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We reexamine the static and spherical symmetric compact star configuration in the R2 model of the FðRÞ
gravity theory. With asymptotic solutions for the additional scalar degrees of freedom, we refine analysis on
the external geometry and settle the scalar-hair problem argued in previous works. Performing the
numerical integration of the modified Tolman-Oppenheimer-Volkoff equations as a two-boundaries-value
problem, we further discuss the scalar-field distribution inside the compact stars and its influence on the
mass-radius relation. We show that the chameleon potential plays an essential role in determining the scalar
field inside the star. The scalar field often behaves as a quintessential field that effectively decreases the
mass of compact stars with lower central energy density.
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I. INTRODUCTION

In spite of the empirical successes of general relativity
(GR), it is known that there are several problems in a wide
range of energy scales, from the dark sector problems to the
quantization of the gravitational field. To tackle these
problems within the gravity sector, the modification of
GR, which we call the modified gravity theories, has been
considered. These theories usually introduce new degrees of
freedom (DOFs) for the gravitational field, and additional
DOFs enable us to solve the problems in GR (see [1–3] for
review). The modified gravity theories (and GR) are also
expected to be the effective field theory for the quantum
gravity theory, and we may obtain hints about the most
fundamental theory from the study on modified gravity
theories.
One of the most popular classes in modified gravity

theories is the FðRÞ gravity theory (see [4–6] for review).
The FðRÞ gravity theory is obtained by replacing the Ricci
scalar term R in the Einstein-Hilbert action with a function
of R, FðRÞ. This modification introduces an additional

scalar DOF, so-called scalaron, to the gravitational field,
and such a new scalar field can drive the accelerated
expansion of the Universe in the early and late-time
epoch [7–10]. Several works have suggested that the
scalaron can also serve as the dark matter and affect the
structure formations in the Universe [11–16]. As one of
the FðRÞ models, this paper focuses on the R2 gravity
model that includes an additional curvature-squared term to
the Einstein-Hilbert action. This model is known to realize
the inflation dynamics by the gravity sector, which is the
so-called Starobinsky inflation model [17], as we tune a
coefficient of the R2 term.
Recently, the compact star configuration has been one

of the main interests in the modified gravity theories. In
addition to the study on black hole solutions in FðRÞ
gravity [18–23], static and spherically symmetric solutions
for neutron stars in the R2 gravity have been investigated in
both the perturbative approach [24] and nonperturbative
approach [25–32]. Similar considerations with the torsion
and axion field were performed [33,34], respectively. In
Refs. [26–29,31,33], the mass-radius relation of the neutron
stars was calculated. These previous works generally
showed that the relation curve is distorted, and the
maximum mass increases regardless of the equation of
state (EOS) as the modification of the theory becomes
dominant. This result may explain the observed existence
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of massive neutron stars with ∼2.0M⊙ [35,36] from the
view of the gravity theory. The quark stars and the white
dwarfs in the R2 gravity were also considered [37,38].
We highlight some remaining issues in those previous

works. One is the external spacetime around the compact
star system. In the general FðRÞ gravity, the static and
spherical vacuum solution is not always the Schwarzschild
spacetime due to the absence of alternatives to Birkhoff-
Jebsen’s theorem in GR. In the R2 gravity theory, the
typical behaviors for the asymptotically flat solution have
not been specified. For instance, in Refs. [26,29,31], they
derived the outer solution numerically and revealed that the
neutron stars in R2 gravity have monotonically decaying
scalar hair under the asymptotic flatness condition. On the
other hand, in Refs. [28,33], it was indicated that scalar
hairs damp with oscillation for the stable branch against
radial perturbations. Moreover, Ref. [25] claimed that the
external solution must coincide with the Schwarzschild
solution exactly and the neutron stars have no scalar hair
due to the no-hair theorem proved for the static and
spherical black hole system [39–41]. In this way, even
qualitative expectation for outer solutions has yet to be
confirmed consistently. Another is the behavior of the
scalaron field (or equivalently the curvature) inside the star.
Most previous works have been interested in the mass and
radius of compact stars and have not paid much attention to
the inner profile of the scalaron field and its cause. This
viewpoint is necessary for understanding the inner structure
and interactions of the compact stars with modified gravity
theories which have additional DOFs for the gravity sector.
In this paper, we reexamine the static and spherically

symmetric star configuration in the R2 gravity. We utilize
the asymptotic behavior of the scalaron field to tackle the
controversial discussion on external geometry and to
improve the analysis of internal geometry and scalaron
field distribution. We pay special attention to the fact the
scalaron field is determined by the effective potential called
the chameleon potential [42–44]. This potential has been
often employed to suppress the scalaron field propagation
and to reproduce the observed validity of GR [45–47],
which is one of the so-called screening mechanisms. As we
will see later, R2 gravity does not possess the screening
mechanism. However, the chameleon potential is helpful in
analyzing the scalaron field (i.e., the effects of modifying
the gravitational theory) regardless of whether the screen-
ing mechanism works. Similar investigations of the sca-
laron field on the compact star configuration under other
types of the FðRÞ models can be found [48,49].
We apply the above viewpoints of the chameleon

potential and the gravity configuration to the compact star
system. Firstly, we specify the physically realizable asymp-
totic geometry by probing the asymptotic solution for the
scalar DOF. We demonstrate that the analytical approach
to the scalaron field distribution gives insights into the
asymptotic geometry and the proper integration method

for numerical calculations. Secondly, based on the above
consideration, we numerically solve the modified Tolman-
Oppenheimer-Volkoff (TOV) equations in the case of
neutron stars. We show how the modification of the gravity
theory influences the structure, geometry, and observables,
such as the mass-radius relation. Focusing on the chame-
leon potential and the energy conditions of the scalaron
field, we also argue that these influences are clearly
correlated to the role of the scalaron field inside the
compact star.
The remaining part of this paper is organized as follows:

We briefly review the FðRÞ gravity, the R2 model, and the
chameleon potential in Sec. II, and then we discuss the
desired static and spherical symmetric compact star con-
figuration and derive the modified TOV equations in
Sec. III. The setting of the actual numerical calculation
and the results with discussions are given in Sec. IV.
Section V is dedicated to the conclusion. In this work,
we use c ¼ G ¼ 1 unit basically, and other notations
follow Ref. [50].

II. BASICS AND CHAMELEON MECHANISM
OF R2 GRAVITY

The action of the gravitational field in the R2 gravity
model [17] is defined as

SG ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
FðRÞ; ð1Þ

where

FðRÞ ¼ Rþ αR2 ð2Þ

and κ2 ¼ 8πG is the gravitational coupling constant. The
limit α → 0 reduces to the usual Einstein-Hilbert action.
The frame with the gravitational field action in this form is
called the Jordan frame.1

Performing the variation of the gravitational action (1)
and matter-sector action with respect to the metric gμν, we
obtain the field equation:

FRðRÞRμν −
1

2
FðRÞgμν þ ðgμν□ −∇μ∇νÞFRðRÞ ¼ κ2Tμν;

ð3Þ

where FR ¼ dF=dR. The energy-momentum tensor is
defined by the matter action SM as

Tμν ¼
−2ffiffiffiffiffiffi−gp δSM

δgμν
: ð4Þ

1We can transform it into the form of Einstein gravity with a
canonical scalar field using the scale transformation. This frame
is called the Einstein frame in contrast. See the Appendix.
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Taking trace of Eq. (3), we find

□FRðRÞ ¼
1

3
½2FðRÞ − RFRðRÞ þ κ2T�; ð5Þ

where T represents the trace of energy-momentum ten-
sor T ¼ Tμ

μ.
It should be noted that the trace equation (5) takes

nontrivial form even for the vacuum T ¼ 0, as opposed to
R ¼ 0 in the GR case. Thus Birkhoff-Jebsen’s theo-
rem [51,52], which states the Schwarzschild solution is a
unique solution for a spherically symmetric vacuum system
in GR, is generally absent in the FðRÞ gravity. As a result,
vacuum, static, and spherically symmetric solutions with
nontrivial curvature distribution (i.e., scalarized solutions)
are allowed [53]. This fact stems from the additional scalar
DOF, which we will mention later, and it is one of the
crucial points in this paper.
In the R2 gravity (2), the field equations Eqs. (3) and (5)

reduce to

Rμν −
1

2
Rgμν þ αR

�
2Rμν −

1

2
Rgμν

�
þ 2αðgμν□−∇μ∇νÞR

¼ κ2Tμν ð6Þ

and

2α□R ¼ 1

3
½Rþ κ2T�; ð7Þ

respectively. The α → 0 limit recovers the Einstein equa-
tion and the curvature–energy-momentum relation in
GR again.
It is well known that the FðRÞ gravity can be rewritten in

the form of the scalar-tensor theory. We introduce the scalar
field, called scalaron, Φ≡ FRðRÞ, which one can solve
with respect to R as R ¼ R̃ðΦÞ. Then the action (1) is
rewritten as

SG ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½ΦR − VðΦÞ�;

VðΦÞ ¼ R̃ðΦÞΦ − FðR̃ðΦÞÞ: ð8Þ

The field equations for the metric gμν and scalaron Φ are

Rμν −
1

2
gμνR ¼ κ2

Φ
ðTμν þ TðΦÞ

μν Þ; ð9Þ

□Φ ¼ 1

3
½ΦV 0ðΦÞ − 2VðΦÞ þ κ2T�; ð10Þ

where TðΦÞ
μν is the effective energy-momentum of the

scalaron field:

TðΦÞ
μν ¼ 1

κ2

�
∇μ∇νΦ − gμν□Φ −

1

2
gμνVðΦÞ

�
: ð11Þ

Therefore the gravitational field in the FðRÞ gravity act as
the Einstein gravity with a nonminimally coupled scalar
field, which has 2þ 1 DOFs.
For the R2 model (2), the scalaron field Φ is defined as

the linear form of the curvature:

Φ≡ FRðRÞ ¼ 1þ 2αR: ð12Þ

We can use the curvature as the independent field for the
scalar DOF in this gravity model, instead of using only
metric gμν for both tensorial and scalar DOFs. The equation
for the scalaron field and its energy-momentum tensor are
given as

□Φ ¼ 1

6α
½Φ − 1þ 2ακ2T� ð13Þ

and

TðΦÞ
μν ¼ 1

κ2

�
∇μ∇νΦ − gμν□Φ −

1

2
gμνVðΦÞ

�
;

VðΦÞ ¼ 1

4α
ðΦ − 1Þ2; ð14Þ

respectively. We can notice that Eq. (13) is merely the
rewording of Eq. (7), and thus we can use Eq. (7) as the
field equation for curvature R.
Now we should remark on the value of Φ. From the

condition of no antigravity interaction, Eq. (9) suggests that
the value of the scalaron field Φ must be positive. This
positivity generally restricts the modification parameter
(α in the R2 gravity) or the curvature value R. In the R2

gravity which we are dealing with, the absence of anti-
gravity gives a bound on the possible values of curvature
(R > −1=2α for positive α and R < 1=2jαj for negative α).
The right-hand side of the scalaron field equation (10)

can be recognized as the force term which stems from the
effective potential VeffðΦ; TÞ:

□Φ ¼ 1

3
½ΦV 0ðΦÞ − 2VðΦÞ þ κ2T�≡ δVeff

δΦ
ðΦ; TÞ: ð15Þ

This energy-momentum-dependent potential is called the
chameleon potential [42], where the scalaron field is often
called the chameleon field, and we define the effective mass
of the scalaron field by expanding the potential around its
minimum Φ ¼ Φmin where ∂VeffðΦminÞ=∂Φ ¼ 0 holds:

m2
Φ ¼ δ2Veff

δΦ2

����
Φ¼Φmin

¼ 1

3

�
FRðRðΦminÞÞ
FRRðRðΦminÞÞ

−RðΦminÞ
�
: ð16Þ
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As Eq. (16) shows, the chameleon potential and scalaron
mass in general depend on T and control the propagation
of the scalaron field. The T dependence generates the so-
called screening mechanism in some classes of the FðRÞ
gravity [42]. For high jTj regions, such as the atmosphere
of the star [47], the scalaron mass can be very large, and the
propagation of the scalaron is suppressed. This mechanism
supports the validity of GR and Newtonian theory ever
tested in ground-based experiments, whereas the plausible
features of the scalaron field, such as driving cosmic
expansion, are realized in vacuum regions.
We note that the screening mechanism was often dis-

cussed in the presence of nonrelativistic matters T ¼ −ρ,
where the trace of the energy-momentum tensor is negative
T < 0. However, the matter inside neutron stars cannot be
described merely by the nonrelativistic matters, and the
corresponding energy-momentum tensor should be written
by T ¼ −ρþ 3p. When the pressure becomes dominant
near the core of the neutron star, the trace of energy-
momentum tensor can be positive T > 0, and the possible
restoration of the conformal symmetry implies T → 0
inside the neutron star [54]. A similar argument can be
found in the study of the screening mechanism and the
scalaron dynamics in the early Universe [55–57], where the
scalaron couples with the hot and dense environment in
analogy to the neutron star. In the current work, we
investigate the T-dependent potential and its roles inside
the neutron star with varying T.
The chameleon potential VeffðΦ; TÞ in the R2 gravity (2)

is found to be

VeffðΦ; TÞ ¼ 1

12α
ðΦ −ΦminÞ2

−
Φ2

min

12α
ðΦmin ¼ 1 − 2κ2αTÞ ð17Þ

up to a constant term. The plots of the potential for several
values of α and T are shown in Fig. 1. As the figures show,
the potential minimum moves depending on the value of
the energy-momentum T, and the potential shape becomes
steeper as jαj decreases. As we will mention later, the above
behavior causes difficulties in the numerical calculation for
the static system. The stationary condition ∂Veff=∂Φ ¼ 0
reduces to

δVeff

δΦ
ðΦmin; TÞ ¼

1

3
½RðΦminÞ þ κ2T� ¼ 0: ð18Þ

Thus R ¼ −κ2T that holds automatically in the GR
becomes the condition for the potential minimum. In other
words, there is no difference between GR and the R2

gravity if the scalaron field always stays at the potential
minimum. The excitation from the bottom causes nontrivial
profiles of the spacetime rather than GR ones.
The chameleon mass (16) in the R2 gravity is read as the

coefficient of Φ2:

m2
Φ ¼ 1

6α
: ð19Þ

The chameleon mass in the Jordan frame is constant in the
R2 model, and the scalaron field merely behaves as a
massive particle with the mass mΦ ∼ α−1=2 for positive α.
For negative α, the mass mΦ becomes pure imaginary, and
the scalaron field behaves as a tachyon. Tachyonic behavior
means that the dynamical perturbation grows exponentially,
as we can find from the field equation (13). Thus the time
evolution of the scalaron field causes instability.
Here we comment on the screening mechanism in the R2

gravity. The chameleon mass in the R2 gravity is constant,
as is found in Eq. (16) in the Jordan frame. Therefore the
screening is absent in this theory. In the following analysis,

FIG. 1. The chameleon potential (17) in the Jordan frame under the R2 gravity (2). All quantities are dimensionless by half of the
Schwarzschild radius for the solar mass rg ¼ GM⊙. The potential becomes a convex function for α > 0 or a concave one for α < 0, and
negative α causes instability for the scalaron field. The potential shape becomes steeper as jαj decreases. One can see from (b) that the
changes of T lead to translations of the bottom of potential.
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the T-dependent behavior of the scalaron field, not the
ordinary sense of the screening mechanism, plays an
important role.

III. STATIC AND SPHERICALLY SYMMETRIC
STAR UNDER R2 GRAVITY

A. Setting of the system

We deal with the static and spherically symmetric star
composed of the perfect fluid with a certain EOS in the
Jordan frame. The geometry inside the star is assumed to be
a hydrostatic solution

ds2 ¼ gμνdxμdxν ¼ −e2νðrÞdt2 þ e2λðrÞdr2 þ r2dΩ2; ð20Þ

where dΩ2 ¼ ḡijdxidxj ¼ dθ2 þ sin2 θdφ2 is the metric
on two-dimensional sphere S2. The matter component
is described by the EOS p ¼ pðρÞ, and the energy-
momentum tensor is defined as

Tμν ¼ ðϵðrÞ þ pðrÞÞuμuν þ pðrÞgμν; ð21Þ

with rest mass density ρðrÞ, total energy density ϵðrÞ,2
pressure pðrÞ, and 4-velocity of static fluid uμ. It should
be noted that we work on the Jordan frame, and the above
quantities do not contain the contribution from the scalaron
field but only contain that from the matter. The center of the
star is placed at r ¼ 0, while the surface radius rs of the star
is defined as the radius where the fluid pressure van-
ishes pðrsÞ ¼ 0.
We assume the external region of the star r > rs is a

vacuum, and the cosmological constant vanishes. In the GR
case, this assumption tells that the outer geometry must
be the Schwarzschild solution due to Birkhoff-Jebsen’s
theorem [51,52]. However, this theorem is generally absent
in the FðRÞ gravity, and the outer solution is not necessarily
the Schwarzschild one, as mentioned in the previous
section. Furthermore, it was found in [58] that the possible
lowest-order modification in the FðRÞ should be the non-
integer power term of curvature,

FðRÞ ¼ Rþ aRb ða ∈ R; 1 < b < 2Þ ð22Þ

to realize the compact star system whose outer spacetime
is the Schwarzschild one (under the assumption of the
polytropic EOS). The contraposition of this statement
suggests that the external geometry in the R2 gravity is
expected to have a nontrivial curvature distribution.
Because the curvature is related to the scalaron field, the
R2 gravity may show the nonvanishing scalaron field

surrounding the compact star, which could be called the
scalarized solution.
We consider the metric for outer spacetime to have the

same form as that for the internal one3:

ds2 ¼ gμνdxμdxν ¼ −e2νðrÞdt2 þ e2λðrÞdr2 þ r2dΩ2: ð23Þ

Hereafter, we analyze the asymptotic behaviors of the
metric components from those of the scalaron or the
curvature. According to the discussion on the chameleon
potential in the previous section, the scalaron field Φ
behaves as a free massive particle in the R2 gravity:

□Φ¼m2
ΦðΦ−ΦminÞ

�
m2

Φ ¼ 1

6α
;Φmin ¼ 1− 2κ2αT

�
:

ð24Þ

Assuming the asymptotically flat spacetime at the external
region and T ¼ 0, the asymptotic solution of Eq. (24)
would be

ΦðrÞ − 1 ∼
c1
r
emΦr þ c2

r
e−mΦr: ð25Þ

Equation (25) shows the decaying and growing modes in
space, reflecting the static spacetime in Eq. (23). For the
assumption of the asymptotic flat spacetime, it is relevant to
consider the decaying mode, and thus Φ → 1. Moreover,
Eq. (12) suggestsΦ → 1 corresponds to the limit to GR and
R → 0. Therefore, the deviation from the GR itself is
expected to be the exponentially decreasing

ΦðrÞ − 1 ∝
1

r
e−mΦr: ð26Þ

In other words, compact stars in the R2 gravity have
exponentially decaying scalar hair. From the equivalence
of the curvature and the scalaron field, the curvature is also
predicted to decay exponentially with some typical length,
which is of the same order as the Compton length of the
scalaron field m−1

Φ ¼ ffiffiffiffiffiffi
6α

p
.

Because the deviation from GR is decreasing in asymp-
totic flat spacetime, we can conclude that Birkhoff-Jebsen’s
theorem in GR is restored further away from the Compton
wavelength r ≫

ffiffiffi
α

p
and that the spacetime solution is the

asymptotically Schwarzschild one:

lim
r→∞

e2νðrÞ ¼ lim
r→∞

e−2λðrÞ ¼
�
1 −

2M
r

�
;

lim
r→∞

RðrÞ ¼ lim
r→∞

R0ðrÞ ¼ 0 ð27Þ
2Note that this system is highly relativistic so that rest mass

density ρðrÞ and total energy density ϵðrÞ should be rigorously
distinct. In this work, we often use ρ as the parameter of the
system, while the actual calculation is mostly based on ϵ.

3We use the same function as the internal region because they
should be connected with junction conditions we will see later.
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[RðrÞ and R0ðrÞ: the curvature and its first derivative with
respect to the radial coordinate r] because of its observa-
tional viability. The constant M corresponds to the
Schwarzschild mass (or Arnowitt-Deser-Misner mass)
for an infinite-distant observer; hence, M is the mass we
observe. Later we will show the mass-radius relation of the
stars using this definition. The metric component function
νðrÞ, λðrÞ and the curvature RðrÞ [or the scalaron field
distribution ΦðrÞ] are to be calculated numerically with
these asymptotic conditions and the continuity conditions
at the surface we will mention later.
Here we comment on the discussions in some existing

works. In Ref. [25], the authors have claimed that the
neutron stars have no hair in the R2 gravity based on the
black hole no-hair theorem proved in this gravitational
theory [39,40]. However, their proofs of the no-hair
theorem strongly depend on the black hole features such
as vacuum and the existence of the horizon. For the
compact stars, they consist of vacuum and nonvacuum
regions with properly connected geometries. Although the
existing works have also considered the nonvacuum
case, their analyses can apply only to the case where the
trace of the energy-momentum tensor of matter is vanishing
(e.g. the electromagnetic field). In a realistic consideration
for the compact stars, the trace of energy-momentum tensor
is nonvanishing, and thus it is still to be analyzed
deliberately whether the no-hair theorem also holds in
such a case.4

Moreover, the results in some previous works [26,31,32]
and ours show the existence of haired solution numerically.
They imply it is suspicious if such a no-hair theorem holds
even in compact stars.
In Refs. [28,33], they chose α < 0 to realize the radial

perturbative stability of the system. However, this choice of
the parameter α leads to the tachyonic scalar mode, as is
apparent in Eq. (19). Therefore the scalaron field equa-
tion (24) suggests that the dynamical (time-dependent)
perturbation behaves exponentially and causes instability.
Also, even under the static configuration, the stellar mass of
the system tends to be infinite because of the spatial
oscillation in the geometry [31]. This case of the negative
α is unphysical from the observational point of view. For
these reasons, the case of negative α is not plausible in the
actual compact star configurations.
We also mention the junction conditions in this system.

For all over the system, we assume that there is no delta-
function-like discontinuity for the matter field:

½Tμν� ¼ 0: ð28Þ

Here ½� � �� denotes the discrepancy over some timelike
hypersurface. In the FðRÞ gravity theory, which contains
additional scalar DOF, the junction conditions are not only
the Israel condition5

½hμν� ¼ 0; ð29Þ

but also the curvature continuity conditions [63]

½R� ¼ 0; ½∇μR� ¼ 0; ð30Þ

where hμν is the induced metric for the hypersurface. We
demand these conditions when we connect the numerical
inner and outer solutions,which are independently calculated.
By taking into account the junction condition at the

surface r ¼ rs, this system can be recognized as a two-
boundaries-value problem for the center r ¼ 0 and the
spacelike infinity r → ∞. For such a system, we usually
choose the shooting method from the center as the first
choice to solve them. However, as mentioned above, this
system has exponentially decaying scalar hair, and it causes
difficulty in finding a consistent solution numerically. To
obtain the asymptotically flat solution, we would like to
pick up the second term of the general solution (25).
However, the first term blows up and prevents convergence
during numerical iterative integration. Such a divergence
becomes fatal for integrating longer distances and making α
smaller, and it is almost impossible to solve the system with
the usual one-way shooting method starting from the
center.
Therefore we choose to shoot from both boundaries, i.e.,

from the center and the (artificial) end point re with a
sufficiently large distance. Demanding that the obtained
two numerical solutions satisfy the junction conditions we
just mentioned, we find consistent asymptotic flat solu-
tions. This method is also essential to solve this system. We
will explain the details of this setting in Sec. IVA.

B. Modified TOV equations

We now derive the modified version of the celebrated
TOV equation in the R2 gravity based on the settings we
prepared in the last part. The geometries inside and outside
the star are assumed to be static and spherically symmetric
solutions (20) and (23). The nonvanishing geometrical
quantities (the Levi-Civita connection, the Riemann tensor,
the Ricci tensor, and the Ricci scalar) for this spacetime are
as below:

Γr
tt ¼ e−2ðλ−νÞν0; Γt

tr ¼Γt
rt ¼ ν0; Γr

rr ¼ λ0;

Γi
jk ¼ Γ̄i

jk; Γr
ij ¼−e−2λrḡij; Γi

rj ¼Γi
jr ¼

1

r
δij; ð31Þ4Theno-hair theoremisproved insomeparticular cases:Compact

star systemwith reflecting surface is discussed in [59–61].And also,
the case with shift-symmetric Horndeski theory is proved in [62].
Their assumptions do not coincide with our consideration, and thus
no contradiction appears.

5The continuity condition for the extrinsic curvature ½Kμν� ¼ 0
is automatically guaranteed by the continuity of hμν and Tμν.
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Rrtrt ¼ e2ν½ν00 þ ðν0−λ0Þν0�; Rtitj ¼ rν0e2ðν−λÞḡij;

Rrirj ¼ λ0rḡij; Rijkl¼ð1−e−2λÞr2ðḡikḡjl− ḡilḡjkÞ; ð32Þ

Rtt ¼ e2ðν−λÞ
�
ν00 þ ðν0 − λ0Þν0 þ 2ν0

r

�
;

Rrr ¼ −½ν00 þ ðν0 − λ0Þν0� þ 2λ0

r
;

Rij ¼ ½1þ f−1 − rðν0 − λ0Þge−2λ�ḡij; ð33Þ

R¼ e−2λ
�
−2ν00−2ðν0−λ0Þν0−4ðν0−λ0Þ

r
þ2e2λ−2

r2

�
: ð34Þ

The matter inside the star is assumed to be the perfect
fluid with the specified EOS p ¼ pðρÞ, whose energy-
momentum tensor is given in Eq. (21). This energy-
momentum tensor satisfies the conservation law due to
the generalized Bianchi identity of the FðRÞ gravity in the
Jordan frame:

∇μTμν ¼ 0: ð35Þ

Then the nontrivial components of the field equation for
the metric (3) are found to be

−
1

2
F − e−2λ

�
ν00 þ ðν0 − λ0Þν0 þ 2ν0

r

	
FR þ e−2λ

�
F00
R þ

�
−λ0 þ 2

r

�
F0
R

�
¼ −κ2ϵ; ð36Þ

1

2
F þ e−2λ

�
ν00 þ ðν0 − λ0Þν0 − 2λ0

r

	
FR − e−2λ

�
ν0 þ 2

r

�
F0
R ¼ −κ2p; ð37Þ

1

2
F −

1

r2
f1þ f−1 − rðν0 − λ0Þge−2λgFR − e−2λ

�
F00
R þ

�
ν0 − λ0 þ 1

r

�
F0
R

�
¼ −κ2p: ð38Þ

Using the expression of the curvature in (34), we can rewrite the above Eqs. (36)–(38) as

λ0 ¼ e2λfr2ð2κ2ϵ − FðRÞÞ þ FRðr2R − 2Þg þ 2r2Fð3Þ
R ðR0Þ2 þ 2rFRRðrR00 þ 2R0Þ þ 2FR

2rð2FR þ rFRRR0Þ ; ð39Þ

ν0 ¼ e2λfr2ð2κ2pþ FðRÞÞ − FRðr2R − 2Þg − 2ð2rFRRR0 þ FRÞ
2rð2FR þ rFRRR0Þ ; ð40Þ

R00 ¼ FR

FRR

�
1

r

�
3ν0 − λ0 þ 2

r

�
þ e2λ

�
1

2
R −

2

r2

��
þ
�
λ0 þ 1

r

�
R0 −

Fð3Þ
R

FRR
R02: ð41Þ

Also the conservation law (35) reduces to

0 ¼ ðϵþ pÞν0 þ p0: ð42Þ
Equations (39)–(42) are the modified TOVequations for an
internal region in general FðRÞ gravity. Those for the
external region are given just by putting matter quantities ϵ,

p to vanish. Here we use curvature RðrÞ as an independent
field, which corresponds to scalar DOF in the scalar-tensor
description. Note that using Eq. (34), we can delete the field
equation for R (41), but the field equation for the metric
components becomes higher-order differential equations.
In the R2 gravity Eqs. (39)–(41) become

λ0 ¼ e2λf2κ2r2ϵþ αRðr2R − 4Þ − 2g þ 4αðr2R00 þ 2rR0 þ RÞ þ 2

4rðαðrR0 þ 2RÞ þ 1Þ ; ð43Þ

ν0 ¼ e2λf2κ2r2p − αRðr2R − 4Þ þ 2g − 2ð4αrR0 þ 2αRþ 1Þ
4rðαðrR0 þ 2RÞ þ 1Þ ; ð44Þ

R00 ¼ 1þ 2αR
2α

�
1

r

�
3ν0 − λ0 þ 2

r

�
þ e2λ

�
1

2
R −

2

r2

��
þ
�
λ0 þ 1

r

�
R0: ð45Þ
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These and Eq. (42) are the equations to be solved numeri-
cally if the EOS p ¼ pðϵÞ is given. When numerical
integration is performed, we make them dimensionless
properly using

Mg ¼M⊙ ≃ 1.99× 1033 g; rg ¼
GM⊙

c2
≃ 1.48× 105 cm;

ρg ¼
Mg

r3g
≃ 6.18× 1017 gcm−3;

pg ¼
Mgc2

r3g
≃ 5.55× 1038 gcm−1 s−2:

C. Boundary conditions and asymptotic solutions

Here we need to find the concrete asymptotic forms of
solutions from the modified TOV equations. Around the
center of the star r ¼ 0, we require

λð0Þ ¼ R0ð0Þ ¼ 0; ð46Þ

to avoid the conical singularity. The other quantities take
some constant values:

νð0Þ ¼ ν0; Rð0Þ ¼ R0; pð0Þ ¼ p0: ð47Þ

Here p0 is given by hand as a parameter. The constants ν0
and R0 are determined by requiring that the solutions
should satisfy the asymptotically flat conditions at r → ∞.
Equations (39)–(41) are not available at r ¼ 0, and hence
it is better to construct asymptotic solutions around the
center. By expanding Eqs. (39)–(41) around r ¼ 0, the
solutions are found to behave as

λðrÞ ∼ 1

2
λ2r2; νðrÞ ∼ ν0 þ

1

2
ν2r2;

RðrÞ ∼ R0 þ
1

2
R2r2; pðrÞ ∼ p0 þ

1

2
p2r2; ð48Þ

with

λ2 ¼
1

18ð2αR0 þ 1Þ ½2κ
2ð2ϵ0 þ 3p0Þ þ ð3αR0 þ 2ÞR0�;

ν2 ¼
1

18ð2αR0 þ 1Þ ½2κ
2ð2ϵ0 þ 3p0Þ − ð3αR0 þ 1ÞR0�;

R2 ¼
1

18α
½κ2ð−ϵ0 þ 3p0Þ þ R0�;

p2 ¼ −ðϵ0 þ p0Þν2;

where ϵ0 is obtained by solving the EOS for given p0.
At the infinitely distant boundary r → ∞, we demand

the geometry is asymptotically Schwarzschild solution in
Eq. (27). The Schwarzschild mass M for r → ∞ is the
stellar mass observed by an infinitely distant observer.
Thus, this mass should be recognized as the observable that

appears in the mass-radius relation and other measure-
ments. On the other hand, we can define the effective
Schwarzschild massmðrÞ inside the 2-sphere with radius r:

mðrÞ≡ r
2
ð1 − e−2λðrÞÞ: ð49Þ

In GR configuration, this mass corresponds to the stellar
mass at the surface; that is, mðrsÞ ¼ M. The situation is,
however, different in the R2 gravity. Due to the nontrivial
geometry outside the star (i.e., the existence of the scalar
hair), mðrÞ is not equal to M for finite r but for the limit
r → ∞. In Sec. IV B, this fact will be shown explicitly with
numerical results.
The asymptotic flat solutions for large r can be obtained

by solving Eqs. (39)–(41) for r ≫ M and imposing con-
sistency with Eq. (34):

λðrÞ ∼ −
1

2
log

�
1 −

2M
r

�
− 6αCrK1

�
r

2
ffiffiffi
α

p
�
;

νðrÞ ∼ 1

2
log

�
1 −

2M
r

�
− 2αCrK1

�
r

2
ffiffiffi
α

p
�
;

RðrÞ ∼ CrK1

�
r

2
ffiffiffi
α

p
�
: ð50Þ

Here C is a constant to be determined to satisfy the
asymptotic conditions in a consistent manner. KnðxÞ is
the modified Bessel function of the second kind. As we can
see, the deviations from the Schwarzschild solution have
the form of exponentially decaying terms depending on the
typical length, which is proportional to the Compton length
of the scalaronm−1

Φ ¼ 1=
ffiffiffiffiffiffi
6α

p
. This result is consistent with

the discussion on the scalaron field profile in Eq. (26) and
indicates the existence of the contribution from the scalar
hair outside the star.
Now let us check the consistency of the number of

equations and the conditions. The equations we use consist
of four differential equations: three first-order ordinary
differential equations (ODEs) (35), (43), and (44) for the
metric components λ and ν and the pressure p and one
second-order ODE (45) for the curvature R as the additional
scalar DOF. Therefore we need to specify five boundary
conditions, which are given by

λð0Þ ¼ 0; νðrÞ⟶r→∞
0; RðrÞ⟶r→∞

0;

R0ð0Þ ¼ 0; pð0Þ ¼ pc: ð51Þ

Here pc (or ρc, ϵc) serves as the free parameter to be fixed
by hand. The asymptotic solutions in Eq. (48) around the
center r ¼ 0 are characterized by two parameters νc ¼ νð0Þ
and Rc ¼ Rð0Þ. In the sense of the usual shooting method,
all we have to do is find the appropriate νc, Rc, which
satisfies all of the boundary conditions. Due to the
numerical difficulty that we mentioned in Sec. III A,
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however, we choose to solve the system from both of the
boundaries simultaneously and try to find the parametersM
and C which characterize the asymptotic solutions (50) for
r → ∞ in addition.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Implementation

We now explain the numerical setting we use (see also
Fig. 2). As we mentioned in Sec. III A, the system with
Eqs. (42)–(45) should be solved as the multiboundaries
values problem where boundaries are placed at r ¼ 0 and
r → ∞. Due to the exponentially behaving scalar DOF, this
system is numerically unstable so that the usual one-way
shooting method is unavailable.
For the above reasons, we use the shooting method from

both boundaries. Details are as below: Firstly, the two
boundaries were set as rc ¼ 10−3rg for the center and
re ¼ 102 ·

ffiffiffi
α

p
for the sufficiently distant boundary. The

factor
ffiffiffi
α

p
in re is necessary to guarantee that the distance

of the end point from the center is much larger than the
Compton length of the scalaron field. Moreover, the surface
of the star r ¼ rs was numerically defined as a surface
where pðrsÞ ≤ 10−8pc is satisfied. The matching point rm
was placed at rm ¼ 10rg, which is slightly further than the
typical surface radius of the stars.6

Under the above configuration, we solve Eqs. (42)–(45)
numerically from both boundaries rc and re toward the
matching point rm. For the center rc, the asymptotic
solutions (48) are firstly assumed with two unspecified
boundary values νc and Rc and a given parameter pc. We
solve the equations numerically with a given EOS until they

reach the surface r ¼ rs and switch them to the vacuum
ones where ϵ, p, and their derivatives vanish. At the surface
of the star, λ, ν, R, and R0 have to be continuous because of
the junction conditions (28)–(30). The integration is per-
formed until the matching point r ¼ rm.
On the other hand, at the end point r ¼ re, the asymp-

totic solution Eq. (50) is assumed with two unspecified
constants M and C. The vacuum version of the modified
TOV equations (43)–(45) are solved “backward” from
r ¼ re to r ¼ rm. At the matching point rm, we impose
the continuity condition on λ, ν, R, and R0 that difference
between the two calculated solutions is order of 10−4 of
solution [ΔλðrmÞ < 10−4λðrmÞ for example]. This condi-
tion leads to determine constants νc, Rc, M, and C which
specify the asymptotic solution (48) and (50). By perform-
ing this procedure for each value of the central pressure pc,
we obtain the family of solutions and the mass-radius
relation corresponding to the EOS we assumed.
Here we comment on the EOS. As EOS p ¼ pðρÞ, we

used the piecewise form [64] of SLy EOS [65], which
corresponds to the neutron star with a quark matter core
with QCD correction, and APR4 EOS [66], which
describes the crust and the liquid core of nuclear matters
based on the N-body simulation. It should be noted that
some conditions on the upper value for pc exist: (i) con-
dition from the EOS itself that states the (square of) sound
speed v2 ¼ dp=dϵ does not exceed light speed c2; and
(ii) condition coming from the positivity of the chameleon
mass in the Einstein frame in Eq. (A10). The infimum of
these two bounds should be taken as the upper limit of the
region of central pressure pc.
For the value of the modification parameter α, we take

α ¼ 0, 0.5r2g, r2g, 2r2g, 10r2g, and 100r2g. These values are
compatible with observational constraints such as the
gravity probe B and the pulsar B in the PSR J0737-
3039 system [67], while recent investigation on the
dynamical stability of compact stars suggests incompatible
one [68]. However, we do not compare our results with
such constraints in this paper. This is because in principle
the parameter α cannot be constrained from only the mass-
radius relation in order to another dependence on the choice
of EOS [58]. Thus we concentrate here on constructing

FIG. 2. Illustration of the scheme for numerical integration. The multiboundaries shooting method is used to deal with the diverging
numerical instabilities.

6Here we would like to comment on the values of ri and re.
The value of ri cannot be lengthened but shortened because of
numerical instabilities. In particular, it should be made shorter
flexibly for small αð<1Þ, in which the numerical instabilities
are more likely to appear. In that case, we must care about
whether rs < ri still holds. For the value of re, we can extend by
∼1.5 × 102

ffiffiffi
α

p
so that M and rs vary ∼Oð10−4Þ. The numerical

convergence becomes worse if we take a much longer value for
re, because the value of C becomes much larger than other
parameters.
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proper compact star systems with correct exterior geom-
etry and revealing the qualitative nature of the internal
scalaron field.
To perform the numerical integration of the modified

TOV equations, we use the backward differentiation for-
mula method with the adaptive step-size control distributed
in Wolfram Mathematica [69]. Some tuning on the accu-
racy and precision is essential for the calculation when α is
small (α < 1). Moreover, there is serious numerical diffi-
culty in the calculation of α < 0.5r2g, although the results
with such α would be indistinguishable from GR solutions.

B. Results and discussions

1. Geometry

Firstly we depict the plots of the geometrical quantities
λðrÞ, νðrÞ, and RðrÞ and the pressure profile pðrÞ for
α ¼ 0ðGRÞ, r2g, 10r2g in Fig. 3. The central pressure was
taken as all the same value pc ≃ 3.44 × 10−4pg (corre-
sponding to the rest mass density ρ ¼ 1.00 × 1015 g=cm3)
with the SLy EOS. The differences in the mass and radius
for different α were Oð10−2Þ so that they are hardly seen in
these plots, as we find from the plot for the pressure in
Fig. 3(d).

In these plots, the metric component λðrÞ and the
curvature RðrÞ show drastic deviations from GR while
νðrÞ and pðrÞ do not. In Fig. 3(c), the curvature RðrÞ does
not vanish in the external region for nonzero α, whereas it
vanishes for the α ¼ 0 (GR) case. The decreasing of the
curvature becomes softer for large α. This result indicates
the aforementioned scalarization effect in the FðRÞ gravity.
This property also can be seen from Fig. 3(a). In this plot,

all the profiles of the Schwarzschild solutions with corre-
sponding masses M for several values of α are almost the
same as the external profile for α ¼ 0 (GR) due to the
mentioned small discrepancies on M. The deviation from
the Schwarzschild solution becomes significant around
the surface r ¼ rs and decreases when r → ∞, and this
deviation becomes larger as we choose larger α. This result
also indicates the existence of scalar hair in the vicinity of
the surface.

2. Scalaron profiles

Here we investigate the profiles of the scalaron field Φ
defined in Eq. (12). It should be noted that the GR
solution corresponds to Φ ¼ 1 by definition everywhere.
The plots in Fig. 4 show the scalar-hair profiles inside and
outside the star for pc ≃ 3.44 × 10−4pg (corresponding

FIG. 3. The solutions with ρc ¼ 1.00 × 1015 g=cm3 (SLy EOS) for GR and α ¼ r2g , 10r2g . The vertical dashed line represents the radius
rs ¼ 11.6 km in the GR solution (as a reference value for nonzero α solutions). The behaviors of λðrÞ and RðrÞ show the large deviations
from the GR solution (or Schwarzschild solution) for large α, while νðrÞ and pðrÞ show small deviations.
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to ρc ¼ 1.00 × 1015 g=cm3) with the SLy EOS [65].
Figure 4(a) shows that the nontrivial distribution of the
scalaron field becomes prominent as long as the value of α
increases. It can also be noticed that the scalaron field
profiles inside the star are not always decreasing mono-
tonically (for small α in particular) inside the star.
In fact, these internal solutions can be understood by the

effective behavior of the scalaron field Φ. Let us consider
the case with α ¼ 1, pc ≃ 3.23 × 10−3pg (corresponding to
the ρ ¼ 1.00 × 1015.3 g=cm3), and SLy EOS (Fig. 5). The
scalaron field profile, in this case, fluctuates around Φ ¼ 1
inside the star and asymptotically coincides with the profile
outside, as we find in Fig. 5(a). This profile is described by
the chameleon potential, which is determined by the trace
of the energy-momentum tensor T, whose behavior is
shown in Fig. 5(b). For the scalaron field equation in the
R2 gravity

□Φ ¼ ∂Veff

∂Φ
ðΦ; TÞ ¼ m2

ΦðΦ −ΦminðTÞÞ; ð52Þ

we are now considering only radial dependence r. Taking
the signs of the metric into account, solving this equation
can be recognized roughly as solving the dynamical (time-
dependent) problem under the sign-flipped chameleon
potential −VeffðΦÞ which is now a concave function of
Φ. The plots in Fig. 5(c) are the behaviors of −VeffðΦÞ as a
function of the scalaron for several values of the radius. We
find that the value of ΦðrÞ is determined as if the particle
slips down this sign-flipped potential −VeffðΦÞ. The
mentioned fluctuation around Φ ¼ 1 is found to stem from
the energy-momentum dependence of the effective poten-
tial; i.e., the fluctuation of T around T ¼ 0 causes the
fluctuation of the scalaron field.

Moreover, the scalaron field finally tends to stay on the
top of the concave function −VeffðΦÞ. Therefore the
asymptotically flat solution is an unstable branch. In other
words, to find such solutions is to find the proper initial or
boundary conditions so that the scalaron field gets the
potential maximum of the −VeffðΦÞ for large r.
The initial value dependence of the scalaron field

distribution is explicitly shown in Fig. 6. We can see that
a tiny deviation from proper initial values leads to the
blowing behavior of the scalar hair. The behavior becomes
more sensitive for lower α. This is why the numerical
integration is unstable, and we encounter several difficulties
in finding solutions. This situation was mentioned in some
previous works [28,70]. It should be noted that this
instability is with respect to the radial perturbation, not
the dynamical one. Thus the validity of the asymptotically
flat solution in this gravity depends on the setting one
considers.
Figure 4(b) is the plot for a larger scale. It can be noticed

that the scalar hair decreases exponentially, and its slope
becomes softer as α increases. This feature can be con-
firmed more quantitatively from Table I. This is the
summary table of the physical quantities for several values
of α. Here we define the scalarization radius rΦ, which
coincides with a radius of the scalar-hair sphere, and
jΦðrΦÞ − 1j ¼ 10−10 numerically. Table I also illustrates
the effective gravitational radius of the star in terms of
curvature. We can find that the differences in the stellar
mass M and the stellar radius rs are Oð10−2Þ of the values.
However, the scalarized radii rΦ are significantly different
for different α. Moreover, the ratio of the scalarized radii is
found to be roughly proportional to the ratio of the
Compton length of the scalaron field l ¼ ffiffiffiffiffiffi

6α
p

: for
instance, rΦðα ¼ 10Þ=rΦðα ¼ 1Þ ≃ ffiffiffiffiffi

10
p

. These results

FIG. 4. The profiles of scalaron (12) for several α. The values of the central pressure are all ρc ¼ 1.00 × 1015 g=cm3 using SLy EOS.
(a) Profiles of the scalaron in the vicinity of the star. The dashed vertical line is the surface radius for GR as a reference value. Nontrivial
scalaron concentration gets remarkable as α increases. (b) Profiles of deviations from GR value (Φ ¼ 1), i.e., scalar hair outside the star.
The horizontal solid line represents Φ − 1 ¼ 10−10. One can find that the decay of the scalaron becomes mild, and the radius rΦ defined
as ΦðrΦÞ − 1 ¼ 10−10 is prolonged as α increases.
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FIG. 5. The plots for the scalaron and thematter profiles and corresponding chameleon potential with α ¼ 1, ρc ¼ 1.00 × 1015.3 g=cm3,
and SLy EOS. The characteristic behavior of the scalaron field as a function of r in (a) can be described by the dynamical motion under the
sign-flipped chameleon potential as (c). Note that the range of the vertical axis in (c) is not fixed in order that the property of the scalaron
field is not determined by the absolute value of the potential but by its slope. (b) shows the trace of the energy-momentum tensor
T ¼ −ðρ − 3pÞ. And one finds positive T inside the star, which indicates the existence of stiff matter [54].

FIG. 6. The plots show the initial-value dependence of the scalaron field distribution. For both values of α, slight differences cause
serious blow-ups of the scalar hair and prevent it from being asymptotically flat. Hence such solutions need fine-tuned initial conditions,
as also understood from Fig. 5.
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imply the existence of scalar hairs with the Compton length
of the scalaron field in the R2 gravity, which is charac-
terized by the parameter for the R2 correction term.

3. Mass-radius relation

Repeating the calculation procedure for the desired range
of the central pressure pc, we found the mass-radius

(M − rs) relation for each EOS and for several values of
α. The results are shown in Figs. 7(a) and 7(b) for two
different EOSs: SLy [65] and APR4 [66]. In both of the
plots, the M − rs curves are distorted as if they rotate
clockwise in response to α around some fixed points. The
maximum masses become heavier as α increases. These
results are consistent with those in the existing works such
as [26,31]. Therefore, these behaviors are qualitatively
independent of EOSs but strongly depend on the correction
parameter α. Obtained results are supposed to stem from the
modification of the gravity theory, that is, the additional
scalar DOF.
To clarify the effect of the scalaron field on the stellar

mass, we plot the relationship between the stellar mass M
and the center restmass energy ρcwith SLyEOS in Fig. 7(c).
We can see thatM increases as α does for the high ρc region.
After some turning point (around ρc ≃ 1.1 × 1015 g=cm3),
however,M decreases as α increases in the lower ρc region.
Hence the scalaron field contributes to the stellar mass as

TABLE I. The physical quantities for several α with ρc ¼
1.00 × 1015.15 g=cm3.

α (rg) Mass M (M⊙) Radius rs (km)
Scalarization
radius rΦ (km)

0 1.930 10.880 � � �
0.5 1.947 10.923 46.717
1 1.958 10.967 64.077
2 1.975 11.032 88.930
10 2.030 11.228 193.985

FIG. 7. (a),(b) The mass-radius relation with two EOSs for several values of α. The mass is defined as the Schwarzschild mass M at
the end point re, and the radius is the surface radius rs. The curves seem to rotate clockwise as α increases regardless of the EOSs.
(c) The mass as the function of the central rest mass energy density ρc. The relation between α andM changes with respect to ρc. (d) The
difference ΔM between the stellar mass M and the effective Schwarzschild mass on the surface mðrsÞ. The difference shows the mass
contribution of the scalar hair outside the star to the mass and increases as we increase α.
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negative energy in effect. It does not always have a positive
influence on M, and this behavior corresponds to the
rotation of the mass-radius relation we just mentioned.
The reason can be understood from the effective energy

condition of the scalaron field Φ. The effective energy-

momentum tensor TðΦÞ
μν of the scalaron field Φ can be

constructed as Eq. (14). Using this expression, we can
evaluate the effective energy condition of the scalaron field

using TðΦÞ
μν tμtν and TðΦÞ

μν lμlν with arbitrary timelike and
null vector tμ and lμ.
Figure 8 show the value of these conditions for some

values of ρc and α. respectively.7 Here we use the four-
velocity of the fluid uμ and one null vector lμ ¼
feλ−ν; 1; 0; 0g for evaluation. The trends differ between
the external and the internal region of the star. For all
parameter settings, both of the energy conditions indicate
positive values outside the star. Thus it is expected that Φ
behaves as an ordinary baryonic matter and that the scalar
hair weights the star. This fact also can be seen from
Fig. 7(d). It shows the difference between the effective
Schwarzschild mass on the surface r ¼ rs and on the spatial
infinity r → ∞:

ΔM ¼ M −mðrsÞ; where mðrÞ≡ r
2
ð1 − e−2λðrÞÞ; ð53Þ

as a function of ρc. Thus it evaluates the whole energy
contribution from the scalar hair. We should notice thatΔM
is always positive for all parameter settings. Therefore
scalar hair outside the star always makes the star heavier,
and this tendency becomes more drastic as α increases.

On the other hand, the situation is different inside the
star. As we can see in Fig. 8, both conditions can take
negative values. In particular, they become negative in
almost all regions except for the vicinity of the surface for
lower ρc settings. Thus the scalaron field Φ can break the
all of energy conditions and behaves as the quintessence
field. As a result, it can decrease the entire stellar mass M,
especially for lower ρc solutions. This quintessential feature
itself is not surprising in FðRÞ gravity theory as men-
tioned in [7].
In summary, the scalaron field works differently for the

external and internal regions; it acts as baryonic matter with
positive contributions and as (partially) quintessential
matter with negative contributions to the mass, respectively.
Also, the coupling between the matter and the Einstein
gravity field (i.e., the metric gμν) is effectively masked by
the scalaron, as noticed from Eq. (9). The stellar massM is
affected by all of these contributions from the scalaron. As
a result, the star becomes more massive or less massive as
in Fig. 7(c) depending on the theory modification param-
eter α and the central condition such as ρc.

V. CONCLUSION

In this paper, we investigated the TOV configuration of
compact stars in the R2 gravity theory (2). To construct the
asymptotically flat solution, we utilized the chameleon
potential in Eq. (17) to analyze the spatial distribution of
the additional scalar DOF. Considering the asymptotic
behavior of the scalaron field, we clarified that the outer
asymptotic geometry has exponentially decreasing curva-
ture corresponding to the scalar hair (26). In addition, we
specified the two-boundaries shooting method as a suitable
choice for the numerical integration, in which we can avoid
exponentially diverging numerical instabilities coming
from this scalaron behavior.

FIG. 8. The effective energy conditions for the scalaron field as functions of the radius r. Inside the star, the conditions can be partially
broken, and the scalaron behaves as a quintessence field in this broken region. These features become significant for lower ρc. The
quintessential scalaron field effectively gives negative energy densities [which corresponds to (a)]. It is one of the reasons for the
nonmonotonic relation of M and ρc in Fig. 7(c).

7To compare among the different α, we normalized TðΦÞ
μν by

ΦðrÞ as noticed from (9) in Fig. 8.
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Based on the above forecasts, we performed the numeri-
cal integration of the modified TOV equations (42)–(45).
We found that the geometry and the matter distribution
nontrivially deviate from the GR solution around the star as
in Fig. 3 and that the neuron stars have expected scalar hairs
which depend on the effective mass of the scalaron as in
Fig. 4. For the internal region of the star, we explicitly
showed in Fig. 5 that the qualitative trend of the scalaron is
determined by the chameleon potential VeffðΦÞ as if the
dynamical problem under the sign-flipped concave-upward
potential −VeffðΦÞ. This shape of the potential also
explains the numerical difficulties in finding the proper
solutions. The scalaron field influences the stellar mass
examined in Fig. 7 with its energy conditions. We revealed
in Fig. 8 that the external scalar hair gives positive mass,
while the internal quintessential scalaron can give negative
contributions. All these effects collectively influence the
stellar mass and make it heavier for higher ρc solutions and
lighter for lower ρc ones.
As seen in this paper, we uncovered several ambiguous

points remaining in the previous works. The asymptotically
flat external geometry of compact stars in the R2 gravity
(i.e., the existence of the scalar hair) had been a contro-
versial issue. Our results for the outer geometry support
Refs. [26,29,31] which showed neutron stars have scalar
hair, while opposing Refs. [25,30] which claimed the
neutron stars have no hair in this gravity.8 This fact raises
doubt on the existence of the no-hair theorem for horizonless
compact stars in the R2 gravity discussed in Refs. [39–41].
We also shed light on the inner profile and the energy
conditions of the scalaron field, which fulfill the missing
parts in the previous works. It was clarified that the sign of α
and the distribution of the scalaron in varying chameleon
potential reflects aforementioned numerical difficulties,
which the previous works revealed individually.9 In addi-
tion, we showed that the effective behavior of the scalaron
field implied by the energy conditions gives a clearer reason
for the shape of the mass-radius relation, which had been
widely confirmed.
The main point of this work is to fully utilize the

effective behavior of the scalaron field, which is the main
difference from the configuration in GR. For the outside
star, the brief analysis of the nature of the scalaron field
enables us to figure out the asymptotic solutions and even
the suitable integration method before actual numerical
calculation. The estimation of the asymptotic behavior of
this additional DOF is essential to comprehend the situation
appropriately. Also, the investigation of the scalaron field

provides us with a natural understanding of its influences
on the internal structure and the mass of compact stars.
In this work, we discussed how the inner scalaron field
(or geometry) distribution is determined in terms of the
chameleon field and showed that this scalaron affects
the stellar mass in a nonmonotonic way. The insight into
the internal property of the additional DOF would help
investigate the internal structure of the star and discuss the
observational implication of the modification of the gravity
theory.
As we have seen, the existence of the unscreened

massive scalaron causes notable effects, such as exponen-
tially decaying scalar hair, possible restoration of the
uniqueness of asymptotically Schwarzschild solution,
and its influences on the internal structure of the compact
star. This situation probably differs in the other models of
the FðRÞ gravity whose scalaron has an efficient screening
mechanism. For instance, one can consider viable DE
models of FðRÞ gravity. In these models, the screening
mechanism is essential to guarantee compatibility with
results in the local gravitational experiments, and thus the
scalaron has varying mass depending on the presence of
matter, unlike the R2 model. One can expect that the
internal screened scalaron would be less influential because
FðRÞ gravity tends to approximate GR. However, the
unscreened scalaron outside the compact star could show
prolonged external scalar hairs because it should be a light
scalar field to account for DE in vacuum. We will address
the reexamination of the modified TOVequation and reveal
how the additional DOF works for the other models of
FðRÞ gravity theory in our future works.
It would also be interesting to investigate the relations

between the internal scalar DOF and measurements other
than the mass-radius relation. The scalaron field may cause
significant effects on the density profile of the neutron star
in other types of the FðRÞ gravity, which can trigger the
rapid cooling as discussed in the scalar-tensor theory [71].
In addition to the density profile, the additional scalaron
field can interact with nucleons, neutrinos, and photons of
the neutron stars, which also affects the cooling process.
Similar to constraints on new particles captured in neutron
stars [72–74], we could constrain the scalaron field as a new
particle in the FðRÞ gravity.
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APPENDIX: EINSTEIN FRAME DESCRIPTION

Although the physical situation is apparent in the Jordan
frame, the discussion on the DOF of the gravitational field
is not. We can clarify it by the conformal transformation of
the metric:

gμν → g̃μν ¼ Φgμν ≡ e
ffiffi
2
3

p
κΦ̃gμν;

VðΦÞ → UðΦ̃Þ ¼ 1

2κ2
e−2

ffiffi
2
3

p
κΦ̃VðΦÞ: ðA1Þ

The action Eq. (8) is rewritten as

SG ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
2κ2

−
1

2
∂
αΦ̃∂αΦ̃ −UðΦ̃Þ

�
: ðA2Þ

This action comprises the Einstein action and minimally
coupled canonical scalaron field with potential UðΦ̃Þ. We
can find that the whole DOF of the gravitational field is
2þ 1. In this way, we can check that mathematically
equivalent action Eq. (1) has the same number of DOFs.
This frame is often called the Einstein frame in contrast
with the Jordan frame with the action Eq. (1).
The field equations for g̃μν and Φ̃ are

R̃μν−
1

2
R̃g̃μν ¼ κ2ðT̃μνþ T̃Φ̃

μνÞ�
T̃Φ̃
μν ¼ ∂μΦ̃∂νΦ̃− g̃μν

�
1

2
∂
αΦ̃∂αΦ̃−UðΦ̃Þ

��
; ðA3Þ

□̃ Φ̃ ¼ U0ðΦ̃Þ þ κffiffiffi
6

p T̃; ðA4Þ

where

T̃μν ≡ 2ffiffiffiffiffiffi
−g̃

p δSM
δg̃μν

¼ e−
ffiffi
2
3

p
κϕ̃Tμν; ðA5Þ

and the tilde denotes the quantities considered in
Einstein frame.
One can also discuss the chameleon mechanism in the

Einstein frame. The chameleon potential UeffðΦ̃; T̃Þ in this
frame is defined as

□̃ Φ̃ ¼ U0ðΦ̃Þ þ κffiffiffi
6

p T̃

¼ 1ffiffiffi
6

p
κ

�
2FðRðΦ̃ÞÞ − RðΦ̃ÞFRðRðΦ̃ÞÞ þ κ2T

F2
RðRðΦ̃ÞÞ

�

≡ ∂Ueff

∂Φ̃
ðΦ̃; T̃Þ ðA6Þ

(note that T is the Jordan frame quantity). The chameleon
mass of the scalaron field in the Einstein frame is

m2
Φ̃ ≡ ∂

2Ueff

∂Φ̃2

����
Φ̃¼Φ̃min

¼ 1

3FRðRminÞ
�
FRðRminÞ
FRRðRminÞ

− Rmin

�

¼ 1

FRðRminÞ
m2

Φ; ðA7Þ

where Rmin ¼ RðΦ̃minÞ which is realized at potential mini-
mum. The dependence on the energy-momentum comes
into the chameleon mass via Rmin implicitly.
For the R2 gravity, the chameleon potential in the

Einstein frame is derived as

UeffðΦ̃; TÞ ¼ 1

8κ2α
e−2

ffiffi
2
3

p
κΦ̃


2e

ffiffi
2
3

p
κΦ̃ − 1þ 2κ2αT

�
; ðA8Þ

up to a constant term. The plots for several α and T are
shown in Fig. 9. The chameleon mass is

FIG. 9. The chameleon potential (A8) in the Einstein frame under the R2 gravity (2). All quantities are dimensionless by rg ¼ GM⊙.
T is defined in the Jordan frame, and the bottom of the potential becomes shallower as α increases also in this frame. The potential
minimum moves horizontally and becomes deeper as T increases.
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m2
Φ̃ ¼ 1

6αð1 − 2κ2αTÞ : ðA9Þ

The nontachyonic condition of the scalaron field leads to
the constraint on the energy-momentum in the Jordan
frame:

T <
1

2κ2α
: ðA10Þ

This constraint gives the upper limit on the possible value
of central pressure (or energy density).
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