column G7), the reduced set with only three predictor variables LSTn, 

LSTd, and elevation (G2) achieved comparable results, again highlighting and confirming the 

importance of these three predictor variables. None of the other five groupings (G1 and G3 to 

G5) were able to yield similar model performances. The same findings also hold for the PLS 

models (Appendix A Table A.2 for details) but with constantly lower accuracies compared to 
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the RF models. PLS models and groupings G1 to G7 were, therefore, skipped for the remainder 

of the study. 

 

Table 4. 4 Modeling results were obtained using the RF regression. Reported are the monthly summary statistics 

(coefficient of determination (R2) and root-mean-square error (RMSE)) for Ta prediction models for each of the 

seven groups of variables. For details of groupings G1 to G7, see Table 4.3. 

 

 

4.3.2 Maps of predicted air temperatures using RF models with the reduced feature set 

Both the results of the variable importance rankings (Figure 4.3) and the grouping of variables 

(Table 4.4) indicate that relatively simple RF prediction models can be built to estimate Ta 

using only daytime/nighttime LST and elevation information. Scatterplots between measured 

and estimated monthly average air temperatures using only these three predictor variables are 

shown in Figure 4.4. Corresponding maps of modeled air temperatures at 1 km spatial 

resolution and covering the entire land mass of Mongolia are shown in Figure 4.5a (see Figure 

A2 and Table A3 in Appendix A for corresponding scatterplots and maps generated using PLS 

models). The scatterplots in Figure 4.4 reveal that the RF-predicted Ta is well distributed 

around the 1-to-1 line, with no apparent systematic deviations. In particular, we do not see any 

autocorrelation in the errors, or saturation effects. The errors are generally low and the 

explained variance (R2) is mostly above 0.85. Generally, however, the RMSE increases slightly 

during the colder months (Figure 4.4). 

The maps in Figure 4.5(a) depict in high spatial detail the model predictions. As 

expected, the predicted Ta decrease with elevation (Figure 1.1(a)) but reveals additional detail 

and information. Monthly analyses of the coefficient of determination (R2; in blue) and root 

mean square error (RMSE; in red) for the period 2002–2017 are shown in Figure 4.5(b). Overall, 

a good agreement between observed and estimated Ta values was found but reflected again in 
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the aforementioned seasonal pattern. Large discrepancies were found to occur in transition 

months, such as the start or end of seasons. 

 

Figure 4. 4 Comparison between measured and estimated monthly average Ta using LSTd, LSTn, and elevation 

for the RF regression model. 

 

The PLS-generated maps of monthly average air temperatures are generally similar 

to the maps derived from RF models (see Appendix A Figure A.2). However, a more detailed 

analysis reveals sometimes larger differences, even if modeled air temperatures are averaged 

by season. For example, Figure 4.6 clearly shows that large method-specific differences occur 

(maps in the third column). The differences show large seasonal fluctuations. The deviations 

moreover show a clear north-south gradient with generally lower Ta estimated using PLS 

compared to RF (reddish colors). The deviations are usually strongest during the warmer 

months. As the RF model outperformed the PLS model when evaluated against the observed 
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Ta (Table 4.4 for RF and Appendix A Table A.3 for PLS), we interpret these findings as mainly 

being the result of a systematic underestimation of Ta by the PLS model. 

 

 

 

Figure 4. 5 Estimated monthly average Ta based on RF regression model using LSTd, LSTn, and elevation as 

predictor variables. (a) Spatial maps of estimated monthly average Ta over Mongolia at 1 km spatial resolution. (b) 

Monthly statistics of R2 (blue) and RMSE (red) between observed and predicted air temperature. 
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Figure 4. 6 Estimated average Ta per season using LSTd, LSTn, and elevation as predictor variables. Spatial maps 

of seasonal-average Ta over Mongolia at 1 km spatial resolution using the RF (first column) and partial least squares 

(PLS) regression models (second column). In the last column, the difference between the two model outputs is shown. 

 

4.4 Discussion 

Using relatively simple RF models driven by a few predictor variables, climatologies of 

monthly air temperatures in Mongolia could be obtained in this study with high accuracy 

(RMSE of about 0.84-1.93°C). Without any hyperparameter tuning, the non-linear RF models 

outperformed linear PLS models by other studies (Yoo et al. 2018; Xu, Knudby, and Ho 2014; 

Otgonabayar et al. 2019; Sun, Passi, and Jain 2016). Amongst the variables studied, the 

MODIS-derived land surface temperatures (day and night) together with elevation were the 

three most important predictors. The studies of Noi, Kappas, and Degener (2016), and 

Kilibarda et al (2014) have also reported the high importance of day- and nighttime LST 

observations as well as elevation. 

As LST (both day and night) and elevation can be readily produced at 1 km spatial 

resolution, the models calibrated against weather station data permitted the creation of maps of 
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average air temperature for each of the twelve months in unprecedented detail and accuracy. 

Although the RF-generated maps often follow elevation, the inclusion of remotely sensed land 

surface temperature from MODIS improved the accuracy and spatial detail. 

The results of the importance analysis indicated that nighttime LST was slightly more 

important compared to LSTd. The same result has been noted in China (Li and Zha 2019) and 

in Portugal (Benali et al. 2012). By these studies, we argue that nighttime observations are 

probably more predictive because LSTn is not affected by reflected solar radiation when using 

TIR sensors (Vancutsem et al. 2010). The daytime land surface temperature was nevertheless 

found to be important, as it reveals the strength of the latent heat flux and the energy available 

for generating sensible heat (Li and Zha 2019). 

Other studies have confirmed that Ta predictions are possible using satellite 

observations and that there is a strong relationship between Ta, LSTn, and LSTd (Chen et al. 

2015). Several studies have produced Ta estimations using MODIS LST data using 

multivariate linear and non-parametric regression methods (Ho et al. 2014; Noi, Kappas, and 

Degener 2016; Li and Zha 2019; Yoo et al. 2018; Yang, Cai, and Yang 2017; Mkhabela, 

Bullock, and Sapirstein 2018). These already published studies have shown different levels of 

success. The performance of multivariate and non-parametric regression models has been 

strongly dependent on environmental parameters such as vegetation cover, slope, aspect, 

elevation, quality of MODIS LST products, and applied filter techniques. For instance, the 

accuracy of the MODIS LST has been found to depend on the employed split-window 

algorithm, cloud cover, and terrain parameters (Chen et al. 2015). Nonetheless, the estimation 

of Ta derived from MODIS LST studies using multivariate and non-parametric algorithms is 

suitable for generating results at high accuracy. For instance, Li and Zha (2019) estimated the 

monthly average Ta for the territory of China at a spatial resolution of 1 km using RF regression 

with MODIS LST, Normalized Difference Vegetation Index (NDVI), nighttime light, and 

elevation. Using this dataset, the RMSE of the monthly average Ta ranged between 1.57°C to 

1.99°C. Our study has shown that monthly average Ta can be accurately estimated using LSTn, 

LSTd, and elevation with similar RMSE ranging from 0.91°C to 1.93°C. The method is 

relatively easy to implement provided that there is a sufficient amount of training data with 

corresponding EO time-series observations.  
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4.5 Conclusion 

In this study, PLS and RF regression models were applied to estimate the monthly average Ta 

in Mongolia for the period 2002-2017 using MODIS LST time-series products and terrain 

parameters. Meteorological data from 63 automatic weather stations were used to calibrate and 

validate the PLSR and RF models. Both models were trained to predict Ta using up to 17 

variables as predictor variables. Twelve variables were derived from LST time-series products 

of Terra MODIS and three variables were extracted from an SRTM DEM (elevation, slope, 

and aspect). The geographical location (longitude and latitude) was used as an additional 

variable. For training, a total of 8544 meteorological data points from 63 automatic weather 

stations and corresponding MODIS LST were used. Both datasets covered the period 2002–

2017. Using only day/nighttime LST and elevation as predictor variables, the correlation 

between measured and estimated monthly average Ta RMSE ranged from 1.20°C to 2.19°C 

for the PLSR and 0.84°C to 1.93°C for the RF. The significantly lower errors of the RF models 

confirm the benefits of this machine-learning approach compared to traditional (linear) 

modeling techniques (e.g., PLSR). We, therefore, recommend the use of RF models for similar 

studies. 

Concerning the MODIS land surface temperature data, we found that this information 

contributed significantly to the modeling of air temperature. For example, it was not possible 

to obtain similarly low errors in the modeled air temperature using only terrain parameters as 

predictors. It is recommended that day- and nighttime LST be used simultaneously as both 

variables scored high in the feature importance metric. 

Both machine learning models (RF and PLSR) represented well seasonal and spatial 

variations in Ta when time-series of LST were included as predictor variables. Using the 

models, maps of the monthly average Ta of Mongolia were developed at a spatial resolution of 

1 km which was representative of the period 2002–2017. Although errors in the predicted Ta 

were generally low, the residual errors showed a significant seasonality; the warmer months 

were generally better modeled compared to the extremely cold winter months. Probably, the 

increased errors during the winter months reflect a lower accuracy in the input (LST) data. 

Further research is warranted to better understand the seasonality of the model quality. 

Despite these trends, we firmly believe that this spatial dataset may be useful for 

various environmental applications; for instance, it may be useful for better assessing 

bioclimatic variations within the huge land mass of Mongolia. The developed methodology is 
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relatively easy and transparent and can be applied in different geographic regions, provided 

that enough weather stations are available to permit a model calibration. The spatial resolution 

of the final map product mainly depends on the ground sampling distance of the employed 

satellite sensors. As sensor technology advances at a rapid pace, the current 1 km spatial 

resolution can be further improved shortly. 

 

Appendix A. 

Supplementary data related to PLS regression results can be found in Appendix A.  
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CHAPTER 5. Estimation of bioclimatic and climatic variables of Mongolia derived 

from a time series of remote sensing data 

5.1 Introduction 

Climate resource is the main indicator of nature-ecology that determines a nation’s economic 

development (Mijiddorj 2016). Various climatic variables (indices) are important to perceive 

climate mechanisms, and assess climatic conditions (Deniz, Toros, and Incecik 2011). 

Moreover, a large number of ecological studies have used climate-based models: two 

prominent examples are ecological niche models (Feilhauer et al. 2012; Waltari et al. 2007) 

and Species Distribution Models (SDMs) (Anderson 2012). The United States Geological 

Survey (USGS) developed for such purposes climate indices, which can be referred to as 

bioclimatic variables (O’Donnell and Ignizio 2012). Bioclimatic variables are widely used in 

species distribution modeling (Attorre 2007; Waltari et al. 2014; Salas et al. 2017). SDMs 

integrate information on species’ appearance with environmental features to estimate their 

distributional range (Vega et al. 2018). SDMs are moreover valuable for other applications 

across evolutionary ecology and biology (Title and Bemmels 2018). 

Besides those applications, bioclimatic variables also capture features of climate 

(Mesquita and Sousa 2009) that are directly related to plant physiological processes 

determining primary productivity (Leathwick et al. 2003). The bioclimatic variables represent 

the types of seasonal trends relevant to the physiological constraints of different species 

(O’Donnell and Ignizio 2012). Bioclimatic variables also include information on annual 

conditions, as well as seasonal mean climate conditions, and intra-year seasonality (O’Donnell 

and Ignizio 2012; Fick and Hijmans 2017). These variables represent annual trends, seasonality, 

and extreme or limiting environmental factors (Hijmans et al. 2005). Because of these 

characteristics, bioclimatic variables are widely used for vegetation mapping (Fraklin 1995; 

Hengl et al. 2018), and to study the effects of climate change on species distribution for past, 

current, and future scenarios (O’Donnell and Ignizio 2012; Walther et al. 2005; Peng 2000; 

Sykes et al. 1996), to monitor exotic and invasive species (Arriaga et al. 2004), for regional 

planning (Bryan and Crossman 2008), ecosystem distribution (Thompson et al. 2004), and to 

assess drought risk (Incerti et al. 2007). At the global level, a set of 19 gridded datasets was 

developed within WorldClim based on weather stations, involving data from the Global 

Climate Network Dataset (GHCN) (Lawrimore et al. 2011), the World Meteorological 

Organization climatological database, and additional minor database-specific weather stations 
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(WMO 2014). In WorldClim, the bioclimatic variables were derived from two climatic data 

sources to generate more biologically meaningful variables (O’Donnell and Ignizio 2012), 

which are monthly mean, minimum, and maximum temperature, and monthly total 

precipitation. 

There are two versions of WorldClim bioclimatic variables. WorldClim version 1.4 

is a global climate-gridded data set for the years 1961-1990 (excluding Antarctica) at 3 

resolutions (2.5 minutes, 5 minutes, 10 minutes) (Marchi et al. 2019; Hijmans et al. 2005). 

WorldClim version 2.0 is a new dataset containing grids with interpolated data from between 

9000 and 60000 weather stations for 4 different spatial resolutions from 30 seconds (~1 km) to 

10 minutes (~340 km) for the years 1971-2000 (Fick and Hijmans 2017). In addition, Michael 

et al (O’Donnell and Ignizio 2012) developed a set of 20 bioclimatic variables as continuous 

raster surfaces between 1985 and 2009. Moreover, Vega et al (2018) reproduced interpolation 

methods from WorldClim to create MERRAclim, a global set of 19 bioclimatic variables that 

includes Antarctica. MERRA (Modern Era Retrospective-analysis for Research and 

Application) is a NASA (National Aeronautics and Space Administration) atmospheric data 

reanalysis of satellite information. MERRAclim contains three datasets of 19 bioclimatic 

variables for the years 1980, 1990, and 2000, using hourly temperature and humidity data from 

1980 to 2000 at three different resolutions (2.5 minutes, 5 minutes, 10 minutes) (Vega et al. 

2018).  

In parallel, various large-scale gridded interpolated temperature and precipitation 

datasets at different spatiotemporal resolutions have been developed from in-situ 

measurements to estimate bioclimatic variables (Marchi et al. 2019; Vega et al. 2018; Fick and 

Hijmans 2017; Hijmans et al. 2005). Unfortunately, in-situ measured temperature and 

precipitation data with long temporal coverage are only available from a limited number of 

meteorological stations with inadequate spatial coverage (Otgonbayar et al. 2019). These data 

sets, therefore, suffer from uneven geographic coverage, with many areas of the Earth poorly 

represented (Hijmans et al. 2005).  

On the contrary, EO satellites capture the entire Earth’s surface at much denser 

Ground Sampling Distances (GSD) and with high temporal revisit frequency (usually 1 day). 

This data permits estimating the monthly mean, minimum, and maximum surface temperature 

(Benali et al. 2012), as well as monthly total precipitation (Sun et al. 2018). As sensor 

technology advances at a rapid pace, advanced geo-informatics techniques offer an opportunity 
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to estimate monthly temperature more accurately, and collect precipitation data derived from 

remote sensing sensors such as multispectral imagery, Radio Detection Ranging (RADAR), 

and Light Detection and Ranging (LIDAR) at different spectral, spatial, and temporal 

resolutions. For instance, Fick and Hijmans (2017) determined, satellite data enhanced by 5-

15% prediction quality of temperature variables, especially low spatial density area. And 

improving the accuracy of precipitation data, they suggested using satellite-based precipitation 

data as covariates. Amiri et al (2020) estimated 19 bioclimatic variables from temperature and 

precipitation instrumental records (Model 1), and remote sensing data (Model 2) at a resolution 

of 1 km during 2001-2017 in Isfahan province of Iran together with three topographic variables 

using five different regression models. Accuracy statistics in Model 2 were higher than in 

Model 1. This study proved that bioclimatic variables derived from the satellite were more 

effective.  

Our main goal is to explore alternative ways to improve the temporal and spatial 

resolution of bioclimatic variables derived from remotely sensed data. The specific aim of this 

study is to estimate bioclimatic, and climatic variables using time series of land surface 

temperature (LST) from Moderate Resolution Imaging Spectroradiometer (MODIS), and 

precipitation (P) from Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) 

data and to apply the model to the entire land surface of Mongolia. For this analysis, we 

estimated monthly maximum, mean, and minimum air temperature from Terra MODIS satellite 

LST (MOD11A2) for the period 2002-2017 using the Random Forest (RF) regression model 

and three predictors (Otgonbayar et al. 2019; Otgonbayar and Sumya 2020).  

 

5.2 Methodology and data 

5.2.1 Methodology 

To calculate 19 bioclimatic variables at 1 km spatial resolution we used the functions listed in 

Table 5.1. The functions use as inputs satellite-derived air temperature (monthly maximum, 

monthly average, monthly minimum), and monthly total precipitation. All calculations were 

done in R for statistical computing and graphics (Ripley 2001), and System for Automated 

Geoscientific Analyses (SAGA GIS) for analysis of spatial data (SAGA 2013). To estimate six 

climate indices used. The analysis used the ‘biovars’ function of the ‘dismo’ package in R.  To 

test the differences between our set of bioclimatic variables (“SatClim”) and WorldClim 
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bioclimatic variables, we used coefficient of determination (R2), root mean squared error 

(RMSE), and normalized root mean squared error (nRMSE) as described in Table 5.2.  

 

Table 5. 1 Formula and description of the bioclimatic variables (O’Donnell and Ignizio 2012). Tavg, Tmax, and Tmin 

are the monthly average, maximum, and minimum air temperature, and PPT is the monthly total precipitation 

Variable name Unit Formula Description 

Annual mean 

temperature  
°C 𝐵𝑖𝑜 1 =

∑ 𝑇𝑎𝑣𝑔𝑖
𝑖=12
𝑖=1

12
 

The annual mean temperature approximates the total energy for an 

ecosystem. 

Annual mean 

diurnal range 
°C 𝐵𝑖𝑜 2 =

∑ (𝑇𝑚𝑎𝑥𝑖 − 𝑇𝑚𝑖𝑛𝑖
𝑖=12
𝑖=1 )

12
 

Mean of the monthly temperature range. This variable can help provide 

information relating to the relevance of temperature variation for different 

species 

Isothermality % 𝐵𝑖𝑜 3 =
𝐵𝑖𝑜 2

𝐵𝑖𝑜 7
 × 100 

Isothermality quantifies how large the day to night temperatures fluctuate 
relative to the summer to winter (annual) fluctuations. A species 

distribution may be influenced by larger or smaller temperature oscillation 

within a month relative to the year and this variable is useful for confirming 

such information.  

Temperature 

seasonality 

(Standard 

deviation) 

°C 𝐵𝑖𝑜 4 = 𝑆𝐷{𝑇𝑎𝑣𝑔1, … , 𝑇𝑎𝑣𝑔12}  
Temperature seasonality is a measure of temperature change over the year. 

A large Standard Deviation (SD) is the larger variability of temperature.  

Maximum 

temperature of 

the warmest 
month 

°C 𝐵𝑖𝑜 5 = max ({𝑇𝑚𝑎𝑥1, … , 𝑇𝑚𝑎𝑥12}) 

Monthly maximum temperature incidence over a given year (time series) 

or averaged span of years. This variable is useful to test that species 

distribution is affected and influenced by warm temperature anomalies over 
the year.  

Minimum 

temperature of 

the coldest month 

°C 𝐵𝑖𝑜 6 = min ({𝑇𝑚𝑖𝑛1, … , 𝑇𝑚𝑖𝑛12}) 

Monthly minimum temperature incidence over a given year (time series) 

or averaged span of years. This variable is useful to test that species 

distribution is affected and influenced by cold temperature anomalies over 

the year. 

Annual 

temperature 

range 

°C 𝐵𝑖𝑜 7 = 𝐵𝑖𝑜 5 − 𝐵𝑖𝑜 6 

The measure of temperature fluctuation over a given year. This variable is 

useful to investigate whether species distribution is affected by the range 

of extreme temperature conditions. 

Mean 

temperature of 
wettest quarter 

°C 𝐵𝑖𝑜 8 =
∑ 𝑇𝑎𝑣𝑔𝑖

𝑖=3
𝑖=1

3
 or 𝑄𝑃𝑃𝑇𝑚𝑎𝑥

 

The quarterly variable is based on 3 months interval that is a mean 

temperature that prevails during the wettest season. The variable is useful 

for analyzing how such environmental factors can influence species season 
distribution.  

Mean 

temperature of 

driest quarter 

°C 𝐵𝑖𝑜 9 =
∑ 𝑇𝑎𝑣𝑔𝑖

𝑖=3
𝑖=1

3
 or 𝑄𝑃𝑃𝑇𝑚𝑖𝑛

 

The variable provides mean temperature during the driest 3 months of the 

year which is useful for analyzing how such environmental factors can 

influence species season distribution. 

Mean 

temperature of 

warmest quarter 

°C 𝐵𝑖𝑜 10 =
∑ 𝑇𝑎𝑣𝑔𝑖

𝑖=3
𝑖=1

3
 or 𝑄𝑇𝑚𝑎𝑥

 

The variable provides mean temperature during the warmest 3 months of 

the year which is useful for analyzing how such environmental factors can 

influence species season distribution. 

Mean 

temperature of 

coldest quarter 

°C 𝐵𝑖𝑜 11 =
∑ 𝑇𝑎𝑣𝑔𝑖

𝑖=3
𝑖=1

3
 or 𝑄𝑇𝑚𝑖𝑛

 

The variable provides mean temperature during the coldest 3 months of the 

year which is useful for analyzing how such environmental factors can 

influence species season distribution. 

Annual 

precipitation 
mm 𝐵𝑖𝑜 12 = ∑ 𝑃𝑃𝑇𝑖

𝑖=12

𝑖=1
 

The variable is recognized by the sum of 12 monthly precipitation values 

which is useful in ascertaining the significance of water availability to the 

species distributions.  

Precipitation of 

wettest month 
mm 𝐵𝑖𝑜 13 = max ({𝑃𝑃𝑇1, … , 𝑃𝑃𝑇12}) 

The variable is recognized by total precipitation values that prevail during 
the wettest month. The wettest month is useful if extreme precipitation 

conditions during the year affect a species potential range. 

Precipitation of 

driest month 
mm 𝐵𝑖𝑜 14 = min ({𝑃𝑃𝑇1, … , 𝑃𝑃𝑇12}) 

The variable is recognized by total precipitation values that prevail during 

the driest month. The driest month is useful if extreme precipitation 

conditions during the year affect a species potential range. 

Precipitation 

seasonality 
mm 𝐵𝑖𝑜 15 =

SD {𝑃𝑃𝑇1, . , 𝑃𝑃𝑇12}

1 + (𝐵𝑖𝑜 12/12)
  

The variable is a measure of the variation in monthly precipitation totals 

over the year. This variable is expressed by percentage where larger 

percentages represent greater variability of precipitation.  

Precipitation of 

wettest quarter 
mm 𝐵𝑖𝑜 16 = 𝑚𝑎𝑥 ∑ 𝑃𝑃𝑇𝑖

𝑖=3
𝑖=1   

This quarterly provides total precipitation during the wettest 3 months of 

the year which can be useful for testing how such environmental factors 

can influence species season distribution. 

Precipitation of 
driest quarter 

mm 𝐵𝑖𝑜 17 = 𝑚𝑖𝑛 ∑ 𝑃𝑃𝑇𝑖

𝑖=3

𝑖=1
 

This quarterly provides total precipitation during the driest 3 months of the 

year which can be useful for testing how such environmental factors can 
influence species season distribution. 

Precipitation of 

warmest quarter 
mm 𝐵𝑖𝑜 18 = ∑ 𝑃𝑃𝑇𝑖

𝑖=3
𝑖=1  or 𝑄𝑇𝑚𝑎𝑥

 
This quarterly provides total precipitation during the warmest 3 months of 

the year which can be useful for testing how such environmental factors 

can influence species season distribution. 

Precipitation of 

coldest quarter 
mm 𝐵𝑖𝑜 19 = ∑ 𝑃𝑃𝑇𝑖

𝑖=3
𝑖=1  or 𝑄𝑚𝑖𝑛 

This quarterly provides total precipitation during the coldest 3 months of 

the year which can be useful for testing how such environmental factors 

can influence species season distribution. 
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Table 5. 2 Performance measures used in this study: coefficient of determination (R2), root mean squared error 

(RMSE), and normalized RMSE (nRMSE). The three statistics represent correlation (association), error (residual), 

and range normalized errors (Richter et al. 2012). 

Formula Description Range Reference 

𝑅2 = 1 −
∑ (𝑉𝑒𝑠𝑡 

𝑖 − 𝑉̂𝑒𝑠𝑡)2𝑛
𝑖=1

∑ (𝑉𝑒𝑠𝑡 
𝑖 − 𝑉̅𝑒𝑠𝑡)2𝑛

𝑖=1

 

The R2 measures the correlation between the 

predicted and observed value (fraction of 

explained variance) 

0 to 1 

(Richter et al. 2012) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑉𝑒𝑠𝑡 

𝑖 − 𝑉𝑜𝑏𝑠 
𝑖 )2

𝑛

𝑖=1
 

The RMSE is a measure of the average 

magnitude of errors along the 1-to-1 line 

Data 

unit 

𝑛𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑅𝑎𝑛𝑔𝑒(𝑜𝑏𝑠)
 

Normalizing the RMSE facilitates the 

comparison between datasets or models with 

different scales. NRMSE is the ratio of the 

RMSE to the variance of the observed 

variable. 

0 to ∞ (Barzegar et al. 2016) 

Where 𝑉𝑒𝑠𝑡 
𝑖 − estimated variables, 𝑉̂𝑒𝑠𝑡 − average of the estimated variables,  𝑉̅𝑒𝑠𝑡 – average of the predicted variables, 

𝑉𝑜𝑏𝑠 
𝑖 − observed variables, 𝑅𝑎𝑛𝑔𝑒(𝑜𝑏𝑠) − range of the observed variables, and n- number of observed variables 

 

For the climatic indices, the widely used six climatic indices were applied to generate spatial 

distribution mapping of the hydrothermal, aridity, and moisture condition of Mongolia equation 

(1-13). 

1. Selyaninov (1966) hydrothermal coefficient  

𝐻𝑇𝐶 =
∑𝑃

[0.1 ∗ ∑𝑇>𝑋𝑂𝐶]
                                                        (1) 

HTC- Hydrothermal coefficient 

ΣP- Annual total precipitation in a warm period, mm (daily mean temperature >100C) 

∑𝑇>𝑋𝑂𝐶-amount of air temperature >100C 

> 𝑋𝑂𝐶- temperature threshold value (x≥100C) 

 

2. De Martonne (1925) aridity index  

𝐼𝑎𝑟 =
𝑃

𝑇 + 10
                                                                       (2) 

Iar- Aridity index (мм/oC) 

P- Monthly precipitation sum (mm) 

T- Monthly mean air temperature (oC) 

3. Thornthwaite (1948) humidity factor  

𝐻𝐹𝑡ℎ =
𝑃𝐼−𝑋𝐼𝐼

𝐸𝑜
                                                               (3) 

𝑃𝐼−𝑋𝐼𝐼- Annual precipitation sum (mm) 

𝐸𝑜- Annual evaporating capacity (mm) 
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 𝐸𝑜 = 1.6 ∗ (
10𝑇𝑖

𝐽
)

𝑎

                                                         (4) 

𝑇𝑖-Mean monthly temperature (oC) 

i- Monthly heat index (oC) 

𝑖 = (
𝑇𝑖

5
)

1.514

                                                         (5) 

a- A coefficient that varies with the heat index and is given by 

𝑎 = 6.75 ∗ 10−7𝐽3 −  7.71 ∗ 10−5𝐽2 +  1.79 ∗ 10−2𝐽 +  0.49                                                   (6) 

 

4. Mezentsev (1969) moisture index  

𝑀𝐼 =
𝑃

[0.2 ∗ ∑𝑇>10𝑂𝐶 + 306]
                                             (7) 

P- Annual precipitation sum (mm) 

𝑇>10𝑂𝐶- an amount of air temperature >100C 

 

5. Ivanov, climate biological effectiveness indicator  

𝐵𝐸𝐶 = (0.01∑𝑇>10) ∗ КУ                                                            (8) 

𝐵𝐸𝐶- Climate biological efficiency indicators 

∑𝑇>10- Amount of air temperature >10oC 

КУ- Moisture content coefficient 

𝐸 = 0.0018(25 + 𝑡)2 ∗ (100 − 𝑓)                                                       (9) 

t- Average monthly air temperature 

f- Average monthly air relative humidity  

𝐾У =
𝑃

𝐸𝑜
                                                                                 (10)  

P- Annual precipitation sum, мм 

E0- (9) annual evaporation capacity 

 

6. Shasho (1985) bioclimatic potential (Kobysheva 2005) 

𝐵𝐶𝑃 = 𝐾𝑝(𝑘𝑦) 
∑𝑡>10

0

∑ 𝑡𝑎𝑘(баз)
                                                      (11) 

BCP- Bioclimatic potential 

𝐾𝑝(𝑘𝑦)- Indices of heat and water availability 

∑𝑡>10
0 - Amount of air temperature >+10oC 
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∑𝑡𝑎𝑘(баз)- 1000 oC (mean value for a cultivated area in the territory of Mongolia) 

𝐾𝑝(𝑘𝑦) = lg(20𝐾увл)                                                        (12) 

𝐾увл-  annual air humidity coefficient 

Kувл =  
P

∑d
                                                              (13) 

P- Annual precipitation (mm) 

∑d-Monthly amount lacks moisture 

 

5.2.2 Data 

Temperature data 

Air temperature measurements from station data can in principle be interpolated to derive 

spatial maps (Robeson 1994). However, interpolation errors are often significant, depending 

on local conditions and the spatial and temporal resolution of measured air temperature data 

and station density (Dodson and Marks 1997). Similar to many other countries, Mongolia’s 

weather station network for air temperature observations has insufficient spatial coverage. 

Satellite-derived LST data provide continuous spatial and temporal coverage and might, 

therefore, be used to model the temperature fields. However, satellites only measure land LST, 

and hence air temperature has to be estimated (Hooker et al. 2018). A suitable approach was 

presented by (Otgonbayar et al. 2019) where monthly maximum, minimum, and average air 

temperature over Mongolia was estimated using MODIS LST (MOD11A2, v006) time series 

and the Random Forest (RF) regression model. MODIS LST was obtained through an online 

data pool at the National Aeronautics and Space Administration (NASA) Land Processes 

Distributed Active Archive Centre (LP DAAC). Using the approach presented, we created 

spatial maps of monthly maximum temperature, minimum temperature (Otgonbayar and 

Sumya 2020), and average temperature (Otgonbayar et al. 2019) for the period of 2002-2017, 

at a spatial resolution of 1 km. 

 

Precipitation data 

Over the past two decades, numerous precipitation products have been generated from gauge-

radar and gauge-satellite harmonized precipitation analysis at regional to global levels (Bai and 

Liu 2018; Li et al. 2013b; Price et al. 2014). Detailed information on the precipitation database 

combining rain gauge, satellite, and reanalysis products can be found for instance in Roca et al 
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(2019) and Beck et al (2017). Here, used two combined gauge-satellite datasets with a fine 

spatial resolution: CHIRPS and PERSIANN-CCS (Table 5.3). To select the most appropriate 

precipitation data, compared CHIRPS and Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) 

(details see, Otgonbayar et al. 2021a). According to our findings, the CHIRPS data was overall 

far more accurate than PERSIANN-CCS. The main limitation of the CHIRPS data was its 

limited spatial coverage. Indeed, CHIRPS only covers the area 50S°-50N° whereas the northern 

part of Mongolia goes up to 52N°. To generate a gap-free wall-to-wall map for the entire 

territory of Mongolia, we filled the part of Mongolia between 50°N and 52°N with data from 

the Climate Hazards Center’s Precipitation Climatology data version 1.0. CHIRPS monthly 

total precipitation datasets were obtained from the Climate Hazard Center website with a spatial 

resolution of 0.05°, spatial coverage of 87°E-120E°, 41°N-50°N, and covering the period 

between 2002 and 2017. These datasets were developed in collaboration with scientists at the 

USGS Earth Resources Observation and Science (EROS), supported by the United States 

Agency for International Development’s (USAID) Famine Early Warming Systems Network 

(FEWS NET). The datasets are built on ‘smart’ interpolation techniques, estimates focused on 

infrared Cold Cloud Duration (CCD) observations that are available in GeoTIFF, NetCDF, and 

BIL formats. The unit is mm per period, including mm per day, pentad, and month (Funk et al. 

2015).  

 

Table 5. 3 Two precipitation products with a high spatial resolution (Roca et al. 2019; Sun et al. 2018; Bai and Liu 

2018; Beck et al. 2017). Only CHIRPS was used for this study.  

Product name Acronym Data used 
Spatial 

Coverage 

Spatial 

resolution 

Temporal 

coverage 

Temporal 

resolution 
Reference 

Precipitation Estimation 

from Remotely Sensed 

Information using 

Artificial Neural Networks 

(PERSIANN)- Cloud 

Classification System 

PERSIANN-

CCS 

Gauge- 

satellite 
60°N-60°S 0.04° 

2003- 

present 

Hourly,  

Daily 

(Nguyen et 

al. 2018) 

Climate Hazards Group 

Infrared Precipitation with 

Stations 

CHIRPS v2.0 
Gauge- 

satellite 
50°N-50°S 0.05° 

1981- 

present 
Daily 

(Funk et al. 

2015; Chris 

Funk et al. 

2015) 

 

Here, we compared between derived from satellites (MODIS and CHRIPS) for the period 

2002-2017 and the weather station-based WorldClim datasets. WorldClim datasets include 

grids interpolated in situ station data for the 1970-2002 time period (Figure 5.1). Estimated 

monthly maximum, mean, and minimum temperatures derived from MODIS LST are highly 
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correlated with World Climatic temperature datasets compare to precipitation datasets (Table 

5.4). 

 

Figure 5. 1 Inter-correlation between estimated monthly air temperatures derived from MODIS LST, and World 

climatic datasets; precipitation CHRIPS and World climatic datasets (n=63). High inter-correlations (r≥0.90) are 

highlighted in blue.  

 

Table 5. 4 Inter-correlation between estimated monthly air temperatures derived from MODIS LST, and World 

climatic datasets; precipitation CHRIPS and World climatic datasets (n=63). High inter-correlations (r≥0.90) are 

highlighted in blue.  

Month 
Maximum 

temperature 

Mean 

temperature 

Minimum 

temperature 

Total  

precipitation 

01 0.93 0.97 0.90 0.66 

02 0.92 0.97 0.89 0.54 

03 0.90 0.96 0.83 0.58 

04 0.88 0.95 0.86 0.85 

05 0.86 0.96 0.88 0.88 

06 0.89 0.95 0.87 0.91 

07 0.86 0.97 0.91 0.95 

08 0.88 0.97 0.93 0.91 

09 0.88 0.96 0.99 0.94 

10 0.89 0.97 0.89 0.71 

11 0.84 0.98 0.91 0.74 

12 0.91 0.96 0.89 0.62 

 

5.3 Result 

In Table 5.5, descriptive statistics of the estimated 19 bioclimatic variables are reported. Spatial 

maps of 19 bioclimatic variables at a spatial resolution of 1 km for the period 2002-2017 are 
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shown in Figure 5.2. In this figure, we also provide a comparison between the estimated 

bioclimatic variables (SatClim) and WorldClim version 2. The results of the statistical analysis 

are reported in Table 5.6.  

For almost all of the 19 SatClim and WorldClim bioclimatic variables, high 

correlations (R2 ≥ 0.70) were revealed in the linear regression between the > 1.5 x 106 pairs of 

values. Only the annual mean diurnal range (02) and Isothermality (03) found lower – but still 

moderate- correlations (R2 = 0.40-0.46). Only for these two variables did the normalized RMSE 

(nRMSE) slightly exceed 10%. The nRMSE of the remaining 17 bioclimatic variables were all 

below 8% (with six variables nRMSE< 4%). The seven precipitation-related bioclimatic 

variables were generally closer correlated with WorldClim compared to the eleven 

temperature-related bioclimatic variables (Table 5.6). Examining the consistency of retrieved 

frequency distribution (WorldClim versus SatClim), we found a generally very similar pattern, 

often characterized by multi-modal distributions (Figure 5.2, last column).  

 

Table 5. 5 Descriptor statistics of the estimated 19 bioclimatic variables (SatClim) for the years 2002-2017 (n=1 

575 107 pixels) 

Variables Maximum Mean Minimum 
Standard 

deviation 

Annual mean temperature  (01)  11.2 1.5 -13.4 3.6 

Annual mean diurnal range (02) 12.6 7.3 4.4 1.0 

Isothermality (03)  24.6 15.4 9.4 1.9 

Temperature seasonality (04) 1960.0 1332.5 686.3 162.8 

Maximum temperature of the warmest month (05) 32.2 22.3 -1.1 4.4 

Minimum temperature of the coldest month (06) -11.8 -25.4 -39.8 4.2 

Annual temperature range (07) 64.4 47.7 28.3 4.9 

Mean temperature of wettest quarter (08)  29.1 18.1 -3.2 4.4 

Mean temperature of driest quarter (09) 2.9 -16.6 -31.0 4.9 

Mean temperature of warmest quarter (10)  29.1 18.5 -3.2 4.5 

Mean temperature of coldest quarter (11) -7.6 -18.6 -32.0 4.2 

Annual precipitation (12) 53.8 15.2 1.7 7.5 

Precipitation of wettest month (13) 166.0 51.3 7.2 26.1 

Precipitation of driest month (14) 10.0 1.5 0.0 0.8 

Precipitation seasonality (15) 192.9 109.3 47.7 10.7 

Precipitation of wettest quarter (16) 436.0 139.1 18.4 69.9 

Precipitation of driest quarter (17) 30.0 5.3 0.0 2.6 

Precipitation of warmest quarter (18) 436.0 133.7 12.3 70.7 

Precipitation of coldest quarter (19) 53.6 6.1 0.0 3.1 

 

Together, our results demonstrate that the spatial pattern, value ranges, and frequency 

distributions of WorldClim were generally well retrieved using the satellite-derived inputs of 

SatClim. For the two variables annual mean diurnal range and isothermality, the lower 

correlations can be attributed to the fact that temperature extremes enter the calculations; 

variables that are generally less well retrieved using satellite-based modeling techniques. 
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The spatial distribution maps of climatic indices such as Selyaninov’s (1966) hydrothermal 

coefficient, De Martonne’s (1925) aridity index, Thornthwaite’s (1948) humidity factor, 

Mezentsev’s (1969) moisture index, Ivanov’s (1962), climate biological effectiveness indicator, 

Shasho’s (1985; 2005) bioclimatic potential using remote sensing data of air temperature and 

precipitation over Mongolia has been shown in Figure 5.3 (Details see, Otgonbayar and Sumya 

2020). 

  

Figure 5. 2 (a) Modeled 19 SatClim bioclimatic variables using MODIS and CHIRPS data 2002–2017, (b) WorldClim variables 

with gridded data 1971–2000, (c) Frequency distributions of SatClim and WorldClim. 
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Table 5. 6 Summary of statistics describing the correspondence between SatClim and WorldClim data over 

Mongolia (R2, RMSE, and nRMSE). For the comparison, 19 variables were extracted from the full image (n=1 

575 107 pixels). High correlations (R2 ≥ 0.70) are highlighted in light grey. 

Variable R2 RMSE nRMSE (%) 

Annual mean temperature  (01)  0.97 0.61°C  2.48 

Annual mean diurnal range (02) 0.46 0.95°C  11.57 

Isothermality (03)  0.40 1.76% 11.59 

Temperature seasonality (04) 0.86 61.14°C  4.80 

Maximum temperature of the warmest month (05) 0.91 1.29°C  3.88 

Minimum temperature of the coldest month (06) 0.76 2.05°C  7.31 

Annual temperature range (07) 0.72 2.61°C  7.21 

Mean temperature of wettest quarter (08)  0.95 1.00°C  3.10 

Mean temperature of driest quarter (09) 0.70 2.69°C  7.95 

Mean temperature of warmest quarter (10)  0.94 1.07°C  3.32 

Mean temperature of coldest quarter (11) 0.93 1.32°C  5.43 

Annual precipitation (12) 0.94 2.70mm 5.19 

Precipitation of wettest month (13) 0.90 8.13mm 5.12 

Precipitation of driest month (14) 0.73 0.54mm 5.42 

Precipitation seasonality (15) 0.76 8.50mm 5.85 

Precipitation of wettest quarter (16) 0.92 19.80mm 4.74 

Precipitation of driest quarter (17) 0.78 1.65mm 5.50 

Precipitation of warmest quarter (18) 0.87 2.20mm 0.52 

Precipitation of coldest quarter (19) 0.70 0.04mm 3.64 

 

  

  

  
Figure 5. 3 Spatial distribution maps 6 different climatic indices such as hydrothermal, aridity, humidity, moisture, 

biological effectiveness, and bioclimatic potential over Mongolia. 
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5.4 Discussion 

Bioclimatic variables show information about annual conditions (e.g., 01, 02, 07 and 12), 

seasonal variations (e.g., 05, 06, 13, 14), and intra-year seasonality (e.g., 08-11, 16-19). These 

variables are represented as indicators relevant to the physiological restrictions of species and 

are valuable for several applications (O’Donnell and Ignizio 2012).  

In recent years, at the global level, bioclimatic variables mostly have been estimated 

from two commonly used types of datasets, namely WorldClim datasets (Fick and Hijmans 

2017; Marchi et al. 2019), and MERRAclim datasets (Vega et al. 2018). WorldClim version 1 

and version 2 are global gridded datasets at a spatial resolution of ~1 km2. WorldClim datasets 

are representative of the period 1961-1990, and 1970-2000, respectively (Fick and Hijmans 

2017). WorldClim climate datasets, and bioclimatic variables produced by geo-statistical 

interpolation methods (i.e., kriging and spline).  

MERRAclim bioclimatic variables estimated from MERRAclim datasets, which are 

produced station-based hourly data of air temperature, and specific humidity gridded data 

(instead of precipitation) from the Modern-Era Retrospective Analysis for Research and 

Applications Reanalysis (MERRA) using a spline interpolation method for the years 1980, 

1990, and 2000 (Gerta et al. 2017). Therefore, the MERRA dataset is a climate reanalysis 

dataset focused on weather stations and modern remote sensing data. The disadvantage of 

MERRAclim bioclimatic variables with a coarse spatial resolution (10 arc-minutes, 5 arc-

minutes, and 2.5 arc-minutes).  

Moreover, several studies (Waltari et al. 2014; Brown and Comrie 2002; Kurtzman 

and Kadmon 1999; Nikolova and Vassilev 2006) using various interpolation methods including 

kriging (co, simple, and ordinary), thin plate smoothing splines and inverse distance weighting 

(IDW) to simultaneously on precipitation and temperature datasets had a different level of 

success, and generally revealed larger errors for precipitation as compared to temperature 

(Mesquita and Sousa 2009). Interpolation errors commonly depend on the spatial and temporal 

resolution of recorded data (Otgonbayar et al. 2019). Moreover, the uncertainty of the 

interpolation-based method was rising the time and asymmetry difference between future 

studies and interpolation-based climate datasets (e.g., WorldClim) might lead to unsuitable 

predictions (Amiri et al. 2020). On the contrary, satellite-derived data are continuous in spatial 

and temporal coverage. Moreover, real-time access to satellite data has led to the creation of 

more up-to-date climate data (Amiri et al. 2020).  
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To remedy those limitations, estimated bioclimatic variables (SatClim) using MODIS 

LST and CHIRPS data for the years 2002-2017. For this analysis, estimated monthly maximum, 

mean, and minimum air temperature from Terra MODIS satellite LST (MOD11A2) for the 

period 2002-2017 using the Random Forest (RF) regression model and three predictors 

(Otgonbayar et al. 2019; Otgonbayar and Sumya 2020). We examined the relationship between 

SatClim and WorldClim bioclimatic variables version 2.0 for the entire territory of Mongolia 

using coefficient of determination (R2), root mean squared error (RMSE), and normalized root 

mean squared error (nRMSE), which represent spatial correlation (association) and error 

(residual) (Richter et al.2012).  

In general, and considering WorldClim as a “reference”, the spatial pattern of all 19 

bioclimatic variables were well retrieved from MODIS and CHIRPS data and had moderate to 

highly positive correlations, with similar (often multi-modal) frequency distributions. The 

lower performance of the two variables annual mean diurnal range (02) and Isothermality (03) 

can be attributed to the fact that temperature extremes enter into their calculation. These 

temperature extremes are often underestimated using satellite-derived input data (Janatian et 

al. 2017; Duan et al. 2018; Hooker et al. 2018). Other 17 variables were estimated with 

normalized RMSE of < 8% with six of the 17 variables nRMSE <4% (Table 5.6). 

Amiri et al (2020) estimated 19 bioclimatic variables from temperature and 

precipitation instrumental records (Model 1), and remote sensing data (Model 2) at a resolution 

of 1 km during 2001-2017 in Isfahan province of Iran together with three topographic variables 

using five different regression models. Accuracy statistics in Model 2 were higher than in 

Model 1. This study proved that bioclimatic variables derived from the satellite were more 

effective. 

The success of our satellite-derived method can be attributed to the fact that 

precipitation and temperature can be relatively well retrieved remotely (Li et al. 2013b; 

Paredes-Trejo et al. 2017; Kidd et al. 2010; Funk et al. 2015; Beck et al. 2017; Sun et al. 2018), 

and especially in highly elevated or mountainous areas (Fick and Hijmans 2017). In those areas, 

spatially and temporally continuous grids of land surface temperature (LST) are valuable inputs 

for accurate and robust air temperature retrievals with monthly resolution (Otgonbayar et al. 

2019). Similarly, by observing cloud top temperatures, it is possible to model monthly 

precipitation fields with relatively high accuracy (Bai and Liu 2018). Without Earth 

Observation (EO) data, these primary variables have to be modeled and/or interpolated from 
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sparse station data, often not capturing well local peculiarities (Atzberger and Rembold 2013; 

Vancutsem et al. 2010; Benali et al. 2012).  

 

5.5 Conclusion 

Spatial maps of 19 bioclimatic variables at a spatial resolution of 1 km were generated for the 

entire territory of Mongolia, representing the period 2002-2017. The analysis used two 

different satellite time series data: MODIS LST, and CHIRPS. To estimate monthly maximum, 

mean, and minimum air temperature the RF regression model was used with time series of LST 

as a predictor variable. Monthly total precipitation data were obtained from CHIRPS version 

2.0. Seventeen bioclimatic variables derived from MODIS and CHIRPS data had a strong 

positive correlation with the WorldClim bioclimatic variables, and their frequency distributions 

were close. Two variables were the lower performance as an annual mean diurnal range (02) 

and Isothermality (03) can be attributed to the fact that temperature extremes enter into their 

calculation. These temperature extremes are underestimated by applying satellite-derived input 

data (Janatian et al. 2017; Duan et al. 2018; Hooker et al. 2018). As a consequence of the 

successful retrieval of the bioclimatic variables, we are confident that the estimated 19 

bioclimatic variables will be very useful for a range of applications, in particular, if a higher 

spatial resolution is required such as for species distribution modeling. 

The success of the modeling can be attributed to the fact that climatologies of both 

air temperature, as well as precipitation, can be well retrieved from EO data, in particular, if 

aggregated over monthly intervals and for regions such as Mongolia. In areas with sparse 

station density, EO data avoids otherwise necessary interpolation techniques. 

The main limitation of many EO products relates to the fact that data sets are still 

relatively short (e.g., MODIS LST starting only in 2002) and that data from multiple satellites 

would have to be combined and normalized if longer time series are required. The advantage 

of the MODIS data set is however that it covers the most recent 15 years. In the future, spatial 

and temporal resolution and spatial coverage will favor EO data even more than other 

techniques as new satellites are launched at an unprecedented pace. For future research, we 

recommend to focusing on the improved quality, spatial, and temporal resolution of 

precipitation estimates. For the climatic indices, spatial distribution maps of the 

aforementioned six indices in Mongolia were generated. For Mongolia, generating 6 climatic 

indices was significantly important to understand an aridity status. 
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CHAPTER 6. Land potential assessment in Mongolia using linear and non-linear 

regression models and a time series of environmental variables  

6.1 Introduction 

Linking land use with land potential (LP) is one of the most efficient strategies to limit land 

degradation and is vitally important in nature conservation, human development, and economic 

growth (Herrick et al. 2013; IRP 2016). From our findings, outstanding publications on LP 

were written by Herrick et al (2013), Herrick et al (2016), and Herrick et al (2019). Additionally, 

the scientific report “Unlocking the sustainable potential of land resources systems strategies 

and tools”, developed by the United Nations Environmental Program (UNEP), furnished a very 

beneficial history fabric for LP assessment (IRP 2016). The term LP has been applied in the 

field of land degradation since 2013. The International Resource Panel (IRP) described LP as 

the “ … inherent, long-term potential of the land to sustainably generate ecosystem services” 

(IPR 2016). It is thus generally agreed that the LP contains three elements: 1) potential 

production, 2) degradation resistance, and 3) resilience which is the capacity to recover from 

degradation (Herrick et al. 2013).  

LP is significantly linked to the three aforementioned variables (Liebig et al. 2017; 

Herrick et al. 2019). How these variables influence each other and how to assess LP using these 

variables is still a challenge despite the important research done since the early days of the land 

evaluation systems (Trudgill and Briggs 1979). Notwithstanding this, as a result of the 

contemporary development of land evaluation systems, Earth Observation (EO), and geospatial 

technologies (Dong et al. 2019; Mariathasan, Bezuidenhoudt, and Olympio 2019), it is 

nowadays possible to address these challenges using advanced technologies, such as the cloud-

based (Google Earth Engine-GEE) analysis of time-series of spectral and environmental 

variables and machine learning algorithms (Gonzalez-Roglich et al. 2019; Teich et al. 2019). 

To assess the LP, we can now investigate natural elements and processes, develop complex 

system simulation models, and analyze the coupling mechanism of natural and human factors 

and the dynamic change of the land surface system. At the same time, the potential of the 

newest generation of EO satellites is leveraged together with modern machine learning 

techniques for information extraction.  

Increasing awareness and understanding of LP is valuable in describing where 

production can be sustainably raised and determining land that could/should be restored. 

Assessment of LP can also assist decision-makers in making knowledge-based decisions about 



97 

 

various land use alternatives. Any progress in this area will also contribute to achieving Land 

Degradation Neutrality (LDN) (Kust, Andreeva, and Lobkovskiy 2020; Liniger et al. 2019), 

and Sustainable Development Goal (SDG) 15.3 (Giuliani et al. 2020; Sims et al. 2019). LDN 

is “a condition where further land degradation is prevented and already degraded land can be 

restored” (UNCCD 2016; Cowei et al. 2018).  

Assessment of LP is a complicated process, and this kind of study was lacking in 

Mongolia. Previous studies by Otgonbayar et al (2018), and Avirmed et al (2020) were focused 

to estimate landscape ecological potential. These studies used a combination of the Multi-

Criteria Decision-Making (MCDM) method with Analytical Hierarchy Processes (AHP) to 

assess landscape-ecological potential. The current study aim is to assess LP in Mongolia using 

a time series of environmental variables, and linear-nonlinear regression models. The specific 

objectives are as follows: 

• To analyze the relationship between environmental variables (topography, climate, soil, 

and vegetation) for a better understanding of their interactions  

• To assess the importance of environmental variables in LP assessment using 

explanatory and objective variables 

• To develop a prediction model to assess LP and to generate a spatial map of LP in 

Mongolia   

• To identify the interaction between LP and pasture use to better understand the current 

situation of LP 

 

6.2 Methodology and data 

6.2.1 Methodology 

Random Forest Regression (RFR) model 

To develop an LP assessment model and to examine the importance of the 25 explanatory 

variables, the RFR model was applied. We used the IncNodePurity method from the package 

“randomForest” (Breiman 2001; Liaw and Wiener 2002) in RStudio (R core team 2022). The 

Random Forest (RF) is a non-linear, machine learning algorithm based on an ensemble method 

developed by Breiman (2001), which is “capable of modeling discrete or continuous datasets” 

(Pal 2005). The regression and classification models of the RF include the top-down approach 

to find optimal binary node splits by locally lowering variants at the terminal. The main benefits 

of the RFR model are 1) the distribution of the variable need not be normally distributed, 2) a 
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big, multi-dimensional, and strongly inter-correlated dataset can be modeled efficiently, 3) it 

prevents overfitting of the model, 4) performance measures can only be calculated using OOB 

error data and 5) it detects the significance of each explanatory variable in the model (Immitzer 

et al. 2016; Belgium and Dragut 2016; Hudak et al. 2008). In other words, it is possible to know 

which input variables are more effective (Otgonbayar et al. 2019). The RF algorithm measures 

two parameters: the importance of the explanatory variables and the internal structure of the 

variables (Breiman 2001; Liaw and Wiener 2002). To perform the RFR model sets two 

parameters some decision trees “ntree”, and the number of variables to select at each split of 

tree “mtry” are used. For detecting the importance of the variables “Percent Increase in the 

Mean Square Error (%IncMSE)” and “Increase in Node Purity (IncNodePurity)” are calculated.  

Comparison of linear and nonlinear regression models 

To validate estimated importance variables in the RFR model and find the advantages and 

differences of the RFR model, three different regression models were compared: Partial Least 

Square Regression (PLSR), Principal Component Regression (PCR), and Classification and 

Regression Tree (CART). Two of the three regressions were classical linear regression models 

(PLSR, PCR), and the remaining one was non-linear machine learning (ML) regression model 

(CART). In other words, this comparison was done to detect the differences between classical 

linear regression and the ML regression models. Moreover, to find out the inter-differences 

between linear regression, the PLSR and PCR models were compared. In contrast, to find out 

inter-differences between non-linear ML regressions the CART regression model was used. 

The details of the PLSR, PCR, and CART can be found in Abdi (2003), Lasaponara (2006), 

and Breiman et al (1984), respectively.  

Method for calculation of livestock grazing 

To link pasture use with LP, we estimated livestock grazing capacity (LGC). LGC expresses 

the number of livestock that can be grazed on one hectare of pasture for a given period without 

adversely affecting the growth, development, and regeneration of pasture plants (IMALGC 

2019). LGC- livestock grazing capacity, N- total number of livestock population in sheep unit 

(SU) per hectare, and PCC- pasture carrying capacity (Eq.2). Standard units were used to 

convert the number of five types of livestock to sheep unit: 1 goat = 0.9 SU, 1 sheep = 1 SU, 1 

camel = 5 SU, 1 cattle = 6 SU, and 1 horse = 7 SU (IMALGC 2019).  

𝐿𝐺𝐶 = (
𝑁

𝑃𝐶𝐶
) × 100%                                                    (1) 
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𝑃𝐶𝐶 =
𝐵𝑀1

𝐵𝑀2𝐷 
                                                         (2) 

PCC- pasture carrying capacity in SU, 𝐵𝑀1- the actual biomass of pasture (kg ha-1), 𝐵𝑀2- 

livestock daily consumption grass (kg day-1), which is an average of 1.64 kg day-1 SU-1 during 

the summer-fall, and 1.32 kg day-1 SU-1 during winter-spring (IMALGC 2019). D-grazing time 

(106 days during summer, 56 days during fall, and 150 days during winter and spring).  

Model evaluation 

Widely applied 4 statistics including coefficients of correlation (r) and determination (R2), root 

mean square error (RMSE), and normalized root mean square error (nRMSE) were used. To 

detect the relationship between objective and explanatory variables used r. And the R2 and 

RMSE were used to assess the accuracy of the RFR, PLSR, PCR, and CART regression models 

(Richter et al. 2012; Barzeger et al. 2016). The nRMSE was used to detect a normalized error 

of RFR. The r is a measure of the relationship between variables, R2 determines the proportion 

of the explained variance, RMSE represents the residual error, and nRMSE expresses range 

normalized errors.  

 

6.2.2 Data 

This study, used 29 environmental variables of which one objective variable, 25 explanatory 

variables, and 3 validate variables derived from satellites, reanalyzed datasets, field surveys, 

and a statistical database. The objective variable was rangeland recovery data from 12,988 sites 

obtained from the Agency for Land Administration and Management, Geodesy, and 

Cartography (ALAMGaC). 25 explanatory variables related to topography, climate, soil, and 

vegetation were derived from the Shuttle Radar Topographic Mission (SRTM), Moderate 

Resolution Imaging Spectroradiometer (MODIS), Advanced Very High-Resolution 

Radiometer (AVHRR), Climate Research Unit-Time Series (CRU-TS), Climate Research 

Unit-National Centers for Environmental Prediction (CRUNCEP) and the Trends. Earth 

system. 16 of the 25 spatial explanatory variables were time-series data for the period 1991-

2021, 1991-2015, and 2002-2021. The remaining 3 validated variables were the number of 

livestock and in situ meteorological datasets such as temperature and precipitation from the 

National Statistical Office (NSO) of Mongolia, and the Information Research Institute of 

Meteorology, Hydrology, and the Environment (IRIMHE) of Mongolia, respectively. 23 

explanatory variables were re-projected (WGS84) and resampled (n=19567425) at a spatial 
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resolution of 500 m (excluding latitude and longitude). Each variable's characteristics and 

source are shown in Table 6.1. The descriptor statistics of all variables are reported in Table 

6.2.  

 

Table 6. 1 Data sources and their characteristics 

Data name Data type 
Path/row 

or tile name 

Spatial 

resolution 

Temporal 

coverage 
Source 

DEM SRTM satellite 
Extracted from 

global data 
90 m - https://worldclim.org 

Temperature, 

Precipitation, 

Potential 

evapotranspiration

, Vapor pressure 

Reanalysis data 

from CRU-TS 

v4.06 

Extracted from 

global data 
0.5×0.5° 1991-2021 https://crudata.uea.ac.uk 

Radiation, 

Wind 

Reanalysis data 

from 

CRUNCEP v07 

Extracted from 

global data 
0.5×0.5° 1991-2021 

https://downloads.psl.no

aa.gov 

Climatic indices 

(Hydrothermal, 

Aridity, Humidity, 

Moisture) 

Estimated from 

CRU-TS v4.06  
- 0.5×0.5° 1991-2021 - 

Temperature, 

precipitation 

In situ- 

metrological 

data 

63 weather 

stations 
- 1991-2021 IRIMHE 2022 

Soil Organic 

Carbon 

From 

Trends.Earth 

Extracted from 

global data 
250 m - https://docs.trends.earth 

Soil moisture 
Reanalysis of 

data from ERA 

Extracted from 

global data  
0.28×0.28° 1991-2021 

https://esa-soilmoisture-

cci.org 

Soil humus Vector data - - - IGG, MAS 

NDVI (MCD13) 

MODIS satellite 
23-25/03-04, 

26/04 

250 m 

2002-2021 
https://ladsweb.modaps.

eosdis.nasa.gov 

Fpar (MCD15) 500 m 

LAI (MCD15) 500 m  

GPP (MOD17) 500 m 

NDVI 

(GIMMS3g) 

AVHRR 

satellite 

Extracted from 

global data 
8 km 1991-2015 

https://earthexplorer.usg

s.gov 

Field-measured 

objective data  

Archived data 

from field 

measurements 

308 sites - 2016 

ALAMGaC 

2115 sites - 2017 

2625 sites - 2018 

3200 sites - 2019 

4740 sites - 2020 

Number of 

livestock  
Statistical data 

332 soums 

(sub-province) 
- 1991-2021 NSOM 

 

 

 

 

  

https://crudata.uea.ac.uk/
https://ladsweb/
https://earthexplorer/
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Table 6. 2 The summary statistical description of all variables used in this study 

Variable name 
Variable 

acronym 
Units 

Number of 

pixels 
Minimum Maximum Mean 

Standard 

deviation 

Elevation Elv m 19567425 524.00 4320.00 1488.51 539.27 

Slope Slp Degree 19567425 0.00 62.18 3.84 5.07 

Aspect Aspct Degree 19567425 -1.00 359.94 172.34 106.18 

Topographic 

Position Index 
TPI - 19567425 -543.00 647.73 0.02 42.83 

Topographic 

Wetness Index 
TWI - 19567425 -7.47 17.46 -1.21 3.38 

Latitude Lat Degree 19567425 41.58 52.14 n.a n.a 
Longitude Long Degree 19567425 87.74 119.93 n.a n.a 
Solar radiation Srad kJ m-2 19567425 2467.56 3332.14 2930.24 158.12 

Air temperature Tmp °C 19567425 -18.26 8.86 -0.61 3.83 

Precipitation Prec mm 19567425 14.81 559.93 204.87 95.76 

Potential 

evapotranspiration 
PET mm 19567425 8.76 40.75 28.29 5.94 

Vapor pressure Vap hPa 19567425 0.10 7.31 5.05 0.84 

Wind Wnd ms-1 19567425 1.01 5.04 2.92 0.83 

Hydro-Thermal 

coefficient 
HTC - 19567425 0.07 14.00 1.59 1.23 

Aridity index Iar - 19567425 1.00 56.00 3.55 6.36 

Humidity index HFth - 19567425 2.00 487.99 26.28 17.13 

Moisture index MI - 19567425 0.08 2.12 0.63 0.31 

Soil Organic 

Carbon  
SOC 

  tons C 

ha-1 
19567425 0.00 608.00 106.84 48.76 

Soil humus sHumus % 19567425 0.00 20.00 3.62 4.54 

Soil moisture sMoisture m3m-3 19567425 672.21 4696.93 1795.74 557.72 

MODIS NDVI modisNDVI - 19567425 -0.07 0.87 0.33 0.21 

GIMMS NDVI gimmsNDVI - 19567425 0.00 0.69 0.18 0.11 

Fraction of 

Photosynthetically 

Active Radiation 

Fpar % 19567425 0.00 0.92 0.27 0.23 

Gross Primary 

Productive 
GPP Kg C m-2 19567425 0.00 0.07 0.01 0.01 

Leaf Area Index LAI 
m2plant  

m-2 ground 
19567425 0.00 5.59 0.66 0.72 

Field-measured 

objective data 
RefData - 

12988 

sites 
1.00 5.00 n.a n.a 

Air temperature  Ta °C 63 weather 

stations 

-30.58 21.62 - 14.05 

Precipitation Precip mm 0.00 145.50 22.39 29.42 

Number of 

livestock  
Lvstk 

Million 

heads 
332 soums 23.63 71.10 39.96 15.60 

 

Field-measured rangeland recovery data 

This study used field-measured rangeland recovery data as an objective variable to develop an 

LP assessment model. The rangeland recovery data (RefData) were observed in 12,988 photo-

monitoring sites and obtained from the ALAMGaC for the period 2016-2020. These 

monitoring sites aim to assess rangeland health at the national level (GGP-SDC 2015). The 

RefData were based on reference data of pasture state/ecological potential (the health state of 
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plant community in the given area), the process of recovery which is divided into 5 classes 

(Table 6.3). Each rangeland recovery class includes “leaf canopy cover, species composition, 

and basal gaps of perennial vegetation, vegetation height, and vegetation biomass" information 

(Densambuu et al. 2018). “Class I expresses that natural condition is very good in that the plant 

community is not changed or near reference conditions (not degraded); Class II expresses that 

the plant community is very low changed but can quickly be recovered within a short period 

with favorable climate conditions; Class III expresses that the plant community is changed but 

can be recovered within 5-10 years; Class IV expresses that plant community is strongly 

changed and usually costly to recover; and Class V expresses that with poor plant community 

and soil degradation. It is impractical to recover” (GGP-SDC 2015). Rangeland recovery data is 

represented by the LP because it is the capacity to resist and recover from land degradation. 

The field monitoring sites are shown in Figure 6.1.  

 

Table 6. 3 Field-measured rangeland recovery data (RefData) used, being developed by the Ministry of Food and 

Agriculture (MoFA), ALAMGaC, IRIMHE, and Associations of Pasture Users Group (APUG) of Mongolia in 

2015 (GGP-SDC 2015) 

Class type Description 

Class I 

“The plant network is at or close to reference conditions (non-degraded) or calls for 1-three developing 

seasons for recuperation from minor changes (slightly degraded); match-stocking rate to forage supply 

and use temporary seasonal deferment as needed” (GGP-SDC 2015) 

Class II 

“The plant community is altered and may be rapidly recovered (3-5 growing seasons) with favorable 

climatic conditions or a change in management (e.g., stocking rate reduction, seasonal deferment, 

rotation). The nature of alteration is not regarded as a significant long-term threat to the provision of 

forage and other ecosystem services” (GGP-SDC 2015). 

Class III 

“The plant network is altered and can take 5-10 developing seasons to get better with modified 

management (stocking price reduction, seasonal deferment, and long-time period rest). Alteration 

represents a significant loss of important ecosystem services (and are related to anthropogenic drivers), 

but recovery is possible in time” (GGP-SDC 2015). 

Class IV 

“The plant community is altered due to the local loss of key plant species, invasion of noxious plant 

species, or alteration of hydrology that is unlikely to be recovered for over a decade to many years without 

extensive interventions inclusive of species removal, seeding, or manipulations to get better historic 

hydrological function an ecological threshold was crossed). Previous ecosystem services have been lost 

and are usually costly to recover” (GGP-SDC 2015). 

Class V 

“The plant community is altered due to extensive soil loss, accelerated erosion rates, or salinization. 

Altered plant-soil feedbacks or permanent changes in the soil profile maintain the degraded state. 

Previous surroundings offerings had been misplaced and it also includes impractical to get better them 

(frequently seemed like proper desertification). The recovery class hypothesizes timelines for the recovery 

of the reference state based on vegetation cover and composition data interpreted according to expert 

knowledge and existing studies when available.  For example, the presence of remnant perennial grasses 

suggests that recovery can occur within several years. The recovery classes allow standardized 

interpretations across multiple state and transition models to allow for reporting and visualization of 

rangeland restoration needs” (GGP-SDC 2015). 

The ALAMGaC is responsible for the photo-monitoring network sites (PNS) 

including rangeland recovery data to control the impact of pasture utilization. PNS is based on 

the photo point monitoring (PPM) method which indicates whether the vegetation cover of the 

majoring species is at a feasible level and obtains information on how the structure of these 
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majoring species is changing (Booth and Cox 2008). The land managers in 330 soums (sub-

provinces) have been collecting yearly primary data on key vegetation species, vegetation 

biomass, vegetation cover, and vegetation recovery class since 2016 using the standardized 

PPM method. These field measurements are primary datasets examined by the land manager 

of ALAMGaC and were then entered into the national photo-monitoring database. Currently, 

the PNS of the ALAMGaC covers 4740 monitoring sites (Figure 6.1). All sites represent 

natural zones, administrative units, and seasonal pasture regions of Mongolia (ALAMGaC 

2021). 

 
Figure 6. 1 The distribution of the pasture monitoring sites across Mongolia from ALAMGaC in 2020. 

 

Remote sensing and reanalysis of data 

Topographic data: To show the contribution of topographic variables in the assessment of the 

LP 7 variables were chosen of which 5 were widely used terrain parameters such as elevation 

(Elv), slope (Slp), aspect (Aspct), topographic position index (TPI), and topographic wetness 

index (TWI). The remaining two were the location of latitude (Lat), and longitude (Long). The 

Elv, Slp, Aspct, TPI, and TWI were calculated from STRM digital elevation model (DEM) at 

a resolution of 90 m. The Lat and Long were extracted from the central point of the gridded 

vector data.  

Climatic data: To investigate the contribution of climate to the LP 10 variables were applied. 

These variables were obtained from CRU-TS, CRUNCEP, and in situ-weather stations (Table 
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6.2). Specifically, the time series of the monthly mean air temperature (Tmp), monthly total 

precipitation (Prec), monthly mean capability evapotranspiration (PET), and month-to-month 

suggest vapor pressure (Vap) derived from the CRU-TS version (v) 4.06 monthly climate 

dataset for the period 1991-2021 (Harris et al. 2020) (Appendix B, Figure B.1). Annual mean 

solar radiation (Srad), and wind (Wnd) were derived from Climate Research Unit-National 

Centers for Environmental Prediction (CRUNCEP) v07 (Viovy 2018). Both CRU-TS and 

CRUNCEP were reanalysis climate datasets at a resolution of 0.5º for the period of 1991-2021 

(Harris et al. 2020). The climate index efficiently expresses the interaction of hydro-thermal 

conditions over large areas (Croitoru et al. 2013; Voropay and Ryazanova 2018). Therefore, 

we used 4 different climatic indices in this study, Selyaninov’s hydro-thermal coefficient 

(HCT), De Martonne’s aridity index (Iar), Thornwaite’s humidity index (HFth), and 

Mezentsev’s moisture index (MI) (Table B.1) based on the literature review (Nyamtseren, Feng, 

and Deo 2018; Natsagdorj, Munkhbat, and Gomboluudev 2019; Otgonbayar, Sumiya, and 

Tovuudorj 2021a; Otgonbayar, Erdenedalai, and Dalantai 2017). In order to examine the 

relationship between reanalysis and in situ meteorological datasets, we applied monthly mean 

near-surface air temperature (Ta) (Figure B.2 (left)) and monthly mean precipitation (Precip) 

data (Figure B.2 (right)) obtained from 63 weather stations (Figure 1.1(a)) for the period 1991-

2021. Monthly mean Ta and Tmp had strong correlations with the coefficient of correlation (r) 

being higher than 0.92 (Figure B.3 (top)). Corresponding months of Precip and Prec had a good 

correlation with r=0.58-0.84 (Figure B.3 (bottom)). 

Soil data: To assess the contribution of soil to LP 3 variables were used soil organic carbon 

(SOC), soil moisture (sMoisture), and soil humus (sHumus). The SOC variable was extracted 

from the Trends.Earth system (Conservation International 2022). Trends.Earth is an open-

access system for estimating land degradation indicators (Gonzalez-Roglich et al. 2019). The 

SOC facts have been produced through the International Soil Reference and Information 

Centre’s (ISRIC) SoilGrids at a spatial resolution of 250 m and with a depth layer of 0-30 cm 

(ISRIC 2022). For soil moisture data, five different global reanalysis datasets (Li et al. 2021) 

have been widely used in climate assessment and terrestrial environmental studies (Gallego-

Elvira et al. 2016). From these, the fifth generation of ERA’s sMoisture has a relatively higher 

resolution compared to others therefore, these data were used. The soil moisture data were 

extracted from the European Centre for Medium-Range Weather Forecasts (ECMWF) database 

at a resolution of 0.28º for the period 1991-2021 (Figure B.4). The sHumus data over Mongolia 
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were obtained from the Institute of Geography and Geoecology, Mongolian Academy of 

Sciences (IGG, MAS). 

Vegetation data: To assess the contribution of vegetation to PL, 5 variables Normalized 

Difference Vegetation Index (modisNDVI), Fraction of Photosynthetically Active Radiation 

(Fpar), Leaf Area Index (LAI), and Gross Primary Productive (GPP) of MODIS and the third 

generation (3g) of Global Inventory Modeling and Mapping Studies (GIMMS) NDVI 

(gimmsNDVI) were used (Figure B.5). More specifically, gimmsNDVI data were derived from 

the AVHRR sensor data of the National Oceanic and Atmospheric Administration (NOAA) at 

a spatial and temporal resolution of 8 km and a bi-monthly composite, covering the period from 

1982 to 2015 (Pinzon and Tucker 2014). The original gimmsNDVI3g datasets were developed 

by Tucker (2005). For the data analysis, bi-monthly gimmsNDVI3g datasets were used 

covering a 25-year (1991-2015) corresponding with the vegetation growing season (April-

August). For the processing of the datasets applied the “GIMMS” R package (Detsch 2016). 

The remaining four vegetation variables were derived from MODIS collection 006 (c006) 

datasets for the period of 2002-2021 during the vegetation-growing season (April-August) in a 

sinusoidal projection acquired from the Land Processes Distributed Active Archive Center (LP 

DAAC 2022). Specifically, MCD13A2 (combined MYD13A2 and MOD13A2) NDVI datasets 

were extracted from the MODIS Aqua and Terra satellites at a spatial resolution of ~250 m. 

MCD15A2 (combined MYD15A2 and MOD15A2) Fpar and LAI datasets were extracted from 

the MODIS Aqua and Terra satellites at a spatial resolution of ~500 m. MOD17A2 GPP 

datasets were extracted from the MODIS Terra satellites at a spatial resolution of ~500 m. For 

the data processing download, mosaic, re-sample, reprojection, image mask, and crop were 

used with the “MODIS” R package (Matteo et al. 2016). 

Livestock data 

To compare the current state of land use with LP, used the number of livestock at the soum 

(administrative unit) level of Mongolia from 1991 to 2021 was obtained from the NSO of 

Mongolia, as counted yearly in December (NSOM 2022b). Every December, the officers of 

each soum take a census of five types of livestock, which are camels, horses, cattle, sheep, and 

goats. The yearly census of livestock data is entered into the database of NSO of Mongolia. 
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6.3 Results 

6.3.1 The interrelationship between environmental variables 

The relationship between topographic variables 

We selected Elv, Slp, Aspct, TPI, TWI (Figure B.6), Lat, and Long to analyze the contribution 

of the topographic variables to LP. These variables have been widely applied to investigate 

spatial influences on the hydrological process and to determine the hydrological flow directions 

and paths, as well as describe biological and physical processes such as growing native 

vegetation processes and net primary production (NPP) (Makhaya et al. 2022; Blackburn et al. 

2022). Primarily, examined whether there is any correlation between the topographic variables 

(n=19567425). The correlation analysis showed (Figure 6.2) that the highest positive 

correlation (r=0.55) was detected between elevation and slope. In contrast, the highest negative 

correlation (r=-0.63) was detected between elevation and longitude. The lowest correlations 

were detected between aspct and the remaining 6 variables. The significance levels (Table B.2) 

of Elv, Slp, TPI, and TWI noted p<0.0001 for each pair of variables. The Elv, Slp, Lat, and 

Long noted p<0.0001 for each pair of variables. The between Aspct and Elv, Aspct and TPI, 

Aspct and Lat, TPI and Lat, TPI, and Long ranged p<0.01, and p<0.1, respectively (Table B.2). 

The corresponding frequency distributions are characterized by two left skew, a bimodal, and 

two normal distributions, respectively (Figure 6.2). The spatial relationship between three 

topographic variables (Elv, Slp, and Aspct) showed that a high value of Slp was associated 

with a high value of Elv (Figure B.7).  

From these analyses, the main features of the topographic variables were detected in 

the western, central, and northern parts of Mongolia which are primarily mountainous (Figure 

B.7). In the east and southeastern areas, which are dominated by flat plains, undulating plains, 

and hollows, no significant relationship was detected (Figure B.7). 
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Figure 6. 2 The results of the inter-analysis correlation between topography variables (n=19567425). The diagonal 

plots represent a histogram and distribution density, the top right plots represent a coefficient of determination (R2) 

(Pearson), and the bottom left plots are represented scatter plots for a linear model distribution. 

 

The relationship between climatic variables 

We selected 10 variables to analyze the contribution of climate variables to LP (Figure B.8). 

These variables play an important role in the effective explanation of the interaction between 

the atmosphere and the land system because many land processes are regulated by climatic 

parameters (Robert et al. 2020). In other words, climatic variables have a strong effect on LP 

(IRP 2016). More specifically, the heat and areas that lack moisture limit vegetation growth, 

while low temperatures also limit vegetation growth (Ólafur 2019). These limitations occur in 

drylands, cold tundra, and the high mountain regions in Mongolia. We examined whether there 

is any correlation between the climatic variables (n=19567425). The coefficients of r and R2 

between climatic variables ranged from -0.80 to 0.96 and from 0.14 to 0.92 (Figure 6.3), 

respectively.  
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Figure 6. 3 The results of inter-correlation analysis between climatic variables (n=19567425). The diagonal plots 

represent a histogram and distribution density, the top right plots represent R2 (Pearson), and the bottom left plots 

represent scatter plots in a linear model distribution. 

 

The significance levels noted that p<0.0001 for all pair variables. Specifically, strong 

correlations (R2=≥0.60) were detected between Srad and Tmp (R2=0.90); Srad and PET 

(R2=0.92); Srad and Wnd (R2=0.64); Srad and HFth (R2=0.63); Tmp and PET (R2=0.84); Tmp 

and Var (R2=0.70); Prec and MI (R2=0.84); Prec and HFth (R2=0.62); PET and Vap (R2=0.63); 

PET and Wnd (R2=0.76); HTC and HFth (R2=0.64); HFth and MI (R2=0.84). The 

abovementioned variables were statistically significant (Table B.3). The frequency 

distributions of yearly mean Srad, Tmp, Prec, PET, Vap, and Wnd were nearly designed, which 

was mainly characterized by bi-model and multi-model. The frequency distribution of yearly 

mean climatic indices such as HCT, Iar, HFth, and MI, were characterized by left skew (Figure 

6.3). The correlation analysis detected that 24 of the 45 pair variables had a significant 

relationship (R2=≥0.60): Srad (4 times), PET (4 times), HFth (4 times), Tmp (3 times), Prec (2 

times), MI (2 times), Vap (2 times), Wnd (2 times) and HCT (1 time). According to this, the 
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influence of solar radiation, evaporation, and dryness are significant in the interaction of 

climate variables in Mongolia. 

The relationship between soil variables 

We selected 3 variables (SOC, sHumus, and sMoisture) to analyze the contribution of the soil 

variables to LP (Figure B.9). These are critical variables for determining LP. Specifically, high 

concentrations of SOC and sHumus have many positive influences on a net primary product, 

food production, soil aggregate stability, and pesticide sorption potential, to reduce erosion and 

pollution of soil (ISRIC 2002). Moreover, the water storage capacity of soil is a key indicator 

for determining LP in drylands (Trudgill and Briggs 1979). Water Storage in Soil (WSS) 

provides water to plants during dry periods (Seybold, Herrick, and Brejda 1999). The potential 

of the land is limited in arid climates where WSS is required. We examined whether there is 

any correlation between the soil variables (n=19567425).  

The correlation analysis showed that the r between soil variables ranged from 0.58 to 

0.69 (Figure 6.4). The highest correlations (r=0.69) were detected between SOC and sMoisture. 

The 3 soil variables had a positive relationship with each other. The significance level of p-

values was noted as <0.0001 for all pair variables (Table B.4). The frequency distributions of 

SOC, sHumus, and sMoisture were characterized by left skew, multi-model, and bi-model, 

respectively (Figure 6.4). 

 

Figure 6. 4 The results of inter-correlation analysis between soil variables (n=19567425). The diagonal plots 

represent histogram and distribution density, the top right plots represent R2 (Pearson), and the bottom left plots 

represent scatter plots in a linear model distribution. 
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The relationship between vegetation variables 

We selected 5 vegetation variables modisNDVI, gimmsNDVI, Fpar, GPP, and LAI for the 

period 1991-2021 and 2002-2021 during the vegetation growing season (April-August) to 

analyze the contribution of vegetation to LP (Figure B.10). Vegetation is a vital variable in the 

interaction between climate and land processes. This includes biogeochemical processes and 

the water cycle, which converts solar energy into energy for forage (biomass), with this being 

the base of food chains. Furthermore, high-density vegetation reduces land surface runoff, soil 

erosion, and degradation. The relationship (r) between vegetation variables ranged from 0.88 

to 0.97 (Table B.5).  

The strongest correlation (r=0.97) was detected between GPP and Fpar. The lowest 

correlation (r=0.88) was detected between gimmsNDVI and LAI. The significance level of the 

p-values was <0.0001 for each pair of variables. The frequency distribution of modisNDVI, 

gimmesNDVI, Fpar, and GPP was characterized by multi-model, and a left skew of the LAI 

distribution was reported (Figure 6.5). From these analyses, the native vegetation with dense, 

stable, and continuous growth in a given area can indicate a high potential for the land. 

Therefore, vegetation is one of the key indicators for assessing LP (Hengl et al. 2018). 

 

Figure 6. 5 The results of inter-correlation analysis between vegetation variables (n=19567425). The diagonal plots 

represent a histogram and distribution density, the top right plots represent R2 (Pearson), and the bottom left plots 

represent scatter plots in a linear model distribution. 
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The relationship between objective and explanatory variables 

The inter-correlation between topography, climate, soil, and vegetation is shown in Figure 6.2-

Figure 6.5. In this part, analyzed the relationship between the objective (dependent) variable 

(n=12988) and the 25 explanatory (independent) variables. The correlation results revealed that 

25 explanatory variables were sufficiently correlated with each other (excluding aspect) (Figure 

6.6).  

More specifically, all vegetation variables, all soil variables, and 5 climatic variables 

had a positive correlation with other variables, while the climatic variables of the PET, Srad, 

Tmp, Vap, and Wnd had a negative correlation. For the relationship between the response 

variable and 25 explanatory variables, high positive correlations (r=>0.65) were detected 

between the response variable and the 7 environmental variables modisNDVI (r=0.69), Fpar 

(r=0.68), GPP (r=0.68), MI (r=0.67, gimmsNDVI (r=0.67), Prec (r=0.66), and LAI (r=0.66). 

The lowest correlation was between the response variable and the aspect. Based on these 

correlation results and considering the number of variables should be a reduction in the 

explanatory variables. Therefore, we generated 5 groupings from the selected 4 main, and 25 

sub-variables (Table 6.4). 

 

Figure 6. 6 The correlation matrix between dependent (n=12988) and 25 independent variables. The positive and 

negative correlations are represented in blue and orange, respectively. The acronyms of each variable are shown in 

Table 6.2. 
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Table 6. 4 The five groupings generated from the 4 main, and 23 sub-explanatory variables  

Group name Variable category Variable acronym 

Group 1 (G1) Topography Elv, Slp, Aspct, TPI, TWI, Lat, Long 

Group 2 (G2) Climate Srad, Tmp, Prec, PET, Vap, Wnd, HTC, Iar, HFth, MI 

Group 3 (G3) Soil SOC, sMoisture, sHumus 

Group 4 (G4) Vegetation  modisNDVI, gimmsNDVI, Fpar, LAI, GPP 

Group 5 (G5) All environmental Integrated G1, G2, G3 and G4 

 

6.3.2 Importance variables and prediction accuracy using the RFR model 

The 3 highest ranked variables in the RFR model were Lat, Long, Elv for G1,  Prec, MI, HFth 

for G2, sHumus, sMoisture, SOC for G3 and modisNDVI, gimmsNDVI, GPP for G4 (Figure 

6.7, G1-G4). For the 5th grouping (G5), all vegetation variables were ranked in the top five, 

while two climatic, and two topographic variables were ranked between 6 and 9 (Figure 6.7, 

G5).  

The RFR results showed that the LP can be determined by climate, soil, topography, 

and vegetation variables. However, vegetation variables were most important and served as 

indicators of the LP (Parfenava et al. 2019). For reason, vegetation variables are institutes such 

as climate, soil, and topography is a complex indicator that includes many environmental 

factors and in turn affects processes such as snow accumulation, soil moisture, surface runoff, 

infiltration, and erosion (Hengl et al. 2018). Hengl et al. (2018) study revealed that natural 

vegetation is useful for estimating LP. Specifically, Fpar is a "fraction of photosynthetically 

active radiation absorbed by the green parts of the canopy”, and strongly depends on leaves, 

canopy structure, an optical property of soil, and irradiance. Moreover, the United Nations 

(UN) Global Climate Observing System defined "Fpar is one of the key 50 variables accepted 

as necessary to define global climate" (Qin et al. 2018). Several studies confirmed that Fpar is 

one of the fundamental variables to define the terrestrial state (Qin et al. 2018; Liu, Shao, and 

Liu 2015; Myneni, Knyazikhin, and Park 2015). GPP is a collection of complex processes that 

convert light energy and water into chemical energy, absorbing carbon and releasing oxygen. 

Especially, for the dry and temperate regions' photosynthesis, vegetation transmits large 

amounts of water therefore, GPP strongly impacts the interaction between land and atmosphere 

processes. Therefore, the main drivers of GPP are including climate, soil richness, and species 

composition of vegetation (Roy et al. 2001). LAI is a key variable of vegetation structure that 

strongly responds to vegetation in the climate (Fang et al. 2019). Moreover, the strong 

correlation of NDVI with GPP and Fpar makes NDVI a useful indicator of land resilience 
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(Yengoh et al. 2014). For the 5 groupings, accuracies of the RFR models explained R2 values 

in the ranges from 0.60 (G3) to 0.73 (G5), while RMSE was explained from 0.55 (G5) to 0.67 

(G3) (Table 6.5). 

 

   G1   G2    G3    G4 

    

                                                             G5  

 

Figure 6. 7 Evaluation of the important variables for the five groupings using the RFR model (n=12988). Importance 

is given to the increased node purity (IncNodePurity) 

 

Table 6. 5 The summary statistics of the R2 and RMSE for the LP prediction model, including five groups of 

variables using the RFR model 

n 
G1 G2 G3 G4 G5 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

12988 0.71 0.57 0.72 0.56 0.60 0.67 0.70 0.58 0.73 0.55 
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6.3.3 Comparison of linear and non-linear regression models 

To validate estimated importance variables in the RFR model and find the advantages and 

differences of the RFR model were compared to linear (e.g., PLSR, PCR) and non-linear (e.g., 

CART) regression models. 

Comparison of linear regression models 

To find out the differences between linear regressions PLSR was compared with PCR. We 

examined the following six conditions in both PLSR and PCR models, which were used to 

determine the unbiased of the estimators (β parameters): 1) β parameters must have linearity; 

2) dependent and independent variables collected from a random sample, which can represent 

the function of a set; 3) independent variables must not have collinearity and multi-collinearity 

(must not be high inter-correlations (r=1.0) among them); 4) the conditional expectation of 

error given by the values of explanatory variables when the expected value of response variable 

is zero; 5) the conditional variance of the error of explanatory variables must be constant or all 

the same. It is important to estimate the standard error of β parameters, and 6) the error does 

not correlate with the independent variables and must have a normal distribution. If the 

developed models satisfy these six conditions, the model is called a classical linear regression 

model. Results of PLSR and PCR analysis showed that the first five conditions were satisfied 

in both models (Table B.6, Table B.7). 23 of the 25 variables had a non-normal distribution 

(see, Figure 6.2-Figure 6.5). Using the 25 explanatory variables with objective data of 12988 

sites to estimate LP, the accuracy of the PCR model (R2=0.55, RMSE=0.71, F(25, 

12964)=624.24, p<0.0001) was slightly higher than the PLSR model (R2=0.46, RMSE=0.78). 

Details of both linear regression results are shown in Table B.6 and Table B.7. Moreover, the 

accuracies of the PCR model for all 5 groupings were much higher than PLSR (Table B.8). 

Comparison of linear and nonlinear regression models 

To the examination of the estimated variable importance in the RFR, we estimated the Variable 

Importance in Projection (VIP) in the PLSR model. The VIP defines the contribution of each 

dependent variable in the PLSR model. If the value of VIP is less than 0.80 that indicates the 

explanatory variable is less important. The estimated variable importance from the PLSR 

model was similar to the results of the RFR model for each corresponding group (Figure B.11). 

Specifically, the highest three ranked variables for the first three groupings in the PLSR model 

(Figure B.11, G1-G3) were the same as the RFR results. For G4, nearly similar results were 

indicated (Figure B.11, G4). For G5, modisNDVI, GPP, Fpar, gimmsNDVI, and MI were 
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ranked in the top five, while Prec, LAI, HFth, HTC, sHumus, and Long were ranked between 

6 and 11 in the PLSR model (Figure B.11, G5). These eleven explanatory variables with >0.80 

VIP values were categorized as being more important. Estimated importance variables in both 

RFR and PLSR models were similar. However, the accuracy of the predicted model in the 

PLSR was lower than the RFR model. 

Comparison of nonlinear regression models 

In this part, for identifying the threshold value of explanatory variables in the assessment of LP 

the CART method was used, and the result to compare with RFR, PLSR, and PCR. The CART 

is a classification and regression technique based on the iterative method to find the best split 

and was developed by Breiman et al (1984). The splitting structures between root and terminal 

(leaf) nodes in the CART are considered criteria for the different expected classifications. 

Hence, in the regression tree of CART, the nodes between dependent and independent variables 

are explained efficiently (Nandintsetseg, Shinoda, and Erdenetsetseg 2018). In other words, the 

regression (RT) of the CART is recursively constructed to determine all potential splits of 

independent variables and define the threshold value of explanatory variables to construct the 

largest potential tree. For the CART analysis, used 25 environmental variables with 12,988 

sites. To avoid overfitting, limited the tree size and set it to three steps (maximum depth) for 

each grouping. The results of the CART analysis are shown in Figure B.12. For topographic 

(G1), the most important variables in the assessment of LP or land recovery were the 

geographical location of Long and Lat with threshold values of ≥97.7º, and ≥47.2º, respectively. 

In addition, the terrain parameters of Elv and Slp were ranked between 3 and 4 with threshold 

values of ≥946 m, and ≥2.93º, respectively. For climate (G2), the most important variables 

were Prec with a threshold value of ≥258 mm, and MI with a threshold value of ≥0.96. For soil 

variables (G3), the most important variables were sHumus with a threshold value of ≥2.0, and 

sMoisture with a threshold value of ≥2324 m3 m-3. For vegetation (G4), the most important 

variables were Fpar with a threshold value of ≥0.38, and gimmsNDVI with a threshold value 

of ≥0.39. For the 23 environmental variables (G5), the 7 most important variables (maximum 

depth 5) were Fpar with a threshold value of ≥0.38, GPP with a threshold value of ≥0.02, LAI 

with a threshold value of ≥0.34, Long with a threshold value of ≥95.7º, gimmsNDVI with a 

threshold value of ≥0.39, Wnd with a threshold value of ≥3.1m s-2 and Prec with a threshold 

value of ≥329.5 mm. Accuracies of the RFR model for all 5 groupings were much higher than 

PLSR, PCR, and CART regressions. Specifically, the RFR model explained 73.0% 
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(RMSE=0.55) of the total objective data (n=12988) and 25 environmental variables in the 

assessment of LP. 

 

6.3.4 Map of predicted LP using RFR model 

The results indicated that the RFR can develop a prediction model from large amounts of data 

and long-term optimization. Moreover, non-linear ML regressions do not require the 

explanatory variables to be normally distributed. In addition, a key benefit of the RFR model 

was more efficiency for a large number of variables with heterogeneity and un-normal 

distribution. We generated a spatial distribution map of LP in Mongolia at a resolution of 500 

m using the developed RFR model from grouping G5 (Figure 6.8). The LP classes were from 

very high to very low which is represented by the recovery classes.  The classes were:  class 1-

very high potential, class 2- high potential, class 3- moderate potential, class 4- low potential, 

and class 5- very low potential, respectively (Table 6.3). The results revealed that 13.32% of 

the territory of Mongolia has a very high potential, 20.52% high, 30.84% moderate, 22.65 low, 

and 12.66% very low LP. 

 

Figure 6. 8 Estimated LP based on the RFR model using field-measured recovery data of the 12988 sites and 25 

environmental variables. A spatial distribution map of the assessment of the LP in Mongolia at a resolution of 500 

m. Each class represents the rangeland recovery class: very high potential class 1, high potential class 2, moderate 

potential class 3, low potential class 4, and very low potential class 5, respectively.    

 

6.3.5 Interaction between LP and pasture use 

In this part, we considered the interaction between LP and pasture use. For reason, the largest 

share of land use in Mongolia is agricultural, which is generally pasture land. In 2021, 72.87% 
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of Mongolian land surface was used as agricultural land (cropland 0.45%, and pastureland 

72.42%) (NSOM 2022a). The main consumers of pasture are five types of livestock (sheep, 

goats, cattle, horses, and camels) and wild animals. One feature of Mongolian livestock 

husbandry is that they feed on rangeland plants all year round and use natural rangeland. For 

Mongolia, livestock is renewable natural capital and is subject to state protection under the 

country’s constitution (Undarmaa et al. 2018). The cornerstone of the Mongolian economy is 

pasture-based livestock husbandry, which strongly influences the country's economic 

development. Half of the Mongolian population engages in the livestock husbandry sector. 

Specifically, the total number of households in Mongolia in 2021 was 920165, and of these, 

the number of households with livestock (246302), and herder households (188610) was 47.0% 

(NSOM 2022e). Livestock husbandry comprises ~85% of total agricultural products, 

accounting for 11.2% of gross domestic product (GDP) (MoFALI 2021). In addition, livestock 

and livestock-derived raw product exports account for approximately 29.7% of Mongolia’s 

foreign exchange earnings (MC 2022). Therefore, livestock husbandry is an integral part of 

Mongolia's social and economic development and is directly dependent on natural pastures. 

Since the 1990 transition to a market economy, the utilization of land resources has 

increased greatly. For instance, the total livestock population rose from 25.5 million in 1990 to 

67.3 million in 2021 by a factor of 2.63 (NSOM 2022b) (Figure A.2). To match pasture use 

with the LP needs considerable attention, as the number of livestock continues to increase under 

climate change. If do not consider matching pasture utilization with LP, the future could be 

faced land degradation and desertification challenges.  

To compare the current state of pasture use with LP, firstly, generated spatial 

distribution maps of livestock density from the number of livestock at the Soum (administrative 

unit) level of Mongolia for the period 1991-2021 (Figure B.13), and for each decade from 1991 

to 2021 (Figure B.14). And then, generated spatial distribution maps of the livestock grazing 

capacity in Mongolia (Figure 6.9) using the density of livestock population, Eq (2) for each 

decade from 1991 to 2021, and the 31-year average. When evaluating livestock grazing 

capacity, the number of livestock in 1 ha of pasture is expressed as a percentage compared to 

the pasture carrying capacity. The value of LGC is ≤ 25.0% over resources pasture, 25.1-50.0% 

is sufficient pasture, 50.1-75.0% slightly overgrazed, 75.1-100.0% moderately overgrazed and 

≥100.1% strongly overgrazed (IMALGC 2019). Overgrazing refers to unbalance between the 

number of livestock and pasture carrying capacity, which declined the usefulness, productivity, 
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and biodiversity of the land and is affected by land degradation and desertification (Mysterud 

2006; Lee 2008).  

The results showed (Figure 1.1, Figure B.15 that the total number of livestock 

gradually increased from 1991 up until 1999, and then decreased from 2000 to 2002 from the 

impacts of the dzud and drought. “Dzud is a Mongolian term for severe winter condition” 

(Chadraabal et al. 2020; Sternberg and Batbuyan 2013; Sternberg et al. 2010; Batjargal et al. 

2002). A good definition of Dzud is given in Natsagdorj et al (2003), Suttie (2005), Roa et al 

(2015), and Shinado (2017). 

  

  

Figure 6. 9 Spatial distribution maps of the livestock grazing capacity of Mongolia. (top left) mean of 1991-2000, 

(top right) mean of 2001-2010, (bottom left) mean of 2011-2020, and (bottom right) mean of 1991-2020, 

respectively. 

 

From 2003 until 2009, the livestock population gradually increased, and in 2010 it dramatically 

decreased. Finally, from 2011 to 2021 it dramatically increased. Most growth has been 

observed in the last 10 years. Between 1991 and 2000 total livestock density population per 

100 hectares ranged from 10 to 205 head; from 2001-2010 it ranged from 10 to 256 head, from 

2011 to 2020 it ranged from 10 to 616 head. Since 2011, climate conditions have been relatively 

stable with normal humidity. The weather conditions have affected livestock growth. On the 

other hand, the government and herders have been gaining considerable experience in 

preventing and responding to the risks of dzud and drought. However, the pastureland is being 

overgrazed at an alarming pace (Figure B.15). To detect the interaction between LP and pasture 
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use, compared the results of LP with livestock grazing capacity. The three decades of the 

analysis show that in 1991-2010 19.23%, in 2001-2010 20.33%, in 2011-2020 46.6% of the 

territory have exceeded its LP, of which 0.80%, 5.73%, and 22.02% have highly exceeded the 

LP (Figure 6.10, Table 6.6). The results of the status of pasture use and the estimated LP 

revealed that in 2021, 52.34% of the territory of the country has exceeded the LP, of which 

26.73% highly exceeded (Figure 6.11). The exceed LP refers to a mismatch between LP and 

livestock grazing capacity. 

  

  

Figure 6. 10 The interaction between historical pasture use (since the social transition), and estimated LP across 

Mongolia. (top left) mean of 1991-2000, (top right) mean of 2001-2010, (bottom left) mean of 2011-2020, and 

(bottom right) mean of 1991-2020.  
 

 

Figure 6. 11 The interaction between the status of pasture use in 2021 and the estimated results of LP in Mongolia. 
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Table 6. 6 The interaction between historical pasture use and estimated LP in Mongolia  

Class 
1991-2000 2001-2010 2011-2020 1991-2021 

km2 % km2 % km2 % km2 % 

Class 1  (very high potential or 

over-sufficient pasture) 
267971.81 17.11 208152.46 13.29 108720.18 6.94 159057.29 10.16 

Class 2 (high potential or 

sufficient pasture) 
606641.23 38.74 593304.12 37.89 363725.26 23.23 484635.11 30.95 

Class 3 (moderate potential or 

slightly overgrazed) 
390305.86 24.92 446265.61 28.50 363822.72 23.23 430886.05 27.52 

Class 4 (low potential or 

moderately overgrazed) 
288547.14 18.43 228582.85 14.60 384970.45 24.58 314993.70 20.11 

Class 5 (very low potential or 

strongly overgrazed) 
12533.96 0.80 89694.96 5.73 344761.39 22.02 176427.85 11.27 

 

6.4 Discussion 

Indeed, unbalance between LP and land use results in land degradation. The LP contains three 

elements, namely (i) potential productivity, (ii) degradation resistance, and (iii) resilience 

(Herrick et al. 2013). LP assessment to support the creation of Ecosystem Services (ESs) 

demands understanding both current potential and capacity to resist and recover from 

degradation, which is generally termed resilience (O’Connell et al. 2016). Resilience is “the 

capacity to recover from disturbance”, and resistance is “the capacity of a system to maintain 

function through a disturbance” (IPR 2016). Degradation appears when disturbances cause an 

adverse change in the ability to provide ESs (Herrick et al. 2016), which depends on both the 

disturbance and the system being disrupted. Moreover, the effect of the disturbance on land 

can be controlled by bio-geo-physical processes. The effect of a new disturbance on land is 

possible to estimate from its cumulative impacts on this process with past disturbances (IPR 

2016). On the other hand, the level of land degradation varies broadly depending on the regime 

of disturbance and the capacity of recovery (Cowie et al. 2018). Herrick et al (2019) reported 

that it is a challenge to precisely predict land response to disturbance. However, topography, 

climate, and soil processes can be applied to enhance the prediction of LP.  Herrick et al (2013) 

noted that the potential resilience of land also depends on the three mentioned factors that 

represent potential productivity. The responses of land depend on the basic set of bio-

geophysical processes for that reason, LP assessment is required by some bio-geophysical 

processes combined at various spatial and temporal levels (IPR 2016). Therefore, our study 

focused on assessing LP as a basic foundation for sustainable land use, applying a time series 

of environmental variables. This study used field-measured data from 12988 sites, and 25 

environmental variables such as surface, climate, soil, and vegetation factors.  
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First, detected the relationship between each environmental variable, namely 

topography, climate, soil, and vegetation using the correlation matrix (n=19567425). The 

results showed that the strongest correlations were detected between vegetation variables 

(r=0.88-0.96), then climatic variables (r=-0.80-0.96), and soil variables (r=0.58-0.69), 

respectively. Weak correlations were detected between topographic variables (-0.63-0.55). 

Second, assess the importance of the 25 explanatory variables in the RFR model. Fpar, GPP, 

LAI, modisNDVI, gimmsNDVI, Prec, Long, MI, and Lat played an important role in modeling 

LP. The study results indicate that vegetation and climate variables were the main factors 

controlling LP and productivity at the national level. Third, generated a spatial distribution map 

of LP at a resolution of 500 m using the developed model in RFR. Finally, compared the 

prediction model result of LP with current pasture use. The results of the four analyses showed 

that interactions of topography, climate, soil, and vegetation varied in impact on LP.  

For instance, topography variables such as elevation, slope, aspect (slope direction), 

and topographic position index have a higher influence on surface runoff rate. The runoff rate 

is higher on steeper slopes, which decreases the infiltration of water (IPR 2016). Lower water 

infiltration affects plant water availability and thus slows down the productivity of soil organic 

matter. Moreover, slope, aspect, and TWI also strongly influence LP by regulating water 

shortages due to evapotranspiration, especially in high latitudes. Therefore, all topographic 

variables influence the availability of vegetation water.  

For the climatic variables, Prec and MI were more important in the LP assessment. 

However, interactions of climatic variables and the other three environmental variables had 

varied impacts on LP. For instance, the location of the aspect with high solar radiation had 

more capacity for productivity but was restricted by low temperature. Moreover, the reserve of 

soil organic matter was low in dryland regions with low annual mean precipitation. For 

Mongolia, where a dry-cold climate predominates, the natural nitrogen recovery process takes 

a long time because of the impact on the nutrient cycle. Therefore, all climatic variables are 

primary factors for controlling potential productivity, which is the main contributing factor to 

the potential of land recovery. 

For the soil variables, the static soil property (e.g., sHumus) contributed more to LP 

assessment compared to the dynamic soil property (e.g., sMoisture and sSOC). Soils with a 

high humus content had more capacity for biomass production and water infiltration. Therefore, 

it had a high availability of water for vegetation. The high capacity of soil water keeping and 
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soil humus affect the vegetation nutrients. Therefore, water and nutrient availability to 

vegetation affects soil structure and nutrient cycling, which are responses to LP. 

For the vegetation variables, all variables were important in the LP assessment. 

Because the contribution of vegetation to LP depends on properties of soil, climate, and 

topography, the effect is mainly on vegetation rate and species composition. The potential of 

the land is determined by the ability to be resilient if the area is affected by exposure, and the 

ability to continue normal functioning (resistance) even though it has undergone negative 

changes and degradation. Therefore, in the present when human activities influence natural 

changes, it may be more rational to follow the natural order rather than oppose it. 

We investigated to detection of land degradation in Mongolia using a time series of 

Normalized Difference Vegetation Index (NDVI) of Moderate Resolution Imaging 

Spectroradiometer (MODIS), and Global Inventory Modeling and Mapping Studies (GIMMS). 

For detecting land degradation, used Sen’s slope, RESTREND analysis, and Breaks For 

Additive Season and Trend (BFAST) algorithm. For the analysis, monthly mean NDVI derived 

from MODIS and GIMMS for the period 2002-2019, and 1982-2013 were used (Appendix C).  

Estimated trend significance values derived from GIMMS and MODIS NDVI from 

1990 to 2019 are shown in Figure C.1. The trend analysis result showed that the positive trends 

observed in central, north, and northeastern Mongolia increased from the north to the northeast. 

On the other hand, negative trends are observed in southern Mongolia and all areas of the west, 

some forested areas in the north and northeast, as well as grassland areas in the east and around 

Ulaanbaatar. Especially in the northwest and southern parts of Mongolia, the land is also 

sparsely vegetated. In order to illustrate the significance of the trend, we used Sen’s slope 

method. Figure C.2 shows, high-density vegetated areas were not significant, for instance, in 

the northern and northeastern parts of Mongolia. However, contrasting trends could balance 

out, so it was significant to ensure that hypothesis for the determining the linear trend is met 

for each analysis. BFAST algorithm iteratively calculates the number change and time, and 

features of change by their amplitude and direction. Therefore, for detection of the trend, 

seasonal, and remainder components, both gradual and abrupt changes of time series monthly 

NDVI (MODIS of 2002–2019 and GIMMS of 1981–2013), used the BFAST algorithm. As 

could be seen from the BFAST analysis (Figure C.3 (a-f)), the areas of positive and negative 

NDVI trends are strongly related to land cover change. Validation of smaller, more localized 

NDVI trends can be done with fine-resolution satellite imagery. By the use of the NDVI time 
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series analysis and BFAST algorithm, we detected negative trends in the areas with forest fire, 

deforestation, mining activities, and urban expansion (Figure C.4). To illustrate a human-

induced degraded area, generated from the Landsat Operational Land Imager (OLI)imagery, 

Google Earth map, and vector data (Figure C.5). The vector data was obtained from the 

environmental geo-database of Mongolia. This result revealed that one of the most popular 

practices in the assessment and monitoring of land degradation could be the analysis of time-

series remotely sensed NDVI. The positive trend of NDVI represents the areas of vegetation 

recovery, and the negative trend represents the human-induced degradation of vegetation cover. 

 

6.5 Conclusion 

The objective of this study was to assess LP in Mongolia using a time series of environmental 

variables and an RFR model. For the analysis, used 25 explanatory variables derived from three 

different satellites and reanalyzed datasets. 16 of the 25 explanatory variables were time-series 

data for the period 1991-2021, 1991-2015, and 2002-2021. For training, one objective variable 

(rangeland recovery data) of 12988 sites from the ALAMGaC for the period 2016-2020 was 

used. Using the developed RFR model, the spatial map of LP of Mongolia, at a spatial 

resolution of 500 m, was generated with R2=0.73, RMSE=0.55, and nRMSE=11.00%. The 

research results revealed that 13.32% of the territory of Mongolia is a very high potential, 

20.52% high, 30.84% moderate, 22.65% low, and 12.66% very low LP. Time series of 

environmental datasets derived from EO satellites proved to be highly informative and can be 

used to estimate LP. Moreover, RFR provided an efficient model for a large number of 

variables with heterogeneity compared to a classical linear model (e.g., PLSR, PCR) and non-

linear (e.g., CART) regression models. The statistical model emphasizes that the environmental 

variables derived from EO data clearly define the potential of the land. The main advantages 

of this study are the use of more informative field-measured recovery data (including canopy 

cover, species composition, and basal gaps of perennial vegetation, vegetation height, and 

vegetation biomass) and a much more powerful machine-learning algorithm. Finally, compared 

the results of the LP assessment with current pasture utilization. The resulting map of LP 

compared with pasture use in 2021 showed that 52.34% of the territory has exceeded the LP, 

of which 26.73% has highly exceeded. These are alarming numbers that should be taken into 

account in future policy decisions. 
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Appendix B.  

All data that provide the findings of this chapter is included in Appendix B. 

Appendix C.  

Supplementary data related to land degradation analysis can be found in Appendix C.   



125 

 

CHAPTER 7. Conclusion 

7.1 Conclusion  

The main objective of this study was to assess and model land resource potential throughout 

Mongolia using state-of-the-art machine learning techniques and remote sensing data. To 

achieve the objective, this study examines multiple perspectives of land resource potential such 

as land suitability, land resources, and land potential, focusing on developing robust models. 

The main contribution of this assessment is to determine what land resources are current, what 

land has high potential, how to link land use with land potential, and how to implement it. In 

addition, the investigation seeks to find out if the land resource potential of a large country like 

Mongolia can be consistently assessed using machine learning techniques and remote sensing 

data. The first step of the land assessment potential was related to investigating, assessing, and 

modeling as the main part of the land assessment. The second stage was explaining the results 

of these investigations in the link to land management, and development policy. This chapter 

addresses the findings related to land assessment (land suitability, land resources, and land 

potential), management, and policy. 

The first conclusion is explaining the result of the land suitability assessment for 

cropland in terms relevant to sustainable management and policy. The result of the cropland 

suitability analysis showed that 10.1% of the total territory of Mongolia is highly suitable, 

14.0% suitable, 15.5% moderately suitable, and 29.1% unsuitable for farming, with 31.2% as 

the constraint areas  (Figure 7.1(a)). The spatial distribution revealed that suitable to highly 

suitable areas for cropland are observed in the north, central, and northeastern parts of 

Mongolia. The limited suitability areas occurred in the northwestern, the southern edge of 

Mongolia’s central and eastern parts increased from the northwest to the east. As shown in the 

results land suitability evaluation for cropland is possible using GIS and remote sensing 

technology based on a combination of multi-criteria decision output and matrix. The 

abovementioned method of land suitability evaluation for cropland can be used to save time 

for land management and it allows for the possibility of justifying policy decisions with science.  

The results of this basic research need to be integrated with applied and adaptive 

research areas to link to sustainability and development policy. Specifically, as of 2021, 3.54% 

(sown area 1126.2 thousand hectares, and fallow land 211.6 thousand hectares) (ALAMGaC 

2021) of the total suitable area (~37695.1 thousand hectares or 24.1%) is used for agricultural 

cropland. 15.8% of the current used area for agriculture cropland is abandoned (ALAMGaC 
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2021). Although there is a need to increase agricultural production (fodder and food) due to 

livestock pastoralism and population growth, a goal must be not to degrade land resources, and 

possibly improve land productivity by combining sustainable production with protection of 

nature, which is the basic principle of land management. On the other hand, the areas identified 

as suitable for cultivation can be used for pastures and other purposes. Therefore, the area 

available for food and feed production may be several times smaller than estimated, so there is 

a risk of land shortage if there are no certain actions. Furthermore, it is necessary to take care 

of the currently used land to preserve the newly identified land for the benefit of future 

generations. To implement it the following is considered (IRP 2016; McKenzie et al. 2008; 

Young 2000): 

Prioritize soil protection activities (e.g., prohibit farming on steep slopes, increase soil 

nutrients, and use the protection approach of biology for caring for the soil); 

Improvement of the irrigation system (e.g., improving the efficiency of water 

use, construction of ponds for water storage, development of water transfer dams and 

canals system); 

Develop more productive cultivation varieties (e.g., appropriate in soil constraints, and 

drought resistant); 

Raising awareness of nature conservation of the farmers, (e.g., involving them in nature 

conservation activities, and creating awareness of the need to improve land 

management). 

The second conclusion is explanation of the results of the land resources assessment 

including pasture biomass in terms relevant to sustainable management and policy. For 

Mongolia, which is heavily reliant on natural pastures, the rational use of pastures as a source 

of feed is a vital issue for the livestock industry. The result of the pasture biomass assessment 

showed that detailed biomass products can be generated even for very large areas using 

machine learning techniques, spectral indices derived from remote sensing data, and reference 

data from field surveys. The result of the pasture biomass assessment showed that 14.9% of 

the total territory of Mongolia is very high-density biomass (200-255 bit), 25.4% high density 

(100-200 bit), 29.4% moderately density (50-100 bit), 22.8% low density (5-50 bit),  and 7.6% 

very low density (<5 bit) (Figure 7.1(b)). The spatial distribution map revealed that pasture 

biomass increases gradually from south to north. Pasture biomass was highly correlated with 

temperature and precipitation. The desert, semi-desert, and dry steppe in the southern and 
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northwestern parts of the country have low-density biomass. High-density biomass is 

observed in the forest, forest-steppe, and grassland zones. Biomass is important to use pastures 

sustainably, minimizing adverse effects on predominantly fodder plants by the local carrying 

capacity (Amarsaikhan et al. 2023; Otgonbayar et al. 2021b). However, due to weather 

conditions, pasture biomass in Mongolia varies yearly, which complicates management. 

Particularly, the main land use system of arid and semi-arid regions, which occupies 65.0% of 

the territory of Mongolia is seasonal nomadic pastoralism, and the land resource potential 

including pasture biomass in this region strongly depends on rainfall (related to water scarcity 

with seasonality). In addition to unstable pasture biomass, the dramatic growth of livestock and 

natural disasters (drought, dzud, heavy snow, and dust storms) complicates pasture 

management. Issues of pasture management are more complex compared to crop management. 

The nomadic pastoralism of drylands (supply fodder) is especially complex to adapt to global 

change. The following activities might be good practices in order not to irreversibly degrade 

the vegetation of pastures. 

Increase farming with forage legumes in order to supplement feeding in the dry season 

to crop perennial vegetation; 

 

Figure 7. 1 Results of land resources potential assessment in Mongolia. (a) the result of the land suitability analysis 

for cropland; (b) the result of pasture biomass analysis; (c) the result of the land potential analysis; (d) the ratio 

between the livestock density and estimated land potential.  
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The third conclusion is explanation of the results of the land potential assessment in 

terms relevant to sustainable management and policy. The research results showed that 13.32% 

of the territory of Mongolia has a very high potential, 20.52% high, 30.84% moderate, 22.65% 

low, and 12.66% very low land potential (Figure 7.1(c)). The spatial distribution revealed that 

very high potential occurs in forests regions in the north (around the Khovsgol mountains), 

northeast (Khentii mountains), and east (Khyngan mountains) of Mongolia, as well as forest-

steppe regions in the central part (around the north side of Knagay mountains). High potential 

is observed in some forested regions in forest-steppe and grassland regions in central, northern, 

and eastern Mongolia. Moderate potential occurs in all regions of the west (Altai mountains), 

and steppe regions (semi-arid regions) from west to east. Low to very low potential occurred 

in desert steppe, and desert (arid regions) in south and southwestern Mongolia. The comparison 

of the results of the land potential with pasture use showed that 52.34% of the territory has 

exceeded the land potential, of which 26.73% highly exceeded. This study showed that in all 

regions of western Mongolia, the central parts (steppe and semi-arid regions), and southeastern 

parts (steppe or grassland regions) are very risky (Figure 7.1(d)). Particularly in the western 

part of Mongolia land potential productivity decrease is caused by a mismatch between land 

use and land potential. The results of our research on land degradation have confirmed this. 

Although herders in the arid and semi-arid regions (drylands) have been using the pastures 

seasonally, degradation is continuously increasing. Despite the fact these drylands is well 

suited to nomadic livestock pastoralism (for rotational grazing) with seasonality, the lack of 

fodder caused by weather condition (especially, meteorological drought) makes pasture 

management difficult. At the same time, when the number of livestock population rapidly 

increases and pastures are overgrazed, the drought frequency increases (being an integral part 

of arid and semi-arid regions), affecting natural vegetation growth, reducing biomass, limiting 

seed dispersal, and slowing down the natural regeneration process of grasslands. This is a very 

serious issue related to land productivity. With the growth in livestock placing rising pressures 

on drylands, the Mongolian government should provide high priority to optimal land utilization, 

enhanced land management, and avoiding land degradation. It is necessary to take the 

following measures for long-term sustainable use of land resources and improve land potential. 

These include: 

Creating opportunities for the natural regeneration of overgrazed pastures by 

temporarily releasing them from use. 
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Ensuring the implementation of laws and regulations aimed at reducing 

overexploitation of pasture. 

Increasing vegetation cover by planting perennials. 

Implementation of measures to protect the soil of agricultural fields from erosion and 

damage, and to support farming with forest strips. 

Taking measures to improve the physical characteristics of the soil by revegetation and 

use of green manures in excessively degraded areas. 

Local governments should be taking initiative to reduce land degradation 

Sorting out the problem of multi-branched dirt roads and not creating new ones; 

"Government Environmental Policy", "Government Food and Agriculture Policy”, 

"Green Development Policy", "National Biodiversity Program", "Climate Change 

Adaptation Program", "Land Degradation Zero Program”, and “Billion Tree National 

Program” to ensure coordination and improve interdisciplinary policy, planning, and 

coordination.  

To summarize this section, this research revealed that the utilization of land resources in arid 

and semi-arid regions exceeds the actual potential of the land. To avoid land degradation, the 

users (herders, farmers) of land resources realize the need to control the land resources of the 

area and put them into practice. Because herders are well known to increase livestock mortality 

when drought and dzud years come, despite this, herders prefer to raise livestock to take more 

of the benefits of this. Therefore, the priority needs to be to raise awareness of nature 

conservation among the public to involve them in nature conservation activities. 

 

7.2 Further studies 

In order not to make costly mistakes in the future, it is necessary to carry out the following 

activities.  

To develop unified guidelines for land assessment, mapping, and modeling to support 

the proper use, protection, and improvement of land resources. This would contribute to 

evidence-based decision-making related to sustainable long-term management of land 

resources (policy, regulation, and planning).  

There is a need to develop a mobile application that integrates scientific and local 

community (herders and farmers) knowledge to take real-time information on a given area’s 

potential productivity (current land status, capacity of the land resilience and resistance, and 
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recovery from degradation). It would allow the opportunity to increase fundamental 

information, knowledge of land resources, and cloud-based geospatial databases. 

There is a need of rigorous requirements for the goals of proper use of land resources, 

to avoid land degradation, and make decisions based on scientific research. When there is a 

better understanding of the contribution of land resources to human well-being, and when the 

right awareness and attitudes are created, the measures implemented in the field of land 

management improvement will bring more results. Better information, more research, more 

training, and promotion will be important parts of the effort to improve management. Therefore, 

the priority needs to be raising awareness of the public related to matching land use with land 

potential and protecting the land. 
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Appendix A 

   

   

   

   
 

Figure A. 1 Variable importance in projections (VIPs), R2, and RMSE for the 17 predictor variables in the twelve-

monthly PLSR models. 
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Table A. 1 Model coefficients for the twelve-monthly PLS regression models including all 17 predictor variables. 

In the last column, the model of the annual average Ta is also included. 

Variable Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

Intercept -52.83 -93.62 26.17 55.52 93.68 89.37 97.27 45.11 68.76 62.92 53.54 22.17 82.62 

LSTd 0.255 0.219 0.208 0.185 0.159 0.146 0.137 0.178 0.150 0.128 0.197 0.234 0.319 

LSTn 0.420 0.457 0.425 0.265 0.223 0.232 0.227 0.284 0.210 0.196 0.344 0.407 0.464 

CsD 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

CsN -0.014 -0.003 0.007 0.000* 0.001 0.001 0.002 0.000* 0.004 0.000* 0.000* -0.011 0.000* 

DvA 0.015 0.015 0.007 -0.002 0.005 0.008 0.011 0.021 0.006 0.022 0.003 0.004 -0.007 

DvT 0.094 0.109 -0.015 -0.130 -0.072 -0.041 -0.019 0.003 -0.105 0.061 -0.044 -0.021 0.095 

Em31 0.069 0.104 0.021 -0.152 -0.133 -0.126 -0.131 -0.050 -0.127 -0.125 -0.047 0.006 -0.079 

Em32 0.101 0.158 0.003 -0.012 -0.208 -0.198 -0.209 -0.096 -0.199 -0.195 -0.087 -0.009 0.007 

NvA –0.019 -0.034 -0.034 -0.012 -0.009 -0.002 -0.007 -0.017 0.007 -0.004 -0.017 -0.028 -0.038 

NvT 0.031 0.100 -0.114 0.045 0.053 0.050 0.034 0.029 0.169 0.083 -0.030 -0.038 -0.413 

QCd 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

QCn 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

Elevation 0.000* 0.000* -0.001 -0.001 -0.001 -0.001 -0.001 -0.002 -0.001 -0.001 -0.001 0.000* -0.001 

Slope –0.021 0.028 -0.009 -0.061 -0.059 -0.062 -0.065 -0.047 -0.051 -0.037 -0.025 -0.031 0.026 

Aspect –0.002 -0.001 -0.001 -0.002 -0.002 -0.001 -0.002 -0.001 -0.002 -0.002 -0.003 -0.003 0.003 

Latitude –0.411 -0.401 -0.248 -0.268 -0.236 -0.214 -0.246 -0.244 -0.260 -0.248 -0.241 -0.393 0.336 

Longitude 0.099 0.106 0.039 0.023 0.042 0.046 0.052 0.065 0.048 0.032 0.016 0.062 0.012 

* <0.0001. 

Table A. 2 PLS regression results. Summary statistics (R2 and RMSE) for the monthly Ta prediction models, 

including six groups of variables. 

 n 
G1 G2 G3 G4 G5 G6 G7 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

January 712 0.87 1.96 0.87 1.95 0.34 4.34 0.82 2.26 0.39 4.17 0.86 2.01 0.85 2.10 

February 712 0.83 2.19 0.83 2.19 0.32 4.40 0.79 2.45 0.37 4.26 0.85 2.05 0.84 2.19 

March 712 0.80 1.89 0.74 1.94 0.36 3.40 0.77 2.04 0.39 3.32 0.81 1.84 0.81 1.83 

April 712 0.79 1.51 0.79 1.53 0.48 2.39 0.77 1.58 0.32 2.73 0.75 1.67 0.74 1.69 

May 712 0.76 1.48 0.79 1.41 0.74 1.54 0.80 1.37 0.31 2.52 0.76 1.50 0.77 1.47 

June 712 0.78 1.44 0.80 1.38 0.75 1.52 0.79 1.41 0.26 2.63 0.78 1.45 0.76 1.51 

July 712 0.83 1.33 0.86 1.20 0.79 1.48 0.84 1.28 0.28 2.71 0.82 1.34 0.80 1.44 

August 712 0.84 1.36 0.87 1.23 0.81 1.44 0.85 1.28 0.30 2.80 0.83 1.37 0.86 1.25 

September 712 0.81 1.35 0.84 1.24 0.82 1.30 0.83 1.26 0.32 2.53 0.80 1.37 0.79 1.42 

October 712 0.83 1.27 0.83 1.26 0.68 1.73 0.82 1.31 0.41 2.36 0.81 1.32 0.77 1.47 

November 712 0.83 1.54 0.83 1.57 0.37 2.97 0.79 1.70 0.40 2.92 0.82 1.59 0.81 1.65 

December 712 0.86 1.68 0.86 1.67 0.36 3.53 0.82 1.89 0.34 3.58 0.85 1.74 0.83 1.82 

 

Table A. 3 Model equations obtained from the PLS regression models using three variables: LSTd, LSTn, and 

elevation. The months are numbered from 01 to 12. 

Regression Models R2 RMSE 

Ta01 = –2.137 + 0.347 × LSTd + 0.497 × LSTn + 0.00033 × elevation 0.87 1.95 

Ta02= –3.037 + 0.297 × LSTd + 0.493 × LSTn + 0.00019 × elevation 0.83 2.19 

Ta03 = –1.986 + 0.252 × LSTd + 0.477 × LSTn – 0.001 × elevation 0.74 1.94 

Ta04 = 0.516 + 0.296 × LSTd + 0.424 × LSTn − 0.002 × elevation 0.79 1.53 

Ta05 = 3.863 + 0.272 × LSTd + 0.383 × LSTn − 0.002 × elevation 0.79 1.41 

Ta06 = 7.060 + 0.242 × LSTd + 0.384 × LSTn − 0.002 × elevation 0.80 1.38 

Ta07 = 8.440 + 0.241 × LSTd + 0.398 × LSTn − 0.002 × elevation 0.86 1.20 

Ta08 = 7.644 + 0.253 × LSTd + 0.419 × LSTn − 0.002 × elevation 0.87 1.23 

Ta09 = 5.294 + 0.291 × LSTd + 0.407 × LSTn − 0.002 × elevation 0.84 1.24 

Ta10 = 3.418 + 0.266 × LSTd + 0.406 × LSTn − 0.002 × elevation 0.83 1.26 

Ta11 = –0.912 + 0.271 × LSTd + 0.411 × LSTn − 0.001 × elevation 0.83 1.57 

Ta12 = –2.560 + 0.314 × LSTd + 0.463 × LSTn + 0.00037 × elevation 0.86 1.67 
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Figure A. 2 Estimated monthly average Ta based on the PLS regression model and using LSTd, LSTn, and elevation 

as predictor variables. (a) Spatial maps of estimated monthly average Ta over Mongolia at 1 km spatial resolution. 

(b) Monthly statistics of R2 (blue) and RMSE (red) between observed and predicted air temperature. 
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Appendix B 

 

 

 

 
Figure B. 1 Variation of the (a) monthly mean air temperature, (b) monthly mean precipitation, (c) the monthly 

mean potential evapotranspiration, and (d) monthly mean vapor pressure derived from the CRU-TS v4.06 monthly 

climate dataset for the period 1991-2021 as an average of all weather stations (n=63) using a zonal statistics approach. 

 

  
Figure B. 2 (left) Monthly mean temperature (Ta), and (right) monthly mean precipitation (Precip) for the period 

1991-2021 as an average of all weather stations. Letters of the alphabet represent twelve months. 
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Figure B. 3 The correlation matrix between monthly mean Ta and Tmp (top), and monthly mean Precip and Prec 

(bottom). The monthly mean Ta and Precip data were obtained from weather stations for the period 1991-2021. 

Monthly mean Tmp and Prec data were extracted from CRU-TS for the same period. Extracted monthly mean Tmp 

and Prec data was an average of all weather stations. High correlations are highlighted in dark blue. 
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Table B. 1 Climatic indices formulas and their sources that were used in this study 

Indices Acronym Formula Reference 

Hydro-Thermal 

Coefficient 
HTC 𝐻𝑇𝐶 =

∑𝑃

[0.1 ∗ ∑𝑇>𝑋𝑂𝐶]
 Selyaninov 1937 

Aridity Index Iar 𝐼𝑎𝑟 =
𝑃

𝑇 + 10
 De Martonne 1925 

Humidity Factor HFth 𝐻𝐹𝑡ℎ =
𝑃𝐼−𝑋𝐼𝐼

𝐸𝑜

 Thornthwaite 1948 

Moisture Index MI 𝑀𝐼 =
𝑃

[0.2 ∗ ∑𝑇>10𝑂𝐶 + 306]
 Mezentsev 1969 

∑P- the sum of precipitation in a warm period, mm, ∑T>XOC- the sum of air temperature >100C, P- monthly total 

precipitation (mm), T- monthly mean air temperature (oC), PI−XII- annual total precipitation (mm), Eo- annual total 

potential evapotranspiration (mm),  

 

  
Figure B. 4 Variation of the annual mean soil moisture profile for the individual pixel was extracted from ERA 

datasets for the period 1991-2021. 

 

 

 

 

 
Figure B. 5 Variation of the mean of (a) GPP, (b) LAI, (c) Fpar, (d) NDVI for individual pixels from MODIS and 

GIMMS during the vegetation growing season (April-August) for the years 2002-2021, and 1991-2015, respectively. 

The sample pixels were selected from the objective variable (n=12988). Each variable of the curves was counted by 

averaging all objective variables.  

1500

1600

1700

1800

1
9
9

1

1
9
9

2

1
9
9

3

1
9
9

4

1
9
9

5

1
9
9

6

1
9
9

7

1
9
9

8

1
9
9

9

2
0
0

0

2
0
0

1

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7

2
0
0

8

2
0
0

9

2
0
1

0

2
0
1

1

2
0
1

2

2
0
1

3

2
0
1

4

2
0
1

5

2
0
1

6

2
0
1

7

2
0
1

8

2
0
1

9

2
0
2

0

2
0
2

1

V
o

lu
m

et
ri

c 
so

il
 w

at
er

 

la
y
er

 (
m

3
/m

3
),

 0
 -

7
 c

m
 

Year

Latitude 46.887º, Longitude 105.937º

0.001

0.011

0.021

0.031

G
P

P
 

(K
g
 C

/m
2
) a)

0.100
0.350
0.600
0.850
1.100

L
A

I 

(m
2
/m

2
) b)

0.200
0.250
0.300
0.350
0.400

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7

2
0
0

8

2
0
0

9

2
0
1

0

2
0
1

1

2
0
1

2

2
0
1

3

2
0
1

4

2
0
1

5

2
0
1

6

2
0
1

7

2
0
1

8

2
0
1

9

2
0
2

0

2
0
2

1F
p

ar
 (

%
) c)

0.200
0.225
0.250
0.275
0.300
0.325
0.350

1
9
9

1

1
9
9

2

1
9
9

3

1
9
9

4

1
9
9

5

1
9
9

6

1
9
9

7

1
9
9

8

1
9
9

9

2
0
0

0

2
0
0

1

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7

2
0
0

8

2
0
0

9

2
0
1

0

2
0
1

1

2
0
1

2

2
0
1

3

2
0
1

4

2
0
1

5

2
0
1

6

2
0
1

7

2
0
1

8

2
0
1

9

2
0
2

0

2
0
2

1

N
D

V
I 

 

Year

d)
GIMMS NDVI MODIS NDVI



169 

 

   

  

 

 
Figure B. 6 The spatial distribution maps of elevation (top left), slope (top center), aspect (top right), TPI (bottom 

left), and TWI (bottom center) derived from STRM DEM at a resolution of 90 m. 

 

Table B. 2 The correlation matrix between topographic variables was derived from STRM DEM at a resolution of 

90 m (n=19567425). Values are different from 0 with a significance level of 𝛼=0.05. The significance level of the 

p-value (Pearson): “***” - <0.0001, “**” - <0.01, “.” - <0.1. 

Variables Elevation Slope Aspect TPI TWI Latitude Longitude 

Elevation 1 0.55*** 0.00 0.12*** -0.38*** 0.16*** -0.63*** 

Slope 0.55*** 1 0.02*** 0.16*** -0.45*** 0.34*** -0.27*** 

Aspect 0.00 0.02*** 1 0.01 -0.03*** -0.01** 0.02*** 

TPI 0.12*** 0.16*** 0.01 1 -0.19*** 0.00 0.00 

TWI -0.38*** -0.45*** -0.03*** -0.19*** 1 -0.21*** 0.05*** 

Latitude 0.16*** 0.34*** -0.01** 0.00 -0.21*** 1 -0.12*** 

Longitude -0.63*** -0.27*** 0.02*** 0.00 0.05*** -0.12*** 1 
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Figure B. 7 Spatial correlations between topographic variables. 
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Figure B. 8 Spatial distribution maps of yearly mean Srad, Tmp, Prec, PET, Vap, and Wnd were extracted from 

CRU-TS and CRUNCEP monthly climate-gridded datasets for the period 1991-2021. The climate indices of HCT, 

Iar, HFth, and MI were calculated from yearly mean datasets of Tmp, Prec, and PET for the period 1991-2021 using 

empirical equations (see, Table B.1). 
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Table B. 3 The correlation matrix between yearly mean climatic variables was extracted from CRU-TS and 

CRUNCEP datasets for the period 1991-2021 (n=19567425). Values are different from 0 with a significance level 

of 𝛼=0.05. The significance level of each p-value (Pearson) was noted as <0.0001.  

Variables Srad Tmp Prec PET Var Wnd HTC Iar HFth MI 

Srad 1.00 0.95 -0.58 0.96 0.73 0.80 -0.64 -0.46 -0.79 -0.70 

Tmp 0.95 1.00 -0.46 0.92 0.84 0.75 -0.65 -0.52 -0.75 -0.58 

Prec -0.58 -0.46 1.00 -0.54 -0.32 -0.26 0.72 0.27 0.79 0.92 

PET 0.96 0.92 -0.54 1.00 0.80 0.87 -0.61 -0.40 -0.73 -0.65 

Var 0.73 0.84 -0.32 0.80 1.00 0.62 -0.59 -0.43 -0.58 -0.41 

Wnd 0.80 0.75 -0.26 0.87 0.62 1.00 -0.37 -0.26 -0.49 -0.39 

HTC -0.64 -0.65 0.72 -0.61 -0.59 -0.37 1.00 0.54 0.80 0.72 

Iar -0.46 -0.52 0.27 -0.40 -0.43 -0.26 0.54 1.00 0.65 0.40 

HFth -0.79 -0.75 0.79 -0.73 -0.58 -0.49 0.80 0.65 1.00 0.92 

MI -0.70 -0.58 0.92 -0.65 -0.41 -0.39 0.72 0.40 0.92 1.00 

 

   
Figure B. 9 Spatial distribution maps of yearly mean SOC, sHumus, and sMoisture. (left) The SOC variable was 

extracted from the Trends.Earth system at a resolution of 250 m (Conservation International, 2022). (center) The 

vector data of soil humus were obtained from the IGG, MAS (right). The soil moisture data were extracted from the 

ECMWF database at a resolution of 0.28º for the period 1991-2021.  

   

  

 

Figure B. 10 Spatial distribution maps mean modisNDVI, gimmsNDVI, Fpar, GPP, and LAI during the vegetation 

growing season (April to August). modisNDVI, Fpar, GPP, and LAI derived from the MODIS Aqua and Terra 

satellites at spatial resolutions from 250 to 500 m for the period 2002-2021 (LP DAAC, 2022). The mean 

gimmsNDVI derived from AVHRR/NOAA at a spatial resolution of 8 km for the period 1991-2015 during the 

vegetation growing season.  
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Table B. 4 The correlation matrix between soil variables (n=19567425). Values are different from 0 with a 

significance level of α=0.05. The significance level of each p-value (Pearson) was noted as <0.0001. 

Variables SOC sHumus sMoisture 

SOC 1 0.58 0.69 

sHumus 0.58 1 0.62 

sMoisture 0.69 0.62 1 

 

Table B. 5 The correlation matrix between vegetation variables (n=19567425). Values are different from 0 with a 

significance level of α=0.05. The significance level of each p-value (Pearson) was noted as <0.0001. 

Variables 
 

modisNDVI gimmsNDVI Fpar GPP LAI 

modisNDVI  1 0.95 0.96 0.95 0.93 

gimmsNDVI  0.95 1 0.95 0.94 0.88 

Fpar  0.96 0.95 1 0.97 0.93 

GPP  0.95 0.94 0.97 1 0.95 

LAI  0.93 0.88 0.93 0.95 1 

 

Table B. 6 Summary statistics of the PLSR model (n=12988) 

Observations (n) 12988 

Coefficient of determination (R2) 0.457 

Adjected R2 0.461 

Standard (Std.) deviation 0.781 

Mean Square Error (MSE) 0.608 

Room Mean Square Error (RMSE) 0.780 

Variable t1* u~1* w1* p1* 
Coefficients 

of ß 
VIP* 

Std. 

deviation 

Significance level 

Lower 

(95%) 

Upper 

(95%) 

Intercept - - - - 0.501 - - - - 

Elv -0.106 -0.227 -0.107 -0.034 0.000 0.536 0.011 0.511 0.562 

Slp 0.267 0.130 0.061 0.085 0.004 0.306 0.013 0.277 0.334 

Aspct 0.012 0.000 0.000 0.004 0.000 0.001 0.009 -0.020 0.022 

TPI -0.206 -0.129 -0.061 -0.066 0.000 0.305 0.020 0.261 0.350 

TWI -0.295 -0.164 -0.077 -0.094 -0.006 0.386 0.017 0.347 0.425 

Lat 0.214 0.362 0.171 0.068 0.006 0.790 0.008 0.772 0.808 

Long 0.712 0.335 0.158 0.227 0.019 0.854 0.009 0.834 0.875 

Srad -0.612 -0.201 -0.095 -0.195 0.000 0.473 0.009 0.452 0.494 

Tmp -0.411 -0.031 -0.014 -0.131 -0.001 0.072 0.012 0.046 0.098 

Prec 0.886 0.663 0.312 0.282 0.001 1.562 0.007 1.546 1.578 

PET -0.591 -0.201 -0.095 -0.189 -0.004 0.473 0.008 0.456 0.490 

Vap -0.230 0.023 0.011 -0.073 0.003 0.055 0.013 0.026 0.085 

Wnd -0.401 -0.066 -0.031 -0.128 -0.009 0.157 0.007 0.140 0.174 

HTC 0.745 0.463 0.218 0.238 0.058 1.091 0.008 1.073 1.109 

Iar 0.657 0.330 0.156 0.209 0.021 0.778 0.015 0.743 0.812 

HFth 0.944 0.590 0.278 0.301 0.006 1.390 0.005 1.380 1.401 

MI 0.946 0.666 0.314 0.301 0.295 1.570 0.003 1.564 1.577 

SOC 0.335 0.071 0.033 0.107 0.000 0.167 0.015 0.134 0.201 

sHumus 0.680 0.439 0.207 0.217 0.011 1.035 0.017 0.996 1.074 

sMoisture 0.520 0.140 0.066 0.166 0.000 0.331 0.010 0.307 0.354 

modisNDVI 0.959 0.692 0.326 0.306 0.533 1.632 0.005 1.622 1.643 

gimmsNDVI 0.940 0.666 0.314 0.300 0.421 1.572 0.003 1.565 1.578 

Fpar 0.959 0.676 0.319 0.306 0.371 1.594 0.005 1.583 1.604 

GPP 0.948 0.685 0.323 0.302 6.911 1.615 0.005 1.603 1.626 

LAI 0.923 0.660 0.311 0.294 0.127 1.555 0.007 1.539 1.571 
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t1* and u~1*- Correlation matrix of the variables with the t and u~ components; w1* and p1*- vector; VIP*- Variable 

Importance in Projection 

 

Table B. 7 Summary statistics of the PCR model (n=12988) 

Observations (n) 12988 

R2 0.546 

Adjected R2 0.545 

Std. error of the 

regression 

MSE 0.510 

RMSE 0.714 

Mean Absolute Percentage Error (MAPE) 27.761 

Akaike Information Criterion (AIC) -8711.993 

Schwarz Bayesian Criterion (SBC) -8517.727 

Analysis of variance 

(response variables) 
DF Sum of squares Mean squares F Significance F (Pr > F) 

Regression model 25 7963.607 318.544 624.239 <0.0001 

Residual or error 12962 6614.404 0.510 - - 

Corrected total 12987 14578.011 - - - 

 Principal Component Analysis Model parameters for the components (response variables) 

Variable 
Eigen 

value 

Variance 

(%) 

Cumulative 

variance (%) 

Coefficients 

of ß 

Standard 

error 

t-

statistic 
Pr > |t| 

Lower 

95% 

Upper 

95% 

Intercept - - - 2.710 0.006 432.352 <0.0001 2.698 2.722 

Elv 11.695 46.781 46.781 0.163 0.002 88.939 <0.0001 0.159 0.167 

Slp 5.120 20.481 67.262 0.230 0.003 83.150 <0.0001 0.225 0.236 

Aspct 1.633 6.533 73.795 -0.056 0.005 -11.502 <0.0001 -0.066 -0.047 

TPI 1.090 4.361 78.157 -0.091 0.006 -15.215 <0.0001 -0.103 -0.080 

TWI 1.001 4.003 82.160 -0.009 0.006 -1.441 0.150 -0.021 0.003 

Lat 0.860 3.438 85.598 0.002 0.007 0.303 0.762 -0.011 0.015 

Long 0.699 2.795 88.393 0.032 0.007 4.205 <0.0001 0.017 0.046 

Srad 0.576 2.305 90.698 0.021 0.008 2.490 0.013 0.004 0.037 

Tmp 0.490 1.961 92.659 0.072 0.009 8.000 <0.0001 0.054 0.089 

Prec 0.421 1.682 94.341 -0.046 0.010 -4.716 <0.0001 -0.065 -0.027 

PET 0.335 1.341 95.682 0.013 0.011 1.219 0.223 -0.008 0.034 

Vap 0.312 1.248 96.930 -0.002 0.011 -0.144 0.886 -0.024 0.020 

Wnd 0.180 0.722 97.652 -0.084 0.015 -5.678 <0.0001 -0.113 -0.055 

HTC 0.151 0.605 98.257 -0.013 0.016 -0.794 0.427 -0.044 0.019 

Iar 0.109 0.434 98.691 0.029 0.019 1.518 0.129 -0.008 0.066 

HFth 0.077 0.309 99.000 0.063 0.023 2.800 0.005 0.019 0.107 

MI 0.067 0.270 99.270 -0.101 0.024 -4.172 <0.0001 -0.148 -0.053 

SOC 0.045 0.182 99.452 0.391 0.029 13.277 <0.0001 0.333 0.448 

sHumus 0.043 0.173 99.624 0.051 0.030 1.678 0.093 -0.008 0.110 

sMoisture 0.031 0.124 99.748 0.235 0.036 6.590 <0.0001 0.165 0.304 

modisNDVI 0.022 0.086 99.834 -0.102 0.043 -2.379 0.017 -0.185 -0.018 

gimmsNDVI 0.018 0.072 99.907 0.181 0.047 3.893 <0.0001 0.090 0.273 

Fpar 0.014 0.056 99.962 0.000 0.053 -0.007 0.994 -0.105 0.104 

GPP 0.009 0.034 99.997 -0.056 0.068 -0.821 0.412 -0.188 0.077 

LAI 0.001 0.003 100.000 0.024 0.220 0.110 0.912 -0.407 0.456 

 

Table B. 8 Summary statistics of the R2 and RMSE for land potential prediction models, including 5 groups of 

variables using linear regressions (n=12988) 

Model 
G1 G2 G3 G4 G5 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

PLSR 0.30 0.88 0.38 0.83 0.27 0.90 0.49 0.76 0.47 0.77 

PCR 0.38 0.83 0.48 0.76 0.36 0.85 0.50 0.75 0.55 0.71 
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  G3   G4 

  
                              G5  

 
Figure B. 11 Estimated importance variables for the five groupings using the PLSR model (n=12988). 
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Figure B. 12 Regression tree of the CART was estimated from 23 explanatory variables with three steps of 

maximum tree depth (n=12988). The structure of each node is organized in a top-to-bottom direction. The right side 

of each level represents the important variables with a threshold value. In contrast, the left side of each level represents 

the less important variables with a threshold value. 
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Figure B. 13 Spatial distribution maps of livestock population density (sheep unit ha-1) in Mongolia for the period 

1991-2021. 

 

  

  
Figure B. 14 Livestock population density (sheep unit) in Mongolia for each decade from 1991, and the 31-year 

average. 
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Figure B. 15 Spatial distribution maps of the total number of livestock population density (head ha-1) in Mongolia 

for the period 1991-2021. 
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Appendix C  

Detection of anthropogenic and environmental degradation in Mongolia using multi-sources 

remotely sensed time series data and machine learning techniques. (2022). Appeared in 

Environmental Degradation in Asia: Land Degradation, Environmental Contamination, and 

Human Activities (pp. 17-47). Cham: Springer International Publishing  

 

Figure C. 1 The trend of slope value of linear regression estimated from GIMMS and MODIS NDVI for the period 

1990–2019. 

 

 

Figure C. 2 The trend of slope value of significant linear regression estimated from GIMMS and MODIS NDVI 

for the period 1990–2019. 
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Figure C. 3 (a-f) Here, fitted components of trend, seasonal, and the remainder (evaluated noise) for the time series 

monthly NDVI of MODIS (left above) and GIMMS (left below). The abrupt change was observed in the trend 

component of the NDVI time series (right above and below). The grey, black, red, and blue lines represented a 

primary NDVI curve, fitted NDVI curve, direction and magnitude of abrupt change, and trend before and after the 

change, respectively. (a) Forest to barren land by mining activity (Latitude: 49.640, Longitude: 107.721). 

 

 

(b) Forest to grassland by fire (Latitude: 49.124, Longitude: 112.061). Explanations are found in Figure C.3 (a). 
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(c) Grassland (vegetation coverage >50%) to forest (Latitude: 50.167, Longitude: 106.498). Explanations are found 

in Figure C.3 (a). 

 

 

(d) Grassland (vegetation coverage >50%) to cropland (Latitude: 49.415, Longitude: 105.628). Explanations are 

found in Figure C.3 (a). 
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(e) Grassland (vegetation coverage 25-50%) to barren land (Latitude: 48.423, Longitude: 104.529). Explanations are 

found in Figure C.3 (a). 

 

 

(f) Grassland (vegetation coverage <25%) to urban land (Latitude: 43.040, Longitude: 106.84). Explanations are 

found in Figure C.3 (a). 
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Figure C. 4  Estimated strongly degraded area from MODIS and GIMMS NDVI time series for the period 1990–

2019 using trend, BFAST, and RESTREND analysis methods. 

 

 

Figure C. 5 Generated strongly degraded area by human activity from Landsat OLI imagery, Google Earth map, 

and environmental geo-database of Mongolia. 

 

 


